
P3DFFT User Guide
Version 2.7.5

Copyright (C) 2006-2016 Dmitry Pekurovsky

Copyright (C) 2006-2016 University of California Copyright

This program is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/

Acknowledgements

 Prof. P.K.Yeung

 Prof. Diego Donzis

 Dr. Giri Chukkapalli

 Dr. Geert Brethouwer

Citation: when reporting results obtained with P3DFFT, please cite the following:

D. Pekurovsky, “P3DFFT: a framework for parallel computations of Fourier transforms in three
dimensions”, SIAM Journal on Scientific Computing 2012, Vol. 34, No. 4, pp. C192-C209.

1. Introduction

P3DFFT is a scalable software library implementing three-dimensional spectral transforms. It
has been used in a variety of codes from many areas of computational science. It has been tested
and used on many high-end computational system. It uses two-dimensional domain
decomposition in order to overcome a scaling bottleneck of one-dimensional decomposition.

http://www.gnu.org/licenses/

This allows the programs with this library to scale well on a large number of cores, consistent
with bisection bandwidth scaling of interconnect of the underlying hardware system.

Below are the main features of P3DFFT v. 2.7.5:

 Real-to-complex and complex-to-real Fast Fourier Transforms (FFT) in 3D.
 Cosine, sine, and combined Fourier-Chebyshev transform (FFT in 2D and Chebyshev in

the third dimension). Alternatively users can substitute their own transform in the third
dimension, for example a compact scheme.

 Fortran and C interfaces
 Built for performance at all ranges of core counts
 Hybrid MPI/OpenMP implementation
 In-place and out-of-place transforms
 Pruned transforms
 Multivariable transforms

1. Directory Structure and Files

The following is a directory listing for what you should find int he p3dfft package:

Table 1: Directory structure of p3dfft package

Directory Description

toplevel
The configure script is located here. Running the configure script is essential for
properly building p3dfft. Please refer to section 2 of this guide for more
information.

build/

The library files are contained here. Building the library is required before it can
be used. In order to build the library, you must run ./configure from the top level
directory. Then type "make" and then "make install". For further details on
building the library see section 2 of this guide.

include/

The library is provided as a Fortran module. After installation this directory will
have p3dfft.mod (for Fortran interface), p3dfft.h (C wrapper/include file), and
config.h (header that contains all arguments used when configure script was
executed).

sample/

This directory has example programs in both FORTRAN and C, in separate
subdirectories. Tests provided include out-of-place and in-place transforms 3D
FFT, with error checking. Also provided is an example of power spectrum
calculation. Example programs will be compiled automatically with the library
during make.

IMPORTRANT: In order to use p3dfft with C programs, you must include the p3dfft.h header
file in your program. This header file defines an interface that allows C programs to call Fortran
functions from the p3dfft library.

In addition to the library itself, the package includes several sample programs to illustrate how to
use p3dfft. These sample programs can be found in the sample/ directory:

Table 2: Filename and description of samples

Source filename Binary filename Description

driver_inverse.c,
driver_inverse.F90

test_inverse_c.x,
test_inverse_f.x

This program initializes a
3D array of complex
numbers with a 3D
sine/cosine wave, then
performs inverse FFT
transform, and checks that
the results are correct. This
sample program also
demonstrates how to work
with complex arrays in
wavenumber space,
declared as real.

driver_rand.c, driver_rand.F90 test_rand_c.x, test_rand_f.x

This program initializes a
3D array with random
numbers, then performs
forward 3D Fourier
transform, then backward
transform, and checks that
the results are correct,
namely the same as in the
start except for a
normalization factor. It can
be used both as a
correctness test and for
timing the library functions.

driver_sine.c,
driver_sine_inplace.c,
driver_sine.F90,
driver_sine_ineplace.F90

test_sine_c.x,
test_sine_inplace_c.x,
test_sine_f.x,
test_sine_inplace_f.x

This program initializes a
3D array with a 3D sine
wave, then performs 3D
forward Fourier transform,
then backward transform,
and checks that the results
are correct, namely the same
as in the start except for a
normalization factor. It can
be used both as a
correctness test and for
timing the library functions.

