"","entry_name","doi","compilation_doi","curator_name","curator_organization","curator_email","modification_date_y","modification_date_m","modification_date_d","contact_name","contact_email","contact_orcid_id","bibliographical_reference","metadata_note","associated_datasets","template_version","site_name","site_lat","site_long","site_datum","site_elevation","site_note","plot_name.x","pro_name","pro_note","pro_lat","pro_long","pro_elevation","pro_treatment","pro_treatment_note","pro_comp","pro_reps","pro_MAT","pro_MAP","pro_usda_soil_order","pro_soil_series","pro_soil_taxon","pro_soil_taxon_sys","pro_chrono_name","pro_soil_age","pro_soil_age_note","pro_MAST","pro_MASWC","pro_land_cover","pro_lc_phenology","pro_lc_leaf_type","pro_lc_photosyn_path","pro_veg_note","pro_NPP","pro_bedrock_depth","pro_complete","pro_depth_water","pro_thaw_depth","pro_parent_material","pro_parent_chem","pro_parent_material_notes","pro_2d_position","pro_aspect","pro_aspect_deg","pro_slope","pro_slope_shape","pro_drainage_class","pro_soc","pro_soc_sigma","pro_soc_depth","plot_name.y","flx_name","flx_lat","flx_long","flx_obs_date_y","flx_obs_date_m","flx_obs_date_d","flx_notes","flx_pathway","flx_pathway_note","flx_analyte","flx_ecosystem_component","flx_method","flx_method_note","flx_storage_method","flx_duration","flx_duration_units","flx_keeling_plot","flx_atm_correction","flx_source_temp","flx_source_O2","flx_source_H2O","flx_rate","flx_rate_sd","flx_rate_units","flx_13c","flx_13c_sd","flx_rc_lab","flx_rc_lab_number","flx_rc_year","flx_14c","flx_14c_sigma","flx_14c_sd","flx_fraction_modern","flx_fraction_modern_sigma","flx_fraction_modern_sd" "1","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan",NA,"Appi forest","atmosphere",NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Appi forest_20071024_1",NA,NA,2007,10,24,NA,NA,NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,37.73843,7.9,NA,NA,NA,NA "2","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan",NA,"Appi forest","atmosphere",NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Appi forest_2007524_1",NA,NA,2007,5,24,NA,NA,NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,36.03891,5,NA,NA,NA,NA "3","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan",NA,"Appi forest","atmosphere",NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Appi forest_2007620_1",NA,NA,2007,6,20,NA,NA,NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,42.60348,5.9,NA,NA,NA,NA "4","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan",NA,"Appi forest","atmosphere",NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Appi forest_2007725_1",NA,NA,2007,7,25,NA,NA,NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,39.00682,5.6,NA,NA,NA,NA "5","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan",NA,"Appi forest","atmosphere",NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Appi forest_2007828_1",NA,NA,2007,8,28,NA,NA,NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,40.98126,5.2,NA,NA,NA,NA "6","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan",NA,"Appi forest","atmosphere",NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Appi forest_2007927_1",NA,NA,2007,9,27,NA,NA,NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,24.61709,6.9,NA,NA,NA,NA "7","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan",NA,"Appi forest","atmosphere",NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Appi forest_2008116_1",NA,NA,2008,11,6,NA,NA,NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,41.55837,8.2,NA,NA,NA,NA "8","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan",NA,"Appi forest","atmosphere",NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Appi forest_2008618_1",NA,NA,2008,6,18,NA,NA,NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,43.35809,4.3,NA,NA,NA,NA "9","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan",NA,"Appi forest","atmosphere",NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Appi forest_2008730_1",NA,NA,2008,7,30,NA,NA,NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,17.7399,8.5,NA,NA,NA,NA "10","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan",NA,"Appi forest","atmosphere",NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Appi forest_2008930_1",NA,NA,2008,9,30,NA,NA,NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,24.80227,8.9,NA,NA,NA,NA "11","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan",NA,"Appi forest","atmosphere",NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Appi forest_200894_1",NA,NA,2008,9,4,NA,NA,NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,24.85927,5.1,NA,NA,NA,NA "12","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_20071024_1",NA,NA,2007,10,24,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,17.026464,6.388,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,76.29,7,NA,NA,NA,NA "13","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_20071024_2",NA,NA,2007,10,24,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,9.775584,6.382,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,59.1,6.9,NA,NA,NA,NA "14","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_20071024_3",NA,NA,2007,10,24,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,88.82,8.11,NA,NA,NA,NA "15","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007524_1",NA,NA,2007,5,24,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,17.4993,6.652,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,57.81,10.2,NA,NA,NA,NA "16","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007524_2",NA,NA,2007,5,24,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,11.143041,11.44,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,56.62,15,NA,NA,NA,NA "17","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007524_3",NA,NA,2007,5,24,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,79.73,9.05,NA,NA,NA,NA "18","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007620_1",NA,NA,2007,6,20,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,41.83179,8.93,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,83.29,5.7,NA,NA,NA,NA "19","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007620_2",NA,NA,2007,6,20,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,13.468182,12.908,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,61.91,7.3,NA,NA,NA,NA "20","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007620_3",NA,NA,2007,6,20,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,85.6,5.89,NA,NA,NA,NA "21","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007725_1",NA,NA,2007,7,25,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,66.81402,10.922,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,65.99,7.9,NA,NA,NA,NA "22","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007725_2",NA,NA,2007,7,25,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,18.088434,6.562,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,51.23,7.4,NA,NA,NA,NA "23","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007725_3",NA,NA,2007,7,25,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,68.3,8.25,NA,NA,NA,NA "24","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007828_1",NA,NA,2007,8,28,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,70.86534,10.866,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,85.92,6.3,NA,NA,NA,NA "25","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007828_2",NA,NA,2007,8,28,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,21.329763,6.91,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,63.89,7.8,NA,NA,NA,NA "26","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007828_3",NA,NA,2007,8,28,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,97.05,8,NA,NA,NA,NA "27","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007927_1",NA,NA,2007,9,27,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,33.98031,7.68,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,51.02,6.2,NA,NA,NA,NA "28","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007927_2",NA,NA,2007,9,27,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,10.321584,6.024,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,41.22,7.5,NA,NA,NA,NA "29","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2007927_3",NA,NA,2007,9,27,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,67.07,6.18,NA,NA,NA,NA "30","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008116_1",NA,NA,2008,11,6,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,19.640985,6.924,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,50.03,9,NA,NA,NA,NA "31","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008116_2",NA,NA,2008,11,6,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,8.647002,6.242,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "32","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008116_3",NA,NA,2008,11,6,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,53.92,9,NA,NA,NA,NA "33","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008522_1",NA,NA,2008,5,22,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,21.894054,6.716,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "34","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008522_2",NA,NA,2008,5,22,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,12.371814,6.638,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "35","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008618_1",NA,NA,2008,6,18,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,27.538602,7.234,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,85.43,7.2,NA,NA,NA,NA "36","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008618_2",NA,NA,2008,6,18,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,10.927917,6.19,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,57.81,7,NA,NA,NA,NA "37","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008618_3",NA,NA,2008,6,18,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,83.54,7.48,NA,NA,NA,NA "38","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008730_1",NA,NA,2008,7,30,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,55.819218,9.988,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,48.81,6.8,NA,NA,NA,NA "39","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008730_2",NA,NA,2008,7,30,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,16.865394,6.932,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "40","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008730_3",NA,NA,2008,7,30,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,41.14,7.9,NA,NA,NA,NA "41","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008930_1",NA,NA,2008,9,30,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,25.195443,7.698,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "42","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_2008930_2",NA,NA,2008,9,30,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,8.495487,6.16,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,34.79,9.2,NA,NA,NA,NA "43","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_200894_1",NA,NA,2008,9,4,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,61.209603,10.452,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "44","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_200894_2",NA,NA,2008,9,4,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,19.146855,6.466,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,43.62,8.3,NA,NA,NA,NA "45","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","A","Appi forest_A",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","Appi forest_A_200894_3",NA,NA,2008,9,4,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,75.15,7,NA,NA,NA,NA "46","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008116_1",NA,NA,2008,11,6,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,19.122831,6.892,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,35.28,8.8,NA,NA,NA,NA "47","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008116_2",NA,NA,2008,11,6,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,8.647002,6.198,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,38.43,8.8,NA,NA,NA,NA "48","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008116_3",NA,NA,2008,11,6,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,63.89,9,NA,NA,NA,NA "49","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008522_1",NA,NA,2008,5,22,NA,NA,"total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,20.326215,7.098,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "50","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008522_2",NA,NA,2008,5,22,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,12.371814,5.734,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "51","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008618_1",NA,NA,2008,6,18,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,27.042288,7.25,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,73.56,7.4,NA,NA,NA,NA "52","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008618_2",NA,NA,2008,6,18,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,10.927917,6.23,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,72.76,7.2,NA,NA,NA,NA "53","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008618_3",NA,NA,2008,6,18,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,70.53,7.41,NA,NA,NA,NA "54","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008730_1",NA,NA,2008,7,30,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,55.212339,9.898,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "55","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008730_2",NA,NA,2008,7,30,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,16.865394,6.492,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,44.52,9.3,NA,NA,NA,NA "56","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008930_1",NA,NA,2008,9,30,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,8.495487,5.76,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "57","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008930_2",NA,NA,2008,9,30,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,25.998882,7.33,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "58","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_2008930_3",NA,NA,2008,9,30,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,30.05,9.2,NA,NA,NA,NA "59","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_200894_1",NA,NA,2008,9,4,NA,"soil emission","total","CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,64.545936,10.71,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,61.35,8.1,NA,NA,NA,NA "60","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_200894_2",NA,NA,2008,9,4,NA,"soil emission","only litter","CO2","heterotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,19.146855,6.03,"µg C m-2 s-1",NA,NA,"JAEA",NA,NA,NA,NA,NA,NA,NA,NA "61","Atarashi-Andoh_2012","10.1016/j.agrformet.2011.09.015",NA,"Sabine Ersing, Jessica Brandt","University of Augsburg","sabine.ersing@gmx.de",2018,5,22,"Mariko Atarashi-Andoh","andoh.mariko@jaea.go.jp","https://orcid.org/0000-0002-3920-4671","Atarashi-Andoh, Mariko & Koarashi, Jun & Ishizuka, Shigehiro & Hirai, Keizo, 2012, Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures, Agricultural and Forest Meteorology, 152, 149-158",NA,NA,NA,"Appi forest",40,140.56,"WGS84",825,"Iwate Prefecture, Japan","B","Appi forest_B",NA,NA,NA,NA,"control",NA,NA,NA,6.1,1207,NA,NA,"Andosol","WRB",NA,1,NA,NA,NA,"forest",NA,NA,NA,"Fagus crenata",NA,NA,NA,NA,NA,NA,NA,"lava plateau consisting of andesite lava, at the foot of the Hachimantai volcanic chain, Allophanic volcanic ash soils are widely distributed throughout northern Iwate Prefecture, Tephra fragments (Towada-a ash fall deposit: ca. 1000 BP) were observed at 15–20cm in the mineral soil",NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","Appi forest_B_200894_3",NA,NA,2008,9,4,NA,"soil emission","without litter","CO2","autotrophic","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"JAEA",NA,NA,69.38,8.2,NA,NA,NA,NA "62","Berg_2004","10.1007/978-3-662-06073-5_16",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,13,"P. Gerstberger","gerstberger@uni-bayreuth.de",NA,"Berg, B. and Gerstberger, P., 2004, Element Fluxes with litterfall in mature stands of Norway Spruce and European Beech in Bavaria, South Germany, in: Biogeochemistry of forested catchments in a changing environment: a German case study, edited by: Matzner, E., Ecological Studies, 271–277 ","via B. Ahrens (litterfall data)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,NA,"Berg_avg",NA,NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,20,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. abies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Berg_avg_litter_1995",NA,NA,1995,NA,NA,NA,"plant mediated",NA,"litter","autotrophic","grab sample","Litterfall basket",NA,365,"days",NA,NA,NA,NA,NA,892.3908,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "63","Berg_2004","10.1007/978-3-662-06073-5_16",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,13,"P. Gerstberger","gerstberger@uni-bayreuth.de",NA,"Berg, B. and Gerstberger, P., 2004, Element Fluxes with litterfall in mature stands of Norway Spruce and European Beech in Bavaria, South Germany, in: Biogeochemistry of forested catchments in a changing environment: a German case study, edited by: Matzner, E., Ecological Studies, 271–277 ","via B. Ahrens (litterfall data)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,NA,"Berg_avg",NA,NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,20,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. abies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Berg_avg_litter_1996",NA,NA,1996,NA,NA,NA,"plant mediated",NA,"litter","autotrophic","grab sample","Litterfall basket",NA,365,"days",NA,NA,NA,NA,NA,1174.2057,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "64","Berg_2004","10.1007/978-3-662-06073-5_16",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,13,"P. Gerstberger","gerstberger@uni-bayreuth.de",NA,"Berg, B. and Gerstberger, P., 2004, Element Fluxes with litterfall in mature stands of Norway Spruce and European Beech in Bavaria, South Germany, in: Biogeochemistry of forested catchments in a changing environment: a German case study, edited by: Matzner, E., Ecological Studies, 271–277 ","via B. Ahrens (litterfall data)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,NA,"Berg_avg",NA,NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,20,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. abies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Berg_avg_litter_1997",NA,NA,1997,NA,NA,NA,"plant mediated",NA,"litter","autotrophic","grab sample","Litterfall basket",NA,365,"days",NA,NA,NA,NA,NA,893.1096,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "65","Berg_2004","10.1007/978-3-662-06073-5_16",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,13,"P. Gerstberger","gerstberger@uni-bayreuth.de",NA,"Berg, B. and Gerstberger, P., 2004, Element Fluxes with litterfall in mature stands of Norway Spruce and European Beech in Bavaria, South Germany, in: Biogeochemistry of forested catchments in a changing environment: a German case study, edited by: Matzner, E., Ecological Studies, 271–277 ","via B. Ahrens (litterfall data)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,NA,"Berg_avg",NA,NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,20,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. abies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Berg_avg_litter_1998",NA,NA,1998,NA,NA,NA,"plant mediated",NA,"litter","autotrophic","grab sample","Litterfall basket",NA,365,"days",NA,NA,NA,NA,NA,1268.352,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "66","Berg_2004","10.1007/978-3-662-06073-5_16",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,13,"P. Gerstberger","gerstberger@uni-bayreuth.de",NA,"Berg, B. and Gerstberger, P., 2004, Element Fluxes with litterfall in mature stands of Norway Spruce and European Beech in Bavaria, South Germany, in: Biogeochemistry of forested catchments in a changing environment: a German case study, edited by: Matzner, E., Ecological Studies, 271–277 ","via B. Ahrens (litterfall data)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,NA,"Berg_avg",NA,NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,20,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. abies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Berg_avg_litter_1999",NA,NA,1999,NA,NA,NA,"plant mediated",NA,"litter","autotrophic","grab sample","Litterfall basket",NA,365,"days",NA,NA,NA,NA,NA,970.1669,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "67","Czimczik_2007","10.1029/2006jg000389",NA,"Susan Trumbore","MPI-BGC","trumbore@bgc-jena.mpg.de",2018,11,15,"Susan Trumbore","trumbore@bgc-jena.mpg.de",NA,"Czimczik, C. I., Trumbore, S. E., 2007, Short-term controls on the age of microbial carbon sources in boreal forest soils, Journal of Geophysical Research-Biogeosciences, 112: G03001","for later incubations and fluxes sampled from the same sites","Winston, G. C., Sundquist, E. T., Stephens, B. B., Trumbore, S. E. (1997). Winter CO2 fluxes in a boreal forest. Journal of Geophysical Research-Atmospheres, 102(D24), 28795-28804. doi:10.1029/97JD01115.",NA,"CZ_Old_Black_Spruce",55.877,-98.484,"WGS84",250,NA,NA,"OBSD","burned 1850 dry",NA,NA,NA,"control",NA,NA,NA,-3.2,510,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,NA,NA,NA,NA,NA,NA,"sedimentary-clastics","felsic","Lake sediment with carbonate",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"NSA_OBS1_1",NA,NA,2003,7,14,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"flask",1,"hrs",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","UCIT0047",2003,169.4,NA,NA,NA,NA,NA "68","Czimczik_2007","10.1029/2006jg000389",NA,"Susan Trumbore","MPI-BGC","trumbore@bgc-jena.mpg.de",2018,11,15,"Susan Trumbore","trumbore@bgc-jena.mpg.de",NA,"Czimczik, C. I., Trumbore, S. E., 2007, Short-term controls on the age of microbial carbon sources in boreal forest soils, Journal of Geophysical Research-Biogeosciences, 112: G03001","for later incubations and fluxes sampled from the same sites","Winston, G. C., Sundquist, E. T., Stephens, B. B., Trumbore, S. E. (1997). Winter CO2 fluxes in a boreal forest. Journal of Geophysical Research-Atmospheres, 102(D24), 28795-28804. doi:10.1029/97JD01115.",NA,"CZ_1964burn_NSA",55.91398,-98.382698,"WGS84",250,"flux tower site",NA,"T64W","burned 1964 wet",NA,NA,NA,"control",NA,NA,NA,-3.2,510,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,NA,NA,NA,NA,NA,NA,"sedimentary-clastics","felsic","Lake sediment with carbonate",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"T64W_1",NA,NA,2003,7,14,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"flask",1,"hrs",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","UCIT0040",2003,94.51,NA,NA,NA,NA,NA "69","Czimczik_2007","10.1029/2006jg000389",NA,"Susan Trumbore","MPI-BGC","trumbore@bgc-jena.mpg.de",2018,11,15,"Susan Trumbore","trumbore@bgc-jena.mpg.de",NA,"Czimczik, C. I., Trumbore, S. E., 2007, Short-term controls on the age of microbial carbon sources in boreal forest soils, Journal of Geophysical Research-Biogeosciences, 112: G03001","for later incubations and fluxes sampled from the same sites","Winston, G. C., Sundquist, E. T., Stephens, B. B., Trumbore, S. E. (1997). Winter CO2 fluxes in a boreal forest. Journal of Geophysical Research-Atmospheres, 102(D24), 28795-28804. doi:10.1029/97JD01115.",NA,"CZ_1964burn_NSA",55.91398,-98.382698,"WGS84",250,"flux tower site",NA,"T64W","burned 1964 wet",NA,NA,NA,"control",NA,NA,NA,-3.2,510,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,NA,NA,NA,NA,NA,NA,"sedimentary-clastics","felsic","Lake sediment with carbonate",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"T64W_2",NA,NA,2003,7,14,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"flask",1,"hrs",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","UCIT0041",2003,76,NA,NA,NA,NA,NA "70","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"South Mountain",76.5102778,-68.6705555555555,"WGS84",213,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"SM_Ridges_F1",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"bare",NA,NA,NA,"however: arctic tundra; vegetation only present in throughs (Walker et al., 2008)",NA,NA,NA,NA,910,NA,NA,NA,NA,NA,180,3,NA,NA,0.944,NA,NA,NA,"SM_Ridges_F1_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "71","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"South Mountain",76.5102778,-68.6705555555555,"WGS84",213,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"SM_Ridges_F2",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"bare",NA,NA,NA,"however: arctic tundra; vegetation only present in throughs (Walker et al., 2008)",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SM_Ridges_F2_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "72","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"South Mountain",76.5102778,-68.6705555555555,"WGS84",213,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"SM_Ridges_F3",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"bare",NA,NA,NA,"however: arctic tundra; vegetation only present in throughs (Walker et al., 2008)",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SM_Ridges_F3_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "73","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"South Mountain",76.5102778,-68.6705555555555,"WGS84",213,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"SM_Troughs_F1",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"Dryas integrifolia Vahl, Salix artica Pall., Vegetation is only present in troughs",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SM_Troughs_F1_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "74","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"South Mountain",76.5102778,-68.6705555555555,"WGS84",213,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"SM_Troughs_F2",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"Dryas integrifolia Vahl, Salix artica Pall., Vegetation is only present in troughs",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SM_Troughs_F2_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "75","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"South Mountain",76.5102778,-68.6705555555555,"WGS84",213,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"SM_Troughs_F3",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"Dryas integrifolia Vahl, Salix artica Pall., Vegetation is only present in troughs",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SM_Troughs_F3_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "76","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"Polar Desert",76.4272222,-68.9836111111111,"WGS84",338,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"PD_Ridges_F1",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"bare",NA,NA,NA,"however: arctic tundra; vegetation only present in throughs (Walker et al., 2008)",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"PD_Ridges_F1_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "77","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"Polar Desert",76.4272222,-68.9836111111111,"WGS84",338,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"PD_Ridges_F2",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"bare",NA,NA,NA,"however: arctic tundra; vegetation only present in throughs (Walker et al., 2008)",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"PD_Ridges_F2_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "78","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"Polar Desert",76.4272222,-68.9836111111111,"WGS84",338,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"PD_Ridges_F3",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"bare",NA,NA,NA,"however: arctic tundra; vegetation only present in throughs (Walker et al., 2008)",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"PD_Ridges_F3_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "79","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"Polar Desert",76.4272222,-68.9836111111111,"WGS84",338,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"PD_Troughs_F1",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"Dryas integrifolia Vahl, Salix artica Pall., Vegetation is only present in troughs",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"PD_Troughs_F1_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "80","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"Polar Desert",76.4272222,-68.9836111111111,"WGS84",338,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"PD_Troughs_F2",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"Dryas integrifolia Vahl, Salix artica Pall., Vegetation is only present in troughs",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"PD_Troughs_F2_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "81","Czimczik_2010","10.1657/1938-4246-42.3.342",NA,"Bastian Gessler","FSU Jena","bastian.gessler@uni-jena.de",2018,11,15,"Claudia I. Czimczik","czimczik@uci.edu",NA,"Czimczik CI, Welker JM, 2010, Radiocarbon conten of CO2 respired from High Arctic Tundra in northwest Greenland, Artic, Antartic, and Alpine Research, 42, 342-350","Flux 14C and interstitial 14C data could be extracted from figures, but raw data were not available",NA,NA,"Polar Desert",76.4272222,-68.9836111111111,"WGS84",338,"data from Howath, 2007, Quantification and Spatial Assessment of High Arctic Soil Organic Carbon Storage in Northwest Greenland, PhD thesis",NA,"PD_Troughs_F3",NA,NA,NA,NA,"control",NA,NA,NA,-11.6,112,NA,NA,"Cryosol","USDA",NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"Dryas integrifolia Vahl, Salix artica Pall., Vegetation is only present in troughs",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"PD_Troughs_F3_2007",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber","molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI",NA,NA,NA,NA,NA,NA,NA,NA "82","Dorr_1980","10.1017/S0033822200010316",NA,"J. Beem-Miller","MPI-BGC","bastian.gessler@uni-jena.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dorr, H., & Munnich, K. O. (1980). Carbon-14 and Carbon-13 in Soil CO2. Radiocarbon, 22(3), 909–918. https://doi.org/https://doi.org/10.1017/S0033822200010316",NA,"Dorr_1986",NA,"Germany",49.4,8.67,NA,NA,NA,NA,"Germany_1",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"sandy soil with loess loam mixtures",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Germany_1_4-12",NA,NA,1979,4,12,NA,"soil emission",NA,"CO2",NA,NA,"Inverted cup w/ 300ml 4N NaOH",NA,17,"days",NA,NA,NA,NA,NA,NA,NA,NA,-20.2,NA,NA,NA,1979,287,NA,6,NA,NA,NA "83","Dorr_1980","10.1017/S0033822200010316",NA,"J. Beem-Miller","MPI-BGC","bastian.gessler@uni-jena.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dorr, H., & Munnich, K. O. (1980). Carbon-14 and Carbon-13 in Soil CO2. Radiocarbon, 22(3), 909–918. https://doi.org/https://doi.org/10.1017/S0033822200010316",NA,"Dorr_1986",NA,"Germany",49.4,8.67,NA,NA,NA,NA,"Germany_1",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"sandy soil with loess loam mixtures",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Germany_1_5-9",NA,NA,1979,5,9,NA,"soil emission",NA,"CO2",NA,NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,-24.6,NA,NA,NA,1979,289,NA,5,NA,NA,NA "84","Dorr_1980","10.1017/S0033822200010316",NA,"J. Beem-Miller","MPI-BGC","bastian.gessler@uni-jena.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dorr, H., & Munnich, K. O. (1980). Carbon-14 and Carbon-13 in Soil CO2. Radiocarbon, 22(3), 909–918. https://doi.org/https://doi.org/10.1017/S0033822200010316",NA,"Dorr_1986",NA,"Germany",49.4,8.67,NA,NA,NA,NA,"Germany_1",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"sandy soil with loess loam mixtures",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Germany_1_5-30",NA,NA,1979,5,30,NA,"soil emission",NA,"CO2",NA,NA,"Inverted cup w/ 300ml 4N NaOH",NA,21,"days",NA,NA,NA,NA,NA,NA,NA,NA,-25.8,NA,NA,NA,1979,293,NA,5,NA,NA,NA "85","Dorr_1980","10.1017/S0033822200010316",NA,"J. Beem-Miller","MPI-BGC","bastian.gessler@uni-jena.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dorr, H., & Munnich, K. O. (1980). Carbon-14 and Carbon-13 in Soil CO2. Radiocarbon, 22(3), 909–918. https://doi.org/https://doi.org/10.1017/S0033822200010316",NA,"Dorr_1986",NA,"Germany",49.4,8.67,NA,NA,NA,NA,"Germany_1",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"sandy soil with loess loam mixtures",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Germany_1_6-13",NA,NA,1979,6,13,NA,"soil emission",NA,"CO2",NA,NA,"Inverted cup w/ 300ml 4N NaOH",NA,14,"days",NA,NA,NA,NA,NA,NA,NA,NA,-25.9,NA,NA,NA,1979,282,NA,5,NA,NA,NA "86","Dorr_1980","10.1017/S0033822200010316",NA,"J. Beem-Miller","MPI-BGC","bastian.gessler@uni-jena.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dorr, H., & Munnich, K. O. (1980). Carbon-14 and Carbon-13 in Soil CO2. Radiocarbon, 22(3), 909–918. https://doi.org/https://doi.org/10.1017/S0033822200010316",NA,"Dorr_1986",NA,"Germany",49.4,8.67,NA,NA,NA,NA,"Germany_1",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"sandy soil with loess loam mixtures",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Germany_1_6-26",NA,NA,1979,6,26,NA,"soil emission",NA,"CO2",NA,NA,"Inverted cup w/ 300ml 4N NaOH",NA,13,"days",NA,NA,NA,NA,NA,NA,NA,NA,-25.4,NA,NA,NA,1979,296,NA,5,NA,NA,NA "87","Dorr_1980","10.1017/S0033822200010316",NA,"J. Beem-Miller","MPI-BGC","bastian.gessler@uni-jena.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dorr, H., & Munnich, K. O. (1980). Carbon-14 and Carbon-13 in Soil CO2. Radiocarbon, 22(3), 909–918. https://doi.org/https://doi.org/10.1017/S0033822200010316",NA,"Dorr_1986",NA,"Germany",49.4,8.67,NA,NA,NA,NA,"Germany_1",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"sandy soil with loess loam mixtures",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Germany_1_7-11",NA,NA,1979,7,11,NA,"soil emission",NA,"CO2",NA,NA,"Inverted cup w/ 300ml 4N NaOH",NA,15,"days",NA,NA,NA,NA,NA,NA,NA,NA,-24.8,NA,NA,NA,1979,286,NA,5,NA,NA,NA "88","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1979-4-27",NA,NA,1979,4,27,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1979,278.165636324877,NA,NA,NA,NA,NA "89","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1979-5-30",NA,NA,1979,5,30,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,33,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1979,281.453847793647,NA,NA,NA,NA,NA "90","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1979-6-28",NA,NA,1979,6,28,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1979,279.103602643359,NA,NA,NA,NA,NA "91","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1979-7-29",NA,NA,1979,7,29,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1979,277.312939671711,NA,NA,NA,NA,NA "92","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1979-8-26",NA,NA,1979,8,26,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,28,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1979,279.487316137284,NA,NA,NA,NA,NA "93","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1979-9-29",NA,NA,1979,9,29,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,34,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1979,278.815817522916,NA,NA,NA,NA,NA "94","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1979-11-26",NA,NA,1979,11,26,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,58,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1979,265.076742698784,NA,NA,NA,NA,NA "95","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1979-12-27",NA,NA,1979,12,27,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1979,266.67554892347,NA,NA,NA,NA,NA "96","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1980-1-27",NA,NA,1980,1,27,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1980,250.762097633766,NA,NA,NA,NA,NA "97","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1980-2-29",NA,NA,1980,2,29,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,33,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1980,251.790662971647,NA,NA,NA,NA,NA "98","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1980-3-29",NA,NA,1980,3,29,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1980,258.479002344915,NA,NA,NA,NA,NA "99","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1980-4-28",NA,NA,1980,4,28,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,30,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1980,268.556810914517,NA,NA,NA,NA,NA "100","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1980-6-30",NA,NA,1980,6,30,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,63,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1980,244.068428906416,NA,NA,NA,NA,NA "101","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1980-8-1",NA,NA,1980,8,1,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,32,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1980,256.965465785546,NA,NA,NA,NA,NA "102","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1980-8-29",NA,NA,1980,8,29,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,28,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1980,264.788957578341,NA,NA,NA,NA,NA "103","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1980-10-31",NA,NA,1980,10,31,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,63,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1980,262.89703687913,NA,NA,NA,NA,NA "104","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-1-31",NA,NA,1981,1,31,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,59,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,215.721594542741,NA,NA,NA,NA,NA "105","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-3-1",NA,NA,1981,3,1,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,221.562566616925,NA,NA,NA,NA,NA "106","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-4-2",NA,NA,1981,4,2,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,32,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,228.528032402472,NA,NA,NA,NA,NA "107","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-5-1",NA,NA,1981,5,1,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,234.651460243018,NA,NA,NA,NA,NA "108","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-5-31",NA,NA,1981,5,31,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,30,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,235.690684289064,NA,NA,NA,NA,NA "109","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-7-2",NA,NA,1981,7,2,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,32,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,261.580686420805,NA,NA,NA,NA,NA "110","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-8-2",NA,NA,1981,8,2,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,254.705819654657,NA,NA,NA,NA,NA "111","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-8-31",NA,NA,1981,8,31,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,250.660839906203,NA,NA,NA,NA,NA "112","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-9-29",NA,NA,1981,9,29,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,252.829887017693,NA,NA,NA,NA,NA "113","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-11-1",NA,NA,1981,11,1,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,33,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,264.591771477296,NA,NA,NA,NA,NA "114","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-12-2",NA,NA,1981,12,2,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,244.159027925815,NA,NA,NA,NA,NA "115","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1981-12-30",NA,NA,1981,12,30,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,28,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1981,222.601790662971,NA,NA,NA,NA,NA "116","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1982-6-2",NA,NA,1982,6,2,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,57,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1982,233.990620336815,NA,NA,NA,NA,NA "117","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1982-8-4",NA,NA,1982,8,4,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,63,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1982,238.31805585163,NA,NA,NA,NA,NA "118","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1982-9-2",NA,NA,1982,9,2,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1982,243.311660626731,NA,NA,NA,NA,NA "119","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1982-10-5",NA,NA,1982,10,5,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,33,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1982,251.684075890002,NA,NA,NA,NA,NA "120","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1982-11-3",NA,NA,1982,11,3,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1982,223.912811767213,NA,NA,NA,NA,NA "121","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-1-4",NA,NA,1983,1,4,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,62,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,235.584097207418,NA,NA,NA,NA,NA "122","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-2-6",NA,NA,1983,2,6,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,33,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,221.924962694521,NA,NA,NA,NA,NA "123","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-3-3",NA,NA,1983,3,3,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,25,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,219.585376252398,NA,NA,NA,NA,NA "124","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-4-3",NA,NA,1983,4,3,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,217.79471328075,NA,NA,NA,NA,NA "125","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-5-5",NA,NA,1983,5,5,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,32,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,228.432104028991,NA,NA,NA,NA,NA "126","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-6-2",NA,NA,1983,6,2,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,28,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,248.401193775314,NA,NA,NA,NA,NA "127","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-7-4",NA,NA,1983,7,4,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,32,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,232.764868897889,NA,NA,NA,NA,NA "128","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-8-4",NA,NA,1983,8,4,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,221.370709869963,NA,NA,NA,NA,NA "129","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-9-4",NA,NA,1983,9,4,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,217.320400767426,NA,NA,NA,NA,NA "130","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-10-5",NA,NA,1983,10,5,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,221.178853123001,NA,NA,NA,NA,NA "131","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-11-5",NA,NA,1983,11,5,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,210.349605627797,NA,NA,NA,NA,NA "132","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1983-12-6",NA,NA,1983,12,6,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,206.864208057983,NA,NA,NA,NA,NA "133","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1984-1-7",NA,NA,1984,1,7,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,32,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1984,184.16648902153,NA,NA,NA,NA,NA "134","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1984-2-7",NA,NA,1984,2,7,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1984,197.06352590066,NA,NA,NA,NA,NA "135","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1984-4-5",NA,NA,1984,4,5,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,58,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1984,212.422724365806,NA,NA,NA,NA,NA "136","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1984-5-9",NA,NA,1984,5,9,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,34,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1984,211.468769985077,NA,NA,NA,NA,NA "137","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_NU_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_NU_flux_1984-6-8",NA,NA,1984,6,8,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,30,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1984,207.706246002984,NA,NA,NA,NA,NA "138","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_SA_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Fagus sylvatica, Picea spp.",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_SA_flux_1983-5-4",NA,NA,1983,5,4,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,208.804073918521,NA,NA,NA,NA,NA "139","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_SA_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Fagus sylvatica, Picea spp.",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_SA_flux_1983-6-3",NA,NA,1983,6,3,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,30,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,197.802918941621,NA,NA,NA,NA,NA "140","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_SA_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Fagus sylvatica, Picea spp.",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_SA_flux_1983-7-4",NA,NA,1983,7,4,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,225.283494330113,NA,NA,NA,NA,NA "141","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_SA_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Fagus sylvatica, Picea spp.",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_SA_flux_1983-8-5",NA,NA,1983,8,5,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,32,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,196.582318353632,NA,NA,NA,NA,NA "142","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_SA_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Fagus sylvatica, Picea spp.",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_SA_flux_1983-10-4",NA,NA,1983,10,4,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,60,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,188.62610247795,NA,NA,NA,NA,NA "143","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_SA_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Fagus sylvatica, Picea spp.",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_SA_flux_1983-11-2",NA,NA,1983,11,2,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,163.862347753045,NA,NA,NA,NA,NA "144","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_SA_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Fagus sylvatica, Picea spp.",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_SA_flux_1983-12-3",NA,NA,1983,12,3,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1983,153.420306593868,NA,NA,NA,NA,NA "145","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_SA_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Fagus sylvatica, Picea spp.",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_SA_flux_1984-3-2",NA,NA,1984,3,2,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,90,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1984,143.731625367492,NA,NA,NA,NA,NA "146","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_SA_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Fagus sylvatica, Picea spp.",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_SA_flux_1984-3-31",NA,NA,1984,3,31,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,29,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1984,147.057433851323,NA,NA,NA,NA,NA "147","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_SA_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Fagus sylvatica, Picea spp.",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_SA_flux_1984-5-1",NA,NA,1984,5,1,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,31,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1984,148.414531709365,NA,NA,NA,NA,NA "148","Dorr_1986","10.1017/S0033822200007438",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,11,22,"Gavin McNicol","gmcnicol@stanford.edu",NA,"Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. https://doi.org/https://doi.org/10.1017/S0033822200007438",NA,"Dorr_1980; Dorr_1989",NA,"Heidelberg",49.4,8.67,NA,NA,"Two sampling sites are (in an uncultivated area with grass cover on a loamy soil (NU) and) in a beech/spruce forest with a sandy soil",NA,"Heidelberg_SA_flux",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Fagus sylvatica, Picea spp.",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Heidelberg_SA_flux_1984-6-30",NA,NA,1984,6,30,NA,"soil emission",NA,"CO2","ecosystem",NA,"Inverted cup w/ 300ml 4N NaOH",NA,60,"days",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,1984,149.446136077278,NA,NA,NA,NA,NA "149","Ewing_2006","10.1029/2006JG000174",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,9,11,"SA Ewing","saewing@nature.berkeley.edu",NA,"Ewing SA, Sanderman J, Baidsen WT, Wang Y, Amundson R, 2006, Role of large-scale soil structure in organic carbon turnover: Evidence from California grassland soils, Journal of Geophysical Research, 111, G03012","more information in figures in the publication","Wang_2000",NA,"Fallbrook",36.7166667,-119.283333333333,"WGS84",NA,"Sierra foothills",NA,"Grassland",NA,NA,NA,NA,"control",NA,NA,NA,18,310,NA,"Fallbrock","thermic Typic Haploxeralf","USDA",NA,10,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Grassland_flx",NA,NA,2001,NA,NA,NA,"soil emission",NA,"CO2",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"LLNL",NA,NA,165,NA,NA,NA,NA,NA "150","Ewing_2006","10.1029/2006JG000174",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,9,11,"SA Ewing","saewing@nature.berkeley.edu",NA,"Ewing SA, Sanderman J, Baidsen WT, Wang Y, Amundson R, 2006, Role of large-scale soil structure in organic carbon turnover: Evidence from California grassland soils, Journal of Geophysical Research, 111, G03012","more information in figures in the publication","Wang_2000",NA,"Fallbrook",36.7166667,-119.283333333333,"WGS84",NA,"Sierra foothills",NA,"Orchard",NA,NA,NA,NA,"control",NA,NA,NA,18,310,NA,"Fallbrock","thermic Typic Haploxeralf","USDA",NA,10,NA,NA,NA,"cultivated",NA,NA,NA,"Orchard",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Orchard_flx",NA,NA,2001,NA,NA,NA,"soil emission",NA,"CO2",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"LLNL",NA,NA,115,NA,NA,NA,NA,NA "151","Fierer 2005","10.1007/s10021-003-0151-y",NA,"Anna Stegmann","University Augsburg","anna.stegmann28@gmail.com",2018,4,9,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Fierer, N.; Chadwick, O.; Trumbore, S. (2005): CO2 Production in California Annual Grassland, Ecosystems (2005) 8: 412–429","revised by Sue Trumbore 10 Spetember 2018","Gessler and others_2000",NA,"Sedgwick Reserve",34.7,-120.05,"WGS84",337,"California, Santa Ynez Valley, 2-ha hillslope catena, 30m",NA,"point_2",NA,NA,NA,NA,"control",NA,NA,1,22,500,"Mollisols",NA,"typic argixeroll",NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"Bromus spp., Avena spp., and Vulpia myuros, perennial blue oaks (Quercus douglasii) and coast live oaks (Quercus agrifolia)",NA,85,NA,NA,NA,NA,NA,NA,"summit","SW",NA,NA,"divergent",NA,0.6,NA,NA,NA,"point_2_1999123",NA,NA,1999,1,23,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",30,"mins",NA,NA,NA,NA,NA,NA,NA,NA,-23.74,NA,"UCI","UCIT3964",1999,122.069295025747,5.60897371891152,NA,NA,NA,NA "152","Fierer 2005","10.1007/s10021-003-0151-y",NA,"Anna Stegmann","University Augsburg","anna.stegmann28@gmail.com",2018,4,9,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Fierer, N.; Chadwick, O.; Trumbore, S. (2005): CO2 Production in California Annual Grassland, Ecosystems (2005) 8: 412–429","revised by Sue Trumbore 10 Spetember 2018","Gessler and others_2000",NA,"Sedgwick Reserve",34.7,-120.05,"WGS84",337,"California, Santa Ynez Valley, 2-ha hillslope catena, 30m",NA,"point_10",NA,NA,NA,NA,"control",NA,NA,1,22,513,"Mollisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"Bromus spp., Avena spp., and Vulpia myuros, perennial blue oaks (Quercus douglasii) and coast live oaks (Quercus agrifolia)",NA,NA,NA,NA,NA,NA,NA,NA,NA,"SW",NA,NA,"convergent",NA,2,NA,NA,NA,"point_10_1999123",NA,NA,1999,1,23,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",30,"mins",NA,NA,NA,NA,NA,NA,NA,NA,-24,NA,"UCI","UCIT3958",1999,86.4002471867991,6.3429507583315,NA,NA,NA,NA "153","Fierer 2005","10.1007/s10021-003-0151-y",NA,"Anna Stegmann","University Augsburg","anna.stegmann28@gmail.com",2018,4,9,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Fierer, N.; Chadwick, O.; Trumbore, S. (2005): CO2 Production in California Annual Grassland, Ecosystems (2005) 8: 412–429","revised by Sue Trumbore 10 Spetember 2018","Gessler and others_2000",NA,"Sedgwick Reserve",34.7,-120.05,"WGS84",337,"California, Santa Ynez Valley, 2-ha hillslope catena, 30m",NA,"point_4",NA,NA,NA,NA,"control",NA,NA,1,22,506,"Mollisols",NA,"typic argixeroll",NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"Bromus spp., Avena spp., and Vulpia myuros, perennial blue oaks (Quercus douglasii) and coast live oaks (Quercus agrifolia)",NA,120,NA,NA,NA,NA,NA,NA,NA,"SW",NA,NA,"divergent",NA,1.2,NA,NA,NA,"point_4_1999123",NA,NA,1999,1,23,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",30,"mins",NA,NA,NA,NA,NA,NA,NA,NA,-23.37,NA,"UCI","UCIT3959",1999,105.041188961674,5.18081711218514,NA,NA,NA,NA "154","Fierer 2005","10.1007/s10021-003-0151-y",NA,"Anna Stegmann","University Augsburg","anna.stegmann28@gmail.com",2018,4,9,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Fierer, N.; Chadwick, O.; Trumbore, S. (2005): CO2 Production in California Annual Grassland, Ecosystems (2005) 8: 412–429","revised by Sue Trumbore 10 Spetember 2018","Gessler and others_2000",NA,"Sedgwick Reserve",34.7,-120.05,"WGS84",337,"California, Santa Ynez Valley, 2-ha hillslope catena, 30m",NA,"point_14",NA,NA,NA,NA,"control",NA,NA,1,22,522,"Mollisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"Bromus spp., Avena spp., and Vulpia myuros, perennial blue oaks (Quercus douglasii) and coast live oaks (Quercus agrifolia)",NA,300,NA,NA,NA,NA,NA,NA,NA,"SW",NA,NA,"convergent",NA,NA,NA,NA,NA,"point_14_1999312_r1",NA,NA,1999,3,12,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",30,"mins",NA,NA,NA,NA,NA,NA,NA,NA,-24,NA,"UCI","UCIT3966",1999,92.4470394327843,4.91471939356231,NA,NA,NA,NA "155","Fierer 2005","10.1007/s10021-003-0151-y",NA,"Anna Stegmann","University Augsburg","anna.stegmann28@gmail.com",2018,4,9,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Fierer, N.; Chadwick, O.; Trumbore, S. (2005): CO2 Production in California Annual Grassland, Ecosystems (2005) 8: 412–429","revised by Sue Trumbore 10 Spetember 2018","Gessler and others_2000",NA,"Sedgwick Reserve",34.7,-120.05,"WGS84",337,"California, Santa Ynez Valley, 2-ha hillslope catena, 30m",NA,"point_14",NA,NA,NA,NA,"control",NA,NA,1,22,522,"Mollisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"Bromus spp., Avena spp., and Vulpia myuros, perennial blue oaks (Quercus douglasii) and coast live oaks (Quercus agrifolia)",NA,300,NA,NA,NA,NA,NA,NA,NA,"SW",NA,NA,"convergent",NA,NA,NA,NA,NA,"point_14_1999312_r2",NA,NA,1999,3,12,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",30,"mins",NA,NA,NA,NA,NA,NA,NA,NA,-23.22,NA,"UCI","UCIT3978",1999,80.2758874051828,5.23134481679823,NA,NA,NA,NA "156","Fierer 2005","10.1007/s10021-003-0151-y",NA,"Anna Stegmann","University Augsburg","anna.stegmann28@gmail.com",2018,4,9,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Fierer, N.; Chadwick, O.; Trumbore, S. (2005): CO2 Production in California Annual Grassland, Ecosystems (2005) 8: 412–429","revised by Sue Trumbore 10 Spetember 2018","Gessler and others_2000",NA,"Sedgwick Reserve",34.7,-120.05,"WGS84",337,"California, Santa Ynez Valley, 2-ha hillslope catena, 30m",NA,"point_19","bottom of colluvial hollow",NA,NA,NA,"control",NA,NA,1,22,538,"Mollisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"Bromus spp., Avena spp., and Vulpia myuros, perennial blue oaks (Quercus douglasii) and coast live oaks (Quercus agrifolia)",NA,160,NA,NA,NA,NA,NA,NA,"toeslope","SW",NA,NA,NA,NA,2,NA,NA,NA,"point_19_2000129_r1",NA,NA,2000,1,29,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",30,"mins",NA,NA,NA,NA,NA,NA,NA,NA,-24.84,NA,"UCI","UCIT5326",2000,99.600503676887,3.81967599764867,NA,NA,NA,NA "157","Fierer 2005","10.1007/s10021-003-0151-y",NA,"Anna Stegmann","University Augsburg","anna.stegmann28@gmail.com",2018,4,9,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Fierer, N.; Chadwick, O.; Trumbore, S. (2005): CO2 Production in California Annual Grassland, Ecosystems (2005) 8: 412–429","revised by Sue Trumbore 10 Spetember 2018","Gessler and others_2000",NA,"Sedgwick Reserve",34.7,-120.05,"WGS84",337,"California, Santa Ynez Valley, 2-ha hillslope catena, 30m",NA,"point_19","bottom of colluvial hollow",NA,NA,NA,"control",NA,NA,1,22,538,"Mollisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"Bromus spp., Avena spp., and Vulpia myuros, perennial blue oaks (Quercus douglasii) and coast live oaks (Quercus agrifolia)",NA,160,NA,NA,NA,NA,NA,NA,"toeslope","SW",NA,NA,NA,NA,2,NA,NA,NA,"point_19_2000129_r2",NA,NA,2000,1,29,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",30,"mins",NA,NA,NA,NA,NA,NA,NA,NA,-24.33,NA,"UCI","UCIT5327",2000,94.638267419386,5.05363375890952,NA,NA,NA,NA "158","Fierer 2005","10.1007/s10021-003-0151-y",NA,"Anna Stegmann","University Augsburg","anna.stegmann28@gmail.com",2018,4,9,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Fierer, N.; Chadwick, O.; Trumbore, S. (2005): CO2 Production in California Annual Grassland, Ecosystems (2005) 8: 412–429","revised by Sue Trumbore 10 Spetember 2018","Gessler and others_2000",NA,"Sedgwick Reserve",34.7,-120.05,"WGS84",337,"California, Santa Ynez Valley, 2-ha hillslope catena, 30m",NA,"point_2",NA,NA,NA,NA,"control",NA,NA,1,22,500,"Mollisols",NA,"typic argixeroll",NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"Bromus spp., Avena spp., and Vulpia myuros, perennial blue oaks (Quercus douglasii) and coast live oaks (Quercus agrifolia)",NA,85,NA,NA,NA,NA,NA,NA,"summit","SW",NA,NA,"divergent",NA,0.6,NA,NA,NA,"point_2_2000129_r1",NA,NA,2000,1,29,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",30,"mins",NA,NA,NA,NA,NA,NA,NA,NA,-24.86,NA,"UCI","UCIT5328",2000,92.5635075448461,5.04849073103635,NA,NA,NA,NA "159","Fierer 2005","10.1007/s10021-003-0151-y",NA,"Anna Stegmann","University Augsburg","anna.stegmann28@gmail.com",2018,4,9,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Fierer, N.; Chadwick, O.; Trumbore, S. (2005): CO2 Production in California Annual Grassland, Ecosystems (2005) 8: 412–429","revised by Sue Trumbore 10 Spetember 2018","Gessler and others_2000",NA,"Sedgwick Reserve",34.7,-120.05,"WGS84",337,"California, Santa Ynez Valley, 2-ha hillslope catena, 30m",NA,"point_2",NA,NA,NA,NA,"control",NA,NA,1,22,500,"Mollisols",NA,"typic argixeroll",NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"Bromus spp., Avena spp., and Vulpia myuros, perennial blue oaks (Quercus douglasii) and coast live oaks (Quercus agrifolia)",NA,85,NA,NA,NA,NA,NA,NA,"summit","SW",NA,NA,"divergent",NA,0.6,NA,NA,NA,"point_2_2000129_r2",NA,NA,2000,1,29,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",30,"mins",NA,NA,NA,NA,NA,NA,NA,NA,-24.29,NA,"UCI","UCIT5329",2000,96.7757926510913,5.85120602880731,NA,NA,NA,NA "160","Fierer 2005","10.1007/s10021-003-0151-y",NA,"Anna Stegmann","University Augsburg","anna.stegmann28@gmail.com",2018,4,9,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Fierer, N.; Chadwick, O.; Trumbore, S. (2005): CO2 Production in California Annual Grassland, Ecosystems (2005) 8: 412–429","revised by Sue Trumbore 10 Spetember 2018","Gessler and others_2000",NA,"Sedgwick Reserve",34.7,-120.05,"WGS84",337,"California, Santa Ynez Valley, 2-ha hillslope catena, 30m",NA,"point_10",NA,NA,NA,NA,"control",NA,NA,1,22,513,"Mollisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"Bromus spp., Avena spp., and Vulpia myuros, perennial blue oaks (Quercus douglasii) and coast live oaks (Quercus agrifolia)",NA,NA,NA,NA,NA,NA,NA,NA,NA,"SW",NA,NA,"convergent",NA,2,NA,NA,NA,"point_10_2000129",NA,NA,2000,1,29,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",30,"mins",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "161","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Tower Pit_2_1997816",NA,NA,1997,8,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.70046296296296,NA,"µmol m-2 s-1",NA,NA,"UCI","2658",NA,136.184724120139,NA,NA,NA,NA,NA "162","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1","Tower Pit_1_1997816",NA,NA,1997,8,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.15578703703704,NA,"µmol m-2 s-1",NA,NA,"UCI","2660",NA,119.742780013078,NA,NA,NA,NA,NA "163","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"7","Tower Pit_7_1997816",NA,NA,1997,8,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,5.45231481481481,NA,"µmol m-2 s-1",NA,NA,"UCI","2661",NA,122.728386371039,NA,NA,NA,NA,NA "164","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"6","Tower Pit_6_1997816",NA,NA,1997,8,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,4.09652777777778,NA,"µmol m-2 s-1",NA,NA,"UCI","2662",NA,123.889809749318,NA,NA,NA,NA,NA "165","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Tower Pit_2_199863",NA,NA,1998,6,3,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.48425925925926,NA,"µmol m-2 s-1",NA,NA,"UCI","3283",NA,118.288881070459,NA,NA,NA,NA,NA "166","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Pit_3_199863",NA,NA,1998,6,3,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.57222222222222,NA,"µmol m-2 s-1",NA,NA,"UCI","3284",NA,142.041897593608,NA,NA,NA,NA,NA "167","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"7","Tower Pit_7_199871",NA,NA,1998,7,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,6.03425925925926,NA,"µmol m-2 s-1",NA,NA,"UCI","3325",NA,126.823266702519,NA,NA,NA,NA,NA "168","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"6","Tower Pit_6_199871",NA,NA,1998,7,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,7.50208333333333,NA,"µmol m-2 s-1",NA,NA,"UCI","3326",NA,129.788739920497,NA,NA,NA,NA,NA "169","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Tower Pit_2_199871",NA,NA,1998,7,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.51319444444444,NA,"µmol m-2 s-1",NA,NA,"UCI","3327",NA,118.181534786533,NA,NA,NA,NA,NA "170","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Pit_5_1998818",NA,NA,1998,8,18,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.2349537037037,NA,"µmol m-2 s-1",NA,NA,"UCI","3479",NA,98.8889985510051,NA,NA,NA,NA,NA "171","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"8","Tower Pit_8_1998818",NA,NA,1998,8,18,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,8.44583333333333,NA,"µmol m-2 s-1",NA,NA,"UCI","3480",NA,107.061010206532,NA,NA,NA,NA,NA "172","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Pit_3_1998818",NA,NA,1998,8,18,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.54814814814815,NA,"µmol m-2 s-1",NA,NA,"UCI","3481",NA,226.660573093381,NA,NA,NA,NA,NA "173","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Pit_3_1998917",NA,NA,1998,9,17,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,4.89930555555556,NA,"µmol m-2 s-1",NA,NA,"UCI","3571",NA,110.934423076923,NA,NA,NA,NA,NA "174","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Pit_5_1998917",NA,NA,1998,9,17,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.3837962962963,NA,"µmol m-2 s-1",NA,NA,"UCI","3572",NA,98.3579616148246,NA,NA,NA,NA,NA "175","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"8","Tower Pit_8_1998921",NA,NA,1998,9,21,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,4.64560185185185,NA,"µmol m-2 s-1",NA,NA,"UCI","3570",NA,124.648472222222,NA,NA,NA,NA,NA "176","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"8","Tower Pit_8_19981019",NA,NA,1998,10,19,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.42476851851852,NA,"µmol m-2 s-1",NA,NA,"UCI","3618",NA,127.256245562937,NA,NA,NA,NA,NA "177","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Pit_5_19981019",NA,NA,1998,10,19,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.45115740740741,NA,"µmol m-2 s-1",NA,NA,"UCI","3619",NA,123.156295327778,NA,NA,NA,NA,NA "178","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Pit_3_19981019",NA,NA,1998,10,19,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.32453703703704,NA,"µmol m-2 s-1",NA,NA,"UCI","3620",NA,131.063970735761,NA,NA,NA,NA,NA "179","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Pit_3_1998429",NA,NA,1998,4,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,0.835416666666667,NA,"µmol m-2 s-1",NA,NA,"UCI","4631",NA,133.917897050017,NA,NA,NA,NA,NA "180","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Pit_5_1998429",NA,NA,1998,4,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.01365740740741,NA,"µmol m-2 s-1",NA,NA,"UCI","4632",NA,119.05996625345,NA,NA,NA,NA,NA "181","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"8","Tower Pit_8_1998429",NA,NA,1998,4,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.41805555555556,NA,"µmol m-2 s-1",NA,NA,"UCI","4633",NA,137.80732458335,NA,NA,NA,NA,NA "182","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Pit_5_199868",NA,NA,1998,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.83912037037037,NA,"µmol m-2 s-1",NA,NA,"UCI","4686",NA,108.496758271912,NA,NA,NA,NA,NA "183","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"8","Tower Pit_8_199868",NA,NA,1998,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,7.32847222222222,NA,"µmol m-2 s-1",NA,NA,"UCI","4687",NA,108.222118169689,NA,NA,NA,NA,NA "184","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Pit_3_199868",NA,NA,1998,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.74351851851852,NA,"µmol m-2 s-1",NA,NA,"UCI","4688",NA,116.804786278492,NA,NA,NA,NA,NA "185","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Pit_3_1998712",NA,NA,1998,7,12,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,5.14675925925926,NA,"µmol m-2 s-1",NA,NA,"UCI","4798",NA,109.422134611338,NA,NA,NA,NA,NA "186","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Pit_5_1999712",NA,NA,1999,7,12,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,4.20671296296296,NA,"µmol m-2 s-1",NA,NA,"UCI","4799",NA,95.9204745359049,NA,NA,NA,NA,NA "187","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"8","Tower Pit_8_1999712",NA,NA,1999,7,12,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,9.27222222222222,NA,"µmol m-2 s-1",NA,NA,"UCI","4800",NA,123.85125351944,NA,NA,NA,NA,NA "188","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"8","Tower Pit_8_1999813",NA,NA,1999,8,13,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,6.40625,NA,"µmol m-2 s-1",NA,NA,"UCI","4210",NA,105.916414915811,NA,NA,NA,NA,NA "189","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Pit_3_1999813",NA,NA,1999,8,13,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,5.03796296296296,NA,"µmol m-2 s-1",NA,NA,"UCI","4211",NA,106.223533452556,NA,NA,NA,NA,NA "190","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Pit_5_1999813",NA,NA,1999,8,13,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,4.20162037037037,NA,"µmol m-2 s-1",NA,NA,"UCI","4212",NA,108.161052722866,NA,NA,NA,NA,NA "191","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"8","Tower Pit_8_1999101",NA,NA,1999,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,7.92488425925926,NA,"µmol m-2 s-1",NA,NA,"UCI","4371",NA,124.752679666494,NA,NA,NA,NA,NA "192","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Pit_5_1999101",NA,NA,1999,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.5393287037037,NA,"µmol m-2 s-1",NA,NA,"UCI","4372",NA,112.356962109695,NA,NA,NA,NA,NA "193","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Pit_3_1999101",NA,NA,1999,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.8644212962963,NA,"µmol m-2 s-1",NA,NA,"UCI","4373",NA,132.347408040134,NA,NA,NA,NA,NA "194","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Pit_3_2000519",NA,NA,2000,5,19,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.00925925925926,NA,"µmol m-2 s-1",NA,NA,"UCI","5425",NA,131.397355076125,NA,NA,NA,NA,NA "195","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Pit_5_2000519",NA,NA,2000,5,19,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,0.87962962962963,NA,"µmol m-2 s-1",NA,NA,"UCI","5426",NA,121.288908944576,NA,NA,NA,NA,NA "196","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"8","Tower Pit_8_2000520",NA,NA,2000,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.78240740740741,NA,"µmol m-2 s-1",NA,NA,"UCI","5427",NA,130.944472550736,NA,NA,NA,NA,NA "197","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1","Tower Pit_1_200457",NA,NA,2004,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","10961",NA,97.4,NA,NA,NA,NA,NA "198","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Pit_5_200457",NA,NA,2004,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","10962",NA,70.6,NA,NA,NA,NA,NA "199","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"7","Tower Pit_7_200457",NA,NA,2004,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","10963",NA,79.4,NA,NA,NA,NA,NA "200","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Nutrient Control Pit_5_199863",NA,NA,1998,6,3,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.05648148148148,NA,"µmol m-2 s-1",NA,NA,"UCI","3285",NA,138.610564156408,NA,NA,NA,NA,NA "201","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Nutrient Control Pit_3_199863",NA,NA,1998,6,3,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.40393518518519,NA,"µmol m-2 s-1",NA,NA,"UCI","3286",NA,148.683773119805,NA,NA,NA,NA,NA "202","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Nutrient Control Pit_3_199871",NA,NA,1998,7,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,4.825,NA,"µmol m-2 s-1",NA,NA,"UCI","3328",NA,157.582435530312,NA,NA,NA,NA,NA "203","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Nutrient Control Pit_4_199871",NA,NA,1998,7,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.05277777777778,NA,"µmol m-2 s-1",NA,NA,"UCI","3329",NA,144.341999446638,NA,NA,NA,NA,NA "204","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Nutrient Control Pit_5_199871",NA,NA,1998,7,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,6.10115740740741,NA,"µmol m-2 s-1",NA,NA,"UCI","3330",NA,150.341284597763,NA,NA,NA,NA,NA "205","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Nutrient Control Pit_5_1998818",NA,NA,1998,8,18,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,4.43865740740741,NA,"µmol m-2 s-1",NA,NA,"UCI","3478",NA,105.139047452365,NA,NA,NA,NA,NA "206","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Nutrient Control Pit_3_1998921",NA,NA,1998,9,21,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.92060185185185,NA,"µmol m-2 s-1",NA,NA,"UCI","3574",NA,100.709675894666,NA,NA,NA,NA,NA "207","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Nutrient Control Pit_2_1998921",NA,NA,1998,9,21,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.53287037037037,NA,"µmol m-2 s-1",NA,NA,"UCI","3575",NA,86.3836554898093,NA,NA,NA,NA,NA "208","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Nutrient Control Pit_5_1998921",NA,NA,1998,9,21,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.14791666666667,NA,"µmol m-2 s-1",NA,NA,"UCI","3576",NA,97.2022574257426,NA,NA,NA,NA,NA "209","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Nutrient Control Pit_2_19981019",NA,NA,1998,10,19,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.25509259259259,NA,"µmol m-2 s-1",NA,NA,"UCI","3625",NA,102.983018824261,NA,NA,NA,NA,NA "210","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Nutrient Control Pit_2_1999429",NA,NA,1999,4,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,0.834722222222222,NA,"µmol m-2 s-1",NA,NA,"UCI","4628",NA,118.848121589195,NA,NA,NA,NA,NA "211","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Nutrient Control Pit_3_1999429",NA,NA,1999,4,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,0.989814814814815,NA,"µmol m-2 s-1",NA,NA,"UCI","4629",NA,139.872537495095,NA,NA,NA,NA,NA "212","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Nutrient Control Pit_5_1999429",NA,NA,1999,4,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,0.690277777777778,NA,"µmol m-2 s-1",NA,NA,"UCI","4630",NA,119.969245197622,NA,NA,NA,NA,NA "213","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Nutrient Control Pit_3_199968",NA,NA,1999,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.58425925925926,NA,"µmol m-2 s-1",NA,NA,"UCI","4682",NA,123.11026833639,NA,NA,NA,NA,NA "214","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Nutrient Control Pit_2_199968",NA,NA,1999,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.59583333333333,NA,"µmol m-2 s-1",NA,NA,"UCI","4683",NA,102.373834866772,NA,NA,NA,NA,NA "215","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Nutrient Control Pit_5_199968",NA,NA,1999,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,5.52592592592593,NA,"µmol m-2 s-1",NA,NA,"UCI","4684",NA,122.155388713136,NA,NA,NA,NA,NA "216","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Nutrient Control Pit_2_1999712",NA,NA,1999,7,12,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.12523148148148,NA,"µmol m-2 s-1",NA,NA,"UCI","4801",NA,113.491613316726,NA,NA,NA,NA,NA "217","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Nutrient Control Pit_5_1999712",NA,NA,1999,7,12,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,4.66388888888889,NA,"µmol m-2 s-1",NA,NA,"UCI","4802",NA,118.420258421291,NA,NA,NA,NA,NA "218","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Nutrient Control Pit_3_1999712",NA,NA,1999,7,12,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,4.26597222222222,NA,"µmol m-2 s-1",NA,NA,"UCI","4803",NA,117.595328689715,NA,NA,NA,NA,NA "219","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Nutrient Control Pit_5_1999813",NA,NA,1999,8,13,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,6.3224537037037,NA,"µmol m-2 s-1",NA,NA,"UCI","4206",NA,113.408849286994,NA,NA,NA,NA,NA "220","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Nutrient Control Pit_3_1999813",NA,NA,1999,8,13,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,5.8349537037037,NA,"µmol m-2 s-1",NA,NA,"UCI","4208",NA,100.802016228329,NA,NA,NA,NA,NA "221","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Nutrient Control Pit_2_2000520",NA,NA,2000,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,NA,NA,"µmol m-2 s-1",NA,NA,"UCI","5429",NA,94.7658452730253,NA,NA,NA,NA,NA "222","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Nutrient Control Pit_3_2000520",NA,NA,2000,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,NA,NA,"µmol m-2 s-1",NA,NA,"UCI","5430",NA,120.816041908926,NA,NA,NA,NA,NA "223","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Nutrient Control Pit_5_2000520",NA,NA,2000,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.80092592592593,NA,"µmol m-2 s-1",NA,NA,"UCI","5434",NA,147.410108553032,NA,NA,NA,NA,NA "224","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1","Nutrient Control Pit_1_200457",NA,NA,2004,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"10964",NA,93.1,NA,NA,NA,NA,NA "225","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Nutrient Control Pit_3_200457",NA,NA,2004,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"10965",NA,94.8,NA,NA,NA,NA,NA "226","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Nutrient Control Pit",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Spodosols",NA,"Typic Haplorthods","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea rubens, Abies balsamea, Tsuga canadensis",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"6","Nutrient Control Pit_6_200457",NA,NA,2004,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"10966",NA,92.1,NA,NA,NA,NA,NA "227","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Tower Swamp 1_4_1997816",NA,NA,1997,8,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.02083333333333,NA,"µmol m-2 s-1",NA,NA,"UCI","2637",NA,116.399215809148,NA,NA,NA,NA,NA "228","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Swamp 1_3_1997816",NA,NA,1997,8,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.24421296296296,NA,"µmol m-2 s-1",NA,NA,"UCI","2638",NA,103.872273637641,NA,NA,NA,NA,NA "229","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"7","Tower Swamp 1_7_1997816",NA,NA,1997,8,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.71666666666667,NA,"µmol m-2 s-1",NA,NA,"UCI","2639",NA,50.892648679499,NA,NA,NA,NA,NA "230","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"6","Tower Swamp 1_6_1997816",NA,NA,1997,8,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.15208333333333,NA,"µmol m-2 s-1",NA,NA,"UCI","2640",NA,107.061150593832,NA,NA,NA,NA,NA "231","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Tower Swamp 1_4_199863",NA,NA,1998,6,3,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.3,NA,"µmol m-2 s-1",NA,NA,"UCI","3287",NA,100.345868849532,NA,NA,NA,NA,NA "232","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"6","Tower Swamp 1_6_199863",NA,NA,1998,6,3,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.68148148148148,NA,"µmol m-2 s-1",NA,NA,"UCI","3288",NA,103.1597229351,NA,NA,NA,NA,NA "233","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Swamp 1_5_199871",NA,NA,1998,7,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.07962962962963,NA,"µmol m-2 s-1",NA,NA,"UCI","3331",NA,559.822685857839,NA,NA,NA,NA,NA "234","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Tower Swamp 1_4_199871",NA,NA,1998,7,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.12152777777778,NA,"µmol m-2 s-1",NA,NA,"UCI","3332",NA,144.943525505441,NA,NA,NA,NA,NA "235","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"6","Tower Swamp 1_6_199871",NA,NA,1998,7,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.16064814814815,NA,"µmol m-2 s-1",NA,NA,"UCI","3333",NA,255.620890809535,NA,NA,NA,NA,NA "236","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Tower Swamp 1_4_1998818",NA,NA,1998,8,18,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.29166666666667,NA,"µmol m-2 s-1",NA,NA,"UCI","3483",NA,127.424382180156,NA,NA,NA,NA,NA "237","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Swamp 1_3_1998818",NA,NA,1998,8,18,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.6025462962963,NA,"µmol m-2 s-1",NA,NA,"UCI","3484",NA,92.0184579263019,NA,NA,NA,NA,NA "238","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Tower Swamp 1_4_1998921",NA,NA,1998,9,21,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.75324074074074,NA,"µmol m-2 s-1",NA,NA,"UCI","3569",NA,128.86,NA,NA,NA,NA,NA "239","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Swamp 1_3_1998921",NA,NA,1998,9,21,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.04236111111111,NA,"µmol m-2 s-1",NA,NA,"UCI","3573",NA,350.862773266708,NA,NA,NA,NA,NA "240","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Swamp 1_5_1999430",NA,NA,1999,4,30,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.25231481481481,NA,"µmol m-2 s-1",NA,NA,"UCI","4635",NA,110.030920703465,NA,NA,NA,NA,NA "241","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Swamp 1_3_1999430",NA,NA,1999,4,30,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.01412037037037,NA,"µmol m-2 s-1",NA,NA,"UCI","4636",NA,105.152787011555,NA,NA,NA,NA,NA "242","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Tower Swamp 1_4_1999430",NA,NA,1999,4,30,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,0.580092592592593,NA,"µmol m-2 s-1",NA,NA,"UCI","4637",NA,107.466990066906,NA,NA,NA,NA,NA "243","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Tower Swamp 1_4_199968",NA,NA,1999,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.90949074074074,NA,"µmol m-2 s-1",NA,NA,"UCI","4679",NA,94.0684360744119,NA,NA,NA,NA,NA "244","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Swamp 1_3_199968",NA,NA,1999,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.50856481481481,NA,"µmol m-2 s-1",NA,NA,"UCI","4680",NA,91.9478468585333,NA,NA,NA,NA,NA "245","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Swamp 1_5_199968",NA,NA,1999,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.6224537037037,NA,"µmol m-2 s-1",NA,NA,"UCI","4681",NA,86.1907579734386,NA,NA,NA,NA,NA "246","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Swamp 1_3_1999712",NA,NA,1999,7,12,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.96990740740741,NA,"µmol m-2 s-1",NA,NA,"UCI","4795",NA,109.792513851009,NA,NA,NA,NA,NA "247","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Tower Swamp 1_4_1999712",NA,NA,1999,7,12,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.15509259259259,NA,"µmol m-2 s-1",NA,NA,"UCI","4796",NA,95.6954863612579,NA,NA,NA,NA,NA "248","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Swamp 1_5_1999712",NA,NA,1999,7,12,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,4.06157407407407,NA,"µmol m-2 s-1",NA,NA,"UCI","4797",NA,95.0664396427876,NA,NA,NA,NA,NA "249","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Swamp 1_3_1999813",NA,NA,1999,8,13,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.97662037037037,NA,"µmol m-2 s-1",NA,NA,"UCI","4214",NA,87.4460791759257,NA,NA,NA,NA,NA "250","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"6","Tower Swamp 1_6_1999813",NA,NA,1999,8,13,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,4.43611111111111,NA,"µmol m-2 s-1",NA,NA,"UCI","4215",NA,90.6288716632448,NA,NA,NA,NA,NA "251","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Tower Swamp 1_4_1999813",NA,NA,1999,8,13,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,3.49351851851852,NA,"µmol m-2 s-1",NA,NA,"UCI","4216",NA,89.8326104367343,NA,NA,NA,NA,NA "252","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"6","Tower Swamp 1_6_1999101",NA,NA,1999,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.19796296296296,NA,"µmol m-2 s-1",NA,NA,"UCI","4374",NA,95.6018455228982,NA,NA,NA,NA,NA "253","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Tower Swamp 1_4_1999101",NA,NA,1999,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.2218287037037,NA,"µmol m-2 s-1",NA,NA,"UCI","4375",NA,83.5988825772355,NA,NA,NA,NA,NA "254","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Swamp 1_3_1999101",NA,NA,1999,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.48275462962963,NA,"µmol m-2 s-1",NA,NA,"UCI","4376",NA,95.9599081352457,NA,NA,NA,NA,NA "255","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Tower Swamp 1_5_1999520",NA,NA,1999,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.83564814814815,NA,"µmol m-2 s-1",NA,NA,"UCI","5428",NA,94.7070927099314,NA,NA,NA,NA,NA "256","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Tower Swamp 1_3_1999520",NA,NA,1999,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,2.27083333333333,NA,"µmol m-2 s-1",NA,NA,"UCI","5431",NA,89.4129824102411,NA,NA,NA,NA,NA "257","Gaudinski_2001","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,1,19,"J. Gaudinski","jgaudins@ucsc.edu",NA,"Gaudinski, J., 2001, Belowground carbon cycling in three temperate forests of the eastern United States, University of California Irvine, Ph.D. thesis","Incubation and radiocarbon data; added some wetland data that are not published elsewhere but were collected at the same time",NA,NA,"Howland Forest",45.167,-68.667,NA,60,NA,NA,"Tower Swamp 1",NA,NA,NA,NA,"control",NA,NA,NA,5.5,1000,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum ",NA,NA,NA,NA,NA,"igneous intrusive","felsic","Granitic till",NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Tower Swamp 1_4_1999520",NA,NA,1999,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber","used 13C to correct 14C data for air","molecular sieve",45,"mins",NA,NA,NA,NA,NA,1.625,NA,"µmol m-2 s-1",NA,NA,"UCI","5433",NA,83.3804076389632,NA,NA,NA,NA,NA "258","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Dinesen",41.70977568,-95.2797263,NA,397,"Sites are hillslope gradients, spatial data reference toeslope position","DPPL","DPPL_f","flux chamber",NA,NA,NA,"control",NA,NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"DPPL","DPPL_f_1993105_1",NA,NA,1993,10,5,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-19.96,NA,"UCI","UCIT2745",NA,110.08,5.63,NA,NA,NA,NA "259","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Dinesen",41.70977568,-95.2797263,NA,397,"Sites are hillslope gradients, spatial data reference toeslope position","DPPR","DPPR_f","flux chamber",NA,NA,NA,"control",NA,NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"DPPR","DPPR_f_199459_1",NA,NA,1994,5,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,31,NA,NA,NA,NA,NA,-20,NA,"UCI","UCIT3274",NA,93.94,6.1,NA,NA,NA,NA "260","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Dinesen",41.70977568,-95.2797263,NA,397,"Sites are hillslope gradients, spatial data reference toeslope position","DPPR","DPPR_f","flux chamber",NA,NA,NA,"control",NA,NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"DPPR","DPPR_f_199459_2",NA,NA,1994,5,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,31.7,NA,NA,NA,NA,NA,-18.4,NA,"UCI","UCIT3275",NA,13.12,5.2,NA,NA,NA,NA "261","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Dinesen",41.70977568,-95.2797263,NA,397,"Sites are hillslope gradients, spatial data reference toeslope position","DPPR","DPPR_f","flux chamber",NA,NA,NA,"control",NA,NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"DPPR","DPPR_f_19941021_1",NA,NA,1994,10,21,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,18,NA,NA,NA,NA,NA,-25,NA,"UCI","UCIT3857",NA,122.54,5.24,NA,NA,NA,NA "262","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Dinesen",41.70977568,-95.2797263,NA,397,"Sites are hillslope gradients, spatial data reference toeslope position","DPPU","DPPU_f","flux chamber",NA,NA,NA,"control",NA,NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"backslope",NA,NA,12.5,NA,NA,NA,NA,NA,"DPPU","DPPU_f_1993108_1",NA,NA,1993,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-25,NA,"UCI","UCIT2771",NA,120.04,6.62,NA,NA,NA,NA "263","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Dinesen",41.70977568,-95.2797263,NA,397,"Sites are hillslope gradients, spatial data reference toeslope position","DPPU","DPPU_f","flux chamber",NA,NA,NA,"control",NA,NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"backslope",NA,NA,12.5,NA,NA,NA,NA,NA,"DPPU","DPPU_f_199459_1",NA,NA,1994,5,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-22,NA,"UCI","UCIT3273",NA,-19.6,5.2,NA,NA,NA,NA "264","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Dinesen",41.70977568,-95.2797263,NA,397,"Sites are hillslope gradients, spatial data reference toeslope position","DPPU","DPPU_f","flux chamber",NA,NA,NA,"control",NA,NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"backslope",NA,NA,12.5,NA,NA,NA,NA,NA,"DPPU","DPPU_f_199459_2",NA,NA,1994,5,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,24.6,NA,NA,NA,NA,NA,-20.1,NA,"UCI","UCIT3272",NA,53.34,5,NA,NA,NA,NA "265","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPL","TRPL_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Napier","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"TRPL","TRPL_f_199349_1",NA,NA,1993,4,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,5.2,NA,NA,NA,NA,NA,-9.87,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "266","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPL","TRPL_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Napier","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"TRPL","TRPL_f_199349_2",NA,NA,1993,4,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,5.2,NA,NA,NA,NA,NA,-25,NA,"UCI","UCIT/J019",NA,77.8,8.7,NA,NA,NA,NA "267","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPL","TRPL_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Napier","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"TRPL","TRPL_f_199379_1",NA,NA,1993,7,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,36,NA,NA,NA,NA,NA,-13.3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "268","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPL","TRPL_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Napier","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"TRPL","TRPL_f_199379_2",NA,NA,1993,7,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,36,NA,NA,NA,NA,NA,-16.24,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "269","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPL","TRPL_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Napier","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"TRPL","TRPL_f_1993109_1",NA,NA,1993,10,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,28,NA,NA,NA,NA,NA,-12.64,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "270","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPL","TRPL_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Napier","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"TRPL","TRPL_f_1993109_2",NA,NA,1993,10,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,28,NA,NA,NA,NA,NA,-11.75,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "271","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPL","TRPL_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Napier","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"TRPL","TRPL_f_199459_1",NA,NA,1994,5,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,22.2,NA,NA,NA,NA,NA,-25,NA,"UCI","UCIT3267",NA,99.02,3.55,NA,NA,NA,NA "272","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPL","TRPL_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Napier","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"TRPL","TRPL_f_1994109_1",NA,NA,1994,10,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,12.5,NA,NA,NA,NA,NA,-14.79,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "273","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPL","TRPL_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Napier","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"toeslope",NA,NA,NA,NA,NA,NA,NA,NA,"TRPL","TRPL_f_1994109_2",NA,NA,1994,10,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,12.5,NA,NA,NA,NA,NA,-15.24,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "274","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPR","TRPR_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"summit",NA,NA,NA,NA,NA,NA,NA,NA,"TRPR","TRPR_f_1993723_1",NA,NA,1993,7,23,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,23,NA,NA,NA,NA,NA,-13.9,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "275","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPR","TRPR_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"summit",NA,NA,NA,NA,NA,NA,NA,NA,"TRPR","TRPR_f_1993106_1",NA,NA,1993,10,6,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-12.97,NA,"UCI","UCIT2743",NA,102.33,6.36,NA,NA,NA,NA "276","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPR","TRPR_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"summit",NA,NA,NA,NA,NA,NA,NA,NA,"TRPR","TRPR_f_1993106_2",NA,NA,1993,10,6,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-14.11,NA,"UCI","UCIT2744",NA,66.35,6.13,NA,NA,NA,NA "277","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPR","TRPR_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"summit",NA,NA,NA,NA,NA,NA,NA,NA,"TRPR","TRPR_f_199459_1",NA,NA,1994,5,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,27.8,NA,NA,NA,NA,NA,-25,NA,"UCI","UCIT3268",NA,97.09,5.09,NA,NA,NA,NA "278","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPR","TRPR_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Monona","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"summit",NA,NA,NA,NA,NA,NA,NA,NA,"TRPR","TRPR_f_199459_2",NA,NA,1994,5,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,27.8,NA,NA,NA,NA,NA,-12.67,NA,"UCI","UCIT3270",NA,74.93,5.04,NA,NA,NA,NA "279","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPU","TRPU_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Graphton","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"backslope",NA,NA,8,NA,NA,NA,NA,NA,"TRPU","TRPU_f_1993930_1",NA,NA,1993,9,30,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,0,NA,NA,NA,NA,NA,-10.19,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "280","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPU","TRPU_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Graphton","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"backslope",NA,NA,8,NA,NA,NA,NA,NA,"TRPU","TRPU_f_1993101_1",NA,NA,1993,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,32,NA,NA,NA,NA,NA,-9.31,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "281","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPU","TRPU_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Graphton","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"backslope",NA,NA,8,NA,NA,NA,NA,NA,"TRPU","TRPU_f_1993101_2",NA,NA,1993,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,32,NA,NA,NA,NA,NA,-15.8,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "282","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPU","TRPU_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Graphton","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"backslope",NA,NA,8,NA,NA,NA,NA,NA,"TRPU","TRPU_f_199459_1",NA,NA,1994,5,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,0,NA,NA,NA,NA,NA,-25,NA,"UCI","UCIT/J020",NA,64.9,7.7,NA,NA,NA,NA "283","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPU","TRPU_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Graphton","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"backslope",NA,NA,8,NA,NA,NA,NA,NA,"TRPU","TRPU_f_1994510_1",NA,NA,1994,5,10,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,25.5,NA,NA,NA,NA,NA,-10.39,NA,"UCI","UCIT3271",NA,78.4,5.07,NA,NA,NA,NA "284","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPU","TRPU_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Graphton","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"backslope",NA,NA,8,NA,NA,NA,NA,NA,"TRPU","TRPU_f_1994510_2",NA,NA,1994,5,10,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,24.6,NA,NA,NA,NA,NA,-12.99,NA,"UCI","UCIT3269",NA,78.2,5.06,NA,NA,NA,NA "285","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPU","TRPU_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Graphton","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"backslope",NA,NA,8,NA,NA,NA,NA,NA,"TRPU","TRPU_f_19941023_1",NA,NA,1994,10,23,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,22,NA,NA,NA,NA,NA,-14.73,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "286","Harden_2002","10.1023/A:1020308729553","10.1126/science.aad4273","J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,5,15,"J. Harden","82soiljen@gmail.com",NA,"Harden, J, TL Fries, MJ Pavich, 2002, Cycling of Beryllium and Carbon through Hillslope Soils in Iowa, 60, 317-355","Most data drawn from USGS OFR_01-217",NA,NA,"Treynor",41.16574593,-95.64329535,NA,352,"Sites are hillslope gradients, spatial data reference toeslope position","TRPU","TRPU_f","flux chamber",NA,NA,NA,"treatment","agricultural field",NA,NA,NA,NA,"Mollisols","Graphton","Mollisols","USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"backslope",NA,NA,8,NA,NA,NA,NA,NA,"TRPU","TRPU_f_19941023_2",NA,NA,1994,10,23,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,NA,22,NA,NA,NA,NA,NA,-17.14,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "287","Hardie_2009","10.1016/j.geoderma.2009.09.002",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,4,26,"Susan M.L. Hardie","sushar@chem.gla.ac.uk",NA,"Hardie, S.M.L., Garnett, M.H., Fallick, A.E., Ostle, N.J. & Rowland, A.P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401",NA,NA,NA,"Moor_House",54.664181,-2.4666101,NA,587,NA,NA,"Hard_hill_ecosystem",NA,54.691111,-2.399167,NA,"control",NA,NA,1,5.3,2016,NA,NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum spp., Calluna vulgaris, Eriophorum vaginatum",NA,100,NA,10,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Hard_hill_ecosystem_8-1_1",NA,NA,2005,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","IRGA",NA,NA,NA,NA,NA,NA,NA,NA,43.6666666666667,NA,"µg C m-2 s-1",-22.5,0.1,"SUERC","8109",NA,107.1,0.3,NA,NA,NA,NA "288","Hardie_2009","10.1016/j.geoderma.2009.09.002",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,4,26,"Susan M.L. Hardie","sushar@chem.gla.ac.uk",NA,"Hardie, S.M.L., Garnett, M.H., Fallick, A.E., Ostle, N.J. & Rowland, A.P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401",NA,NA,NA,"Moor_House",54.664181,-2.4666101,NA,587,NA,NA,"Hard_hill_ecosystem",NA,54.691111,-2.399167,NA,"control",NA,NA,1,5.3,2016,NA,NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum spp., Calluna vulgaris, Eriophorum vaginatum",NA,100,NA,10,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Hard_hill_ecosystem_8-1_2",NA,NA,2005,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","IRGA",NA,NA,NA,NA,NA,NA,NA,NA,39.5,NA,"µg C m-2 s-1",-20.3,0.1,"SUERC","8110",NA,107.3,0.3,NA,NA,NA,NA "289","Hardie_2009","10.1016/j.geoderma.2009.09.002",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,4,26,"Susan M.L. Hardie","sushar@chem.gla.ac.uk",NA,"Hardie, S.M.L., Garnett, M.H., Fallick, A.E., Ostle, N.J. & Rowland, A.P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401",NA,NA,NA,"Moor_House",54.664181,-2.4666101,NA,587,NA,NA,"Hard_hill_ecosystem",NA,54.691111,-2.399167,NA,"control",NA,NA,1,5.3,2016,NA,NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum spp., Calluna vulgaris, Eriophorum vaginatum",NA,100,NA,10,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Hard_hill_ecosystem_8-1_3",NA,NA,2005,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","IRGA",NA,NA,NA,NA,NA,NA,NA,NA,36.25,NA,"µg C m-2 s-1",-19.7,0.1,"SUERC","8111",NA,106.5,0.3,NA,NA,NA,NA "290","Hardie_2009","10.1016/j.geoderma.2009.09.002",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,4,26,"Susan M.L. Hardie","sushar@chem.gla.ac.uk",NA,"Hardie, S.M.L., Garnett, M.H., Fallick, A.E., Ostle, N.J. & Rowland, A.P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401",NA,NA,NA,"Moor_House",54.664181,-2.4666101,NA,587,NA,NA,"Hard_hill_ecosystem",NA,54.691111,-2.399167,NA,"control",NA,NA,1,5.3,2016,NA,NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum spp., Calluna vulgaris, Eriophorum vaginatum",NA,100,NA,10,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Hard_hill_ecosystem_9-1_1",NA,NA,2005,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","IRGA",NA,NA,NA,NA,NA,NA,NA,NA,45.9722222222222,NA,"µg C m-2 s-1",-23.6,0.1,"SUERC","8116",NA,106.4,0.3,NA,NA,NA,NA "291","Hardie_2009","10.1016/j.geoderma.2009.09.002",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,4,26,"Susan M.L. Hardie","sushar@chem.gla.ac.uk",NA,"Hardie, S.M.L., Garnett, M.H., Fallick, A.E., Ostle, N.J. & Rowland, A.P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401",NA,NA,NA,"Moor_House",54.664181,-2.4666101,NA,587,NA,NA,"Hard_hill_ecosystem",NA,54.691111,-2.399167,NA,"control",NA,NA,1,5.3,2016,NA,NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum spp., Calluna vulgaris, Eriophorum vaginatum",NA,100,NA,10,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Hard_hill_ecosystem_9-1_2",NA,NA,2005,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","IRGA",NA,NA,NA,NA,NA,NA,NA,NA,46.6944444444444,NA,"µg C m-2 s-1",-22.8,0.1,"SUERC","8119",NA,106.6,0.3,NA,NA,NA,NA "292","Hardie_2009","10.1016/j.geoderma.2009.09.002",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,4,26,"Susan M.L. Hardie","sushar@chem.gla.ac.uk",NA,"Hardie, S.M.L., Garnett, M.H., Fallick, A.E., Ostle, N.J. & Rowland, A.P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401",NA,NA,NA,"Moor_House",54.664181,-2.4666101,NA,587,NA,NA,"Hard_hill_soil",NA,54.691111,-2.399167,NA,"treatment","veg clipped",NA,1,5.3,2016,NA,NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum spp., Calluna vulgaris, Eriophorum vaginatum",NA,100,NA,10,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Hard_hill_soil_8-1_1",NA,NA,2005,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","IRGA",NA,NA,NA,NA,NA,NA,NA,NA,14.4444444444444,NA,"µg C m-2 s-1",-27.1,0.1,"SUERC","8112",NA,114.6,0.4,NA,NA,NA,NA "293","Hardie_2009","10.1016/j.geoderma.2009.09.002",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,4,26,"Susan M.L. Hardie","sushar@chem.gla.ac.uk",NA,"Hardie, S.M.L., Garnett, M.H., Fallick, A.E., Ostle, N.J. & Rowland, A.P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401",NA,NA,NA,"Moor_House",54.664181,-2.4666101,NA,587,NA,NA,"Hard_hill_soil",NA,54.691111,-2.399167,NA,"treatment","veg clipped",NA,1,5.3,2016,NA,NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum spp., Calluna vulgaris, Eriophorum vaginatum",NA,100,NA,10,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Hard_hill_soil_8-1_2",NA,NA,2005,8,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","IRGA",NA,NA,NA,NA,NA,NA,NA,NA,13.1388888888889,NA,"µg C m-2 s-1",-27.8,0.1,"SUERC","8113",NA,115.1,0.4,NA,NA,NA,NA "294","Hardie_2009","10.1016/j.geoderma.2009.09.002",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,4,26,"Susan M.L. Hardie","sushar@chem.gla.ac.uk",NA,"Hardie, S.M.L., Garnett, M.H., Fallick, A.E., Ostle, N.J. & Rowland, A.P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401",NA,NA,NA,"Moor_House",54.664181,-2.4666101,NA,587,NA,NA,"Hard_hill_soil",NA,54.691111,-2.399167,NA,"treatment","veg clipped",NA,1,5.3,2016,NA,NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum spp., Calluna vulgaris, Eriophorum vaginatum",NA,100,NA,10,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Hard_hill_soil_8-1_3",NA,NA,2005,8,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","IRGA",NA,NA,NA,NA,NA,NA,NA,NA,16.1666666666667,NA,"µg C m-2 s-1",-27.4,0.1,"SUERC","8114",NA,115.1,0.4,NA,NA,NA,NA "295","Hardie_2009","10.1016/j.geoderma.2009.09.002",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,4,26,"Susan M.L. Hardie","sushar@chem.gla.ac.uk",NA,"Hardie, S.M.L., Garnett, M.H., Fallick, A.E., Ostle, N.J. & Rowland, A.P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401",NA,NA,NA,"Moor_House",54.664181,-2.4666101,NA,587,NA,NA,"Hard_hill_soil",NA,54.691111,-2.399167,NA,"treatment","veg clipped",NA,1,5.3,2016,NA,NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum spp., Calluna vulgaris, Eriophorum vaginatum",NA,100,NA,10,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Hard_hill_soil_9-1_1",NA,NA,2005,9,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","IRGA",NA,NA,NA,NA,NA,NA,NA,NA,19.1944444444444,NA,"µg C m-2 s-1",-26.8,0.1,"SUERC","8121",NA,115.9,0.4,NA,NA,NA,NA "296","Hardie_2009","10.1016/j.geoderma.2009.09.002",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,4,26,"Susan M.L. Hardie","sushar@chem.gla.ac.uk",NA,"Hardie, S.M.L., Garnett, M.H., Fallick, A.E., Ostle, N.J. & Rowland, A.P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401",NA,NA,NA,"Moor_House",54.664181,-2.4666101,NA,587,NA,NA,"Hard_hill_soil",NA,54.691111,-2.399167,NA,"treatment","veg clipped",NA,1,5.3,2016,NA,NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum spp., Calluna vulgaris, Eriophorum vaginatum",NA,100,NA,10,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Hard_hill_soil_9-1_2",NA,NA,2005,9,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","IRGA",NA,NA,NA,NA,NA,NA,NA,NA,17.9722222222222,NA,"µg C m-2 s-1",-28,0.1,"SUERC","8122",NA,115.9,0.4,NA,NA,NA,NA "297","Hardie_2009","10.1016/j.geoderma.2009.09.002",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,4,26,"Susan M.L. Hardie","sushar@chem.gla.ac.uk",NA,"Hardie, S.M.L., Garnett, M.H., Fallick, A.E., Ostle, N.J. & Rowland, A.P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153, 393–401",NA,NA,NA,"Moor_House",54.664181,-2.4666101,NA,587,NA,NA,"Hard_hill_soil",NA,54.691111,-2.399167,NA,"treatment","veg clipped",NA,1,5.3,2016,NA,NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Sphagnum spp., Calluna vulgaris, Eriophorum vaginatum",NA,100,NA,10,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Hard_hill_soil_9-1_3",NA,NA,2005,9,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","IRGA",NA,NA,NA,NA,NA,NA,NA,NA,11.8333333333333,NA,"µg C m-2 s-1",-27.1,0.1,"SUERC","8123",NA,116.3,0.4,NA,NA,NA,NA "298","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,88.09,NA,NA,NA,NA,NA "299","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT2",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT2_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,93.21,NA,NA,NA,NA,NA "300","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,86.3,NA,NA,NA,NA,NA "301","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,69.3,NA,NA,NA,NA,NA "302","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT5",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT5_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,79.57,NA,NA,NA,NA,NA "303","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT6",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT6_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,74.08,NA,NA,NA,NA,NA "304","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,91.82,NA,NA,NA,NA,NA "305","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,85.61,NA,NA,NA,NA,NA "306","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,69.72,NA,NA,NA,NA,NA "307","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT16",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT16_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,86.78,NA,NA,NA,NA,NA "308","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,84.9,NA,NA,NA,NA,NA "309","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT18",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT18_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,87.23,NA,NA,NA,NA,NA "310","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,85.85,NA,NA,NA,NA,NA "311","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT9",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT9_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,77.98,NA,NA,NA,NA,NA "312","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,91.15,NA,NA,NA,NA,NA "313","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,76.07,NA,NA,NA,NA,NA "314","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20038",NA,NA,2003,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2003,77.02,NA,NA,NA,NA,NA "315","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT2",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT2_20048",NA,NA,2004,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.36,NA,"UCI",NA,2004,82.74,NA,NA,NA,NA,NA "316","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT6",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT6_20048",NA,NA,2004,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.28,NA,"UCI",NA,2004,75.87,NA,NA,NA,NA,NA "317","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20048",NA,NA,2004,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.29,NA,"UCI",NA,2004,76.62,NA,NA,NA,NA,NA "318","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20048",NA,NA,2004,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-20.99,NA,"UCI",NA,2004,71.82,NA,NA,NA,NA,NA "319","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20048",NA,NA,2004,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.08,NA,"UCI",NA,2004,89.5,NA,NA,NA,NA,NA "320","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20048",NA,NA,2004,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-20.1,NA,"UCI",NA,2004,88.7,NA,NA,NA,NA,NA "321","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20048",NA,NA,2004,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.33,NA,"UCI",NA,2004,74.54,NA,NA,NA,NA,NA "322","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20047",NA,NA,2004,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.98,NA,"UCI",NA,2004,44.13,NA,NA,NA,NA,NA "323","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20047",NA,NA,2004,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.19,NA,"UCI",NA,2004,35.82,NA,NA,NA,NA,NA "324","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20047",NA,NA,2004,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.39,NA,"UCI",NA,2004,55.42,NA,NA,NA,NA,NA "325","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20047",NA,NA,2004,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.09,NA,"UCI",NA,2004,56.59,NA,NA,NA,NA,NA "326","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20047",NA,NA,2004,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.28,NA,"UCI",NA,2004,84.74,NA,NA,NA,NA,NA "327","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20047",NA,NA,2004,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.9,NA,"UCI",NA,2004,49.82,NA,NA,NA,NA,NA "328","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20047",NA,NA,2004,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.53,NA,"UCI",NA,2004,61.57,NA,NA,NA,NA,NA "329","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20047",NA,NA,2004,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.05,NA,"UCI",NA,2004,34.88,NA,NA,NA,NA,NA "330","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20046",NA,NA,2004,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.13,NA,"UCI",NA,2004,96,NA,NA,NA,NA,NA "331","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20046",NA,NA,2004,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.58,NA,"UCI",NA,2004,105.51,NA,NA,NA,NA,NA "332","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT5",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT5_20046",NA,NA,2004,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.31,NA,"UCI",NA,2004,99.46,NA,NA,NA,NA,NA "333","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20046",NA,NA,2004,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.42,NA,"UCI",NA,2004,83.76,NA,NA,NA,NA,NA "334","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20046",NA,NA,2004,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-20.73,NA,"UCI",NA,2004,81.01,NA,NA,NA,NA,NA "335","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20046",NA,NA,2004,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.79,NA,"UCI",NA,2004,81.45,NA,NA,NA,NA,NA "336","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20046",NA,NA,2004,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-28.2,NA,"UCI",NA,2004,101.53,NA,NA,NA,NA,NA "337","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20046",NA,NA,2004,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-29.9,NA,"UCI",NA,2004,50.93,NA,NA,NA,NA,NA "338","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20046",NA,NA,2004,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.96,NA,"UCI",NA,2004,87.38,NA,NA,NA,NA,NA "339","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20046",NA,NA,2004,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.22,NA,"UCI",NA,2004,110.85,NA,NA,NA,NA,NA "340","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20046",NA,NA,2004,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.72,NA,"UCI",NA,2004,68.5,NA,NA,NA,NA,NA "341","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT5",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT5_200410",NA,NA,2004,10,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2004,40.98,NA,NA,NA,NA,NA "342","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_200410",NA,NA,2004,10,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2004,24.31,NA,NA,NA,NA,NA "343","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_200410",NA,NA,2004,10,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2004,74.61,NA,NA,NA,NA,NA "344","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_200410",NA,NA,2004,10,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2004,30.27,NA,NA,NA,NA,NA "345","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20049",NA,NA,2004,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2004,103.66,NA,NA,NA,NA,NA "346","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20049",NA,NA,2004,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2004,92.69,NA,NA,NA,NA,NA "347","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20049",NA,NA,2004,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2004,62.88,NA,NA,NA,NA,NA "348","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20049",NA,NA,2004,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2004,87.69,NA,NA,NA,NA,NA "349","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20049",NA,NA,2004,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2004,90.23,NA,NA,NA,NA,NA "350","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20049",NA,NA,2004,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2004,98.5,NA,NA,NA,NA,NA "351","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20058",NA,NA,2005,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,79.7,NA,NA,NA,NA,NA "352","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20058",NA,NA,2005,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,81.93,NA,NA,NA,NA,NA "353","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20058",NA,NA,2005,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,66.96,NA,NA,NA,NA,NA "354","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20058",NA,NA,2005,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,61.38,NA,NA,NA,NA,NA "355","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20058",NA,NA,2005,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,81.63,NA,NA,NA,NA,NA "356","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20058",NA,NA,2005,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,82.44,NA,NA,NA,NA,NA "357","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20058",NA,NA,2005,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,74.48,NA,NA,NA,NA,NA "358","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20058",NA,NA,2005,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,77.88,NA,NA,NA,NA,NA "359","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20058",NA,NA,2005,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,68.78,NA,NA,NA,NA,NA "360","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20057",NA,NA,2005,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,79.74,NA,NA,NA,NA,NA "361","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20057",NA,NA,2005,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,59.91,NA,NA,NA,NA,NA "362","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20057",NA,NA,2005,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,72.47,NA,NA,NA,NA,NA "363","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20057",NA,NA,2005,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,65.33,NA,NA,NA,NA,NA "364","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20057",NA,NA,2005,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,79.46,NA,NA,NA,NA,NA "365","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20057",NA,NA,2005,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,87.98,NA,NA,NA,NA,NA "366","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20057",NA,NA,2005,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,81.51,NA,NA,NA,NA,NA "367","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20057",NA,NA,2005,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,80.43,NA,NA,NA,NA,NA "368","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20057",NA,NA,2005,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,70.04,NA,NA,NA,NA,NA "369","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20056",NA,NA,2005,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,73.63,NA,NA,NA,NA,NA "370","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT6",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT6_20056",NA,NA,2005,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,72.09,NA,NA,NA,NA,NA "371","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20056",NA,NA,2005,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,65.61,NA,NA,NA,NA,NA "372","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20056",NA,NA,2005,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,69.37,NA,NA,NA,NA,NA "373","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20056",NA,NA,2005,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,69.03,NA,NA,NA,NA,NA "374","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20056",NA,NA,2005,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,69.99,NA,NA,NA,NA,NA "375","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20056",NA,NA,2005,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,77.17,NA,NA,NA,NA,NA "376","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20056",NA,NA,2005,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,65.45,NA,NA,NA,NA,NA "377","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20059",NA,NA,2005,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,76.87,NA,NA,NA,NA,NA "378","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20059",NA,NA,2005,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,60.95,NA,NA,NA,NA,NA "379","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20059",NA,NA,2005,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,57.06,NA,NA,NA,NA,NA "380","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20059",NA,NA,2005,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,45.22,NA,NA,NA,NA,NA "381","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20059",NA,NA,2005,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,57.35,NA,NA,NA,NA,NA "382","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20059",NA,NA,2005,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,75.05,NA,NA,NA,NA,NA "383","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20059",NA,NA,2005,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,69.2,NA,NA,NA,NA,NA "384","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20059",NA,NA,2005,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,77.56,NA,NA,NA,NA,NA "385","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20059",NA,NA,2005,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2005,53.84,NA,NA,NA,NA,NA "386","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20068",NA,NA,2006,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,19.36,NA,NA,NA,NA,NA "387","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20068",NA,NA,2006,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,57.87,NA,NA,NA,NA,NA "388","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20068",NA,NA,2006,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,77.18,NA,NA,NA,NA,NA "389","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20068",NA,NA,2006,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,80.56,NA,NA,NA,NA,NA "390","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20068",NA,NA,2006,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,58.23,NA,NA,NA,NA,NA "391","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20068",NA,NA,2006,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,67.92,NA,NA,NA,NA,NA "392","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20068",NA,NA,2006,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,69.15,NA,NA,NA,NA,NA "393","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20068",NA,NA,2006,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,56.94,NA,NA,NA,NA,NA "394","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20067",NA,NA,2006,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,77.91,NA,NA,NA,NA,NA "395","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20067",NA,NA,2006,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,71.71,NA,NA,NA,NA,NA "396","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20067",NA,NA,2006,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,64.5,NA,NA,NA,NA,NA "397","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20067",NA,NA,2006,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,72.67,NA,NA,NA,NA,NA "398","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20067",NA,NA,2006,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,75.09,NA,NA,NA,NA,NA "399","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20067",NA,NA,2006,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,62.18,NA,NA,NA,NA,NA "400","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20067",NA,NA,2006,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,70.23,NA,NA,NA,NA,NA "401","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20067",NA,NA,2006,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,72.31,NA,NA,NA,NA,NA "402","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20067",NA,NA,2006,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,62.52,NA,NA,NA,NA,NA "403","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20066",NA,NA,2006,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,70.8,NA,NA,NA,NA,NA "404","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20066",NA,NA,2006,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,79.36,NA,NA,NA,NA,NA "405","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20066",NA,NA,2006,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,63.81,NA,NA,NA,NA,NA "406","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20066",NA,NA,2006,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,67.91,NA,NA,NA,NA,NA "407","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20066",NA,NA,2006,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,61.85,NA,NA,NA,NA,NA "408","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20066",NA,NA,2006,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,68.27,NA,NA,NA,NA,NA "409","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20066",NA,NA,2006,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,66.14,NA,NA,NA,NA,NA "410","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20066",NA,NA,2006,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,72.83,NA,NA,NA,NA,NA "411","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20066",NA,NA,2006,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,58.28,NA,NA,NA,NA,NA "412","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20065",NA,NA,2006,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,48.05,NA,NA,NA,NA,NA "413","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT5",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT5_20065",NA,NA,2006,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,66.93,NA,NA,NA,NA,NA "414","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20065",NA,NA,2006,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,20.85,NA,NA,NA,NA,NA "415","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20065",NA,NA,2006,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,71.66,NA,NA,NA,NA,NA "416","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20065",NA,NA,2006,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,68.43,NA,NA,NA,NA,NA "417","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20065",NA,NA,2006,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,69.19,NA,NA,NA,NA,NA "418","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20065",NA,NA,2006,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,60.58,NA,NA,NA,NA,NA "419","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT9",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT9_20065",NA,NA,2006,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,44.92,NA,NA,NA,NA,NA "420","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20065",NA,NA,2006,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,59.41,NA,NA,NA,NA,NA "421","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20069",NA,NA,2006,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,75.6,NA,NA,NA,NA,NA "422","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20069",NA,NA,2006,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,73.78,NA,NA,NA,NA,NA "423","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20069",NA,NA,2006,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,49.69,NA,NA,NA,NA,NA "424","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20069",NA,NA,2006,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,56.11,NA,NA,NA,NA,NA "425","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20069",NA,NA,2006,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,69.96,NA,NA,NA,NA,NA "426","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20069",NA,NA,2006,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,35.5,NA,NA,NA,NA,NA "427","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20069",NA,NA,2006,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,62.99,NA,NA,NA,NA,NA "428","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20069",NA,NA,2006,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,75.41,NA,NA,NA,NA,NA "429","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20069",NA,NA,2006,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2006,35.74,NA,NA,NA,NA,NA "430","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20078",NA,NA,2007,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,77.26,NA,NA,NA,NA,NA "431","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20078",NA,NA,2007,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,95.88,NA,NA,NA,NA,NA "432","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20078",NA,NA,2007,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,64.32,NA,NA,NA,NA,NA "433","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20078",NA,NA,2007,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,70.09,NA,NA,NA,NA,NA "434","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20078",NA,NA,2007,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,77.23,NA,NA,NA,NA,NA "435","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20078",NA,NA,2007,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,70.41,NA,NA,NA,NA,NA "436","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20078",NA,NA,2007,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,70.56,NA,NA,NA,NA,NA "437","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20078",NA,NA,2007,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,79.07,NA,NA,NA,NA,NA "438","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20078",NA,NA,2007,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,55.26,NA,NA,NA,NA,NA "439","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20077",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,76.5,NA,NA,NA,NA,NA "440","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20077",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,94.04,NA,NA,NA,NA,NA "441","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20077",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,61.21,NA,NA,NA,NA,NA "442","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20077",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,76.23,NA,NA,NA,NA,NA "443","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20077",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,82.85,NA,NA,NA,NA,NA "444","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20077",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,59.35,NA,NA,NA,NA,NA "445","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20077",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,68.18,NA,NA,NA,NA,NA "446","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20077",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,74.02,NA,NA,NA,NA,NA "447","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20077",NA,NA,2007,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,60.99,NA,NA,NA,NA,NA "448","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20076",NA,NA,2007,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,77.86,NA,NA,NA,NA,NA "449","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20076",NA,NA,2007,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,73.87,NA,NA,NA,NA,NA "450","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20076",NA,NA,2007,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,53.77,NA,NA,NA,NA,NA "451","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20076",NA,NA,2007,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,63.25,NA,NA,NA,NA,NA "452","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20076",NA,NA,2007,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,51.4,NA,NA,NA,NA,NA "453","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20076",NA,NA,2007,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,32.63,NA,NA,NA,NA,NA "454","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20076",NA,NA,2007,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,62.59,NA,NA,NA,NA,NA "455","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20076",NA,NA,2007,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,75.51,NA,NA,NA,NA,NA "456","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20076",NA,NA,2007,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,58.13,NA,NA,NA,NA,NA "457","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20075",NA,NA,2007,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,53.73,NA,NA,NA,NA,NA "458","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20075",NA,NA,2007,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,-44.03,NA,NA,NA,NA,NA "459","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20075",NA,NA,2007,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,31.38,NA,NA,NA,NA,NA "460","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20075",NA,NA,2007,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,47.7,NA,NA,NA,NA,NA "461","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20075",NA,NA,2007,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,61.15,NA,NA,NA,NA,NA "462","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20075",NA,NA,2007,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,48.5,NA,NA,NA,NA,NA "463","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20075",NA,NA,2007,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,59.69,NA,NA,NA,NA,NA "464","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20075",NA,NA,2007,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,66.03,NA,NA,NA,NA,NA "465","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20075",NA,NA,2007,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,49.1,NA,NA,NA,NA,NA "466","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20079",NA,NA,2007,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,75.24,NA,NA,NA,NA,NA "467","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20079",NA,NA,2007,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,67.9,NA,NA,NA,NA,NA "468","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20079",NA,NA,2007,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,61.26,NA,NA,NA,NA,NA "469","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20079",NA,NA,2007,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,61.06,NA,NA,NA,NA,NA "470","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20079",NA,NA,2007,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,69.13,NA,NA,NA,NA,NA "471","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20079",NA,NA,2007,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,40.72,NA,NA,NA,NA,NA "472","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20079",NA,NA,2007,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,50.38,NA,NA,NA,NA,NA "473","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20079",NA,NA,2007,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,54.23,NA,NA,NA,NA,NA "474","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20079",NA,NA,2007,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2007,66.29,NA,NA,NA,NA,NA "475","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20088",NA,NA,2008,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.01,NA,"UCI",NA,2008,54.04,NA,NA,NA,NA,NA "476","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20088",NA,NA,2008,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.57,NA,"UCI",NA,2008,52.75,NA,NA,NA,NA,NA "477","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20088",NA,NA,2008,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.84,NA,"UCI",NA,2008,49.96,NA,NA,NA,NA,NA "478","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20088",NA,NA,2008,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.05,NA,"UCI",NA,2008,40.03,NA,NA,NA,NA,NA "479","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20088",NA,NA,2008,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.4,NA,"UCI",NA,2008,52.8,NA,NA,NA,NA,NA "480","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20088",NA,NA,2008,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.63,NA,"UCI",NA,2008,56.89,NA,NA,NA,NA,NA "481","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20088",NA,NA,2008,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.92,NA,"UCI",NA,2008,40.65,NA,NA,NA,NA,NA "482","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20088",NA,NA,2008,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.15,NA,"UCI",NA,2008,45.25,NA,NA,NA,NA,NA "483","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20088",NA,NA,2008,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.2,NA,"UCI",NA,2008,50.87,NA,NA,NA,NA,NA "484","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20088",NA,NA,2008,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.55,NA,"UCI",NA,2008,46,NA,NA,NA,NA,NA "485","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20087",NA,NA,2008,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.39,NA,"UCI",NA,2008,66.14,NA,NA,NA,NA,NA "486","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT5",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT5_20087",NA,NA,2008,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.49,NA,"UCI",NA,2008,55.58,NA,NA,NA,NA,NA "487","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20087",NA,NA,2008,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.37,NA,"UCI",NA,2008,48.97,NA,NA,NA,NA,NA "488","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20087",NA,NA,2008,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.32,NA,"UCI",NA,2008,51.25,NA,NA,NA,NA,NA "489","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20087",NA,NA,2008,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.96,NA,"UCI",NA,2008,64.76,NA,NA,NA,NA,NA "490","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20087",NA,NA,2008,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.17,NA,"UCI",NA,2008,48.23,NA,NA,NA,NA,NA "491","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20087",NA,NA,2008,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.36,NA,"UCI",NA,2008,46.98,NA,NA,NA,NA,NA "492","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20087",NA,NA,2008,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.23,NA,"UCI",NA,2008,61.33,NA,NA,NA,NA,NA "493","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20087",NA,NA,2008,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.87,NA,"UCI",NA,2008,43.42,NA,NA,NA,NA,NA "494","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20087",NA,NA,2008,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.76,NA,"UCI",NA,2008,63.5,NA,NA,NA,NA,NA "495","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20086",NA,NA,2008,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.39,NA,"UCI",NA,2008,65.77,NA,NA,NA,NA,NA "496","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20086",NA,NA,2008,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-27.17,NA,"UCI",NA,2008,71.77,NA,NA,NA,NA,NA "497","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20086",NA,NA,2008,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.65,NA,"UCI",NA,2008,55.21,NA,NA,NA,NA,NA "498","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20086",NA,NA,2008,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.11,NA,"UCI",NA,2008,60.2,NA,NA,NA,NA,NA "499","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20086",NA,NA,2008,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.66,NA,"UCI",NA,2008,89.73,NA,NA,NA,NA,NA "500","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20086",NA,NA,2008,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.66,NA,"UCI",NA,2008,56.68,NA,NA,NA,NA,NA "501","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20086",NA,NA,2008,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.62,NA,"UCI",NA,2008,56.35,NA,NA,NA,NA,NA "502","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20086",NA,NA,2008,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.45,NA,"UCI",NA,2008,62.46,NA,NA,NA,NA,NA "503","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20086",NA,NA,2008,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.98,NA,"UCI",NA,2008,56.73,NA,NA,NA,NA,NA "504","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20086",NA,NA,2008,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.13,NA,"UCI",NA,2008,61.3,NA,NA,NA,NA,NA "505","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20086",NA,NA,2008,6,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.76,NA,"UCI",NA,2008,53.16,NA,NA,NA,NA,NA "506","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20085",NA,NA,2008,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,68.25,NA,NA,NA,NA,NA "507","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20085",NA,NA,2008,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,79.55,NA,NA,NA,NA,NA "508","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20085",NA,NA,2008,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,54.88,NA,NA,NA,NA,NA "509","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20085",NA,NA,2008,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,73.38,NA,NA,NA,NA,NA "510","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20085",NA,NA,2008,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,63.58,NA,NA,NA,NA,NA "511","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20085",NA,NA,2008,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,68.74,NA,NA,NA,NA,NA "512","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20085",NA,NA,2008,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,21.46,NA,NA,NA,NA,NA "513","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20085",NA,NA,2008,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,69.52,NA,NA,NA,NA,NA "514","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20085",NA,NA,2008,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,51.28,NA,NA,NA,NA,NA "515","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20089",NA,NA,2008,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,56.76,NA,NA,NA,NA,NA "516","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT5",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT5_20089",NA,NA,2008,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,41.69,NA,NA,NA,NA,NA "517","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20089",NA,NA,2008,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,44.5,NA,NA,NA,NA,NA "518","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20089",NA,NA,2008,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,16.7,NA,NA,NA,NA,NA "519","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20089",NA,NA,2008,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,45.69,NA,NA,NA,NA,NA "520","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20089",NA,NA,2008,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2008,52.04,NA,NA,NA,NA,NA "521","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.52,NA,"UCI",NA,2009,58.33,NA,NA,NA,NA,NA "522","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.12,NA,"UCI",NA,2009,59.86,NA,NA,NA,NA,NA "523","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.16,NA,"UCI",NA,2009,47.63,NA,NA,NA,NA,NA "524","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.24,NA,"UCI",NA,2009,72.1,NA,NA,NA,NA,NA "525","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.94,NA,"UCI",NA,2009,66.96,NA,NA,NA,NA,NA "526","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.24,NA,"UCI",NA,2009,57.69,NA,NA,NA,NA,NA "527","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.11,NA,"UCI",NA,2009,51.1,NA,NA,NA,NA,NA "528","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.6,NA,"UCI",NA,2009,52.03,NA,NA,NA,NA,NA "529","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.52,NA,"UCI",NA,2009,41.32,NA,NA,NA,NA,NA "530","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.1,NA,"UCI",NA,2009,50.87,NA,NA,NA,NA,NA "531","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.35,NA,"UCI",NA,2009,46.38,NA,NA,NA,NA,NA "532","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20095",NA,NA,2009,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.32,NA,"UCI",NA,2009,70.48,NA,NA,NA,NA,NA "533","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20095",NA,NA,2009,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.41,NA,"UCI",NA,2009,69.15,NA,NA,NA,NA,NA "534","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20095",NA,NA,2009,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.15,NA,"UCI",NA,2009,55.39,NA,NA,NA,NA,NA "535","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20095",NA,NA,2009,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.31,NA,"UCI",NA,2009,54.93,NA,NA,NA,NA,NA "536","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20095",NA,NA,2009,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.64,NA,"UCI",NA,2009,54.42,NA,NA,NA,NA,NA "537","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20095",NA,NA,2009,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.88,NA,"UCI",NA,2009,67.1,NA,NA,NA,NA,NA "538","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20095",NA,NA,2009,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-20.07,NA,"UCI",NA,2009,61.21,NA,NA,NA,NA,NA "539","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20095",NA,NA,2009,5,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.69,NA,"UCI",NA,2009,64.22,NA,NA,NA,NA,NA "540","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.28,NA,"UCI",NA,2009,64.51,NA,NA,NA,NA,NA "541","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.42,NA,"UCI",NA,2009,70.55,NA,NA,NA,NA,NA "542","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.84,NA,"UCI",NA,2009,52.33,NA,NA,NA,NA,NA "543","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.31,NA,"UCI",NA,2009,58.28,NA,NA,NA,NA,NA "544","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.06,NA,"UCI",NA,2009,55.45,NA,NA,NA,NA,NA "545","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-27.88,NA,"UCI",NA,2009,55.34,NA,NA,NA,NA,NA "546","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-20.69,NA,"UCI",NA,2009,41.3,NA,NA,NA,NA,NA "547","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.83,NA,"UCI",NA,2009,39.25,NA,NA,NA,NA,NA "548","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.2,NA,"UCI",NA,2009,47.89,NA,NA,NA,NA,NA "549","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.82,NA,"UCI",NA,2009,58.11,NA,NA,NA,NA,NA "550","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.13,NA,"UCI",NA,2009,41.39,NA,NA,NA,NA,NA "551","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,10.92,NA,NA,NA,NA,NA "552","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,18.25,NA,NA,NA,NA,NA "553","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT5",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT5_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,30.6,NA,NA,NA,NA,NA "554","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,30.19,NA,NA,NA,NA,NA "555","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,24.86,NA,NA,NA,NA,NA "556","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,-22.77,NA,NA,NA,NA,NA "557","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,33.1,NA,NA,NA,NA,NA "558","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,-29,NA,NA,NA,NA,NA "559","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,21.44,NA,NA,NA,NA,NA "560","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,27.38,NA,NA,NA,NA,NA "561","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,39.25,NA,NA,NA,NA,NA "562","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2010,-24.66,NA,NA,NA,NA,NA "563","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,65.06,NA,NA,NA,NA,NA "564","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,53.99,NA,NA,NA,NA,NA "565","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT5",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT5_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,33.98,NA,NA,NA,NA,NA "566","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,0.06,NA,NA,NA,NA,NA "567","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,52.75,NA,NA,NA,NA,NA "568","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,56.88,NA,NA,NA,NA,NA "569","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,45.95,NA,NA,NA,NA,NA "570","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,35.83,NA,NA,NA,NA,NA "571","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,54.72,NA,NA,NA,NA,NA "572","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,45.91,NA,NA,NA,NA,NA "573","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,43.5,NA,NA,NA,NA,NA "574","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2011,37,NA,NA,NA,NA,NA "575","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT1",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT1_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,44.71,NA,NA,NA,NA,NA "576","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT3",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT3_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,39.45,NA,NA,NA,NA,NA "577","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT5",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT5_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,9.38,NA,NA,NA,NA,NA "578","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Extensive","ExT4",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Extensive","ExT4_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,36.37,NA,NA,NA,NA,NA "579","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT15",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT15_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,42.91,NA,NA,NA,NA,NA "580","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT17",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT17_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,46.43,NA,NA,NA,NA,NA "581","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT14",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT14_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,46.32,NA,NA,NA,NA,NA "582","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Minimal","MinT13",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Minimal","MinT13_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,33.12,NA,NA,NA,NA,NA "583","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT10",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT10_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,43.93,NA,NA,NA,NA,NA "584","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT11",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT11_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,36.97,NA,NA,NA,NA,NA "585","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT7",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT7_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,45.23,NA,NA,NA,NA,NA "586","Hicks_Pries_2013","10.1111/gcb.12058",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,19,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, C.E., Schuur E.A.G., Crummer K.G. 2013. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology 19 (2) ","Data from paper and earlier data from the same site for flux","Schuur E. A., C. E. Hicks-Pries. 2012. Eight Mile Lake Research Watershed, Thaw Gradient, The radiocarbon value of ecosystem respiration, 2004-2012 I: Reco.. Environmental Data Initiative. https://doi.org/10.6073/pasta/711c63e36ebaf8f471304ada5d74c51d. Dataset accessed 12/19/2018.",NA,"EML",63.87836111,-149.2535833,"NAD83",700,"Eight Mile Lake in Healy, Alaska; northern foothills of Alaska Range","Moderate","ModT12",NA,NA,NA,NA,"control",NA,NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Moderate","ModT12_20128",NA,NA,2012,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.1,NA,"UCI",NA,2012,41.15,NA,NA,NA,NA,NA "587","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","1","1_AA",NA,NA,NA,NA,"control","control",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"1","Abisko_1_1_AA",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.5987996302053,NA,"UCI",NA,2011,31.0730514628434,NA,NA,NA,NA,NA "588","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","2","2_AS-",NA,NA,NA,NA,"treatment","long term winter warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Abisko_2_2_AS-",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-28.317134708531,NA,"UCI",NA,2011,-1.47542080662286,NA,NA,NA,NA,NA "589","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","2","2_R",NA,NA,NA,NA,"treatment","short term year round warming with OTC, vegetation removed",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Abisko_2_2_R",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-27.2824289476545,NA,"UCI",NA,2011,-23.5731105240851,NA,NA,NA,NA,NA "590","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","2","2_V",NA,NA,NA,NA,"treatment","short term year round warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Abisko_2_2_V",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-27.1865320386562,NA,"UCI",NA,2011,20.603627781447,NA,NA,NA,NA,NA "591","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","2","2_WA",NA,NA,NA,NA,"treatment","long term summer warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Abisko_2_2_WA",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-27.7873158414261,NA,"UCI",NA,2011,27.6179731709757,NA,NA,NA,NA,NA "592","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","2","2_WS+",NA,NA,NA,NA,"treatment","long term year round warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"2","Abisko_2_2_WS+",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.0189466661816,NA,"UCI",NA,2011,36.5632802993146,NA,NA,NA,NA,NA "593","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","3","3_AA",NA,NA,NA,NA,"control","control",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Abisko_3_3_AA",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.1547317929062,NA,"UCI",NA,2011,19.4436325165223,NA,NA,NA,NA,NA "594","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","3","3_AS-",NA,NA,NA,NA,"treatment","long term winter warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Abisko_3_3_AS-",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.2277249963417,NA,"UCI",NA,2011,39.8344273672491,NA,NA,NA,NA,NA "595","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","3","3_R",NA,NA,NA,NA,"treatment","short term year round warming with OTC, vegetation removed",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Abisko_3_3_R",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.3860777306935,NA,"UCI",NA,2011,51.4599765348638,NA,NA,NA,NA,NA "596","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","3","3_V",NA,NA,NA,NA,"treatment","short term year round warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Abisko_3_3_V",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.1378335987269,NA,"UCI",NA,2011,42.3309009133133,NA,NA,NA,NA,NA "597","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","3","3_WA",NA,NA,NA,NA,"treatment","long term summer warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Abisko_3_3_WA",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.6843342282075,NA,"UCI",NA,2011,29.3014775189919,NA,NA,NA,NA,NA "598","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","3","3_WS+",NA,NA,NA,NA,"treatment","long term year round warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"3","Abisko_3_3_WS+",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-31.3927509524092,NA,"UCI",NA,2011,56.3297814269242,NA,NA,NA,NA,NA "599","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","4","4_AA",NA,NA,NA,NA,"control","control",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Abisko_4_4_AA",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.8082859820507,NA,"UCI",NA,2011,0.451224130932183,NA,NA,NA,NA,NA "600","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","4","4_AS-",NA,NA,NA,NA,"treatment","long term winter warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Abisko_4_4_AS-",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.6041512330557,NA,"UCI",NA,2011,-21.1621918560745,NA,NA,NA,NA,NA "601","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","4","4_R",NA,NA,NA,NA,"treatment","short term year round warming with OTC, vegetation removed",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Abisko_4_4_R",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-28.4821415135704,NA,"UCI",NA,2011,47.4929447931999,NA,NA,NA,NA,NA "602","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","4","4_V",NA,NA,NA,NA,"treatment","short term year round warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Abisko_4_4_V",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-27.8960172712687,NA,"UCI",NA,2011,45.6737587499152,NA,NA,NA,NA,NA "603","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","4","4_WA",NA,NA,NA,NA,"treatment","long term summer warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Abisko_4_4_WA",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.6261850881053,NA,"UCI",NA,2011,30.1490348476787,NA,NA,NA,NA,NA "604","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","4","4_WS+",NA,NA,NA,NA,"treatment","long term year round warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"4","Abisko_4_4_WS+",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-28.6756394943276,NA,"UCI",NA,2011,33.1871523190502,NA,NA,NA,NA,NA "605","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","5","5_AA",NA,NA,NA,NA,"control","control",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Abisko_5_5_AA",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-27.1834204686499,NA,"UCI",NA,2011,21.5502107032817,NA,NA,NA,NA,NA "606","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","5","5_AS-",NA,NA,NA,NA,"treatment","long term winter warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Abisko_5_5_AS-",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.6181009477666,NA,"UCI",NA,2011,33.7940064485668,NA,NA,NA,NA,NA "607","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","5","5_R",NA,NA,NA,NA,"treatment","short term year round warming with OTC, vegetation removed",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Abisko_5_5_R",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-27.6505294106391,NA,"UCI",NA,2011,49.2969080910398,NA,NA,NA,NA,NA "608","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","5","5_V",NA,NA,NA,NA,"treatment","short term year round warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Abisko_5_5_V",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.2218736304758,NA,"UCI",NA,2011,31.0225739204812,NA,NA,NA,NA,NA "609","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","5","5_WA",NA,NA,NA,NA,"treatment","long term summer warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Abisko_5_5_WA",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.8259239654617,NA,"UCI",NA,2011,45.4457550686914,NA,NA,NA,NA,NA "610","Hicks_Pries_2015","10.1111/gcb.13032",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,21,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","Hicks Pries, CE, RSP Logtestijn, EAG Schuur, SM Natali, JHC Cornelissen, R Aerts, E Dorrepaal. 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology 21 (12), 4508-4519 doi: 10.1111/gcb.13032","CiPEHR data in this paper can be found in the Hicks_Pries_2016 template","Hicks_Pries_2016",NA,"Abisko",68.35,18.82,"WGS84",340,"Abisko, Sweden","5","5_WS+",NA,NA,NA,NA,"treatment","long term year round warming with OTC",NA,NA,-0.5,320,"Histosols",NA,NA,NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Ecosystem: Ombrotrophic peat bog; Sphagnum fuscum (dominant), others: Empetrum hermaphroditum, Betula nana, Rubus chamaemorus, Andromeda polifolia, Calamagrostis lapponica, and Vaccinium uliginosum",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"5","Abisko_5_5_WS+",NA,NA,2011,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-28.30225613982,NA,"UCI",NA,2011,35.2650703669896,NA,NA,NA,NA,NA "611","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_2_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.26,NA,"UCI",NA,2009,44.08,NA,NA,NA,NA,NA "612","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_2_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.88,NA,"UCI",NA,2009,39.57,NA,NA,NA,NA,NA "613","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_2_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-20.49,NA,"UCI",NA,2009,41.3,NA,NA,NA,NA,NA "614","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_1_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.23,NA,"UCI",NA,2009,18.63,NA,NA,NA,NA,NA "615","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_1_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.07,NA,"UCI",NA,2009,39.19,NA,NA,NA,NA,NA "616","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_1_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.83,NA,"UCI",NA,2009,24.96,NA,NA,NA,NA,NA "617","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","2_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","2_6_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.58,NA,"UCI",NA,2009,37.8,NA,NA,NA,NA,NA "618","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_6_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.33,NA,"UCI",NA,2009,39.5,NA,NA,NA,NA,NA "619","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_6_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.4,NA,"UCI",NA,2009,33.45,NA,NA,NA,NA,NA "620","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_5_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-20.83,NA,"UCI",NA,2009,44.88,NA,NA,NA,NA,NA "621","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_5_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.15,NA,"UCI",NA,2009,48.97,NA,NA,NA,NA,NA "622","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_5_20097",NA,NA,2009,7,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.2,NA,"UCI",NA,2009,44.83,NA,NA,NA,NA,NA "623","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_2_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.28,NA,"UCI",NA,2009,62.16,NA,NA,NA,NA,NA "624","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_2_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.3,NA,"UCI",NA,2009,37.76,NA,NA,NA,NA,NA "625","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_2_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.5,NA,"UCI",NA,2009,55.08,NA,NA,NA,NA,NA "626","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_1_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.85,NA,"UCI",NA,2009,67.2,NA,NA,NA,NA,NA "627","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_1_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.36,NA,"UCI",NA,2009,35.96,NA,NA,NA,NA,NA "628","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_1_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.45,NA,"UCI",NA,2009,60.66,NA,NA,NA,NA,NA "629","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","2_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","2_6_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.12,NA,"UCI",NA,2009,56.66,NA,NA,NA,NA,NA "630","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_6_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.16,NA,"UCI",NA,2009,58.32,NA,NA,NA,NA,NA "631","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_6_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.76,NA,"UCI",NA,2009,59.8,NA,NA,NA,NA,NA "632","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_5_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.31,NA,"UCI",NA,2009,36.07,NA,NA,NA,NA,NA "633","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_5_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.97,NA,"UCI",NA,2009,32.7,NA,NA,NA,NA,NA "634","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_5_20099",NA,NA,2009,9,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.82,NA,"UCI",NA,2009,48.51,NA,NA,NA,NA,NA "635","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_2_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.05,NA,"UCI",NA,2010,-15.75,NA,NA,NA,NA,NA "636","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","2_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","2_2_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.93,NA,"UCI",NA,2010,-52.28,NA,NA,NA,NA,NA "637","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","3_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","3_2_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.74,NA,"UCI",NA,2010,-5.35,NA,NA,NA,NA,NA "638","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_2_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.66,NA,"UCI",NA,2010,-28.82,NA,NA,NA,NA,NA "639","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_2_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.2,NA,"UCI",NA,2010,-68.52,NA,NA,NA,NA,NA "640","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_2_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.36,NA,"UCI",NA,2010,-326.1,NA,NA,NA,NA,NA "641","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_1_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.08,NA,"UCI",NA,2010,31.5,NA,NA,NA,NA,NA "642","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","2_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","2_1_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.07,NA,"UCI",NA,2010,13.45,NA,NA,NA,NA,NA "643","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","3_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","3_1_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.28,NA,"UCI",NA,2010,38.9,NA,NA,NA,NA,NA "644","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_1_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.93,NA,"UCI",NA,2010,-41.75,NA,NA,NA,NA,NA "645","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_1_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.88,NA,"UCI",NA,2010,9.89,NA,NA,NA,NA,NA "646","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_1_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.16,NA,"UCI",NA,2010,-22.86,NA,NA,NA,NA,NA "647","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_6_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.72,NA,"UCI",NA,2010,-41.03,NA,NA,NA,NA,NA "648","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","2_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","2_6_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.21,NA,"UCI",NA,2010,30.64,NA,NA,NA,NA,NA "649","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","3_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","3_6_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.93,NA,"UCI",NA,2010,-22.61,NA,NA,NA,NA,NA "650","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_6_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.3,NA,"UCI",NA,2010,-18.82,NA,NA,NA,NA,NA "651","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_6_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.07,NA,"UCI",NA,2010,-5.07,NA,NA,NA,NA,NA "652","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_6_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.74,NA,"UCI",NA,2010,-7.72,NA,NA,NA,NA,NA "653","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_5_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.12,NA,"UCI",NA,2010,28.43,NA,NA,NA,NA,NA "654","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","2_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","2_5_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.47,NA,"UCI",NA,2010,30.3,NA,NA,NA,NA,NA "655","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","3_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","3_5_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.27,NA,"UCI",NA,2010,15.93,NA,NA,NA,NA,NA "656","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_5_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.22,NA,"UCI",NA,2010,29.36,NA,NA,NA,NA,NA "657","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_5_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.56,NA,"UCI",NA,2010,20.24,NA,NA,NA,NA,NA "658","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_5_20108",NA,NA,2010,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.29,NA,"UCI",NA,2010,23.88,NA,NA,NA,NA,NA "659","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_2_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.75,NA,"UCI",NA,2011,47.84,NA,NA,NA,NA,NA "660","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","2_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","2_2_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.35,NA,"UCI",NA,2011,47.34,NA,NA,NA,NA,NA "661","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","3_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","3_2_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.8,NA,"UCI",NA,2011,45.8,NA,NA,NA,NA,NA "662","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_2_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.3,NA,"UCI",NA,2011,45.69,NA,NA,NA,NA,NA "663","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_2_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.48,NA,"UCI",NA,2011,46.59,NA,NA,NA,NA,NA "664","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_2",NA,NA,NA,NA,"control","control",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_2_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.65,NA,"UCI",NA,2011,39.62,NA,NA,NA,NA,NA "665","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","2_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","2_1_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.11,NA,"UCI",NA,2011,30.37,NA,NA,NA,NA,NA "666","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","3_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","3_1_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.96,NA,"UCI",NA,2011,50.6,NA,NA,NA,NA,NA "667","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_1_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.51,NA,"UCI",NA,2011,28.94,NA,NA,NA,NA,NA "668","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_1_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.01,NA,"UCI",NA,2011,57.59,NA,NA,NA,NA,NA "669","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_1",NA,NA,NA,NA,"treatment","air warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_1_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.86,NA,"UCI",NA,2011,49.63,NA,NA,NA,NA,NA "670","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_6_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.98,NA,"UCI",NA,2011,48.06,NA,NA,NA,NA,NA "671","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","2_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","2_6_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.62,NA,"UCI",NA,2011,48.14,NA,NA,NA,NA,NA "672","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_6_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.5,NA,"UCI",NA,2011,56.28,NA,NA,NA,NA,NA "673","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_6_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.03,NA,"UCI",NA,2011,31.07,NA,NA,NA,NA,NA "674","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_6",NA,NA,NA,NA,"treatment","soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_6_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.47,NA,"UCI",NA,2011,52.64,NA,NA,NA,NA,NA "675","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","1_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","1_5_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.27,NA,"UCI",NA,2011,46.63,NA,NA,NA,NA,NA "676","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","A","2_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"A","2_5_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.64,NA,"UCI",NA,2011,48.55,NA,NA,NA,NA,NA "677","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","3_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","3_5_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.68,NA,"UCI",NA,2011,46.73,NA,NA,NA,NA,NA "678","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","B","4_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"B","4_5_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.85,NA,"UCI",NA,2011,45.21,NA,NA,NA,NA,NA "679","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","5_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","5_5_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.17,NA,"UCI",NA,2011,38.98,NA,NA,NA,NA,NA "680","Hicks_Pries_2016","10.1038/nclimate2830",NA,"Caitlin Hicks Pries","Dartmouth College","caitlin.pries@dartmouth.edu",2018,12,30,"Caitlin E. Hicks Pries","caitlin.pries@dartmouth.edu","https://orcid.org/0000-0003-0813-2211","CE Hicks Pries, EAG Schuur, SM Natali, KG Crummer, 2016, Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra, Nature Climate Change, ",NA,"Hicks-Pries_2015",NA,"CiPEHR",63.88,-149.2255,"WGS84",700,"Healy, Alaska","C","6_5",NA,NA,NA,NA,"treatment","air and soil warming",NA,NA,-1,378,"Gelisols",NA,NA,NA,NA,NA,NA,NA,NA,"tundra",NA,NA,NA,"moist acidic tundra, dominated by tussock-forming sedge Eriophorum vaginatum, with coexisting deciduous and evergreen shrubs, understory of mosses and lichens; other vegetation: Pleurozium schreberi, Sphagnum spp., Carex bigelowii, Betula nana, Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcarpus",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C","6_5_20118",NA,NA,2011,8,NA,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.55,NA,"UCI",NA,2011,47.83,NA,NA,NA,NA,NA "681","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17,NA,NA,NA,0.0138752045972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "682","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.2,NA,NA,NA,0.0197806442777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "683","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0116845049444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "684","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.6,NA,NA,NA,0.0160293717222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "685","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.4,NA,NA,NA,0.0145275293472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "686","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.6,NA,NA,NA,0.0185057623055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "687","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.5,NA,NA,NA,0.0111514689305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "688","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.5,NA,NA,NA,0.0118725108333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "689","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.26,NA,NA,NA,0.039831165,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "690","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.5,NA,20.0425781,NA,0.0160423844166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "691","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.65,NA,NA,NA,0.0175728769027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "692","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.9,NA,30.4727112,NA,0.0127903885694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "693","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.5,NA,NA,NA,0.0178295910833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "694","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.4,NA,NA,NA,0.0146296305833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "695","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.4,NA,38.4796821,NA,0.0173943905972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "696","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.9,NA,31.3155503,NA,0.0314358629444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "697","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.4,NA,18.0408354,NA,0.00966169004166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "698","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.7,NA,17.1979963,NA,0.00809656069444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "699","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.6,NA,NA,NA,0.0132848860833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "700","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_A_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.1,NA,41.0081992,NA,0.0134979389722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "701","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.2,NA,NA,NA,0.0194120532222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "702","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.3,NA,NA,NA,0.0266555153333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "703","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0120697680277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "704","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.2,NA,NA,NA,0.0256691801666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "705","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.2,NA,NA,NA,0.0168859197222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "706","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.6,NA,NA,NA,0.0190289881527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "707","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.6,NA,NA,NA,0.0157965675694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "708","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.1,NA,NA,NA,0.0156668960555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "709","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.7,NA,NA,NA,0.043398135,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "710","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.5,NA,19.5158037,NA,0.0190252146944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "711","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.5,NA,NA,NA,0.01793931975,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "712","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6,NA,31.3155503,NA,0.0155801737361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "713","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.9,NA,NA,NA,0.0204796269027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "714","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.9,NA,NA,NA,0.0150999071666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "715","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12,NA,31.9476795,NA,0.0255575176388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "716","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19,NA,35.2136808,NA,0.0392053986805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "717","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.6,NA,13.4052207,NA,0.0125000871111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "718","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21,NA,12.0356072,NA,0.00879768083333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "719","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.1,NA,NA,NA,0.0166918348055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "720","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_B_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.9,NA,39.5332309,NA,0.0157246110694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "721","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.2,NA,NA,NA,0.0189671100972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "722","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.5,NA,NA,NA,0.0166564999027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "723","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0143467959861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "724","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.9,NA,NA,NA,0.0190813777916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "725","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.7,NA,NA,NA,0.0301330035416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "726","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.4,NA,NA,NA,0.018280304625,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "727","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.5,NA,NA,NA,0.0167976803194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "728","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.7,NA,NA,NA,0.0260696418888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "729","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.75,NA,NA,NA,0.03540548,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "730","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.7,NA,18.8836744,NA,0.0157232175833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "731","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.25,NA,NA,NA,0.0160285946944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "732","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6,NA,23.3085794,NA,0.0135778082916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "733","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.2,NA,NA,NA,0.0160337026666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "734","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.7,NA,NA,NA,0.0149277527361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "735","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.8,NA,37.2154235,NA,0.0239469197916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "736","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.4,NA,33.2119381,NA,0.0478347633194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "737","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.9,NA,15.9337378,NA,0.0134313894305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "738","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.1,NA,13.1945109,NA,0.00746221727777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "739","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.1,NA,NA,NA,0.0144840720138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "740","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_C_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.9,NA,35.6351003,NA,0.0130584113611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "741","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.7,NA,NA,NA,0.0211054645694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "742","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9,NA,NA,NA,0.0336191429444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "743","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0179180051111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "744","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.6,NA,NA,NA,0.0278989945972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "745","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.9,NA,NA,NA,0.0270019459722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "746","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.6,NA,NA,NA,0.0251450069444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "747","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.7,NA,NA,NA,0.0201234252083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "748","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.8,NA,NA,NA,0.01632049925,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "749","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10,NA,NA,NA,0.05759996,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "750","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.8,NA,23.624644,NA,0.0191653905972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "751","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.2,NA,NA,NA,0.0361552552777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "752","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.7,NA,29.5245173,NA,0.0213594761111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "753","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.6,NA,NA,NA,0.02622279275,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "754","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.5,NA,NA,NA,0.0206196518611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "755","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.3,NA,36.4779394,NA,0.0356323070277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "756","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.2,NA,35.7404552,NA,0.0667027053611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "757","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.4,NA,17.1979963,NA,0.0144366549861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "758","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.9,NA,11.0874133,NA,0.00920687105555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "759","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.2,NA,NA,NA,0.0260515919583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "760","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_D_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.9,NA,38.585037,NA,0.0214843415416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "761","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.2,NA,NA,NA,0.0235365802222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "762","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9,NA,NA,NA,0.0229927645138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "763","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0213617506666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "764","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.6,NA,NA,NA,0.0368659831527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "765","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.8,NA,NA,NA,0.0319767535694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "766","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.9,NA,NA,NA,0.0325139506388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "767","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.9,NA,NA,NA,0.0264606115277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "768","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.9,NA,NA,NA,0.0202679102083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "769","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.7,NA,NA,NA,0.0541651,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "770","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.9,NA,26.0478063,NA,0.0199831344166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "771","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.5,NA,NA,NA,0.0211862948611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "772","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.9,NA,41.8510383,NA,0.014805891375,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "773","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.5,NA,NA,NA,0.0229615356666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "774","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.6,NA,NA,NA,0.0166046132083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "775","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.1,NA,32.7905186,NA,0.0280279915972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "776","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.7,NA,45.7491688,NA,0.0828816957222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "777","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.6,NA,17.0926415,NA,0.0138002408194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "778","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.9,NA,10.8767035,NA,0.0136001257638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "779","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.1,NA,NA,NA,0.0147433716527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "780","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_E_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.2,NA,47.9616213,NA,0.0125228626111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "781","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.1,NA,NA,NA,0.0204654171944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "782","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.1,NA,NA,NA,0.017418908375,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "783","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0183508818472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "784","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14,NA,NA,NA,0.0259744014444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "785","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19,NA,NA,NA,0.0207196328472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "786","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.6,NA,NA,NA,0.0204002111805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "787","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19,NA,NA,NA,0.0120469928333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "788","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.17,NA,NA,NA,0.036924745,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "789","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.7,NA,15.4069634,NA,0.0185828457222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "790","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.9,NA,NA,NA,0.0178077120833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "791","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6,NA,36.0565199,NA,0.0121680848055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "792","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.3,NA,NA,NA,0.0178839866944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "793","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.5,NA,NA,NA,0.0128229554444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "794","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.1,NA,36.3725845,NA,0.0219203068333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "795","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.3,NA,26.4692258,NA,0.0396711522777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "796","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.1,NA,15.3016085,NA,0.00996964252777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "797","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.3,NA,20.5693525,NA,0.0100328051388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "798","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.3,NA,NA,NA,0.0130413957361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "799","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_F_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.9,NA,38.4796821,NA,0.012788879125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "800","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16,NA,NA,NA,0.0152207974722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "801","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.3,NA,NA,NA,0.0207840170694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "802","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0148809106111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "803","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.7,NA,NA,NA,0.0150337630972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "804","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.4,NA,NA,NA,0.0314026421805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "805","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.7,NA,NA,NA,0.0232289821805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "806","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.9,NA,NA,NA,0.0157431486666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "807","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.5,NA,NA,NA,0.0136762153611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "808","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.3,NA,NA,NA,0.0766238,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "809","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.3,NA,26.8906453,NA,0.0160294352777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "810","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.05,NA,NA,NA,0.0148259873055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "811","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.8,NA,38.7957467,NA,0.0159513934861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "812","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.9,NA,NA,NA,0.0131231494166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "813","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.6,NA,NA,NA,0.0118253568888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "814","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.3,NA,38.1636175,NA,0.0213965192222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "815","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.3,NA,35.1083259,NA,0.0276916580416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "816","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.8,NA,23.3085794,NA,0.00974667665277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "817","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.1,NA,18.5676098,NA,0.00744273933333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "818","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8,NA,NA,NA,0.0147762265138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "819","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Control","1Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Control","1Control_G_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8,NA,43.7474261,NA,0.0149267792361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "820","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.6,NA,NA,NA,0.0486155260555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "821","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.3,NA,NA,NA,0.0557147526527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "822","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.7,NA,NA,NA,0.0284810204861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "823","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.3,NA,NA,NA,0.0415169157638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "824","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.9,NA,NA,NA,0.0488086072222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "825","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.1,NA,NA,NA,0.0456980441805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "826","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20,NA,NA,NA,0.0450521202083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "827","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.05,NA,NA,NA,0.10899075,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "828","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.6,NA,14.0373499,NA,0.0249164874444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "829","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.3,NA,NA,NA,0.0259388141527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "830","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.9,NA,30.4727112,NA,0.034515276125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "831","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.2,NA,NA,NA,0.0424867449722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "832","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.3,NA,NA,NA,0.0508910149305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "833","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.8,NA,NA,NA,0.0375121708194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "834","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.3,NA,26.5745807,NA,0.0499279799027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "835","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19,NA,35.5297455,NA,0.0715295942777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "836","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,31.6,NA,13.9319951,NA,0.0287620824027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "837","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.5,NA,20.5693525,NA,0.024701010125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "838","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.3,NA,NA,NA,0.0463411321388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "839","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_A_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.4,NA,42.9045871,NA,0.0386098730416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "840","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.2,NA,NA,NA,0.0338870279305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "841","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.8,NA,NA,NA,0.0512272212222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "842","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18,NA,NA,NA,0.0242634047638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "843","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.6,NA,NA,NA,0.0349755579861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "844","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.5,NA,NA,NA,0.0457656411666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "845","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.2,NA,NA,NA,0.0312651104027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "846","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.2,NA,NA,NA,0.0326115053611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "847","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.29,NA,NA,NA,0.0885137,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "848","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.8,NA,19.5158037,NA,0.0306353460416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "849","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.4,NA,NA,NA,0.0212125335277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "850","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13,NA,30.2620015,NA,0.0342560892361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "851","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.7,NA,NA,NA,0.0421146128333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "852","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.7,NA,NA,NA,0.0392731956527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "853","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.2,NA,NA,NA,0.0238959699305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "854","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.1,NA,36.5832943,NA,0.0372225253888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "855","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.1,NA,34.5815515,NA,0.0621441412777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "856","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.7,NA,21.9389659,NA,0.0274316739583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "857","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.4,NA,17.8301256,NA,0.0194905049166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "858","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.8,NA,NA,NA,0.0351881980694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "859","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_B_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.4,NA,35.1083259,NA,0.0314571021111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "860","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.2,NA,NA,NA,0.0328262363611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "861","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15,NA,NA,NA,0.0351523130138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "862","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.9,NA,NA,NA,0.0204316792777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "863","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.3,NA,NA,NA,0.0311526731388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "864","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25,NA,NA,NA,0.0528851656666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "865","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25,NA,NA,NA,0.0217519324305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "866","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.6,NA,NA,NA,0.0181189839722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "867","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.15,NA,NA,NA,0.054231155,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "868","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.9,NA,27.9441941,NA,0.0197812126111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "869","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.95,NA,NA,NA,0.0119385322222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "870","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.7,NA,31.52626,NA,0.0259065490138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "871","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.95,NA,NA,NA,0.0197541154861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "872","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.8,NA,NA,NA,0.0280106355833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "873","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.5,NA,NA,NA,0.018285179,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "874","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.4,NA,38.0582626,NA,0.0280854383333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "875","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.5,NA,33.5280027,NA,0.0477786098472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "876","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.7,NA,18.8836744,NA,0.0165406424027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "877","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.8,NA,17.4087061,NA,0.0161442772638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "878","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.8,NA,NA,NA,0.0227734242083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "879","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_C_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.2,NA,38.2689723,NA,0.0244662507222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "880","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.7,NA,NA,NA,0.0258597849583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "881","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.6,NA,NA,NA,0.0340123031111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "882","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0281521764027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "883","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16,NA,NA,NA,0.0187962017222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "884","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.6,NA,NA,NA,0.0268787546805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "885","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.8,NA,NA,NA,0.0333070992222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "886","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.7,NA,NA,NA,0.0322569163888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "887","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.8,NA,NA,NA,0.0203799163333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "888","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.51,NA,NA,NA,0.048814645,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "889","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.8,NA,20.5693525,NA,0.0175392601388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "890","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.3,NA,NA,NA,0.0157277812083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "891","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.7,NA,25.8370965,NA,0.0222431395694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "892","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.15,NA,NA,NA,0.0193904732083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "893","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.3,NA,NA,NA,0.0228789884583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "894","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.1,NA,NA,NA,0.0187057193888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "895","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.1,NA,35.7404552,NA,0.0212443187916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "896","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.1,NA,29.4191624,NA,0.0367314398611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "897","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.6,NA,24.4674831,NA,0.0228464811666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "898","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.7,NA,19.4104488,NA,0.0148146209444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "899","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.1,NA,NA,NA,0.0208102791111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "900","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_D_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.1,NA,38.2689723,NA,0.0204145698472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "901","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.4,NA,NA,NA,0.0471755606666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "902","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.7,NA,NA,NA,0.0655599255972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "903","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0377292205277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "904","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.8,NA,NA,NA,0.0432433459027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "905","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.5,NA,NA,NA,0.0449080483194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "906","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24,NA,NA,NA,0.0577445803611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "907","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.8,NA,NA,NA,0.0371576469305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "908","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.3,NA,NA,NA,0.0528205038472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "909","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.92,NA,NA,NA,0.09710085,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "910","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14,NA,16.3551573,NA,0.0297943960416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "911","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.45,NA,NA,NA,0.0192584420416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "912","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.9,NA,25.2049672,NA,0.0383349385833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "913","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.75,NA,NA,NA,0.0290908650694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "914","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.3,NA,NA,NA,0.0429854790138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "915","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.9,NA,NA,NA,0.0287941466388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "916","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.8,NA,27.2067099,NA,0.0404322121805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "917","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.4,NA,29.4191624,NA,0.0769041252222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "918","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.2,NA,15.6176731,NA,0.0310095700138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "919","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.9,NA,12.6677365,NA,0.0274051286666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "920","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.8,NA,NA,NA,0.0449009791388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "921","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_E_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.8,NA,35.8458101,NA,0.0383716680416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "922","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22,NA,NA,NA,0.0266454987638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "923","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.5,NA,NA,NA,0.035186762875,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "924","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.1,NA,NA,NA,0.00459201493055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "925","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,27.3,NA,NA,NA,0.0238213638055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "926","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.7,NA,NA,NA,0.0279188118611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "927","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.9,NA,NA,NA,0.0205155779583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "928","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.6,NA,NA,NA,0.0266856185138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "929","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.97,NA,NA,NA,0.04716327,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "930","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14,NA,26.1531611,NA,0.01576023625,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "931","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.15,NA,NA,NA,0.019352092375,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "932","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.4,NA,34.6869064,NA,0.0255606132222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "933","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.9,NA,NA,NA,0.0221600463333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "934","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.5,NA,NA,NA,0.03555351525,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "935","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.1,NA,NA,NA,0.0284272541666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "936","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.9,NA,26.3638709,NA,0.0268353317222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "937","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,27.1,NA,28.4709685,NA,0.0585122399583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "938","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.9,NA,14.4587695,NA,0.0148685955,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "939","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.6,NA,19.3050939,NA,0.0136804686944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "940","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.7,NA,NA,NA,0.0210311456666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "941","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_F_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.7,NA,43.3260066,NA,0.0266157098472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "942","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.5,NA,NA,NA,0.0272836041805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "943","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.2,NA,NA,NA,0.0317130143611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "944","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.9,NA,NA,NA,0.0294892824722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "945","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,27.4,NA,NA,NA,0.0486012786111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "946","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.6,NA,NA,NA,0.0326090526666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "947","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.4,NA,NA,NA,0.0196296190138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "948","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,29.65,NA,NA,NA,0.034732922125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "949","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.9,NA,NA,NA,0.053438495,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "950","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.5,NA,23.3085794,NA,0.0194014238611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "951","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.65,NA,NA,NA,0.0138876859305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "952","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.8,NA,33.2119381,NA,0.0260630689305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "953","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.4,NA,NA,NA,0.0385746929027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "954","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.8,NA,NA,NA,0.0335530965,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "955","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.5,NA,NA,NA,0.0285959020416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "956","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.7,NA,33.9494223,NA,0.0272952279722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "957","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.2,NA,26.8906453,NA,0.0793542658333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "958","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.3,NA,22.6764501,NA,0.0157064108055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "959","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,28.5,NA,12.6677365,NA,0.0118396923333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "960","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12,NA,NA,NA,0.0293336990833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "961","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","1Heated","1Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"1Heated","1Heated_G_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13,NA,35.6351003,NA,0.0289227147916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "962","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.3,NA,NA,NA,0.0222040924722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "963","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.4,NA,NA,NA,0.0255439256111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "964","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0156477953194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "965","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.8,NA,NA,NA,0.0230610574027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "966","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.6,NA,NA,NA,0.0233668195138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "967","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.6,NA,NA,NA,0.01829633575,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "968","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.9,NA,NA,NA,0.01579917625,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "969","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.7,NA,NA,NA,0.05099446,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "970","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.9,NA,21.8336111,NA,0.0181903996388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "971","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.45,NA,NA,NA,0.0199397165,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "972","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.4,NA,41.4296187,NA,0.0108145746805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "973","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.1,NA,NA,NA,0.0173260778472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "974","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7,NA,NA,NA,0.0161899845555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "975","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.1,NA,35.6351003,NA,0.0188792538611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "976","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.4,NA,35.7404552,NA,0.0649025267916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "977","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.1,NA,19.3050939,NA,0.0131207149027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "978","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19,NA,16.8819317,NA,0.00926602523611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "979","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.3,NA,NA,NA,0.0145994102222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "980","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_A_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.4,NA,42.1671029,NA,0.0143474148888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "981","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.6,NA,NA,NA,0.0212724224166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "982","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.2,NA,NA,NA,0.0233353639444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "983","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0179544989861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "984","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.2,NA,NA,NA,0.0251049014027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "985","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.8,NA,NA,NA,0.0127126613472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "986","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.6,NA,NA,NA,0.0189531216111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "987","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.5,NA,NA,NA,0.0165359619027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "988","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.09,NA,NA,NA,0.02866787,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "989","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.3,NA,21.5175464,NA,0.0110387166388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "990","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.9,NA,NA,NA,0.0157234488888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "991","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.1,NA,37.5314882,NA,0.0119123765138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "992","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.1,NA,NA,NA,0.0165243034305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "993","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.1,NA,NA,NA,0.0164389313611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "994","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.4,NA,34.0547771,NA,0.0163702397222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "995","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.6,NA,37.8475528,NA,0.0407242276527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "996","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.2,NA,16.6712219,NA,0.0106567767777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "997","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.2,NA,16.9872866,NA,0.00741190801388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "998","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.6,NA,NA,NA,0.012231954625,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "999","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_B_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.8,NA,34.2654869,NA,0.00959593402777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1000","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.4,NA,NA,NA,0.0148237514027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1001","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.2,NA,NA,NA,0.0163467056805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1002","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.3,NA,NA,NA,0.0207711722777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1003","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.4,NA,NA,NA,0.0251112604722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1004","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.8,NA,NA,NA,0.0200629803611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1005","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.3,NA,NA,NA,0.0132552276388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1006","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.94,NA,NA,NA,0.037717405,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1007","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.3,NA,21.5175464,NA,0.0139226908333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1008","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.3,NA,NA,NA,0.0173428369583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1009","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.6,NA,36.2672296,NA,0.0110476356527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1010","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.1,NA,NA,NA,0.0156720009722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1011","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.2,NA,NA,NA,0.0147405315138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1012","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.8,NA,35.951165,NA,0.0140458485138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1013","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.4,NA,37.5314882,NA,0.0341938816388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1014","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.6,NA,17.9354805,NA,0.0107598505972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1015","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.4,NA,18.0408354,NA,0.00829938175,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1016","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.1,NA,NA,NA,0.012367482875,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1017","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_C_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.3,NA,37.8475528,NA,0.0133055404166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1018","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.4,NA,NA,NA,0.0292431678611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1019","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.9,NA,NA,NA,0.033182106375,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1020","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.024538529125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1021","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.9,NA,NA,NA,0.0101336865972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1022","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21,NA,NA,NA,0.0204670801805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1023","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.4,NA,NA,NA,0.0283549161805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1024","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.85,NA,NA,NA,0.055948585,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1025","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.3,NA,20.147933,NA,0.0188094591666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1026","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.35,NA,NA,NA,0.0180997694166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1027","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.5,NA,34.4761967,NA,0.0173918916111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1028","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.4,NA,NA,NA,0.0226584130972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1029","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.7,NA,NA,NA,0.0218239657777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1030","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.3,NA,31.52626,NA,0.0184530883472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1031","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20,NA,27.3120648,NA,0.0425361115972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1032","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23,NA,16.7765768,NA,0.0155411538333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1033","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.6,NA,12.3516719,NA,0.0102082031944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1034","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.1,NA,NA,NA,0.0139958726111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1035","