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a b s t r a c t 

This paper proposes a scheme that efficiently exploits synergies between RSSI and camera measure- 

ments in cluster-based target tracking using Wireless Camera Networks (WCNs). The scheme is based 

on the combination of two main components: a training method that accurately trains RSSI-range mod- 

els adapted to the conditions of the particular local environment; and a sensor activation/deactivation 

method that decides on the individual activation of sensors balancing the different information contri- 

butions and energy consumptions of camera and RSSI measurements involved in sensing. The scheme 

also includes a distributed Extended Information Filter that integrates all available measurements. The 

combination of these components originates self-regulated behaviors that drastically reduce power con- 

sumption and computational effort with no significant tracking degradation w.r.t. existing schemes based 

exclusively on cameras. Besides, it shows better robustness to target occlusions. The proposed scheme 

has been implemented and validated in real experiments. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

In the last few years intense research has been devoted to lo-

calization and tracking in indoor and GPS-denied environments.

Although a high variety of sensors, techniques and approaches

have been developed, it is still an important open research field.

This paper deals with Wireless Camera Networks (WCNs), which

can implement successful perception schemes typical of conven-

tional camera networks with the flexibility and re-configurability

of Wireless Sensor Networks (WSN). 

A high variety of WCN-based tracking schemes have been re-

ported. Most of them rely exclusively on camera measurements

disregarding other types of sensors that are actually integrated

in most wireless camera nodes. The greatest majority of wire-

less camera nodes can measure the Radio Signal Strength Indica-

tor (RSSI) of incoming packets with negligible energy and com-

putational consumption. If the targets are tagged with emitting

nodes, each camera node can gather camera and RSSI measure-

ments of the targets that are within its camera field of view and

radio range. Fusion of bearing and range measurements – like RSSI

– can originate interesting synergies, involving higher accuracy in

the localization and tracking of the target. Also, RSSI can be used

when the target is occluded in the images or when it is out of
∗ Corresponding author. 
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he cameras field of view. Despite these advantages, very few ex-

sting WCN-based tracking schemes integrate RSSI measurements.

SSI is highly affected by reflections, multi-path propagation and

ther interactions of the radio signal with the environment mak-

ng RSSI-range models very dependent on the setting. Besides, the

ew techniques that integrate RSSI and camera measurements use

SSI only when the camera measurements are not available, with-

ut exploiting all the synergies between both types of measure-

ents. 

Our scheme assumes that targets are tagged with emitting

odes. This is the case in many tracking applications in which the

martphones and portable computing devices carried by people act

s Wi-Fi emitting nodes and the Wi-Fi cameras deployed in the en-

ironment act as wireless camera nodes. 

This paper proposes a cluster-based scheme that exploits the

ynergies between RSSI and camera measurements to improve re-

ource consumption efficiency in target tracking. The scheme is

ased on the combination of two main components: a training

ethod in which each camera node accurately calibrates its RSSI-

ange model to the particular environment and settings; and a

ensor activation/deactivation method that balances the use of ac-

urate but high energy-consuming camera measurements and of

nergy-efficient but inaccurate RSSI measurements. The interaction

etween these components originates an emerging self-regulated

ffect in which the camera measurements are used to train RSSI-

ange models and once calibrated, the sensor selection method

ends to deactivate cameras due to their higher energy consump-
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ion. The scheme also includes a distributed Extended Information

ilter (EIF) that efficiently integrates all available measurements.

he proposed scheme obtains similar accuracies to methods based

nly on cameras but with drastic improvements in energy con-

umption and computational burden. Its performance and robust-

ess has been validated in the CONET Integrated Testbed [1] . 

Although the components adopted in our scheme have value by

hemselves, it is the combination and interaction between them

hat originates the aforementioned emerging effect that is key for

ts superiority over existing schemes. According to the authors the

ombination of these components is the main novelty of this pa-

er. 

This paper focuses on efficiency in resource consumption. It is

ot the objective of this paper to provide a complete WCN-based

racking solution. In cluster-based tracking each cluster is used to

rack a target. Our scheme is not constrained to the single-cluster

ase, it is also valid for multi-cluster scenarios. However, in order

o deal with multi-target tracking, specific mechanisms should be

dded to address issues such as measurement association, track

rossing, cluster merging/splitting or specific management of clus-

er heads. Many of the techniques to solve these issues are re-

earch topics by themselves and their description often requires

ull specific papers, such as [2–4] . For brevity and simplicity in the

escription of our scheme, these mechanisms have been left out of

he scope of our paper since we preferred to focus on the core of

ur research. 

This paper is inspired by some ideas we sketched in [5] . The

ain improvements over [5] are: 

• a new sensor activation/deactivation method that allows the

independent activation of each sensor of each node provid-

ing higher flexibility and power consumption reductions. The

method considers transmission errors and uses the trace of in-

formation matrix, which enables distributed computation and

improves scalability; 
• presentation of the distributed implementation of the scheme; 
• proof-of-concept examples that illustrate the performance of

the scheme and the synergies between the components; 
• new and more detailed experimental performance and robust-

ness evaluation and comparison with existing methods; 
• extension and more detailed related work. Also, the paper has

been re-structured and all sections have been completed and

rewritten for clarity. 

The paper is organized as follows. Related work is in the next

ection. The general description of the proposed scheme is in

ection 3 . The distributed EIF, the RSSI-range model training and

he sensor activation components are described respectively in

ections 4 –6 . The experimental validation as well as the perfor-

ance and robustness analyses are presented in Section 7 . Conclu-

ions is the final section. 

. Related work 

Localization and tracking in indoor and GPS-denied environ-

ents have attracted high interest in the recent years. A wide va-

iety of techniques using different technologies and sensors have

een reported. They can be coarsely classified into: infrared po-

itioning systems, ultrasound systems, radio frequency systems,

agnetic systems and vision-based systems. In infrared-based sys-

ems, the light emitted from badges or tags is used to localize and

rack objects, see e.g. [6,7] . They are very accurate and there are

ome successful products in the market such as the VICON sys-

em, among others. Most ultrasound systems measure the range to

he tracked tags and use them to estimate their location, see e.g.

8,9] . A huge variety of radio frequency localization systems have

een developed ranging from RADAR-based schemes [10] to Ultra
ide Band (UWB) systems [11] . Magnetic systems have long tradi-

ion in localization and tracking [12] . They have high accuracy and

o not suffer from line-of-sight constraints. Vision-based networks

ave been widely used for indoor localization and tracking since

ecades. Their main advantage is that targets do not need to be

agged. 

A high variety of localization and tracking techniques for Wire-

ess Sensor Networks in ubiquitous computing environments have

een reported. Many different types of measurements have been

sed including RSSI [13] , Time of Flight (ToF) [14] , Time Difference

f Arrival (TDoA) [15] and Angle-of-Arrival (AoA) [16] , among many

thers. These measurements have been combined using many dif-

erent information fusion techniques. In the last years the integra-

ion of low energy CMOS vision chips with programmable image

rocessing capabilities in ubiquitous computing systems originated

he so-called WCNs [17] . 

WCN combine the sensing capacity of camera networks with

he ease of deployment and scalability of WSNs. A good number of

CN-based tracking systems based only on camera measurements

ave been reported [18–23] . Almost all existing techniques inte-

rate only cameras measurements without benefiting from other

ensors that are actually integrated in most camera node models,

uch as RSSI. 