driver_sine_many.F90
driver_sine_inplace_many.F90
driver_rand_many.F90

test_sine_many_f.x
test_sine_inplace_many_f.x
test_rand_many_f.x

Same as above, but these
program tests the
multivariable transform
feature. There is an extra
parameter in the input file
specifying the number of
variables to transform (nv).

driver_spec.c, driver_spec.F90 test_spec_c.x, test_spec_f.x

This program initializes a
3D array with a 3D sine
wave, then performs 3D
FFT forward transform, and
computes power spectrum.

driver_cheby.F90 test_cheby_f.x

This program initializes a
3D array with a sine wave,
employing a non-uniform
grid in the Z dimension with
coordinates given by
cos(k/N). Then Chebyshev
routine is called
(p3dfft_cheby) which uses
Fourier transform in X and
Y and a cosine transform in
Z (“ffc”), followed by
computation of Chebyshev
coefficients. Then backward
“cff” transform is called and
the results are compared
with the expected output
after Chebyshev
differentiation in Z. This
program can be used both as
correctness and as a timing
test.

driver_noop.c,
driver_noop.F90

test_noop_c.x,
test_noop_f.x

Similar to the above but
instead of Chebyshev
transform nothing is done;
i.e. only 2D FFT is
performed and then the data
is laid out in a format
suitable for a custom
transform of the user’s
choice in the third

dimension (i.e. data is local
for each processor in that
dimension).

2. Installing p3dfft

In order to prepare the p3dfft for compiling and installation, you must run the included configure
script. Here is a simple example on how to run the configure script:

$./configure --enable-pgi --enable-fftw --with-fftw=/usr/local/fftw/ LDFLAGS=”-lmpi_f90 –
lmpi_f77”

The above will prepare p3dfft to be compiled by the PGI compiler with FFTW support. There are
more arguments included in the configure script that will allow you to customize p3dfft to your
requirements:

Table 3: Arguments of configure script

Argument Notes Description Example

--prefix=PREFIX

Mandatory for
users without
access to
/usr/local

This argument will install
p3dfft to PREFIX when
you run make install. By
default, configure will
install to /usr/local

--prefix=$HOME/local/

--enable-gnu, --enable-
ibm, --enable-intel,
--enable-pgi, --enable-
cray

Mandatory

These arguments will
prepare p3dfft to be built
by a specific compiler.
You must only choose
one option.

--enable-pgi

--enable-fftw, --enable-
essl

Mandatory

These arguments will
prepare p3dfft to be used
with either the FFTW or
ESSL library. You must
only choose one option.

--enable-fftw

--with-fftw=
FFTWLOCATION

Mandatory if
--enable-fftw is
used

This argument specifies
the path location for the
FFTW library; it is
mandatory if you are
planning to use p3dfft
with the FFTW library.

--enable-fftw --with-
fftw=$FFTW_HOME

--enable-openmp

Mandatory if
using
multithreaded
version
(OpenMP)

This argument adds the
appropriate compiler
flags to enable OpenMP

--enable-openmp

--enable-openmpi Optional
This argument uses the
OpenMPI
implementation of MPI

--enable-openmpi

--enable-oned Optional,

This argument is for 1D
decomposition. The
default is 2D
decomposition but can be
made to 1D by setting up
a grid 1xn when running
the code.

--enable-oned

--enable-estimate
Optional, use
only with
--enable-fftw

If this argument is
passed, the FFTW library
will not use run-time
tuning to select the
fastest algorithm for
computing FFTs.

--enable-estimate

--enable-measure

Optional,
enabled by
default, use only
with --enable-
fftw

For search-once-for-the-
fast algorithm (takes
more time on
p3dfft_setup()).

--enable-measure

--enable-patient
Optional, use
only with
--enable-fftw

For search-once-for-the-
fastest-algorithm (takes
much more time on
p3dfft_setup()).

--enable-patient

--enable-dimsc Optional

To assign processor rows
and columns in the
Cartesian processor grid
according to C
convention. The default
is Fortran convention
which is recommended.
This option does not
affect the order of
storage of arrays in
memory.

--enable-dimsc

--enable-useeven Optional, This argument is for --enable-useeven

recommended
for Cray XT

using MPI_Alltoall
instead of
MPI_Alltotallv. This will
pad the send buffers with
zeros to make them of
equal size; not needed on
most architecture but
may lead to better results
on Cray XT.

