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Abstract— In this review the critical parts and milestones for data 

harmonization, from the biomedical engineering perspective, are 

outlined. The need for data sharing between heterogeneous sources 

pave the way for cohort harmonization; thus, fostering data 

integration and interdisciplinary research. Unmet needs in chronic as 

well as in other diseases, can be addressed based on the integration 

of patient health records and the sharing of information of the clinical 

picture and outcome. The stratification of patients, the determination 

of various clinical and outcome features and the identification of 

novel biomarkers for the different phenotypes of the disease 

characterize the impact of cohort harmonization in patient-centered 

clinical research and in precision medicine. Subsequently, the 

establishment of matching techniques and ontologies for the creation 

of data schemas are also presented. The exploitation of web 

technologies and data-collection tools support the opportunities to 

achieve new levels of integration and interoperability. Ethical and 

legal issues which arise when sharing and harmonizing individual-

level data are discussed in order to evaluate the harmonization 

potential. Use cases that shape and test the harmonization approach 

are explicitly analyzed along with their significant results on their 

research objectives. Finally, future trends and directions are 

discussed and critically reviewed towards a roadmap in cohort 

harmonization for clinical medicine. 

I. INTRODUCTION 

Cohort studies offer invaluable sources of biological, 

health, environmental, behavioural and psychosocial data and 

have given rise to multiscale predictive data analysis. The 

information gathered from large population-based cohorts 

allow to leverage public health and clinical medicine. 

Moreover, access to studies that incorporate different types of 

research data would permit the investigation of direct and/or 

indirect disease aetiological determinants. To this end, the 

analysis of synthesized datasets across population-based 

studies is set to become increasingly important [1]. The 

heterogeneity of existing cohorts, stemming from variability 

in experimental design, measurement and standardization 

methods, supports the realization of aggregated schemes 
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towards the development of precision medicine solutions. 

Additionally, making the data findable, accessible, 

interoperable and reusable enables data sharing. Data sharing 

includes: (i) the procedures for data access, (ii) the 

mechanisms for dissemination, (iii) the tools and software for 

data re-use, (iv) the definition whether data access should be 

widely open or restricted, and (v) the prohibition period that 

may exist [2].  

The need for data harmonization enables the cross-national 

and international comparative research, while it enables the 

investigation of similarities and differences across 

longitudinal datasets when compatible data are available [3]. 

Data harmonization refers to the creation of a standardized, 

comprehensive database/schema, combining data generated 

from different sources (e.g. epidemiological studies, clinical 

studies), and facilitating data integration and interdisciplinary 

research. The increase of sample size and the improvement of 

generalizability and validity of research results constitute the 

most significant benefits of the harmonization process [4, 5]. 

Global initiatives have incorporated data harmonization in 

their design in order to investigate and/or identify risk factors 

of complex chronic diseases. Examples of such initiatives aim 

to bring out the value of health data through large scale 

analytics and ensure the development of harmonized 

measures and standardized computer infrastructures [6]. The 

ability to effectively harmonize data from different studies 

and patient cohorts facilitates the rapid extraction of new 

scientific knowledge on disease onset, disease progression 

and classification of different disease phenotypes. This type 

of approach can certainly address the unmet needs of chronic 

diseases including: (i) validation or identification of novel 

biomarkers, (ii) patient stratification for different treatments, 

as well as (iii) selection of new targets for therapy. 

Furthermore, this approach will enable the decisive 

evaluation of disease features, co-morbidities, remissions, 

exacerbations etc. Additionally, it will allow the scientific 

P. Tsanakas is with the National Technical University of Athens, Greece, 

Athens GR115 23, Greece. 

M. Tsiknakis is with the Biomedical Informatics and eHealth lab, 
Technological Educational Institute of Crete and with the Computational 

Medicine laboratory, Institute of Computer Science, FORTH, Heraklion 

GR70013, Greece. 
T. Varvarigou is with the Division of Communication, Electronic and 

Information Engineering, School of Electrical and Computer Engineering, 

National Technical University of Athens, Athens, GR15780, Greece. 
S. De Vita is with the Clinic of Rheumatology, Department of Medical 

and Biological Sciences, Udine University, Udine, IT33100, Italy. 

A. Tzioufas is with the Dept. of Pathophysiology, School of Medicine, 
University of Athens GR15772, Greece. 

Cohort Harmonization and Integrative Analysis from a Biomedical 

Engineering Perspective 

Konstadina D. Kourou, Vasileios C. Pezoulas, Eleni I. Georga, Student Member, IEEE, Themis P. 

Exarchos, Member, IEEE, Panayiotis Tsanakas, Manolis Tsiknakis, Theodora Varvarigou, Salvatore De 

Vita, Athanasios Tzioufas, and Dimitrios I. Fotiadis, Senior Member, IEEE 



 

2 

 

 

societies to collaborate efficiently with patient associations as 

well as the regulatory mechanisms in each country. 

Research guidelines for rigorous data harmonization 

encompass: (i) the definition of the research questions, 

objectives and protocol, (ii) the collection of appropriate 

information and selection of studies, (iii) the definition of 

variables and evaluation of harmonization potential, (iv) the 

processing of data, and (v) the estimation of the quality of the 

harmonized dataset [7]. Evaluation of harmonization potential 

refers to the clinical evaluation of whether a clinical dataset 

under examination is capable of being harmonized. This 

procedure is related to two factors, namely: (i) the data 

sharing regulations, i.e., whether the sharing of the clinical 

data is possible or not to enable harmonization, and (ii) the 

quality of the dataset, i.e., if the dataset meets the minimum 

requirements. In fact, the quality of the dataset determines the 

harmonization potential in a technical manner. For example, 

a well-qualified dataset will lead to a larger matching 

probability with the reference model than a less qualified 

dataset. A reference model consists of the minimum number 

of features (e.g. clinical parameters) which enable the explicit 

description of a disease’s domain knowledge. Data 

integration strategies, taking advantage of contemporary 

Semantic Web technologies, aim at maximizing the 

exploitation potential of synthesized datasets across 

multidisciplinary studies. Indicative techniques rely on 

automated or supervised creation of data schemas using 

vocabularies and ontology mapping [8, 9].  

