Preprint Open Access

Modelling Particle Mass and Particle Number Emissions during the Active Regeneration of Diesel Particulate Filters

Chung Ting Laoa; Jethro Akroyda; Nickolas Eavesa; Alastair Smith; Neal Morgan; Amit Bhave; Markus Krafta


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.2609189</identifier>
  <creators>
    <creator>
      <creatorName>Chung Ting Laoa</creatorName>
      <affiliation>Department of Chemical Engineering, Philippa Fawcett Drive, Cambridge CB3 0AS, UK</affiliation>
    </creator>
    <creator>
      <creatorName>Jethro Akroyda</creatorName>
      <affiliation>Department of Chemical Engineering, Philippa Fawcett Drive, Cambridge CB3 0AS, UK</affiliation>
    </creator>
    <creator>
      <creatorName>Nickolas Eavesa</creatorName>
      <affiliation>Department of Chemical Engineering, Philippa Fawcett Drive, Cambridge CB3 0AS, UK</affiliation>
    </creator>
    <creator>
      <creatorName>Alastair Smith</creatorName>
      <affiliation>Shell Projects &amp; Technology, Brabazon House, Threapwood Road, Manchester M22 0RR, UK</affiliation>
    </creator>
    <creator>
      <creatorName>Neal Morgan</creatorName>
      <affiliation>Shell Projects &amp; Technology, Brabazon House, Threapwood Road, Manchester M22 0RR, UK</affiliation>
    </creator>
    <creator>
      <creatorName>Amit Bhave</creatorName>
      <affiliation>CMCL Innovations, Sheraton House, Cambridge CB3 0AX, UK</affiliation>
    </creator>
    <creator>
      <creatorName>Markus Krafta</creatorName>
      <affiliation>School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Modelling Particle Mass and Particle Number Emissions during the Active Regeneration of Diesel Particulate Filters</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Diesel Particulate Filter (DPF)</subject>
    <subject>Regeneration</subject>
    <subject>Population balance model</subject>
    <subject>Unit collector</subject>
    <subject>Emissions</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-03-26</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Preprint"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2609189</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.2609188</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;A new model has been developed to describe the size-dependent effects that are responsible for transient particle mass (PM) and particle number (PN) emissions observed during experiments of the active regeneration of Diesel Particulate Filters (DPFs). The model uses a population balance approach to describe the size of the particles entering and leaving the DPF, and accumulated within it. The population balance is coupled to a unit collector model that describes the filtration of the particles in the porous walls of the DPF and a reactor network model that is used to describe the geometry of the DPF. Two versions of the unit collector model were investigated. The original version, based on current literature, and an extended version, developed in this work, that includes terms to describe both the non-uniform regeneration of the cake and thermal expansion of the pores in the DPF. Simulations using the original unit collector model were able to provide a good description of the pressure drop and PM filtration efficiency during the loading of the DPF, but were unable to adequately describe the change in filtration efficiency during regeneration of the DPF. The introduction of the extended unit collector description enabled the model to describe both the timing of particle breakthrough and the final steady filtration efficiency of the hot regenerated DPF. Further work is required to understand better the transient behaviour of the system. In particular, we stress the importance that future experiments fully characterise the particle size distribution at both the inlet and outlet of the DPF.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/724145/">724145</awardNumber>
      <awardTitle>Portable Nano-Particle Emission Measurement System</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
58
90
views
downloads
All versions This version
Views 5858
Downloads 9090
Data volume 111.3 MB111.3 MB
Unique views 5757
Unique downloads 6565

Share

Cite as