--enable-stride1
Optional,
recommended

To enable stride-1 data
structures on output (this
may in some cases give
some advantage in
performance). You can
define loop blocking
factors NLBX and NBLY
to experiment, otherwise
they are set to default
values.

--enable-stride1

--enable-nblx Optional
To define loop blocking
factor NBL_X

--enable-nblx=32

--enable-nbly1 Optional
To define loop blocking
factor NBL_Y1

--enable-nbly1=32

--enable-nbly2 Optional
To define loop blocking
factor NBL_Y2

--enable-nbly2=32

--enable-nblz Optional
To define loop blocking
factor NBL_Z

--enable-nblz=32

--enable-single Optional

This argument will
compile p3dfft in single-
precision. By default,
configure will setup
p3dfft to be compiled in
double-precision.

--enable-single

FC=<Fortran compiler> Optional Fortran compiler FC=mpfort

FCFLAGS="<Fortran
compiler flags>"

Optional,
recommended

Fortran compiler falgs
FCFLAGS="-
Mextend"

CC=<C compiler> Optional C compiler CC=mpcc

CFLAGS="<C compiler
flags>"

Optional,
recommended

C compiler flags CFLAGS="-fastsse"

LDFLAGS="<linker
flags>"

Mandatory
(depending on
platform)

Linker flags
LDFLAGS=-lmpi_f90
-lmpi_f77"

More information on how to customize the configure script can be found by calling:

$./configure --help

After you have successfully run the configure script, you are ready to compile and install p3dfft.
Simply run:

$ make

$ make install

3. p3dfft module

The p3dfft module declares important variables. It should be included in any code that calls
P3DFFT routines (via use p3dfft statement in Fortran).

The p3dfft module also specifies mytype, which is the type of real and complex numbers. You
can choose precision at compile time through a preprocessor flag (see Installation Guide).

4. Initialization

Before using the library it is necessary to call an initialization routine 'p3dfft_setup'.

Usage: p3dfft_setup(proc_dims,nx,ny,nz,mpi_comm_in,nx_cut,ny_cut,nz_cut,overwrite,memsize)

Table 4: Arguments of p3dfft_setup

Argument Intent Description

proc_dims Input

An array of two integers, specifying how the processor
grid should be decomposed. Either 1D or 2D
decomposition can be specified. For example, when
running on 12 processors, (4,3) or (2,6) can be specified
as proc_dims to indicate a 2D decomposition, or (1,12)
can be specified for 1D decomposition. proc_dims values
are used to initialize P1 and P2.

Nx, Ny, Nz Input
(Integer) Dimensions of the 3D transform (also the global
grid dimensions)

MPI_COMM_IN Input (Integer) MPI Communicator containing all MPI tasks
that participate in the partition (in most cases this will be

MPI_COMM_WORLD).

Nx_cut,Ny_cut,Nz_cut
Input
(optional)

(Integer) Pruned dimensions on output/input (default is
same as Nx,Ny,Nz)

overwrite
Input
(optional)

(Logical) When set to .true. (or 1 in C) this argument
indicates that it is safe to overwrite the input of the btran
(backward transform) routine. This may speed up
performance of FFTW routines in some cases when non-
stride-1 transforms are made.

memsize
Output
(optional)

Optional argument (array of 3 integers). Memsize can be
used to allocate arrays. It contains the dimensions of real-
space array that are large enough to contain both input
and output of an in-place 3D FFT real-to-complex
transform defined by nx,ny,nz,nx_cut,ny_cut,nz_cut.

5. Array Decomposition

The p3dfft_setup routine sets up the two-dimensional (2D) array decomposition. P3DFFT
employs 2D block decomposition whereby processors are arranged into a 2D grid P1 x P2, based
on their MPI rank. Two of the dimensions of the 3D grid are block-distributed across the
processor grid, by assigning the blocks to tasks in the rank order. The third dimension of the grid
remains undivided, i.e. contained entirely within local memory (see Fig. 1). This scheme is
sometimes called pencils decomposition.

A block decomposition is defined by dimensions of the local portion of the array contained
within each task, as well as the beginning and ending indices for each dimension defining the
array’s location within the global array. This information is returned by p3dfft_get_dims routine
which should be called before setting up the data structures of your program (see sample/
subdirectory for example programs).

