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Abstract— This work focuses on the prediction of the hu-
man’s motion in a collaborative human-robot object transfer
with the aim of assisting the human and minimizing his/her
effort. The desired pattern of motion is learned from a human
demonstration and is encoded with a DMP (Dynamic Movement
Primitive). During the object transfer to unknown targets,
a model reference with a DMP-based control input and an
EKF-based (Extended Kalman Filter) observer for predicting
the target and temporal scaling is used. Global boundedness
under the emergence of bounded forces with bounded energy
is proved. The object dynamics are assumed known. The
validation of the proposed approach is performed through
experiments using a Kuka LWR4+ robot equipped with an
ATI sensor at its end-effector.

I. INTRODUCTION

The field of robotics has exhibited remarkable progress
over the past years and the idea of having robots work
collaborative with humans has gained a lot of ground. Tasks
like lifting or carrying heavy objects occur quite frequently in
everyday life and require combined effort and collaboration.
Endowing human-like capabilities to robots that will allow
them to manipulate objects in collaboration with humans in a
shared environment is extremely beneficial both in industrial
and household environments [1]. However, such an endeavor
poses many challenges. Accurate synchronization between
the robot and human partner and the negotiation of a common
trajectory are indispensable for performing the task in a good
synergy.

Specifically, in the case of collaborative object transfer,
a physical coupling is established between the two part-
ners through which interaction forces emerge. Disagreement
between the partners’ intention with respect to the target
position of the object and the desired time duration will result
in higher interaction forces [2]. A major issue in the field
of human-robot interaction for assistance to manipulation
is transparency. This basic feature qualifies the capacity of
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a robot to follow human movements without any human-
perceptible resistive forces [3].

Human motion prediction has been proposed as a means to
improve human robot collaboration. The use of the minimum
jerk model for the human motion based on which the
robot predicted the human motion was adopted in [4], [5],
[6]. However, the minimum jerk model has been show to
be unsuitable for manipulation tasks [2]. Another keenly
advocated approach in the literature to tackle the pHRI
problem is the use of Programming by Demonstration (PbD)
[7]. In [8] a model of the human motion is learned from
demonstrations and encoded using a variant of DMP called
Interaction Primitives (IP). Using IP the goal can be pre-
dicted. However, the adopted DMP representation does not
preserve the spatial scaling properties of DMPs [9]. This can
be a drawback when one wants to reproduce the same motion
pattern scaled spatially to a different goal. In [10], Iterative
Learning Control is employed to adjust the DMP’s trajectory
for transferring an object to a new position. However, this
requires the repetition of the same transferring tasks until
the true target position is reached. In [11] the idea of using
an EKF is introduced to predict on-line the handover place
and time of a DMP that parameterizes the human motion in
handover tasks. However, in [11] the prediction is based on
the current position of the human hand that is not physically
coupled with the robot.

In this work we consider the problem of human-robot
collaborative object transfer, where the robot is only aware
of the pattern of motion, but is agnostic to the target
position and how fast the movement should be executed (time
scaling). The goal is to allow the human to execute the same
motion pattern scaled to different targets and time scales,
while anticipating the human’s intention, making the robot
proactive and minimizing the human’s effort, by means of
predicting the target position and time scaling. To tackle this
problem we propose i) a model reference with a DMP based
control input based on the desired (trained) pattern of motion
and the estimates of the target position and time scaling,
ii) an EKF-based observer for the estimation of the target
position and time scaling with fading memory and parameter
projection so that the estimation parameters respect certain
bounds originating from their physical interpretation. As
the human and robot are physically coupled, estimates are
based on the interaction force and used in the control signal
supplied to the robot. The physical coupling differentiates
significantly the problem addressed in this work with respect
to [11] since the overall system here consists of the robot
controller and the observer under the exertion of the human



interaction force. Therefore the contribution of this work lies
on the problem formulation, the design of the observer and
robot controller and the proof of the stability of the overall
system.

The remainder of this paper is structured as follows: Sec-
tion II describes the proposed approach. A stability analysis
is carried out in section III. In section IV experimental results
are presented and discussed. Finally, section V provides a
brief summary.