RSSI is by far the most widely extended measurement used in

ocalization and tracking in Wireless Sensor Networks. RSSI can

e measured by most node models using many different wireless

ommunication technologies like Bluetooth, RFID (Radio-frequency

dentification), ZigBee, Wi-Fi or WiMAX (Worldwide Interoperabil-

ty for Microwave Access). A high number of RSSI-based localiza-

ion systems have been developed. Range-based methods, such as

ultilateration [24] or least squares [25] , among many others, use

SSI measurements to estimate the distance to anchor nodes. Re-

ections and other interactions with the environment make RSSI-

ange models very dependent on the setting, making them unpre-

ictable. Range-free methods, such as ROC-RSSI [26] or APIT [27] ,

void these drawbacks by using geometrical considerations instead

f RSSI-range models. However, their accuracies are usually poorer.

nother approach is to learn RSSI characteristics from the envi-

onment. Fingerprinting methods, see e.g. [28] , compare measure-

ents with a previously obtained RSSI map. They require accurate

SSI maps of the environment, which should be re-calculated if the

etting changes. In [29] each node uses the location of surrounding

odes to train its RSSI-range model. However, the method cannot

apture the interactions with the local environment surrounding

he target. 

Bearing and range measurements have interesting synergies.

owever, the number of WCNs that use range measurements is

ery low. Work [ 30 ] combines camera and ultrasound measure-

ents. Range is estimated using TDoA sensors. The method com-

ines three different steps: least squares minimization, Kalman

ltering and outlier rejection. Of course, this work assumes that

odes are equipped with ultrasound sensors. 

RSSI can be measured by most camera nodes with no hard-

are or software costs. However, few works combine camera and

SSI. Miyaki et al. proposed to estimate target location individu-

lly using cameras and RSSI and then, to integrate both estimates

sing a sensor fusion method [31] or a Particle Filter (PF) [32] .

ork [31] combined both results by switching between the algo-

ithms: camera-based tracking is used in areas covered by cam-

ras and RSSI, in areas with no camera coverage. In [32] both mea-

urements are combined continuously: the PF relies more on cam-

ras measurements when the target is present in the images or

n RSSI when the object is occluded. Also, a framework based on

Fs for integrating camera and RSSI measurements is presented in

33] . The PF uses camera or RSSI measurements depending on their

vailability. When the object is not visible, an observation model
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based on RSSI is used to update the prediction of the object posi-

tion. All the above methods use RSSI only in case of lack of camera

measurements. The scheme proposed in this paper exploit the syn-

ergies between cameras and RSSI mainly when both measurements

are available. 

Cluster-based tracking schemes need to address issues such

as measurement integration, node inclusion/exclusion and clus-

ter head selection. Our scheme includes components specifically

designed to address these issues. The main components of our

scheme are the RSSI training module and the sensor activa-

tion/deactivation. Below we summarize the main related work in

both components. 

Cluster-based tracking schemes include node inclu-

sion/exclusion methods in order to cope with moving targets.

These methods critically affect energy consumption: nodes out of

the cluster can be turned-off saving energy. Some works, such as

[34] , use the distance to the target as the main criterion for node

inclusion. However, proximity does not imply that the camera is

capable to acquire information about the target. Others include

the node in the cluster when the target is estimated to enter the

camera field of view and excludes the node when the camera

stops detecting the target [18] . This criterion keeps many cameras

unnecessarily active unless the deployment has been optimized

[35] . 

Other methods, such as [36,37] , attempt to select the set of

sensors that minimize the Mean Square Error (MSE) of the local-

ization and tracking estimations. The applicability of this scheme

is limited to small networks because it incurs in a high compu-

tational burden. Other typical criteria for sensor selection are dy-

namic information driven schemes [38,39] , where the objective is

to maximize the information gain based on the dynamic informa-

tion gathered; and entropy-based schemes [40,41] , where the se-

lection schemes aim to minimize the entropy of the estimation.

However most of those schemes are centralized and not scalable

which make them impractical in many scenarios. The trace of the

information matrix has been used for sensor selection in [42] . 

Some works such as [5,22,43] use methods that analyze the

energy required for activating a node versus the improvement

in the uncertainty produced by the new measurements. Existing

methods in cluster-based tracking schemes decide on the inclu-

sion/exclusion of nodes from the cluster. The method used in our

scheme addresses sensor activation/deactivation instead of node

inclusion/exclusion: the objective is to select the individual sen-

sors from the cluster nodes which measurements are integrated

for tracking. This approach has higher flexibility and enables the

aforementioned emerging self-regulated effect. 

The difficulties in modeling the interactions of RSSI with the

environment has originated a number of techniques based on RSSI

training. Most of them rely in two phases; off-line training and

localization, where the location estimation is performed based on

the previously obtained RSSI map. In [44] the environment is sub-

divided into small cells and readings are taken in these cells from

several known anchor nodes (the training phase). In the localiza-

tion phase the cell that best fits the current measurement is se-

lected. In [45] a probability distribution of the target location is de-

fined over the area of the movement. The goal is to reach a single

mode for this distribution. That mode represents the most likely

location of the tracked target. All the aforementioned methods rely

on a long training phase where the entire target area is measured

with some spatial precision. Such data collection/measurement re-

quires significant labor and the training phase has to be redone in

case of changes in the radio environment. 

Some techniques, such as [46] , train simple RSSI-range models

using regressions. The low computational burden in these meth-

ods allows the models to be dynamically updated. These methods

operate using only RSSI measurements and, although they succeed
mproving the precision of the RSSI model, their tracking accuracy

s far from what can be obtained with other sensors such as cam-

ras. In our method camera measurements are available and each

ode on-line trains its RSSI-range model using estimates of the tar-

et position that are obtained from the cameras. When a sufficient

umber of cameras are activated it is capable of calibrating RSSI-

ange models with accuracies similar to those from cameras. More-

ver, our method also includes a supervisor that estimates the ac-

uracy of the trained model and decides to employ the trained or

 default RSSI-range model. 

. Problem definition 

Consider a scenario where a number of static wireless camera

odes have been deployed. Transmission of images is not suitable

n our scheme due to bandwidth, delay and energy constraints.

hus, each camera node processes locally its images using simple

mage segmentation algorithms and transmits the results for data

usion. The target is assumed tagged with a wireless sensor node:

ach camera node can measure the RSSI of the packets it receives

rom the target. For simplicity in the description of our scheme

e will assume single-target scenarios. Our scheme is also valid

or multi-cluster problems but in these cases specific mechanisms

o deal with multi-target tracking issues should be added to our

cheme. Our scheme is modular can could be combined with these

echniques but for brevity and simplicity we preferred to focus on

he core of our research and these mechanisms have been left out

f the scope of our paper. 

In our scheme the camera nodes sensing one target are orga-

ized into a single-hop cluster. The cluster has a head – in our case

t is the node carried by the target – that acts as the main sched-

ler of the cluster. Among others, the head is responsible for inte-

rating the measurements gathered by the cluster member nodes

nd for selecting the nodes that are included/excluded from the

luster. At time k any camera node can be in one of the following

odes, see Fig. 1 : Tracking , the node – represented by a black cir-

le – participates in the cluster, i.e. its measurements are currently

eing used for tracking; Alert , the node – gray circle – is not cur-

ently participating in the cluster but it is at single-hop distance

rom the cluster head and could be included at that time; and In-

ctive , the node is not involved in tracking and cannot be included

n the cluster at that time. Nodes in the Tracking mode can be di-

ided into three modes depending if they contribute to tracking

ith camera measurements ( TrackingC ), with RSSI measurements

 TrackingR ) or with both ( TrackingCR ). AS k is the set of nodes that

re in the Alert mode at time k . T S C 
k 
, T S R 

k 
and T S CR 

k 
are the sets

f nodes in TrackingC , TrackingR and TrackingCR . TS k is the set of

odes in the Tracking mode, T S k = T S C 
k 

∪ T S R 
k 

∪ T S CR 
k 

. 

