
  

 

Abstract— Dual arm aerial manipulation requires the design 

and development of high performance robotic arms in terms of 

safety, robustness, and force/torque/impedance control, taking 

into account the integration in the aerial platform, the strong 

weight constraints, and the technological limitations of the servo 

actuators. A compliant joint arm also improves the response of 

the aerial manipulator to collisions and external forces during 

the flight operation. This paper evaluates the control capabilities 

in a lightweight manipulator built with smart servo actuators 

and a spring-lever transmission mechanism which provides joint 

compliance and deflection measurement. The dynamic model of 

a compliant joint is validated through frequency identification, 

demonstrating how virtual variable impedance can be achieved 

without a second motor. Mechanical joint compliance is the base 

of the Cartesian impedance control scheme of the dual arm 

system, integrated with the controller of the aerial platform. A 

stereo vision system provides the Cartesian deflection of the end 

effector, derived from the definition of an equivalent stiff joint 

manipulator, allowing the estimation and control of the contact 

forces. Experimental results validate the developed concepts. 

I. INTRODUCTION 

It is expected that in a near future aerial manipulators can 
replace human workers in the realization of certain inspection 
and maintenance operations, where the high risk and required 
time in the deployment of resources to difficult access areas 
involve a significant cost for many companies. Installation of 
sensors in polluted zones, insulation of leaks in high altitude 
pipes, or the visual inspection and repair of wind turbines are 
some illustrative application examples. Although nowadays it 
is possible to find a wide variety of commercially available 
aerial platforms, the development of very low weight, low 
cost and high performance robotic arms to be integrated in a 
multi-rotor vehicle is still a technological challenge. Several 
research prototypes have been proposed and tested in indoors 
[1][2] and outdoors [3][4], including dual arm manipulators 
[5][6]. Most robotic arms intended for aerial manipulation are 
built with smart servo actuators (Herkulex or Dynamixel) due 
to their low cost and weight, ease of assembly and integration. 
However, their limitations in terms of feedback and control 
cannot be ignored. The embedded microcontroller and the 
serial communication bus reduce in practice the update rate to 
50 – 100 Hz, far away from the 1 KHz provided by industrial 
manipulators. Servo actuators only accept as input the position 
reference and the desired motion time (playtime), and there is 
no direct feedback or control over the motor torque or speed. 

The benefits of mechanical compliance in terms of safety 
and robustness are evident in many aerial manipulation tasks 
involving contact forces with the environment [7]-[9]. Several 
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high performance compliant joint mechanisms [10][11] and 
variable stiffness actuators [12][13] have been developed for 
ground robotics. Now the current challenge is the mechatronic 
design and development of very low weight and compliant 
manipulators that can be integrated in multirotor platforms, 
taking into account the strong limitations in terms of payload, 
dynamic coupling and influence to external forces [14][15]. 
The control of fixed-base manipulator arms with elastic joints 
has been treated in the literature for the last 30 years [16][17]. 
Impedance control has been used frequently for controlling 
these compliant manipulators [18][17]. Impedance control has 
also been implemented in aerial manipulators with a rigid-link 
arm [19][20].   

In our previous work we developed and demonstrated the 
capabilities of three prototypes of lightweight and compliant 
joint robotic arms. A pair of extension springs connecting the 
stroke of a linear servo with the forearm are introduced in [22] 
for estimating the mass of grasped objects and for detecting 
collisions against obstacles based on the deflection of the 
elbow joint. The 3-DOF robotic arm described in [23] makes 
use of a spring-lever mechanism installed between the servo 
shaft and the output link for transmitting and estimating the 
torque in the joint, demonstrating contact force control and 
obstacle localization. Finally, an anthropomorphic compliant 
and lightweight dual arm aerial manipulator is presented in 
[24], showing bimanual object grasping in outdoor flights. 

This paper explores the force and virtual impedance 
control capabilities in an anthropomorphic, compliant and 
lightweight (1.3 kg) dual arm system integrated in a hexarotor 
platform. The dynamic model of the compliant actuator is 
analyzed in the first place, describing later the design of the 
controller for achieving virtual variable impedance to external 
load. The concept of Cartesian deflection is then defined and 
applied to bimanual force-position control, introducing in this 
work a stereo vision system for estimating the deviation of the 
markers attached to the left/right arms with respect to their 
position in an equivalent stiff joint dual arm manipulator. The 
developed models are validated experimentally, evaluating the 
performance of the virtual variable impedance controller in a 
single joint, and the impedance controller of the dual arm 
manipulator in hovering conditions.  

The rest of the paper is organized as follows. Section II 
describes the dual arm aerial manipulator. Section III presents 
the model of the compliant actuator, the dual arm system, and 
the aerial manipulator. Section IV explains the control method 
for achieving virtual variable impedance in a compliant joint, 
the force/position controller in the dual arm, and the control 
scheme of the whole aerial manipulator. Section V presents 
the results, summarizing the conclusions in Section VI. 
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II. COMPLIANT JOINT, DUAL ARM AERIAL MANIPULATOR  

Bimanual manipulation extends the range of operations 
that an aerial robot is able to perform with respect to the single 
arm case, allowing for example the transportation, installation 
and retrieval of two sensor devices simultaneously, grasping 
large objects, operating on flight with one arm while the other 
is grabbed to a fixed point, or tele-operating one arm using the 
second arm in eye-in-hand camera configuration. Mechanical 
joint compliance is a highly desirable feature for an aerial 
manipulator, as it prevents that the contact forces are rigidly 
propagated to the aerial vehicle, protects the actuators against 
impacts and overloads, and it also allows the estimation and 
control of endogenous and exogenous wrenches in terms of 
deflection [23], contributing to increase safety and reliability.  

