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Abstract6

This is the first of a two-part series devoted to review the current state of the art of automatic voice condition7

analysis systems. The goal of this paper is to provide to the scientific community and to newly comers to the8

field of automatic voice condition analysis a resource that presents introductory concepts, a categorisation of9

different aspects of voice pathology and a systematic literature review that describes the methodologies and10

methods that are mostly used in these systems. To this end, the phenomena of pathological voice is firstly11

described in terms of perceptual characteristics and its relationship with physiological phenomena. Then, a12

prototypical automatic voice condition analysis system is described, discussing each one of its constituting13

parts and presenting an in-depth literature review about the methodologies that are typically employed.14

Finally, a discussion about some variability factors that affect the performance of these systems is presented.15

Keywords: Automatic voice condition analysis, voice pathology detection, extralinguistic aspects of the16

speech, voice quality.17

1. Introduction18

Speech is accomplished through complex articulatory movements that mould the vocal excitation source19

in order to convey spoken sounds. In this process, three components can be identified: The excitation source20

(be it voiced, unvoiced, a mixture of both or its absence -such as in a pause-) providing the driving force for21

the speech production process, the articulation defined by the movements of the speech articulators moulding22

the production of a certain sound, and the fluency defining the rate at which the speech is generated. Despite23

the main objective of speech is transmitting information by means of sounds that encode linguistic content,24

the inherent intricacy of the production process embeds a substantial amount of non-linguistic information25

that is often described in terms of dimensions [1–3]. In this regard, the paralinguistic dimension of speech26

conveys information about the affective, attitudinal or emotional state of the speaker; the extralinguistic27

dimension informs about the speaker’s identity and state (with traits such as age, sex, condition, etc.);28

whereas the linguistic dimension is related to the message, variations in language, dialect, sociolect, idiolect29

and speech style of the speaker. There is often described a fourth transmittal dimension that tells nothing30

about the speaker but about its physical location.31
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By virtue of the valuable information contained in speech and the inexpensiveness and easiness of captur-32

ing speech signals in a non-invasive manner, a great deal of interest has arisen in designing systems capable33

of isolating a certain dimension (or trait within a dimension) for automatic analysis purposes. As a matter34

of example, the literature presents systems that have been focused on extracting extralinguistic information35

to automatically determine the identity of speakers [4], age [5] or sex [6]. In the same manner, paralinguis-36

tic information has been extracted to identify the speaker’s emotions [7] or level of interest [8]. Likewise,37

the linguistic dimension has been studied to recognize the accent, dialect [9] or the message itself (speech38

recognition) [10].39

One application that has been gaining popularity during the last years is in the analysis of speakers’40

condition using voice recordings. In this respect, the clinical evaluation of voice disorders often relies on an41

instrumental examination and a perceptual analysis of the speech. The instrumental medical examination42

focuses on a primary aetiological diagnosis through the investigation of acoustic, aerodynamic, electroglotto-43

graphic, videolaryngostroboscopic and/or the exploration of other types of biosignals; whereas the perceptual44

examination extracts multidimensional information that is not quantifiable instrumentally, by means of a45

qualitative description of the perceived degree of dysphonia that is present in the voice [11–13]. This infor-46

mation might be complemented by an interview where the patient states his/her symptoms, the examination47

of his/her medical records, evaluation of other body functions and systems, and exploration of the laryngeal48

structures and their function. These procedures should lead the medical expert to a diagnosis about the49

condition of the patient. The diagnostic process is differential, i. e., all possible causes of a problem are50

considered, and then the available information is matched against each one of the hypothesis explaining the51

disorder in the search for a match [14]. In some severe pathological cases a decision about the condition of52

the patient is straightforward, but in others, it would probably be conditioned by subjective factors or the53

observations and hypothesis made by the clinician. The increasing need of improving the diagnosis of voice54

pathologies has given rise to an emerging field called Automatic Voice Condition Analysis (AVCA), that55

aims at analysing, classifying and quantifying the degree to which a patient is affected by a voice disorder.56

This analysis is performed using automatic systems that provide objective measurements of the patient’s57

vocal condition, exploiting the close relationship that exists between acoustic features extracted from the58

speech and voice pathology [15]. This reduces the evaluation time and the cost of diagnosis and treatment,59

providing extra advantages such as the avoidance of invasive procedures thanks to the employment of speech60

signals which are easily recorded by inexpensive means [16].61

With these precedents in mind, the aim of this paper is to provide a review of AVCA systems, introducing62

key concepts related to vocal pathologies and their acoustic consequences in voice signals. A typical AVCA63

system is also described, detailing each one of its constituting blocks while providing a thorough literature64

review to portray the most used methodologies. Finally, some confounding factors that affect AVCA systems65

are discussed as well. It is worth noting that the main interest of this paper is related to the automatic detec-66

tion (classification of control vs. pathological) and identification of voice disorders (multiclass classification67
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of the actual disorder affecting speech), rather than the assessment or grading of voice signals. Indeed, we68

consider that the assessment of voice pathologies deserves of a separate paper to handle the particularities69

of this classification task.70

This paper is organised as follow: section 2 describes introductory concepts related to voice pathologies;71

section 3 introduces AVCA systems, whereas section 4 describes its constituting blocks, presenting a review72

of the most typical methodologies employed in literature. Then, section 5 describes some variability factors73

affecting this type of systems. Finally, section 6 presents some discussions and concluding remarks.74

2. Voice pathologies75

Following the description presented in the introduction, a speech disorder can be defined as an impairment76

of the articulation of speech sounds, fluency and/or voice [17, 18]. It is worth noting that from all these77

elements, this paper is only focused in those pathologies affecting voice, and therefore the main interest of78

this paper is in the study of phonatory aspects of the speech. Articulatory, prosodic or language disorders79

are by themselves topics that should be handled separately.80

To address the concepts of voice condition it is firstly necessary to describe the properties of a "normal"81

voice. This, however, poses numerous difficulties since there exist several definitions of "normality", and82

the distinction from what can be considered healthy or abnormal relies on subjective perceptual judgements83

made by listeners or by the speaker itself [19]. Indeed, a singer who uses a deviant voice as a trademark,84

might acknowledge his/her voice as normal, but this can be perceived otherwise by some listeners. By85

contrast, a high-pitched voice which in different circumstances would be considered normal if uttered by a86

child, might be deemed as pathological if uttered by an adult. In spite of that, there are certain common87

characteristics that can be regarded as normative, and thus, can be utilised as synonyms of non-pathological88

voice condition. Literature presents definitions which differ in terms of what (and how) can be categorised89

as normal or normophonic. In this paper, we adopt the perceptual definition presented in [20], on which a90

normophonic voice is described in terms of the following properties: (i) a pleasant quality, with an absence91

of noise, inappropriate breaks, perturbations or atonality; (ii) pitch in accordance to the age and sex of the92

speaker; (iii) loudness that is appropriate to the communication event; (iv) pitch and loudness variations93

that are available to express emphasis, meaning or subtleties indicating individual feelings and semantic94

differences; (v) sustainability to meet social and occupational needs.95

Abnormal voices do not posses any, a combination, or all of the above properties. Typically, three types96

of aberrant voices are usually identified: aphonia, dysphonia and muteness [20]. Aphonia is characterised97

by the absence of vibration of the vocal folds -but not of sound- resulting in a voice that is perceptually98

described as extremely breathy. Similarly, muteness is referred to the absence of vocal folds vibration,99

accompanied by the inability to produce audible sounds. Finally, dysphonia is described by the absence of100

vocal quality, pitch, loudness, and/or variability which is inappropriate for an individual’s age and/or sex101

[17, 20].102
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From the perspective of AVCA systems, muteness has to be discarded from the study due to the unavail-103

ability of audible outputs for automatic analysis purposes using voice registers. Similarly, the perceptual104

consequences of aphonia are so notorious that an automatic analysis to detect or assess the impairment is105

seldom considered. Consequently, and to the authors’ knowledge, there is not a single work in literature106

dealing with automatic analysis of aphonic voices. At the end, only dysphonic and normophonic voices are107

examined by AVCA systems for labours of identification, detection or grading of pathological states.108

Revisiting the definitions of dysphonia and normophonia it can be observed that 4 elements are identified,109

i. e., loudness, pitch, quality and variability. In this regard, loudness is defined as a perceptual correlate of the110

intensity of the sound pressure created by the release of air through the glottis. Disorders affecting loudness111

occur when the voice is louder or softer in concordance to the speaker’s context. Loudness impairments are112

often indicators of personality disorders (overly aggressive, shy, or socially insecure behaviour), or are the113

consequence of certain pathologies such as Parkinson’s disease or paresis. The second perceptual trait is114

pitch, which is the correlate of the frequency of vibration of the vocal folds, i. e., the fundamental frequency115

(f0). The rate of vibration is determined by the physical characteristics of the vocal folds such as the mass,116

elasticity or length. Impairments affecting pitch include those where voice is tremulous or abnormal in117

concordance to the speakers’ context. Examples include mutational falsetto (abnormally high-pitched voice118

uttered by an adult not correlating with his age or sex) or ventricular phonation (abnormally low-pitched119

voice product of the vibration of the false vocal folds). The third perceptual trait is quality, which is a120

correlate of the vibrational patterns of the vocal folds and resonant characteristics of the vocal tract. This121

is in turn composed of other traits describing very differentiated physiological phenomena as described next122