Our scheme uses three probabilistic components that exploit

ynergies between RSSI and camera measurements, see Fig. 1 . Lack

f accuracy of RSSI-range models is the main drawback of RSSI-

ased tracking. In the first component each camera node uses esti-

ates of the target location in order to on-line train its own RSSI-

ange model and adapt it to the local environment. Training is per-

ormed dynamically to adapt to the target motion. The accuracy of

he trained model is monitored, and the component is disabled if

equired. When camera and RSSI measurements are available this

ethod highly improves the accuracy of RSSI-range models, see

ection 5 . 

The second component is an information-based tool for select-

ng the individual sensors which measurements are integrated for

racking balancing their reward (information gain) and cost (en-

rgy), see Section 6 . This component uses the trace of the infor-

ation matrix as uncertainty metric, which enables decentralized

mplementation and computation reuse. Finally, a distributed Infor-
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Fig. 1. Schematic illustration of the proposed scheme. 

Table 1 

Main terms and symbols used in Sections 4 –6 . 

Target state and observations 

q k Target state vector at time k 

( x k , y k ) Target location at time k 

( ̇ x k , ̇ y k ) Target local velocity at time k 

d i , k Distance from node i to the target at time k 

z c 
i,k 

Camera measurement from node i at time k 

z r 
i,k 

RSSI measurement from node i at time k 

h c 
i 

Camera observation model of node i 

h r 
i 

RSSI observation model of node i 

H c 
i,k 

Jacobian of the camera observation model of node i at time k 

H r 
i,k 

Jacobian of the RSSI observation model of node i at time k 

A Prediction model of the target motion 

R k Covariance matrix of the prediction model uncertainty at time k 

Q i , k Covariance matrix of the observation noise of node i at time k 

Extended Information Filter 

�k Updated information matrix at time k 

ξ k Updated information vector at time k 

μk Updated mean of the target state at time k 

�i , k Contribution of node i to the information matrix update at time k 

ξ i , k Contribution of node i to the information vector update at time k 

�k Predicted information matrix at time k 

ξ k Predicted information vector at time k 

μk Predicted mean of the target state at time k 

RSSI-range model training 

RSSI i , k RSSI of the target packets measured by node i at time k 

( a i , b i ) Parameters of the RSSI-range model of node i 

σ 2 
tm,i 

Variance of the error of the trained RSSI-range model of node i 

Sensor activation/deactivation 

A k Universe of possible actions at time k 

J( q k , a k ) Objective function of action a k 
r( q k , a k ) Reward of action a k 
c( q k , a k ) Cost of action a k 
p m Packet reception rate of the packets sent by node m to the cluster head 

ui ( a k ) Uncertainty reduction caused by action a k 

m  

c

 

t

4

E

 

s  

t  

d  

o  

t  

ξ  

K  

t  

t  

p  

l  

I  

a  

c  

t

 

t  

t  

g  

t  

t  

o  

i  

n  

c  
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e  
ation Filter (IF), see Section 4 , is used to efficiently integrate all

amera and/or RSSI measurements gathered by the cluster nodes. 

Table 1 summarizes the main terms and symbols employed in

he paper. 

. Camera and RSSI measurement integration using distributed 

IFs 

Recursive Bayesian Filters (RBFs) provide a solid statistical ba-

is for measurement integration. Information Filters (IFs) employ

he canonical representation of Gaussian distributions. The stan-

ard representation of a multivariate Gaussian distribution is based

n the mean vector μ and the covariance matrix �, whereas

he canonical representation is based on the information vector

= �−1 μ and the information matrix � = �−1 . IFs are duals to

alman Filters (KFs). The update stage of IFs is more computa-

ionally efficient than that of KFs. Therefore, IFs are more efficient

han KFs in cases with high number of measurements and a simple

rediction model, as in our problem. As we are dealing with non-
inear measurement models we use the nonlinear version of the

F, the Extended Information Filter [47] . Although distributed EIFs

re well known tools for multimodal measurement integration, for

ompleteness and clarity we preferred to include a brief descrip-

ion in the paper. 

IFs use a prediction model and an observation model for each

ype of measurement. We selected a state vector widely used in

racking problems, q k = [ x k , y k , ˙ x k , ˙ y k ] 
T , where ( x k , y k ) is the 2D tar-

et location at time k and ( ̇ x k , ˙ y k ) is its local velocities. As many

racking problems, we adopted a simple linear model to represent

he local motion of the target. More complex models require a pri-

ri knowledge on the target motion, which is often not available

n many problems. The camera observation model of each camera

ode i derives from the simple pin-hole model. Let P k be the lo-

ation of the target at time k in the global reference frame G , see

ig. 2 . p i , k is the projection of the target on the image plane of

amera node i expressed in F i , the local reference frame of cam-

ra node i , which is related to G by transformation matrix T i . The



300 A. De San Bernabe et al. / Information Fusion 36 (2017) 296–312 

Fig. 2. Reference frame used for camera measurement integration. 

Fig. 3. Operations and communications in the distributed EIF. 
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observation model for camera i is: 

p i,k = h 

c 
i (P k ) = 

[ 

t i, 1 
[

P k 1 

]T 
/t i, 3 

[
P k 1 

]T 

t i, 2 
[

P k 1 

]T 
/t i, 3 

[
P k 1 

]T 

] 

, (1)

where t i , j is the j th row of T i . 

The scheme proposed in this paper includes a component in

which each node trains its own RSSI-range model. If this com-

ponent is active, the EIF uses the trained model as described in

Section 5 . Otherwise, the EIF uses the following widely accepted

RSSI-range model [13] : 

RSSI i,k = h 

r 
i (P k ) = a log d i,k + b, (2)

where RSSI i , k is the RSSI measured by node i at time k from the

packets it receives from the target, d i , k is the distance between

node i and the target at k and a and b are model parameters. We

assume a default RSSI-range model is available. It could be taken

from the literature or obtained using the measurements between

camera nodes. The parameters of the default model are a D , b D and

its variance is σ 2 
D 

. 

Camera and RSSI-range models are nonlinear. The Extended In-

formation Filter (EIF) uses their Jacobians H 

c 
i,k 

and H 

r 
i,k 

: 

H 

c 
i,k = 

∂h 

c 
i 
(P k ) 

∂ q k 

, H 

r 
i,k = 

∂h 

r 
i 
(P k ) 

∂d i,k 

∂d i,k 
∂ q k 

(3)

RBFs assume that measurement noise is statistically indepen-

dent. Camera measurement noise is known to be statistically inde-

pendent. RSSI measurement noise is considered correlated in many

works [48–50] due to the influence of the environment when mod-

els such as (2) are adopted. However, as will be explained in

Section 5 the RSSI measurement noise in our scheme has a negli-

gible level of correlation and assuming uncorrelated measurement

noise involves no practical influence in our scheme enabling the

integration of RSSI measurements in RBFs. 
In RBFs measurement integration is performed using the Bayes

ule, which becomes an addition if represented in logarithmic form

47] . Hence, IFs can integrate measurements collected in a decen-

ralized manner. Our scheme uses a distributed EIF in which each

luster member computes its contribution to the EIF update and

ends it to the cluster head, which computes the updated stage by

umming up the contributions it receives. The operation of the dis-

ributed EIF is shown in Fig. 3 . The predicted state for time k ( �k ,

k and μk ) is assumed available. It was computed at k 1. First, the

luster head broadcasts a UpdateReq packet that includes μk . Each

amera node i in Tracking mode that receives the packet gathers

easurement z i , k using its currently active sensors. If the node is

n the TrackingC mode, it gathers an image and applies simple im-

ge processing techniques to obtain z c 
i,k 

, the coordinates of the cen-

er of the target in its image plane. If the node is in the TrackingR

ode, it measures z r 
i,k 

, the RSSI of the packet. If the node is in the

rackingCR mode it gathers one measurement of each type. Next,

he node calculates the Jacobian for each of its active sensors and

omputes its contribution to the EIF update using the following ex-

ressions: 

i,k = H 

T 
i,k 

Q 

−1 
i,k 

H i,k 

i,k = H 

T 
i,k 

Q 

−1 
i,k 

[ z i,k − h i ( μk ) + H i,k μk ] 
(4)