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_D_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.1,NA,37.2154235,NA,0.017140143625,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1036","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10,NA,NA,NA,0.0424398568611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1037","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.3,NA,NA,NA,0.042908371,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1038","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.014302772,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1039","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.5,NA,NA,NA,0.0275705414722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1040","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.9,NA,NA,NA,0.0213773857916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1041","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.3,NA,NA,NA,0.0192086095972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1042","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.3,NA,NA,NA,0.0253323763611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1043","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.1,NA,NA,NA,0.06195959,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1044","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.2,NA,16.5658671,NA,0.0168266845694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1045","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.5,NA,NA,NA,0.0242353093888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1046","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.6,NA,30.683421,NA,0.0163707631388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1047","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.4,NA,NA,NA,0.0240682404722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1048","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.6,NA,NA,NA,0.0203228050972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1049","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.1,NA,30.8941307,NA,0.0205601675277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1050","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.6,NA,35.951165,NA,0.0374710039305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1051","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23,NA,16.8819317,NA,0.0175156380972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1052","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.4,NA,17.1979963,NA,0.0108740979722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1053","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.5,NA,NA,NA,0.0255344174861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1054","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_E_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.9,NA,39.427876,NA,0.0134651794444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1055","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.6,NA,NA,NA,0.0214684639583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1056","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.7,NA,NA,NA,0.0291938869444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1057","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.8,NA,NA,NA,0.0140196116805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1058","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.1,NA,NA,NA,0.0161011589444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1059","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.9,NA,NA,NA,0.0182881629027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1060","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.5,NA,NA,NA,0.0192370163333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1061","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.1,NA,NA,NA,0.0155834242361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1062","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.79,NA,NA,NA,0.03685869,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1063","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.2,NA,18.1461903,NA,0.0142844898472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1064","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_2015107_2",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.25,NA,NA,NA,0.0140455082777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1065","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.85,NA,NA,NA,0.0108581172638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1066","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.6,NA,34.8976162,NA,0.0102195478611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1067","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.3,NA,NA,NA,0.0158799845416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1068","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7,NA,NA,NA,0.01615033475,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1069","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.2,NA,37.5314882,NA,0.018598089125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1070","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.3,NA,39.0064565,NA,0.0320243957916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1071","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.5,NA,21.3068367,NA,0.0120472369722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1072","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.3,NA,15.6176731,NA,0.00882056190277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1073","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.3,NA,NA,NA,0.0134337295277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1074","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_F_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.3,NA,38.1636175,NA,0.0108260114722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1075","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.6,NA,NA,NA,0.01803523425,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1076","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.8,NA,NA,NA,0.0211076485277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1077","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0198053649444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1078","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.5,NA,NA,NA,0.0326086734722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1079","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16,NA,NA,NA,0.0153311503888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1080","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.1,NA,NA,NA,0.0157518273611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1081","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.2,NA,NA,NA,0.013214223,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1082","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.6,NA,NA,NA,0.0129045737638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1083","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.56,NA,NA,NA,0.028733925,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1084","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.4,NA,28.2602587,NA,0.0167975594722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1085","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.6,NA,27.3120648,NA,0.0150800630138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1086","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.3,NA,NA,NA,0.016095336125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1087","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.4,NA,NA,NA,0.0166753271666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1088","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12,NA,36.1618747,NA,0.0158255948888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1089","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.8,NA,34.2654869,NA,0.0309798894166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1090","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.6,NA,21.9389659,NA,0.00866595965277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1091","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.9,NA,20.0425781,NA,0.009805079625,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1092","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.8,NA,NA,NA,0.0112764131944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1093","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Control","2Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Control","2Control_G_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.4,NA,43.7474261,NA,0.0104018794305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1094","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.5,NA,NA,NA,0.03113412225,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1095","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.8,NA,NA,NA,0.0300610091527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1096","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0221914846388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1097","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.6,NA,NA,NA,0.0198944136111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1098","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15,NA,NA,NA,0.0166533733055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1099","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.1,NA,NA,NA,0.0216730356944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1100","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.2,NA,NA,NA,0.0253321797361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1101","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.8,NA,NA,NA,0.0156301155694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1102","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.36,NA,NA,NA,0.06407335,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1103","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.7,NA,16.9872866,NA,0.02035345125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1104","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.7,NA,29.6298722,NA,0.02450732075,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1105","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.9,NA,NA,NA,0.0328453710138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1106","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.6,NA,NA,NA,0.03694709975,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1107","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.1,NA,33.2119381,NA,0.0372257511388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1108","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.9,NA,27.6281295,NA,0.040798030625,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1109","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.7,NA,16.5658671,NA,0.01367196875,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1110","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.2,NA,16.2498024,NA,0.00961781256944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1111","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.4,NA,NA,NA,0.0269654805138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1112","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_A_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.2,NA,39.9546504,NA,0.0210467137222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1113","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.3,NA,NA,NA,0.02832512925,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1114","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.6,NA,NA,NA,0.0253731232638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1115","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0226271376527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1116","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,27.5,NA,NA,NA,0.0210189284861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1117","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.9,NA,NA,NA,0.0167732319027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1118","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.4,NA,NA,NA,0.0152174158888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1119","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.7,NA,NA,NA,0.0143986130138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1120","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.11,NA,NA,NA,0.05139079,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1121","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20,NA,20.7800623,NA,0.0180127872222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1122","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.3,NA,30.7887759,NA,0.0189687377916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1123","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.5,NA,NA,NA,0.0201189008472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1124","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14,NA,NA,NA,0.0324642210138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1125","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.5,NA,26.1004837,NA,0.0283621602916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1126","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.7,NA,30.0512917,NA,0.036614188875,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1127","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,28.2,NA,18.4622549,NA,0.0117301224027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1128","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.8,NA,18.2515451,NA,0.00822942618055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1129","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.4,NA,NA,NA,0.0211581486111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1130","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_B_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.4,NA,37.3207784,NA,0.0178439323333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1131","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.3,NA,NA,NA,0.0157769987222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1132","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.5,NA,NA,NA,0.018631339375,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1133","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0223757962083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1134","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.3,NA,NA,NA,0.0193128129027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1135","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.3,NA,NA,NA,0.0119924180138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1136","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.9,NA,NA,NA,0.0108426553888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1137","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.37,NA,NA,NA,0.029394475,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1138","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.6,NA,23.3085794,NA,0.0153845390416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1139","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.2,NA,31.7369698,NA,0.0144304034722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1140","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.8,NA,NA,NA,0.0173849626805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1141","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.1,NA,NA,NA,0.0197333684166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1142","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.9,NA,33.0012283,NA,0.0179577259583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1143","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.1,NA,35.2136808,NA,0.0263049066805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1144","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.2,NA,17.8301256,NA,0.0113442016111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1145","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.7,NA,15.5123183,NA,0.00699009681944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1146","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13,NA,NA,NA,0.0149701236666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1147","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_C_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.4,NA,42.9045871,NA,0.0161621537916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1148","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.6,NA,NA,NA,0.0304736911111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1149","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.1,NA,NA,NA,0.0216231994305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1150","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0165527306388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1151","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.4,NA,NA,NA,0.0179961413194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1152","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.7,NA,NA,NA,0.00991868686111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1153","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.1,NA,NA,NA,0.02035630025,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1154","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.5,NA,NA,NA,0.0138750195833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1155","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.2,NA,NA,NA,0.0141228723472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1156","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.49,NA,NA,NA,0.04861648,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1157","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.4,NA,26.6799355,NA,0.0152247628194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1158","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.7,NA,27.5227746,NA,0.0148060957916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1159","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.7,NA,NA,NA,0.0190927983888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1160","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.9,NA,NA,NA,0.0200426865833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1161","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.7,NA,34.7922613,NA,0.02731511475,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1162","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22,NA,26.8906453,NA,0.0258328763611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1163","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.1,NA,18.4622549,NA,0.0105381983055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1164","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.7,NA,19.7265135,NA,0.00777018870833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1165","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.5,NA,NA,NA,0.0193175260972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1166","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_D_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.8,NA,39.7439407,NA,0.0155000482083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1167","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.3,NA,NA,NA,0.0277482392916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1168","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.6,NA,NA,NA,0.02855321975,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1169","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0251190438888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1170","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.7,NA,NA,NA,0.0203171651527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1171","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.9,NA,NA,NA,0.0192773223194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1172","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.7,NA,NA,NA,0.0175472025972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1173","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23,NA,NA,NA,0.0246147560694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1174","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26,NA,NA,NA,0.0153642590138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1175","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.37,NA,NA,NA,0.044190795,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1176","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.6,NA,26.8906453,NA,0.0190804059722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1177","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.9,NA,17.4087061,NA,0.0180614739861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1178","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.1,NA,NA,NA,0.0255635546527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1179","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.7,NA,NA,NA,0.026650570375,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1180","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.7,NA,37.3207784,NA,0.0296140508888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1181","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,28.7,NA,32.5798088,NA,0.029072575125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1182","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.7,NA,15.8283829,NA,0.0136804616666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1183","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,29.4,NA,15.0908987,NA,0.0101015436805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1184","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.5,NA,NA,NA,0.0228623089444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1185","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_E_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.3,NA,38.2689723,NA,0.0183887345277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1186","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.6,NA,NA,NA,0.0235941780555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1187","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.5,NA,NA,NA,0.0234532089305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1188","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0194948674861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1189","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.2,NA,NA,NA,0.0187249275277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1190","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.8,NA,NA,NA,0.0128769564305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1191","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.4,NA,NA,NA,0.0139657763055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1192","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.6,NA,NA,NA,0.0209550195555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1193","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.7,NA,NA,NA,0.0103612530694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1194","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.4,NA,NA,NA,0.059515555,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1195","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19,NA,20.4639976,NA,0.0127265991111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1196","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.9,NA,29.3138075,NA,0.0177230964166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1197","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.8,NA,NA,NA,0.0198662904305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1198","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.5,NA,NA,NA,0.0233303820138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1199","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18,NA,34.4761967,NA,0.0216784806944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1200","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.1,NA,34.2654869,NA,0.024781714375,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1201","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.7,NA,18.1461903,NA,0.00885353470833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1202","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.7,NA,15.5123183,NA,0.00774841161111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1203","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.3,NA,NA,NA,0.0181939686805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1204","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_F_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.9,NA,41.218909,NA,0.0197080789583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1205","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.3,NA,NA,NA,0.0196106065833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1206","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201466_",NA,NA,2014,6,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.4,NA,NA,NA,0.0150352149444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1207","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.0154117175972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1208","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.9,NA,NA,NA,0.0103813456388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1209","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.1,NA,NA,NA,0.0143844419583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1210","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.8,NA,NA,NA,0.0101082576527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1211","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.4,NA,NA,NA,0.0157465044305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1212","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.3,NA,NA,NA,0.00947750940277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1213","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.37,NA,NA,NA,0.041020155,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1214","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.5,NA,23.9407087,NA,0.0112204212083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1215","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.9,NA,NA,NA,0.0203548891944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1216","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.5,NA,20.5693525,NA,0.0142987293472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1217","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.4,NA,NA,NA,0.0172622417916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1218","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.8,NA,NA,NA,0.0246538787916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1219","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.9,NA,28.7870331,NA,0.0162219638472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1220","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20,NA,35.2136808,NA,0.0358215818888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1221","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.4,NA,18.8836744,NA,0.00813348693055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1222","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.1,NA,18.2515451,NA,0.00645356998611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1223","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_201581_",NA,NA,2015,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.1,NA,NA,NA,0.0138659855277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1224","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","2Heated","2Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"2Heated","2Heated_G_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.2,NA,40.2707151,NA,0.0131745768611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1225","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.8,NA,NA,NA,0.0133409839444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1226","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.6,NA,NA,NA,0.0163908068194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1227","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.7,NA,NA,NA,0.00802873851388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1228","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.1,NA,NA,NA,0.022038512375,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1229","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.4,NA,NA,NA,0.0314690149583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1230","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.4,NA,NA,NA,0.0226131810972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1231","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.8,NA,19.3050939,NA,0.0157704370694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1232","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.5,NA,NA,NA,0.00948889898611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1233","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.93,NA,NA,NA,0.032697225,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1234","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.2,NA,23.3085794,NA,0.013479937625,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1235","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.35,NA,NA,NA,0.01214508075,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1236","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,3.4,NA,41.9563931,NA,0.0112579716944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1237","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.2,NA,NA,NA,0.0237156707638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1238","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.2,NA,NA,NA,0.0161556702083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1239","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.5,NA,42.2724578,NA,0.016407479,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1240","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.3,NA,37.0047138,NA,0.0295510974305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1241","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.6,NA,22.1496757,NA,0.0128525720277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1242","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.7,NA,16.5658671,NA,0.00913312323611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1243","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.7,NA,NA,NA,0.0138246030694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1244","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_A",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_A_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.6,NA,46.9080725,NA,0.00866808051388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1245","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17,NA,NA,NA,0.012373988,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1246","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.8,NA,NA,NA,0.0113781660972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1247","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.5,NA,NA,NA,0.0129248227777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1248","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.5,NA,NA,NA,0.0117024584722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1249","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,27.2,NA,NA,NA,0.0291762823611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1250","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.7,NA,NA,NA,0.0172794161527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1251","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.1,NA,16.9872866,NA,0.0139378983333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1252","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.8,NA,NA,NA,0.007899684375,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1253","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.45,NA,NA,NA,0.02866787,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1254","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.8,NA,21.7282562,NA,0.0157756993472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1255","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.05,NA,NA,NA,0.0119424384444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1256","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,4,NA,36.0565199,NA,0.00878154261111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1257","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.9,NA,NA,NA,0.00754489373611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1258","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.1,NA,NA,NA,0.008163830125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1259","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10,NA,46.8027176,NA,0.00763865559722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1260","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.9,NA,34.8976162,NA,0.0227155820833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1261","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.8,NA,20.2532879,NA,0.00965039640277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1262","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18,NA,16.5658671,NA,0.00978547013888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1263","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.3,NA,NA,NA,0.00724495658333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1264","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_B",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_B_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6,NA,46.2759432,NA,0.00640693136111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1265","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.7,NA,NA,NA,0.0287812349305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1266","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.3,NA,NA,NA,0.0138802542083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1267","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.00908313663888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1268","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.2,NA,NA,NA,0.0208862558055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1269","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,28,NA,NA,NA,0.0156551524861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1270","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.5,NA,19.1997391,NA,0.0137436267222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1271","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.9,NA,NA,NA,0.009355366625,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1272","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.64,NA,NA,NA,0.02761099,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1273","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.1,NA,23.3085794,NA,0.0146509140555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1274","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.45,NA,NA,NA,0.0117177771944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1275","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,4.3,NA,43.5367163,NA,0.008580853875,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1276","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.1,NA,NA,NA,0.00812029701388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1277","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.5,NA,NA,NA,0.0175955737222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1278","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10,NA,40.2707151,NA,0.0163516375,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1279","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.5,NA,35.5297455,NA,0.0292112486111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1280","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.65,NA,23.8353538,NA,0.0102648133194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1281","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.3,NA,16.5658671,NA,0.00829129613888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1282","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.1,NA,NA,NA,0.00826739329166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1283","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_C",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_C_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.2,NA,45.4331042,NA,0.00737241465277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1284","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.5,NA,NA,NA,0.0145456686527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1285","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7,NA,NA,NA,0.0485558261527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1286","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.2,NA,NA,NA,0.0136425802638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1287","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.6,NA,NA,NA,0.0230101995138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1288","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.4,NA,NA,NA,0.0238967697222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1289","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.8,NA,NA,NA,0.0157617600555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1290","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.6,NA,16.2498024,NA,0.017422763875,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1291","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18,NA,NA,NA,0.0106209630694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1292","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.62,NA,NA,NA,0.032961445,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1293","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.1,NA,22.6764501,NA,0.0169973879166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1294","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.05,NA,NA,NA,0.0132010252916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1295","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,4.3,NA,36.4779394,NA,0.0132641686527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1296","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.4,NA,NA,NA,0.00957016118055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1297","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.9,NA,NA,NA,0.0147011622083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1298","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.2,NA,37.9529077,NA,0.0135146513333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1299","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.2,NA,29.7352271,NA,0.0344695045138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1300","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.4,NA,23.8353538,NA,0.0111360884861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1301","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.7,NA,19.5158037,NA,0.00832631479166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1302","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.8,NA,NA,NA,0.0115963203888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1303","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_D",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_D_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.7,NA,48.1723311,NA,0.0108355587083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1304","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.7,NA,NA,NA,0.0126731556111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1305","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.3,NA,NA,NA,0.0144106427361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1306","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.5,NA,NA,NA,0.00825307679166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1307","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.8,NA,NA,NA,0.0163154869166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1308","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.7,NA,NA,NA,0.0241309522361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1309","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.3,NA,22.6764501,NA,0.0148912445,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1310","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.4,NA,NA,NA,0.0108818250138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1311","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.3,NA,NA,NA,0.0237798,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1312","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12,NA,22.0443208,NA,0.0143907680277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1313","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.9,NA,NA,NA,0.0104798092361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1314","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,3.9,NA,43.852781,NA,0.00804679165277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1315","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.2,NA,NA,NA,0.00990230373611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1316","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.7,NA,NA,NA,0.0113373171388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1317","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10,NA,45.0116847,NA,0.0123816754722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1318","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21,NA,36.4779394,NA,0.0350282545555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1319","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.3,NA,22.8871599,NA,0.0104165871944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1320","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.3,NA,19.5158037,NA,0.00754455961111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1321","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.7,NA,NA,NA,0.00988005043055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1322","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_E",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_E_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.2,NA,52.4918811,NA,0.00770269683333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1323","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.7,NA,NA,NA,0.0153189678888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1324","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.8,NA,NA,NA,0.0107921487361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1325","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.9,NA,NA,NA,0.00992012541666666,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1326","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.00988967634722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1327","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14,NA,NA,NA,0.0137046610555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1328","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.5,NA,NA,NA,0.0193409111805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1329","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19,NA,NA,NA,0.0202555727916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1330","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.2,NA,24.0460635,NA,0.0158105459722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1331","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201476_7",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.1,NA,NA,NA,0.0147394536666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1332","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.54,NA,NA,NA,0.027148605,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1333","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.8,NA,21.8336111,NA,0.0128336816666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1334","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,4.3,NA,36.1618747,NA,0.00816659356944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1335","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.4,NA,NA,NA,0.00819501833333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1336","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.3,NA,NA,NA,0.00887949302777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1337","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.2,NA,30.5780661,NA,0.0111056751666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1338","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.1,NA,35.951165,NA,0.0242337241666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1339","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.3,NA,NA,NA,0.0105595936111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1340","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.7,NA,12.3516719,NA,0.00941622840277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1341","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.7,NA,NA,NA,0.00824758519444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1342","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_F",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_F_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7,NA,37.2154235,NA,0.0105046535,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1343","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.1,NA,NA,NA,0.0179041611527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1344","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.4,NA,NA,NA,0.0194406417638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1345","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13,NA,NA,NA,0.0148989470972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1346","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.4,NA,NA,NA,0.0330766764166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1347","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.9,NA,NA,NA,0.0232601769583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1348","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.5,NA,NA,NA,0.0158356438472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1349","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.3,NA,16.8819317,NA,0.0185723610416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1350","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.1,NA,NA,NA,0.015256951875,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1351","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.57,NA,NA,NA,0.03487704,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1352","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_2015107_1",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.2,NA,22.2550306,NA,0.0177802608194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1353","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.9,NA,NA,NA,0.0140274882916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1354","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,4.4,NA,35.3190357,NA,0.0136725841388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1355","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.4,NA,NA,NA,0.0116803357916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1356","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.3,NA,NA,NA,0.0152159229444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1357","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.3,NA,34.8976162,NA,0.0166074519722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1358","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.7,NA,37.2154235,NA,0.0326300793194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1359","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.9,NA,19.5158037,NA,0.0135557011944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1360","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.1,NA,17.8301256,NA,0.0105656428472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1361","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,5.7,NA,NA,NA,0.0136252054583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1362","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Control","3Control_G",NA,NA,NA,NA,"control",NA,NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Control","3Control_G_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.1,NA,41.6403285,NA,0.013397410125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1363","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.2,NA,NA,NA,0.0166479157777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1364","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.3,NA,NA,NA,0.0189480134861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1365","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.2,NA,NA,NA,0.0145519502638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1366","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.2,NA,NA,NA,0.0275781935,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1367","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.6,NA,NA,NA,0.0196009407916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1368","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.2,NA,NA,NA,0.0164672523888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1369","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.6,NA,18.0408354,NA,0.0155547483055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1370","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.5,NA,NA,NA,0.0115082592777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1371","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.04,NA,NA,NA,0.039170615,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1372","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15,NA,25.8370965,NA,0.0149409773333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1373","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,6.9,NA,37.8475528,NA,0.0113867039305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1374","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.25,NA,NA,NA,0.00918474944444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1375","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.1,NA,NA,NA,0.0197222755277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1376","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14,NA,NA,NA,0.0189470467083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1377","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.6,NA,32.2637442,NA,0.0157568975972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1378","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.4,NA,30.683421,NA,0.0347240144166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1379","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23,NA,19.3050939,NA,0.0128157586944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1380","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.6,NA,14.5641243,NA,0.00861322152777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1381","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.2,NA,NA,NA,0.0143067090833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1382","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_A",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_A_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.3,NA,37.4261333,NA,0.00955537931944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1383","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.5,NA,NA,NA,0.0190419078055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1384","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.9,NA,NA,NA,0.0195075507916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1385","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.4,NA,NA,NA,0.0169895740972222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1386","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.9,NA,NA,NA,0.0202563489027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1387","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.3,NA,NA,NA,0.0305837983611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1388","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.1,NA,15.9337378,NA,0.0144273314166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1389","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15,NA,NA,NA,0.0127662241666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1390","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.56,NA,NA,NA,0.04187887,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1391","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.6,NA,21.9389659,NA,0.0204953975416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1392","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.7,NA,37.4261333,NA,0.016754771,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1393","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.5,NA,NA,NA,0.0097455765,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1394","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.6,NA,NA,NA,0.0153207307916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1395","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.9,NA,NA,NA,0.0158738596805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1396","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.9,NA,34.8976162,NA,0.0127341118055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1397","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,27.8,NA,36.1618747,NA,0.0405973750416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1398","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.6,NA,17.514061,NA,0.0118052059583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1399","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.9,NA,18.2515451,NA,0.00985519776388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1400","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.7,NA,NA,NA,0.0129867584305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1401","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_B",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_B_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.3,NA,41.8510383,NA,0.0105963326944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1402","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.1,NA,NA,NA,0.0227033473333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1403","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.7,NA,NA,NA,0.0279338178472222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1404","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18,NA,NA,NA,0.0961097423611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1405","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.1,NA,NA,NA,0.0384584743888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1406","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,28.5,NA,NA,NA,0.0321555886666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1407","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26,NA,NA,NA,0.0196038379166667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1408","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.9,NA,17.3033512,NA,0.0233223778333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1409","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,19.9,NA,NA,NA,0.0130082267638