The anthropomorphic, compliant and lightweight dual arm 
system depicted in Figure 1 was developed from the scratch at 
the Robotics, Vision and Control Group of the University of 
Seville. Each arm provides four degrees of freedom (DOF) for 
end effector positioning in a kinematic configuration similar 
to the human arm [24]: flexion/extension (pitch), abduction/ 
adduction (roll), medial/lateral rotation (yaw) of the shoulder, 
flexion-extension (pitch) of the elbow. Its main features are: 

 Very low weight (1.3 kg in total) and low inertia, so the 
influence of arms motion over the UAV is reduced. 

 Mechanical joint compliance, integrating a spring-lever 
mechanism in all the joints of both left and right arms. 

 High mechanical servo protection thanks to a carefully 
designed aluminum frame structure and flange bearings. 

This work introduces as novelty a stereo vision system that 
allows the estimation and control of interaction forces in the 
arms in terms of the deflection measured at the end effector. A 
ZED camera installed over the shoulder structure is visually 
focused on two markers attached to the grippers, obtaining the 
position and velocity from an Extended Kalman Filter. 

 

Figure 1. Anthropomorphic, compliant and lightweight dual arm manipulator 

(left) integrated in hexarotor platform during the bimanual tool grasping in 
outdoors (right). The stereo camera head is used for estimating the Cartesian 

deflection of the end effector due to external forces over the compliant joints. 

 

The aerial platform is a hexarotor manufactured by Drone 

Tools, providing 2.5 kg payload and around 25 minutes flight 

time with no load. Besides the dual arm, it integrates an Intel 

NUC computer board for image processing and control, a 5.8 

GHz wireless link, and an A2 industrial autopilot from DJI. 

The arms are disposed in such a way that the landing gear 

does not interfere in the workspace of the arms and the center 

of mass is aligned with the vertical axis.  

III. MODELING 

A. Compliant Actuator Dynamics 

One of the main goals of this paper demonstrating the 
capabilities of a lightweight and compliant joint manipulator, 
which requires firstly a precise knowledge about this kind of 
actuators. Let us consider the compliant actuator depicted in 
Figure 2 along with its model, assimilated to a series elastic 
actuator consisting of a Herkulex DRS-0101 servo and the 
spring-lever transmission mechanism. The servo accepts as 
reference the desired goal position/trajectory 𝜃𝑟𝑒𝑓, generating 

internally a trapezoidal velocity profile which ensures that the 
servo reaches the reference at the specified playtime. The 
feedback provided by the device is its current position 𝜃 and 

differential position �̇�. A first order dynamics characterized 
by a time constant 𝑇𝑠𝑒𝑟𝑣𝑜, and a delay 𝑇𝑑𝑒𝑙𝑎𝑦  associated to the 

serial communications are identified experimentally, so the 
servo can be modeled by the following transfer function: 

𝐺𝑠𝑒𝑟𝑣𝑜(𝑠) =
𝜃

𝜃𝑟𝑒𝑓
=

𝑒−𝑇𝑑𝑒𝑙𝑎𝑦·𝑠

1 + 𝑇𝑠𝑒𝑟𝑣𝑜 · 𝑠
                       (1) 

The compliant transmission mechanism is represented by a 
spring-damper system characterized by its physical stiffness 
𝑘𝑝 and damping 𝑑𝑝. The torque transmitted by the spring-

lever mechanism will depend on the deflection angle, defined 
as the difference between the servo shaft angular position and 
the output link angular position: 

𝜏 = 𝑘𝑝(𝜃 − 𝑞) + 𝑑𝑝(�̇� − �̇�) = 𝑘𝑝∆𝜃 + 𝑑𝑝∆�̇�           (2) 

 

Figure 2. Model of the compliant joint actuator and mechanical construction. 

 

The torque delivered by the servo motor, 𝜏𝑚, is dedicated 
to compensate the friction of the gearbox, 𝜏𝑓, and the rotor 

inertia 𝑏, transmitting the torque 𝜏 to the output link: 

𝜏𝑚 = 𝑏�̈� + 𝜏𝑓 + 𝜏                                 (3) 

The torque transmitted by the spring-lever and the external 
torque accelerate the output link and compensate the gravity: 

𝜏 + 𝜏𝑒𝑥𝑡 = 𝐽�̈� + 𝑚𝑔𝑙𝐶𝑂𝑀𝑠𝑖𝑛(𝑞)                      (4) 

Here 𝑚 and 𝐽 are the mass and inertia of the output link, 
respectively, 𝑔 is the gravity constant, and 𝑙𝐶𝑂𝑀  is the distance 
from the servo shaft to the center of mass. The parameters of 
the compliant joint under study (Section V-A) are summarized 
in Table 1. The mass, inertia and distance to the CoM of the 
output link are obtained from the CAD model, whereas the 
parameters of the servo were identified experimentally. 