[18, 20]: (i) strain, related to disturbances in the vibratory patterns of the vocal folds due to an excessive123

tension in the larynx which may result in over adduction of vocal folds; (ii) breathiness, related to turbulent124

air streams released during incomplete vocal closure; (iii) roughness (or harshness), related to irregularities125

or vibration defects of the vocal folds; and (iv) resonance, caused by abnormalities present in the vocal126

tract, such as defects in the closure of the velopharyngeal port. Despite there is a fourth trait related to127

variability, examining the flexibility of voice in relation to variations of pitch, loudness and quality in spoken128

contexts, we consider that -at least in AVCA methodologies- these variations can be included directly into129

their respective descriptors. We also believe that is possible to consider a superclass that embeds pitch and130

loudness into a sphere of vocal aspects as both examine the concordance of the voice respecting the speaker131

or its context. Therefore, we propose to analyse voices using automatic systems on the basis of two spheres,132

one related to the vocal aspects on which the adequacy of the pitch, loudness and its variations are examined133

in relation to the context and to normative values of an average speaker in the same population group. And134

a sphere related to vocal quality on which the resonant characteristics and the vibrational patterns of the135

vocal folds are examined.136

The sphere of vocal aspects has been seldom studied in literature, with a vast majority of papers published137

in topics related to the analysis of vocal quality. In addition, and despite resonant patterns make up for138
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voice quality, the most important descriptor often found in the state of the art is referred to a quantification139

of the vocal aperiodicity describing the manner of vibration of the vocal folds. Due to their importance in140

the design of AVCA systems, the mechanisms of vocal aperiodicity are described next.141

It has been stated that three1 types of vibrational patterns are often encountered in voice signals [22]:142

(i) type I voices, characterised by a nearly periodic behaviour; (ii) type II signals, which contain bifurcations,143

sub-harmonics or modulating frequencies; and (iii) type III voices, which are characterised by an aperiodic144

behaviour. In accordance with such distinction, normophonic voices are usually enclosed into the Type I145

typology, whereas pathological voices are embodied into the Type II and III categories [22, 23]. As a matter146

of example, Figure 1 illustrates some cases of voice signals following the above-mentioned typology.
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Figure 1. Typology of voice signals according to [22]. Top panel: normophonic type I signal, characterised by a peri-

odic behaviour; middle panel: pathological type II signal having modulating frequencies; bottom panel: pathological

type III signal characterised by an aperiodic behaviour.

147

Vocal aperiodicity is explained as the result of some very distinctive processes occurring during the voice148

production process such as [24–27]: (i) irregular dynamics of the vocal folds and involuntary transients149

between dynamic regimes (distinguishing features on very specific voice impairments such as diplophonia150

or biphonation); (ii) modulation noise owing to extrinsic perturbations in amplitude and frequency of the151

glottal cycle and which if often associated to roughness; and (iii) additive noise owing to turbulent airflow152

and which is correlated to breathy vocal quality.153

To summarise some of the concepts introduced in this section, Figure 2 is presented.154

1Despite there are authors defining a fourth category [21], a vast majority of works still employ the most classical definition.
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Figure 2. Graphical representation of the concepts introduced in the section. The dashed lines are referred to the

physical phenomena whereas the box in blue is referred to the perceptual trait.

3. Automatic voice condition analysis systems155

Generally, AVCA systems follow a pattern recognition-like structure on which characteristics are extracted156

from the acoustic signal in the form of a set of features to accomplish a further decision making task. An157

example of a typical AVCA scheme is presented in Figure 3.158

Figure 3. Depiction of a typical AVCA system.

Before going deeper into each one of the bulding stages of AVCA systems, two initial considerations159

-referred to the input speech and decision blocks in the depiction- are to be addressed first in the following160

subsections to respond to the questions: (i) what type of speech task is to be used for the design of the161

system; (ii) what type of decision should the system provide.162
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3.1. The input speech163

The interest of considering the acoustic material in the design of AVCA systems arises from the fact164

that depending on the type of utterance, different configurations of the speech production subsystems arise,165

permitting the analysis of certain aspects of speech or others. Indeed, some pathologies are more likely to be166

identified when examining determined units of speech. For instance, resonance impairments are more easily167

perceived in utterances containing /m/ or /n/ prompts.168

In general, two types of speech production tasks are employed for the evaluation of voice condition:169

sustained phonation of vowels and running speech. On one hand, sustained phonation is the result of the170

production of voiced sounds due to the vibration of the vocal folds, as when a vowel is uttered and maintained171

during a certain amount of time. Some advantages of using sustained phonations in AVCA systems include172

[23, 28]: (i) the facility to be analysed by automatic tools; (ii) the production of vowels is straightforward;173

(iii) vowels are not affected by paralinguistic or extralinguistic characteristics such as speaking rate, dialect,174

intonation, and idiosyncratic articulatory behaviour; (iv) vowels often generate simpler acoustic structures175

that might lead to consistent and reliable perceptual judgements of voice quality; (v) vowels do not depend176

on extra processing stages (such as voiced/unvoiced detectors) for the design of AVCA systems.177

The selection of the vowel to be uttered is also a relevant matter. It has been stated that the type of178

vowel -along with the vocal effort and the muscle tension in the larynx- influences the degree of vocal folds179

approximation, affecting the perception of voice quality [29]. For this reason certain open vowels, such as180

/a/, are often employed in AVCA systems since they are produced with a relatively open tract allowing the181

examination of the entire vocal tract apparatus. By contrast vowels like /i/ and /u/, may not allow this182

examination due to the separation between the front and back cavities of the mouth during its production183

[30].184

On the other hand, running (or connected) speech is the result of the source signal (either voiced, unvoiced,185

a mixture of both or its absence) being modulated by the articulatory subsystems, as when uttering a certain186

word or pronouncing sentences. Despite this speech production task is not as widely popular in AVCA187

systems as the one based on sustained vowels, there exist strong arguments favouring its use. Indeed, one188

interesting property of running speech comes from a phenomenon called coarticulation, which is related to the189

influence of the preceding and succeeding acoustic unit on the current unit under analysis. The dynamical190

effects introduced by coarticulation might be relevant for certain applications. Besides that, it has been191

stated that the impressions of certain characteristics of vocal quality are more easily perceived on vowels192

generated in a voiced context, vowels after a glottal closure, or during the production of strained vowels [31].193

Some additional advantages reported in literature in favour of analysing connected speech include [15, 25]:194

(i) it requires switching on and off the vibration of the vocal folds continuously, or maintaning the voicing195

while the supraglottal apparatus changes, facilitating the exploration of certain dynamic aspects of the196

speech production; (ii) speakers are less likely to compensate for voice problems while producing connected197

speech than while phonating sounds; (iii) running speech provides a more realistic scenario since sustained198
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phonations are more characteristic of singing rather than speaking; (iv) running speech contains fluctuations199

of vocal characteristics in relation to voice onsets, terminations and breaks; (v) in certain voice disorders200

(e. g., spasmodic dysphonia), the production of sustained vowels is less symptomatic than in connected201

speech, which may lead to an underestimation of the impairment; (vi) running speech contains variations in202

pitch and loudness, parameters that are important in the analysis of abnormal voice quality.203

3.2. Automatic decision tasks204

Three fundamental tasks may be considered in an AVCA system: voice pathology detection, voice pathol-205

ogy identification and voice pathology assessment.206

On one hand, voice pathology detection is a two-classes decision making process aiming to decide whether207

a given speech register is normophonic or pathological (dysphonic or aphonic). On the other hand, voice208

pathology identification is a multi-class decision making process on which the goal is to assign a category209

to the input speech. The identification task is typically made in terms of the actual pathology (nodules,210

Reinke’s oedema, etc.), the aetiology (organic, functional, etc.) or any other categorisation that groups211

general aspects of the analysed speech. From a practical point of view, identification is more challenging than212

detection, because of the multiple-class scenario on which it is defined. Nonetheless, both tasks are intricately213

complex due to several factors, such as the wide range of profiles that are found for normophonic voices, the214

documented overlap between normophonic and pathological states [32], the close relationship between disease215

and certain quality factors associated to normal processes such as ageing [33], the simultaneous presence of216

pathologies of different aetiologies in the same patient, etc.217

By contrast, voice pathology assessment is aimed at grading the level of pathology that is perceived in a218

given speech signal. This is of great relevance since it is not possible to instrumentally delimit a phonation219

behaviour categorically. An useful descriptor of dysphonia is the hoarseness, which portraits the noisy,220

atonal and/or odd vocal resonance patterns encountered in voices [20]. The hoarseness is widely employed221

in literature, as perceptually, it is described as a superclass that contains roughness and breathiness -222

the two most reliable traits describing vocal quality- [31]. The assessment task is generally performed223

in concordance to a perceptual rating scale that evaluates voice quality and provides information about224

the level of impairment. Some popular perceptual evaluation scales include the GRBAS [12, 31], Voice225

Handicap Index [34] and CAPE-V [35, 36] scales. Even though the perceptual scales have been designed226

to evaluate every aspect that is relevant to voice quality, the reliability of the ratings is conditioned by the227

multidimensional aspects of voice quality, the intrinsic variability of speech, the subjectivity of perception228

[37], and the nonlinear relationship between pathology and measured or perceived voice quality [32].229

4. Prototypical AVCA systems: an insight to the state of the art230

The present section describes each one of the building blocks of Figure 3, providing a review of some231

relevant techniques often employed. Along with the description, a literature review is provided to identifiy232
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the techiques which have been used before by other authors.233