II. PROPOSED APPROACH

We make use of DMP to encode the Cartesian position of
the robot’s end-effector during a point to point motion, that
is recorded from a kinesthetic demonstration. This recorded
motion pattern is employed by the robot for collaborative
transportation of an object to different targets and at different
time scalings unknown to the robot, which we will refer to as
goal parameters. During the object transfer the robot and the
human hold the object with a rigid grasp forming a rigid bond
constraint. The object’s weight is known and compensated
by the robot. A model reference is proposed to drive a robot
under velocity control. Using the current estimates of the
goal parameters a DMP-based control signal is provided
as input to the model reference. This control signal plays
the role of the estimate of the desired acceleration, i.e. the
acceleration that would be produced by the DMP with the
ground-truth goal parameters and endows the robot with
proactive behaviour. The force exerted by the human and
measured by the F/T sensor is provided as a second input
to the model reference, so that the human can intervene and
enforce the desired acceleration. The discrepancy between
the estimated and actual acceleration are used in an EKF-
based observer to update the estimates of the goal parameters
in order to ultimately converge to the actual ones, so that the
human’s intention can be inferred and no further or minimal
intervention and effort is required by him.

In the following subsections we present the adopted DMP
formulation, elaborate on the proposed scheme and detail the
update of the goal parameters using an EKF-based observer.

A. Dynamic Movement Primitive
A DMP for encoding a point-to-point motion in Cartesian
space is given by:
sz = azﬁz(g - y) - azTy + gf(l‘)f(l') (1)
Te=1, z(0)=0 2)
where vy, y is the Cartesian position and velocity, g the target,
x is the phase variable used to avoid direct dependency on

time and 7 > 0 is a temporal scaling factor typically set
equal to the demonstration’s total duration. The forcing term

f(x) is given by:
f(z) = diag(g — yo) fs(x) 3)

where y is the initial position and f,(z) is the weighted
sum of N Gaussian kernels:
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with ¥;(z) = exp(—hi(xz — ¢;)?), while g¢(z) is a sigmoid
gating function, ensuring the forcing term fades to zero at
xz =1 as in [12]:

1

- 1+ edg(z—cg) )

g9s(x)
In order for the linear part of (11) to be critically damped
we choose o, = f3,/4 > 0. The canonical system (2) can be
any monotonically evolving function [13]. Here, we chose
a linear canonical system to reduce the non-linearity of the
DMP w.rt 7, which affects the linearization done by the
EKF in section II-C. The Gaussian kernels in (4) are spaced
equally between 0 and 1 with centers ¢; = =% and inverse
widths h; = m, hy = hy—1, @ = 1,---,N. The
matrix W € R3*N, with W; denoting the 4, column,
contains in each row the weights for each Cartesian coor-
dinate, which can be learned using Least Squares or Locally
Weighted Regression (LWR) [14] based on the demonstrated
data. Owning to (5) the forcing term eventually vanishes, thus
(1) acts as a pure spring-damper and converges to the goal
yg- The parameters a,4, ¢, are chosen so that g(x) ~ 1 for
x€[0, 1) (e te0, 7)) and g(z) decreases quickly to
0forx>1(Ge t>71).

B. Control scheme

We consider a velocity controlled robot, therefore it is as-
sumed that any reference velocity can be accurately tracked.
Moreover, a F/T sensor is assumed to be mounted at its end-
effector measuring external forces. The proposed scheme is
presented in Fig. 1. The reference position y, and velocity
v, are outputs of a model reference, given by:

Mryr = U, + .femt (6)

where M, = diag(mg,my,m,) > 0 is the reference
model’s inertia and is chosen such that it is not less than
half the robot’s actual inertia to ensure passivity [15]. The
model reference accepts two inputs: (z) the external force
fext, which is assumed to be measured or calculated and
(¢2) a DMP based control input given by:

u, = M,y (7)

where the signal ;[/ is produced using the DMP equation
(1) utilizing the current robot’s reference position y, and
velocity gy, and the estimates of the target g and the time
scaling 7:

§= 23 (0:5: — ) — 0+ g@DF@) ®)

where 2 is calculated by integrating (2) using the estimated
time scaling 7. The generated signal in (8) is an estimated
acceleration which would be equal to ¥, if the actual target
and time scaling were known and f.,; was zero.

The update of the estimation parameters g and 7 is
performed based on the external force f..: using the EKF-
based observer described in II-C.
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Fig. 1: Proposed approach.