Figure 1: An example of 2D block(a.k.a. pencils) decomposition of a 3D grid.

In P3DFFT, the decompositions of the output and input arrays, while both being two-
dimensional, differ from each other. The reason for this is as follows. In 3D Fourier Transform it
is necessary to transpose the data a few times (two times for two-dimensional decomposition) in
order to rearrange the data so as to always perform one-dimensional FFT on data local in
memory of each processing element. It would be possible to transpose the data back to the
original form after the 3D transform is done, however it often makes sense to save significant
time by forgoing this final transpose. All the user has to do is to operate on the output array while
keeping in mind that the data are in a transposed form. The backward (complex-to-real)
transform takes the array in a transposed form and produces a real array in the original form. The
rest of this section clarifies exactly the original and transposed form of the arrays.

Starting with v. 2.7.5 P3DFFT features optional hybrid MPI/OpenMP implementation. In this
case the MPI decomposition is the same as above, and each MPI task now has Nthr threads. This
essentially implements 3D decomposition, however the results are global arrays (in the OpenMP
sense) so they can be used either with multi- or single-threaded program. The number of threads
is specified through the environment variable OMP_NUM_THREADS.

Usage: p3dfft_get_dims(start,end,size,ip)

Table 5: Arguments of p3dfft_get_dims()

Argument Intent Description

start Output
An array containing 3 integers, defining the beginning indices
of the local array for the given task within the global grid.

end Output
An array containing 3 integers, defining the ending indices of
the local array within the global grid (these can be computed
from start and size but are provided for convenience).

size Output
An array containing 3 integers, defining the local array’s
dimensions.

mypad Output/Optional

This argument is optional and is used in in-place transforms, to
obtain the value of padding that should be used in the third
dimension of the input array (since input and output arrays may
not have the same memory size)

ip Input ip=1: “Original”: a “physical space” array of real numbers,
local in X, distributed among P1 tasks in Y dimension and P2
tasks in Z dimension, where P1 and P2 are processor grid
dimensions defined in the call to p3dfft_setup. Usually this type
of array is an input to real-to-complex (forward) transform and
an output of complex-to-real (backward) transform. ip=2:
“Transposed”: a “wavenumber space” array of complex
numbers, local in Z, distributed among P1 tasks in X dimension,
P2 tasks in Y dimension. Usually this type of array is an output
of real-to-complex (forward) transform and an input to

complex-to-real, backward transform. ip=3: the routine returns
three numbers corresponding to “padded” dimensions in the
physical space, i.e. an array with these dimensions will be large
enough both for physical and wavenumber space. Example of
use of this feature can be found in driver_sine_inplace.F90
sample program.

IMPORTANT: the layout of the 2D processor grid on the physical network is dependent on the
architecture and software of the particular system, and can have some impact on efficiency of
communication. By default, rows have processors with adjacent task IDs (this corresponds to
"FORTRAN" type ordering). This can be changed to "C" ordering (columns have adjacent task
IDs) by building the library with -DDIMS_C preprocessor flag. The former way is recommended
on most systems.

P3DFFT uses 2D block decomposition to assign local arrays for each task. In many cases
decomposition will not be entirely even: some tasks will get more array elements than others.
P3DFFT attempts to minimize load imbalance. For example is the grid dimensions are 128 x 256
x 256 and the processor grid is defined as 3x4, the original (ip=1) decomposition calls for
splitting 256 elements in Y dimension into three processor row. P3DFFT in this case will break it
up into pieces of 86, 85 and 85 elements. The transposed (ip=2) decomposition will have local
arrays with X dimensions 22, 22 and 21 respectively for processor rows 1 through 3 (the sum of
these numbers is 65=(Nx+2)/2 since these are now complex numbers instead of reals, and an
extra mode for Nyquist frequency is needed – see Section 5 for an explanation).

It should be clear that the user’s choice of P1 and P2 can make a difference on how balanced is
the decomposition. Obviously the greater load imbalance, the less performance can be expected.