The literature review is performed using the web search of ScopusR© and Google scholarR©. The terms that234

are employed include: "dysphonia", "pathology", "automatic", "voice", "quality", "classification", "detec-235

tion", "identification" and combinations and derivations of them. Pathological states including "Parkinson’s236

disease", "Alzheimer", "Obstructive Sleep Apnoea", "Nodules", etc. are also used in the web search. The237

review is limited to those papers published after the year 2000, focusing on journal papers (although some238

documents in reputable conferences are also included) listed in the Journal Citation ReportsR© or the Scimago239

Journal RankR©. The list of predatory journals (https://predatoryjournals.com/journals/) is also con-240

sulted to discard papers published in journals engaged in predatory practices.241

4.1. Input speech242

The collection of exemplar recordings describing the classes under study conforms a dataset or corpus of243

speakers which are typically used to train and test an AVCA system. Although the term database is often244

found in the literature, we discourage its use to avoid the technical connotations that it has in computer245

science.246

The data acquisition process should follow certain guidelines to prevent the introduction of unexpected247

variability, including the avoidance of external sources of noise or the preservation of similar acoustic and248

instrumental conditions during the recording process. Some recommendations for the acquisition of voice249

signals for acoustic voice analysis has been presented in [38], advising -among others- the use of professional250

condenser microphones with a minimum sensitivity of −60 dB, constant mouth-to-microphone distances less251

than 10 cm, sampling frequencies between 20 to 100 kHz, and sound-treated rooms with ambient noise lower252

to 50 dB. Other considerations in terms of technical characteristics of microphones have been described in253

[39], where a flat frequency response microphone is recommended, within the frequency of lowest fundamental254

frequency and highest spectral component, equivalent noise level at least 15 dB lower than the sound level255

of the softest phonation, etc. In the same way, the recorded corpus should be large enough to contain all256

possible variations within the class, while being balanced in terms of age, sex, etc. , properly representing257

variations in speech due to accent, dialect, socialect, etc. Likewise, conditions such as smoking or professional258

voice should be accounted. The management of the corpus for the storage and accessibility of recordings from259

a medical perspective should also be considered, as this permits the creation of synergies towards certain260

tasks such as the diagnosis of the pathologies, or the assessment from a perceptual point of view as given by261

different evaluators. Some considerations referred to the management in a clinical setting for a large corpus262

of dysphonic and dysarthric speakers are discussed in [40].263

Literature reports the existence of several public and privative datasets that have been recorded for264

the purposes of detection, identification or assessment of voice pathologies. Regarding public datasets, the265

Massachussets Ear and Eye Infirmary (MEEI) [41] is probably the most widely employed corpus, being for266

years, the sole resource that was available for the study of pathological speech. MEEI contains approximately267

700 registers of the vowel /a/ and the first sentence of "the rainbow passage" text, recorded at varying268
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sampling frequencies (25 kHz to 50 kHz). A subset of the corpus -chosen to ensure a balance in age, sex and269

pathologies- has been published in [42], becoming a standard partition for comparisons among different works270

in literature. Despite its popularity, MEEI suffers from well-known problems which might bias outcomes, like271

the different recording conditions of normophonic and pathological speakers [43, 44]. Recently, another speech272

pathology corpus has been made accessible publicly: the SVD dataset [45]. This partition was recorded by273

the Institut für Phonetik at Saarland University and the Phoniatry Section of the Caritas Clinic St. Theresia274

in Saarbrücken, Germany. It contains more than 2000 acoustic and electroglottographic (EGG) registers of275

the vowels /a/, /i/ and /u/ phonated at normal, high, low, and rising-falling pitch; as well as registers of276

the sentence "Guten Morgen, wie geht es Ihnen?" (Good morning, how are you? ), recorded at 50 kHz and277

16 bits of resolution.278

Some of the most well-known privative datasets include the Hospital Príncipe de Asturias (HUPA) corpus279

[46] which contains registers of the sustained vowel /a/ of 366 adult Spanish speakers (169 pathological and280

197 normophonic); or the Arabic Voice pathology Dataset (AVD) [47, 48] which is composed of registers of the281

vowel/a/ and running speech of 188 normophonic and 178 pathological Arabic speakers. Another notable282

corpora, which is perhaps one of the largest in terms of number of patients, is the one recorded in hospitals283

in Marseilles and Aix-en-Provence in France [40]. It is composed by registers of sound-pressure level (SPL),284

oral airflow, and subglottal air pressure of more than 2500 dysphonic, dysarthric and normophonic speakers.285

There exist other privative corpora, exhibiting a large variety of characteristics respecting the acoustic286

conditions followed during the recording process, the instrumentation, the type of speech material that is287

elicited, the type of disorders, etc. Indeed, most of the privative datasets contain microphonic recordings288

of the sustained phonation of vowel /a/ [49–67] or a combination of several vowels [68–72]. There are some289

datasets with registers of running speech for different languages, which in text-dependent scenarios employ290

isolated words [73, 74], reading of phrases such as "the rainbow passage" [75–77], "the north wind and the291

sun" [78, 79], "the story of Arthur the rat" [80], or other texts [73, 81–86]. In the text-independent case292

they employ conversational speech or other types of elicitation tasks [84]. There exist some other datasets293

that include other type of complementary biosignals besides the acoustic recording. Namely, some contain294

EGG recordings of the vowel /i/ [87, 88], /a/ [51, 66]; while others complement the acoustic registers with295

questionnaire data [89, 90] or laryngoscopy information [90].296

Regarding the languages that are reported, literature indicates datasets uttered by Russian [57, 74],297

Korean [91], Spanish [46], Colombian [92], Arabic [48], German [32, 93], Czech [94], Dutch [85, 86], Chinese298

[84], Brazilian [69], French [40] or Lithuanian [95, 96] speakers. Likewise, some include a broad range of299

voice pathologies [41, 45, 46], whereas other are concentrated in certain disorders such as nodules [97],300

polyps [59, 98], larynx cancer [87, 88, 99, 100], hypofunctional voices [11], diplophonia [101], spasmodic301

disphonia and muscle tension dysphonia [102], unilateral laryngeal paralysis [50, 103], obstructive sleep302

apnea [104, 105], hypernasality [106], Parkinson’s disease [92, 107, 108], dysphagia [109, 110], lupus [111],303

etc.304
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4.2. Preprocessing305

Since speech is intrinsically non-stationary, some preprocessing methods are often employed before the306

utilisation of conventional signal processing techniques which rely on stationary requirements. One common307

procedure is the short-time analysis, which decomposes the input signal into a series of equal-length chunks of308

speech, called frames, permitting the treatment of each individual chunk as a stationary or quasi-stationary309

fragment. This procedure is composed of two operations: framing, which divides the signal into frames310

(typically overlapped); and windowing, which tapers the beginning and ending of the frames, through the311

product with a window function to improve spectral properties. The window function should be selected to312

provide a frequency response with a narrow bandwidth in the main lobe and large attenuation in the side-313

lobes. Popular choices include the triangular, Hanning or Hamming windows, whereas the window length314

varies depending on the application. Typically for applications using sustained phonation, the duration of315

the window is set in between 20-40 ms. The upper limit ensures that frames are not that large to make the316

quasi-stationarity assumption void, whereas the lower limit is set to make the analysis independent of the317

location of pitch pulses within the segment, while ensuring at least two to three times pitch periods (since318

the typical range of pitch frequency is between 80− 500 Hz, a pitch pulse is expected every 12− 2 ms [112]).319

For applications using running speech, window lengths are typically set in the order of 20−30 ms to conserve320

the quasi-stationary assumptions [113].321

From those works reporting the type of window that is employed, literature indicates the popularity322

of Hamming [11, 23, 28, 37, 43, 44, 57, 63, 74, 74, 81, 89, 93, 94, 114–120, 120–132, 132, 133, 133–143]323

or Hanning [27, 88, 91, 96, 138, 144–150] windows. The length of the window varies depending on the324

application, type of speech task and characteristics that are utilised. Popular values found in literature325

include 10 ms [65, 91, 139, 144], 16 ms [151], 20 ms [48, 81, 121, 131–133, 152–154], 25 ms [74, 128, 155], 30326

ms [68, 114, 120, 130, 143], 40 ms [43, 129, 134, 142, 146, 147, 156–163], 50 ms [61, 77, 88, 96, 118, 149] or327

55 ms [141, 156]. Notwithstanding, for certain types of features they can be as large as 80 ms [164], 100 ms328

[165], 200 ms, [23, 166], 262 ms [119], 400 ms [167], or 800 ms [168].329

Other preprocessing techniques often found are voice/unvoiced and endpoint detectors [37, 43, 66, 146,330

147, 162], which ensure that only segments generated during the vibration of the vocal folds are employed; or331

silence detectors [169] that eliminate utterances not containing speech. Similarly, and to remove the influences332

of the vocal tract in the speech signal, inverse filtering is often employed [52, 69, 120, 170–174]. Likewise,333

the use of pre-emphasis filtering to accentuate the high frequency content of speech [74, 89, 121, 130] has334

been employed, although it has been reported that it does not improve detection results in AVCA systems335

[175].336

4.3. Characterisation337

The characterisation stage has the goal of extracting features capable of portraying the properties of the338

classes under analysis. The idea is to extract a d-dimensional vector of characteristics, ~x = {x[1], · · · , x[d]},339
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describing d properties of the input speech. Usually this vector is associated to a label ` indicating the340

membership of the utterance to a certain class, although this is not necessary. The features can be extracted341

either in a short-time basis (as introduced in the previous section) having as many vectors of features as342

frames of speech, or in a long-term basis calculating a single vector of characteristics per audio register.343

