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Image and WLAN Bimodal Integration for Indoor
User Localization

Milan D. Redžić, Christos Laoudias, Ioannis Kyriakides

Abstract—Recently, we experience the increasing prevalence of wearable cameras, some of which feature Wireless Local Area
Network (WLAN) connectivity, and the abundance of mobile devices equipped with on-board camera and WLAN modules. Motivated
by this fact, this work presents an indoor localization system that leverages both imagery and WLAN data for enabling and supporting
a wide variety of envisaged location-aware applications ranging from ambient and assisted living to indoor mobile gaming and retail
analytics. The proposed solution integrates two complementary localization approaches, i.e., one based on WLAN and another one
based on image location-dependent data, using a fusion engine. Two fusion strategies are developed and investigated to meet different
requirements in terms of accuracy, run time, and power consumption. The one is a light-weight threshold-based approach that combines
the location outputs of two localization algorithms, namely a WLAN-based algorithm that processes signal strength readings from the
surrounding wireless infrastructure using an extended Naive Bayes approach and an image-based algorithm that follows a novel
approach based on hierarchical vocabulary tree of SURF (Speeded Up Robust Features) descriptors. The second fusion strategy
employs a particle filter algorithm that operates directly on the WLAN and image readings and also includes prior position estimation
information in the localization process. Extensive experimental results using real-life data from an indoor office environment indicate
that the proposed fusion strategies perform well and are competitive against standalone WLAN and imaged-based algorithms, as well
as alternative fusion localization solutions.

Index Terms—Indoor user localization, WLAN, Images, Fusion, Hybrid, Time efficiency
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1 INTRODUCTION

Different measurement types currently available from
modern commercial portable hardware (cellphones,
tablets) are able, if properly fused, to offer diverse
information and lead to improved accuracy in indoor
environment localization [1]–[3]. This work addresses
indoor localization using Wireless Local Area Network
(WLAN) technology in conjunction with image sensing.
Whilst Global Navigation Satellite Systems (GNSS), such
as the Global Positioning System (GPS), have become
synonymous with user localization, their robustness and
availability under certain conditions is questionable. For
instance outdoors, satellite signals can be affected by
obstacles, multipath propagation and tall buildings that
inevitably lead to high location errors. In addition, satel-
lite signals are weak or totally blocked inside buildings.

WLAN technology has demonstrated promising per-
formance in indoor localization; however, it requires
accurate modeling of the complex indoor multipath
propagation environment and varying signal obstruc-
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tions or reflections due to motion [4]–[6]. Researchers
have investigated image-based localization, for example
in [7], also associated with challenges such as occlusion,
changes in lighting, noise and blur. Many localization
methods in the literature are based on the hybridization
or fusion of Ultra-Wide Band (UWB) and WLAN, WLAN
and Radio Frequency (RF) tags (indoors) and GPS and
WLAN (outdoors) [8]–[11]. Presently, there is a limited
number of localization solutions based on the fusion of
RF and image sensing methods [5], [12]–[15].

The motivation for combining WLAN and image data
to infer user location indoors is that these are fundamen-
tally different and complementary sensor modalities,
which in combination may provide rich information on
the observed scene and mitigate errors associated with
each individual modality. In fact, there is a number of
dynamic adjustments during system operation that can
be made to meet diverse application-specific require-
ments in terms of positioning error and computational
complexity, which is directly linked to battery depletion
on mobile devices. Moreover, nowadays, modern sensor-
rich smartphones can be easily employed as WLAN and
image data acquisition hubs, e.g., see the Campaignr1

micropublishing platform [16]. Such a localization sys-
tem can be orientated towards the context-aware needs
and capabilities of a user and becomes extremely useful
for a multitude of applications including ambient as-
sisted living, i.e., assistive technologies for memory and
visually impaired individuals, tourist-oriented services
that enhance user experience in museums and galleries,

1. http://www.campaignr.com
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indoor gaming, in-shop advertisement and coupon dis-
tribution, as well as health and daily life monitoring.
Thus, for example, for memory impaired people, taking
and using images in the localization framework works as
a memory prosthesis. These images can be automatically
segmented and clustered into specific events during a
particular time-frame or an activity, thus allowing people
to recall different aspects of their daily lives. Other pos-
sible uses of the proposed system include the navigation
assistance for visually impaired people, tourist-oriented
guidance applications, and health and daily life moni-
toring especially for the elderly, and indoor localization
for enhancing indoor vehicle/robot autonomy.

In this work, the problem of efficiently integrating
WLAN Received Signal Strength (RSS) and image infor-
mation for indoor localization is addressed by two fusion
strategies. The high-level block diagram of the proposed
system architecture is depicted in Figure 1. All the
algorithms for WLAN localization, image localization
and fusion are calculated by a central unit in a Location
Server that resides on the network side, for example
a standard laptop used in our experimental setup in
Section 7. The WLAN-image equipped Mobile Device,
e.g. smartphone, robot, etc., collects the measurements
and forwards them to the Location Server. We used such
device-assisted approach to avoid heavy computation on
the device that may drain battery quickly, although the
proposed algorithms could run on the mobile device, in
a fully device-based architecture, as long as the battery
and storage space (for storing the fingerprint and im-
age databases) are not critical. During localization, an
image of the surrounding environment (e.g., captured
by a smartphone’s camera) and the RSS values from
WLAN Access Points (APs) in the vicinity, referred to
as fingerprint2, are provided as inputs to the system.

In the late fusion approach (flow shown in solid
lines), the WLAN Localization component computes a
location by matching the input RSS fingerprint against
the location-tagged fingerprints that have been collected
in advance and stored in the fingerprint database. Sim-
ilarly, the Image Localization component compares the
input image with the location-tagged images that span
the entire area of interest and are stored in the image
database. Then, the Fusion Engine employs the Threshold-
based component that combines the WLAN-based and
image-based locations to output the final user location.

Alternatively, in the early fusion approach (flow shown
in dashed lines), the WLAN and image readings are
directly fed into the Fusion Engine that employs the Par-
ticle filter component to fuse the location-dependent data
with the aid of an underlying user mobility model that
introduces prior location information in the localization
process. Thus, contrary to the late fusion approach, the
computation of intermediate locations by dedicated lo-
calization components is avoided. In this work, we focus

2. The terms fingerprint and observation are used interchangeably
in this work.

on the combination of WLAN and image data without
exploiting other data (e.g., inertial and magnetic) that
are available on modern sensor-rich smartphones. We
demonstrate that reasonable accuracy can be achieved
only with these two modalities, while outperforming
other similar solutions. In particular, the proposed sys-
tem can be significantly enhanced by incorporating sen-
sor data into the particle filter to improve the underlying
kinematic model with more accurate information for the
displacement and orientation of the particles.