These expressions apply for each type of sensors. h i stands for

 

c 
i 

or h r 
i 

– the camera or RSSI observation models – or for both. The

ame applies for H i , k with H 

c 
i,k 

and H 

r 
i,k 

. For the camera nodes in the

rackingCR mode, �i , k and ξ i , k are obtained summing up the con-

ributions from both measurements, each of them computed se-

uentially with the expressions in (4) . Then, each node in Tracking

ransmits to the head a UpdateResp packet that includes �i , k and

i , k . The head receives these packets and computes the updated
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Fig. 4. 40,0 0 0 different RSSI measurements between three emitters and one receiver WSN node. 
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tate – �k , ξ k and μk – using the following expressions: 

k = �k + 

∑ 

i 

�i,k , ξk = ξ k + 

∑ 

i 

ξi,k , μk = �−1 
k 

ξk (5)

Next, the cluster head computes the predicted state with the

ollowing expressions: 

k +1 = (A �−1 
k 

A 

T + R k +1 ) 
−1 

ξ k +1 = �k +1 μk +1 

μk +1 = Aμk (6) 

It is easy to notice that the computation of the EIF update stage

s distributed among all the cluster members. The head only adds

he EIF update contributions from all nodes and executes the EIF

rediction stage, which requires a low number of operations due

o the simple prediction model adopted. Hence, the distributed EIF

an be executed roughly in constant time regardless of the cluster

ize. Also, the RSSI between the target and the cluster nodes can

e measured from the packets they actually interchange, involving

egligible energy consumption and computational effort. 

. On-line RSSI-range model training 

The RSSI-range model between two wireless nodes is critically

ffected by the local environment surrounding the nodes. For in-

tance, Fig. 4 shows 40,0 0 0 RSSI readings between three TelosB

odes deployed in the CONET Integrated Testbed . The experiment

as performed in stationary conditions and all the RSSI measure-

ents were very similar evidencing that it is the interactions with

he environment and not measurement noise itself what originates

SSI difficulties for localization and tracking. Our approach is not

o model these interactions but to circumvent these difficulties and

rovide a solution suitable for online implementation in COTS de-

ices. In our method each node uses the current target location to

ynamically adapt its own RSSI-range model to the local environ-

ent of the emitter and the receiver. 

Let P k be the target location at time k . Let RSSI i , k be the RSSI

easured by node i from the packets it received from the target at

ime k . Assuming that each node knows its location, any node i in

he Tracking mode can collect a set of measurement pairs {( RSSI i , k ,

 i , k )}, where d i , k is the distance between node i and P k . The objec-

ive is to on-line train a RSSI-range model for node i adapted to

he local environment of the target at time k . We adopted a linear

SSI-range model: 

SSI i,k = a i d i,k + b i , (7)

hich reflects the local nature of the model and can be efficiently

rained on-line by regression: 

 i = 

∑ 

k RSSI i,k d i,k − RSSI i 
∑ 

k d i,k ∑ 

k (d i,k ) 2 − d i 
∑ 

k d i,k 
, (8) 
 i = RSSI i − (a i d i ) , (9) 

here RSSI i and d i are the mean of RSSI i , k and d i , k . To cope with the 

arget motion only the last few M pairs are used for fitting in order

o avoid measurements taken with different local environments. 

The actual target location is not known. Instead, we use es-

imates obtained with an auxiliary EIF as that presented in

ection 4 but which only integrates camera measurements. Of

ourse, if not addressed carefully camera-based estimation inaccu-

acies may perturb the RSSI training. To cope with that the RSSI

raining includes a supervisor that estimates the accuracy of the

rained model and decides which RSSI-range model should be used

or that node: the trained or the default model. Take d ′ 
i,k 

= d i,k + u i ,

here d ′ 
i,k 

is the distance from node i to the target location esti-

ated by the auxiliary EIF, d i , k is the actual distance and u i is the

stimation error. RSSI i,k = a i d i,k + b i is the exact RSSI-range model

nd the measured RSSI is RSSI ′ 
i,k 

= RSSI i,k + v i , where v i is the RSSI

easurement error. The training method uses pairs {( RSSI ′ 
i,k 

, d ′ 
i,k 

)}

o fit the model RSSI ′ 
i,k 

= a i d 
′ 
i,k 

+ b i + v i . It is easy to check that: 

SSI ′ i,k = a i (d i,k + u i ) + b i + v i = RSSI i,k + a i u i + v i (10)

Assuming that u i and v i are Gaussian White noises with zero

eans and variances σ 2 
u i 

and σ 2 
v i , the variance of the error of the

rained model can be expressed as: 

2 
tm,i = a 2 i σ

2 
u i 

+ σ 2 
v i (11) 

σ 2 
tm,i 

, the variance of the error of the trained RSSI-range model,

epends on σ 2 
v i , σ

2 
u i 

–the variance of the target error estimated by

he auxiliary EIF– and a i , the slope of its RSSI-range model. Trained

SSI-range models with higher a i are more sensitive to target loca-

ion errors. If a trained model has 1 /a i = 0 , it is approximated by

 /a i = ε and b i is recomputed using (9) with the new a i . 

Fig. 5 (top) shows the default RSSI-range model computed by

tting (2) with RSSI measurements (in red color) from every pair

f nodes deployed in the CONET Integrated Testbed . Fig. 5 (bottom)

hows two trained RSSI-range models for node i computed at two

ifferent times along the target path. The differences in the fit-

ing error in both cases are evident. Trained RSSI-range models are

pecific for each node and valid for current local surroundings of

he target but they are significantly more accurate than the default

odel. 

The auxiliary EIF estimates the target location and its covari-

nce. Thus, each node can compute σ 2 
tm,i 

using (11) to estimate

he accuracy of its trained model. Each node decides the RSSI-

ange model it uses for integrating its measurements in the main

IF filter. For instance, it chooses the trained model if σ 2 
tm,i 

< σ 2 
D 

.

hus, the malfunctioning of the auxiliary EIF or badly trained RSSI-

ange models can be easily detected and avoided. As shown in
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Fig. 5. RSSI-range models obtained in an experiment: (top) default logarithmic model, (bottom) trained linear models obtained at two times along the target path. (For 

interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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Section 7 the scheme is robust to the most common sources of

errors in WCNs. 

RSSI is often modeled by (2) , which does not consider multi-

path propagation effects. Actual radio propagation is not well cap-

tured by model (2) and multi-path effects originate noise, which is

correlated since it is influenced by the particular environment sur-

rounding the emitter and the receiver. The objective of the adopted

training-based RSSI-range approach is to capture the full radio

propagation – including multi-path effects – regressing a simple

model with few consecutive actual RSSI measurements taken at

the specific environment and the specific locations of the emit-

ter and the receiver. The trained RSSI-range model for a node is

used as the observation model for that node in the EIF and the re-

gression error is the observation noise for that node. The trained

RSSI-range model captures the effects of multi-path propagation

significantly better than models such as (2) and the regression

observation noise is very low affected by multi-path effects. Be-

sides, regression error are very small as can be noticed in Fig. 5 .