  

Table 1. Parameters of the compliant joint actuator. 
Servo Actuator Spring-Lever Output Link 

𝑇𝑠𝑒𝑟𝑣𝑜 0.035 𝑠 𝑘𝑝 1.2 𝑁𝑚/𝑟𝑎𝑑 𝐽 0.0044 𝑘𝑔𝑚2 

𝑇𝑑𝑒𝑙𝑎𝑦  0.02 𝑠 𝑑𝑝 0.02 𝑁𝑚𝑠/𝑟𝑎𝑑 𝑚 0.118 𝑘𝑔 

𝜏𝑚,𝑠𝑡𝑎𝑙𝑙  1.17 𝑁𝑚 ∆𝜃𝑚𝑎𝑥 30 𝑑𝑒𝑔 𝑙𝐶𝑜𝑀 0.132 𝑚 

 

The natural stiffness of the compliant joint, 𝑘𝑝, is obtained 

from the stiffness of the compression springs, 𝐾𝑠 (given by the 

manufacturer), and the lever length, 𝐿𝑠, taking into account 

that the force generated by the spring, ∆𝐹𝑠, is approximately 

proportional [23] to the angular deflection, ∆𝜃, resulting that: 

𝑘𝑝 =
∆𝜏

∆𝜃
=
∆𝐹𝑠 · 𝐿𝑠
∆𝜃

≅
(𝐾𝑠 · 𝐿𝑠 · ∆𝜃) · 𝐿𝑠

∆𝜃
= 𝐾𝑠 · 𝐿𝑠

2      (5) 

This was illustrated in Figure 2. The physical damping 𝑑𝑝 

was obtained experimentally from the Fast Fourier Transform 

of the deflection signal, exciting the servo with a sine chirp 

position reference (see Section V-A). The matching between 

the measured deflection and the simulation model given by 

Equations (1)–(5) determines the value of this parameter. 

B. Anthropomorphic, Compliant Dual Arm 

The reference frames, joint variables, lengths and position 
vectors used to describe the kinematics of the dual arm system 
are depicted in Figure 3. Superscript 𝑖 = {1, 2} denotes the 
left/right arm, and subscript 𝑗 = {1,2,3,4} indicates the joint in 

the following order: shoulder pitch (𝑞1
𝑖 ), roll (𝑞2

𝑖 ), yaw (𝑞3
𝑖 ), 

and elbow pitch (𝑞4
𝑖 ). Each arm defines a coordinate system 

{𝒊} = 𝑿𝒊𝒀𝒊𝒁𝒊 whose origin is located at the intersection of the 
three joints of the shoulder. The servo shaft and output link 

angular position vectors are denoted as 𝜽𝒊 and 𝒒𝒊 respectively. 

 

Figure 3. Kinematic model of the anthropomorphic dual arm with camera 

head. The cameras are focused on the color markers attached at the wrist. 
 

Let us consider the markers attached to the wrist point of 
the arms. As seen in Figure 1 and in Figure 3, the camera head 
is visually focused on these markers whose Cartesian position 
referred to the camera frame, 𝒓𝑴,𝒊

𝒄 , is provided by the vision 

system. Since the rotation and translation of the camera w.r.t. 
each arm are known, then the position of the markers w.r.t. the 
arms frame, denoted as 𝒓𝑴,𝒊

𝒊 , is obtained. The Cartesian and 

joint positions associated to these points are related through 
the equations of the forward /inverse kinematic model [24]: 

𝒓𝑴,𝒊
𝒊 = 𝑭𝑲𝒊(𝒒𝑴,𝒊

𝒊 )   ;    𝒒𝑴,𝒊
𝒊 = 𝑰𝑲𝒊(𝒓𝑴,𝒊

𝒊 )                (6) 

This work assumes that the shoulder roll joint is redundant 

and its value is set to 𝑞2
𝑖 = 𝜑𝑖~ ± 10 𝑑𝑒𝑔 for bimanual tasks 

like grasping. Since the solution to the shoulder pitch joint 𝑞1
𝑖  

is double (elbow up/down), which also affects to the shoulder 

yaw joint 𝑞3
𝑖 , it was necessary to impose that the resulting join 

values ensured the elbow down configuration. 

The Cartesian deflection of the manipulator referred to the 
markers is defined as the difference between the position of 
this point in an equivalent stiff-joint manipulator and its real 
position in the compliant manipulator: 

∆𝒍𝑴,𝒊
𝒊 = 𝑭𝑲𝒊 (𝜽𝑴,𝒊

𝒊
) − 𝑭𝑲𝒊 (𝒒𝑴,𝒊

𝒊 ) = 𝑭𝑲𝒊 (𝜽𝑴,𝒊
𝒊

) − 𝒓𝑴,𝒊
𝒊    (7) 

This definition is useful for expressing the dynamics of the 
end effector in the task space in the mass-spring-damper form: 

𝑴𝒊∆�̈�𝒊 + 𝑫𝑪
𝒊 ∆�̇�𝒊 + 𝑲𝑪

𝒊 (∆𝒍𝒊 − ∆𝒍𝟎
𝒊 ) + ∆𝒍𝑮

𝒊 = 𝑭𝒊 + 𝑭𝒆𝒙𝒕
𝒊   (8) 

Here 𝑴𝒊 = 𝑚𝑖𝑰𝟑 ∈ ℜ3×3 is the mass matrix of the upper 

arm-forearm links of the 𝑖-th arm, 𝑫𝑪
𝒊  and 𝑲𝑪

𝒊 ∈ ℜ3×3 are the 
Cartesian damping and stiffness of the virtual compliant end 

effector, ∆𝒍𝟎 is the deflection offset, and ∆𝒍𝑮
𝒊  is the deflection 

due to gravity. The model assumed in Equation (8) is derived 
from the observation of the Cartesian deflection when the end 
effector suffers an impact (impulsive response). Section V-C 
will show that the natural response of the compliant arms can 
be assimilated to a second order dynamics in the mentioned 
form for small deflections. The Cartesian stiffness matrix can 
be computed from the Jacobian and the joint stiffness matrix: 