Beside extending the Naive Bayes approach of [17]
to build our WLAN localization algorithm, the main
contributions of this work are the following.
• For image-based localization, we introduce a novel

algorithm that follows an interest point-based ap-
proach and employs a variation of a hierarchical
vocabulary tree to efficiently match query images
with training images.

• For fusion, two design options are considered to
optimally combine WLAN and camera sensory data,
namely a light-weight threshold-based scheme and
a flexible particle filter algorithm. The use of lo-
cation quality indicators is also explored for dy-
namically enabling/disabling a modality acquisition
and location computation path in a hybrid fashion
to meet different requirements. For instance, if the
number of sensed WLAN APs in the measured
RSS fingerprint is small (indicating that the WLAN-
based location might be inaccurate), then the image
sampling and localization path could be enabled to
deliver the desired accuracy (otherwise it is disabled
to extend battery life-time).

• The trade-offs between the WLAN and image
modalities, as well as the fusion options are inves-
tigated and compared in terms of positioning error,
computational complexity, and power consumption.
Thus, many insights come up that lead to useful
guidelines and best practices for optimizing the
operation of such fusion localization solution.

This paper is structured as follows. Section 2
overviews the related work on indoor localization. Sec-
tion 3 describes our WLAN-based localization method,
while Section 4 introduces the novel image-based local-
ization approach. Threshold-based fusion is presented
in Section 5, while fusion by means of particle filter is
described in Section 6. Section 7 describes the exper-
imental setup and data collection process. A selection
of results is presented and compared in Section 8. Time
efficiency pertaining to different options is analyzed in
Section 9, followed by a comparison with other methods
in Section 10. Finally, conclusions and directions for
future work are outlined in Section 11.

2 RELATED WORK

2.1 WLAN-based localization
WLAN has been a very popular technology for indoor
location determination, mainly due to the ease of col-
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Fig. 1. Localization system architecture.

lecting and fingerprinting signal strength measurements
with wireless mobile devices from the ubiquitous WLAN
infrastructure inside buildings; see [18] and references
therein for survey of recent advances. Many localization
solutions complement WLAN with inertial sensors (i.e.,
accelerometer, gyroscope, magnetometer, barometer) and
floorplan maps, like the Anyplace indoor navigation ser-
vice [19], or further augment it with ambient light and
sound signals as in SurroundSense [20]. This has been
stirred with availability of sensor-rich mobile devices.

UnLoc is an unsupervised indoor localization system
that leverages smartphone sensors to compute the dis-
placement and direction of users to avoid the need for
war-driving for populating the fingerprint database [21].
LiFS utilizes the spatial relation of RSS fingerprints, so
that the collected fingerprints are distributed according
to collectors’ mutual distances in real world [22]. WILL
is another system that combines WLAN fingerprints
with user movements to infer user location without site
survey or knowledge of AP locations [23].

Authors in [24] present a WLAN-based system that
employs principal component analysis in an efficient
mechanism for replacing sets and subsets of available
APs. In [25], by reducing both the volume of collected
data and the number of data collection points, the radio
map can be successfully rebuilt using an interpolation
approach. Along the same line, SEAMLOC uses a novel
interpolation algorithm, based on the specification of
robust, range and angle-dependent likelihood functions
[4]. Authors in [26] discuss the reduction of severe
fluctuations of RSS and propose a scheme that efficiently
extracts the signal for user localization.

In this work, for the WLAN-based localization module
we build upon and extend the Naive Bayes approach
[17]. We explicitly modelled signal strength distributions
coming from available APs together with distributions
of frequency of appearance of these APs, and eventu-
ally used them in our WLAN-based indoor localization
framework, as described in Section 3.

2.2 Vision-based localization
Vision-based localization has drawn attention due to the
rich information contained in image measurements, due
to its passive nature, and the fact that vision provides the
most of the human sensory information. Few methods
employ the visual vocabulary tree using Scale Invariant
Feature Transform (SIFT) features [27], [28], while some
others such as [29], [30] use landmarks to implement
indoor localization. The landmarks represent features or
group of features detected from the images. During the
searching period, features which are detected from the
query image are matched to the landmarks.

Based on a series of images or video sequences one is
able to construct a topological map, and then to refine it
by employing learning vector quantization [31]. In the
online phase, similar regions in the query image are
detected using a nearest neighbor rule.

Localization based on stereo-imaging has also been
studied as stereo images can provide depth insights
for 3D reconstruction [29], [32]. An indoor localization
algorithm based on an efficient database search using
robust matching algorithms is presented in [33].

What differentiates this approach from other image-
based localization solutions is in employing a verifi-
cation step mechanism, based on bidirectional image
feature matching of a vocabulary tree framework, which
refines the location predictions and thus improves the
final user location. Moreover we employ a heuristic to
fix the cluster centers of the vocabulary tree.

2.3 Hybrid and fusion-based localization
Even though some early vision-based localization sys-
tems used only image processing and matching tech-
niques, several recent solutions rely on the combination
of location estimates derived with camera and other
technologies. For instance, authors in [13] propose a
particle filter for fusing positioning information from
cellular base stations and images.

Alternatively, imagery and other sensory data can be
directly fused to determine user location. For example,
RAVEL (Radio And Vision Enhanced Localization) fuses
visual information coming from cameras and WLAN
readings [34], while [35] proposes a camera-assisted
region-based magnetic field fingerprinting technique.
Going further by fusing more sensors, Travi-Navi is a
vision-guided navigation system that employs magnetic
field distortions and WLAN signals to achieve robust
and effective user indoor tracking [36]. Similarly, the sys-
tem proposed in [37] combines opportunistic WLAN sig-
nals and magnetic field readings together with camera-
based positioning in areas with fewer magnetic distur-
bances to assist magnetic field positioning. In our previ-
ous work [2], we introduced a WLAN-based algorithm
and an image matching framework to support image-
based localization coupled with a simple hybrid process.

Bayesian filtering is a powerful tool for processing and
fusing location-dependent data from diverse sources. For
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instance, Kalman filter is used for target tracking in col-
laborative camera sensor networks [38], while an error-
state Kalman filter is proposed in [39] that combines
measurements from moving vision sensors and radio
ranging equipment to estimate user position over time.

Particle filter is a sequential Monte Carlo method
based on Bayesian inference that enables fusion of het-
erogeneous measurements, non-linear relationships be-
tween measurements and the target state and estimates
non-Gaussian posterior distributions [40]. In the context
of indoor localization, apart from [1], [21], and [36],
authors in [41] employ particle filter for fusing inertial
sensory data on android phones.