Note: the two array types are distributed among processors in a different way from each other,
but this does not automatically imply anything about the ordering of the elements in memory.
Memory layout of the original (ip=1) array uses the “Fortran” ordering. For example, for an
array A(lx,ly,lz) the index corresponding to lx runs fastest. Memory layout for the transposed
(ip=2) array type depends on how the P3DFFT library was built. By default, it preserves the
ordering of the real array, i.e. (X,Y,Z). However, in many cases it is advisable to have Z
dimension contiguous, i.e. a memory layout (Z,Y,X). This can speed up some computations in
the wavenumber space by improving cache utilization through spatial locality in Z, and also
often results in better performance of P3DFFT transforms themselves. The (Z,Y,X) layout can be
triggered by building the library with –DSTRIDE1 preprocessor flag in the makefile. For more
information, see performance section below.

Table 6. Mapping of the data array onto processor grid and memory layout

Physical space Fourier space

STRIDE1 defined Nx , Ny/M1 , Nz/M2 Nz , Ny/M2 ,(Nx+2)/(2M1)

STRIDE1 undefined Nx , Ny/M1 , Nz /M2 Nx+2)/(2M1),Ny/M2 ,Nz

6. Forward (real-to-complex) and backward (complex-to-real) 3D Fourier
transforms

P3DFFT versions 2.7.1 and higher implement transforms for one or more than one independent
arrays/variables simultaneously. An example of this is 3 components of a velocity field.
Multivariable transforms achieve greater speed than single-variable transforms, especially for
grids of smaller size, due to buffer aggregation in inter-processor exchanges.

Forward transform is implemented by the p3dfft_ftran_r2c subroutine using the following
format:

p3dfft_ftran_r2c(IN,OUT,op)

The input IN is an array of real numbers with dimensions defined by array type with ip=1 (see
Table 2 above), with X dimension contained entirely within each task, and Y and Z dimensions
distributed among P1 and P2 tasks correspondingly. The output OUT is an array of complex
numbers with dimensions defined by array type with ip=2, i.e. Z dimension contained entirely,
and X and Y dimensions distributed among P1 and P2 tasks respectively. The op argument is a 3-
letter character string indicating the type of transform desired. Currently only Fourier transforms
are supported in X and Y (denoted by symbol f) and the following transforms in Z:

Table 7. Supported types of transforms in Z

t or f Fourier Transform

c Cosine Transform

s Sine Transform

n or 0 Empty transform (no operation takes place, output is the same as input)

Empty transform can be useful for someone implementing custom transform in Z dimension.
Example: op=’ffc’ means Fourier transform in X and Y, and a cosine transform in Z. The DCT-I
kind of transform is performed (DST-I for sine), the definition of which can be found here:
http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-I

Backward transform is implemented by the p3dfft_btran_c2r subroutine using the following
format:

p3dfft_btran_c2r(IN,OUT,op)

The input IN is an array of complex numbers with dimensions defined by array type with ip=2
(see Table 2 above), i.e. Z dimension is contained entirely, and X and Y dimensions are
distributed among P1 and P2 tasks correspondingly. The output OUT is an array of real numbers
with dimensions defined by array type with ip=1, i.e. X dimension is contained entirely within
each task, and Y and Z are dimensions distributed among P1 and P2 tasks respectively. The op
argument is similar to forward transform, with the first character of the string being one of t,c,s,n

or 0, and the second and third being f. Example: op=’nff’ means no operation in Z, backward
Fourier transforms in Y and X.

7. Complex array storage definition

Since Fourier transform of a real function has the property of conjugate symmetry, only about
half of the complex Fourier coefficients need to be kept. To be precise, if the input array has n
real elements, Fourier coefficients F(k) for k=n/2+1,..,n can be dropped as they can be easily
restored from the rest of the coefficients. This saves both memory and time. In this version we do
not attempt to further pack the complex data. Therefore the output array for the forward
transform (and the input array of the backward transform) contains (Nx/2+1) times Ny times Nz
complex numbers, with the understanding that Nx/2-1 elements in X direction are missing and
can be restored from the remaining elements. As mentioned above, the Nx/2+1 elements in the X
direction are distributed among P1 tasks in the transposed layout.