𝑭𝒊 = 𝑲𝑪
𝒊 ∆𝒍𝒊 = 𝑲𝑪

𝒊 𝑱𝒊∆𝜽𝒊

𝑭𝒊 = (𝑱𝒊,𝑻)−𝟏𝑲𝒑
𝒊 ∆𝜽𝒊

} → 𝑲𝑪
𝒊 = (𝑱𝒊,𝑻)−𝟏𝑲𝒑

𝒊 (𝑱𝒊)−𝟏  (9) 

where 𝑱𝒊 is the Jacobian of the 𝑖-th arm and 𝑲𝒑
𝒊 = 𝑑𝑖𝑎𝑔(𝑘𝑗

𝑖) 
is the physical joint stiffness matrix. The Cartesian damping 
will in general depend on the joint position, as the friction in 
the flange bearings varies with the load supported by the shaft.  
An approximated value can be determined experimentally for 
a particular configuration of the arms in a similar way to the 
method described in Section III-A. If the mass and stiffness 

parameters are known, then the damping 𝑫𝑪
𝒊  is obtained from 

the matching between the measured and simulated response of 
the Cartesian deflection to an impulsive or sine chirp signal 
(see Section V-C). Alternatively, if the physical joint damping 
𝑫𝒑
𝒊 = 𝑑𝑖𝑎𝑔{𝑑𝑗

𝑖} ∈ 𝕽𝟒×𝟒 is known, then the Cartesian damping 

matrix can be derived in the same way as done in equation (9). 

It is interesting to note that the joint deflection and torque 
can be also computed from the inverse kinematics as follows: 

∆𝜽𝑴,𝒊
𝒊

= 𝜽𝑴,𝒊
𝒊

− 𝑰𝑲𝒊(𝒓𝑴,𝒊
𝒊 )   ;   𝝉𝒊 = 𝑲𝒑

𝒊 · ∆𝜽𝑴,𝒊
𝒊

           (10) 

Here 𝝉𝒊 is the torque of the 𝑖-th arm. The resolution of the 

inverse kinematics in (10) imposes that 𝑞2
𝑖 = 𝜑𝑖 is known. 

C. Aerial Manipulator Kinematics and Dynamics 

In the definition of an aerial manipulation application, it is 

convenient to consider four coordinate systems related to the 

perception, navigation and manipulation tasks, as depicted in 

Figure 4: the Earth fixed frame {𝑬}, the multirotor base frame 

{𝑩}, the manipulator frame {𝒊}, and the task/workspace frame 

{𝑻}. A certain point 𝒑 within the workspace can be expressed 
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in the manipulator’s or in the Earth frame simply multiplying 

by the corresponding transformation matrices: 

[𝒑
𝒊

1
] = 𝑻𝑻

𝒊 · [
𝒑
1
]   ;    [𝒑

𝑬

1
] = 𝑻𝑻

𝑬 · [
𝒑
1
] = 𝑻𝑩

𝑬𝑻𝒊
𝑩𝑻𝑻

𝒊 · [
𝒑
1
]  (11) 

Here  𝑻𝑻
𝒊 , 𝑻𝑩

𝑬 , 𝑻𝒊
𝑩 and are homogeneous matrices. 

 

 
Figure 4. Coordinate systems of the dual arm aerial manipulator in a tool 

retrieval task. Earth, base, manipulator and task (workspace) frames. 

 

The dynamic model of a compliant joint, dual arm aerial 
manipulator can be derived from the Newton-Euler method 
based on the interpretation of the energy of the system: 

𝑑

𝑑 
{
𝜕𝐿

𝜕�̇�
} −

𝜕𝐿

𝜕𝝃
= 𝜞   ;    𝐿 = 𝐾 − 𝑉                (12) 

Here 𝐿 is the Lagrangian, 𝐾 is the kinetic energy and 𝑉 is 
the potential energy. The vector of generalized coordinates 𝝃 
includes the position of the center of mass of the aerial robot, 
𝒓𝑪𝒐𝑴 ∈ ℜ3, its attitude, 𝜼 ∈ ℜ3, and the servo and output link 

angular positions, 𝜽𝒊 and 𝒒𝒊 ∈ ℜ4: 

𝝃 = [𝒓𝑪𝒐𝑴
𝑻  , 𝜼𝑻, 𝜽𝟏,𝑻,  𝒒𝟏,𝑻, 𝜽 ,𝑻,  𝒒 ,𝑻]

𝑇
∈ ℜ22       (13) 

The generalized force vector 𝜞 represents the forces and 
moments generated by the propellers, the torque of the servo 
motors, and the external forces acting over the arms links: 

𝜞 = [𝑭𝑿𝒀𝒁
𝑻  , 𝝉𝝋𝜽𝝍

𝑻  , 𝝉𝒎
𝟏,𝑻, 𝝉𝒆𝒙𝒕

𝟏,𝑻  , 𝝉𝒎
 ,𝑻, 𝝉𝒆𝒙𝒕

 ,𝑻 ]
𝑇
∈ ℜ22    (14) 

The kinetic energy of the aerial manipulator is the sum of 
the contributions of the platform and each link of the arms: 

𝑇 =
1

2
(
�̇�𝑪𝒐𝑴
�̇�

)
𝑇

[
𝑚𝑇 · 𝑰𝟑×𝟑 𝟎

𝟎 𝑱𝑇
𝑻] (

�̇�𝑪𝒐𝑴
�̇�

) 