Fusion of data from a network of security cameras
and RSS fingerprint observations is presented in [14] to
enable the simultaneous tracking of multiple individuals
inside indoor environments. Another work addresses
object tracking with a solution that consists of a camera
recording method based on color features of the target
and a WLAN-based localization algorithm [5].

Authors in [15] describe an object tracking scheme that
employs a sensor fusion approach composed of visual
and location information estimated from WLAN signal
strength values. Switching between fusion-based (i.e.,
image and WLAN) and purely WLAN-based location is
decided as follows: in areas where an image can be taken
the system gives priority to fusion, whereas in areas that
images cannot cover priority is given to WLAN.

In [12] the authors discuss an approach that combines
WLAN-based localization and static camera tracking.
The purpose of fusing WLAN and video data is to
reduce localization error in the rooms where there is a
camera, in contrast to using only WLAN that still offers
room level accuracy when no cameras are present.

Our work is closer to the systems discussed in [15] and
[12]; however, the proposed solution employs a novel
image-based localization algorithm and fuses image and
WLAN signals by means of a threshold-based or a
particle filter algorithm to trade off positioning error and
computational time/energy consumption depending on
the application scenario. As compared to previously
mentioned approaches these two fusion methods are
complementary in terms of how we integrate sensing
modalities and interpret results, and also we propose a
hybrid fusion as a viable way when trading-off efficiency
and accuracy of such a localization system.

3 WLAN-BASED LOCALIZATION

Probabilistic WLAN localization techniques based on
fingerprinting start with the acquisition of training ob-
servations consisting of RSS information at Calibration
Points (CP) distributed along a dense grid throughout
the building [17], [42]. To calculate the probability of
a user being at a particular CP given the RSS values
that he/she observes, we employ a Naive Bayes method,
which represents an extension of the Bayes and Naive
Bayes classifiers. This algorithm takes into account the

RSS values of WLAN APs and also the frequency of the
appearance of these APs.

A signature for each CP is defined as a set of W
distributions of RSS values from W APs and a dis-
tribution representing the number of appearances of
W APs received at this CP. C ∈ {1, 2, ...,K} denotes
the CP random variable where K is the number of
CPs, Xm ∈ {1, 2, ...,W} represents the mth AP random
variable, Ym ∈ {s1, ..., sV } is the RSS value received from
the mth AP, where W is the number of APs, M is the
number of APs of an observation and V is the number
of discrete RSS values. D = {o1,o2, ...,oN} is a set of
N training observations where the nth training obser-
vation is defined as on = (c(n), x

(n)
1 , y

(n)
1 , ..., x

(n)
M , y

(n)
M ),

for n = 1, .., N , where xm ∈ Xm and ym ∈ Ym for
m = 1, ..,M . It is not necessary that each AP produces
receivable signals at each CP, and indeed whether an
AP signal can be obtained at a CP can vary with time
depending on the state of the radio channel. The joint
distribution P (C,X1, Y1, ..., XM , YM ) is given by

P (C)

M∏
m=1

P (Xm|C)P (Ym|C,Xm). (1)

Using the Naive Bayes approach and one testing obser-
vation o the likelihood that the user is at location c can
be written as

P (c|o) ∝ P (c)

M∏
m=1

P (xm|c)P (ym|c, xm). (2)

Based on (2), we can obtain a ranking of the CPs accord-
ing to P (c|o), i.e., the first, the second, the third and so
on CP where the user is most likely located.

In the absence of any other information the a priori
probability distribution of the user location, P (C = c),
is presumed to be uniform. The distribution of AP x
given a location c, P (Xm = x|C = c) is multinomial, the
probability of signal strength y given location c and AP
x, P (Ym = y, C = c,Xm = x), is normalized histogram.
Using the identity function

I(e1, e2) =

{
1 for e1 = e2

0 for e1 6= e2
, (3)

in a maximal likelihood estimation framework the suffi-
cient statistics are

nc =

N∑
n=1

M∑
m=1

I(c(n), c), (4)

n(x)
c =

N∑
n=1

M∑
m=1

I(c(n), c)I(x(n)
m , x), (5)

in which we observe the frequency of appearance of the
APs while in

n(y)
c,x =

N∑
n=1

M∑
m=1

I(c(n), c)I(x(n)
m , x)I(y(n)

m , y), (6)
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we take into account its corresponding RSS values which
will be eventually used to calculate conditional proba-
bilities of APs and signal strengths. We evaluate these
probabilities as follows. The probability of AP x given
location c, P (Xm = x|C = c) is given by

P (Xm = x|C = c) =
n

(x)
c + 1

nc +W
, (7)

while the probability of signal strength y given location
c and AP x, P (Ym = y|C = c,Xm = x) is given by

P (Ym = y|C = c,Xm = x) =
n

(y)
c,x + 1

n
(x)
c + V

. (8)

These are estimates of the signature parameters, for
every AP and also for every RSS value that can be
observed from that AP.

We rescaled the corresponding probabilities of the
candidate CPs in (2) to sum to one and denoted their
new values as the CP confidences, pi. To calculate the
final user location we used the Minimum Mean Square
Error (MMSE) estimation algorithm given by

rW =

∑K
i=1 pmaxiCPmaxi∑K

i=1 pmaxi
, (9)

where the first, the second, ... , kth ranked CP positions,
corresponding confidence values, and the user location
output are denoted by CPmax1, CPmax2, . . . , CPmaxK ,
pmax1, pmax2, . . . , pmaxK , and rW , respectively.

4 NOVEL IMAGE-BASED LOCALIZATION

For the image-based localization, we use a feature point
based approach, that employs a variation of a vocabulary
tree supported by bidirectional matching, to obtain the
user location; see Figure 2. Beside extending vocabulary
tree concept, three novel contributions are proposed:
• Use of quantized features and a two-brench vocab-

ulary tree to speed up the setup and the localization
process.

• Re-estimation procedure for fixing cluster centers of
the hierarchical vocabulary tree of the SURF features
as a part of an extended κ-means algorithm.

• A bidirectional matching approach used to reorder
locations previously ranked by the vocabulary-tree
based method.