We experimentally analyzed the correlation of our RSSI measure-

ment noise in a wide variety of representative experiments and

concluded that it has negligible level of correlation, enabling its

valid integration in Bayesian EIF schemes. Besides, along the paper

it is shown with a significant variety of experimental results that

the proposed scheme always performed satisfactorily, even in the

robustness analysis in Section 7.3 . 

The proposed training method can be seamless integrated to-

gether with the distributed EIF. When node i with active cam-

era (i.e. in modes TrackingC or TrackingCR ) receives the UpdateReq

packet from the head it performs as follows: measures RSSI i , k – the

RSSI of the packet, computes d i , k using the target estimate from

the auxiliary EIF and uses the new pair {( RSSI i , k , d i , k )} for fitting its

RSSI-range model. Next, it decides whether to use the trained or
the default model. c  
. Sensor activation/deactivation 

This method decides which sensors should be integrated in

racking analyzing the usefulness of their measurements and the

esources they consume. Non-selected sensors are kept inactive

aving energy. We adopt an approach that decides the acti-

ation/deactivation action ˆ a k that optimizes an utility function

( q k , a k ) at each time k . Long-term optimization involves a high

umber of operations and scales badly with the problem size.

et A k be the set of possible actions regarding sensor activa-

ion/deactivation that can be performed in the cluster at time k .

ach action a k impacts on how well the target is sensed, which

an interpreted as a reward r( q k , a k ) . Each action a k also involves

n increase in the consumption of resources such as energy, which

an be interpreted as a cost c( q k , a k ) . Of course, reward and cost

an be positive or negative. Our method selects the action that

aximizes: J( q k , a k ) = r( q k , a k ) − αc( q k , a k ) , where α is a weight-

ng factor. 

Fig. 6 (left) depicts the mode transition model adopted in

ur sensor activation/deactivation method. To simplify the nota-

ion each mode has been assigned with a number: 0 for Alert ;

 for TrackingR ; 2 for TrackingCR ; and 3 for TrackingC , see Fig. 6 .

ction i 
0 → 1 

changes the mode of camera node i from Alert to

rackingR . A node in Alert mode can be changed to TrackingR

 Action i 
0 → 1 

), to TrackingC ( Action i 
0 → 3 

) or to TrackingCR ( Action i 
0 → 2 

). 

We take c( q k , a k ) as the difference in the energy consumed

y the camera node before and after performing action a k , see

ig. 6 (right). In some cases it is interesting to compute the cost

or an action on node i taking into account the remaining energy

t that node. For simplicity, we use the same cost for every node.

egative costs mean energy savings. c 2 is the energy consumed

y gathering and processing one image from the camera module.

 1 is the energy consumed by gathering the RSSI of an incom-
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Fig. 6. Adopted transition model and action costs. 
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ng packet. During the Inactive mode the node is sleeping, i.e. in

ow-energy mode. When a node in mode Inactive receives a packet

rom the cluster head it changes to mode Alert . While in Alert , the

ode keeps its camera off and does not gather RSSI measurements

ut interchanges packets with the cluster head. In mode TrackingR

he node performs as in Alert and also gathers RSSI measurements

f the packets it receives from the cluster head. The difference in

nergy consumption between Alert and TrackingR is c 1, the energy

f measuring the RSSI value of a packet. In most COTS nodes RSSI

an be measured directly by the radio module involving very low

nergy consumption and computational effort. Although c 1 is not

ero, it can be considered negligible when compared to c 2. 

Assume that node m is currently in mode Alert . We evaluate the

eward of a k = Action m 

0 → 3 
, i.e. change node m from Alert to Track-

ngC . r( q k , a k ) is the expected uncertainty decrease in the target

tate after performing Action m 

0 → 3 
, i.e. after integrating in the EIF

he camera measurement from node m . The contribution of node

 to the EIF update reaches the head if: (1) if node m receives

he UpdateReq packet sent by the cluster head and (2) if the head

eceives the UpdateResp packet with the contribution from node

 . Both events are statistically independent. Let p m 

be the Packet

eception Rate (PRR) from node m to the head. Assuming PRR is

ymmetric, the reward of a k is: 

( q k , a k ) = p 2 m 

ui (a k ) , (12)

here ui ( a k ) is the expected uncertainty decrease after performing

 k . In the following, we obtain ui ( a k ). TS k is the set of nodes in

ode Tracking at time k . If a k is performed, the updated informa-

ion matrix is estimated summing �k +1 to the contributions from

ll active nodes, i.e. nodes in TS k and node m : 

a k 
k +1 

= �k +1 + �m,k +1 + 

∑ 

i ∈ T S k 
�i,k +1 , (13) 

here �i,k +1 is the predicted contribution from camera node i

o the EIF update and it is computed similarly to (4) : �i,k +1 =
(H i,k +1 ) 

T Q 

−1 
i,k +1 

H i,k +1 , where H i,k +1 is the predicted Jacobian of node

 computed with μk +1 . H i,k +1 refers to camera or RSSI Jacobians or

oth depending on which sensors of node i are active. 

Similarly, if no action is performed, the updated information

atrix is: 

na 
k +1 = �k +1 + 

∑ 

i ∈ T S k 
�i,k +1 (14) 

ui ( a k ) is computed as the difference between the uncertainty in
na 
k +1 

and in �
a k 
k +1 

. Entropy is one of the most widely-applied un-

ertainty metrics. However, computing entropy gain for every ac-

ion in A k involves a high number of operations and scales badly

ith the problem size. The trace of the information matrix is also

 well known uncertainty metric that has also been employed for

ensor selection, see e.g. [42] . We adopt the trace of the informa-

ion matrix due to its interesting properties in our problem as will

e pointed out below. Taking ui (a k ) = tr(�
a k 
k +1 

) − tr(�na 
k +1 

) we ob-

ain: 

( q k , a k ) = p 2 m 

tr(�m,k +1 ) (15)
Similarly, if node n is currently in mode TrackingC the reward of

hanging its mode to Alert is r( q k , a k ) = −p 2 n tr(�n,k +1 ) . Using trace

s uncertainty metric enables the distributed implementation of

he method with evident computational and scalability advantages.

ach node i can easily compute by its own �i,k +1 and hence the

eward of the actions it is involved in. Therefore, every node trans-

its its rewards and costs to the head, which only has to select

hat which maximizes J( q k , a k ) . Section 7.2 compares the perfor-

ance of the adopted activation method versus the same method

ut using entropy as uncertainty metric. In the experiments per-

ormed the tracking error and consumed energy was similar in

oth cases. 