+ 
1

2
∑∑(

�̇�𝒋
𝒊

𝝎𝒋
𝒊)

𝑇

[
𝑚𝑗

𝑖 · 𝑰𝟑×𝟑 𝟎

𝟎 𝑱𝒋
𝒊] (

�̇�𝒋
𝒊

𝝎𝒋
𝒊)

4

𝑗=1

2

𝑖=1

          (15) 

where 𝑚𝑇 and 𝑱𝑇 are the total mass and inertia of the robot, 

𝑚𝑗
𝑖 and 𝑱𝒋

𝒊 are the mass and inertia of the 𝑗-th link of the 𝑖-th 

arm, whose translational and angular speed are represented as 

�̇�𝒋
𝒊 and 𝝎𝒋

𝒊. The potential energy comprises the gravity term 

and the elastic potential energy stored in the compliant joints: 

𝑉 = 𝑚𝑇𝑔𝒓𝑪𝒐𝑴 (
0
0
1
) +

1

2
∑(𝜽𝒊 − 𝒒𝒊)𝑇𝑲𝒊(𝜽𝒊 − 𝒒𝒊)

2

𝑖=1

   (16) 

where 𝑔 is the gravity constant, and 𝑲𝒊 = 𝑑𝑖𝑎𝑔(𝑘𝑗
𝑖) is the 

stiffness diagonal matrix of the 𝑖-th arm. The dynamic model 
can be expressed in the usual matrix form: 

𝑴(𝝃)�̈� + 𝑪(𝝃, �̇�) + 𝑮(𝝃) + 𝑲(𝝃) + 𝑫(𝝃) = 𝜞       (17) 

Here 𝑴 is the generalized inertia matrix, 𝑪 represents the 
centrifugal and Coriolis forces, whereas 𝑮, 𝑲 and 𝑫 represent 

the gravity, elastic and damping components, respectively. 
The square inertia matrix 𝑴 ∈ ℜ22×22 can be partitioned in 
submatrices representing the dynamic coupling between the 
multirotor and the arms. In this way, the submatrices 𝑴𝒓𝒒𝟏 

and 𝑴𝜼𝒒𝟏 represent the inertia coupling terms between the 

translational and rotational dynamics of the multirotor and the 
first arm, and 𝑴𝒒𝟏𝒒  include the coupling terms representing 

how the movement of one arm affects the dynamics of the 
other arm. Vector 𝑪 can also be decomposed in subvectors for 
each group of generalized coordinates. Thus, 𝑪𝒒𝟏 corresponds 

to the Coriolis and centrifugal terms of the dynamics of the 
first arm, which include coupling terms with the dynamics of 
the aerial platform and the other arm. This will be used in next 
section to compensate the coupling terms in the controllers. 

IV. CONTROL 

A. Control Structure of the Aerial Manipulator 

This section briefly presents the proposed control system 

for the whole dual arm aerial manipulator, depicted in Figure 

5. The aerial manipulator consists of the multirotor platform 

and the dual arm manipulator, whose input is the position 

reference of the servos, and its output are the servo position, 

the joint deflection and their time derivatives. A model based 

force-torque estimator integrates this information, used by the 

arms controller and the multirotor controller. The multirotor 

state estimation is also used by the arms and the multirotor 

controllers. The task manager implements the functionalities 

of the robot, like navigation, grasping, tool installation and 

retrieve, etc. This functional block generates the position or 

trajectory references for the aerial manipulator using the 

information given by the perception and navigation systems, 

following the sequence of operations indicated by the mission 

planner. 

 

 
Figure 5. Dual arm aerial manipulator control architecture. 

 

The multirotor controller is responsible of stabilizing the 

attitude and global position of the aerial vehicle, taking into 

account and compensating the movements of the arms and 

the interaction wrenches with the environment. The aerial 

manipulator implements a multirotor controller based on 

integral backstepping which follows the developments in [25] 

and [6], adapted to the dynamic model of the dual arm aerial 

manipulator in Equation (17). The impedance controller used 

for both arms is described in the following subsection for a 

single joint case, and the Cartesian impedance controller for 

the arms in the next subsection. 

B. Virtual Variable Impedance in Compliant Joint 

According to the model introduced in Section III-A, the 

compliant joint is characterized by its inertia 𝐽, damping 𝑑𝑝 



  

and stiffness 𝑘𝑝, which depend on the physical realization of 

the joint. These parameters may have a significant influence in 

the behavior of the aerial manipulator when impact and 

contact forces arise during the realization of certain operations 

executed on flight. Then, it would result convenient to vary 

the apparent stiffness, damping or inertia of the joints 

depending on the particular task, but without increasing the 

weight of the actuator, so no additional mass should be added. 

This work proposes the implementation of a virtual variable 

impedance behavior at joint level based on the feedback and 

control of the joint deflection. The superscript is omitted for 

clarity since the same controller is used for both arms.  

Let 𝑞𝑑 be the desired link trajectory for an arbitrary link. 