Speeded Up Robust Features (SURF) is an image
detector and descriptor3, robust to lighting, viewpoint
changes, and changes in scale [43]. It uses a Haar wavelet
approximation of the determinant of Hessian blob detec-
tor

H(l, σ) =

[
Lξξ(l, σ) Lξζ(l, σ)
Lξζ(l, σ) Lζζ(l, σ)

]
, (10)

where Lξξ(l, σ) is the convolution of the Gaussian second
order derivative ∂2

∂ξ2 g(σ) with the image I in point l, and

3. SURF feature and descriptor vector are used interchangeably.

Fig. 2. A block diagram of the image-based localization.
After extracting the SURF features from an input image,
we propagate the features through the vocabulary tree to
obtain the ranked CP locations. The ranking list is refined
using the bidirectional matching. By employing the MMSE
algorithm on the refined ranking list and corresponding
confidence values, we obtain the user location.

similarly for Lξζ(l, σ) and Lζζ(l, σ). ξ and ζ denote or-
thogonal coordinate axes of a two dimensional Cartesian
coordinate system associated with the image.

A SURF interest point must be selected at distinct
location in image (T-junctions, corners, blobs) and its
neighborhood is represented by a descriptor vector. Haar
wavelet responses in ξ and ζ direction within circle of
radius 6s around that interest point (s is scale at which
the interest point was detected) were calculated. The
horizontal and vertical responses within the window are
summed and yield a local orientation vector. The longest
such vector among all windows gives the orientation
of the interest point. Then, a square region of size 20s
around interest point is split into 16 small sub-squares
(4 × 4 within one square). Then, four Haar wavelet
responses at 5 × 5 regularly spaced sample points are
computed respectively:

∑
dξ,

∑
dζ ,

∑
|dξ| and

∑
|dζ |.

This gives a SURF descriptor vector of length 64 for that
interest point.

Every interest point in the first image can be compared
to every point in the second image by calculating the
Euclidean distance between their descriptor vectors. A
pair (match) is detected, if distance of the nearest is less
than T times the distance of the second nearest neighbor.
Since this measure is asymmetrical (matching from the
second to the first image) those that appear in both
directions are called bidirectional matches (see Figure 3).

The SURF features from all database images were
associated with the image and their CP of origin. The
features were split into two groups (denoted ±1 respec-
tively) based on the sign of the Laplacian, which halves
the search time. For each group, we created a hierarchical
tree clustering the descriptor vectors using the extended
κ-means algorithm repeatedly. This partitioning of U
features into κ disjoint subsets Sj each containing Uj
features, minimizes the sum-of-squares criterion

J =

κ∑
j=1

∑
u∈Sj

∥∥lu − µj
∥∥2
, (11)

where lu is a vector representing the u-th data point and
µj is the geometric centroid of all data points in Sj .

The algorithm consists of the re-estimation procedure
as follows. Initially, the features are assigned at random
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Fig. 3. SURF matching between a testing and a training
image (separated vertically at pixel 640 on the horizontal
axis) during the testing stage. Unidirectional matches in
right image that correspond to left image are represented
with red lines (vice versa for blue lines) and bidirectional
matches with the green lines.

Fig. 4. Proposed vocabulary tree used in image-based
localization. The red and blue circles denote the vocabu-
lary tree clusters’ centers. The red and blue vertical lines
denote the tree’s last level SURF descriptor vectors.

to the sets. For step 1, the centroid is computed for each
set. In step 2, every feature is assigned to the cluster
whose centroid is closest to that feature. These two steps
are alternated until a stopping criterion is met. For the
first two or even three levels of the hierarchical tree
κ cluster centers were found by calculating the mean
value of several previously calculated cluster centers. In
other words, for ι iterations there are ι cluster centers
vectors, each of length κ. Then the mean value for
each dimension was calculated resulting to a vector of
length ι representing κ cluster centers. For the higher
tree levels this process is not necessary as cluster centers
are already properly fixed. This approach only requires
linear memory, O(κ+U), in the number of cluster centers
κ and feature points U .

For a query image, its SURF descriptor vectors and the
(corresponding) signs of the Laplacian were extracted
and a match for each descriptor vector was found using

+1 or −1 hierarchical tree (see Fig. 4). Since the match
was labeled with the image and location from which
it was extracted it, therefore, casted one vote for its
associated location. After each descriptor vector had
voted for a location locations were ranked from the most
likely to least likely. A verification stage was employed
by using the bidirectional matching to reorder the top 5
previously ranked locations. Firstly, ranking obtained by
the descriptor vectors was weighted by the normalized
bidirectional matching location scores and again normal-
ized, thus associating normalized votes with each CP.
A confidence is assigned for each CP, denoted by qi,
and defined as the ratio of normalized votes associated
with that CP and total number of the normalized votes.
Similar to Section 3, we calculate user location, denoted
by rI , using the MMSE estimation algorithm given by

rI =

∑K
i=1 qmaxiCPmaxi∑K

i=1 qmaxi
. (12)

5 THRESHOLD-BASED FUSION METHOD

To perform threshold-based fusion, we take the confi-
dences pi and qi from both sensing modalities P (WLAN)
and Q (image) into account. Here, i refers to a given CP.
The first ranked, the second ranked, the third ranked, etc.
sorted confidences are denoted by pmax1, pmax2, pmax3,
etc. respectively (and similarly for Q).

Let us define Pij = pmaxi − pmaxj and similarly
Qij = qmaxi − qmaxj . We used a separate training and
validation dataset to derive the fusion function and to
define the threshold values. Observing P12 and Q12 in
many confidence pairs, which were derived using the
validation dataset, we concluded that for values P12

and/or Q12 beyond some reliably large thresholds, we
were sure that the nearest CP (location) was the 1st

ranked one, based either on P or Q (or both). These
reliably large thresholds, denoted by TP and TQ for P
and Q modality respectively, are equal to

TP = min
V ALP

{PV ALP 12} (13)

TQ = min
V ALQ

{QV ALQ12} (14)

and are derived based on the validation datasets (de-
noted by V ALP and V ALQ for P and Q modality,
respectively). Moreover, we deduced that introducing
multiplication (piqi) and/or addition (pi + qi) functions
under some conditions, i.e. using more thresholds, can
decrease the positioning error even more. But to avoid
over-fitting we have not used the additional multiplica-
tion/addition eventually.

We found that the ranking of the correct location did
not fall below some positions in both sets of rankings
(the αthP position for P and the αthQ position for Q modal-
ity). If none of the conditions is satisfied we decided to
take the ranking of the modality to which min(αP , αQ)
corresponds. The steps in the fusion process are
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fi =


pi, P12 ≥ Q12 ∧ P12 > TP ∧Q12 > TQ
qi, Q12 > P12 ∧ P12 > TP ∧Q12 > TQ
pi, P12 > TP ∧Q12 < TQ
qi, Q12 > TQ ∧ P12 < TP
βi, else

. (15)

Here fi represents the fusion confidence, while βi is
the confidence of the method to which min(αP , αQ)
corresponds. Similar to Sections 3 and 4, we calculate
the user location, denoted by rFt, using the MMSE
estimation algorithm given by

rFt =

∑K
i=1 fmaxiCPmaxi∑K

i=1 fmaxi
. (16)

This threshold-based fusion approach is evaluated in
Section 8 using a test dataset that is different from the
training and the validation datasets.