Finding characteristics that effectively describe the presence of voice impairment is difficult, specially since344

some phenomena associated to voice disorders (such as aperiodicity) are present even in non-pathological345

states due to perturbations inherent to the phonation process [176]. As a result, there is no single fea-346

ture, in the context of screening, that perfectly differentiates between normophonia and pathology, or that347

biunivocally correlates acoustic measurements and voice quality [157]. A common approach to counteract348

this, consists on studying different types of features, in the hope of finding combinations of characteristics349

that complement with each other. In this sense, the best characteristics would be those with the lowest350

correlation with the others but capable to provide the best discrimination capabilities [138]. Although mul-351

tidimensional studies have reported good performance in screening tasks, this type of analysis is usually352

carried out by complex pattern recognition techniques, which makes difficult the interpretation of results353

from the perspective of a human evaluator [138].354

The vast majority of descriptors of voice condition seek to compute metrics of vocal quality due to their355

close relationship to features extracted from voice signals. Literature reports diverse characterisation schemes356

which have been found to perform differently according to the pathologies under study or the dataset that357

has been employed. In general, some popular features -to be described in the following sections- include358

those based on temporal and acoustic analysis, perturbation and fluctuation, spectral-cepstral, complexity,359

3-dimensional representations and other types of features not fitting in the above categories.360

4.3.1. Temporal and acoustical analysis361

To the best of the authors’ knowledge, there are only a fwe papers accounting for the vocal aspects362

of speakers (see Figure 2). In the first two, authors seek to monitor aberrant patterns of f0 and SPL of363

hyperfunctional speakers and employ them for the distinction between dysphonic and normophonic speakers364

[77, 177]. Likewise, in [102], the degree of voice breaks are used to distinguish spasmodic dysphonia speakers365

from others suffering from muscle tension dysphonia and a control population. There are not automatic366

systems that seek to correlate SPL and f0 to the contextual and personal traits of the speaker under analysis.367

By contrast, most of literature is referred to the analysis of descriptors of vocal quality. With regards368

to the analysis of irregular dynamics in pathologies such as diplophonia, literature reports the computation369

of the degree of subharmonics and the diplophonia diagram [101, 178]. To capture modulation and additive370

noise, some approaches are based on tracking f0 and deriving low-order statistics to track disturbances in371

the normal vibration patterns of the vocal folds [32, 59, 62, 91, 95, 99, 124, 131, 179]. A system for the372

personalised computation of f0 according to the sex and age of the speaker has been presented in [180],373

using this value for the discrimination of normophonic and dysphonic voices. A different approach consists374

on measuring the vocal function through the quantification of the energy contained in the signals. Since375
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this quantity is dependent on the distance between mouth and microphone, measures of SPL are preferred376

instead. These can be achieved by means of intraoral or subglottal pressure apparatuses, or indirectly377

computed by using accelerometers placed on the neck [77, 177]. Measurements of the vocal level at diverse378

frequency ranges define voice range profiles (or phonetograms), which have been employed for voice pathology379

detection [181, 182]. An extension to the method relies on the characterisation of a speech range profile,380

that has also been used in AVCA systems [78, 183]. Finally, it is possible to extract features from the glottal381

signal, characterising the opening and closing phases of the glottal waveform as in [52], or via the residue382

obtained after inverse filtering, with measures such as the mean square residue or the excess coefficient383

(kurtosis of the magnitude distribution) [69]. Other acoustic characteristics measure include, for instance,384

the number and degree of voice breaks and unvoiced frames in speech [184].385

4.3.2. Perturbation and fluctuation analysis386

Perturbations are minor disturbances or temporary changes that deviate from an expected behaviour [22].387

Perturbation parameters have been frequently used to analyse vocal aperiodicities that are the product of388

modulation or additive noise. The most popular modulation noise quantifiers include families of parameters389

based on jitter and shimmer.390

On one hand, jitter is a measure of the short-term (cycle-to-cycle) perturbation of f0, with popular391

examples including [185]: (i) jitter relative, which is the average absolute difference between consecutive392

periods, divided by the average period; (ii) jitter Relative Average Perturbation (RAP), which is the average393

absolute difference between a period and the average of this and its two neighbours, divided by the average394

period; and jitter 5-point Period Perturbation Quotient (PPQ5), which is the average absolute difference395

between a period and the average of this and its four closest neighbours, divided by the average period.396

Jitter has been extensively used in AVCA systems, with some relevant examples in [52, 54, 66, 69, 85, 91,397

95, 98, 99, 103, 131, 179, 184, 186–188]. On the other hand, shimmer measures short-term (cycle-to-cycle)398

amplitude perturbations, having popular examples in [185]: (i) shimmer absolute, which is the variability of399

the peak-to-peak amplitude in dB; (ii) shimmer relative, which is the average absolute difference between the400

amplitudes of consecutive periods, divided by the average amplitude; and (iii) shimmer 3-point Amplitude401

Perturbation Quotient (APQ3), which is the average absolute difference between the amplitude of a period402

and the average of the amplitudes of this and its neighbours, divided by the average amplitude. Literature403

reports examples of shimmer in AVCA systems in [52, 85, 91, 95, 98, 99, 103, 131, 179, 184, 186–188]. Despite404

both families of features have been of considerable utility for describing type I signals, its validity for type II405

and III typologies has been put into question due to the need of an accurate identification of f0 [189]. Some406

methods have been devised to calculate jitter using spectral techniques, avoiding the need of a precise f0407

computation, having accomplished favourable results in pathology detection tasks [27, 148], whereas others408

have derived shimmer and jitter through autoregressive decomposition and pole tracking [190]. Another409

perturbation measure proposed for the characterisation of Parkinson’s disease is the Pitch Period Entropy410

[107, 191, 192] which takes into account the smooth vibrato and microtremor in normophonic voices, and411
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the logarithmic nature of speech.412

Popular additive noise quantifiers compute the relationship between the harmonics and background413

noise contained in speech, with notable examples including the Signal-to-Noise Ratio (SNR) [82, 186–188],414

Harmonics-to-Noise Ratio (HNR) [85, 91, 131, 187, 193] (and its variation Cepstral HNR [194, 195]), Nor-415

malized Noise Energy (NNE) [42, 95, 187, 196] (and its variation adaptive-NNE [135]), and Glottal-to-Noise416

Excitation Ratio (GNE) [138, 145, 194]. These features have being extensively applied in the evaluation of417

voice quality correlating positively with many speech disorders and perceptual ratings [37, 138]. Other noise418

quantifiers include the empirical mode decomposition excitations ratios, the vocal fold excitation ratios or419

the glottis quotient, which have been employed for the characterisation of Parkinson’s disease [191, 192].420

By contrast, fluctuation analysis is referred to the study of severe disturbances in the dynamics of421

the vocal folds behaviour, reflecting the inherent instability of the system [22]. Tremor is one prominent422

characteristic that is often studied, referred to low-frequency fluctuation in amplitude and/or frequency423

(modulation noise), related to pathologies of neurologic origin [22]. Some popular tremor estimates include424

amplitude and frequency tremor [179, 197, 198], or the turbulent noise index [58, 122].425

4.3.3. Spectral-Cepstral analysis426

Measures derived from the acoustic spectrum/cepstrum have been widely used in the study of pathologi-427

cal phonation, to mostly characterise vocal quality. Indeed, spectral and cepstral features have demonstrated428

high correlation with the perceptual assessment of dysphonia, providing large sensitivity when used in classi-429

fication tasks [11]. The analysis with spectral/cepstral features also presents several advantageous properties,430

including its appropriateness for analysing both sustained vowels and running speech with no extra proce-431

dures, and the ability to characterise speech signals without depending of the estimation of f0 [11, 37].432

Spectral measures derived directly from the speech spectrum include diverse Long-Term Average Spectrum433

(LTAS) characteristics [23, 28, 76, 85], where the spectral tilt [23] -which indicates the degree of energy434

concentrated in low- vs. high-frequency areas of the spectrum- is a noteworthy example. Other popular sets435

of features are based on the estimation of the spectral envolope with a noteworthy example in the Linear436

Predictive Coding Coefficients (LPC) [126, 153, 199–202], which can also be used to decompose the speech437

signal into its residual and vocal tract components and hence derive parameters for characterisation [153].438

Other features extracted from the residual signal include the pitch amplitude [23, 28, 42], which measures439

the dominant peak in the auto-correlation function of the residual signal; and the spectral flatness ratio440

[28, 42, 69], which measures the residual flatness. Some variations of LPC include cepstral transformation like441

the Cepstral Linear Predictive Coding Coefficients (LPCC) [48, 121, 141, 201–203], or a mel-transformation442

of LPC called Mel-line spectral frequencies [169].443

Literature also reports several approaches relying on filter-banks to decompose voice signals into different444

sub-bands. For instance in [73], correlation functions measure the relationship between the bands of an octave445

filter-bank for the detection of pathologies. Another example is in [117], where HNR is computed on different446

frequency bands along with the energy. It is also possible to employ filter-banks that rely on psychoacoustic447
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criteria to condense spectral information into perceptually-relevant frequency bands. Within this category,448

Mel-Frequency Cepstral Coefficients (MFCC) are probably the most popular features in speech-related ap-449

plications, exploiting auditory principles and the decorrelating property of the cepstrum to characterize450

speech signals. MFCC have been used extensively in several works [43, 57, 115, 121, 130, 133, 140, 141,451