Then, the desired motor positions can be obtained from 𝑞𝑑 

with gravity compensation: 

𝜃𝑑 = 𝑞𝑑 + 𝑘𝑝
−1𝑔(𝑞𝑑)                           (18) 

Here 𝑘𝑝 is the physical stiffness. The equations governing 

the dynamics of the output link can be obtained extracting the 

corresponding rows in Eq. (17). The damping coefficient of 

the elastic joint is usually very small, and in many cases it is 

ignored in controller derivation.  Then, the following feedback 

linearization controller can be defined for the joint torque, 

extending the controller presented in [17] for a moving base: 

𝜏 = 𝑔(𝑞𝑑) +  𝐷 − 𝑘𝑣�̃� − 𝑑𝑎�̇�               (19) 

where  𝐷(𝑟𝐶𝑜𝑀 , 𝜂, 𝑞
𝑖) is a term that compensates the dynamic 

coupling of the movement of the multirotor base and the other 

arm. For example, for the i-th joint of the first arm,  𝐷 would 

be the i-th row of the coupling terms Ξ𝑞1: 

    𝚵𝒒𝟏 = 𝑴𝒓𝒒𝟏�̈� + 𝑴𝜼𝒒𝟏�̈� + 𝑴𝒒𝟏𝒒 �̈� + 𝑪𝒒𝟏(𝝃, �̇�)     (20) 

Equation (19) also considers a gravity compensation term,  

𝑔(𝑞𝑑), whereas �̃� = 𝜃 − 𝜃𝑑 is the position error of the servo. 

The gravity compensation term 𝑔(�̅�(𝜃)) utilizes a collocated 

variable �̅�(𝜃) that is statically equivalent to the link side 

position 𝑞, but only depends on 𝜃 can be used to improve 

stability [17][26], although for these arms it has shown little 

difference and has been omitted since it requires numerical 

optimization. 

The controller in Eq. (19) compensates for the gravity and 

coupling terms and define an impedance behavior of the link 

defined by the stiffness coefficient 𝑘𝑣 and the damping 

coefficient 𝑑𝑎. For the compliant joint of the arm of our aerial 

manipulator, this is equivalent to connecting serially an active 

elastic element 𝑘𝑎 (generated by the software controller), with 

the physical elastic element 𝑘𝑝 that connects the motor output 

to the link output. The virtual serial stiffness can be computed 

[26] from: 

  𝑘𝑣
−1 = 𝑘𝑎

−1 + 𝑘𝑝
−1                               (21) 

An important point here is that, unlike industrial robotic 

arms which have control frequencies of 1 kHz and larger, the 

ultra-lightweight arms in the aerial manipulator are severely 

constrained by the servomotors used, which have a maximum 

control frequency of around 50 Hz. Thus, the passive response 

will be instantly but the active response will come at the 

control frequency of 50 Hz and with some delay. Then, the 

global compliant behavior of the arm can be seen as an instant 

response by the elastic element that is “shaped” later to adapt 

stiffness and damping with the controller.   

The main consequence is the different response to 

different interactions with objects or the environment. For an 

impact or collision of the arm, the initial response will come 

only from the passive elements, followed later by the 

controller action. On the other hand, other interaction tasks as 

applying forces or grabbing objects with slower variations of 

the external forces can fully benefit from the physical stiffness 

or impedance controller combination. 

Thus, when designing the compliant arms for safety of the 

physical interaction of the aerial manipulator, the physical 

stiffness should be used. One of the main benefits of the 

mechanical compliance is the ability of the joints to absorb 

the excess of energy due to motion constraints in grabbing 

tasks or associated to impacts between the aerial manipulator 

and the environment. However, the mechanical limit in the 

deflection of the joints, around 20 – 30 deg in the developed 

dual arm, involves a limit in the maximum energy that the 

manipulator can store in a passive way. If it is imposed that 

|∆𝜃𝑗
𝑖| ≤ ∆𝜃𝑚𝑎𝑥, then: 

𝐸𝑃𝐶
𝑚𝑎𝑥 =

1

2
(∆𝜃𝑚𝑎𝑥)

2∑∑𝑘𝑝,𝑗
𝑖

4

𝑗=1

2

𝑖=1

                 (22) 

where 𝑘𝑝,𝑗
𝑖  is the joint physical stiffness and 𝐸𝑃𝐶

𝑚𝑎𝑥 is the 

maximum passive compliance energy. Denoting by 𝑚𝑇 to the 

total mass of the aerial manipulator, the maximum speed of 

the platform that can be supported by the arms in a strong 

impact is: 

|𝑣𝑚𝑎𝑥| ≤ √
2 · 𝐸𝑃𝐶

𝑚𝑎𝑥

𝑚𝑇

= |∆𝜃𝑚𝑎𝑥|√
∑ ∑ 𝑘𝑝,𝑗

𝑖4
𝑗=1

2
𝑖=1

𝑚𝑇

      (23) 

Taking as reference the values provided in [24] relative to 

the aerial manipulator weight (𝑚𝑇 = 6.8 𝑘𝑔), the maximum 

joint deflection (|∆𝜃𝑚𝑎𝑥| = 20 𝑑𝑒𝑔) and stiffness, it results 

that 𝐸𝑃𝐶
𝑚𝑎𝑥 = 0.89 𝐽 and |𝑣𝑚𝑎𝑥| = 0.51 𝑚/𝑠.  