C. EKF-based observer for target and time scale prediction

To estimate the target g and the time scaling 7 we
. T 1T -
introduce the state vector & = [g7 7| . Assuming that
the target and time scaling are constant we construct the
following state equations:

6 =04y, 9)
§=hg(0,y,yr1) (10)

where 4 is the output and hg(0,y,,¥,,t) is given by:
hg(0,yr,gr,t) = (an

5 (@25-g — yo) — T, + glt/7)F(1/7)

where we have substituted = with its analytic solution from
(2). For the system given by (9)-(10) we construct the
following observer based on the fading memory EKF [16],
[17]:

0= K(ij—9) (12)

§=hg(0,y,,9,.1) (13)

where 6 is the state estimate, hg(é,yr,ymt) is the right
hand side of (8) and K € R**3 is a time varying gain
matrix given by:

K =Pt CT(t)R™! (14)

where P(t) is given by the solution of the the following
Ricatti equation:

P(t) =2a,P(t) - P)CT(tH)R'C(H)P(t) + Q (15)

ap > 0, R, Q are the measurement and process noise
covariance matrices and

— ahe(ou Yr, yra t)

C(t) 20 )
0=6

(16)
The analytic calculation of C'(t) is similar to [11].

Notice that in our case (12) is not implementable since
the parameters 0 in (10) are unknown and hence y is not
directly available. However, we can interpret f.,; as the
human’s intention to enforce the desired acceleration ¢ and
consequently assume that § = _1'}4— M f.... Moreover,
substituting (7) in (6) we get ¥, = @ + M1 f..+, therefore
we can substitute the difference y — g} with 9, — 3} =
M- L f..+. Hence, (12) can be written as

0=KM" for (17)

which is implementable, as f.,; is measured.

The EKF’s performance is heavily dependent on the error
between the estimated and actual parameters, which consid-
erably affects the accuracy of the linearization in (16). In
many cases, if this error is large, the estimates will diverge
or the convergence can be very slow. To avoid divergence
we exploit the fact that the robot’s workspace is constrained
and the time scaling is also bounded. Thus the estimation
parameters 6 should respect the constraints 8 < 0 < 0 or
equivalently:

DO <d (18)

where d = [67 — 6”7 and D = [ I 7I4]T. We use
the active set method, i.e. the constraints that are active at
the particular estimate 6. Those active constraints satisfy
D6 = d and Diél > 0, where D, is the i;;, row of
D and D,d are subset of the rows of D,d respectively.
Employing the projection based on the maximum probability
approach [17], the constraint estimation can be obtained from
6 = N6, where N = (I, — P(t)D"(DP(t)D")"'D) is
the projection matrix and 6; = P(t)C(t)R™ M fou is
the unconstrained time derivative of the state estimate given
by (17) and (14), In order to guarantee the boundedness of
the observer’s update law, irrespective of the boundedness
of y,., ¥,, we normalize C(t) with C(t) = C(t)/c,, where
cn = /14 Anaz(C(t)CT(t)) [18]. Hence, our parameters
estimation update law is given by:

6=NPt)CHt)R M,

19)

ext
Cn

Finally, we impose the condition p1I < P(t) < pol,
where p1,p2 > 0 and p; < p2 are design constants. To
respect the upper bound, we modify P(t) from (15):

2a,P(t) + Q
—P(t)CT(t)R™'C(t)P(t)
0, otherwise

P = NP@I< po

(20)
and to ensure the lower bound is not violated we reset P(t)
at the time instant ¢, when ||P(t)||< p1:

P(t}) = pol 1)

where pg > p; is a design constant. So the final EKF-
based observer with fading memory, parameters projection
and covariance bounding is given by (19)-(21).

III. STABILITY ANALYSIS

To study the boundedness and convergence of y,., U, §
and 7 we state and prove the following theorem:

Theorem 1: The model reference given by (6)-(8) along
with the observer based on the EKF given by (19)-(21)
ensures that y,, ¥, 9,7 € Lo if feut € Loo N Lo.

Proof: First of all, the proposed observer imposes the
boundedness of the the observer’s states through projection
(18)-(19) [17], therefore g, 7 € L. Using equations (6)-(8)
we can write the model reference in the following form:

P4, = —,B.yr — 7Y, + 7°d (22)



where d = % (a.8.9+ g(&)f(2) + M fort) can be
viewed as a time varying bounded disturbance since
7,0, fext € Loo and f(2) € Lo, for g, 7 € L. The system
in (22) can be decoupled in each dimension, so will carry
out the analysis in one dimension which we will denote by
y and the same results hold for the rest. Therefore, we have:

= —a.B.y — aty + 72d (23)

Introducing the state variable ¢ = [y ¢]7 (23) can be written

in matrix form:

¢ =A(t)¢ + Bd (24)

[0 1 0]
where A(t) = = Ca.B. —a? and B = nE Since
@, B, > 0 and 7 is positive and bounded, Re{\;(A(t))} <

os YVt > 0, ¢ = 1...4, where o5 > 0 is constant. Taking
into account that C(t), P(t) € Lo and fept € Loo N
Lo it follows from (19) that + € L., N Lg. Therefore
we also have ||A( )||€ Lo, since ||A(t)||= fi(F) > 0
||A(t)||= 8f1(7) 7 € Lo because f(,;:) € L, and 7 € Lo.
Finally, smce A( ) is differentiable and bounded and we
can utilize Theorem 3.4.11 from [18] to show that the origin
is uniformly globally asymptotically stable equilibrium for
the system ¢ A(t)¢. Therefore there exist matrices
I(t) = Ot > 0 and Q(¢) QT(t) > 0 with
1 = — AT ()II(t) — TI(t) A(t) — Q(t) satisfying 0 < m; <
[III(t)||< 72 and 0 < ¢1 < ||Q(¥)||< g2. Therefore the
system (24) is uniformly ultimately bounded, which can be
shown easily using the Lyapunov function V = ¢TTI(¢)¢.
Hence, y,y € L. The same analysis holds for each
dimension of y.., S0 Y-, ¥, € Lo, which concludes the proof
of the theorem. [ ]
Moreover, the local exponential convergence of the target
and time scaling predictions using EKF based on DMPs has
been studied in [11]. If the necessary conditions for local
exponential convergence are satisfied it can further be shown
that g — g and 7 — 7 [11]. Then we also have that f.,; — 0
(otherwise 6 #0 Wthh contradlcts the assumption g — g
and 7 — 7) hence d — = azﬁzg, so it can be easily shown
that for the system (24) We will have y,. — g and y,. — O.

IV. EXPERIMENTAL RESULTS

The experimental setup consisted of a Kuka LWR4+ robot
equipped with an ATI F/T sensor and a Barrett Hand. The
training phase consisted of a single demonstration to a fixed
target g, from the initial position vy, by kinesthetically
guiding the robot and recording its Cartesian position. These
data were used to train a DMP. Testing was then performed
to three different targets, gi, g2, gs unseen to the robot. The
robot was under velocity control driven by the Cartesian
reference velocity y,, keeping its orientation constant. The
control cycle was 2ms. The robot and the user were holding a
small box whose weight was known. The user was instructed
to transfer the box to a new fixed target, unknown to the
robot, as shown in Fig. 2. The force was measured by the
F/T sensor and the weight of the box was subtracted from
the measurement along the gravity direction to retrieve the

human exerted force, f.,:. Throughout the experiments the
initial position was yo = [0.02, 0.39, 0.16]7, the initial
target estimate §(0) = go = [0.18, 0.65, 0.35]7 and the
new targets for each of the three experiments was g; =
[—0.24, 0.68, 0.59]7, go = [-0.33, 0.63, 0.19]7 and g3 =
[—0.03, 0.64, 0.62]T respectively. The parameters chosen
for the DMP were N = 20, o, = 20, 5, = 5, for the model
reference M, = 513 and for the observer Py = I, R = 113,
Q = 0.00514, a, = 1.002, po = 1.0, p1 = 0.01, p = 1000,
6 = [0.65 0.8 0.7 60]”, 8 = [-0.65 0.05 0.15 1.5]7. For
the EKF the discrete implementation was employed [17].
The proposed approach was also compared to using only a
pure admittance, i.e. M y+Dy = fe,+, where M = 513 and
D = 1013, were tuned manually for best performance. The
comparlson was based on three metrics: 1) the total absolute
work fo || £L ,4||dt, where T is the total movement duration,

2) the total power of the signal f..;, i.e. fo || fext||?dt and 3)
the Euclidean norm of the error between the target estimate
and the ground-truth target (since for the admittance we
don’t have a target estimate we use the robot’s final position
instead).

Two users were involved, where the first one had prior
experience with robots, while the second did not. Both users
were given some time to get accustomed to the setup and feel
more comfortable with it. The users were instructed to avoid
direct contact at the target to forego generating additional
external forces owing to contact.

Initial

arget

Ho\t
;

Fig. 2: Experimental setup.

TABLE I: Work, power of f.,; and Euclidean norm of the
error between the ground-truth and estimated target for the
proposed scheme and the admittance in each of the three
experiments for both users.