This review analyses previous research and presents new 

trends on longitudinal cohort harmonization, while it 

discusses the significant challenges occurring when managing 

and harmonizing large amounts of data from different 

sources. Ethical, legal and related restrictions associated with 

sharing and pooling individual-level information are also 

discussed. Current techniques, ranging from data 

standardization models to advanced ontology-based and 

semantic interlinking technologies, enabling the creation of 

links among diverse datasets, are presented. Several case 

studies, related to the data pooling and harmonization of 

disparate cohorts, are presented and discussed. These 

approaches reveal the benefits of integrating diverse sets of 

multilevel biomedical data so as to compare and enhance the 

statistical power of validated models, as well as improve the 

management of the healthcare system. Furthermore, future 

directions in the field are discussed. Considering that new 

technologies have not been holistically validated and 

evaluated, the present review contributes positively to the 

adoption of new practices in data harmonization and scalable 

cohort analytics for knowledge discovery. 

Data harmonization is more prominent in chronic diseases, 

in order to address unmet needs, such as: (i) patient 

stratification and (ii) biomarker identification and/or 

validation. This comprises a fundamental basis of our work, 

while additional references to other diseases with their related 

studies are considered (e.g. obesity and ageing). The 

following sections of this review constitute a comprehensive 

description of (i) data harmonization from the clinical 

perspective and its importance on addressing the unmet needs 

in chronic diseases, (ii) the technical perspectives when data 

integration should be conducted, (iii) the ethical and legal 

issues, (iv) the existing case studies related to data 

harmonization and the (iv) discussion for supporting co-

analysis of harmonized datasets from a biomedical 

engineering perspective. 

II. HARMONIZATION IN CHRONIC DISEASES 

The application of existing or newly identified therapeutic 

targets in everyday’s clinical practice is hampered by the 

incomplete understanding of chronic disease pathogenesis, 

the lack of validation of potential indices in large patient 

cohorts and the disease heterogeneity. In addition, the 

complex pathogenetic mechanisms involving, to a different 

extent, various systems (immune, endocrine, neuroendocrine, 

etc.) further hinder the successful application of a sole omics’ 

technology (as attested by genome-wide association studies) 

for the discovery of novel pathogenetic/therapeutic targets. 

These observations highlight the need for the classification of 

patients with chronic disease in subgroups with homogeneous 

clinical profiles, disease duration and similar outcome, as well 

as for trans-disciplinary research involving clinical and basic 

researchers for the delineation of the underlying pathogenetic 

pathways and the identification/validation of novel 

therapeutic targets. 

Besides the clinical and medical research observations that 

support the need for integrating different cohorts in chronic 

diseases, there are additional considerations and rationales 

that make the integration of cohorts an urgent need. In terms 

of theoretical rationale, the integration of different cohorts can 

solve the issue of generalizability. The importance of 

generalization ability of study outcomes has been discussed 

in the literature. For cohort studies, limited representativeness 

may mean that results cannot be assumed to be true for un-

surveyed or underrepresented subsets of the population of 

interest. The second theoretical rationale has to do with the 

interest in known or potential sources of heterogeneity, which 

are mainly syntactic, semantic and/or conceptual and may 

also exist due to the different geographical locations of the 

patients. In addition, other sources of such heterogeneity refer 

to factors that can influence differences within or between 

study outcomes (e.g. genetics). Cross-national studies 

allowing assessment of the influence of social policy and 

environment on health outcomes are perhaps the best known 

examples of such investigations. The third theoretical 

consideration has to do with the specific unmet needs of 

chronic disease. The inferences, causalities, associations or 

new knowledge that researchers wish to draw from combined 

data determine whether pooling individual data is a 

worthwhile undertaking. Finally, a fourth theoretical 

consideration deals with the directions of future research. The 

areas for future research can be identified based on gaps in 

current knowledge. However, since most of the studies and 

literature in chronic diseases refer to single regional or 

national cohort analysis, pooled data analyses of integrative 

cohorts may assist in addressing new research questions. The 

second type of rationale has to do with the statistics and the 

benefits of increased sample size. Low prevalence outcomes 

are infrequently reported in local cohorts. Hence, larger 

samples are required to obtain adequate data for the analysis 
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of predictors and consequences of these outcomes. The last 

category of rationale has to do with practical considerations. 

When using existing data, results may be obtained in a timely 

manner compared to initiating a new study. Consequently, 

answers to research questions can be accelerated, particularly 

where outcomes are of importance to the public, or when the 

unmet needs have already been identified. Such results are 

relatively cost efficient, and can often be obtained without 

unnecessary duplication of tasks or additional burden on the 

target population. In the case of survey based cohort studies, 

reducing the necessity of identifying additional participants, 

and sending, receiving and processing survey data for 

analysis, may mean that the greatest costs associated with 

survey methods are eliminated. 

Facilitating the integration of patient records and the 

sharing of information of the clinical picture and outcome will 

permit the stratification of patients, the determination of 

various clinical and outcome features, such as co-morbidities 

and mortality ratios, which up to now have been studied in 

various small patient groups, the development of diagnostic, 

follow-up and therapeutic algorithms, as well as biomarkers 

for the different phenotypes of the disease. Thus, unmet needs 

in chronic diseases can be addressed, namely: (i) the 

validation or identification of clinical, laboratory and 

molecular biomarkers for early disease diagnosis, follow-up 

and response to treatment, (ii) the stratification of patients to 

distinct subgroups according to clinical picture and outcome 

for different treatments and (iii) the selection of new targets 

for therapy. Table I summarizes the unmet needs that 

characterize chronic diseases and how they can be addressed 

through data harmonization and data sharing, along with 

related works which have been published in the scientific and 

clinical research literature. Additionally, Fig.1 illustrates a 

conceptual step-wise categorization in chronic diseases along 

with the unmet needs that can be addressed through 

harmonization. Towards this categorization particular steps 

are considered with reference to: (i) the clinical stratification, 

(ii) the histologic stratification, (iii) the systems biology 

approaches for patient molecular stratification and (iv) the 

homogeneous patient groups for targeted therapy. Hence, 

unmet needs in chronic as well as other diseases can be further 

considered and studied thoroughly regarding the utilization of 

the harmonization perspective [10]. In order to achieve 

harmonization and address the unmet needs specific technical 

steps which contribute to the definition of the research 

objectives and the analysis of harmonized datasets should be 

followed. Moreover, the analysis of the output results can be 

further achieved through appropriate IT infrastructures and 

algorithms that allow the federated analysis of pooled 

datasets. 