6 FUSION BASED ON PARTICLE FILTER
In this approach, the sequentially arriving RSS and im-
age measurements are fused with location predictions
from the user kinematic model using a Sampling Impor-
tance Resampling (SIR) particle filter [44]. The particle
filter method projects the state of the user to be tracked
(particles) one step ahead. This is followed by RSS and
image measurement acquisition to assign weights to
particles and generate a probability distribution. Next,
the motion and measurement models are introduced
together with the description of the particle filter.

6.1 Motion Model and Kinematic Prior Propagation
The position and velocity of a user at time step k =
1, . . . ,K within a building interior is described by vector
X k = [χk χ̇k ψk ψ̇k]T , where (χk, ψk) are the positions
in the χ and ψ dimension, and (χ̇k, ψ̇k) are the corre-
sponding velocities. The user motion is described as

X k = FX k−1 + Qvk−1, (17)

F =


1 δt 0 0
0 1 0 0
0 0 1 δt
0 0 0 1


and δt is the time difference between state transitions.
Q is a diagonal process noise covariance matrix, and vk
denotes a zero-mean, unit variance Gaussian process that
models velocity errors. The model in (17) is associated
with the kinematic prior distribution P (X k|X k−1).

Particles are then defined which represent realizations
of possible user states X h,k = [χh,k χ̇h,k ψh,k ψ̇h,k]T

where h = 1, . . . ,H and H is the total number of particles
used. Each particle h = 1, . . . ,H is propagated one step
ahead using the kinematic model in (17) as

X h,k = FX h,k−1 + Qvk (18)

which is equivalent to sampling from the kinematic prior
distribution P (X k|X h,k−1).

6.2 Measurement Models
The training measurement set is used as information on
the correspondence of measurements to user locations,
which we have incorporated in the WLAN and image
measurement models detailed in the following.

6.2.1 WLAN Measurements Model
The signal strength measurements y(n)

m , m = 1, . . . ,M ,
n = 1, . . . , N of the training set collected at CP i =
1, . . . ,K at location (χCP,i, ψCP,i) are assumed to be
Gaussian distributed with mean and variance that are
estimated using the training set measurements as

µ̂i,m =
1

N

N∑
n=1

y(n)
m (19)

σ̂2
i,m =

1

N − 1

N∑
n=1

(y(n)
m − µ̂i,m)2. (20)

The received signal measurement likelihood Prss,i for
each CP and from M APs using (7) is given by

Prss,i =

M∏
m=1

1√
2πσ̂2

i,m

e
−

(yrss,m−µ̂i,m)2

2σ̂2
i,m P (xm|i). (21)

6.2.2 Image Measurements Model
For the image measurements the training set measure-
ments is used to provide normalized votes qi on the CP
from which it is likely to have obtained a given image
yimg in the current time step as described in Section 4.
Therefore, the normalized votes can be interpreted as
how likely it is that a test image was taken at a certain
location. The image measurement likelihood is then ap-
proximated to be equal to the normalized votes as

Pimg,i = qi. (22)

This is then used as probability distribution that indi-
cates the probability that an image was taken at each of
the locations (χCP,i, ψCP,i), i = 1, . . . ,K.

6.3 Particle Weighting with Measurements
During localization, the particles are assigned weights
based on RSS and image measurements generated based
on a true user state X k = [χk χ̇k ψk ψ̇k]T at location
(χk, ψk), which is unknown to the tracker.

6.3.1 Likelihood based on RSS measurements
A RSS measurement for the current time step that is
due to the true user position (χk, ψk) is taken from
the test dataset. The location of a CP (χCP,̄i, ψCP,̄i) is
identified that is nearest to (χk, ψk) where testing set
received signal measurements exist which is indexed by
ī = argmin

i

||[χk, ψk]− [χCP,i, ψCP,i]||22. Then, a measure-

ment from the test dataset, denoted as yrss,m, is selected
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for each AP corresponding to CP ī. In addition, for each
particle proposed location from (χh,k, ψh,k) a location
for which training measurement data exist is identified
as (χCP,ih , ψCP,ih) where ih = argmin

i

||[χh,k, ψh,k] −

[χCP,i, ψCP,i]||22. Index ih then defines likelihood dis-
tribution given in (21) for particle h with mean and
variance µh,m = µ̂ih,m and σ2

h,m = σ̂2
ih,m

in (19) and (20)
respectively for each AP m = 1, . . . ,M . The likelihood
when using RSS measurements is now given by

Prss,h,i =

M∏
m=1

1√
2πσ2

h,m

e
−

(yrss,m−µh,m)2

2σ2
h,m P (xm|i). (23)

for each particle h and each AP m.

6.3.2 Likelihood based on image measurements

Image measurements that arise due to the true user
state are taken from the image test dataset. The index
of the CP nearest to the true user state where images
were collected is identified as ǐ = argmin

i

||[χk, ψk] −

[χCP,i, ψCP,i]||22. Then, an image is drawn uniformly
at random from the test dataset of CP i denoted
as yimg . Then, for each particle proposed state χh,k
the location for which training set image measure-
ments exist is identified as (χCP,̃ih , ψCP,̃ih) where ĩh =
argmin

i

||[χh,k, ψh,k]− [χCP,i, ψCP,i]||22 and the likelihood

for each particle n based on the image measurements is
taken as the normalized votes in (22) as Pimg,h = qimg,̃ih .

6.3.3 Particle weighting

Considering both RSS and image measurements and as-
suming that they are mutually independent, the weight
of each particle using the RSS and image likelihoods is

w̄h,k = Pimg,h

M∏
m=1

Prss,h,mP (xm|ih). (24)

Weights are then normalized as wh,k =
w̄h,k∑H
h=1 w̄h,k

and the
estimates of the posterior distribution and the estimate
of the user state are respectively given by

P̂ (X k|{yrss,m}Mm=1, yimg) =

H∑
h=1

wh,kδ(X k −X h,k) (25)

X̂ k =

H∑
h=1

wh,kX h,k (26)

which is followed by particle resampling [44]. The par-
ticle filter fusion algorithm is outlined in Table 1. We
used 600 particles, when using more the accuracy did
not improve. In Section 8 we evaluate the performance
of this algorithm and the positioning error is given as
the Euclidean distance between the estimated position
in (26) and the true user position.