The presented sensor activation method can be straightforward

ntegrated with the distributed EIF and RSSI-range model training

ethods. It is executed in the cluster head after the execution of

he EIF as follows. The cluster head broadcasts packet ActionReq

hat includes μk +1 . Each camera node i in modes Tracking or Alert

eceiving the packet: (1) computes the Jacobian H i,k +1 using μk +1 ;

2) calculates �i,k +1 ; and (3) transmits to the head packet Action-

esp that includes tr(�i,k +1 ) and p i , its PRR to the head. With

hem, the head performs the sensor activation method and broad-

asts the selected action, see Fig. 7 . Each node evaluates r( q k , a k )

sing one-step predictions of the state – μk +1 , which is computed

n the EIF prediction. Hence, the execution of the sensor activa-

ion method starts after the EIF prediction stage. The full scheme

joining Figs. 3 and 7 – requires two communication steps be-

ween the head and the rest of the cluster members: one for the

IF update and one for the sensor activation method. The latter

ommunication step could be avoided if using μ∗
k +1 = A μk , two-

tep predictions of the state, instead of μk +1 for the evaluation of

( q k , a k ) . In that case the head computes μ∗
k +1 at the EIF update

nd broadcasts it in the UpdateReq packet. Each node i in Tracking

nd Alert that receives the packet: (1) computes �
∗
i,k +1 as in (3) but

sing H 

∗
i,k +1 , the Jacobian predicted for k +1 computed using μ∗

k +1 ;

nd (2) transmits tr( �
∗
i,k +1 ) and p i in UpdateResp packets. In the

xperiments performed, the scheme using μ∗
k +1 transmitted 32%

ess packets than that using μk +1 with no significant difference in

racking error or energy consumption ( < 2%). 

. Experiments 

The proposed scheme was experimented in the CONET Inte-

rated Testbed [1] . Robots were used as targets in order to enable

xperiment repeatability. Robots were Pioneer 3AT and executed

he AMCL algorithm [51] to self-locate. AMCL estimates the robot

ose using measurements from odometry and laser range-finders

y means of a Particle Filter. In preliminary experiments we mea-

ured AMCL had a mean localization error lower than 5 cm, suf-

cient for our case. These measurements were taken as ground

ruth. 21 camera nodes were deployed on the room floor, each

f them comprised of a CMUcam3 camera module connected to a

rossbow TelosB , see Fig. 8 . Each CMUcam3 , internally calibrated us-

ng the method in [ 52 ], captured 352 x 288 RGB images and exe-

uted efficient color and motion segmentation methods. The CMU-

am3 sent to its TelosB node the coordinates of the center of the
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Fig. 7. Integration in the sensor activation/deactivation method. 

Fig. 8. (Left) Picture of the CONET Integrated Testbed taken in the experiments. (Right) Camera nodes used in the experiments. 
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region segmented in each image. Camera nodes also measured the

RSSI of the packets they received from the robot, which carried an-

other TelosB . 

Instead of using a default RSSI-range model taken from the lit-

erature, we performed preliminary tests to obtain a model for our

specific environment by fitting the RSSI measurements between

each pair of nodes. We used that model, shown in Fig. 5 (top), as

our default RSSI-range model. It was found that the image seg-

mentation methods had errors with a standard deviation of 18

pixels in X and Y axes: we took them as the camera measure-

ment covariance. For the sensor selection method we used the

energy consumption given by the manufacturers. CMUcam3 con-

sumes 650 mW when active [53] . It is turned off when inactive.

TelosB nodes can be in two modes: inactive, a.k.a. low-energy mode ,

which consumes 7.2 mW, and the active mode, in which it con-

sumes 69 mW [54] . 

7.1. Proof of concept 

Fig. 9 shows the results of the proposed scheme in an experi-

ment. The ground truth robot location is represented in blue and

the estimated location is in red. The camera local frames are also

shown. Fig. 9 shows in green the path followed by the robot be-

tween second 550 and second 570. At the beginning of the exper-

iment nodes ID1, ID2 and ID3 were in mode Inactive . Then, nodes

ID1, ID2 and ID3 received packets from the target and changed

their mode to Alert . In the next iterations, the head decided to acti-

vate their cameras and they changed to mode TrackingC . This time

is taken as k = 0 in Fig. 10 , which shows in a simplified way the

operation of the proposed scheme between k = 0 and k = 20. 

Fig. 10 analyzes the transitions between states TrackingR and

TrackingC for nodes ID1, ID2 and ID3. Only the changes between

TrackingC and TrackingC are analyzed. Fig. 10 (c) shows the val-

ues of J ( Action 3 → 1 ) for the nodes that are in TrackingC , i.e. those

that can change to mode TrackingC . Fig. 10 (d) shows the values of
 ( Action 1 → 3 ) for the nodes that are in TrackingC , i.e. those that can

hange to TrackingC . 

While ID1, ID2 and ID3 were in mode TrackingC the three nodes

ontributed to tracking with camera measurements. At the be-

inning these nodes had few measurements for RSSI-range model

raining. Their trained models had high covariance σ 2 
tm 

. Hence, the

hree nodes employed the default RSSI-range model. Also, the sen-

or activation method decided to keep the three nodes in Track-

ngC , see Fig. 10 (a). At k = 4, the RSSI-range model for node

D1 was trained and had low uncertainty σ 2 
tm 

= 13.5. Fig. 10 (b)

hows in dashed line the threshold below which the trained RSSI-

ange model is preferred over the default model. Hence at k =
 ID1 started using its trained RSSI-range model. Also, at k =
 Action ID 1 3 → 1 was selected since it obtained the maximum utility

unction J(Action ID 1 
3 → 1 

)= 1.49, see Fig. 10 (c). The cluster head broad-

asted the action in an ActionAnnounce packet. ID1 received the

acket and at k = 5 it changed to TrackingR and turned its cam-

ra off, see Fig. 10 (a). At k = 7 ID2 changed to mode TrackingR . ID3

emained at TrackingC during the whole interval. 

The modes of the three nodes remained unchanged until k =
4. During this interval, nodes ID1 and ID2 did not take new cam-

ra measurements and their RSSI-range model degraded as the tar-

et moved. At k = 14 the covariance σ 2 
tm 

of ID2 grew above the

hreshold – dashed line in Fig. 10 (b). Hence, ID2 started using the

efault RSSI-range model. At that time activating the camera of ID2

ignificantly improved the overall tracking accuracy. The sensor ac-

ivation method selected Action ID 2 1 → 3 since it obtained the maximum

tility, J(Action ID 2 
1 → 3 

) . At k = 15 ID2 changed its mode to TrackingC

nd activated its camera. At the end of this experiment in average

ach camera node remained in mode Inactive 45.2% of the time,

8.6% in Alert , 7.4% in TrackingC , 3.9% in TrackingR and 4.9% in

rackingCR . The mean tracking error was 32.9 cm, with errors of

1.3 cm and 25.07 cm in X and Y , respectively. The mean power

onsumed by each node was 97 mW. 

The joint execution of the three components generates a behav-

or in which camera measurements are used to train RSSI-range
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Fig. 9. Result of the proposed scheme in one experiment: estimated location (in red) and ground truth in solid (blue). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Performance of the proposed scheme in the experiment shown in Fig. 9 between second 550 ( k = 0) and second 570 ( k = 20): (a) modes of nodes ID1, ID2 and 

ID3; (b) σ 2 
tm covariance of the trained RSSI-range models for the three camera nodes; (c) values of J ( Action 3 → 1 ) for all the camera nodes that are in the TrackingC mode ; and 

(d) values of J ( Action 1 → 3 ) for all the camera nodes that are in mode TrackingR . 
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Fig. 11. Cumulative tracking error obtained by RSSI-only tracking using: the default RSSI-range model, the RSSI calibration method in [29] and the training method proposed 

in Section 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Evaluation and comparison of the proposed method in series of 40 experiments. 