 

III. TECHNICAL PERSPECTIVE 

This section introduces the research tools which enables 

researchers to address the unmet needs in chronic diseases 

through their utilization based on the harmonization initiative. 

Achieving data harmonization as a rigorous scientific process 

is a demanding task. Data harmonization, from the technical 

perspective, is an iterative process consisting of related and 

inter-dependent steps. To better understand the key steps 

towards data harmonization approach, effective and rigorous 

technical methods and tools have been developed [1].  

Recently, the iterative key steps towards harmonization of 

research data have been delineated by Maelstrom Research 

and its partners [7]. These principles aim to promote a 

systematic procedure for data harmonization and a 

methodological guidance for researchers which integrate 

heterogeneous data from different cohorts for the synthesis of 

harmonized datasets [10]. An overview of the key steps 

towards data harmonization process is depicted in Fig. 2. The 

four closely related steps that should be considered during the 

harmonization workflow include: (A) Definition of the 

objectives and research questions, (B) Data discovery and 

 

Unmet Needs 
Addressing unmet needs  

through data harmonization 

Related 

work(s) 

1. Validation or 

identification of novel 

biomarkers 

Candidate disease biomarkers are 

further studied by systems 

biology approaches aiming to 

validate or identify clinical, 

laboratory and molecular 

biomarkers for early disease 

diagnosis, follow-up and 

response to treatment. 

Harmonization of cohorts will further enable the 

search and identification of novel biomarkers. 

The effective data harmonization facilitates the 

rapid extraction of new scientific knowledge on 

disease progression. 

[78] 

2. Stratification of 

patients to distinct 

subgroups 

Patient can be stratified based on 

the clinical picture (i.e. mild or 

severe disease), the histological 

observations and the molecular 

characteristics. 

Harmonization of cohorts will increase the 

sample size of the research results. Thus, patient 

subgroups can be easily extracted based on their 

clinical, histological and molecular 

characteristics. 

[1], [4] 

and [80] 

3. Selection of new targets 

for therapy 

According to the stratification of 

patients to homogeneous patient 

subgroups, targeted therapy can 

be defined. 

Harmonization of cohorts will enable the 

identification of novel therapies according to the 

stratification of all patients. Homogeneous 

patient subgroups will further allow clinicians to 

find new targets for therapy. 

[4], [73] 

and [78] 

 

Table I. Unmet needs in chronic diseases that can be addressed through data harmonization. 
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study selection (C) Definition of the target variables and Data 

Processing, and (D) Co-analysis of the harmonized dataset(s). 

A comprehensive description of each step is given below 

along with their basic aims and the key services and software 

developed to support harmonization and co-analysis of the 

results. Tasks (A) and (D) compose the main tasks to be 

addressed at the initial and final stages of data harmonization. 

The remaining Steps (B) and (C) refer to the underlying 

principles that generate the synthesized dataset(s) required for 

further statistical analysis.  

The indicative key steps have been addressed by many case 

studies in the literature highlighting the main contributions of 

data harmonization in large patient datasets and health 

records. Moreover, legal and ethical issues should be 

considered and addressed during the process of data 

integration for each harmonized cohort. 

A. Definition of the objectives and research questions 

A research protocol that reflects the potential and the 

limitations should be developed prior to the data 

harmonization process. This protocol defines the research 

questions to be addressed and the objectives that ensure the 

viability and reproducibility of the process. Issues to be 

considered in this initial step are study-specific [11] as well as 

common tasks and are related to: (i) data access procedures 

and usage, (ii) data infrastructure to be implemented, (iii) 

study designs and type of information required, (iv) type of 

data and how they are collected and (v) quality of the data. 

Moreover, questions related to the proprietary rights of the 

synthesized datasets and the specific responsibilities of the 

stakeholders involved in the harmonization process, must be 

addressed due to the number of the participating individual 

studies. Based on the research protocol, information regarding 

the scientific, methodological and administrative tasks is 

gathered. In addition, ethical and legal concerns are defined 

towards the harmonization procedure.  

Recently, established legal frameworks introduced several 

requirements on data management and sharing to relevant 

stakeholders [12]. Those requirements are suggested to be 

addressed through the development of an adequate data 

management plan which includes information on: (i) the 

research data handling, (ii) the type of data to be collected, 

processed and/or generated, (iii) the methodology and 

standards to be applied, (iv) the data sharing, curation and 

preservation [13]. 

B. Data discovery and study selection 

The second step prior to the harmonization workflow is 

related to: (i) the accumulation of information and (ii) the 

selection of the participating studies. Gathering information 

for the high level data concepts and the study designs ensure 

the appropriate knowledge of each individual study. 

Procedures for better understanding the legal and ethical 

issues and the comprehensive characterization of the studies 

through research protocols, questionnaires and operating 

procedures, are essential to support study selection and data 

harmonization.  

The selection of the participating studies is based on 

rigorous criteria to ensure consistency and compatibility 

among them. Hence, eligible studies involved in a 

harmonization process must be comparable and share 

common characteristics to address the research questions and 

objectives. Several tools and services have been developed for 

data description, presentation and discovery by the Biobank 

Standardization and Harmonization for Research Excellence 

in the European Union (BioShare) project [1] and the 

Observational Health Data Sciences and Informatics 

(OHDSI) initiative [6].  

 
 

Figure 1. Step-wise categorization (right) in chronic diseases along with the unmet needs that can be addressed (left). 
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Café Variome [14] provides a data discovery platform in 

order to make content available to data scientists and 

researchers. Users search for data records of desired studies 

and the list of matching records is exported. Three categories 

are available for accessing the data, i.e. openAccess, 

linkedAccess and restrictedAccess. The tool has been built in 

PHP using the CodeIgniter Web application framework and 

the Bootstrap front-end framework. The system enables 

controlled data sharing based on data discovery. Generally, 

Café Variome is used for genotype-phenotype data searching 

and sharing and allows for the discovery of patient health 

records. In addition, it has the ability to modify any data field 

or attribute of interest and reports all the matched records to 

the user. 