146, 152, 156, 169, 201, 203–205], and often in combination with its first derivative (∆) representing velocity452

[81, 150, 206], and/or its second derivative (∆∆) representing acceleration [116, 128, 129, 139, 147, 163].453

Works related to MFCC characterisation include the study of the influence of the tapering window that454

is employed for the spectrum estimation during the MFCC processing [114], or the derivation of an in-455

dex based on MFCC: the pathological likelihood index [157]. Other psychoacoustic characteristics include456

Perceptual Linear Predictive Coding (PLP), which have been designed in accordance to a scale modelling457

the human auditory system [207–209]. This has been used in AVCA systems in [48, 163, 210], next to458

its bandpass filtered variation RASTA-PLP [48, 141, 163, 201, 209, 210]. Other characteristics include the459

band power decorrelation time obtained through the Meddis and O’Mard filterbank model [37]. The filter-460

banks can also be employed to perform time-frequency decompositions, through wavelets transformations461

[50, 57, 60, 122, 123, 134, 165, 199, 211–215] -which are often accompanied by the calculation of energy462

and/or entropies of the sub-band decompositions- or adaptive time-frequency distribution [164]. An inter-463

esting review about these time-frequency decompositions is presented in [216].464

Finally, measures based on the cepstral prominence of the harmonics are often utilised, by means of465

features such as Cepstral peak prominence (CPP) (next to its variation called smoothed CPP), which is466

a normalised measure of the cepstral peak amplitude, comparing the level of harmonic organisation of the467

speech to the cepstral background noise resulting from aspiration [217, 218]. This measure has been reported468

as one of the strongest correlates of breathiness [11, 15, 37]. Several studies have indicated that cepstral469

measures may be supplemented by other acoustic quantifiers such as the Low-to-High Harmonic Ratio (LHr)470

which measures the spectral tilt of the spectrum above and below 4 kHz [15]. Relevant examples employing471

these measures include [11, 25, 76, 80, 85, 97, 186]. A derived index that incorporates the information472

provided by CPP, LHr, and standard deviation of LHr is the cepstral spectral index of dysphonia presented473

in [75].474

4.3.4. Complexity analysis475

Complexity is a controversial term that has been classically linked to randomness and mistakenly asso-476

ciated to information measures such the algorithmic complexity [219]. However, it is more appropriately477

related to a "meaningful structural richness" [220] or to fractal behaviour rather than to randomness. Com-478

plex behaviour is typically observed in biological systems that manifest at least one of the following dynamical479

properties [221]: (i) nonlinearity; (ii) nonstationarity; (iii) time irreversibility (or asymmetry); or (iv) mul-480

tiscale variability. One of the most popular approaches to investigate the complexity of a system is through481

Nonlinear Dynamics Analysis (NDA). Nonlinear phenomena arises naturally in physiological systems, and482

voice production is not an exception to this regard. Indeed, supporting findings of nonlinearity in phonation483
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include nonlinear pressure-flow relations in the glottis, the delayed feedback from the mucosal wave, the484

nonlinear stress-strain curves of vocal fold tissues, nonlinearities associated with vocal fold collision [222],485

or asymmetries between the right and left vocal folds vibrations [223]. In addition, nonlinear dynamical486

behaviour of models of the vocal folds such as period-doubling (subharmonics), bifurcations, and transitions487

to irregular vibration have been observed in experiments with excised larynges; whereas period-doubling488

bifurcations and chaos-like features have been observed in signals from patients with organic and functional489

dysphonia [224]. Aforementioned facts suggests the appropriateness of using NDA to characterise the dy-490

namics of voice production even in pathological scenarios, as voice pathologies can be considered disorders491

of glottal dynamics [225]. Indeed, the complexity features attempt to measure vocal aperiodicity phenomena492

in AVCA systems. The usual approximation to NDA relies on a reconstruction, termed embedding, to reveal493

the system dynamics in a space called state space. The most popular indices calculated using NDA, compute494

the dimensionality of the reconstructed state space. They have been used for discrimination of pathological495

and normophonic states, being popular examples the fractal dimension [72] or the correlation dimension496

(D2) [56, 67, 98, 103, 107, 156, 167, 186, 188, 226]. Other measures are based on the rate of divergence of497

trajectories in the state space. This has been explored to differentiate normophonic and dysphonic voices498

through the computation of Largest Lyapunov Exponent (LLE) [54, 71, 94, 141, 156, 167, 226, 227] or the499

Lyapunov spectrum [166]. Measures of entropy (the rate of information gain) have also been employed in500

AVCA systems, by means of the first and/or second order entropies [68, 98, 188], the relative entropy [61],501

pseudo-estimators such as the Ziv-Lempel complexity [71, 141, 226], or entropy metrics based on Hidden502

Markov Models (HMM) [156, 228]. A concept related to entropy is the regularity, which measures the pre-503

dictability of the time series. The most popular regularity estimator used in pathological voice analysis is504

the ApEn [87, 88, 149, 226]. Other ApEn-derived metrics used in AVCA systems include the SampEn [51],505

GSampEn and FuzzyEn [71, 156, 228].506

Likewise, time-frequency decomposition have been employed to explore the fractal properties of speech507

[176, 229] or to characterise complexity (using ApEn) on each decomposed sub-band [212]. Other measures508

explore the use of nonlinear prediction [70, 227]; measure the self-similarity of the voice by means of the509

DFA [107, 141, 191, 192, 224], the Hurst exponent [71, 94, 141, 176, 212]; or characterise properties of510

recurrence to compute the effects of modulation noise using the Recurrence Period Density Entropy (RPDE)511

[107, 141, 191, 192, 224, 230]. A discussion about characterisation using nonlinear dynamics can be found512

in [231].513

4.3.5. 3-dimensional representations514

A popular approach that has been gathering attention lately is based on the multidimensional represen-515

tations of speech, and the employment of image processing techniques or matrix tools for the extraction of516

characteristics. In this regard, one approach is based on Modulation Spectra (MS), which characterises the517

modulation and frequency components of speech. MS produces a 3-dimensional representation that has been518

employed for the detection of voice pathologies [119, 140, 232].519
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Following the idea of 3-dimensional representations, a mel-spectrogram is characterised by means of520

the recurrence texture plots and the local binary pattern operator in [233]. Matrices can also be formed521

using time-frequency decomposition as in [132], where features are extracted through the employment of a522

multidirectional regression, the use of interlaced derivative patterns of the glottal source excitation signal523

as in [120]. Similarly, authors in [160] extract features from co-occurrence matrices formed after using524

filter-banks on the input speech or octave-spectrogram [142].525

4.3.6. Other types of features526

There exist some other approaches that do not fit into the above categorisation. For instance, the multi-527

dimensional acoustic voice quality index is a metric based on weighted multivariate regression of 6 temporal,528

spectral and cepstral characteristics that has been used for voice pathology assessment and detection [234].529

The use of variograms and the characterisation with the signal-to-dysperiodicity ratio has been explored in530

[25, 116]. Likewise, decompositions of speech based on non-negative matrix factorisation [164] or empirical531

mode decomposition [168] have also been reported. The hoarseness diagram has been proposed to visu-532

alise additive and modulation noise components [53, 145, 235]. The utilisation of higher order statistics for533

the characterisation of dysphonic voices is discussed in [137], whereas the spectral properties of centralized534

auto-correntropy is used to detect and classify vocal pathologies in [236].535

Some multidimensional approaches consider a combination of several features of different type, having536

some notable examples in [28, 55, 65, 96, 144, 156, 171, 172, 237, 238]. Other multidimensional approaches537

consider metrics derived from the MPEG-7 standard as described in [128, 154, 162]. Another type of character-538

isations are based on biomechanical models to describe the behaviour of the glottal and mucosal waveforms539

[172, 237]. Finally, literature also reports the employment of MFCC features for the construction of a540

phonological model of 14 features (voicing, place of articulation, turbulence, nasality, etc.) [86].541

4.4. Dimensionality reduction542

Dimensionality reduction is aimed to decrease the size of the feature space in order to remove redundant543

or irrelevant features that might affect performance. Two major types of techniques can be defined: those544

based on feature extraction, which employ a transformation of the input space; or those based on feature545

selection, not relying on any transformation. Feature extraction techniques include the classical approaches of546

singular value decomposition [134], Linear Discriminant Analysis (LDA) [123, 161, 166, 199, 211, 237, 239],547

and Principal Components Analysis (PCA) [25, 57, 123, 124, 127, 136, 145, 153, 161, 172, 227, 237–239], or548

extensions of PCA such as kernel-PCA [127, 238], neural-networks PCA [127], or dynamic feature extraction549

using PCA [150]. Other type of transformations include those based on HMM [71, 136], clustering-based550

feature weighting methods [134, 161] or others based on multiple regression analysis [93]551

Within feature selection, two types of methods arise. In one hand, the wrapper feature selection ties552

the selection of features to the maximisation of a performance metric obtained with a classifier/regressor.553

Some notable examples in AVCA include the use of genetic algorithms to select the best set of features for554
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recognition purposes [50, 57, 90, 166, 212], binary logistic regression analyses with stepwise variable selection555

[78], sequential backward and forward feature selection [65, 239] or angle modulated differential evolution556

[63]. On the other hand, filter feature selection employs correlation and information approaches to find557

the most pertaining sets of features. In this respect, literature reports the use of the mutual information558