8. Multivariable transforms

Sometime communication performance of transposes such as those included in P3DFFT can be
improved by combining several transforms into a single operation. (This allows us to aggregate
messages during interprocessor data exchange). This is especially important when transforming
small grids and/or when using systems with high interconnect latencies. P3DFFT provides
multivariable transforms to make use of this idea. Instead of an 3D array as input parameter these
subroutines accept a 4D array, with the extra dimension being the index of independent variables
to be transformed (for example this could be 3 velocity components). The following is the syntax
for multivariable transforms:

p3dfft_ftran_many_r2c(IN,dim_in,OUT,dim_out,nv,op)

p3dfft_btran_many_c2r(IN,dim_in,OUT,dim_out,nv,op)

The multivariable transform routines for both forward and backward transforms have an
additional argument nv (integer) representing the number of independent variables in the
input/output arrays. The spacing between these independent variables is defined by dim_in and
dim_out (integer) arguments for input/output arrays respectively. Both dim_in and dim_out
should not be less than the size of the grid returned by get_dims routine. See sample program
driver_sine_many.F90, driver_sine_inplace_many.F90 or driver_rand_many for an example of
such use.

9. Pruned transforms

Sometimes only a subset of output modes is needed to be retained (for forward transform), or a
subset of input modes is used, the rest being zeros (for backward transform). Such transforms are
called pruned transforms. Leaving off redundant modes can lead to significant savings of time
and memory. The reduced dimensions Nx_cut,Ny_cut and Nz_cut are arguments to p3dfft_setup.
By default they are equal to Nx,Ny,Nz. If they are different from the above (smaller) the output

of forward transforms will be reduced in size correspondingly. The input for backward transform
will also be smaller in size. It will be automatically padded with zeros until it reaches Nx,Ny,Nz.

10. In-place transforms

In and Out arrays can occupy the same space in memory (in-place transform). In this case, it is
necessary to make sure that they start in the same location, otherwise the results are
unpredictable. Also it is important to remember that the sizes of input and output arrays in
general are not equal. The complex array is usually bigger since it contains the Nyquist
frequency mode in X direction, in addition to the Nx/2 modes that equal in space to Nx real
numbers. However when decomposition is not even, sometimes the real array can be bigger than
the complex one, depending on the task ID. Therefore to be safe one must make sure the
common-space array is large enough for both input and output. This can be done by using
memsize argument when calling p3dfft_setup. It returns the maximum array size for both input
and output. Alternatively, one can call p3dfft_get_dims two times with ip=1 and 2.

In Fortran using in-place transforms is a bit tricky due to language restrictions on subroutine
argument types (i.e., one of the arrays is expected to be real and the other complex). In order to
overcome this problem wrapper routines are provided, named ftran_r2c and btran_c2r
respectively for forward and backward transform (without p3dfft prefix). There are examples for
such in-place transform in the sample/ subdirectory. These wrappers can be also used for out-of-
place transforms just as well.

11. Memory requirements

Besides the input and output arrays (which can occupy the same space, as mentioned above)
P3DFFT allocates temporary buffers roughly 3 times the size of the input or output array.

12. Performance considerations

P3DFFT was created to compute 3D FFT in parallel with high efficiency. In particular it is aimed
for applications where the data volume is large. It is especially useful when running applications
on ultra-scale parallel platforms where one-dimensional decomposition is not adequate. Since
P3DFFT was designed to be portable, no effort is made to do architecture-specific optimization.
However, the user is given some choices in setting up the library, mentioned below, that may
affect performance on a given system. Current version of P3DFFT uses ESSL or FFTW library
for it 1D FFT routines. ESSL [1] provides FFT routines highly optimized for IBM platforms it is
built on. The FFTW [2], while being generic, also makes an effort to maximize performance on
many kinds of architectures. Some performance data will be uploaded at the P3DFFT Web site.
For more questions and comments please contact dmitry@sdsc.edu.

Optimal performance on many parallel platforms for a given number of cores and problem size
will likely depend on the choice of processor decomposition. For example, given a processor grid
P1 x P2 (specified in the first argument to p3dfft_setup) performance will generally be better
with smaller P1 (with the product P1 x P2 kept constant). Ideally P1 will be equal or less than the

number of cores on an SMP node or a multi-core chip. In addition, the closer a decomposition is
to being even, the better load balancing.

