Dataset Open Access

Don't count, predict! Semantic vectors

Baroni, Marco; Dinu, Georgiana; Kruszewski, Germán


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <controlfield tag="005">20200124192606.0</controlfield>
  <controlfield tag="001">2635544</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Trento</subfield>
    <subfield code="a">Dinu, Georgiana</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Trento</subfield>
    <subfield code="a">Kruszewski, Germán</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6317</subfield>
    <subfield code="z">md5:18225022479202eedcaa83175a85b69d</subfield>
    <subfield code="u">https://zenodo.org/record/2635544/files/additional.tar.gz</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">500000000</subfield>
    <subfield code="z">md5:a3152a86b1cf462241a943e26582a849</subfield>
    <subfield code="u">https://zenodo.org/record/2635544/files/EN-wform.w.2.ppmi.svd.500.txt.gzaa</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">500000000</subfield>
    <subfield code="z">md5:05ac800eb85f5017cdaefc2597552e64</subfield>
    <subfield code="u">https://zenodo.org/record/2635544/files/EN-wform.w.2.ppmi.svd.500.txt.gzab</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">428634004</subfield>
    <subfield code="z">md5:f1c2bd158db8755510edfd0ef90b1861</subfield>
    <subfield code="u">https://zenodo.org/record/2635544/files/EN-wform.w.2.ppmi.svd.500.txt.gzac</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">500000000</subfield>
    <subfield code="z">md5:213e19cf9c6a5f266650b2ffe0fca0c5</subfield>
    <subfield code="u">https://zenodo.org/record/2635544/files/EN-wform.w.2.ppmi.txt.gzaa</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">331660414</subfield>
    <subfield code="z">md5:66b31c5f2032a96bfefd63d32fe2e6ee</subfield>
    <subfield code="u">https://zenodo.org/record/2635544/files/EN-wform.w.2.ppmi.txt.gzab</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">562930194</subfield>
    <subfield code="z">md5:91523ff5c4d31c8e24b0f4c79a541800</subfield>
    <subfield code="u">https://zenodo.org/record/2635544/files/EN-wform.w.5.cbow.neg10.400.subsmpl.txt.gz</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2014-06-01</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:2635544</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Trento</subfield>
    <subfield code="a">Baroni, Marco</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Don't count, predict!  Semantic vectors</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">283554</subfield>
    <subfield code="a">Compositional Operations in Semantic Space</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Semantic vectors associated with the paper &amp;quot;&lt;a href="https://www.aclweb.org/anthology/P14-1023"&gt;Don&amp;#39;t count, predict! A systematic comparison of context-counting vs context-predicting semantics vectors&lt;/a&gt;&amp;quot;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Abstract:&lt;/strong&gt; context-predicting models (more commonly known as embeddings or neural language models) are the new kids on the distributional semantics block. Despite the buzz surrounding these models, the literature is still lacking a systematic comparison of the predictive models with classic, count-vector-based distributional semantic approaches. In this paper, we perform such an extensive evaluation, on a wide range of lexical semantics tasks and across many parameter settings. The results, to our own surprise, show that the buzz is fully justified, as the context-predicting models obtain a thorough and resounding victory against their count-based counterparts.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.2635543</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.2635544</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
1,176
740
views
downloads
All versions This version
Views 1,1761,176
Downloads 740740
Data volume 325.5 GB325.5 GB
Unique views 1,0981,098
Unique downloads 289289

Share

Cite as