[145, 171], correlation analysis [145], Fisher discrimination ratio [47, 129, 129, 154, 226, 233, 237], Fisher559

discriminant analysis [144], or the Davies-Bouldin index [212].560

4.5. Machine learning and decision making561

The machine learning procedure receives different names depending on the type of decision making task562

that is involved. If given a set of observations X = {~x1, · · · , ~xn, · · · , ~xN}, where each ~xn is associated563

to a label ~̀ = {`1, · · · , `n, · · · , `N}, the aim of the procedure is to learn a mapping from the input set of564

observations to the labels. This type of task is known as supervised learning ; in opposition to unsupervised565

learning, which is related to the discovery of structure in the data in the absence of labels.566

To the author’s knowledge all of the machine learning methodologies presented in AVCA systems are567

based on supervised learning. Within this category, the most widely employed decision machines include the568

Support Vector Machines (SVM) or Gaussian Mixture Models (GMM). SVM is a discriminative classifier569

constructed from sums of kernel functions which has been used in AVCA systems in [47, 50, 52, 60, 62,570

63, 71, 73, 86, 90, 91, 94, 96, 116, 119, 120, 123, 140, 141, 150, 153, 154, 166, 169, 199, 201, 210, 212,571

226, 229, 233, 239–241]. By contrast, GMM is a type of generative classifier that has provided excellent572

results in diverse speech-related applications. Its popularity arises from the modelling capability they offer573

and the probability framework on which they stand. The use of GMM in AVCA systems is reported in574

[114, 121, 126, 129, 132, 139, 140, 150, 156, 169, 200, 201, 204], next to variations such as GMM-Universal575

Background models [81, 163], GMM-SVM [130, 133, 201], i -Vectors [163].576

Other popular decision machines include Artificial Neural Networks (ANN) [49, 57, 68, 123, 137, 143,577

146, 152, 165, 166, 186, 211, 239], Deep Neural Networks (DNN) [142, 151, 155], HMM [74, 115], random578

forests [63, 65, 65, 94, 187], LDA [23, 25, 42, 122, 131, 139, 168, 169, 179, 203, 213, 214] quadratic-LDA [224],579

Hidden Markov Models [52, 71, 115, 121, 136, 139, 201, 228], k-nearest neighbours (KNN) [96, 117, 203, 212]580

and the Bayes classifier [150]. The use of regression techniques has also been reported in [28, 75, 78, 85, 234].581

4.6. Evaluation of the system582

A common approach followed in machine learning applications to generalise results and provide valid583

measures about the actual efficiency of the systems consists in the use of validation techniques. The basis of584

these methodologies is the decomposition of the available dataset into subsets which are used independently585

for training and testing purposes (and often for parameter tuning). On one hand, the training partitions are586

used to estimate a mapping between observations and labels in the supervised machine learning algorithms.587

On the other, the testing partitions are employed to assess the performance of the system. A third partition588

often arise for the purposes of parameter tuning of the algorithms.589
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The most straightforward approach for validation is the split sample method, which consist on using a590

percentage of the dataset to conform exclusive training and testing partitions. The problem of split sample591

is the lack of generalisation of results -specially if the data is scarce- as the randomly sampled partition592

might not be representative of the data under analysis, and the reported results will probably depend on the593

partitions that have been chosen. The use of this methodology has been reported in [52, 123, 137, 147, 169,594

184, 201, 206, 239].595

A different approach -which is one of the most popular validation techniques- is the k-folds cross-596

validation, which produces k disjoint sets of size N/k, called folds, with N representing the number of597

observations. In total k iterations are performed, using in each case a different subset for testing pur-598

poses, and the remaining k − 1 for training algorithms. The measures of performance are then evaluated599

as the mean value calculated among iterations. Works using cross-validation techniques include [43, 47–600

49, 55, 57, 63, 63, 68, 71, 73, 91, 119–121, 124, 126, 127, 130–133, 136, 140, 146, 150–156, 160, 161, 168, 199,601

200, 204, 211, 229, 233, 236, 240–242].602

Another popular evaluation methodology is the leave-one-out validation which arises in the limit k = N603

in a k-folds cross-validation. In this case, only one observation is used for testing and the remaining registers604

are employed for training, repeating this procedure N times. Leave-one-out validation is usually preferred to605

cross-validation when the dataset sizes are small as it allows to maximise the size of the training partition.606

Notable examples of leave-one-out validation are reported in [23, 49, 81, 96, 176, 213, 214].607

In the same way, boothstrapping consists on randomly selecting a number of points from the training608

partition, with replacement, to train machine learning models and then calculating performance on a testing609

partition. This process is repeated k times, thus generating k different models. At the end, the performance610

is computed as the mean performance obtained in the testing partition. Some examples reporting the use of611

boothstrapping in AVCA are presented in [65, 75, 89, 101, 136, 224].612

In addition to those validation methodologies which are trained and tested in the same corpus, other613

manners to validate performance are based on cross-dataset validation on which the training set corresponds614

to a particular dataset, whereas the testing partition corresponds to another different one. The advantage615

of such an approach is in the possibility of testing the robustness of the AVCA system in a more realistic616

scenario with an increased variability. This is methodology has been used in works such as those presented617

in [47, 120, 148, 151, 204, 243].618

With regards to metrics of performance, the simplest approach consists on computing measures that619

compare the predicted labels given by the decision machines to the actual labels of the dataset. In this620

regard the most commonly used metric is the accuracy (ACC) -which has been used in almost all the621

reviewed papers- representing the rate of the correctly identified labels in comparison to the total number of622

instances. Another manner to analyse the performance of binary detection systems, is by means of Receiver-623

Operating Curve (ROC) [244] and Detection Error Tradeoff (DET) curves [245]. An additional measure624

derived from these curves is the Area Under ROC Curve (AUC), which is a value ranging between 0 and 1,625
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that is obtained after integrating the ROC curve. A number of reasons favour the use of this metric instead626

of other classical measures such as the ACC, including [246]: (i) a standard error that decreases as both627

AUC and the number of test samples increase; (ii) decision threshold independence; (iii) and invariance to628

a-priori class probabilities. Some examples demonstrating the use of ROC curves and AUC are included in629

[23, 129, 144, 164, 166, 201]630

Other types of performance evaluation techniques include the cost of log-likelihood-ratio [63, 89, 158], the631

DET curves [43, 65, 89, 91, 119, 129, 133, 138, 140, 146, 150, 150, 152, 174], or sensitivity versus specificity632

plots [75]. Statistical analysis based on the Mann-whitney U-test [69, 98, 103, 126, 167, 179, 188] or the t-test633

[47, 51, 57, 59, 64, 73, 80, 146, 187] have also been reported to compare the means of different populations.634

4.7. Applications of AVCA systems635

There exist a variety of applications of AVCA methodologies to characterise a wide variety of voice636

impairments. Without being extensive, the following will introduce some relevant applications of AVCA637

systems. In this manner, most of the works in literature are related to the analysis of laryngeal pathologies638

such as nodules [97], polyps [59, 98], larynx cancer [87, 88, 99, 149], diplophonia [101, 178], spasmodic639

disphonia [102], unilateral laryngeal paralysis [50, 103], laringectomised patients using oesophageal voice640

[70] . Notwithstanding, there exist several works focusing on other disorders such obstructive sleep apnea641

[104, 105, 247–249], hypernasality [106, 141, 250], Parkinson’s disease [92, 107, 163, 192, 209, 210], Alzheimer’s642

disease [251, 252], dysphagia [109, 110], lupus [111].643

5. Aspects affecting AVCA systems644

The variability embedded in speech has long been recognised as a major source of errors in automatic645

classification systems based on speech. For instance, several variability factors identified in the design of646

speaker recognition systems are described in [253]. Translated to terms of AVCA systems, these variability647

factors are the following: (i) Peculiar intra-class variability: manner of speaking, age, sex, inter-session648

variability, dialectal variations, emotional condition, etc. (ii) Forced intra-class variability: Lombard effect,649

external-influenced stress, cocktail-party effect, etc. (iii) Channel-dependent external influences: type of mi-650

crophone, bandwidth and dynamic range reduction, electrical and acoustical noise, reverberation, distortion,651

etc. It is worth noting that the forced intra-class variability is more common of unsupervised recording652

environments rather than from controlled clinical settings. That does not imply, though, that their effects653

should be disregarded. For instance, they are of significant importance in telemedicine scenarios where the654

recording conditions might vary widely. Despite that, and for the purpose of simplicity, the forced intra-class655

variability is to be omitted from further discussions, and the term intra-class variability is to be referred656

to the peculiar intra-class variability only. Moreover, the intra-class and channel-dependent factors can be657

further associated to the linguistic, paralinguistic, transmittal and extralinguistic spheres.658
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Having this in mind, the current section introduces some factors that are of interest in the design of AVCA659

systems. It is worth noting that this list is not exhaustive but it only include what could be considered as660

the most important factors affecting these systems.661

5.1. Intra-class variability662

One important aspect to be outlined in any speech-related system is the effect of the intra-class or663

intersession variability. In a speaker recognition system, aiming at recognising the identity of a target664

speaker, the intersession effect might be described by the differences arising between recordings of the target665

speaker due to vocal effort, physical or emotional condition, etc. In the AVCA field, the intersession variability666

might be explained by the acoustic diversity among different pathologies, the sex or age of the speaker, or the667

spurious information introduced by other linguistic, paralinguistic or extra-linguistic effects. In this regard,668

several intra-class factors that might affect the performance of voice pathology classification systems include669

linguistic aspects such as the speech production task, the dialect and accent of the speaker; paralinguistic670

events such as the emotion or the vocal effort; or extralinguistic effects such as the sex or age of the speaker.671