Due to the huge amount of data generated from omics 

technologies, it is difficult to synthesize and explore such 

information. OmicsConnect [1] is a software tool that enables 

viewing and sharing of omics data. It has been designed for 

presentation, access and mining of complex genomics data.  

The Mica software application [1] is a Java-based client-

server application developed to create web portals for specific 

studies. It is used to: (i) create a website for an individual 

study or a consortium, (ii) create a study catalogue or registry 

according to the data collected and (iii) enable efficient data 

access management. It has been designed for database owners 

and researchers so as to give access to data and spread 

information about studies as well as search and query data, 

respectively. Nowadays, Mica is used by several cohort 

studies and allows to report key characteristics of the 

participating biobanks and cohorts. 

The Molecular Genetics Information System/Observation 

Entity Model Extensible (MOLGENIS/Observ-EMX) [15-

17] has also been designed for data search and analysis. It is 

a portal for data management and permit the integration, 

discovery and analysis of scientific data. Moreover, it enables 

data annotation through public databases, flexible data 

exploration and data access. 

During the OHDSI program, the WhiteRabbit tool [6] has 

been developed aiming to enable researchers scan datasets of 

interest and extract a summary information on the contents of 

the data for further integration and standardization. 

Subsequently, the dataset of interest can be matched to the 

desired common data model. 

C. Definition of the target variables and Data Processing 

Data integration and pooling across biobanks and cohorts is 

the main process when conducting data harmonization. 

Concerning this, the identification of the target variables and 

the evaluation of the harmonization potential is vital. In order 

to define the list of core variables to be generated, researchers 

should evaluate first if individual datasets could be used so as 

to generate the target variables. Moreover, the potential for 

each specific study to select the variables for harmonization 

should be defined, based on the fact that not all studies can 

create all the variables. To this end, quality is ensured and the 

harmonization procedure can be achieved. The evaluation of 

the harmonization potential is assessed by comparing the 

desired data elements within biobanks and finding the 

matching elements. Furthermore, finding the mappings of 

data items across individual studies depends on the research 

questions and objectives defined prior to data harmonization 

process.  

Towards this, Semantic Web technologies [18-20] provide 

a rigorous solution to automatically integrate disparate 

information sources and databases. These technologies and 

principles have been created by the partners of the World 

Wide Web Consortium (W3C) [21], so as to enable the 

expression of both data and rules for reasoning about the data. 

Semantic Web technologies are entitled by the sort of data 

found in databases and allow reasoning over data through 

rules from any existing knowledge-representation system to 

be exported into the Web. Moreover, the vision of linked data 

on the Web, enabled developers to create data stores, build 

vocabularies, and write rules for handling data. Modeling 

heterogeneous information between web resources on the 

Semantic Web, is empowered by technologies such as: (i) the 

Resource Description Framework (RDF) [22, 23], (ii) the 

SPARQL Query Language for RDF [24], (iii) the Web 

Ontology Language (OWL) [25, 26] and (iv) the Simple 

Knowledge Organization System (SKOS) [27]. 

When conducting data harmonization, researchers should be 

concerned with the fact that different cohorts may use 

different identifiers for the same data element of same 

meaning. When comparing or combining information across 

databases, features that represent common concepts should be 

discovered. Based on that knowledge, ontologies or 

vocabularies can be applied for data integration [28]. 

Ontologies define the terms and the relationships among them 

 
Figure 2. Key steps towards data harmonization. 
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used to describe a specific area of concern. They can help in 

data integration, when heterogeneity exists on the identifiers 

used within different cohorts or when new relationships 

among data elements can be discovered. Besides that, 

ontologies can be used to organize knowledge regarding the 

power of linked data on the Web. Different techniques have 

been proposed so as to specify and determine a common 

format for the different forms of ontologies (vocabularies) 

[22, 25, 27, 29]. In addition, Open Biological and Biomedical 

Ontology (OBO) Foundry [30] which is a collective of 

ontology developers, incorporate a family of interoperable 

ontologies that have been developed and are both logically 

well-formed and scientifically accurate. A reference model is 

usually co-designed with the assistance of the clinicians so as 

to meet the minimum requirements of a disease’s domain 

knowledge. This model describes all the terminologies, the 

types of variables and the related measurement units that a 

clinical dataset should fulfill. Each heterogeneous clinical 

dataset is then transformed into this reference model. One 

possible approach to make this transformation possible is to 

recruit semantic interlinking mechanisms by (i) constructing 

an ontology from the heterogeneous clinical dataset and (ii) 

mapping this ontology to the main ontology, i.e., the one 

created by the reference model. For example, if the reference 

model defines the measurement unit of the variable named 

‘blood pressure’ as ‘normal’ or ‘abnormal’, and a candidate 

clinical dataset follows another coding system, e.g., ‘normal’, 

‘high’, ‘very high’, then the latter shall be appropriately 

transformed to fulfill the ‘normal’, ‘abnormal’ coding system 

(e.g., assign the ‘high’, ‘very high’ values to ‘abnormal’). This 

example formulates one of the key issues that harmonization 

wishes to achieve. 

During the last decade, the huge amount of information 

available from different databases and the variations on the 

concepts and relationships of their data elements, led to the 

semantic heterogeneity problem, which is the different 

terminologies used for describing equivalent concepts. 

Consequently, in order to overcome the problem related to the 

management of heterogeneous information sources, ontology 

matching techniques have been proposed [31, 32]. Matching 

ontologies enables the identification of correspondences 

among semantically related terms of ontologies, based on 

their meaning. The applications of ontology matching are 

characterized of models with heterogeneity, such as the 

database schemas of specific individual studies. Several 

matching systems have been proposed in the literature. These 

matching systems are based on the kind of data that are 

utilized, i.e. (i) strings (terminological or lexical systems), (ii) 

structure (structural systems), (iii) instances (extensional 

systems), and (iv) models (semantics methods) [8, 31, 33-47]. 

Fig. 3 illustrates the semantic matching process along with an 

indicative example [31]. Different ontologies can be matched 

according to the related correspondences of their entities. 