Scheme1 Scheme2 Scheme3 Scheme4 Proposed 

e a v (cm) 205.6 28.59 32.50 32.95 32.84 

CM a v – 11.50 4.59 3.11 2.56 

RM a v 13.5 – – 3.11 3.38 

PW a v (mW) 39.28 428.61 162.76 112.57 96.38 

PW max (mW) 69 719 719 719 719 

B a v 9691 8256 6288 1313 1335 

P a v 14.54 12.51 21.91 15.17 14.95 
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models and once trained, the sensor selection method tends to de-

activate cameras due to their higher energy consumption. The be-

havior is self-regulated. When too many cameras are inactive, the

accuracy of trained RSSI-range models degrade, involving higher

uncertainty in the overall target estimation, which makes the sen-

sor activation method to activate cameras in order to reduce un-

certainty. 

7.2. Performance evaluation 

The proposed scheme was evaluated in simulations and experi-

ments assuming random settings and robot trajectories. In our ex-

periments random settings and robot trajectories means the fol-

lowing. The robot motion was controlled by the Player/Stage ran-

dom walk functionality, in which it is given pseudo-random veloc-

ity commands. The camera nodes were deployed randomly using a

uniform distribution in the range of the room size. The camera roll

and pith angles of all the cameras were zero and the yaw angles

were selected such that the optical axes pointed at the center of

the room. 

First, we evaluate the accuracy of the training RSSI-range model

method proposed in Section 5 in a set of experiments with 20

random settings and robot trajectories. We performed the exper-

iments, logged all RSSI measurements and off-line executed the

EIF that integrates the RSSI measurements using three different

RSSI-range models: the default RSSI-range model, the RSSI calibra-

tion method presented in [29] and the RSSI-range model training

method proposed in this paper. Fig. 11 shows the cumulate robot

localization errors obtained when using the three RSSI-range mod-

els. The RSSI training method proposed in this paper has signif-

icantly higher accuracy: the mean error is 55 cm and the error

was lower than 90 cm in 80% of the samples. Errors were signif-

icantly higher in the other two cases even considering that both

RSSI-range models were generated for that specific environment.

The adopted training method behaves better because it estimates

the target location with cameras and trains the RSSI-range model

dynamically considering the local surroundings of the target and of

the static node. 

M , the number of measurements used in RSSI-range model

training, seems an important parameter. We performed tracking

simulations using only RSSI measurements adopting the RSSI-range

model trained with the last M ∈ [2, 20] measurements. For each

value of M 100 simulations in random settings and target trajecto-

ries were performed. Fig. 12 shows the average tracking error ob-

tained. The RSSI-range model training performs better with lower

number of measurements. This result can be expected. Target is in

motion and with a higher number of measurements the model is

not fitted to the target surroundings but to a wider area. We se-
ected M = 5 in the experiments shown in the paper. Too low val-

es of M could make RSSI training too sensitive to spurious errors.

The sensor activation method as presented in Section 6 enables

he independent activation/deactivation of each of the sensors of

ach node. Another approach is to jointly activate/deactivate all the

ensors of the selected node, i.e. a simplification of the transition

odel shown in Fig. 6 in which TrackingR and TrackingC do not

xist. Fig. 13 shows the resulting mean tracking error and power

onsumption for both approaches in 100 simulations with random

ettings and target trajectories. The superiority of the independent

ensor activation is clear as expected: with similar error it reduces

ower consumption in 18%. 

Next, the performance of the proposed scheme in experiments

erformed in the CONET Integrated Testbed is analyzed and com-

ared with other schemes. 40 different experiments with different

ettings and robot trajectory were performed, each was executed

 times using the testbed repeatability. Camera and RSSI measure-

ents of all the camera nodes were logged and off-line processed

sing different methods. Table 2 summarizes their results: average

racking error ( e a v ), average number of camera measurements in-

egrated per tracking cycle ( CM a v ), average number of RSSI mea-

urements integrated per cycle ( RM a v ), average power consump-

ion by each node ( P W a v ), maximum power consumption of a node

 PW max ), average number of multiplications of the cluster head per

ycle ( B a v ) and the average number of transmitted packets per cy-

le ( P a v ). 

The following schemes were compared. Scheme1 implements a

onventional EKF scheme, similar to that described in [55] , which

ntegrates RSSI readings from all anchor nodes using the default

SSI-range model. It obtained the lowest energy consumption but

ad a mean tracking error of 205.6 cm, unsuitable for many ap-

lications. The head integrated RSSI readings from each node in-

olving a very high computational effort and number of transmit-

ed packets. Scheme2 is a WCN-based tracking scheme similar to

hat described in [18] : all cameras are kept active while they see

he object; and an EKF is used to integrate in a centralized way

ll the measurements from active cameras. Scheme2 obtained the
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Fig. 12. Mean tracking error VS number of measurements used in RSSI-range model training. 

Fig. 13. Comparison between the proposed independent sensor activation/deactivation method and a simplified activation/deactivation method in which TrackingR and 

TrackingC do not exist: (top) mean tracking error, (bottom) mean power consumption. 
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ighest accuracy at the expense of requiring an average of 11.5 ac-

ive cameras along the experiment. The average energy consump-

ion for each camera was 428.61 mW. 

Scheme3 is the WCN-based tracking scheme proposed in [56] . It

fficiently integrates camera measurements using a distributed EIF

nd node inclusion/exclusion tools. It dynamically deactivates the

amera nodes that do not provide informative measurements and

nly an average of 40% of the cameras that sensed the object were

ept active achieving a reduction of 62% in energy consumption

.r.t. Scheme2 . 

Scheme4 integrates camera and RSSI measurements using the

SSI-range model training method proposed in Section 5 and the

oint camera node activation instead of the independent sensor ac-

ivation method. Joint activation uses a simplification of the in-

ependent sensor activation transition model shown in Fig. 6 in

hich TrackingR and TrackingC do not exist. In this case an average

f only 3.11 camera nodes (which provided simultaneously cam-

ra and RSSI measurements) were active in the experiments, which

onsumed 26.6% less than Scheme3 with almost the same accuracy.

The proposed scheme is the same as Scheme4 but using the in-

ependent sensor selection presented in Section 6 . The proposed

cheme only required an average of only 2.56 active cameras and

.38 nodes in mode TrackingR . It required almost the same compu-

ational effort than Scheme4 but its energy consumption was 15%

ower. It also consumed less than schemes based on only cameras:
0% less than Scheme3 and 78% less than Scheme2 . In the proposed

cheme batteries lasted 4.4 times longer than in Scheme2 . 

Fig. 14 compares the performance of the proposed scheme

gainst a scheme that comprises the same components but uses

ntropy as uncertainty metric in a set of experiments with differ-

nt settings and robot trajectories. The performance in both cases

s very similar: the scheme that uses entropy in average had 12%

ower tracking error and 7% higher energy consumption. However,

sing entropy required 370% more operations. We can reach to sev-

ral conclusions. First, if we consider only tracking error and en-

rgy consumption there is not a clear advantage in using entropy.

, the weighting factor used in Section 6 , imposes a trade-off be-

ween tracking error and energy consumption. The same value of

involves a different trade-off when using entropy or when using

he trace of the information matrix. With the value of α used using

ntropy tends to activate more cameras than using the trace, which

esults in lower tracking error but also higher energy consumption.

econd, in contrast to entropy, the trace of the information matrix

iscards the off-diagonal elements in the state estimation, which

ould have impact if the states are highly correlated. This is not

he case: the states of the state vector are poorly correlated and

iscarding the off-diagonal elements of the information matrix has

ow influence in absolute terms. Third, in our scheme using the

race enables distributed computation, which has clear advantages

n burden and scalability. 
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Fig. 14. Comparison between the proposed scheme and a scheme that comprises the same components but uses entropy as uncertainty metric: (top) mean tracking error 

and (bottom) mean energy consumption. 