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1410","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.79,NA,NA,NA,0.04333208,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1411","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.5,NA,26.8906453,NA,0.0186871374861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1412","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.4,NA,40.1653602,NA,0.0158201654722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1413","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.9,NA,NA,NA,0.0197764189027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1414","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.6,NA,NA,NA,0.0248169658611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1415","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.6,NA,NA,NA,0.0260562507638889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1416","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.6,NA,32.7905186,NA,0.0261274966944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1417","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,29.4,NA,29.6298722,NA,0.0500265116388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1418","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.3,NA,17.1979963,NA,0.0141697138611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1419","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.1,NA,19.1997391,NA,0.0121734156805556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1420","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.7,NA,NA,NA,0.0182612176388889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1421","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_C",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_C_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.5,NA,36.5832943,NA,0.0140118922777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1422","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.3,NA,NA,NA,0.0151395369583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1423","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.4,NA,NA,NA,0.0156745618333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1424","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16.5,NA,NA,NA,0.0176764979722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1425","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,14.7,NA,NA,NA,0.0251466425833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1426","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.5,NA,NA,NA,0.0303170828888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1427","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.2,NA,20.7800623,NA,0.0152037367777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1428","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.3,NA,NA,NA,0.0129850326527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1429","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.43,NA,NA,NA,0.056212805,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1430","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,16,NA,16.1444475,NA,0.0133946644027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1431","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.4,NA,40.1653602,NA,0.0171694878055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1432","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.25,NA,NA,NA,0.00843655220833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1433","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.1,NA,NA,NA,0.0723687225555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1434","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.3,NA,NA,NA,0.0193638510694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1435","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.3,NA,28.7870331,NA,0.0158946033888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1436","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,27.4,NA,33.8440674,NA,0.0374713395833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1437","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.1,NA,18.4622549,NA,0.0122705114583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1438","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22,NA,17.8301256,NA,0.00790807981944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1439","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.1,NA,NA,NA,0.0128044351111111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1440","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_D",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_D_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.4,NA,38.2689723,NA,0.00619230119444444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1441","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.2,NA,NA,NA,0.0138679675138889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1442","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.2,NA,NA,NA,0.0169369835555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1443","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.6,NA,NA,NA,0.0183572841527778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1444","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.9,NA,NA,NA,0.0225866810277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1445","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.6,NA,NA,NA,0.0218321195277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1446","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.4,NA,NA,NA,0.014477032625,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1447","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26.3,NA,17.0926415,NA,0.0187544767361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1448","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.5,NA,NA,NA,0.011276764125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1449","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.5,NA,NA,NA,0.031244015,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1450","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.5,NA,25.6263867,NA,0.0143711417361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1451","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.1,NA,39.7439407,NA,0.0128124247777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1452","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.05,NA,NA,NA,0.00968908920833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1453","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.3,NA,NA,NA,0.0177561369027778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1454","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.9,NA,NA,NA,0.0194010949305556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1455","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.7,NA,35.4243906,NA,0.0237819095555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1456","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,29.3,NA,36.3725845,NA,0.0406153015277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1457","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.9,NA,17.6194159,NA,0.0162884464722222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1458","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.6,NA,17.1979963,NA,0.0115962114583333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1459","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.8,NA,NA,NA,0.0150574706944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1460","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_E",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_E_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9,NA,45.1170395,NA,0.00728918406944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1461","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.9,NA,NA,NA,0.0165683200833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1462","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_2014116_",NA,NA,2014,11,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.1,NA,NA,NA,0.0185726650694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1463","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17.6,NA,NA,NA,0.0158089845833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1464","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.1,NA,NA,NA,0.0217613155833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1465","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,27,NA,NA,NA,0.0243511137222222,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1466","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.6,NA,NA,NA,0.0167440415694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1467","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.9,NA,20.5693525,NA,0.013676454,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1468","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.8,NA,NA,NA,0.0121137995,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1469","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,12.28,NA,NA,NA,0.033357775,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1470","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,18.7,NA,25.7317416,NA,0.0176456742916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1471","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.9,NA,38.8133059,NA,0.0159665835694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1472","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10,NA,NA,NA,0.0167792530277778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1473","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.8,NA,NA,NA,0.0163192777916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1474","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.6,NA,NA,NA,0.0200648172083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1475","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.6,NA,29.7352271,NA,0.0242715352916667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1476","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,30.6,NA,30.683421,NA,0.0364500396944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1477","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,26,NA,16.3551573,NA,0.0122346762083333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1478","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.6,NA,18.5676098,NA,0.0100543099861111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1479","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.6,NA,NA,NA,0.0184638605555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1480","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_F",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_F_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.5,NA,44.1688456,NA,0.0119252983055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1481","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_20141010_",NA,NA,2014,10,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.3,NA,NA,NA,0.013917721125,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1482","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_2014126_",NA,NA,2014,12,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.9,NA,NA,NA,0.0164206936666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1483","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201476_1",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,17,NA,NA,NA,0.0125101948888889,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1484","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201476_2",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,20.8,NA,NA,NA,0.0187797235694444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1485","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201476_3",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,28.1,NA,NA,NA,0.0192341765,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1486","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201476_4",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.8,NA,NA,NA,0.0232118518194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1487","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201476_5",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,24.9,NA,22.0443208,NA,0.01445499,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1488","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201476_6",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,22.2,NA,NA,NA,0.0153531387777778,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1489","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201476_",NA,NA,2014,7,6,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,11.23,NA,NA,NA,0.02272292,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1490","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_2015107_",NA,NA,2015,10,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,15.6,NA,27.5227746,NA,0.0167946683055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1491","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201527_",NA,NA,2015,2,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.9,NA,37.5314882,NA,0.00866587470833333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1492","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201577_1",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,7.65,NA,NA,NA,0.00943642043055556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1493","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201577_2",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,10.5,NA,NA,NA,0.00822816606944444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1494","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201577_3",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.1,NA,NA,NA,0.0151775795416667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1495","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201577_4",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,13.6,NA,41.4296187,NA,0.0127809377361111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1496","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201577_5",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,25.7,NA,35.951165,NA,0.0227699046666667,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1497","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201577_6",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,23.8,NA,19.5158037,NA,0.0104649583194444,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1498","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201577_",NA,NA,2015,7,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,21.4,NA,17.514061,NA,0.00806143708333333,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1499","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_201591_",NA,NA,2015,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,9.5,NA,NA,NA,0.0123716920555556,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1500","HicksPries_2017","10.1126/science.aal1319",NA,"Caitlin Pries","Dartmouth College","caitlin.e.hpries@dartmouth.edu",2018,10,12,"Caitlin Hicks Pries","cehpries@lbl.gov","0000-0003-0813-2211","Hicks Pries, Castanha, Porras, Torn, 2017, The whole-soil carbon flux in response to warming, Science, 355 (6332), pp. 1420-1423",NA,NA,NA,"Blodgett Forest",38.908122,-120.660771,"WGS84",1370,"Sierra Nevada foothills near Georgetown","3Heated","3Heated_G",NA,NA,NA,NA,"treatment","warming; +4 °C up to 1 m",NA,NA,12.5,1774,"Alfisols",NA,"Alfisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine (Pinus ponderosa), sugar pine, (Pinus lambertiana), incense cedar (Calodefrus decurrens), white fir (Abies concolor), and douglas fir (Pseudotsuga menziesii)",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granitic origin",NA,NA,NA,NA,NA,NA,NA,NA,NA,"3Heated","3Heated_G_2016108_",NA,NA,2016,10,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,8.7,NA,42.5885224,NA,0.00979246323611111,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1501","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"peatland",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Deschampsia flexuosa, Molinia caerulea, Festuca ovina, Eriophorum angustifolium, Eriophorum vaginatum, Caluna vulgaris, Sphagnum & Polytrichum spp.",NA,NA,NA,31,NA,"sedimentary-clastics",NA,"clay-silt till over sandstone",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"peatland_CH4_4-1",NA,NA,2012,4,1,NA,"soil emission",NA,"CH4","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",6.1,NA,NA,NA,NA,NA,-63.2,0.1,"SUERC","43491",NA,107.29,0.48,NA,NA,NA,NA "1502","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"peatland",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Deschampsia flexuosa, Molinia caerulea, Festuca ovina, Eriophorum angustifolium, Eriophorum vaginatum, Caluna vulgaris, Sphagnum & Polytrichum spp.",NA,NA,NA,31,NA,"sedimentary-clastics",NA,"clay-silt till over sandstone",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"peatland_CH4_9-1",NA,NA,2012,9,1,NA,"soil emission",NA,"CH4","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",11.5,NA,NA,NA,NA,NA,-58,0.1,"SUERC","43499",NA,108.25,0.5,NA,NA,NA,NA "1503","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"peatland",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Deschampsia flexuosa, Molinia caerulea, Festuca ovina, Eriophorum angustifolium, Eriophorum vaginatum, Caluna vulgaris, Sphagnum & Polytrichum spp.",NA,NA,NA,31,NA,"sedimentary-clastics",NA,"clay-silt till over sandstone",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"peatland_CO2_4-1",NA,NA,2012,4,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",6.1,NA,NA,NA,NA,NA,-25.9,0.1,"SUERC","43494",NA,104.79,0.49,NA,NA,NA,NA "1504","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"peatland",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Deschampsia flexuosa, Molinia caerulea, Festuca ovina, Eriophorum angustifolium, Eriophorum vaginatum, Caluna vulgaris, Sphagnum & Polytrichum spp.",NA,NA,NA,31,NA,"sedimentary-clastics",NA,"clay-silt till over sandstone",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"peatland_CO2_9-1",NA,NA,2012,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",11.5,NA,NA,NA,NA,NA,-26.3,0.1,"SUERC","43500",NA,105.7,0.49,NA,NA,NA,NA "1505","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"riparian",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Juncus effusus",NA,NA,NA,19,NA,"sedimentary-clastics",NA,"clay-silt till over sandstone",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"riparian_CH4_4-1",NA,NA,2012,4,1,NA,"soil emission",NA,"CH4","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",5.8,NA,NA,NA,NA,NA,-75.9,0.1,"SUERC","43495",NA,101.79,0.48,NA,NA,NA,NA "1506","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"riparian",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Juncus effusus",NA,NA,NA,19,NA,"sedimentary-clastics",NA,"clay-silt till over sandstone",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"riparian_CH4_9-1",NA,NA,2012,9,1,NA,"soil emission",NA,"CH4","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",11.1,NA,NA,NA,NA,NA,-63.5,0.1,"SUERC","43501",NA,104.84,0.49,NA,NA,NA,NA "1507","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"riparian",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Juncus effusus",NA,NA,NA,19,NA,"sedimentary-clastics",NA,"clay-silt till over sandstone",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"riparian_CO2_4-1",NA,NA,2012,4,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",5.8,NA,NA,NA,NA,NA,-26.6,0.1,"SUERC","43496",NA,100.55,0.47,NA,NA,NA,NA "1508","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"riparian",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Juncus effusus",NA,NA,NA,19,NA,"sedimentary-clastics",NA,"clay-silt till over sandstone",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"riparian_CO2_9-1",NA,NA,2012,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",11.1,NA,NA,NA,NA,NA,-27.1,0.1,"SUERC","43504",NA,100.99,0.47,NA,NA,NA,NA "1509","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"stream",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,NA,NA,NA,NA,0,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"stream_CH4_4-1",NA,NA,2012,4,1,NA,"water evasion",NA,"CH4","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",5.5,NA,NA,NA,NA,NA,-58.1,0.1,"SUERC","43489",NA,93.19,0.44,NA,NA,NA,NA "1510","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"stream",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,NA,NA,NA,NA,0,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"stream_CH4_9-1",NA,NA,2012,9,1,NA,"water evasion",NA,"CH4","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",11.7,NA,NA,NA,NA,NA,-54.3,0.1,"SUERC","43497",NA,95.96,0.45,NA,NA,NA,NA "1511","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"stream",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,NA,NA,NA,NA,0,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"stream_CO2_4-1",NA,NA,2012,4,1,NA,"water evasion",NA,"CO2","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",5.5,NA,NA,NA,NA,NA,-17.4,0.1,"SUERC","43490",NA,98.86,0.49,NA,NA,NA,NA "1512","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"stream",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,NA,NA,NA,NA,0,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"stream_CO2_9-1",NA,NA,2012,9,1,NA,"water evasion",NA,"CO2","ecosystem","chamber",NA,"gas bag",14,"days",NA,"yes",11.7,NA,NA,NA,NA,NA,-20.5,0.1,"SUERC","43498",NA,101.39,0.45,NA,NA,NA,NA "1513","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"stream",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,NA,NA,NA,NA,0,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"stream_DOC_4-1",NA,NA,2012,4,1,NA,"dissolved",NA,"DOC","ecosystem",NA,NA,"flask",14,"days",NA,NA,5.5,NA,NA,NA,NA,NA,-28.7,0.1,"SUERC","44318",NA,100.41,0.47,NA,NA,NA,NA "1514","Leith_2014","10.1007/s10533-014-9977-y",NA,"Gavin McNicol","University of Alaska Southeast","gmcnicol@alaska.edu",2018,9,10,"F. I. Leith","flth@ceh.ac.uk",NA,"Leith, F.I., Garnett, M.H., Dinsmore, K.J., Billett, M.F. & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: A dual isotope (14C and δ13C) analysis. Biogeochemistry, 119, 415–433",NA,NA,NA,"Auchencorth Moss",55.792778,-3.243056,NA,275,"ombrotrophc peatland catchment",NA,"stream",NA,NA,NA,NA,"control",NA,NA,NA,NA,NA,NA,NA,"Histosol & humic gleysol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,NA,NA,NA,NA,0,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"stream_DOC_9-1",NA,NA,2012,9,1,NA,"dissolved",NA,"DOC","ecosystem",NA,NA,"flask",14,"days",NA,NA,11.7,NA,NA,NA,NA,NA,-28.7,0.1,"SUERC","44325",NA,106.47,0.49,NA,NA,NA,NA "1515","Lemke_2006","israd",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,3,5,"Markus Lemke","bahrens@bgc-jena.mpg.de",NA,"Lemke M, 2006, Die C-Dynamik von Waldböden bei reduzierten Stoffeinträgen (Dachprojekt Sollingen, Berichte des Forschungszentrum Waldökosysteme, Reihe A, Band 198",NA,NA,NA,"Solling",51.516667,9.566667,NA,500,"long-term study starting in 1994","D0","Solling_DO_ChamberAvg",NA,NA,NA,NA,"control",NA,"yes",NA,6.4,1090,NA,NA,"Typic Dystrochrept",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"D0","Solling_DO_ChamberAvg_200411",NA,NA,2004,1,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","Average of 7 chambers; outside vegetation period",NA,NA,NA,NA,NA,NA,NA,NA,2.45,1.1,"Mg C ha-1 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1516","Lemke_2006","israd",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,3,5,"Markus Lemke","bahrens@bgc-jena.mpg.de",NA,"Lemke M, 2006, Die C-Dynamik von Waldböden bei reduzierten Stoffeinträgen (Dachprojekt Sollingen, Berichte des Forschungszentrum Waldökosysteme, Reihe A, Band 198",NA,NA,NA,"Solling",51.516667,9.566667,NA,500,"long-term study starting in 1994","D0","Solling_DO_ChamberAvg",NA,NA,NA,NA,"control",NA,"yes",NA,6.4,1090,NA,NA,"Typic Dystrochrept",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"D0","Solling_DO_ChamberAvg_200461",NA,NA,2004,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","Average of 7 chambers; within vegetation period",NA,NA,NA,NA,NA,NA,NA,NA,4.98,1.79,"Mg C ha-1 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1517","Lemke_2006","israd",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,3,5,"Markus Lemke","bahrens@bgc-jena.mpg.de",NA,"Lemke M, 2006, Die C-Dynamik von Waldböden bei reduzierten Stoffeinträgen (Dachprojekt Sollingen, Berichte des Forschungszentrum Waldökosysteme, Reihe A, Band 198",NA,NA,NA,"Solling",51.516667,9.566667,NA,500,"long-term study starting in 1994","D0","Solling_D0_1",NA,NA,NA,NA,"control",NA,NA,NA,6.4,1090,NA,NA,"Typic Dystrochrept","USDA",NA,NA,NA,8,NA,"forest",NA,NA,NA,"Spruce",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"D0","Solling_D0_1_2004729",NA,NA,2004,7,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","Sampling for 14C data; flux rate averaged",NA,NA,NA,NA,NA,NA,NA,NA,1.6104,0.2712,"g C m-2 d-1",NA,NA,NA,NA,NA,105.7,2.1,NA,NA,NA,NA "1518","Lemke_2006","israd",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,3,5,"Markus Lemke","bahrens@bgc-jena.mpg.de",NA,"Lemke M, 2006, Die C-Dynamik von Waldböden bei reduzierten Stoffeinträgen (Dachprojekt Sollingen, Berichte des Forschungszentrum Waldökosysteme, Reihe A, Band 198",NA,NA,NA,"Solling",51.516667,9.566667,NA,500,"long-term study starting in 1994","D0","Solling_D0_2",NA,NA,NA,NA,"control",NA,NA,NA,6.4,1090,NA,NA,"Typic Dystrochrept","USDA",NA,NA,NA,8,NA,"forest",NA,NA,NA,"Spruce",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"D0","Solling_D0_2_2004729",NA,NA,2004,7,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","Sampling for 14C data; flux rate averaged",NA,NA,NA,NA,NA,NA,NA,NA,1.6104,0.2712,"g C m-2 d-1",NA,NA,NA,NA,NA,104.5,2.4,NA,NA,NA,NA "1519","Lemke_2006","israd",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,3,5,"Markus Lemke","bahrens@bgc-jena.mpg.de",NA,"Lemke M, 2006, Die C-Dynamik von Waldböden bei reduzierten Stoffeinträgen (Dachprojekt Sollingen, Berichte des Forschungszentrum Waldökosysteme, Reihe A, Band 198",NA,NA,NA,"Solling",51.516667,9.566667,NA,500,"long-term study starting in 1994","D0","Solling_D0_3",NA,NA,NA,NA,"control",NA,NA,NA,6.4,1090,NA,NA,"Typic Dystrochrept","USDA",NA,NA,NA,8,NA,"forest",NA,NA,NA,"Spruce",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"D0","Solling_D0_3_2004729",NA,NA,2004,7,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","Sampling for 14C data; flux rate averaged",NA,NA,NA,NA,NA,NA,NA,NA,1.6104,0.2712,"g C m-2 d-1",NA,NA,NA,NA,NA,106.2,2.1,NA,NA,NA,NA "1520","Lemke_2006","israd",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,3,5,"Markus Lemke","bahrens@bgc-jena.mpg.de",NA,"Lemke M, 2006, Die C-Dynamik von Waldböden bei reduzierten Stoffeinträgen (Dachprojekt Sollingen, Berichte des Forschungszentrum Waldökosysteme, Reihe A, Band 198",NA,NA,NA,"Solling",51.516667,9.566667,NA,500,"long-term study starting in 1994","D0","Solling_D0_4",NA,NA,NA,NA,"control",NA,NA,NA,6.4,1090,NA,NA,"Typic Dystrochrept","USDA",NA,NA,NA,8,NA,"forest",NA,NA,NA,"Spruce",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"D0","Solling_D0_4_2004729",NA,NA,2004,7,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","Sampling for 14C data; flux rate averaged",NA,NA,NA,NA,NA,NA,NA,NA,1.6104,0.2712,"g C m-2 d-1",NA,NA,NA,NA,NA,96.6,2.1,NA,NA,NA,NA "1521","Lemke_2006","israd",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,3,5,"Markus Lemke","bahrens@bgc-jena.mpg.de",NA,"Lemke M, 2006, Die C-Dynamik von Waldböden bei reduzierten Stoffeinträgen (Dachprojekt Sollingen, Berichte des Forschungszentrum Waldökosysteme, Reihe A, Band 198",NA,NA,NA,"Solling",51.516667,9.566667,NA,500,"long-term study starting in 1994","D0","Solling_D0_5",NA,NA,NA,NA,"control",NA,NA,NA,6.4,1090,NA,NA,"Typic Dystrochrept","USDA",NA,NA,NA,8,NA,"forest",NA,NA,NA,"Spruce",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"D0","Solling_D0_5_2004729",NA,NA,2004,7,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","Sampling for 14C data; flux rate averaged",NA,NA,NA,NA,NA,NA,NA,NA,1.6104,0.2712,"g C m-2 d-1",NA,NA,NA,NA,NA,98.6,2.1,NA,NA,NA,NA "1522","Lemke_2006","israd",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,3,5,"Markus Lemke","bahrens@bgc-jena.mpg.de",NA,"Lemke M, 2006, Die C-Dynamik von Waldböden bei reduzierten Stoffeinträgen (Dachprojekt Sollingen, Berichte des Forschungszentrum Waldökosysteme, Reihe A, Band 198",NA,NA,NA,"Solling",51.516667,9.566667,NA,500,"long-term study starting in 1994","D0","Solling_D0_6",NA,NA,NA,NA,"control",NA,NA,NA,6.4,1090,NA,NA,"Typic Dystrochrept","USDA",NA,NA,NA,8,NA,"forest",NA,NA,NA,"Spruce",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"D0","Solling_D0_6_2004729",NA,NA,2004,7,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","Sampling for 14C data; flux rate averaged",NA,NA,NA,NA,NA,NA,NA,NA,1.6104,0.2712,"g C m-2 d-1",NA,NA,NA,NA,NA,100.9,2.7,NA,NA,NA,NA "1523","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"C",NA,NA,NA,NA,"control","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_2012-10-21_1",NA,NA,2012,10,21,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-28.52,NA,NA,NA,NA,-10.3,NA,NA,1,NA,NA "1524","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"C",NA,NA,NA,NA,"control","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_2012-10-21_2",NA,NA,2012,10,21,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.55,NA,NA,NA,NA,-44,NA,NA,0.97,NA,NA "1525","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"C",NA,NA,NA,NA,"control","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_2012-10-21_3",NA,NA,2012,10,21,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-24.88,NA,NA,NA,NA,-31.5,NA,NA,0.98,NA,NA "1526","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"C",NA,NA,NA,NA,"control","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_2012-10-21_4",NA,NA,2012,10,21,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-25.79,NA,NA,NA,NA,-31,NA,NA,0.98,NA,NA "1527","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"C",NA,NA,NA,NA,"control","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_2012-10-22_1",NA,NA,2012,10,22,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.24,NA,NA,NA,NA,-57.8,NA,NA,0.97,NA,NA "1528","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"C",NA,NA,NA,NA,"control","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_2012-10-22_2",NA,NA,2012,10,22,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.44,NA,NA,NA,NA,-176.6,NA,NA,0.91,NA,NA "1529","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"C",NA,NA,NA,NA,"control","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_2012-9-10_1",NA,NA,2012,9,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-19.64,NA,NA,NA,NA,76.6,NA,NA,1.07,NA,NA "1530","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"C",NA,NA,NA,NA,"control","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_2012-9-10_2",NA,NA,2012,9,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.5,NA,NA,NA,NA,18.4,NA,NA,1.03,NA,NA "1531","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"C",NA,NA,NA,NA,"control","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_2012-9-7_1",NA,NA,2012,9,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-17.01,NA,NA,NA,NA,82,NA,NA,1.06,NA,NA "1532","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"C",NA,NA,NA,NA,"control","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_2013-3-17_1",NA,NA,2013,3,17,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-19.76,NA,NA,NA,NA,-60.4,NA,NA,0.98,NA,NA "1533","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"C",NA,NA,NA,NA,"control","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_2013-3-26_1",NA,NA,2013,3,26,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-14.96,NA,NA,NA,NA,-29.1,NA,NA,1,NA,NA "1534","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"SF",NA,NA,NA,NA,"treatment","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SF_2012-10-21_1",NA,NA,2012,10,21,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-26.11,NA,NA,NA,NA,-94.4,NA,NA,0.93,NA,NA "1535","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"SF",NA,NA,NA,NA,"treatment","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SF_2012-10-22_1",NA,NA,2012,10,22,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.6,NA,NA,NA,NA,-117.7,NA,NA,0.93,NA,NA "1536","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"SF",NA,NA,NA,NA,"treatment","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SF_2012-10-22_2",NA,NA,2012,10,22,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.63,NA,NA,NA,NA,-78.7,NA,NA,0.97,NA,NA "1537","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"SF",NA,NA,NA,NA,"treatment","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SF_2012-9-10_1",NA,NA,2012,9,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-18.04,NA,NA,NA,NA,38.6,NA,NA,1.04,NA,NA "1538","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"SF",NA,NA,NA,NA,"treatment","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SF_2012-9-10_2",NA,NA,2012,9,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-21.36,NA,NA,NA,NA,59.6,NA,NA,1.06,NA,NA "1539","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"SF",NA,NA,NA,NA,"treatment","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SF_2012-9-10_3",NA,NA,2012,9,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-20.99,NA,NA,NA,NA,66.5,NA,NA,1.06,NA,NA "1540","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"SF",NA,NA,NA,NA,"treatment","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SF_2012-9-7_1",NA,NA,2012,9,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-23.48,NA,NA,NA,NA,74.6,NA,NA,1.07,NA,NA "1541","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"SF",NA,NA,NA,NA,"treatment","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SF_2012-9-8_1",NA,NA,2012,9,8,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-20.97,NA,NA,NA,NA,78.6,NA,NA,1.07,NA,NA "1542","Lupascu_2018","10.1029/2018JG004396",NA,"Gavin McNicol","Stanford University","gmcnicol@stanford.edu",2018,9,11,"M. Lupascu","mlupascu@nus.edu.sg",NA,"Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (n.d.). Winter Ecosystem Respiration and Sources of CO2 From the Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2018JG004396",NA,NA,NA,"Adventdalen Valley",78.17,16.1,NA,65,NA,NA,"SF",NA,NA,NA,NA,"treatment","snow depth",NA,3,-10,191,NA,NA,"Histels","USDA",NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Alopecurus magellanicus LMA, Luzula acruata, Bistorta vivipara, Salix polaris, Dryas octopetala",NA,NA,NA,NA,NA,"sedimentary-clastics",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"SF_2013-2-11_1",NA,NA,2013,2,11,NA,"soil emission",NA,"CO2","ecosystem","chamber","air circulation","molecular sieve",NA,NA,NA,"yes",NA,NA,NA,NA,NA,NA,-22.25,NA,NA,NA,NA,-62.9,NA,NA,0.97,NA,NA "1543","Muhr_2009","10.1029/2009JG000998",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"J. Muhr","jmuhr@bgc-jena.mpg.de",NA,"Muhr, J. and W. Borken. 2009. Delayed recovery of soil respiration after wetting of dry soil further reduces C losses from a Norway spruce forest soil. Journal of Geophysical Research-Biogeosciences 114.","via B. Ahrens (respiration/gas flux data)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,"Coulissenhieb II/Waldstein",NA,"Muhr_avg","Respiration data",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,9,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. abies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Muhr_avg_200683",NA,NA,2006,8,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"vial",NA,NA,NA,NA,10,NA,NA,6.7,0.2,"Mg C ha-1 yr-1",NA,NA,NA,NA,2006,78.7,NA,4.9,NA,NA,NA "1544","Muhr_2009","10.1029/2009JG000998",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"J. Muhr","jmuhr@bgc-jena.mpg.de",NA,"Muhr, J. and W. Borken. 2009. Delayed recovery of soil respiration after wetting of dry soil further reduces C losses from a Norway spruce forest soil. Journal of Geophysical Research-Biogeosciences 114.","via B. Ahrens (respiration/gas flux data)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,"Coulissenhieb II/Waldstein",NA,"Muhr_avg","Respiration data",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,9,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. abies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Muhr_avg_2006816",NA,NA,2006,8,16,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"vial",NA,NA,NA,NA,12,NA,NA,NA,NA,NA,NA,NA,NA,NA,2006,81,NA,2.4,NA,NA,NA "1545","Muhr_2009","10.1029/2009JG000998",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"J. Muhr","jmuhr@bgc-jena.mpg.de",NA,"Muhr, J. and W. Borken. 2009. Delayed recovery of soil respiration after wetting of dry soil further reduces C losses from a Norway spruce forest soil. Journal of Geophysical Research-Biogeosciences 114.","via B. Ahrens (respiration/gas flux data)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,"Coulissenhieb II/Waldstein",NA,"Muhr_avg","Respiration data",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,9,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. abies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Muhr_avg_20061114",NA,NA,2006,11,14,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"vial",NA,NA,NA,NA,4,NA,NA,NA,NA,NA,NA,NA,NA,NA,2006,86,NA,2.8,NA,NA,NA "1546","Muhr_2009","10.1029/2009JG000998",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"J. Muhr","jmuhr@bgc-jena.mpg.de",NA,"Muhr, J. and W. Borken. 2009. Delayed recovery of soil respiration after wetting of dry soil further reduces C losses from a Norway spruce forest soil. Journal of Geophysical Research-Biogeosciences 114.","via B. Ahrens (respiration/gas flux data)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,"Coulissenhieb II/Waldstein",NA,"Muhr_avg","Respiration data",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,9,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. abies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Muhr_avg_2007315",NA,NA,2007,3,15,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"vial",NA,NA,NA,NA,12,NA,NA,7,0.4,"Mg C ha-1 yr-1",NA,NA,NA,NA,2007,85.8,NA,3.1,NA,NA,NA "1547","Muhr_2009","10.1029/2009JG000998",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"J. Muhr","jmuhr@bgc-jena.mpg.de",NA,"Muhr, J. and W. Borken. 2009. Delayed recovery of soil respiration after wetting of dry soil further reduces C losses from a Norway spruce forest soil. Journal of Geophysical Research-Biogeosciences 114.","via B. Ahrens (respiration/gas flux data)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,"Coulissenhieb II/Waldstein",NA,"Muhr_avg","Respiration data",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,9,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. abies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Muhr_avg_200789",NA,NA,2007,8,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"vial",NA,NA,NA,NA,14,NA,NA,NA,NA,NA,NA,NA,NA,NA,2007,90.2,NA,4.1,NA,NA,NA "1548","Muhr_2009","10.1029/2009JG000998",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"J. Muhr","jmuhr@bgc-jena.mpg.de",NA,"Muhr, J. and W. Borken. 2009. Delayed recovery of soil respiration after wetting of dry soil further reduces C losses from a Norway spruce forest soil. Journal of Geophysical Research-Biogeosciences 114.","via B. Ahrens (respiration/gas flux data)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,"Coulissenhieb II/Waldstein",NA,"Muhr_avg","Respiration data",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,9,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. abies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Muhr_avg_20071016",NA,NA,2007,10,16,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"vial",NA,NA,NA,NA,7,NA,NA,NA,NA,NA,NA,NA,NA,NA,2007,85.1,NA,5.2,NA,NA,NA "1549","Richer_1999","10.1038/21867",NA,"AaronT","UGA","AaronT@uga.edu",2018,10,12,"Richter","drichter@duke.edu",NA,"Richter, D. D.; Markewitz, D.; Trumbore, S. E.; Wells, C. G., 199. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 1999, 400, 56 - 58.",NA,NA,2018092716,"Calhoun Long-term Plots",34.5,82,NA,NA,NA,NA,"Composite_8_plots_carbon","These are averages of 8 permanent plots",NA,NA,NA,"control",NA,"yes",8,16,1170,"Ultisols","Appling","Typic Kanhapludults","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pinus",NA,NA,NA,NA,NA,NA,"felsic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Calhoun Long-term Plots_leaf_litter",NA,NA,1992,NA,NA,NA,"plant mediated","Fluxes averaged for 1991-1992","litter","autotrophic","grab sample","monthly",NA,NA,NA,NA,NA,NA,NA,NA,0.245,0.0119,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1550","Richer_1999","10.1038/21867",NA,"AaronT","UGA","AaronT@uga.edu",2018,10,12,"Richter","drichter@duke.edu",NA,"Richter, D. D.; Markewitz, D.; Trumbore, S. E.; Wells, C. G., 199. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 1999, 400, 56 - 58.",NA,NA,2018092716,"Calhoun Long-term Plots",34.5,82,NA,NA,NA,NA,"Composite_8_plots_carbon","These are averages of 8 permanent plots",NA,NA,NA,"control",NA,"yes",8,16,1170,"Ultisols","Appling","Typic Kanhapludults","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pinus",NA,NA,NA,NA,NA,NA,"felsic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Calhoun Long-term Plots_org_DOC",NA,NA,1994,NA,NA,NA,"dissolved","Fluxes averaged for 1992-1994","DOC","ecosystem",NA,"throughfall; bi or tri weekly collections from 1992 to 1994",NA,NA,NA,NA,NA,NA,NA,NA,0.008,0.013,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1551","Richer_1999","10.1038/21867",NA,"AaronT","UGA","AaronT@uga.edu",2018,10,12,"Richter","drichter@duke.edu",NA,"Richter, D. D.; Markewitz, D.; Trumbore, S. E.; Wells, C. G., 199. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 1999, 400, 56 - 58.",NA,NA,2018092716,"Calhoun Long-term Plots",34.5,82,NA,NA,NA,NA,"Composite_8_plots_carbon","These are averages of 8 permanent plots",NA,NA,NA,"control",NA,"yes",8,16,1170,"Ultisols","Appling","Typic Kanhapludults","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pinus",NA,NA,NA,NA,NA,NA,"felsic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Calhoun Long-term Plots_0-15cm_DOC",NA,NA,1994,NA,NA,NA,"dissolved","Fluxes averaged for 1992-1994","DOC","ecosystem",NA,"gravimetric lysimeter; bi or tri weekly collections from 1992 to 1994",NA,NA,NA,NA,NA,NA,NA,NA,0.032,0.0281,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1552","Richer_1999","10.1038/21867",NA,"AaronT","UGA","AaronT@uga.edu",2018,10,12,"Richter","drichter@duke.edu",NA,"Richter, D. D.; Markewitz, D.; Trumbore, S. E.; Wells, C. G., 199. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 1999, 400, 56 - 58.",NA,NA,2018092716,"Calhoun Long-term Plots",34.5,82,NA,NA,NA,NA,"Composite_8_plots_carbon","These are averages of 8 permanent plots",NA,NA,NA,"control",NA,"yes",8,16,1170,"Ultisols","Appling","Typic Kanhapludults","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pinus",NA,NA,NA,NA,NA,NA,"felsic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Calhoun Long-term Plots_15-30cm_DOC",NA,NA,1994,NA,NA,NA,"dissolved","Fluxes averaged for 1992-1994","DOC","ecosystem",NA,"tension lysimeter; bi or tri weekly collections from 1992 to 1994",NA,NA,NA,NA,NA,NA,NA,NA,0.019,0.0345,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1553","Richer_1999","10.1038/21867",NA,"AaronT","UGA","AaronT@uga.edu",2018,10,12,"Richter","drichter@duke.edu",NA,"Richter, D. D.; Markewitz, D.; Trumbore, S. E.; Wells, C. G., 199. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 1999, 400, 56 - 58.",NA,NA,2018092716,"Calhoun Long-term Plots",34.5,82,NA,NA,NA,NA,"Composite_8_plots_carbon","These are averages of 8 permanent plots",NA,NA,NA,"control",NA,"yes",8,16,1170,"Ultisols","Appling","Typic Kanhapludults","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pinus",NA,NA,NA,NA,NA,NA,"felsic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Calhoun Long-term Plots_org_rhizodeposition",NA,NA,1995,NA,NA,NA,"plant mediated","Fluxes averaged for 1994-1995","litter","autotrophic",NA,"estimated from 50% of live <2mm root biomass sampled every 3 weeks for 18 months; 50% is a conservative factor",NA,NA,NA,NA,NA,NA,NA,NA,0.037,0.023,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1554","Richer_1999","10.1038/21867",NA,"AaronT","UGA","AaronT@uga.edu",2018,10,12,"Richter","drichter@duke.edu",NA,"Richter, D. D.; Markewitz, D.; Trumbore, S. E.; Wells, C. G., 199. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 1999, 400, 56 - 58.",NA,NA,2018092716,"Calhoun Long-term Plots",34.5,82,NA,NA,NA,NA,"Composite_8_plots_carbon","These are averages of 8 permanent plots",NA,NA,NA,"control",NA,"yes",8,16,1170,"Ultisols","Appling","Typic Kanhapludults","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pinus",NA,NA,NA,NA,NA,NA,"felsic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Calhoun Long-term Plots_0-15cm_rhizodeposition",NA,NA,1995,NA,NA,NA,"plant mediated","Fluxes averaged for 1994-1996","litter","autotrophic",NA,"estimated from 50% of live <2mm root biomass sampled every 3 weeks for 18 months; 50% is a conservative factor",NA,NA,NA,NA,NA,NA,NA,NA,0.063,0.0141,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1555","Richer_1999","10.1038/21867",NA,"AaronT","UGA","AaronT@uga.edu",2018,10,12,"Richter","drichter@duke.edu",NA,"Richter, D. D.; Markewitz, D.; Trumbore, S. E.; Wells, C. G., 199. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 1999, 400, 56 - 58.",NA,NA,2018092716,"Calhoun Long-term Plots",34.5,82,NA,NA,NA,NA,"Composite_8_plots_carbon","These are averages of 8 permanent plots",NA,NA,NA,"control",NA,"yes",8,16,1170,"Ultisols","Appling","Typic Kanhapludults","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pinus",NA,NA,NA,NA,NA,NA,"felsic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Calhoun Long-term Plots_15-30cm_rhizodeposition",NA,NA,1995,NA,NA,NA,"plant mediated","Fluxes averaged for 1994-1997","litter","autotrophic",NA,"estimated from 50% of live <2mm root biomass sampled every 3 weeks for 18 months; 50% is a conservative factor",NA,NA,NA,NA,NA,NA,NA,NA,0.026,0.0265,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1556","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-1-24_DOC",NA,NA,2006,1,24,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.107447425649641,0.00384831642624508,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1557","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-2-21_DOC",NA,NA,2006,2,21,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0247828054100222,0.000204729147997008,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1558","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-3-21_DOC",NA,NA,2006,3,21,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.210889818227408,0.0148248384773297,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1559","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-4-3_DOC",NA,NA,2006,4,3,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0436098603377293,0.000633939972892085,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1560","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-4-18_DOC",NA,NA,2006,4,18,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0335329282422008,0.00037481909216553,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1561","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-5-2_DOC",NA,NA,2006,5,2,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0329422715436598,0.000361731084818739,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1562","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-5-16_DOC",NA,NA,2006,5,16,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0214225928155928,0.000152975827647562,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1563","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-5-30_DOC",NA,NA,2006,5,30,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.116908862469869,0.00455589404133289,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1564","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-6-13_DOC",NA,NA,2006,6,13,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0528571180908249,0.000931291644289135,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1565","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-7-11_DOC",NA,NA,2006,7,11,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0274319774647705,0.000250837795875892,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1566","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-8-8_DOC",NA,NA,2006,8,8,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0859244995044131,0.0024610065383613,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1567","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-8-21_DOC",NA,NA,2006,8,21,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0292413546982473,0.000285018941529571,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1568","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-9-4_DOC",NA,NA,2006,9,4,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0608811381195518,0.00123550432624398,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1569","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-9-19_DOC",NA,NA,2006,9,19,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.00863224800817694,2.48385685582249e-05,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1570","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-10-17_DOC",NA,NA,2006,10,17,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0492286534072758,0.000807820105431229,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1571","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-11-14_DOC",NA,NA,2006,11,14,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.126998096632665,0.00537617218277328,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1572","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2006-12-12_DOC",NA,NA,2006,12,12,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.109480135939221,0.00399530005509014,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1573","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-1-9_DOC",NA,NA,2007,1,9,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.163785751882973,0.00894192417329029,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1574","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-1-23_DOC",NA,NA,2007,1,23,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0489911722860726,0.000800044987321216,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1575","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-3-7_DOC",NA,NA,2007,3,7,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.084057837752046,0.0023552400291831,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1576","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-4-3_DOC",NA,NA,2007,4,3,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.167618280450834,0.00936529598043153,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1577","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-5-2_DOC",NA,NA,2007,5,2,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.102552128532154,0.00350564635549183,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1578","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-5-29_DOC",NA,NA,2007,5,29,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.104365516150655,0.00363072032046421,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1579","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-6-26_DOC",NA,NA,2007,6,26,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.158359332231218,0.00835922603490577,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1580","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-7-24_DOC",NA,NA,2007,7,24,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.141008322401827,0.00662778232885924,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1581","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-8-13_DOC",NA,NA,2007,8,13,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.096060529130342,0.00307587508560043,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1582","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-9-4_DOC",NA,NA,2007,9,4,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.117641437299436,0.00461316925662571,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1583","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-9-18_DOC",NA,NA,2007,9,18,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0317192886165767,0.000335371090113897,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1584","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-10-2_DOC",NA,NA,2007,10,2,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.173086699763358,0.00998633521165692,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1585","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-10-16_DOC",NA,NA,2007,10,16,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0,0,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1586","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-10-30_DOC",NA,NA,2007,10,30,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.0110355845145134,4.05947085256556e-05,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1587","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-11-13_DOC",NA,NA,2007,11,13,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.103637774240527,0.00358026274984347,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1588","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2007-12-11_DOC",NA,NA,2007,12,11,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.12205269339795,0.00496561998856464,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1589","Schulze_2011","10.1007/s10533-010-9526-2",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,2,12,"W. Borken","werner.borken@uni‐bayreuth.de",NA,"Schulze, K., W. Borken, and E. Matzner. 2011. Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry:1-13.","via B. Ahrens (DOC)",NA,NA,"Fichtelgeberge",50.133,11.867,NA,770,NA,"Control","Schulze11_avg","Profile DOC flux",NA,NA,NA,"control","control for throughfall exclusion and snow removal experiments",NA,3,5.3,1160,NA,NA,"Podzol","WRB",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"P. albies",NA,NA,NA,NA,NA,"metamorphic",NA,"Granite formations, gneiss, mica schist, phyllites",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Control","2008-1-8_DOC",NA,NA,2008,1,8,NA,"dissolved","Forest floor leachate (below Oa horizon)","DOC","ecosystem","grab sample",NA,"flask",14,"days",NA,NA,NA,NA,NA,0.00624933292913393,1.30180540197192e-05,"g C m-2 d-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1590","Schuur_2006","10.1111/j.1365-2486.2005.01066.x",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,5,4,"Edward A. G. Schuur","tschuur@ufl.edu",NA,"Schuur E.A.G. & Trumbure S.E., 2006, Partioning sources of soil respiration in boreal black spruce forest using radiocarbon, Global Change Biology, 12, 165-176",NA,NA,NA,"Tower_12-Mile",64.04,-145.7,"WGS84",490,"Tower elev = 490m; 12-Mile = 520; sites <10km apart",NA,"T_F","flx chamber avg",NA,NA,490,"control",NA,"yes",6,NA,NA,NA,NA,"Entisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea mariana; Pleurozium schreberi; Hylocomium splendens",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"T_F_2001613",NA,NA,2001,6,13,NA,"soil emission",NA,"CO2","ecosystem","chamber","modified dynamic flow chamber; n = 3","molecular sieve",2,"mins","yes","yes",NA,NA,NA,1.8144,0.7752,"g C m-2 d-1",NA,NA,"CAMS",NA,NA,123,5,10,NA,NA,NA "1591","Schuur_2006","10.1111/j.1365-2486.2005.01066.x",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,5,4,"Edward A. G. Schuur","tschuur@ufl.edu",NA,"Schuur E.A.G. & Trumbure S.E., 2006, Partioning sources of soil respiration in boreal black spruce forest using radiocarbon, Global Change Biology, 12, 165-176",NA,NA,NA,"Tower_12-Mile",64.04,-145.7,"WGS84",490,"Tower elev = 490m; 12-Mile = 520; sites <10km apart",NA,"T_F","flx chamber avg",NA,NA,490,"control",NA,"yes",6,NA,NA,NA,NA,"Entisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea mariana; Pleurozium schreberi; Hylocomium splendens",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"T_F_2001827",NA,NA,2001,8,27,NA,"soil emission",NA,"CO2","ecosystem","chamber","modified dynamic flow chamber; n = 3","molecular sieve",2,"mins","yes","yes",NA,NA,NA,2.124,0.2688,"g C m-2 d-1",NA,NA,"CAMS",NA,NA,123,5,7,NA,NA,NA "1592","Schuur_2006","10.1111/j.1365-2486.2005.01066.x",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,5,4,"Edward A. G. Schuur","tschuur@ufl.edu",NA,"Schuur E.A.G. & Trumbure S.E., 2006, Partioning sources of soil respiration in boreal black spruce forest using radiocarbon, Global Change Biology, 12, 165-176",NA,NA,NA,"Tower_12-Mile",64.04,-145.7,"WGS84",490,"Tower elev = 490m; 12-Mile = 520; sites <10km apart",NA,"TM_F","flx chamber avg",NA,NA,520,"control",NA,"yes",3,NA,NA,NA,NA,"Entisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea mariana; Cladonis spp.; Cladina spp.; Pleurozium schreberi; Hylocomium splendens",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"TM_F_2001828",NA,NA,2001,8,28,NA,"soil emission",NA,"CO2","ecosystem","chamber","modified dynamic flow chamber; n = 3","molecular sieve",2,"mins","yes","yes",NA,NA,NA,2.1816,0.2592,"g C m-2 d-1",NA,NA,"CAMS",NA,NA,119,5,7,NA,NA,NA "1593","Schuur_2006","10.1111/j.1365-2486.2005.01066.x",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,5,4,"Edward A. G. Schuur","tschuur@ufl.edu",NA,"Schuur E.A.G. & Trumbure S.E., 2006, Partioning sources of soil respiration in boreal black spruce forest using radiocarbon, Global Change Biology, 12, 165-176",NA,NA,NA,"CPCRW",65.167,-147.5,"WGS84",610,"Caribou Poker Creek Research Watershed",NA,"CPCRW_F","flx chamber avg",NA,NA,610,"control",NA,"yes",4,NA,NA,NA,NA,"Entisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea mariana; Sphagnum spp.; Pleurozium schreberi; Hylocomium splendens",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CPCRW_F_2001615",NA,NA,2001,6,15,NA,"soil emission",NA,"CO2","ecosystem","chamber","modified dynamic flow chamber; n = 2","molecular sieve",2,"mins","yes","yes",NA,NA,NA,1.6536,0.2208,"g C m-2 d-1",NA,NA,"CAMS",NA,NA,109,5,1,NA,NA,NA "1594","Schuur_2006","10.1111/j.1365-2486.2005.01066.x",NA,"Sophie von Fromm","MPI-BGC","sfromm@bgc-jena.mpg.de",2018,5,4,"Edward A. G. Schuur","tschuur@ufl.edu",NA,"Schuur E.A.G. & Trumbure S.E., 2006, Partioning sources of soil respiration in boreal black spruce forest using radiocarbon, Global Change Biology, 12, 165-176",NA,NA,NA,"CPCRW",65.167,-147.5,"WGS84",610,"Caribou Poker Creek Research Watershed",NA,"CPCRW_F","flx chamber avg",NA,NA,610,"control",NA,"yes",4,NA,NA,NA,NA,"Entisol","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Picea mariana; Sphagnum spp.; Pleurozium schreberi; Hylocomium splendens",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CPCRW_F_200181",NA,NA,2001,8,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","modified dynamic flow chamber; n = 2","molecular sieve",2,"mins","yes","yes",NA,NA,NA,3.6672,1.1232,"g C m-2 d-1",NA,NA,"CAMS",NA,NA,115,5,6,NA,NA,NA "1595","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_2006713",NA,NA,2006,7,13,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,61.7,NA,NA,NA,NA,NA "1596","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_2006713",NA,NA,2006,7,13,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,82.6105379,NA,NA,NA,NA,NA "1597","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_2006713",NA,NA,2006,7,13,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,73.2377545,NA,NA,NA,NA,NA "1598","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_2006713",NA,NA,2006,7,13,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,68.67690301,NA,NA,NA,NA,NA "1599","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_2006713",NA,NA,2006,7,13,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,89.8150324,NA,NA,NA,NA,NA "1600","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_2006713",NA,NA,2006,7,13,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,113.6474092,NA,NA,NA,NA,NA "1601","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_2006713",NA,NA,2006,7,13,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,89.32938375,NA,NA,NA,NA,NA "1602","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_2006713",NA,NA,2006,7,13,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,88.31270115,NA,NA,NA,NA,NA "1603","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_2006713",NA,NA,2006,7,13,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,81.91461203,NA,NA,NA,NA,NA "1604","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen3",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen3_2006713",NA,NA,2006,7,13,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,79.67116317,NA,NA,NA,NA,NA "1605","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_2006713",NA,NA,2006,7,13,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,67.86780352,NA,NA,NA,NA,NA "1606","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_2006713",NA,NA,2006,7,13,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,83.50256342,NA,NA,NA,NA,NA "1607","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_2006821",NA,NA,2006,8,21,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,83.41408564,NA,NA,NA,NA,NA "1608","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_2006821",NA,NA,2006,8,21,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,84.51551716,NA,NA,NA,NA,NA "1609","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_2006821",NA,NA,2006,8,21,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,86.00526518,NA,NA,NA,NA,NA "1610","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_2006821",NA,NA,2006,8,21,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,117.6596772,NA,NA,NA,NA,NA "1611","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_2006821",NA,NA,2006,8,21,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,83.67167735,NA,NA,NA,NA,NA "1612","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_2006822",NA,NA,2006,8,22,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,57.3,NA,NA,NA,NA,NA "1613","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_2006111",NA,NA,2006,11,1,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,47,NA,NA,NA,NA,NA "1614","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_2006111",NA,NA,2006,11,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,70.59785174,NA,NA,NA,NA,NA "1615","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_2006111",NA,NA,2006,11,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,63.33796296,NA,NA,NA,NA,NA "1616","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_2006111",NA,NA,2006,11,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,62.83525641,NA,NA,NA,NA,NA "1617","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_2006111",NA,NA,2006,11,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,77.08570147,NA,NA,NA,NA,NA "1618","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_2006111",NA,NA,2006,11,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,97.60656044,NA,NA,NA,NA,NA "1619","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_2006111",NA,NA,2006,11,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,86.68913053,NA,NA,NA,NA,NA "1620","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,78.27281083,NA,NA,NA,NA,NA "1621","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,56.03377901,NA,NA,NA,NA,NA "1622","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,49.29614876,NA,NA,NA,NA,NA "1623","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,97.98932213,NA,NA,NA,NA,NA "1624","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,85.08546659,NA,NA,NA,NA,NA "1625","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,90.65182221,NA,NA,NA,NA,NA "1626","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,83.43545969,NA,NA,NA,NA,NA "1627","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,65.91434157,NA,NA,NA,NA,NA "1628","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen3",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen3_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,77.32281867,NA,NA,NA,NA,NA "1629","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,98.50975277,NA,NA,NA,NA,NA "1630","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,85.69337371,NA,NA,NA,NA,NA "1631","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated3",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated3_20061111",NA,NA,2006,11,11,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,99.62552157,NA,NA,NA,NA,NA "1632","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_2007520",NA,NA,2007,5,20,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,46.3,NA,NA,NA,NA,NA "1633","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,77.79075485,NA,NA,NA,NA,NA "1634","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,74.67051878,NA,NA,NA,NA,NA "1635","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,74.72567088,NA,NA,NA,NA,NA "1636","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,77.58996477,NA,NA,NA,NA,NA "1637","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,104.4101465,NA,NA,NA,NA,NA "1638","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,88.69895722,NA,NA,NA,NA,NA "1639","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,68.96568515,NA,NA,NA,NA,NA "1640","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,78.42098882,NA,NA,NA,NA,NA "1641","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen3",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen3_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,77.86905176,NA,NA,NA,NA,NA "1642","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,84.39466267,NA,NA,NA,NA,NA "1643","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,76.3386133,NA,NA,NA,NA,NA "1644","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated3",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated3_2007520",NA,NA,2007,5,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,86.28516393,NA,NA,NA,NA,NA "1645","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_2007731",NA,NA,2007,7,31,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,31.2,NA,NA,NA,NA,NA "1646","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,88.97862305,NA,NA,NA,NA,NA "1647","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,74.77257617,NA,NA,NA,NA,NA "1648","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,82.64273034,NA,NA,NA,NA,NA "1649","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,77.63575082,NA,NA,NA,NA,NA "1650","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,229.3757727,NA,NA,NA,NA,NA "1651","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,84.94984508,NA,NA,NA,NA,NA "1652","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,69.54238859,NA,NA,NA,NA,NA "1653","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,73.64027663,NA,NA,NA,NA,NA "1654","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen3",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen3_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,80.90055003,NA,NA,NA,NA,NA "1655","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,74.9815783,NA,NA,NA,NA,NA "1656","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,76.33693106,NA,NA,NA,NA,NA "1657","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated3",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated3_2007731",NA,NA,2007,7,31,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,81.07642654,NA,NA,NA,NA,NA "1658","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_2007926",NA,NA,2007,9,26,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,33,NA,NA,NA,NA,NA "1659","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,95.20405851,NA,NA,NA,NA,NA "1660","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,80.91592138,NA,NA,NA,NA,NA "1661","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,81.00633514,NA,NA,NA,NA,NA "1662","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control4",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control4_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,69.76270822,NA,NA,NA,NA,NA "1663","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,74.45508241,NA,NA,NA,NA,NA "1664","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,101.5609538,NA,NA,NA,NA,NA "1665","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,94.94864001,NA,NA,NA,NA,NA "1666","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated4",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated4_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,59.21040809,NA,NA,NA,NA,NA "1667","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,79.43822345,NA,NA,NA,NA,NA "1668","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,86.08298185,NA,NA,NA,NA,NA "1669","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen3",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen3_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,74.53590438,NA,NA,NA,NA,NA "1670","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,91.99029467,NA,NA,NA,NA,NA "1671","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,96.96713315,NA,NA,NA,NA,NA "1672","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated3",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated3_2007926",NA,NA,2007,9,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,81.36734078,NA,NA,NA,NA,NA "1673","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_2007117",NA,NA,2007,11,7,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,45.3,NA,NA,NA,NA,NA "1674","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,75.92770032,NA,NA,NA,NA,NA "1675","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,71.61239387,NA,NA,NA,NA,NA "1676","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,72.7809717,NA,NA,NA,NA,NA "1677","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,71.18897197,NA,NA,NA,NA,NA "1678","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,74.88029038,NA,NA,NA,NA,NA "1679","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,74.7602153,NA,NA,NA,NA,NA "1680","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated4",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated4_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,66.4471446,NA,NA,NA,NA,NA "1681","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,77.17833486,NA,NA,NA,NA,NA "1682","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,72.92770658,NA,NA,NA,NA,NA "1683","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen3",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen3_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,76.71765329,NA,NA,NA,NA,NA "1684","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,71.48943798,NA,NA,NA,NA,NA "1685","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,101.1210681,NA,NA,NA,NA,NA "1686","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated3",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated3_2007117",NA,NA,2007,11,7,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,75.11719066,NA,NA,NA,NA,NA "1687","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_2008422",NA,NA,2008,4,22,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,38.8,NA,NA,NA,NA,NA "1688","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,108.9633742,NA,NA,NA,NA,NA "1689","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,84.75430024,NA,NA,NA,NA,NA "1690","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,83.51344777,NA,NA,NA,NA,NA "1691","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,108.4744329,NA,NA,NA,NA,NA "1692","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,111.8744086,NA,NA,NA,NA,NA "1693","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,101.7880926,NA,NA,NA,NA,NA "1694","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated4",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated4_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,78.74514261,NA,NA,NA,NA,NA "1695","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,83.25475842,NA,NA,NA,NA,NA "1696","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,91.27539702,NA,NA,NA,NA,NA "1697","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen3",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen3_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,73.15267787,NA,NA,NA,NA,NA "1698","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,77.08888646,NA,NA,NA,NA,NA "1699","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,93.33480457,NA,NA,NA,NA,NA "1700","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated3",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated3_2008422",NA,NA,2008,4,22,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,86.67951489,NA,NA,NA,NA,NA "1701","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_200899",NA,NA,2008,9,9,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,41,NA,NA,NA,NA,NA "1702","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,86.8004603,NA,NA,NA,NA,NA "1703","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,86.20430769,NA,NA,NA,NA,NA "1704","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,81.14582723,NA,NA,NA,NA,NA "1705","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,75.76316845,NA,NA,NA,NA,NA "1706","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,81.99290466,NA,NA,NA,NA,NA "1707","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,72.82005277,NA,NA,NA,NA,NA "1708","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated4",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated4_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,65.0675967,NA,NA,NA,NA,NA "1709","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated5",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated5_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,77.71569933,NA,NA,NA,NA,NA "1710","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated6",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated6_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,88.69090909,NA,NA,NA,NA,NA "1711","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,64.03609467,NA,NA,NA,NA,NA "1712","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,74.79389952,NA,NA,NA,NA,NA "1713","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen3",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen3_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,70.30775047,NA,NA,NA,NA,NA "1714","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,75.73642384,NA,NA,NA,NA,NA "1715","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,87.32622222,NA,NA,NA,NA,NA "1716","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated3",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated3_200899",NA,NA,2008,9,9,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,78.9542515,NA,NA,NA,NA,NA "1717","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,78.34933974,NA,NA,NA,NA,NA "1718","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,41.65789474,NA,NA,NA,NA,NA "1719","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,69.86153846,NA,NA,NA,NA,NA "1720","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,73.10065437,NA,NA,NA,NA,NA "1721","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,143.4225564,NA,NA,NA,NA,NA "1722","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,76.01959573,NA,NA,NA,NA,NA "1723","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated4",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated4_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,60.38023599,NA,NA,NA,NA,NA "1724","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,57.90239664,NA,NA,NA,NA,NA "1725","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,63.17668767,NA,NA,NA,NA,NA "1726","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen3",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen3_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,85.36921996,NA,NA,NA,NA,NA "1727","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,63.40701754,NA,NA,NA,NA,NA "1728","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,85.05812808,NA,NA,NA,NA,NA "1729","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated3",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated3_2008114",NA,NA,2008,11,4,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,71.59534884,NA,NA,NA,NA,NA "1730","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_2009620",NA,NA,2009,6,20,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,29.1,NA,NA,NA,NA,NA "1731","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,71.75285109,NA,NA,NA,NA,NA "1732","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,71.61097491,NA,NA,NA,NA,NA "1733","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,75.84520229,NA,NA,NA,NA,NA "1734","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,65.0111079,NA,NA,NA,NA,NA "1735","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,69.11091573,NA,NA,NA,NA,NA "1736","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,67.49439863,NA,NA,NA,NA,NA "1737","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,68.40558921,NA,NA,NA,NA,NA "1738","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen3",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen3_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,71.86824894,NA,NA,NA,NA,NA "1739","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen4",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen4_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,64.52677842,NA,NA,NA,NA,NA "1740","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,66.31140756,NA,NA,NA,NA,NA "1741","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,77.93721127,NA,NA,NA,NA,NA "1742","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated3",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated3_2009620",NA,NA,2009,6,20,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,69.92445215,NA,NA,NA,NA,NA "1743","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_2009826",NA,NA,2009,8,26,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,46.2,NA,NA,NA,NA,NA "1744","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,76.51767376,NA,NA,NA,NA,NA "1745","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,78.17106281,NA,NA,NA,NA,NA "1746","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,76.6319746,NA,NA,NA,NA,NA "1747","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,78.03288243,NA,NA,NA,NA,NA "1748","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated4",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated4_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,79.85074831,NA,NA,NA,NA,NA "1749","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated5",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated5_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,66.12841568,NA,NA,NA,NA,NA "1750","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated6",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated6_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,64.74590522,NA,NA,NA,NA,NA "1751","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,68.40292781,NA,NA,NA,NA,NA "1752","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,64.8576662,NA,NA,NA,NA,NA "1753","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen3",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen3_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,69.36726651,NA,NA,NA,NA,NA "1754","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,67.24024834,NA,NA,NA,NA,NA "1755","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,79.60967616,NA,NA,NA,NA,NA "1756","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated3",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated3_2009826",NA,NA,2009,8,26,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,71.21496126,NA,NA,NA,NA,NA "1757","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","HarvardForest","flux atm",NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"HarvardForest_201068",NA,NA,2010,6,8,NA,"suspended",NA,"CO2","atmosphere","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,39.8,NA,NA,NA,NA,NA "1758","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control1",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control1_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,56.85773264,NA,NA,NA,NA,NA "1759","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control2",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control2_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,59.6850855,NA,NA,NA,NA,NA "1760","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming Ctl","Flx_Control3",NA,NA,NA,NA,"control",NA,NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Control3_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,44.817781,NA,NA,NA,NA,NA "1761","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated1",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated1_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,63.59277406,NA,NA,NA,NA,NA "1762","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated2",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated2_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,76.25028236,NA,NA,NA,NA,NA "1763","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated3",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated3_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,58.85795638,NA,NA,NA,NA,NA "1764","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming W","Flx_Heated4",NA,NA,NA,NA,"treatment","warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Heated4_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,51.15892344,NA,NA,NA,NA,NA "1765","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen1",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen1_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,52.83316457,NA,NA,NA,NA,NA "1766","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming N","Flx_Nitrogen2",NA,NA,NA,NA,"treatment","N added",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen2_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,57.93293605,NA,NA,NA,NA,NA "1767","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated1",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated1_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,61.40162597,NA,NA,NA,NA,NA "1768","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated2",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated2_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,72.4475326,NA,NA,NA,NA,NA "1769","Sierra_2012","10.5194/bg-9-3013-2012",NA,"Julia Mayrock","University Augsburg","julia.mayrock@googlemail.com",2018,4,18,"C. A. Sierra","csierra@bgc-jena.mpg.de",NA,"C. A. Sierra, S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins; 2012; Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil; Biogeosciences, 9, 3013–3028, 2012",NA,NA,NA,"Harvard Forest",42.53,-72.19,"WGS84",330,"Harvard Forest Long-Term Ecological Research site","N/Warming NW","Flx_Nitrogen+Heated3",NA,NA,NA,NA,"treatment","N added + warming",NA,NA,7.3,1120,NA,NA,"Typic Dystrochrepts","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"deciduous species and white pine",NA,NA,NA,NA,NA,"metamorphic",NA,"Glacial till, bedrock gneiss, schist, granite",NA,NA,NA,NA,NA,NA,NA,NA,NA,"Nitrogen","Flx_Nitrogen+Heated3_201068",NA,NA,2010,6,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,64.95988934,NA,NA,NA,NA,NA "1770","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 1",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 1","Chamber 1_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1771","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 2",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 2","Chamber 2_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1772","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 3",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 3","Chamber 3_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1773","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 4",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 4","Chamber 4_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1774","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 5",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 5","Chamber 5_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1775","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 6",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 6","Chamber 6_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1776","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 7",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 7","Chamber 7_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1777","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 8",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 8","Chamber 8_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1778","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 9",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 9","Chamber 9_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1779","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 10",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 10","Chamber 10_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1780","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 11",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 11","Chamber 11_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1781","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 12",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 12","Chamber 12_201341",NA,NA,2013,4,1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1782","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 1",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 1","Chamber 1_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1783","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 2",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 2","Chamber 2_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1784","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 3",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 3","Chamber 3_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1785","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 4",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 4","Chamber 4_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1786","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 5",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 5","Chamber 5_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1787","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 6",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 6","Chamber 6_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1788","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 7",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 7","Chamber 7_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1789","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 8",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 8","Chamber 8_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1790","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 9",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 9","Chamber 9_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1791","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 10",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 10","Chamber 10_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1792","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 11",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 11","Chamber 11_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1793","Taylor_2015","10.1007/s10021-014-9839-4",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,4,3,"Chun-Tai Lai","chun-ta.lai@sdsu.edu","https://orcid.org/0000-0001-9662-8545"," A. J. Taylor, C.T. Lai, F.M. Hopkins, S. Wharton, K. Bible, X. Xu, C. Phillips, S. Bush, and J.R. Ehleringer. 2015. Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18: 459–470","Additional site data available in Shaw et al. 2004 (doi:10.1007/s10021-004-0135-6)",NA,NA,"Wind River",45.8548888888889,121.969111111111,NA,371,NA,NA,"Chamber 12",NA,NA,NA,NA,"control",NA,NA,NA,8.7,2223,NA,NA,"Entic Vitrands","USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"Pseudotsuga menziesii, Tsuga heterophylla",NA,NA,NA,NA,NA,"igneous pyroclastic",NA,"primarily volcanic derived from tephra, some intrusive igneous",NA,NA,NA,5,NA,"well",NA,NA,NA,"Chamber 12","Chamber 12_201386",NA,NA,2013,8,6,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1794","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Thurston",19.3967,-155.243,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.20",NA,"Thurston_0.3",NA,19.3967,-155.243,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,0.3,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Thurston_0.3_O_horizon_leaf_litter",NA,NA,1996,NA,NA,NA,"plant mediated","leaves","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.191,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1795","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Olaa",19.4797,-155.171,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.21",NA,"Olaa_2.1",NA,19.4797,-155.171,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,2.1,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Olaa_2.1_O_horizon_leaf_litter",NA,NA,1996,NA,NA,NA,"plant mediated","leaves","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1796","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Laupahoehoe",19.9198,-155.342,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.22",NA,"Laupahoehoe_20",NA,19.9198,-155.342,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,20,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Laupahoehoe_20_O_horizon_leaf_litter",NA,NA,1996,NA,NA,NA,"plant mediated","leaves","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.215,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1797","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kohala",20.0272,-155.712,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.23",NA,"Kohala_150",NA,20.0272,-155.712,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,150,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kohala_150_O_horizon_leaf_litter",NA,NA,1996,NA,NA,NA,"plant mediated","leaves","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.253,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1798","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kolekole, Molokai",21.0923,-156.901,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.24",NA,"Kolekole_Molokai_1400",NA,21.0923,-156.901,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,1400,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kolekole_Molokai_1400_O_horizon_leaf_litter",NA,NA,1996,NA,NA,NA,"plant mediated","leaves","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.257,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1799","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kokee, Kauai",22.072,-159.53,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.25",NA,"Kokee_Kauai_4100",NA,22.072,-159.53,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Oxisol",NA,NA,4100,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kokee_Kauai_4100_O_horizon_leaf_litter",NA,NA,1996,NA,NA,NA,"plant mediated","leaves","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.153,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1800","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Thurston",19.3967,-155.243,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.20",NA,"Thurston_0.3",NA,19.3967,-155.243,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,0.3,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Thurston_0.3_O_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.043,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1801","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Olaa",19.4797,-155.171,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.21",NA,"Olaa_2.1",NA,19.4797,-155.171,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,2.1,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Olaa_2.1_O_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1802","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Laupahoehoe",19.9198,-155.342,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.22",NA,"Laupahoehoe_20",NA,19.9198,-155.342,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,20,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Laupahoehoe_20_O_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.034,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1803","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kohala",20.0272,-155.712,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.23",NA,"Kohala_150",NA,20.0272,-155.712,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,150,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kohala_150_O_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1804","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kolekole, Molokai",21.0923,-156.901,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.24",NA,"Kolekole_Molokai_1400",NA,21.0923,-156.901,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,1400,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kolekole_Molokai_1400_O_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1805","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kokee, Kauai",22.072,-159.53,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.25",NA,"Kokee_Kauai_4100",NA,22.072,-159.53,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Oxisol",NA,NA,4100,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kokee_Kauai_4100_O_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.018,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1806","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Thurston",19.3967,-155.243,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.20",NA,"Thurston_0.3",NA,19.3967,-155.243,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,0.3,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Thurston_0.3_A_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.035,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1807","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Olaa",19.4797,-155.171,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.21",NA,"Olaa_2.1",NA,19.4797,-155.171,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,2.1,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Olaa_2.1_A_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1808","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Laupahoehoe",19.9198,-155.342,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.22",NA,"Laupahoehoe_20",NA,19.9198,-155.342,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,20,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Laupahoehoe_20_A_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.023,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1809","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kohala",20.0272,-155.712,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.23",NA,"Kohala_150",NA,20.0272,-155.712,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,150,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kohala_150_A_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1810","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kolekole, Molokai",21.0923,-156.901,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.24",NA,"Kolekole_Molokai_1400",NA,21.0923,-156.901,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,1400,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kolekole_Molokai_1400_A_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1811","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kokee, Kauai",22.072,-159.53,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.25",NA,"Kokee_Kauai_4100",NA,22.072,-159.53,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Oxisol",NA,NA,4100,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kokee_Kauai_4100_A_horizon_root_litter",NA,NA,1996,NA,NA,NA,"plant mediated","roots","litter","autotrophic",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.01,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1812","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Thurston",19.3967,-155.243,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.20",NA,"Thurston_0.3",NA,19.3967,-155.243,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,0.3,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Thurston_0.3_A_horizon_DOC",NA,NA,1996,NA,NA,NA,"dissolved",NA,"DOC","ecosystem",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.07,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1813","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Olaa",19.4797,-155.171,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.21",NA,"Olaa_2.1",NA,19.4797,-155.171,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,2.1,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Olaa_2.1_A_horizon_DOC",NA,NA,1996,NA,NA,NA,"dissolved",NA,"DOC","ecosystem",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1814","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Laupahoehoe",19.9198,-155.342,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.22",NA,"Laupahoehoe_20",NA,19.9198,-155.342,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,20,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Laupahoehoe_20_A_horizon_DOC",NA,NA,1996,NA,NA,NA,"dissolved",NA,"DOC","ecosystem",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.075,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1815","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kohala",20.0272,-155.712,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.23",NA,"Kohala_150",NA,20.0272,-155.712,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,150,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kohala_150_A_horizon_DOC",NA,NA,1996,NA,NA,NA,"dissolved",NA,"DOC","ecosystem",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1816","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kolekole, Molokai",21.0923,-156.901,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.24",NA,"Kolekole_Molokai_1400",NA,21.0923,-156.901,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Andisol",NA,NA,1400,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kolekole_Molokai_1400_A_horizon_DOC",NA,NA,1996,NA,NA,NA,"dissolved",NA,"DOC","ecosystem",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1817","Torn_2005","10.1007/s10021-004-0259-8",NA,"Christina Schädel","Northern Arizona University","christina.schaedel@nau.edu",2018,11,7,"Margaret Torn","mstorn@lbl.gov",NA,"Torn M S, Vitousek P M and Trumbore S E 2005 The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling Ecosystems 8 352–72","Additional data available from fertilized plots (only control plot data reported here)",NA,2018092716,"Kokee, Kauai",22.072,-159.53,NA,1200,"lat/long extracted from Fig. 2 in Crews et al. 1995 using GetData Graph Digitizer version 2.26.0.25",NA,"Kokee_Kauai_4100",NA,22.072,-159.53,1200,"control",NA,"yes",NA,16,2500,NA,NA,"Oxisol",NA,NA,4100,NA,NA,NA,"forest",NA,NA,NA,"Metrosideros polymorpha",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Kokee_Kauai_4100_A_horizon_DOC",NA,NA,1996,NA,NA,NA,"dissolved",NA,"DOC","ecosystem",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0.051,NA,"kg C m-2 yr-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1818","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","CFA","control",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"CFA_200078_",NA,NA,2000,7,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-26.1666666666667,0.585946527708232,"UCI","UCIT5848-9",2000,100.006045554463,4,NA,NA,NA,NA "1819","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","CFA","control",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"CFA_200131_",NA,NA,2001,3,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","UCIT5897",2001,130.057756237518,4,NA,NA,NA,NA "1820","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","CFA","control",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"CFA_200323_1",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","UCIT5898",2001,93.2219704184866,4,NA,NA,NA,NA "1821","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","CFA","control",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"CFA_200323_2",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-24.8,0.212132034355962,"UCI","UCIT9785",2003,125.882952260122,2.31500627498205,NA,NA,NA,NA "1822","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","CFA","control",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"CFA_200323_3",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-25.6,0.212132034355962,"UCI","UCIT9786",2003,118.236703216595,2.41653270895396,NA,NA,NA,NA "1823","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","CFA","control",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"CFA_200323_4",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-27.3,0.212132034355962,"UCI","UCIT9787",2003,96.8799686024571,2.24043392014946,NA,NA,NA,NA "1824","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","CFA","control",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"CFA_200323_5",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-27.6,0.212132034355962,"UCI","UCIT9788",2003,103.544183299533,2.26481268181507,NA,NA,NA,NA "1825","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","CFA","control",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"CFA_200323_6",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-27,0.212132034355962,"UCI","UCIT9789",2003,93.7612569879509,2.25744241251854,NA,NA,NA,NA "1826","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","CFA","control",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"CFA_200323_7",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-28.3,0.212132034355962,"UCI","UCIT9790",2003,104.055159483753,2.26440642744736,NA,NA,NA,NA "1827","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","betweenSFkm86","SA","sandyclay",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Ultisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","interfluve",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SA_200078_",NA,NA,2000,7,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-26.1,11.5258405333407,"UCI","UCIT5850-1",2000,91.4553914100486,4,NA,NA,NA,NA "1828","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","betweenSFkm86","SA","sandyclay",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Ultisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","interfluve",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SA_200131_1",NA,NA,2001,3,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","UCIT5905",2001,102.786492123512,4,NA,NA,NA,NA "1829","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","betweenSFkm86","SA","sandyclay",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Ultisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","interfluve",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SA_200131_2",NA,NA,2001,3,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","UCIT5900",2001,110.525030126229,4,NA,NA,NA,NA "1830","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","km83","SBM","Plateau-clay",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Ultisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","interfluve",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SBM_200078_",NA,NA,2000,7,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-26.3,0.141421356237309,"UCI","UCIT5855-7",2000,85.185988782224,4,NA,NA,NA,NA "1831","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","SFA","drydown",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SFA_200078_",NA,NA,2000,7,8,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-26.75,0.212132034355962,"UCI","UCIT5854-5",2000,93.9613785454967,4,NA,NA,NA,NA "1832","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","SFA","drydown",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SFA_200131_1",NA,NA,2001,3,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","UCIT5904",2001,133.042088846643,4,NA,NA,NA,NA "1833","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","SFA","drydown",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SFA_200131_2",NA,NA,2001,3,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","UCIT5906",2001,97.1693411745801,4,NA,NA,NA,NA "1834","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","SFA","drydown",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SFA_200131_3",NA,NA,2001,3,1,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,NA,NA,"UCI","UCIT5901",2001,111.477364958287,4,NA,NA,NA,NA "1835","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","SFA","drydown",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SFA_200323_4",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-26.1,0.212132034355962,"UCI","UCIT9792",2003,95.8195729211495,2.80024118196573,NA,NA,NA,NA "1836","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","SFA","drydown",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SFA_200323_5",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-25.5,0.212132034355962,"UCI","UCIT9793",2003,95.5504386895758,2.24474175292162,NA,NA,NA,NA "1837","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","SFA","drydown",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SFA_200323_6",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-25.5,0.212132034355962,"UCI","UCIT9794",2003,94.7423430554337,3.1835678291814,NA,NA,NA,NA "1838","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","SFA","drydown",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SFA_200323_7",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-25.1,0.212132034355962,"UCI","UCIT9795",2003,126.960799964744,2.89675812627382,NA,NA,NA,NA "1839","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"FLONA",-3.017,-54.9707,"WGS84",109,"LBA site Flona Tapajos Seca-seca floresta also km83","SecaFloresta","SFA","drydown",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"SFA_200323_8",NA,NA,2003,2,3,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-24.9,0.212132034355962,"UCI","UCIT9796",2003,123.510937502588,2.29888663304761,NA,NA,NA,NA "1840","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"ZF2",-2.55,-60.1091,"WGS84",182,"ZF2 N-S Jacaranda Transect ","ZF2_Baixio","ZF2_Baixio","Sandy seasonal flood",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Spodosol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"ZF2_Baixio_20001221_1",NA,NA,2000,12,21,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-25.17,NA,"UCI","UCIT5324",2000,102.446871867868,5.09782347535782,NA,NA,NA,NA "1841","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"ZF2",-2.55,-60.1091,"WGS84",182,"ZF2 N-S Jacaranda Transect ","ZF2_Baixio","ZF2_Baixio","Sandy seasonal flood",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Spodosol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"ZF2_Baixio_20001221_2",NA,NA,2000,12,21,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-27.88,NA,"UCI","UCIT5319",2000,85.6740923137447,4.91979423631388,NA,NA,NA,NA "1842","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"ZF2",-2.55,-60.1091,"WGS84",182,"ZF2 N-S Jacaranda Transect ","ZF2_Plateau","ZF2_Plateau","Plateay- clay rich",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"ZF2_Plateau_20001221_1",NA,NA,2000,12,21,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-26.69,NA,"UCI","UCIT5321",2000,102.01271780619,4.99443476723917,NA,NA,NA,NA "1843","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"ZF2",-2.55,-60.1091,"WGS84",182,"ZF2 N-S Jacaranda Transect ","ZF2_Plateau","ZF2_Plateau","Plateay- clay rich",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"ZF2_Plateau_20001221_2",NA,NA,2000,12,21,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-25.97,NA,"UCI","UCIT5322",2000,89.8122036077187,5.63235630938537,NA,NA,NA,NA "1844","Trumbore_2006","israd",NA,"J. Beem-Miller","MPI-BGC","jbeem@bgc-jena.mpg.de",2018,10,6,"Susan Trumbore","trumbore@bgc-jena.mpg.de","0000-0003-3885-6202","Trumbore, S. E., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T., Silver, W. (2006). Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12(2), 217-229. doi:10.1111/j.1365-2486.2005.001063.x.",NA,"Telles_2003; Perez_2006 ",NA,"ZF2",-2.55,-60.1091,"WGS84",182,"ZF2 N-S Jacaranda Transect ","ZF2_Plateau","ZF2_Plateau","Plateay- clay rich",NA,NA,NA,"control",NA,NA,NA,25,2100,NA,NA,"Oxisol",NA,NA,10000,NA,NA,NA,"forest",NA,NA,NA,NA,NA,80000,NA,80000,NA,"sedimentary-clastics","felsic","Belterra Formation","summit",NA,NA,NA,NA,"excessively",NA,NA,NA,NA,"ZF2_Plateau_20001221_3",NA,NA,2000,12,21,NA,"soil emission",NA,"CO2","ecosystem","chamber",NA,"molecular sieve",20,"mins","yes",NA,NA,NA,NA,NA,NA,NA,-26.84,NA,"UCI","UCIT5323",2000,89.0984515100512,5.02077098992619,NA,NA,NA,NA "1845","Wagai_2015","10.1016/j.geoderma.2014.11.028",NA,"Rota Wagai","NARO/NIAES, Japan","rota@affrc.go.jp",2018,10,12,"Rota Wagai","rota@affrc.go.jp",NA,"Wagai R, Kajiura M, Asano M, Hiradate S. 2015. Nature of soil organo-mineral assemblage examined by sequential density fractionation with and without sonication: Is allophanic soil different?. Geoderma 241-242:295-305","The exact same sample from the same sampling campaing for site ""Till-1"" was used for Wagai_2018",NA,2018092716,"NIAES LTE",36.01666667,140.11666667,NA,21,"elevation needs to be double-checked","Till-1","Till-1-2008","plowed layer",36.01666667,140.11666667,21,"treatment","plowed, rotation (winter wheat/soy bean), fertilized (NPK), ","yes",1,13.7,1300,NA,NA,"Andisol (Hapludand)","USDA",NA,NA,NA,NA,NA,NA,NA,NA,NA,"winter wheat/soy bean",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"well",NA,NA,NA,"Till-1","Till-1-2008",36.01666667,140.11666667,2008,12,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1846","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_19911022_1",NA,NA,1991,10,22,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-10.576,NA,"CAMS",NA,NA,114.3,NA,NA,NA,NA,NA "1847","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_19911022_2",NA,NA,1991,10,22,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-10.576,NA,"CAMS",NA,NA,NA,NA,NA,NA,NA,NA "1848","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1991715_1",NA,NA,1991,7,15,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-11.311,NA,"CAMS",NA,NA,93.1,NA,NA,NA,NA,NA "1849","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1991715_2",NA,NA,1991,7,15,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-11.311,NA,"CAMS",NA,NA,93.1,NA,NA,NA,NA,NA "1850","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1991715_3",NA,NA,1991,7,15,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-11.311,NA,"CAMS",NA,NA,93.1,NA,NA,NA,NA,NA "1851","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1991923_",NA,NA,1991,9,23,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-10.576,NA,"CAMS",NA,NA,70.3,NA,NA,NA,NA,NA "1852","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_19941015_1",NA,NA,1994,10,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.8808,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1853","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_19941015_2",NA,NA,1994,10,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.0981,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1854","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_19941015_3",NA,NA,1994,10,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,3.82806,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1855","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_19941015_4",NA,NA,1994,10,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.76252,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1856","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_19941015_5",NA,NA,1994,10,15,NA,"soil emission","snow-covered","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.32526,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1857","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1994815_",NA,NA,1994,8,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.69778,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1858","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1994915_1",NA,NA,1994,9,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.04528,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1859","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1994915_2",NA,NA,1994,9,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.21566,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1860","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_19951023_1",NA,NA,1995,10,23,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-28.6,NA,"CAMS",NA,NA,117.6,NA,NA,NA,NA,NA "1861","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_19951023_2",NA,NA,1995,10,23,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,140.1,NA,NA,NA,NA,NA "1862","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1995715_1",NA,NA,1995,7,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.07388,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1863","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1995715_2",NA,NA,1995,7,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.29072,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1864","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1995717_1",NA,NA,1995,7,17,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-19,NA,"CAMS",NA,NA,139.4,NA,NA,NA,NA,NA "1865","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1995717_2",NA,NA,1995,7,17,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.4,NA,"CAMS",NA,NA,160.2,NA,NA,NA,NA,NA "1866","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1995815_1",NA,NA,1995,8,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.1815,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1867","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1995815_2",NA,NA,1995,8,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.24266,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1868","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1995915_1",NA,NA,1995,9,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.92018,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1869","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1995915_2",NA,NA,1995,9,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.66442,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1870","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1995925_1",NA,NA,1995,9,25,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-18,NA,"CAMS",NA,NA,94.1,NA,NA,NA,NA,NA "1871","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Chiquito",37.261593,-119.146739,"WGS84",2286,"Transect in Sierra Nevada in Central California",NA,"C",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,3.3,127,NA,"entic cryumbrept",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"western white pine, lodgepole pine, Sierra juniper",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"C_1995925_2",NA,NA,1995,9,25,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,103.5,NA,NA,NA,NA,NA "1872","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_19911020_1",NA,NA,1991,10,20,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-9.455,NA,"CAMS",NA,NA,58.1,NA,NA,NA,NA,NA "1873","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_19911020_2",NA,NA,1991,10,20,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-9.455,NA,"CAMS",NA,NA,NA,NA,NA,NA,NA,NA "1874","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1991123_1",NA,NA,1991,1,23,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.399,NA,"CAMS",NA,NA,80.3035189531047,NA,NA,NA,NA,NA "1875","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1991123_2",NA,NA,1991,1,23,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.399,NA,"CAMS",NA,NA,80.3035189531047,NA,NA,NA,NA,NA "1876","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1991215_",NA,NA,1991,2,15,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.206,NA,"CAMS",NA,NA,NA,NA,NA,NA,NA,NA "1877","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1991426_",NA,NA,1991,4,26,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-10.298,NA,"CAMS",NA,NA,91.840547879505,NA,NA,NA,NA,NA "1878","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_199145_",NA,NA,1991,4,5,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.53,NA,"CAMS",NA,NA,78.7122046184288,NA,NA,NA,NA,NA "1879","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1991529_1",NA,NA,1991,5,29,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.57,NA,"CAMS",NA,NA,73.3415187388975,NA,NA,NA,NA,NA "1880","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1991529_2",NA,NA,1991,5,29,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.57,NA,"CAMS",NA,NA,73.3415187388975,NA,NA,NA,NA,NA "1881","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1991624_",NA,NA,1991,6,24,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.984,NA,"CAMS",NA,NA,70.7556329450494,NA,NA,NA,NA,NA "1882","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1991714_1",NA,NA,1991,7,14,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.943,NA,"CAMS",NA,NA,87.1660620213945,NA,NA,NA,NA,NA "1883","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1991714_2",NA,NA,1991,7,14,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.943,NA,"CAMS",NA,NA,87.1660620213945,NA,NA,NA,NA,NA "1884","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1991921_1",NA,NA,1991,9,21,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-9.182,NA,"CAMS",NA,NA,NA,NA,NA,NA,NA,NA "1885","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1991921_2",NA,NA,1991,9,21,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-9.182,NA,"CAMS",NA,NA,56.6,NA,NA,NA,NA,NA "1886","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_19941015_1",NA,NA,1994,10,15,NA,"soil emission","liter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.06714,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1887","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_19941015_2",NA,NA,1994,10,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,5.9075,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1888","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_19941115_1",NA,NA,1994,11,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.2534,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1889","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_19941115_2",NA,NA,1994,11,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,6.22442,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1890","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1994815_",NA,NA,1994,8,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.52264,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1891","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1994915_1",NA,NA,1994,9,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.46148,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1892","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1994915_2",NA,NA,1994,9,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.53098,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1893","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_19951022_1",NA,NA,1995,10,22,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,83.9,NA,NA,NA,NA,NA "1894","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_19951022_2",NA,NA,1995,10,22,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-25.8,NA,"CAMS",NA,NA,456.5,NA,NA,NA,NA,NA "1895","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995115_1",NA,NA,1995,1,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,3.00518,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1896","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995115_2",NA,NA,1995,1,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.23394,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1897","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995125_1",NA,NA,1995,1,25,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-27.8,NA,"CAMS",NA,NA,134.8,NA,NA,NA,NA,NA "1898","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995125_2",NA,NA,1995,1,25,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-25.5,NA,"CAMS",NA,NA,137.1,NA,NA,NA,NA,NA "1899","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995215_1",NA,NA,1995,2,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,6.91664,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1900","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995215_2",NA,NA,1995,2,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,6.92498,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1901","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995217_1",NA,NA,1995,2,17,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-27.368,NA,"CAMS",NA,NA,135.2,NA,NA,NA,NA,NA "1902","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995217_2",NA,NA,1995,2,17,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.8,NA,"CAMS",NA,NA,137.7,NA,NA,NA,NA,NA "1903","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995315_",NA,NA,1995,3,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,7.20576,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1904","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995415_1",NA,NA,1995,4,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,7.48098,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1905","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995415_2",NA,NA,1995,4,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,8.27328,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1906","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995428_1",NA,NA,1995,4,28,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-26.746,NA,"CAMS",NA,NA,129.1,NA,NA,NA,NA,NA "1907","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995428_2",NA,NA,1995,4,28,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,130.7,NA,NA,NA,NA,NA "1908","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_199547_1",NA,NA,1995,4,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-27.724,NA,"CAMS",NA,NA,142.4,NA,NA,NA,NA,NA "1909","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_199547_2",NA,NA,1995,4,7,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.4,NA,"CAMS",NA,NA,143.9,NA,NA,NA,NA,NA "1910","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995515_1",NA,NA,1995,5,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.41742,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1911","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995515_2",NA,NA,1995,5,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,5.6434,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1912","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995531_1",NA,NA,1995,5,31,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.964,NA,"CAMS",NA,NA,122.4,NA,NA,NA,NA,NA "1913","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995531_2",NA,NA,1995,5,31,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.7,NA,"CAMS",NA,NA,125.5,NA,NA,NA,NA,NA "1914","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995615_1",NA,NA,1995,6,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.54568,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1915","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995615_2",NA,NA,1995,6,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.31018,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1916","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995625_1",NA,NA,1995,6,25,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.438,NA,"CAMS",NA,NA,102.2,NA,NA,NA,NA,NA "1917","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995625_2",NA,NA,1995,6,25,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.1,NA,"CAMS",NA,NA,108.6,NA,NA,NA,NA,NA "1918","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995626_1",NA,NA,1995,6,26,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-25.626,NA,"CAMS",NA,NA,126.1,NA,NA,NA,NA,NA "1919","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995626_2",NA,NA,1995,6,26,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.4,NA,"CAMS",NA,NA,131.5,NA,NA,NA,NA,NA "1920","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995715_1",NA,NA,1995,7,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.78118,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1921","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995715_2",NA,NA,1995,7,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.53932,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1922","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995716_1",NA,NA,1995,7,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-23,NA,"CAMS",NA,NA,116.2,NA,NA,NA,NA,NA "1923","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995716_2",NA,NA,1995,7,16,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.5,NA,"CAMS",NA,NA,120.9,NA,NA,NA,NA,NA "1924","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995815_1",NA,NA,1995,8,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.278,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1925","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995815_2",NA,NA,1995,8,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.28359,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1926","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995915_1",NA,NA,1995,9,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.36418,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1927","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995915_2",NA,NA,1995,9,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.21684,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1928","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995923_1",NA,NA,1995,9,23,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-18.3,NA,"CAMS",NA,NA,108.7,NA,NA,NA,NA,NA "1929","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"rangeland/grassland",NA,NA,NA,"annual grasses, blue oak",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_1995923_2",NA,NA,1995,9,23,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-25.5,NA,"CAMS",NA,NA,140.6,NA,NA,NA,NA,NA "1930","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_19911020_",NA,NA,1991,10,20,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-10.766,NA,"CAMS",NA,NA,NA,NA,NA,NA,NA,NA "1931","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1991123_1",NA,NA,1991,1,23,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.489,NA,"CAMS",NA,NA,88.4590049183187,NA,NA,NA,NA,NA "1932","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1991123_2",NA,NA,1991,1,23,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.489,NA,"CAMS",NA,NA,88.4590049183187,NA,NA,NA,NA,NA "1933","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1991215_1",NA,NA,1991,2,15,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.402,NA,"CAMS",NA,NA,75.927404532746,NA,NA,NA,NA,NA "1934","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1991215_2",NA,NA,1991,2,15,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.402,NA,"CAMS",NA,NA,75.927404532746,NA,NA,NA,NA,NA "1935","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1991426_1",NA,NA,1991,4,26,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-9.697,NA,"CAMS",NA,NA,95.5204622784429,NA,NA,NA,NA,NA "1936","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1991426_2",NA,NA,1991,4,26,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-9.697,NA,"CAMS",NA,NA,95.5204622784429,NA,NA,NA,NA,NA "1937","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_199145_",NA,NA,1991,4,5,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.402,NA,"CAMS",NA,NA,89.3541192315739,NA,NA,NA,NA,NA "1938","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1991529_",NA,NA,1991,5,29,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.987,NA,"CAMS",NA,NA,88.8568335019877,NA,NA,NA,NA,NA "1939","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1991624_",NA,NA,1991,6,24,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.986,NA,"CAMS",NA,NA,69.462690048125,NA,NA,NA,NA,NA "1940","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1991714_",NA,NA,1991,7,14,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.857,NA,"CAMS",NA,NA,80.3,NA,NA,NA,NA,NA "1941","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1991921_",NA,NA,1991,9,21,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-9.182,NA,"CAMS",NA,NA,NA,NA,NA,NA,NA,NA "1942","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_19941015_1",NA,NA,1994,10,15,NA,"soil emission","liter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.14258,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1943","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_19941015_2",NA,NA,1994,10,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.45394,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1944","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_19941115_1",NA,NA,1994,11,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.78198,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1945","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_19941115_2",NA,NA,1994,11,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,5.31536,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1946","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1994915_",NA,NA,1994,9,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,3.14696,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1947","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_19951022_1",NA,NA,1995,10,22,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.9,NA,"CAMS",NA,NA,99,NA,NA,NA,NA,NA "1948","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_19951022_2",NA,NA,1995,10,22,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-22.5,NA,"CAMS",NA,NA,99.3,NA,NA,NA,NA,NA "1949","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995115_1",NA,NA,1995,1,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.85388,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1950","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995115_2",NA,NA,1995,1,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.12274,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1951","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995125_1",NA,NA,1995,1,25,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-23,NA,"CAMS",NA,NA,116.3,NA,NA,NA,NA,NA "1952","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995125_2",NA,NA,1995,1,25,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.5,NA,"CAMS",NA,NA,121.2,NA,NA,NA,NA,NA "1953","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995215_1",NA,NA,1995,2,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.67158,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1954","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995215_2",NA,NA,1995,2,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.96508,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1955","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995217_1",NA,NA,1995,2,17,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-21.029,NA,"CAMS",NA,NA,58.8,NA,NA,NA,NA,NA "1956","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995217_2",NA,NA,1995,2,17,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-28.2,NA,"CAMS",NA,NA,54.2,NA,NA,NA,NA,NA "1957","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995415_1",NA,NA,1995,4,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.39278,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1958","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995415_2",NA,NA,1995,4,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,6.36342,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1959","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995428_1",NA,NA,1995,4,28,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,126.1,NA,NA,NA,NA,NA "1960","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995428_2",NA,NA,1995,4,28,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-26.7,NA,"CAMS",NA,NA,130,NA,NA,NA,NA,NA "1961","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_199547_1",NA,NA,1995,4,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-24.003,NA,"CAMS",NA,NA,130.3,NA,NA,NA,NA,NA "1962","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_199547_2",NA,NA,1995,4,7,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-28.2,NA,"CAMS",NA,NA,137.4,NA,NA,NA,NA,NA "1963","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995515_1",NA,NA,1995,5,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.78556,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1964","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995515_2",NA,NA,1995,5,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.35744,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1965","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995531_1",NA,NA,1995,5,31,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-23.583,NA,"CAMS",NA,NA,104.7,NA,NA,NA,NA,NA "1966","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995531_2",NA,NA,1995,5,31,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-27.7,NA,"CAMS",NA,NA,105.8,NA,NA,NA,NA,NA "1967","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995615_1",NA,NA,1995,6,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.29906,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1968","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995615_2",NA,NA,1995,6,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.96824,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1969","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995626_1",NA,NA,1995,6,26,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-22.873,NA,"CAMS",NA,NA,106.6,NA,NA,NA,NA,NA "1970","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995626_2",NA,NA,1995,6,26,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-27.3,NA,"CAMS",NA,NA,109.8,NA,NA,NA,NA,NA "1971","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995715_1",NA,NA,1995,7,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,3.83084,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1972","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995715_2",NA,NA,1995,7,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.76332,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1973","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995716_1",NA,NA,1995,7,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-23.4,NA,"CAMS",NA,NA,70.3,NA,NA,NA,NA,NA "1974","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995716_2",NA,NA,1995,7,16,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-23.9,NA,"CAMS",NA,NA,69.5,NA,NA,NA,NA,NA "1975","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995815_1",NA,NA,1995,8,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.84394,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1976","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995815_2",NA,NA,1995,8,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.09612,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1977","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995915_1",NA,NA,1995,9,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.05602,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1978","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995915_2",NA,NA,1995,9,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,3.09136,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1979","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995923_1",NA,NA,1995,9,23,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-23.3,NA,"CAMS",NA,NA,119.1,NA,NA,NA,NA,NA "1980","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Fallbrook",36.725967,-119.2954,"WGS84",467,"Transect in Sierra Nevada in Central California",NA,"FB_OCD",NA,NA,NA,NA,"control","Land-Use-Conditions: disturbed; converted to Lemon ochard in 1972",NA,NA,17.8,31,NA,"typic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"cultivated",NA,NA,NA,"lemon trees",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"FB_OCD_1995923_2",NA,NA,1995,9,23,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-22.4,NA,"CAMS",NA,NA,128.3,NA,NA,NA,NA,NA "1981","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_19911021_",NA,NA,1991,10,21,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-10.576,NA,"CAMS",NA,NA,85.3,NA,NA,NA,NA,NA "1982","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1991427_",NA,NA,1991,4,27,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-8.737,NA,"CAMS",NA,NA,93.7302336519326,NA,NA,NA,NA,NA "1983","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1991530_",NA,NA,1991,5,30,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-11.405,NA,"CAMS",NA,NA,93.7302336519326,NA,NA,NA,NA,NA "1984","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1991626_",NA,NA,1991,6,26,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-9.286,NA,"CAMS",NA,NA,87.5638906050635,NA,NA,NA,NA,NA "1985","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1991924_",NA,NA,1991,9,24,NA,NA,NA,"CO2","atmosphere","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-11.007,NA,"CAMS",NA,NA,NA,NA,NA,NA,NA,NA "1986","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_19941015_1",NA,NA,1994,10,15,NA,"soil emission","liter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,6.8388,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1987","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_19941015_2",NA,NA,1994,10,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,5.27922,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1988","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_19941115_1",NA,NA,1994,11,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.06276,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1989","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_19941115_2",NA,NA,1994,11,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.56476,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1990","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_19941115_3",NA,NA,1994,11,15,NA,"soil emission","snow-covered","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,0.31136,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1991","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1994815_",NA,NA,1994,8,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.40946,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1992","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1994915_1",NA,NA,1994,9,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.94322,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1993","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1994915_2",NA,NA,1994,9,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.54846,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1994","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_19951023_1",NA,NA,1995,10,23,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-19.7,NA,"CAMS",NA,NA,140.1,NA,NA,NA,NA,NA "1995","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_19951023_2",NA,NA,1995,10,23,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,151.5,NA,NA,NA,NA,NA "1996","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995415_1",NA,NA,1995,4,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,7.62554,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1997","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995415_2",NA,NA,1995,4,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.66762,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "1998","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995428_1",NA,NA,1995,4,28,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-21.216,NA,"CAMS",NA,NA,142.3,NA,NA,NA,NA,NA "1999","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995428_2",NA,NA,1995,4,28,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-27.5,NA,"CAMS",NA,NA,155.8,NA,NA,NA,NA,NA "2000","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995515_",NA,NA,1995,5,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,6.2272,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "2001","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995531_1",NA,NA,1995,5,31,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-21.973,NA,"CAMS",NA,NA,149,NA,NA,NA,NA,NA "2002","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995531_2",NA,NA,1995,5,31,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-26,NA,"CAMS",NA,NA,158.8,NA,NA,NA,NA,NA "2003","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995615_1",NA,NA,1995,6,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.865,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "2004","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995615_2",NA,NA,1995,6,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.97898,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "2005","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995627_1",NA,NA,1995,6,27,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-22.295,NA,"CAMS",NA,NA,154.8,NA,NA,NA,NA,NA "2006","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995627_2",NA,NA,1995,6,27,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-25.4,NA,"CAMS",NA,NA,164.8,NA,NA,NA,NA,NA "2007","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995715_1",NA,NA,1995,7,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,3.75578,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "2008","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995715_2",NA,NA,1995,7,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,4.49248,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "2009","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995717_1",NA,NA,1995,7,17,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-21.9,NA,"CAMS",NA,NA,120.3,NA,NA,NA,NA,NA "2010","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995717_2",NA,NA,1995,7,17,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-23.8,NA,"CAMS",NA,NA,124.4,NA,NA,NA,NA,NA "2011","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995815_1",NA,NA,1995,8,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.94044,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "2012","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995815_2",NA,NA,1995,8,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.24226,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "2013","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995915_1",NA,NA,1995,9,15,NA,"soil emission","litter-free surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,2.67436,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "2014","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995915_2",NA,NA,1995,9,15,NA,"soil emission","litter-covered surface","CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,1.72916,"µmol m-2 s-1",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA "2015","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995924_1",NA,NA,1995,9,24,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-19.7,NA,"CAMS",NA,NA,109.3,NA,NA,NA,NA,NA "2016","Wang_2000","10.1029/1999GB900074",NA,"Sophie von Fromm","MPI-BGC","sfromm@mpi.bgc-jena.de",2018,7,9,"Yang Wang","ywang@magnet.fsu.edu",NA,"Wang Y, Amundson R, Niu X-F, 2000, Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurments of soil CO2 flux, Global Biogeochemical Cycles, 14, 1, 199-211",NA,"Ewing_2006",NA,"Musick",37.0287,-119.271017,"WGS84",1268,"Transect in Sierra Nevada in Central California",NA,"M",NA,NA,NA,NA,"control","Land-Use-Conditions: natural",NA,NA,11.7,94,NA,"ultic haploxevalf",NA,"USDA",NA,NA,NA,NA,NA,"forest",NA,NA,NA,"ponderosa pine, white fir, manzanita, incence cedar, sugar pine, bear clover",NA,NA,NA,NA,NA,NA,NA,"granodiorit",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"M_1995924_2",NA,NA,1995,9,24,NA,"soil emission","Partitioned based on soil resp during non-growing season (assumed only HR)","CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-21.8,NA,"CAMS",NA,NA,113.2,NA,NA,NA,NA,NA "2017","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_1",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_1_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,78.8,NA,NA,NA,NA,NA "2018","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_2",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_2_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,71.2,NA,NA,NA,NA,NA "2019","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_3",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_3_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,66.6,NA,NA,NA,NA,NA "2020","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_4",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_4_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,50.2,NA,NA,NA,NA,NA "2021","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_5",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_5_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,57.9,NA,NA,NA,NA,NA "2022","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_6",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_6_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,64.6,NA,NA,NA,NA,NA "2023","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_1",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_1_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,63.3,NA,NA,NA,NA,NA "2024","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_2",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_2_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,77.5,NA,NA,NA,NA,NA "2025","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_3",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_3_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,61.9,NA,NA,NA,NA,NA "2026","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_4",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_4_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,59.2,NA,NA,NA,NA,NA "2027","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_5",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_5_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,55.3,NA,NA,NA,NA,NA "2028","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_6",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_6_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,53.3,NA,NA,NA,NA,NA "2029","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_1",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_1_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,71.6,NA,NA,NA,NA,NA "2030","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_2",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_2_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,74.2,NA,NA,NA,NA,NA "2031","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_3",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_3_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,64.3,NA,NA,NA,NA,NA "2032","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_4",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_4_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,58.1,NA,NA,NA,NA,NA "2033","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_5",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_5_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,66.3,NA,NA,NA,NA,NA "2034","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_6",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_6_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,61.8,NA,NA,NA,NA,NA "2035","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_1",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_1_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,68,NA,NA,NA,NA,NA "2036","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_2",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_2_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,90.2,NA,NA,NA,NA,NA "2037","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_3",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_3_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,72.7,NA,NA,NA,NA,NA "2038","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_4",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_4_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,59.9,NA,NA,NA,NA,NA "2039","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_5",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_5_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,59.6,NA,NA,NA,NA,NA "2040","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_6",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_6_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,68.4,NA,NA,NA,NA,NA "2041","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_1",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_1_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,63.9,NA,NA,NA,NA,NA "2042","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_2",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_2_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,60.6,NA,NA,NA,NA,NA "2043","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_3",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_3_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,50.6,NA,NA,NA,NA,NA "2044","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_4",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_4_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,48.4,NA,NA,NA,NA,NA "2045","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_5",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_5_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,48.3,NA,NA,NA,NA,NA "2046","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_6",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_6_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,49.5,NA,NA,NA,NA,NA "2047","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_1",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_1_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,66.9,NA,NA,NA,NA,NA "2048","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_2",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_2_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,65.2,NA,NA,NA,NA,NA "2049","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_3",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_3_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,64.2,NA,NA,NA,NA,NA "2050","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_4",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_4_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,62,NA,NA,NA,NA,NA "2051","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_5",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_5_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,68.1,NA,NA,NA,NA,NA "2052","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_6",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_6_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,55.4,NA,NA,NA,NA,NA "2053","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_1",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_1_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,59.5,NA,NA,NA,NA,NA "2054","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_2",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_2_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,52.5,NA,NA,NA,NA,NA "2055","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_3",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_3_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,64.3,NA,NA,NA,NA,NA "2056","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_4",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_4_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,52.4,NA,NA,NA,NA,NA "2057","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_5",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_5_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,69.3,NA,NA,NA,NA,NA "2058","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_6",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_6_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,61.1,NA,NA,NA,NA,NA "2059","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_1",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_1_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,70.4,NA,NA,NA,NA,NA "2060","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_2",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_2_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,55.3,NA,NA,NA,NA,NA "2061","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_3",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_3_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,59.3,NA,NA,NA,NA,NA "2062","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_4",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_4_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,76.6,NA,NA,NA,NA,NA "2063","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_5",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_5_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,93.8,NA,NA,NA,NA,NA "2064","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_6",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_6_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,75.6,NA,NA,NA,NA,NA "2065","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_1",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_1_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,78.1,NA,NA,NA,NA,NA "2066","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_2",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_2_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,77.8,NA,NA,NA,NA,NA "2067","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_3",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_3_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,77.1,NA,NA,NA,NA,NA "2068","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_4",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_4_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,90.2,NA,NA,NA,NA,NA "2069","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_5",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_5_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,98.4,NA,NA,NA,NA,NA "2070","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_6",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_6_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,82.3,NA,NA,NA,NA,NA "2071","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_1",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_1_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,51.9,NA,NA,NA,NA,NA "2072","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_2",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_2_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,79.5,NA,NA,NA,NA,NA "2073","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_3",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_3_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,70.1,NA,NA,NA,NA,NA "2074","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_4",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_4_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,79.6,NA,NA,NA,NA,NA "2075","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_5",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_5_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,64,NA,NA,NA,NA,NA "2076","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_6",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_6_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,65.1,NA,NA,NA,NA,NA "2077","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_1_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_1_h_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,62,NA,NA,NA,NA,NA "2078","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_2_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_2_h_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,71.4602978603596,NA,NA,NA,NA,NA "2079","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_3_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_3_h_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,64,NA,NA,NA,NA,NA "2080","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_1_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_1_h_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,114.7,NA,NA,NA,NA,NA "2081","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_2_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_2_h_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,76.2,NA,NA,NA,NA,NA "2082","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_3_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_3_h_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,99.4,NA,NA,NA,NA,NA "2083","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_1_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_1_h_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,75.6,NA,NA,NA,NA,NA "2084","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_2_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_2_h_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,107.5,NA,NA,NA,NA,NA "2085","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_3_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_3_h_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,127.8,NA,NA,NA,NA,NA "2086","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_1_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_1_h_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,62,NA,NA,NA,NA,NA "2087","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_2_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_2_h_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,123.6,NA,NA,NA,NA,NA "2088","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_3_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_3_h_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,84.2,NA,NA,NA,NA,NA "2089","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C1","C1_1_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C1","C1_1_h_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,55.8,NA,NA,NA,NA,NA "2090","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C2","C2_2_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C2","C2_2_h_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,67.2,NA,NA,NA,NA,NA "2091","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","C3","C3_3_h",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"C3","C3_3_h_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,119.8,NA,NA,NA,NA,NA "2092","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_1_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_1_h_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,70.8,NA,NA,NA,NA,NA "2093","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_2_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_2_h_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,72.7,NA,NA,NA,NA,NA "2094","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_3_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_3_h_200951",NA,NA,2009,5,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,71.2,NA,NA,NA,NA,NA "2095","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_1_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_1_h_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,99.6588054902737,NA,NA,NA,NA,NA "2096","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_2_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_2_h_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,70.670635886954,NA,NA,NA,NA,NA "2097","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_3_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_3_h_200961",NA,NA,2009,6,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,81.3183042635085,NA,NA,NA,NA,NA "2098","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_1_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_1_h_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,103.5,NA,NA,NA,NA,NA "2099","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_2_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_2_h_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,97.9,NA,NA,NA,NA,NA "2100","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_3_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_3_h_200991",NA,NA,2009,9,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,123.5,NA,NA,NA,NA,NA "2101","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_1_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_1_h_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,96.8,NA,NA,NA,NA,NA "2102","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_2_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_2_h_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,118,NA,NA,NA,NA,NA "2103","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_3_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_3_h_2009101",NA,NA,2009,10,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,107.1,NA,NA,NA,NA,NA "2104","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D1_flooded","D1_flooded_1_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D1_flooded","D1_flooded_1_h_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,114.4,NA,NA,NA,NA,NA "2105","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D2_flooded","D2_flooded_2_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D2_flooded","D2_flooded_2_h_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","heterotrophic","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,102.2,NA,NA,NA,NA,NA "2106","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany","D3_flooded","D3_flooded_3_h",NA,NA,NA,NA,"treatment","flooded",NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,"D3_flooded","D3_flooded_3_h_201051",NA,NA,2010,5,1,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,74.9,NA,NA,NA,NA,NA "2107","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_1",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_1_200957",NA,NA,2009,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,68.4,NA,NA,NA,NA,NA "2108","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_2",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_2_200957",NA,NA,2009,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,70.2,NA,NA,NA,NA,NA "2109","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_3",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_3_200957",NA,NA,2009,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,69,NA,NA,NA,NA,NA "2110","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_1",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_1_2009610",NA,NA,2009,6,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,81.3,NA,NA,NA,NA,NA "2111","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_2",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_2_2009610",NA,NA,2009,6,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,81.3,NA,NA,NA,NA,NA "2112","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_3",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_3_2009610",NA,NA,2009,6,10,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,63.9,NA,NA,NA,NA,NA "2113","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_1",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_1_2009916",NA,NA,2009,9,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,79.1,NA,NA,NA,NA,NA "2114","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_2",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_2_2009916",NA,NA,2009,9,16,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,80.8,NA,NA,NA,NA,NA "2115","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_1",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_1_20091029",NA,NA,2009,10,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,104.8,NA,NA,NA,NA,NA "2116","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_2",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_2_20091029",NA,NA,2009,10,29,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,88.1,NA,NA,NA,NA,NA "2117","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_1",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_1_201057",NA,NA,2010,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,95.5,NA,NA,NA,NA,NA "2118","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_2",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_2_201057",NA,NA,2010,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,90.2,NA,NA,NA,NA,NA "2119","Wunderlich_2012","10.5194/bg-9-3477-2012",NA,"Jessica Brandt, Sabine Ersing","University of Augsburg","jessy.brandt@gmx.de",2018,5,23,"W. Borken","werner.borken@uni-bayreuth.de","https://orcid.org/0000-0001-7403-5757","Wunderlich, S & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences Discussions. 9. 5287-5319. ",NA,NA,NA,"Schloeppnerbrunnen",50.131667,11.880833,"WGS84",700,"Lehstenbach catchment of the Fichtelgebirge, northeastern of Bavarian, Germany",NA,"TS_3",NA,NA,NA,NA,"control",NA,NA,NA,6.3,1020,NA,NA,"Histosol",NA,NA,NA,NA,NA,NA,"wetland",NA,NA,NA,"Molinia caerulea (L. Moench), Nardus stricta (L.), A. canina (L.), Carex rostrata (Stokes), Eriophorum vaginatum (L.) and Sphagnum fallax",NA,NA,NA,NA,NA,"igneous intrusive","felsic","granite",NA,NA,NA,NA,NA,NA,4.9,NA,100,NA,"TS_3_201057",NA,NA,2010,5,7,NA,"soil emission",NA,"CO2","ecosystem","chamber","chamber",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"CAMS",NA,NA,73.2,NA,NA,NA,NA,NA