More specifically, Fig. 3(A) demonstrates the general strategy 

for semantic matching, whereas Fig. 3(B) depicts an 

indicative example of semantic interlinking among the 

correspondences of two different ontologies. Ontology 1 

corresponds to a treatment schema and Ontology 2 to disease 

diagnosis. 

A number of integrated tools and methods have been 

developed during the BioSHaRE project [1, 48] related to 

research data harmonization. Most of these tools have been 

deployed for data pooling and for identifying the mappings of 

variables across different datasets. More specifically, the 

BiobankConnect software [9] enables the connection of data 

across biobanks for pooled analysis by employing ontology 

and lexical matching. Data mapping is achieved and 

subsequently harmonization of biobanks data dictionaries can 

be fostered. In a similar manner, the DataSchema and 

Harmonization Platform for Epidemiological Research 

(DataSHaPER) approach [4, 5] provides an integrated method 

for harmonization of large population studies. The 

development of the Generic DataSchema tool enables the 

generation of a list of core variables among participating 

studies through a template that defines common format 

measures. Opal software [1] allows users to perform data 

harmonization and data integration across studies. 

Furthermore, the processing and implementation of 

algorithms through Opal, support the transformation of study 

specific variables into common formats. Another framework, 

namely the System for Ontology-based Re-coding and 

Technical Annotation (SORTA) [49], has been developed for 

the annotation of biomedical and phenotype data. SORTA 

overcomes the problem of semantic heterogeneity and 

matches original data values to a target scheme. Specifically, 

SORTA solves the obstacles of heterogeneity of data contents 

by mapping text descriptions and/or coded data values with 

standard codes such as ontologies or local terminologies. 

Suppose that we need to retrieve the most relevant matches of 

a list of terms such as: (i) protruding eyeball, (ii) hearing 

impairment, and (iii) hyperextensibility at elbow joint, against 

the Human Phenotype Ontology. SORTA, will retrieve the 

most relevant concepts for data values from the established 

knowledge base and users can pick the correct matches from 

the list of concepts. In our example, SORTA can select the 

ontology term for protruding eyeball, i.e proptosis, and a 

number of synonyms will be retrieved, i.e prominent eyes and 

prominent globes. 

Furthermore, the Molecular Genetics Information System 

(MOLGENIS/connect) system [16] also addresses the 

challenge of linking and harmonizing disparate archives of 

heterogeneous phenotype data. Molgenis/Connect is an 

additional system to BiobankConnect which matches data 

elements from biobanks to target variables/schemes. In 

general, it is a semi-automatic system that effectively defines 

the transformation algorithms in order to produce integrated 

datasets. Specifically, the data elements and the DataSchema 

can be viewed by the users. A semantic similarity facility is 

provided to find the best matching elements according to the 

DataSchema. Towards this approach, other tools have been 

also developed, such as the RD-Connect software [50]. 

However the main objective of this tool is to simply aggregate 

data from different sources, creating a platform of linked data 

which are further processed. The Sample availability (SAIL) 

method [51] has been created for harmonizing and integrating 

biomedical and clinical data across cohorts in order to further 

support research. Within the OHDSI interdisciplinary 

collaborative [6], resources to convert a wide variety of health 
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data into a common data model are provided. Specifically, 

ATHENA [52] and Usagi [53] are tools that have been built 

to help with the standardization of vocabularies and the 

vocabulary mapping, respectively, before the creation of the 

common data schema. 

SNOMED CT [54] is the most comprehensive, multilingual 

clinical healthcare terminology in the world. It is a resource 

with comprehensive, scientifically validated clinical content 

and enables the consistent representation of clinical content in 

electronic health records. Towards the development of the 

ATHENA software application and its application design, a 

stream of concepts (i.e. attributes of existing concepts, new 

concepts, missing concepts etc.) are extracted from SNOMED 

international authoritative source in combination with 

SNOMED UK. Table II presents the integrative tools and 

services along with their technical descriptions that have been 

developed and used widely from research groups towards data 

harmonization process and data integration. Research data 

integration strategies that foster the sharing of information 

from individual studies are supported from contemporary 

Semantic Web technologies [22]. 

A. Co-analysis of the harmonized dataset(s) 

Once the harmonized dataset has been created, according to 

the methodologies and principles mentioned above, further 

co-analysis of the results should be performed. Therefore, the 

quality of the final dataset generated should be estimated and 

assessed. Specific quality procedures could verify loss of 

precision and/or key characteristics which are source of bias. 

Furthermore, defining and implementing a sustainable 

 

Figure 3. Illustration of the semantic matching procedure. (A) The matching process can be seen as a function which, from a pair of 

ontologies to match, i.e. Ontology1 and Ontology2, an input alignment with Correspondences between the ontologies, a set of parameters 

and a set of resources, returns a new set of Correspondences between these ontologies, resulting in a new Ontology [31]. (B) Alignment 

between the Treatment and Disease diagnosis ontologies. Correspondences are shown as red arrows that connect an entity from one ontology 

with an entity from another ontology. The entities are annotated with the relation that is expressed by the correspondence. 
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infrastructure in order to maintain the results of the 

harmonization process is of great importance. To this end, the 

last step of the process when all the variables are harmonized, 

is to co-analyze the dataset(s) aiming to address the questions 

posed by researchers. There are three types of analysis to co-

analyze data, namely (i) pooled analysis, (ii) summary data 

Table II. Integrative tools with matching techniques and ontologies that have been developed and used widely from research groups 

towards data harmonization process and integration cohorts. 

Tools and Services Description Contribution towards Harmonization  

BiobankConnect 

[9] 

Software to semi-automatically match 
desired data elements across biobanks to 

available elements using ontological and 

lexical indexing.  

Assessing the harmonization potential through: (i) annotation of the desired 
elements with ontology terms, (ii) expansion of the query with synonyms 

and sub-class information, (iii) search of available elements for the 

expanded terms and (iv) sorting of the matches based on matching scores. 

DataSHaPER [4, 

5] 

An integrated approach that generates 

harmonized variables from questionnaires 
and physical measures collected in large 

population studies. 

A DataSchema (i.e. a hierarchical structure) is composed of the core 
variables derived from interviews, questionnaires etc. and provide the 

information to be harmonized in a specific scientific context. The 

DataSHaPER harmonization platform enables then the use of a DataSchema 
in order to integrate data across different studies. 