5.1.1. Dialects and accents672

Dialects are the result of systematic, internal linguistic changes that occur within a language, reflected in673

the form of structural alterations in phonology, morphology, syntax, lexicon or semantic [33]. Dialects have674

been identified as an important aspect when defining communication disorders. Undoubtedly, not accounting675

for dialect features may result in the misdiagnosis of communication disorders [33]. For instance, several676

key features of African-American English phonology have been found to overlap with identifiers of speech677

sound delay/disorder in the phonology of general American English, making the distinction from normal and678

disordered states problematic in African-American speakers [254]. This phenomenon has been found in other679

contexts where non-prestige social dialects are often incorrectly associated to disordered speech [33]. Accents,680

on the other hand, are linguistic changes within a language that occur mainly at the phonological level. It has681

been long identified as an important confounding source in speech-related applications. For instance, accent682

is described as the most important source of variability between speakers in speech recognition systems in683

[255]. A further study presented in [256], confirmed that accent degrades classification rates, with errors684

increasing around 40-50% in cross-accent speech recognition scenarios. In general, it has been found that685

performance degrades when recognizing accented from non-native speech [257].686

5.1.2. Vocal effort687

Vocal effort is a subjective physiological interpretation of the voice level, as given by judges, or by the688

speaker itself to adapt speech to the demands of communication [258]. There exist evidences indicating that689

the vocal effort alter perceptual and acoustic parameters extracted from speech, and therefore might impact690

AVCA systems. Phenomenologically, variations in vocal effort affect the shape of the glottal pulses, changing691

the closing velocity waveform and affecting the relative duration of the closed interval [258]. In voices692
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produced with increased vocal effort there have also been found significantly greater values in parameters693

such as subglottal pressure, translaryngeal airflow, and maximum flow declination [259]. Similarly, it has694

been stated that the medial compression of the vocal folds is enhanced when vocal effort is augmented, which695

results in an improved glottal closure, enlarged vocal intensity, and increased f0 and amplitude [260]. Vocal696

effort also alters the duration of vowels, consonants, and the pausing behaviour during speech production697

[258]. In terms of quality, voices produced at excessive vocal effort are perceptually described as creaky698

[258] or strained [259]. Not surprisingly, this has consequences on parameters extracted from speech. For699

instance, jitter, shimmer, NNE and two EGG parameters have been found to vary significantly among vowels700

produced at three vocal effort levels (low, normal, high) [261].701

Similarly, it has been reported that jitter and shimmer significantly increased their value with decreasing702

voice intensity [262], being also identified as one of the most important factors influencing the computation703

of these perturbation parameters, alongside with the sex of the speaker and the type of uttered vowel [263].704

Other sets of parameters which are affected include cepstral features, which have been reported to differ705

substantially at diverse effort levels [260]. This has been confirmed in [259], where significant differences706

arose in 4 aerodynamic and 2 cepstral measures when comparing phonation at different effort levels. Authors707

in [264] have investigated the effects of increased vocal effort in pathological phonation. Results indicate708

that louder voicing reduces the values of perturbation parameters in normophonic speakers or in superficial709

vocal fold pathologies, while in cancer or vocal fold paralysis, louder phonation significantly enhances the710

irregularity of vocal folds vibration.711

5.1.3. Emotion712

The study of the emotional content embodied on speech has garnered a lot of attention within the speech713

research community. Indeed, the term affective computing has being coined to describe the automatic714

sensing, recognition and synthesis of human emotions from any biological modality such as speech or facial715

expressions [265]. There exist some studies considering the effect of emotions in speaker recognition systems.716

For instance, emotions are regarded as a factor affecting automatic recognition of children’s speech in [266].717

In [267], the effect of an emotions recogniser previous to a speech classification process is investigated.718

Authors report that affective speech downgrades the system performance, and that a cascading scheme is719

highly effective in improving recognition rates. Despite these facts, little is known about the influence of720

emotion in AVCA schemes, but according to the evidence found in the field of speaker recognition, it might721

be hypothesized that affective speech is a confounding factor that should be taken into consideration.722

5.1.4. Sex723

The variability introduced by the sex of the speaker remains as a major concern in the design of speech-724

based systems. Indeed, authors in [255] reported that this factor accounted for the second most prominent725

source of variability -after accent- in speech recognition systems. Certainly, literature states that the perfor-726

mance of speech recognition, identification or verification systems improves by employing a-priori information727
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about the sex of the speaker [268]. For instance, authors in [269] obtained a 2% of accuracy improvement in728

a speaker recognition system when using sex-specific models.729

The nature of the variability introduced by the sex of the speaker stands on physiological, acoustic, and730

psychophysical factors [6]. Regarding physiological differences, the human laryngeal anatomy differs between731

sexes at a variety of levels. Particularly, males tend to have a more acute thyroid angle; thicker vocal folds; a732

longer vocal tract; a larger pharyngeal-oral apparatus, thyroid lamina and skull compared to that of females733

[270, 271]. Studies of excised human larynges have shown that anteroposterior dimensions of the glottis are734

1.5 times larger in men than in women [272]. Besides that, the female pharynx has been found to be shorter735

than of males during the production of the three cardinal vowels. This may be a key factor in distinguishing736

between male and female voice qualities during speech production [271]. In addition, the observation of the737

glottis during phonation has suggested the presence of a posterior glottal opening that persists throughout738

a vibratory cycle and which is common for female speakers, but occurs much less frequently among male739

speakers [273]. Indeed, about 80% of females and 20% of males have a visible posterior glottal aperture during740

the closed portion of a vocal period [274]. Regarding perceptual differences, parameters such as effort, pitch,741

stress, nasality, melodic patterns of intonation and coarticulation are used for characterising female voices,742

while male voices are judged on the basis of effort, pitch and hoarseness [275]. It is also argued that female743

voices possess a "breathier" quality than male voices [274]. The pitch is the most known trait differentiating744

sexes [275], with females’ pitch higher than of males’ by as much as an octave [276]. This pitch difference745

might influence the perception of dysphonic voices since lower pitch is perceived as rougher [31]. In addition746

to the pitch, literature reports significant differences between male and female speakers’ formants (f1, f2,747

f3, f4) [6]. This is because the vocal tract length for males is longer than that of females, producing on748

average formant patterns scaled upward in frequency by about 20% [275]. There are also several important749

acoustic consequences of the posterior glottal opening during the closed phase of phonation, which is more750

frequent in females. A first consequence is a breathier voice quality which is the result of a larger amount751

of air passing through the vocal tract [270] and that affects the relative amplitude of the first harmonic of752

the speech spectrum [272, 277]. A second consequence is the widening of the f1 bandwidth, which is the753

result of the glottal aperture that produces energy losses particularly at low frequencies [273, 277]. A third754

acoustic consequence is the generation of turbulence in the vicinity of the glottis [277], perceived with a high755

level of aspiration noise in the spectral regions corresponding to f3, and contributing to a breathier voice756

quality [276]. A final consequence is a lower spectral tilt due to the presence of aspiration noise [276], which757

turns out to be a significant parameter for differentiating between male and female speech samples [273].758

In addition to the acoustic differences reported from the study of the raw speech, there are some differences759

in the glottal components among sexes. On one hand, the female glottal waveform tends to have a shorter760

period, lower peaks and peak-to-peak flow amplitudes than that of males [278]. Likewise, the derivative of761

the glottal waveform does not present an abrupt discontinuity during the closing time due to the incomplete762

closure of the vocal folds [6]. In general, it is stated that female glottal components are symmetric, with763
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opening and closing portions of the waveform tending towards equal duration [279]. Conversely, and regarding764

the glottal waveform of male speakers, it is found that the open quotient is smaller and the maximum flow765

declination rate is greater than of females [273]. Moreover, the closing portion of the waveform generally766

occupies 20 − 40% of the total period and it might not exist an easily identifiable closed period [275]. In767

general, it is stated that male glottal waveforms are asymmetrical and present a hump in the opening phase.768

Finally, it is worth noting that sex differences are found to be age and hormone-dependent, and thus is of769

great importance considering the effect of age when studying male or female voices.770

5.1.5. Age771

According to the male-female coalescence model of ageing voice, hormone-related factors cause changes772

in voice production systems. In this manner, hormones during puberty are responsible for the differences773

between males and females in adolescence, but these changes are counteracted to some degree by hormone774

related factors associated with menopause and ageing [271]. During males’ puberty, the thyroid cartilage775

develops the Adam’s apple, the muscular and mucosal layers of the vocal folds thicken, the vocal folds lengthen776

and widen, the cricothyroid membrane widens, and the corresponding muscle becomes more powerful [270,777