C. Compliant Arm Cartesian Impedance Controller 

Most robotic tasks are better defined in Cartesian space 
and therefore it is convenient to specify the desired stiffness 
and damping properties of the compliant arm in the Cartesian 
space. If the Cartesian position error of the TCP is defined as 
𝒙 = 𝒙𝑑 − 𝒙, being 𝒙𝑑 the desired position of the TCP, then 
the controller of the arm joints can be defined as follows: 

𝝉 = 𝒈(𝒒𝒅) + 𝑯𝑫 − 𝑱
𝑻(𝑲𝑪𝒙 − 𝑫𝑪�̇�)             (24) 

where 𝝉 and 𝒈 are the vector equivalents of the terms 
defined in Eq. (19). 𝑯𝑫 is the vector dynamic coupling term 
of the arm. For the first arm, 𝑯𝑫 would be the coupling vector 
𝚵𝒒𝟏 given by Eq. (20), expressed in Cartesian coordinates. In 

Eq. (24), 𝑱 is the jacobian matrix of the arm and 𝑲𝑪 and 𝑫𝑪 
are diagonal matrices with the corresponding gains for each 
Cartesian coordinate, which are related to the joint counterpart 
through Eq. (9). In this case, the Jacobian is computed w.r.t. 
the position coordinates only, and supposing that the second 

joint is fixed (𝑞2
𝑖 = 𝜑𝑖), as explained in Section III-B.   



  

An important point here is that the Cartesian compliance 
properties are generated algorithmically by the controller, 
since the reflected stiffness of the joints at the Cartesian space 
varies with the position of the arms and the Jacobian, so in 
practical applications the effective Cartesian stiffness varies 
slightly when the arms move, as will be seen in Figure 9.  

The performance of this virtual variable impedance control 

scheme is affected by the noise in the discrete-time derivatives 

involved in Equations (19), (20). Although the deflection ∆𝜃 

is measured with a potentiometer, a gyroscope was needed for 

measuring the angular speed of the output link, �̇�, whereas the 

servo provides the angular position and differential position, 𝜃 

and �̇�. The acceleration signal is not necessary if it is imposed 

that the desired virtual inertia is equal to the physical inertia so 

the torque error associated to this term is forced to be zero. 

V. EXPERIMENTAL RESULTS 

The purpose of the experiments is double. First, the model 

of compliant joint/manipulator described in Sections III-A,B 

is validated through frequency (V-A) and impact response 

(V-C), respectively. This analysis is useful for understanding 

the dynamic behavior of the compliant arms. Second, the 

force-impedance control capabilities developed in Section IV 

are demonstrated, using the vision system for this purpose. 

A. Frequency Identification of Compliant Joint Actuator 

This experiment validates the dynamic compliant model 

joint described in Section III-A, generating a sine chirp signal 

in the range 0 – 8 Hz as position reference for the servo. The 

frequency response, obtained applying the FFT (Fast Fourier 

Transform) over the servo position and the deflection signal, 

is represented in Figure 6. As it can be seen, the deflection is 

almost zero for frequencies below the resonance peak at  =
2.82 Hz, when the amplitude of the output link oscillation is 

maximal, reaching the mechanical limits of the deflection. 

Note also that the angular position of the servo drops abruptly 

at this frequency, decreasing from the pole given by Equation 

(1), whose bandwidth is  = 1/(2𝜋𝑇𝑠𝑒𝑟𝑣𝑜) = 4.5 Hz.  

 
Figure 6. Frequency response of the compliant joint actuator to sine chirp 

signal generated by the servo. Validation of the mass-spring-damper model. 

 

The value of the damping constant 𝑑𝑝 provided in Table 1 

was determined matching the simulation model described by 

Equations (1) – (5) (green line) with the experimental results 

(red line), known the mass/inertia and stiffness parameters. 

B. Virtual Variable Impedance Control: Single Joint Case 

The control method given by Equation (19) is evaluated 

here, comparing the desired simulation response w.r.t. the 

virtual variable impedance actuator. No torque source is used, 

instead, the response to the initial condition 𝑞(0) = 90 deg is 

considered for simplicity in the realization of the experiments 

[27]. Figure 7 shows the evolution of the output link position, 

𝑞, for different values of joint damping, 𝑑𝑣, and stiffness, 𝑘𝑣. 

The gains of the controller (19) were tuned experimentally 

for both use cases. Due to model errors and uncertainties, it 

was found that a small integral term improved the behavior. 

The control rate was set to 50 Hz, which is in practice the 

recommended value for preventing packet loss without 

exceeding the maximum read rate of the servo. A gyroscope 

attached to the output link was essential for obtaining these 

results, as it compensates the noise of the deflection signal. 

 
Figure 7. Output link angular position for initial condition 𝑞(0) = 90 deg: 

variable damping with 𝑘𝑣 = 𝑘𝑝/4 (left), and variable stiffness with 𝑑𝑣 =

20 · 𝑑𝑝 (right). Simulated desired response (up) and experimental (down). 
 

It is necessary to remark that the difference between the 

simulation and the experimental result may be relatively high 

due to the unavoidable delay in the actuation. However, the 

evaluation of the overshoot and the setup time indicates that 

the virtual impedance is close to the desired one. 

C. Impact Response: Cartesian Deflection and Velocity 

In aerial manipulation, the transition from contactless to 

contact situations can be assimilated to an impact between 

the end effector and the environment. The developed vision 

system can be exploited for detecting this event, but also for 

controlling the contact force through the Cartesian deflection 

of the compliant manipulator. This experiment evaluates the 

performance of the vision system [28] in dynamic conditions, 

i.e., measuring the Cartesian deflection and speed when the 

gripper servo of the left arm is impact by a 62 g weight object 

thrown from a 0.5 m height (0.3 J energy impact), while the 

arm rests in L-position (elbow flexion). The position/velocity 

of the marker is estimated by means of an Extended Kalman 

Filter (EKF), measuring the acceleration at this point and the 

joint deflection at 30 Hz. The evolution of these signals can 

be seen in Figure 8. 