Opal [1] 

A software application which enables the 

management of study data. It includes a 
feature enabling data harmonization towards 

studies. 

Supporting the development and implementation of processing algorithms 

which are required to transform the available data into a common 

harmonized format. 

SORTA [49] 
A computational approach to rapidly encode 

original data to widely accepted ontology 

systems like SNOMED CT [54], etc. 

The desired coding system or ontology is indexed for matching searches. 

The selected dataset is also matched automatically with the index ontology. 

A list with all the relevant matches is exported. 

MOLGENIS/conn

ect [16, 17] 

A semi-automatic system which enables the 

identification, matching and pooling of data 

elements from different studies. 

Extracting the most relevant features from thousands of existing candidates 

in the available datasets. Ontology-based queries are used to avoid 
variations in terminology. These attributes are then transformed to common 

target DataSchema through algorithms. 

Query expansion 

with a medical 

ontology [40] 

A system to expand user's query with 
medical terms. A medical ontology is used to 

improve a multimodal retrieval system by 

expanding the user's query with MeSH 
[Relationships in medical subject headings] 

terms selected by the user. 

Expanding the queries by adding medical information based on MeSH 
terms. A set of terms are identified and constitute the bag terms for query 

expansion 

GoPubMed [41] 

A web server which allows users to explore 

PubMed search results through a 
hierarchically structured vocabulary for 

molecular biology. 

Providing an overview of the literature abstracts by categorizing them 

according to (GO). General ontology terms are depicted related to the 

original query while the server enables users to verify its classification. 

WordNet [42] 

Employment of additional resources, such as 
the lexical databases, to increase the amount 

of information which text categorization 

systems make use of. 

Given a set of documents and a set of categories, the categorization systems 

are able to decide whether any document belongs to any category or not. 

FOAM [43] 
A framework for ontology alignment and 

mapping results. 

Alignment methods are used and mapped onto a generic alignment process. 
Similarity assessment and aggregation are also performed for given features 

indicating the similarities 

S-Match [44] 

An open source semantic matching 
framework that tackles the semantic 

interoperability problem by transforming 

several data structures into ontologies. 

Implementations of basic semantic matching algorithms. This open source 

semantic matching framework enables the use of ontologies while revealing 
how they can be used to hold many knowledge organization systems.  

SUiS [45] 

An information system which utilizes a 

domain specific ontology for query 

expansion and translation, for answer 
generation, and for document analysis 

domain specific ontology used for query 

expansion. 

Use of two kinds of knowledge sources: (i) a domain specific ontology and 
(ii) a domain independent date and named entity recognition modules. 

ATHENA [6, 52] 
Automated Terminology Harmonization, 

Extraction and Normalization for Analytics. 

Design and develop the system for automated or semi-automated 
vocabulary upload. Process identifies source vocabulary and alter it to 

standard structure. 

Usagi [6, 53] 
A software tool created by the OHDSI [6] 

team and used for mapping codes from a 

source system into standard terminologies. 

Source codes that needs mapping are loaded into the software and a 

similarity approach is used to connect source codes to Vocabulary concepts. 

OBIB [47] 
A newly created ontology for biobanking 

based on the merging of pre-existing 

ontologies. 

Conversion of pre-existing ontologies is applied while the separation of 

terms defined in the ontologies and other external sources is also conducted. 
The merging of the overlapping terms identified in the pre-existing 

ontologies is performed, subsequently. 

SAIL [51] 
A computational method for addressing the 

issues of retrospective data harmonization 
and querying data across biobanks. 

Data harmonization within the SAIL method consists of the: (i) creation of 
a harmonized vocabulary for features of interest, (ii) mapping the 

harmonized vocabulary to the original biobank variables and (iii) 

integration of information for each sample. 

OBO Foundry [30] 
An initiative consisting of interoperable, 

logically well-formed, accurate and 

biologically realistic ontologies. 

Defining a set of principles including open use, collaborative development, 
non-overlapping and strictly-scoped content, and common syntax and 

relations, based on ontology models that work well, such as GO. 
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meta-analysis and (iii) federated analysis [7]. In pooled 

analysis, data are integrated in a central location and then 

analyzed. Since data is centrally stored, flexibility is achieved 

for further statistical analysis. Nonetheless, important legal 

and ethical issues rise when pooling data. In the second type, 

study-specific data analysis is done locally and is followed by 

a meta-analysis that combines the study-level estimates. Few 

ethics and data access requirements exist, while this type of 

analysis is not so flexible because it is limited to summary 

statistics produced by each study. On the contrary, in 

federated analysis, the selected studies maintain the complete 

control of their datasets and the analysis is performed 

centrally. However, each individual dataset remains on local 

servers. The DataSHIELD (Data aggregation through 

anonymous summary-statistics from harmonized individual 

level databases) method provides powerful tools and 

functions that permit the federated statistical analyses of 

pooled datasets of several collaborating studies [55, 56]. It 

enables a fully efficient integrated analysis of biomedical data 

even if ethical and/or legal considerations do not allow the 

spread of individual-level data to third parties. More 

specifically, Fig. 4 illustrates the basic IT infrastructure 

underlying the DataSHIELD method, where individual 

datasets remain on data computers locally, whereas, an 

additional computer is identified as the analysis computer, 

centrally. Additionally, the ESPRESSO (Estimating Sample-

size and Power in R by Exploring Simulated Study Outcomes) 

tool [57, 58] enables researchers to define the statistical power 

concerning a given set or target sample size. It also allows one 

to calculate the sample size required to achieve specific 

statistical results. With ESPRESSO and its functions, the 

assessment of errors in power calculation under various 

biomedical scenarios can also be achieved. Fig. 5 presents an 

overview of the ESPESSO algorithm [57]. 

CIRCE (cohort definition and syntax compiler tool), 

ACHILLES (Automated Characterization of Health 

Information at Large-scale Longitudinal Evidence Systems) 

and CALYPSO (Criteria Assessment Logic for Your 

Population Study in Observational data) are large-scale 

analytic tools that support the cohort definition, the patient 

record profiling and the study feasibility assessment, 

respectively, once patient-level datasets have been integrated 

into a common data format [6]. The characterization of the 

extracted dataset through a comprehensive description and the 

validation of the data quality can be achieved. Moreover, 

evaluation of the impact of the study is enabled through the 

CALYPSO tool. In addition, open-source large scale analytic 

tools, through R [59] and scalable to big data have been 

developed by [6] for an end-to-end analysis from common 

data formats through evidence.  