280]. As a result, the fundamental frequency decreases an octave compared to that of a child [280]. During778

females’ puberty, there is little development of the thyroid cartilage or of the cricothyroid membrane, and779

the vocal muscle thickens slightly but remains supple and narrow. As a result, the female’s f0 becomes one780

third lower than that of a child [280]. The age effects on the larynx tend to be more significant in men than781

in women. In this manner, males experience an increasing of the fundamental frequency as a result of muscle782

atrophy, thinning of the lamina propria, general loss of mass and ossification and calcification of the larynx783

that starts during the third decade of life [271]. In females, ossification and calcification starts in the fourth784

decade of life, and in some cases never completely ossify. However, due to menopause effects, a lowering of785

fundamental frequency prior to senescence occurs [271].786

The effects of age in AVCA systems have not been studied in depth. One of the few works that accounts787

for its effects in AVCA is introduced in [75], where this trait has been used as a predictor in a binary logistic788

regressor for the prediction of dysphonia, having found a marginal but statistical significant increment in789

performance when age is introduced in the model.790

5.2. Channel-dependent external influences791

This dimension includes all the effects that aggregate variability to speech registers because of the mere792

act of recording. This is a well-known problem that has long been identified in speech and speaker recognition793

systems [113]. Several aspects affect the recording process, including the instrumentation (type of micro-794

phone, analogue-to-digital converter, etc.), the acoustic environment (office, recoding studio, etc.) and the795

transmission means (land-line, cellular, etc.) [281]. Similarly, background noises, noises made by speakers796

(such as lip smacks), noise in the input device itself, etc., are recognised as sources that impair performance797

of speech recognition systems [113]. Another problem that might arise, is the variability introduced because798
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of the mismatch in the recording conditions, between the registers employed for training the models and799

those used for testing purposes. For instance, as when a certain microphone is used for recording the train-800

ing utterances, but the model is verified with a different equipment. Indeed, the microphone is expected to801

modify the speech spectrum, and anything that modifies the spectrum may cause difficulties in recognition802

tasks [281]. In this regard, the study of [38] demonstrated that the type of microphone has effects in the803

computation of perturbation parameters, providing evidence favouring the use of condenser cardioid micro-804

phones instead of dynamic or omnidirectional microphones. This study also showed that sensitivity and805

microphone-to-mouth distance have the largest effect on perturbation measures, whereas the angle had little806

effect for short distances, but a greater effect for longer distances. The study presented in [282] showed that807

a signal-to-noise ratio of 42 dB is needed to provide reliable estimations of perturbations measures, whereas808

values less than 30 dB have been shown to impact negatively in their computation. In [283], the effect of809

background noise, reverberation, clipping and speech compression on the calculation of MFCC features was810

tested out, demonstrating significant (but predictable effects) in MFCC computations.811

6. Discussions and conclusions812

This paper has presented concepts in relation to voice impairments and AVCA systems. In this manner, a813

categorisation of diverse aspects of voice conditions in terms of perceptual and physiological phenomena has814

been proposed, as well as a description of a prototypical AVCA system along with each one of its constituting815

parts. With relation to the latter, a systematic review has been carried out to overview the methodologies816

that are more often employed in AVCA systems.817

Regarding the categorisation presented in section 3 and according to the systematic review of section818

4, some inferences can be made. Firstly, a large number of papers still employ the MEEI corpus despite its819

well-known limitations. Notwithstanding, the field has received the advent of novel public datasets such as820

the SVD or privative corpora shared among different research groups, which has permitted the reproducibility821

of results and has opened up the possibility to carry out comparisons among methodologies in other datasets822

apart from MEEI. Despite that, there is room for improvement, as there is still necessary to record larger823

datasets, more balanced in terms of pathologies, age or sex, and containing a larger variety of acoustic824

material based either in sustained vowels, isolated words or running speech.825

Literature has also revealed that most of the works employ sustained phonation due to its simplicity,826

despite the potential that running speech presents. In this regard more investigation on novel features and827

methodologies that employ this type of speech task is required. Similarly, it has been found that the effects828

of extralinguistics or paralinguistics (such as age, sex, accent, etc.) have been seldom considered in the vast829

majority of systems reported in literature, despite their relevance as confounding factors on this type of830

systems. Accounting for this variability factors should be a relevant matter to study in the future.831

Regarding the characterisation techniques, most of the reviewed papers report the employment of de-832

scriptors to quantify vocal quality. However, vocal aspects describing variations in intensity and f0 are also833
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important aspects to consider as they might serve to characterise other phenomena such as hypophonia or834

inadequate pitches in speakers. Quantifying both intensity and f0 might complement the information ob-835

tained with descriptors of voice quality, with potential -for instance- to improve results of differential analysis836

in identification tasks. This comes with the added cost, though, of having to record other variables besides837

audio, such as the SPL or EGG (or to employ robust f0 estimators such as those based on inverse filtering).838

In the same manner, the systematic review also indicates that the increasing need of novel biomarkers for the839

early diagnosis, differential analysis or assessment of disorders such as Parkinson, Alzheimer or obstructive840

sleep apnea, has generated an emerging interest on quantifying dysphonic conditions. The analysis of these841

disorders have also brought new features and processing techniques which have indeed enriched the field.842

Regarding the machine learning and decision making methodologies, there is a large amount of method-843

ologies related to supervised learning. The typical approach followed in AVCA systems is based on bottom-up844

schemes on which the voice disorders phenomena is firstly studied, to build up systems from the inferences845

obtained in the previous analysis stage. Notwithstanding, other related fields (such as speech recognition)846

have experienced an increased interest in up-bottom schemes through unsupervised methodologies for the847

purposes of pattern discovery or data mining. This same path could be followed in AVCA systems as well.848

The literature review also served to reveal the existence of certain methodological issues that might849

compromise the interpretation and validity of results in certain works. In an attempt to provide general850

recommendations, some practical considerations are indicated next. One concern that is found in a few851

papers is due to the addition of registers of other corpora besides the one under study, for the purposes of852

balancing patients in terms of pathology, sex, age, etc.; or simply to increase the size of the studied corpus.853

The effects of following such an approach are certainly important and might bias or affect the validity of854

results due to the channel divergences between the datasets. Likewise, and despite there is an trend on855

employing more robust validation techniques, there are certain issues that should be taken into account as856

well. For instance, there are some works that suggest having included registers of the same speaker on both857

training and testing partitions. This seems to be the results of having datasets on which speakers record858

audio in different sessions, but not accounting for the possibility of including audio of the same speaker in859

a training or a testing partition. Following this approach might introduce speaker information that might860

bias the machine learning algorithms. Besides that, one problem that is common in a variety of papers is861

to report results with confidence intervals which are larger than the range of measurement. For instance,862

there are certain works reporting accuracy values of the type 99 ± 1.5%. It is recommended the use more863

robust estimators of confidence not to allow values larger than the range of acceptable values. A few papers864

have reported the employment of energy measurements to characterise normophonic or dysphonic conditions865

without having used SPL or a normalisation procedure to account for differences in the recording condition866

of the different registers (due to divergences in the mouth-to-microphone distance between recordings for867

instance). Another comment should be made on the importance of using an appropriate feature space in868

concordance to the size of the dataset. There are some papers reporting a large number of features but using869
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a small dataset. This is certainly discouraged.870

A final comment should be made in regards to the clinical assessment of the systems presented in lit-871

erature. The systematic review has demonstrated a lack of validation of the proposed systems in clinical872

settings where these automatic tools have served to guide or improve the diagnosis of voice impairments.873

Indeed, most of these systems have been tested under very restricted settings, depending on the dataset that874

has been used for training, the recording conditions, etc.; factors which might hinder the generalisability of875

the results. It is necessary to test out the validity of the AVCA methodology in more realistic scenarios,876

where its ability to contribute to the diagnosis of voice pathologies is tested.877

To finalise this paper, Table 1 presents, in the authors’ opinion, a list of some interesting works presenting878

AVCA systems, in the hope that they might result useful for new comers to the field. In the second part of879

this series, entitled "On the design of automatic voice condition analysis systems. Part II: review of speaker880

recognition techniques and study on the effects of different variability factors" we will introduce a series of881

experiments following the methodologies described in this paper, using diverse corpora and analysing the882

effects of certain variability factors in the design of AVCA systems.883
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Table 1. Some relevant works in literature according to the taxonomy presented in Figure 3. RS.: running speech; AC.: acoustic and temporal features; SC.:

spectral/cepstral features; Pn.: perturbation features; Cx.: complexity features; Ot.: other type of features.

Characterization
Authors Material Database

AC. SC. Pn. Cx. Ot.

Dimensionality

reduction

Decision

making
Validation Results

[156] /a/ MEEI – GMM Crossvalidation ACC=98%

[75] RS. privative – Regressor Boothstrapping AUC=0.85

[96] /a/ privative – SVM; KNN;

commitee

Leave-one-out ACC=95%(detection);

ACC=85%(identification)

[146] /a/+RS. MEEI – ANN Crossvalidation ACC=94%(vowel);

ACC=96%(RS.)

[155] /a/ 3

databases

– XGBoost; ANN;

isolation forest

Crossvalidation ACC = 62-73%

[224] /a/ MEEI – QDA Bootstrapping ACC=92%

[119] /a/ MEEI Max-relevance SVM Crossvalidation ACC=94%(detection);

ACC=85-92%(identification)

[94] /a/ MEEI;

SVD;

privative

Mann-Whitney

U test

SVM; random

forest

ACC=68-100%

[23] /a/+RS. MEEI – LDA Leave-one-out ACC=96%(vowel);

ACC=96%(RS.)

[43] /a/ MEEI – ANN Crossvalidation ACC=90%

[213] /a/ MEEI – LDA Leave-one-out ACC=96%

[63] /a/ privative wrapper-based

feature selection

SVM; random

forests

Cross-validation ACC=87%

[90] /a/ privative GA SVM Random-split ACC=98%(multimodal)

[191, 192] /a/ privative 4 filter-based SVM; random

forests

Cross-validation ACC=98%
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