 

Figure 8. Impact response. Cartesian deflection and velocity measured with 

the vision system (left). Representation in the frequency domain (right). 
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The underdamped behavior of the Cartesian deflection to the 

impulsive response validates the mass-spring-damper model 

assumed in Equation (8), and also allows the estimation of 

the Cartesian damping matrix, adjusting its value until the 

simulation matches the measured response. 

D. Contact Force Control in Hovering Conditions 

The Cartesian compliant controller described in Section 

IV-C was evaluated in an experiment in which the mobile 

manipulator approaches to a pipe and exerts a 3 N pushing 

force with the left arm in the X-axis, maintaining a zero force 

reference in the YZ axes. The mobile platform approaches to 

workspace and hovers at a fixed position, while the left arm 

applies the force on the pipe. The evolution of the experiment 

can be followed in Figure 9 and Figure 10. The position of 

the platform is referred to the ARUCO tag placed on the pipe, 

using two additional markers disposed over the gripper 

servos for measuring the position of the wrist. As seen on the 

right side of Figure 9, the joints involved in this task are 

mainly the shoulder and elbow pitch ones. It is interesting to 

observe how the Cartesian stiffness slightly varies with the 

angular position of the joints, as these depend on the Jacobian 

matrix. The video with the experiments can be seen in [27]. 
 

 
Figure 9. Representative signals in the contact force experiment: position of 

the platform (up, left), left arm force and reference (down, left), variation of 
the servos position (up, right), and left arm Cartesian stiffness (down, right). 

 

 
Figure 10. Approaching (left) and contact force control (right) phases seen 
from the onboard camera. The position of the left/right arms and the target 

contact point are measured with ARUCO tags. 
 

The structure of the implemented force controller based 

on Cartesian deflection feedback is represented in Figure 11. 

This is a variation of the controller given by Equation (24), in 

which 𝑭𝒆 corresponds to the term 𝑲𝑪𝒙 − 𝑫𝑪�̇�, the gravity 

and the coupling terms 𝒈(𝒒𝒅) and 𝑯𝑫 are compensated by 

the PI force controller block, and the force-torque is obtained 

from the FK/IK relations instead of using the Jacobian. The 

position reference of the servos is obtained applying the 

inverse kinematics over the Cartesian position reference 𝒓𝒓𝒆𝒇
𝒊 , 

which is the sum of the current end effector position and the 

displacement obtained from a PI force controller, with 𝐾𝑃 =

5 𝑚𝑚/𝑁, and 𝐾𝐼 = 5 𝑚𝑚/𝑁𝑠. An initial guess of these values 

is determined from the maximum Cartesian deflection (~50 

mm) and force (~2N) provided by the arms. The control rate 

was set to 10 Hz, limited mainly by the vision system. 

The accuracy in the force estimation was evaluated in test 

bench using a KERN FKB 8K0.1A bench scale (0.1 grams 

resolution). Five calibration masses were attached at the tip 

of the forearm link of the left arm, measuring the Cartesian 

deflection with the camera head, and estimating their weight 

from Equation (9). The stiffness of the joints can be found in 

[24]. Figure 12 shows the payload estimation and the ground 

truth along with two views of the camera for two masses. 
 

 
Figure 11. Structure of the force controller based on Cartesian deflection. 

 

 
Figure 12. Evaluation of the accuracy in the vision-based force estimation. 
Different payload masses were attached at the wrist point of the left arm. 

 

E. Bimanual Object Grasping: Force/Displacement 

During the realization of certain aerial manipulation tasks, 

it may occur that the robot tries to grasp and retrieve objects 

whose mass exceeds the payload of the multirotor, or well 

they cannot be lifted because they are attached to a structure, 

as the inspection tool shown in Figure 1. One simple way to 

determine if an object can be retrieved is to apply a pulling 

force and measure the displacement of the end effector. In 

Figure 13, a 35 cm length, 0.2 kg weight metal file is grasped 

with both arms, applying 1 N pulling force (see Figure 11) in 

the Z-axis in t = 2.3 seconds, which causes a significant 

displacement of the markers. The experiment is repeated, but 

now blocking the tool so it cannot be moved. As illustrated in 

Figure 14, during the 2 s monitoring period, the displacement 

is below the 1 cm threshold, so then the force ceases and the 

object is released. 

 
Figure 13. Force (left) and displacement (right) of the left/right arm markers 

when the grasped object is pulled in the Z-axis and this is lifted. 
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Figure 14. Pulling force and displacement when the object cannot be lifted. 

The displacement is monitored (blue area) since 𝐹𝑍 ≥ 0.75 · 𝐹𝑍,𝑟𝑒𝑓. 

VI. CONCLUSION 

Despite the evident limitations of the smart servo actuators 

typically employed for building very low weight and low cost 

aerial manipulators (no torque feedback, only position control 

with update rates <50-100 Hz), this paper has demonstrated 

that the force/torque and virtual variable impedance control 

schemes can be implemented based on the deflection signal 

of a compliant spring-lever transmission mechanism.  

The integration of a vision system in the anthropomorphic, 

compliant and lightweight dual arm manipulator not only 

contributes to increase the positioning accuracy, affected by 

the deflection of the compliant joints, but it also allows to 

estimate the Cartesian deflection, and thus the force, without 

the need of additional sensors. As future work, it is proposed 

the development of an estimator that integrates both vision 

and joint deflection sensors for improving the accuracy of the 

force-torque estimation and control. 
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