TABLE 1
The RSS-Image Particle Filter Fusion Tracking Algorithm

• For each particle h = 1, . . . , H

– Propose a new user state at time k as (18)
Xh,k = FXh,k−1 +Qvk

– Collect RSS {yrss,m}Mm=1 and image yimg measure-
ments

– Calculate likelihoods and weights wh,k (24)
• Calculate estimate of posterior distribution (25)

P̂ (Xk|{yrss,m}Mm=1, yimg)

• Calculate estimate X̂k of posterior (26)
• Particle resampling

Fig. 5. Map of offices used in the experiments where
green squares denote the 14 APs. The office room av-
erage size is equal to 12.9 m2.

7 EXPERIMENTAL SETUP

For our experiments we use 36 offices (see Figure 5
where most offices were employed) in the School of
Electronic Engineering, Dublin City University, Ireland.
Within each office we use 5 CPs, denoted A,B,C,D,E,
which are placed at each corner of the office and at its
center, as shown in see Figure 6). Each orientation of
a CP (N, S, W and E) has 8 (640 × 480 pixel) images
and 150 associated RSS observations taken with Canon
PowerShot A560 camera and Dell Inspiron laptop with
Intel Core 2 Duo Processor T5250 (2.0 GHz, 2 MB L2
cache, 667 MHz FSB), memory of 2×2048 MB, 667 MHz
Dual Channel DDR2 SDRAM, SATA Hard Drive with
450 GB, and Intel PRO/Wireless 3945ABG card, respec-
tively. However, the acquisition and processing methods
used to develop the proposed localization approach and
run the pilot tests do not restrict the mass adoption of
the approach on the wide variety of commercial devices,
including tablets, smartphones, and mobile robots, that
are equipped with WLAN and image modules.

In this work, we use the RSS Indicator (RSSI) value
reported by the WLAN adapter, which is defined as
the absolute RSS value. RSS data were captured us-
ing InSSIDer4 software. An observation consists of RSS
readings from up to 14 WLAN APs. Note that these

4. http://www.metageek.net/products/inssider/
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Fig. 6. Calibration points ABCDE within an office.

Fig. 7. Some of the images used in the experiments.

APs are part of the university infrastructure for the
provision of wireless connectivity and we did not install
any additional APs.

We gathered 120, 000 images, of which 83, 000 were
used for training and 17, 000 for testing, and 210, 000 sig-
nal strengths observations of which 160, 000 were used
for training and 20, 000 for testing. To derive threshold
values and the fusion function in the threshold-based
fusion method, we have used an independent set of
20, 000 images and 30,000 signal strength observations
as the validation dataset. During image and RSS data
collection, the user was standing still at the CPs. During
the training stage image and WLAN data was taken at
the CPs, while during the validation and testing stage it
was taken at arbitrary points.

Offices are next to each other and look very similar
inside thus resulting in very challenging data for both
WLAN and image-based localization methods (see ex-
amples in Figure 7). Each CP is associated with several
datasets using data taken at different times of the day
and different days to demonstrate the robustness of the
localization approaches. During localization, the user
collected one image and one RSS fingerprint from the
test dataset and investigated the distance between the
estimated and the true user location.

8 PERFORMANCE EVALUATION

We assess the performance of our system in terms of
the trajectory matching accuracy (in %) defined as the
Euclidean distance between the true and estimated user

locations. Specifically, we report the mean positioning er-
ror Ep together with the 95% confidence interval given by
Ep±1.96σ/

√
n, where σ denotes the standard deviation of

the positioning error and n is the number of test samples.
Essentially, the 95% confidence interval indicates that Ep
falls within the interval with a high degree of certainty.

Our assessment is performed under different condi-
tions by considering parameters such as varying number
of CPs per office, number of WLAN APs, number of
training images, and number of training RSS finger-
prints. To avoid introducing any bias in the results by
considering a specific subset of CPs per office or subset
of WLAN APs, etc., the reported results are further av-
eraged over all possible combinations of each parameter.

Later, our system is compared against other solutions
with respect to positioning error and computation time.

8.1 Effect of number of CPs per office
In this experiment, we vary the number of CPs per office
while we fix the number of WLAN APs to 14 and the
number of training RSS fingerprints per CP is equal to
600. The statistics of the positioning error for different
methods are depicted in Figure 8. In particular, the
height of each bar and the whiskers indicate the mean
value Ep and the 95% confidence interval, respectively.

It is clear that the fusion of WLAN and images im-
proves accuracy compared to using either WLAN or im-
age as standalone localization methods. In each case Ep
decreases when the number of CPs per office increases.
However, this comes at the expense of higher data
collection effort and time for populating the database
with training RSS fingerprints and images, thus Figure 8
provides a guideline for this trade-off. Even though it
pays off in terms of positioning error to survey more
CPs per room (e.g., Ep drops from around 4 m to 2 m
when 5 CPs, instead of 1 CP, are considered), some
applications might tolerate higher error but have strict
setup time constraints (e.g., data collection completed in
a few hours, rather than few days).

8.2 Effect of number of APs
In this case, 5 CPs per office were used and we vary the
number of WLAN APs while the number of training RSS
fingerprints and the number of images per CP is equal
to 600 and 32, respectively. Figure 9 shows the trend
of Ep for increasing number of APs. The Particle filter
and Threshold-based fusion methods are considerably
better than the standalone WLAN localization method,
reaching around 2 m with 8 APs. For reference, our
Image method achieves Ep = 2.7 m.

As expected, Ep does not decrease significantly when
more than 8 APs are considered. This is in line with what
has been reported in the related literature in the past; a
few APs (i.e., low dimension of the RSS fingerprints) are
not enough to sufficiently distinguish between locations,
while using more APs beyond a certain point (i.e., high
dimension of the RSS fingerprints) does not improve the
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Fig. 8. Positioning error of the WLAN, Image, Particle
filter fusion and Threshold-based fusion methods for vari-
able number of CPs per office.
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Fig. 9. Positioning error of the WLAN, Particle filter fusion
and Threshold-based fusion methods as the number of
APs increases.

discriminative capability of the fingerprints. Moreover,
factors such as the inherent uncertainty in RSS data,
due to noise and measurement errors, and especially
the modeling errors that result from the finite number
of calibration points, all place a limit to the possible
localization accuracy that cannot increase by increasing
the number of APs. This result suggests that reasonably
accurate localization can be achieved in new WLAN de-
ployments with lower budget and quicker installations.