IV. LEGAL AND ETHICAL ISSUES 

A. Data Sharing and Data Protection  

One of the major issues to consider when sharing and 

harmonizing data from different cohorts is the protection of 

ethical and legal aspects of the shared and harmonized data. 

Towards this several different aspects and 

methodologies/policies have been identified by either the 

clinical centers participating in data sharing or expert legal 

offices that have been assigned the role of solving the legal 

constraints to share data between different countries with 

different data protection laws and regulations. The innate 

sensitivity of biomedical information has led to a set of 

principles and rules for safeguarding protection and privacy 

of personal data in all stages of data manipulation starting 

from data collection protocols to data analysis infrastructures. 

The evolution of big data and their multi-purpose utilization 

towards new knowledge mining, which is enabled by 

innovative developments in information technologies (IT), 

pose new challenges that need to be addressed in the context 

of informed consent, privacy of data, ownership, and 

epistemology in assessing big data ethics and objectivity of 

big data [60]. For instance, a comprehensive essay centering 

on issues regarding consent obtaining in biobank studies 

recognized the need for a defensible, sustainable and 

conceptually coherent consent policy [61]. Adapting freely 

given, specific and informed consent along with 

anonymization mechanisms such that: (i) facilitating the 

process of dynamic re-consent through the use of Information 

Technology (IT) providing a transparency level between 

individuals and their data and, (ii) balancing the need for 

irreversible anonymization and data linkage and continuing 

data update, are key issues in the protection of individuals 

with regard to processing of personal data [60-65]. 

B. Harmonizing Data Protection Laws 

1) European Union General Data Protection Regulation 

(GDPR) 

The intensified interest on big data sharing, aggregation, 

linkage and analysis yielded to the forthcoming replacement 

of the European Union (EU) Data Protection Directive (DPD) 

95/46/EC by the General Data Protection Regulation 

(GDPR). At the heart of the EU DPD and GDPR lie the 

principles of fairness and lawfulness assuring the openness 

and legality of the use of personal sensitive data. The GDPR 

(http://www.eugdpr.org/eugdpr.org.html) mainly overhauls 

 
Figure 4. The basic IT infrastructure underlying the 

DataSHIELD distributed approach (adapted from [56]). 
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the EU Directive 95/46/EC with respect to rights of the data 

subject by introducing or strengthening the rights to: (i) access 

to data, (ii) rectification and erasure (‘right to be forgotten’), 

(iii) data portability, and (iv) notification for a personal data 

breach. In addition, the concept of privacy by design calls for 

the effective implementation of appropriate technical and 

organizational measures (e.g. pseudo-anonymization) from 

the design phase of a system in order to ensure non-attribution 

to an identified or identifiable natural person and meet the 

requirements of GDPR. The conditions for consent have been 

also strengthened requesting clarity of the information 

provided to the individuals. 

2) Framework for Responsible Sharing of Genomic and 

Health-Related Data  

The EU BioSHARE Project has developed, under the aegis 

of the Global Alliance for Genomics and Health, the 

Framework for Responsible Sharing of Genomic and Health-

Related Data [66-69]. This Framework has established a set 

of foundational principles for responsible sharing of genomic 

and health-related data: (i) respect individuals, families and 

communities, (ii) advance research and scientific knowledge, 

(iii) promote health, wellbeing and the fair distribution of 

benefits; and (iv) foster trust, integrity and reciprocity. In 

addition, it has set out ten core elements complementing the 

interpretation of the aforementioned principles: (i) 

transparency, (ii) accountability, (iii) engagement, (iv) data 

quality and security, (v) privacy, data protection and 

confidentiality, (vi) risk-benefit analysis, (vii) recognition and 

attribution, (viii) sustainability, (ix) education and training, 

and (x) accessibility and dissemination. 

C. Data Protection Technological Solutions 

1) DataSHIELD: An Ethically Robust Solution to Multiple-

Site Individual-Level Data Analysis 

An exemplar technological solution to preventing re-

identification of an individual has been proposed within the 

DataSHIELD initiative by “taking the analysis to the data, not 

the data to the analysis”, which confines the control 

researchers retain over the data. In particular, DataSHIELD 

“enables the co-analysis of individual-level data from 

multiple studies or sources without physically transferring or 

sharing the data and without providing any direct access to 

individual-level data” [70, 71]. The latter feature contributes 

significantly to properly addressing several ethics-related 

concerns pertaining to the privacy and confidentiality of the 

data, the protection of the research participant’s rights, and the 

post-data-sharing concerns. In addition to standard technical 

and administrative data protection mechanisms, DataSHIELD 

includes: (i) a systematic three-level validation process of 

each DataSHIELD command for risks of disclosure, (ii) 

output restrictions to impede disclosure of possibly 

identifiable objects, (iii) automatic generation of new 

subject’s identifiers by Opal; original subject’s identifiers are 

stored securely in a distinct database in Opal, (iv) protection 

mechanisms from potential external network attacks, and (v) 

encrypted and secured internet communications. It should be 

noted that ethico-legal and data access approvals as well 

anonymization of the data constitute necessary preliminary 

setup steps required for DataSHIELD-based analysis. 

V. CASE STUDIES 

The presented case studies are mainly comprised of novel 

worldwide initiatives that involve medical data 

harmonization, with emphasis in chronic diseases. The 

ensuing case studies are mainly based on the data 

harmonization strategy that has been presented in Fig. 2, with 

differences in the implementation of the harmonization 

approach according to the context of each study.  

In an aging study [72], the authors extracted 26 harmonized 

variables (across 1768 records) for different attributes, such 

as socio-demographic, physical and social activity, mental 

health, etc., based on longitudinal data obtained from older 

people across two cohorts (one Dutch and one British). 