Exp#  Method  [o [I£7 glldt [y [|feat|dt|lg — gl| (cm)

usrl usr2 usrl usr2 usrl usr2

| DMP+EKF 0.21 0.24 2.63 3.77 04 04
admittance 1.49 1.29 20.33 17.2 1.1 1.8

5 DMP+EKF 0.13 0.09 417 1.9 1.2 1.5
admittance 0.82 0.81 11.5 11.7 1.1 1.9

3 DMP+EKF 0.27 0.22 3.53 29 1.1 09
admittance 1.32 1.23 18.47 16.57 1.8 14

The aggregate results for both users are presented in Table
I where the label DMP+EKF denotes the proposed approach.
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Fig. 3: Estimation results from experiment 2 for user 1. The
top plot presents the target position estimation. The solid
lines with colors red, green and blue for the z, y and z
coordinates respectively are the estimates and the dashed
lines the actual ones. The robot’s position is plotted as well
with dash-dotted line. The bottom plot presents the time
scaling estimate.
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Fig. 4: Effort by user 1 in experiment 2. In the first row
the power is plotted with blue line for using the DMP+EKF
prediction and is compared with using only admittance (light
brown line). In the second row the squared norm of the
human’s force is plotted again for both cases.

From this table we can see that the results of both users for
the same experiment and method are quite similar, therefore
the inexperienced user (user 2) performed equally well with
the experienced one (user 1). Moreover, it is clear that the

0.5 |-

0.4 =

target estimate [m)]

time scaling [s]

0 0.5 1 15 é 2.‘5
time [s]

w

3.5 4 45

Fig. 5: Estimation results from experiment 2 for user 2. The
top plot presents the target position estimation. The solid
lines with colors red, green and blue for the =, y and z
coordinates respectively are the estimates and the dashed
lines the actual ones. The robot’s position is plotted as well
with dash-dotted line. The bottom plot presents the time
scaling estimate.
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0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
time [s]

Fig. 6: Effort by user 2 in experiment 2. In the first row
the power is plotted with blue line for using the DMP+EKF
prediction and is compared with using only admittance (light
brown line). In the second row the squared norm of the
human’s force is plotted again for both cases.

proposed method significantly outperforms the admittance
in terms of effort (work and power), while the final target
error is comparable in both cases and within the allowable



tolerance. Indicatively, the target and time scaling estimates
are given in Fig. 3,5 with quantities related to z, y and z
coordinate are plotted with red, green and blue respectively.
The ground-truth targets are plotted with dashed lines, the
target estimates with solid lines and the robot’s position with
dashed-dotted lines. The time scaling estimate is plotted with
solid light brown line (notice that there is no ground-truth
value). In Fig. 4, 6 the corresponding effort by the human
is presented by plotting the instantaneous power and the
squared norm of the interaction force, both for the proposed
scheme and for using only admittance. In Fig. 3,5 we can
see that the estimated target position converges quite fast to
a small region close to the groundtruth target for both users.
This can be discerned more clearly in the x axis where we
have the larger error between the inital estimate and the
groundtruth target. Moreover, for user 1 there is a small
overshoot in x and y coordinates of the target estimates.
This is in line with the higher forces he exerted in Fig. 4
during the time span where the overshoot occurs compared
to the corresponding forces in Fig. 6 of the second user, for
whom no overshoot occurs as can be seen in Fig 5. Finally,
the effort pattern in Fig. 3,5 for the proposed method is
compatible with that of the admittance (i.e. higher forces
at the beginning and during the tranfer fading to zero at
the end) however with smaller magnitude as less effort is
required by the human.

A video with the experiments
https://youtu.be/OUOW 1-wBbgS8.

can be found in

V. CONCLUSIONS

In this work a model reference with a DMP-based control
input and an EKF-based observer for predicting the target
and time scaling was proposed in collaborative human-robot
object transfer. The proposed scheme is shown theoretically
to be globally stable and locally exponentially convergent
to the final target estimate under bounded external forces
with finite energy. Experimental results validate the proposed
approach and exhibit its practical merits in terms of human
effort reduction. In this work the object’s weight was as-
sumed known beforehand and only human exerted forces
were considered. However, in a complete object transfer
scenario, the object’s weight may not be known a priori and
contact with the environment when placing the object will
inevitably occur, resulting in additional forces. Our future
work will extend the proposed method to include orientation
and incorporate unknown object dynamics.
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