8.3 Effect of number of training images

In this experiment, we consider 14 WLAN APs, 5 CPs
per office, and the number of training RSS fingerprints
per CP is equal to 600. The bar chart in Figure 10
illustrates the improvement in Ep as the number of
training images per CP increases. Increasing the number
of images per CP is achieved by equally using more
images per orientation in every CP.

As expected, the performance of all methods improves
when more training images are considered and the fu-
sion methods consistently attain lower Ep by around 1 m
compared to the standalone Image localization method.
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Fig. 10. Positioning error of the Image, Particle filter fu-
sion and Threshold-based fusion methods as the number
of training images per CP increases.

The WLAN method does not depend on the number of
training images and delivers Ep = 2.4 m in all cases. This
accuracy level is reached by the fusion methods using
16 training images per CP, while doubling the number
of images further reduces Ep by 0.5 m. Therefore, there
is again a trade-off between the positioning error and
the setup time of the system that increases significantly
when more training images are captured.

8.4 Effect of number of training RSS data
In this experiment, we consider 14 WLAN APs, 5 CPs
per office, and 32 training images per CP. Figure 11
shows how Ep decreases when the amount of train-
ing RSS fingerprints increases. Clearly, the two fusion
methods utilizing both RSS and image data outperform
the WLAN method in all cases. The Image localization
method achieves Ep = 2.7 m.

Similarly to the number of training images discussed
previously, there is a trade-off between the positioning
error and the setup time of the system that increases
significantly when more training RSS fingerprints are
collected in every CP. For instance, collecting 600 RSS
fingerprints per CP, instead of 400, only improves Ep by
around 0.4 m for the fusion methods.

8.5 Particle filter for a dynamic scenario
The particle filtering method performs data fusion from
multiple heterogeneous sources producing measure-
ments that have a non-linear relationship to the target
state. In addition, the particle filtering method is capable
of incorporating target kinematic information into the
estimation process. Moreover, the particle filter is able
to handle measurements that arrive asynchronously or at
irregular intervals by continuing to propagate the belief
on the target state via regularly updating the state using
the kinematic prior and updating the predictions on the
target state with knowledge from new measurements
when new measurements do become available.

In the results presented so far, where the target kine-
matic properties did not include a high uncertainty
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Fig. 11. Positioning error of the WLAN, Particle filter fu-
sion and Threshold-based fusion methods as the number
of training RSS fingerprints per CP increases.

due to the semi-stationary pattern of motion, the par-
ticle filter method did not achieve significant accuracy
improvement as compared to the threshold-based ap-
proach. To demonstrate the effectiveness of the particle
filter in a dynamic scenario, we rearranged the order
of the collected data appropriately to emulate a user
walking along a path that passes from one office to
the next assuming a typical user walking speed. We
produced 13 different trajectories of the same path by
considering test measurements from nearby randomly
selected locations within each office. We fixed algorithm-
specific parameters to their optimal values, i.e., 5 CPs,
14 APs, 32 images, 600 RSS fingerprints per CP, and
600 particles as in the above experiments. In this case,
the average of the mean positioning errors pertaining to
these 13 trajectories is 1.566 m with a confidence interval
of 0.32 m compared to 1.908 m in static localization, as
shown in Figures 8-11.

8.6 Hybrid fusion
As images are one of the most energy-consuming data
sources we would like to avoid using them continuously,
but rather employ them only when necessary, e.g., in
case the WLAN method is not expected to have good
accuracy. Therefore, we investigate the effect on position-
ing error in case we use images only when the number
of sensed APs in the observed RSS fingerprint is less
than 3. The intuition is that according to the previous
analysis in Section 8.2 the positioning error of the WLAN
method degrades significantly below that value. Thus,
the hybrid approach provides a practical way for indoor
localization where users move around freely enjoying
reliable WLAN RSS-based location information and stop
to take a picture of the surroundings when the system
detects that the user is at an unknown location or in a
region with few detected APs that may result in poor
WLAN RSS-based localization.

We modified the original Particle filter and Threshold-
based fusion methods, which use the captured image in
every localization test, to create their hybrid variants that

Images used in every test Particle filter Threshold-based
Yes (original fusion) 1.908 1.904
No (hybrid fusion) 2.337 2.400

TABLE 2
Positioning error of the hybrid fusion methods.

use images sporadically based on the number of sensed
APs. In other words, the hybrid methods compute user
location using only WLAN RSS data most of the time
and fuse it with image data only if one or two APs are
sensed in the RSS fingerprint.

Table 2 reports Ep for the hybrid fusion methods.
The hybrid methods deliver higher positioning error by
around 0.5 m compared to the original fusion methods.
However, this is compensated by time efficiency due to
the less frequent sampling and processing of images dur-
ing localization, as analyzed in the following Section 9.

9 COMPUTATION TIME

A series of experiments was conducted with a goal to
compare computation time of the five localization solu-
tions, namely the WLAN, the image, the threshold-based
fusion, the particle filter fusion, and the hybrid fusion.
Note that we report results only for the particle filter
hybrid fusion solution for brevity. We used the same
laptop with the specifications described in Section 7,
while all algorithms were implemented in Java.

Computation times are calculated using a number of
tests and we report the average value. We assume that
each test is equally time consuming. We denote tW and
tI the average computation times for obtaining the user’s
location with WLAN and image modalities given by

tW = t
a
W + t

l
W , (27)

tI = t
a
I + t

l
I , (28)

where ta and t
l denote the times required for the acqui-

sition of the corresponding modality and the localization
process, respectively.

Acquisition of a WLAN RSS takes in our case, taW =
1 s, while determining the user location with the WLAN
localization algorithm takes t

l
W = 0.058 s. Thus, the

whole process takes in total tW = 1.058 s. On the
other hand, the acquisition of a 640 × 480 pixel image
takes t

a
I = 0.21 s, while the localization process takes

t
l
I = 3.962 s. In total, this gives tI = 4.172 s.

For the threshold-based fusion one has to take one
RSS observation and one image for each test and sub-
sequently use the image-based and the WLAN-based
location results in the fusion process. In the case of
particle filter fusion only acquisitions of the WLAN and
the image data are taken into account in addition to the
particle filter localization process. For the hybrid fusion,
which is based on the particle filter, an image is acquired
only when the WLAN-based location is considered un-
reliable (i.e., when less than 3 APs are sensed in the
measured fingerprint) in addition to the localization time
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W I Ft Fp H

Time (s) 1.058 4.17 5.68 8.87 5.96

TABLE 3
Average computation time of the WLAN (W ), Image (I),
Threshold-based fusion (Ft), Particle filter fusion (Fp),

and Hybrid fusion (H) methods.

of the hybrid fusion. Therefore, the average computation
times for the fusion methods are given by

tFt = tW + tI + t
l
F t, (29)

tFp = t
a
W + t

a
I + t

l
Fp, (30)

tH = t
a
W + ρt

a
I + t

l
H , (31)

where ρ is a parameter pertaining to the hybrid fusion
that denotes the percentage of tests where an image was
acquired. In our tests we observed that ρ = 21.5%.