Fig. 15. Comparison of the impact of greedy versus globally optimal activation/deactivation in the proposed scheme: (top) mean tracking error, (center) mean power con- 

sumption, and (bottom) value of the sum of J along the full experiment. 
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Fig. 16. Robustness comparison between Scheme3 and the proposed scheme against camera failures (top), target segmentation errors (center), camera orientation errors 

(bottom). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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Finally, Fig. 15 analyzes the impact of the greedy sensor ac-

ivation. The proposed scheme has been compared to a scheme

here the activation/deactivation decisions have been taken to

lobally optimize the sum of J along the full experiment. The rest

f the components were exactly the same in both cases. 100 ex-

eriments with different target trajectories and different settings

each with 7 camera nodes – were performed. The experiments 

ere carried out registering all the measurements and then, ex-

cuting both schemes offline. The scheme with the globally opti-

al activation/deactivation was executed using the brute force ap-

roach. Fig. 15 shows that the difference in performance was very

ow. The proposed scheme with greedy activation/deactivation con-
umed only 4% more energy and its mean error was only 3.5%

igher than with the globally optimal activation/deactivation. Of

ourse, the globally optimal activation/deactivation cannot be ex-

cuted in real time in COTS nodes and scales badly with the prob-

em size. 

.3. Robustness analyses 

Next we analyze the robustness of the proposed scheme against

he most common sources of error in cameras: camera failures,

amera orientation errors and errors in target segmentation in the
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Fig. 17. Robustness against occlusions between Scheme3 and the proposed scheme. (For interpretation of the references to color in this figure, the reader is referred to the 

web version of this article.) 
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images. Fig. 16 compares the mean error (blue color) and energy

consumed (red) by the proposed scheme (solid line) and the afore-

mentioned Scheme3 (dashed), which uses only cameras. 

Fig. 16 (top) analyzes the robustness of the proposed scheme

and of Scheme3 assuming that each camera can fail randomly

with a probability in the range [0, 50] %. The mean tracking er-

ror behaves similarly in the proposed scheme and in Scheme3 .

Our scheme consumes an average of 41% lower than Scheme3 .

Fig. 16 (center) analyzes robustness against errors in image segmen-

tation. In preliminary tests we noticed that the measured center of

the object had errors with a standard deviation of 18 pixels. We

added additional random errors so that the total error had stan-

dard deviations in the range [18, 38] pixels. Both schemes had

similar performance with low image segmentation error level but

our scheme performed 15% worse with high error level. Again, the

energy consumption of the proposed scheme was 42% lower than

that of Scheme3 . Fig. 16 (bottom) analyzes robustness assuming that

the orientation angles of cameras (roll, pitch and yaw) contain

random errors with standard deviations in the range [0, 0.2] rad.

The mean error increased similarly in both schemes and the en-

ergy consumption in the proposed scheme was 40% lower than in

Scheme3 . 

One advantage of the proposed scheme is robustness against

camera occlusions. Of course, any system solely based on cam-

era measurements will never be robust to complete occlusions for

relatively large areas. The proposed scheme handles occlusions by

integrating RSSI measurements. We repeated the experiments de-

ploying two walls in the environment such that no camera could

see the target during an interval in its path. These walls are rep-

resented in Fig. 9 with dashed lines. Fig. 17 shows the estimated

path (red line) and ground truth (blue). During the occlusion the

lack of camera measurements prevented the EIF in Scheme3 from

updating the state vector, degrading its accuracy – mean error of

176 cm. The proposed scheme had a mean error of 65 cm. Oc-

clusions originated high uncertainties in the RSSI training method

and the default RSSI-range model was preferred by most camera

nodes. The integration of RSSI measurements even using the de-

fault model was a significant advantage when no camera measure-

ments were available. 

The proposed scheme, consuming 40% less, is as robust as

Scheme3 against camera errors and significantly more robust to tar-

get occlusions. 
. Conclusions 

Research in WCN-based systems for cluster-based target local-

zation and tracking in ubiquitous computing environments have

ttracted high interest in the recent years. Our scheme assumes

hat targets are tagged with emitting nodes. This is actually the

ase in many applications in which people carrying smartphones

nd portable computing devices – Wi-Fi emitting nodes – are

racked in environments endowed with Wi-Fi cameras – wireless

amera nodes. 

Most WCN node models can measure the RSSI of an incoming

acket with negligible delay, energy consumption and computa-

ional cost. The interactions of the radio signal with the environ-

ent – particularly indoors – originate disturbances that are very

ifficult to reflect in RSSI-range models. Thus, most RSSI-based lo-

alization and tracking systems use RSSI-range models that assume

ree-space radio transmission, which result in poor localization and

racking performance. This is the main reason why most WCN-

ased tracking systems rely exclusively on camera measurements.

ery few WCN-based tracking systems combine RSSI with cam-

ra measurements and these systems use RSSI measurements only

hen the camera measurements are not available, for instance in

ase of target occlusions. 

Cluster-based tracking schemes requires methods for includ-

ng/excluding nodes in the cluster, which has direct impact on

odes energy consumption. Existing WCN-based tracking systems

nclude nodes using criteria based on distance or depending if the

arget is within the camera field of view or not. In case of nodes

quipped with different sensors, these node inclusion/exclusion

ethods do not have enough flexibility to fully exploit the syn-

rgies between the different types of measurements. Besides, low-

ost constraints of COTS WCN nodes impose critical energy, band-

idth and computational efficiency requirements. In most exist-

ng WCN-based tracking systems measurement integration is com-

uted by the cluster head resulting in inhomogeneous resource

onsumption and lack of scalability. 

This paper proposes an scheme to exploit synergies between

SSI and camera measurements for localization and tracking. Our

bjective is to give a response to the three aforementioned issues

lack of precise RSSI-range models, sensor activation/deactivation

nd measurement integration – while reducing the consumption

f the resources available at WCN nodes: energy in order to
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nlarge battery lifetime and computational effort in order to en-

ble the use of simpler and cheaper WCN nodes. 

The scheme is based on two main components: a training

ethod in which each node dynamically adapts its RSSI-range

odel considering the target current location; and a sensor selec-

ion method that activates/deactivates individual sensors of each

amera node balancing the different accuracies and energy con-

umptions of camera and RSSI measurements. It also encom-

asses a distributed EIF for the integration of heterogeneous mea-

urements. The joint use of these components generates a self-

egulated behavior in which the camera measurements are used

o train RSSI-range models and once trained, the sensor selection

ethod tends to deactivate cameras due to their higher consump-

ion. As a result the proposed scheme strongly reduces energy

onsumption – 40% – with almost no performance degradation

.r.t. schemes solely based on cameras. Besides, the experiments

onfirmed that its performance and robustness are comparable to

ethods based only on cameras but our method is significantly

ore robust to target occlusions. 

The association between visual and RSSI measurements is the

cope of this paper. Reported measurement association methods or

ombination of them could be used. Voting methods based on local

ssociations performed using the minimum Mahalanobis distance

eems a good approach in our scheme. Even without using visual-

adio data association the proposed scheme can be useful: (1) if

he target has visual markers or can be identified using computer

ision, e.g. face recognition, in that case a visual identifier can be

ssociated to the radio identifier; and (2) in applications where few

argets can be in the environment at the same time, e.g. security

n restricted areas. 

In this work the costs taken for the sensor selection method

ere static. It can be interesting to make them dependent on the

umber of currently active nodes in order to avoid a big tracking

luster. The extension of camera-based sensor training to others

ensors is object of current research. 
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