Dataset Open Access

The LAMBADA dataset

Paperno, Denis; Kruszewski, Germán; Lazaridou, Angeliki; Pham, Quan Ngoc; Bernardi, Raffaella; Pezzelle, Sandro; Baroni, Marco; Boleda, Gemma; Fernández, Raquel


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/07b3ed17-10da-4b91-8117-b40d8f928ead/lambada-dataset.tar.gz"
      }, 
      "checksum": "md5:8014f6ba29b80dd27fb853a7373af7c3", 
      "bucket": "07b3ed17-10da-4b91-8117-b40d8f928ead", 
      "key": "lambada-dataset.tar.gz", 
      "type": "gz", 
      "size": 334527694
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/07b3ed17-10da-4b91-8117-b40d8f928ead/rejected-data1.tar.gz"
      }, 
      "checksum": "md5:6d9fcfc38c2068a360597ea63b814045", 
      "bucket": "07b3ed17-10da-4b91-8117-b40d8f928ead", 
      "key": "rejected-data1.tar.gz", 
      "type": "gz", 
      "size": 1717206
    }
  ], 
  "owners": [
    40269
  ], 
  "doi": "10.5281/zenodo.2630551", 
  "stats": {
    "version_unique_downloads": 179.0, 
    "unique_views": 789.0, 
    "views": 853.0, 
    "downloads": 265.0, 
    "unique_downloads": 179.0, 
    "version_unique_views": 784.0, 
    "volume": 76003040366.0, 
    "version_downloads": 265.0, 
    "version_views": 848.0, 
    "version_volume": 76003040366.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.2630551", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.2630550", 
    "bucket": "https://zenodo.org/api/files/07b3ed17-10da-4b91-8117-b40d8f928ead", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.2630550.svg", 
    "html": "https://zenodo.org/record/2630551", 
    "latest_html": "https://zenodo.org/record/2630551", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.2630551.svg", 
    "latest": "https://zenodo.org/api/records/2630551"
  }, 
  "conceptdoi": "10.5281/zenodo.2630550", 
  "created": "2019-04-05T14:07:23.948335+00:00", 
  "updated": "2019-11-01T07:12:02.512129+00:00", 
  "conceptrecid": "2630550", 
  "revision": 6, 
  "id": 2630551, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.2630551", 
    "description": "<p>We introduce LAMBADA, a dataset to evaluate the capabilities of computational models for text understanding by means of a word prediction task. LAMBADA is a collection of narrative passages sharing the characteristic that human subjects are able to guess their last word if they are exposed to the whole passage, but not if they only see the last sentence preceding the target word. To succeed on LAMBADA, computational models cannot simply rely on local context, but must be able to keep track of information in the broader discourse. We show that LAMBADA exemplifies a wide range of linguistic phenomena, and that none of several state-of-the-art language models reaches accuracy above 1% on this novel benchmark. We thus propose LAMBADA as a challenging test set, meant to encourage the development of new models capable of genuine understanding of broad context in natural language text.</p>\n\n<p>&nbsp;</p>\n\n<p>The LAMBADA paper can be found <a href=\"http://anthology.aclweb.org/P/P16/P16-1144.pdf\">here</a>.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "The LAMBADA dataset", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "2630550"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "2630551"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "283554", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::283554"
        }, 
        "title": "Compositional Operations in Semantic Space", 
        "acronym": "COMPOSES", 
        "program": "FP7", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "655577", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::655577"
        }, 
        "title": "Linking Objects to Vectors in distributional semantics: A framework to anchor corpus-based meaning representations to the external world", 
        "acronym": "LOVe", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "publication_date": "2016-08-07", 
    "creators": [
      {
        "affiliation": "University of Trento", 
        "name": "Paperno, Denis"
      }, 
      {
        "affiliation": "University of Trento", 
        "name": "Kruszewski, Germ\u00e1n"
      }, 
      {
        "affiliation": "University of Trento", 
        "name": "Lazaridou, Angeliki"
      }, 
      {
        "affiliation": "University of Trento", 
        "name": "Pham, Quan Ngoc"
      }, 
      {
        "affiliation": "University of Trento", 
        "name": "Bernardi, Raffaella"
      }, 
      {
        "affiliation": "University of Trento", 
        "name": "Pezzelle, Sandro"
      }, 
      {
        "affiliation": "University of Trento", 
        "name": "Baroni, Marco"
      }, 
      {
        "affiliation": "University of Trento", 
        "name": "Boleda, Gemma"
      }, 
      {
        "affiliation": "University of Amsterdam", 
        "name": "Fern\u00e1ndez, Raquel"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.2630550", 
        "relation": "isVersionOf"
      }
    ]
  }
}
848
265
views
downloads
All versions This version
Views 848853
Downloads 265265
Data volume 76.0 GB76.0 GB
Unique views 784789
Unique downloads 179179

Share

Cite as