Table 3 summarizes the computation time for each
localization method. Among the fusion methods we ob-
serve that the Hybrid method is the most power efficient;
however, this comes at the expense of around 0.4 m
degradation in the positioning error compared to the
Particle filter fusion method, as shown before in Table 2.
The latter method proves to be the most demanding in
terms of run time. Therefore, the Threshold-based fusion
method is a good compromise between time-efficiency
and positioning error.

We note that using a more powerful computer or
server, instead of a laptop, and also applying techniques
to parallelize the computations for the particles (now
they are performed sequentially) could easily reduce
the time to compute the user’s location from a few
seconds to less than one second. Thus, the proposed
system would be applicable to practical real-life appli-
cations for localizing individuals that move at normal
walking speed inside a building. In this case, the latency
of the system (i.e., the time required to compute the
user location) depends on the time to acquire a WLAN
measurement (i.e., 1 s).

Moreover, energy consumption of a particular method
running on a device follows the method’s computation
time in a monotonically increasing fashion, i.e., as the
method’s computation time increases, the energy con-
sumption of the method running on the device increases
as well. Due to lack of space we omit the corresponding
results related to energy consumption of the aforemen-
tioned methods running on the laptop.

10 COMPARISON WITH OTHER METHODS

The proposed fusion methods are compared against two
state-of-the-art methods presented in [15] and [12].

The system in [15] uses WLAN-based localization,
which follows a Naive Bayes approach, together with
image-based localization. In particular, the system es-
timates the user’s location from the scanned WLAN
RSS values using a modified version of the centroid
algorithm; see [15] for more details. In the image-based

Threshold-based Particle filter [15] [12]
Time (s) 5.68 8.87 9.61 8.67

TABLE 4
Average computation time of the Threshold-based

fusion, Particle filter fusion, and the methods in [15], [12].

localization, a fusion algorithm is employed based on
images extracted from video using the FFmpeg applica-
tion. The target is modeled as a simple three dimensional
cylindrical object but using a single camera with mul-
tiview perspective. Images captured from cameras are
degenerated to two dimensional planar images.

In [12], WLAN-based localization is achieved by com-
paring RSS fingerprints in the database (collected offline)
and the RSS fingerprint taken by a client (observed
online). Similarly to our approach, if an AP is present in
the observed fingerprint at the location of the device, but
not present in a database fingerprint, then the matching
between them should be low and a penalty is applied to
handle this. This was also the case if an AP was missing
in the observed fingerprint, but was present in the fin-
gerprint in the database. In the image/video-based part,
foreground segmentation is employed followed by how
human shapes are extracted and mapped to floor plan as
it is explained in detail in [12]. When both WLAN and
camera data are available, then the two measurements
are combined with a naive Bayesian approach. In the
following, we compare the Particle filter and Threshold-
based fusion methods with the methods in [15] and [12]
in terms of mean positioning error Ep.

In the first experiment, we consider 5 CPs per office,
while the number of training images and RSS finger-
prints per CP is 32 and 600, respectively. Figure 12 shows
the performance comparison as we vary the number
of APs. The proposed fusion methods outperform the
methods in [15] and [12]. In particular, Ep is lower by
around 1.5 m and 1 m when only one AP or two APs
are considered, respectively. Even though the positioning
error does not drop considerably when more than 8 APs
are considered, fusion methods are still more accurate in
the mean by about 0.5 m when 8 or more APs are used.

In the second experiment, we fix the number of APs
to 14 and vary the number of training RSS fingerprints
per CP. The results are depicted in Figure 13. We observe
similar behavior for all methods and the proposed fusion
methods deliver positioning error below 3 m when 300
RSS training fingerprints are used.

Finally, we present results related to computation time
in Table 4. We observe that our Threshold-based fusion
method is very efficient and achieves significant savings
in terms of computation time compared to competing
methods in [15] (i.e., 41% reduction in computation time)
and [12] (i.e., 35% reduction). On the other hand, the
Particle filter fusion method outperforms the method in
[15], but is slightly worse than the method in [12]. In
this case, the hybrid version of the Particle filter fusion
method performs better than [12] in terms of time, while
still providing lower positioning error.
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Fig. 12. Positioning error of the methods in [15], [12],
Particle filter fusion and Threshold-based fusion methods
as the number of APs increases.
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11 CONCLUSION

In this work we investigate the combination of two
complementary data sources for indoor localization and
propose a novel image-based localization algorithm, as
well as two strategies for fusing either the locations
induced by WLAN and image localization algorithms
or the raw WLAN and image measurements directly.
The results demonstrate that the fusion methods achieve
lower positioning error than any individual modality,
while outperforming competing fusion approaches.

Both our fusion methods deliver similar accuracy;
however, they have different features that make each one
of them the preferred solution depending on the appli-
cation scenario. For instance, the Threshold-based fusion
method is more light-weight, i.e., it has lower computa-
tional complexity, resulting in lower run time and energy
consumption. On the other hand, it requires the col-
lection of a separate validation dataset and subsequent
fine-tuning for selecting algorithm-specific thresholds,
thus increasing the system setup time. In this case, the
more flexible Particle filter fusion method can be used
instead. The flexibility of the particle filter algorithm is
demonstrated when used as a hybrid fusion approach

able to trade off positioning error with reduction in
computational time. Finally, it can fuse measurements
from additional heterogeneous sources (additionally to
image and RSS data) if available.

Future work will investigate the use of dynamic
confidence-based weighting between the WLAN and im-
age modalities in both fusion approaches. Such adaptive
fusion scheme is expected to further improve the posi-
tioning error at no additional time-energy cost. In addi-
tion, the use of different WLAN bands at 2.4 GHz and
5 GHz, and Bluetooth beacons and a fusion of WLAN,
IMUs, and image data can be used to improve perfor-
mance and improve the versatility of our localization
system. A possible research direction would be to lever-
age WLAN Channel State Information (CSI) information
instead of RSS as in the Dynamic-MUSIC algorithm [6]
to further improve WLAN-based localization accuracy
due to the higher resolution of the CSI measurements.
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