Beginning with v.2.7.5 P3DFFT is equipped with MPI/OpenMP capability. If use of this feature
is needed simply set the desired number of threads through environment variable
OMP_NUM_THREADS. The optimal number of threads, just like the processor grid, depends
on specific platform and problem.

Performance is likely to be better when P3DFFT is built using –-enable-stride1 during configure.
This implies stride-1 data ordering for FFTs. Note that using this argument changes the memory
layout of the transposed array (see section 3 for explanation). To help tune performance further,
two more arguments can be used: -enable-dnblx=… and –-enable-dnbly=…, which define block
sizes in X and Y when doing local array reordering. Choosing suitable block sizes allows the
program to optimize cache performance, although by default P3DFFT chooses these values
based on a good guess according to cache size.

Finally, performance will be better if overwrite parameter is set to .true. (or 1 in C) when
initializing P3DFFT. This allows the library to overwrite the input array, which results in
significantly faster execution when not using the –enable-stride1 argument.

13. References

1. ESSL library, IBM, http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?
topic=/com.ibm.cluster.essl.doc/esslbooks.html

2. Matteo Frigo and Steven G. Johnson, "The Design and Implementation of FFTW3",
Proceedings of the IEEE 93 (2), 216–231 (2005). Invited paper, Special Issue on Program
Generation, Optimization, and Platform Adaptation.

3. D. Pekurovsky, “P3DFFT: a framework for parallel computations of Fourier transforms
in three dimensions”, SIAM Journal on Scientific Computing 2012, Vol. 34, No. 4, pp.
C192-C209.

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.essl.doc/esslbooks.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.essl.doc/esslbooks.html

	P3DFFT User Guide
	Acknowledgements
	Citation: when reporting results obtained with P3DFFT, please cite the following:
	1. Introduction
	P3DFFT is a scalable software library implementing three-dimensional spectral transforms. It has been used in a variety of codes from many areas of computational science. It has been tested and used on many high-end computational system. It uses two-dimensional domain decomposition in order to overcome a scaling bottleneck of one-dimensional decomposition. This allows the programs with this library to scale well on a large number of cores, consistent with bisection bandwidth scaling of interconnect of the underlying hardware system.
	Below are the main features of P3DFFT v. 2.7.5:
	Real-to-complex and complex-to-real Fast Fourier Transforms (FFT) in 3D.
	Cosine, sine, and combined Fourier-Chebyshev transform (FFT in 2D and Chebyshev in the third dimension). Alternatively users can substitute their own transform in the third dimension, for example a compact scheme.
	Fortran and C interfaces
	Built for performance at all ranges of core counts
	Hybrid MPI/OpenMP implementation
	In-place and out-of-place transforms
	Pruned transforms
	Multivariable transforms
	1. Directory Structure and Files
	2. Installing p3dfft
	3. p3dfft module
	4. Initialization
	5. Array Decomposition
	6. Forward (real-to-complex) and backward (complex-to-real) 3D Fourier transforms
	7. Complex array storage definition
	8. Multivariable transforms
	Sometime communication performance of transposes such as those included in P3DFFT can be improved by combining several transforms into a single operation. (This allows us to aggregate messages during interprocessor data exchange). This is especially important when transforming small grids and/or when using systems with high interconnect latencies. P3DFFT provides multivariable transforms to make use of this idea. Instead of an 3D array as input parameter these subroutines accept a 4D array, with the extra dimension being the index of independent variables to be transformed (for example this could be 3 velocity components). The following is the syntax for multivariable transforms:
	p3dfft_ftran_many_r2c(IN,dim_in,OUT,dim_out,nv,op)
	p3dfft_btran_many_c2r(IN,dim_in,OUT,dim_out,nv,op)
	The multivariable transform routines for both forward and backward transforms have an additional argument nv (integer) representing the number of independent variables in the input/output arrays. The spacing between these independent variables is defined by dim_in and dim_out (integer) arguments for input/output arrays respectively. Both dim_in and dim_out should not be less than the size of the grid returned by get_dims routine. See sample program driver_sine_many.F90, driver_sine_inplace_many.F90 or driver_rand_many for an example of such use.
	9. Pruned transforms
	10. In-place transforms
	11. Memory requirements
	12. Performance considerations

	13. References