According to the harmonization procedure, several study-

related values were merged across studies, under certain 

assumptions, and then new variables were created for 

representing identical variables, based on appropriately pre-

defined research questions. Furthermore, standardization 

procedures were adopted to facilitate score comparisons 

across the two cohorts by minimizing age and period effects 

across the studies. Finally, differences in sampling, study 

design, measurement instruments, response rates and 

selective attrition were presented as the fundamental 

methodological challenges for cross-national studies.  

In [73], guidelines for phenotype harmonization are 

provided by the authors in order to deal with the phenotype 

heterogeneity across several genome-wide association study 

(GWAS) consortia using the Gene Environment Association 

Studies (GENEVA) multi-site GWAS consortium. Their 

main objective was to create a centralized database for all 

phenotype and genotype data, therefore enabling cross-study 

analyses. A context-specific harmonization procedure was 

adopted. More specifically, a common set of covariates was 

first identified (a process referred to as uniform covariate 

selection) across all cohorts with proper adjustments being 

made wherever possible. Otherwise, stratifications or even 

exclusions were applied. Finally, the study described 

methodological challenges on phenotype harmonization that 

may appear useful for similar studies using GWAS cohorts. 

Guidelines for stepwise data harmonization procedure, in 

cancer epidemiology, are also described in [10] where the 

harmonization procedure took place in the Fred Hutchinson 

 

Figure 5. An overview of the ESPRESSO algorithm [57-58]. 
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Cancer Research Center (Fred Hutch) using data from four 

large consortia. 

The potential of harmonizing physical capabilities 

variables as well as testing for the effect of age and gender 

interactions across 8 UK cohorts (~ 40000 individuals, under 

the HALCyon - Healthy Ageing across the Life Course 

research programme) was assessed in [74], indicating that 

data harmonization is possible indeed, with (statistically) 

significant gender differences in two physical measures. The 

data harmonization procedure is followed by several 

examples concerning the creation of harmonized variables for 

a variety of attributes, such as grip strength, walking speed, 

standing balance, and other related measures. Adjustments 

and standardizations were further applied on several physical 

measures to ensure measure-related compatibility across the 

cohorts. The effects of age and gender were also investigated 

per physical capability measure. Moreover, new variables 

were constructed, under certain assumptions, to facilitate 

harmonization. 

In [75], the authors constructed a harmonized database 

including data from 10107 persons using longitudinal data 

from five European cohorts on osteoarthritis (OA), based on 

existing guidelines from the CLESA (Comparison of 

Longitudinal European Studies on Aging) project [76]. The 

proposed harmonization procedure was developed under a 

sequentially-based algorithm by taking into consideration (a) 

the availability of a variable across at least three out of five 

cohorts, (b) the measuring concept, and (c) the overlapping of 

the response categories of that variable. This scheme was 

repeated for all variables of interest. An extra weighting 

procedure was further applied after merging the datasets in 

order to adjust for age, sex and sample size variations across 

the datasets. 

Apart from the context-specific harmonization methods, 

several attempts have been made towards establishing a 

generalized harmonization platform. An example of such a 

platform is presented in [5] along with an illustrative example 

of the pairing rules developed for one variable, under the task 

of (successfully) assessing the potential of harmonizing 50 

large population-based studies on diabetes. The platform, 

which is known in the related literature as the DataSHaPER 

is a dynamically evolving entity comprised by two major 

platforms; the DataSchema Platform and the Harmonization 

Platform. 

The DataSHaPER method has been also applied in [4] for 

assessing the potential of harmonization across 53 of the 

world’s largest longitudinal population-based 

epidemiological studies (6.9 million participants in total) 

containing a large variety of variables related to different 

pathologies, such as cancer, stroke, diabetes, etc. A 36% 

compatibility for creating a completely harmonized dataset 

was found. This percentage was higher (i.e., 62%) if only the 

‘essential’ variables participated during the harmonization 

procedure. According to the harmonization procedure, all 

variables were first categorized based on their importance for 

broad-based epidemiological studies as ‘essential’, 

‘important’ and ‘useful’. The DataSchema variables were 

initially identified (148 variables in total; 38 essential, 45 

important and 65 useful) and then the potential of generating 

each DataSchema variable was further evaluated for each 

study individually, through the development of context-

specific sets of pairing rules per variable. These pairing rules 

were also examined in order to control for possible pairing 

errors. In a similar study [1, 48], the authors developed a 

complete stepwise data harmonization approach based on the 

DataSHaPER and on tools developed by OBiBa (i.e., Mica 

software for developing web portals for studies and Opal 

software for data harmonization and integration [1, 48]) for 

the Healthy Obese Project (HOP) with the purpose of 

identifying metabolically healthy obese individuals across 

eight large cohorts (229534 subjects in total). A 73% 

compatibility for creating a harmonized HOP database was 

discovered. The potential of generating the DataSchema 

variables from each individual study was explored by 

recruiting and testing the appropriateness of any study-

specific data related to the DataSchema variables. The latter 

were selected from each dataset individually, according to 

appropriately defined research questions, leading to a set of 

96 target variables in total. This set was finally employed as a 

template for data harmonization. 

An additional very important initiative in the domain is the 

European Project entitled Electronic Health Records for 

Clinical Research (EHR4CR) funded through the Innovative 

Medicine Initiative of the European Commission [77]. The 

EHR4CR platform is an open IT platform that unlocks the 

information stored in Electronic Health Records for 

improving clinical research while fully respecting patient 

privacy and ensuring a high level of security. Data 

harmonization and controlled sharing are central elements of 

the project. The platform developed enables efficient 

communication between sponsors and investigators, speeding 

up clinical trial protocol design and patient recruitment. 

Statistical methods such as item response theory, factor 

analysis, regression models and semiautomatic approaches 

such as lexical and semantic matching, have been also used 

for data harmonization. For example, the authors in [78] 

confirmed the suitability of Item Response Theory (IRT) 

peculiarly in neuroticism and extraversion phenotypes 

harmonization by analyzing personality data from 160671 

individuals across 23 GPC (Genetics of Personality 

Consortium) cohorts (6 twin cohorts) from Europe, USA and 

Australia. 

The fact that their approach was able to successfully 

identify a genetic variant associated with personality reveals 

an increase in the statistical power of the IRT in item-based 

behavioral measures harmonization. The proposed 

harmonization method was based on an un-biased personality 

score estimation process, which is known in IRT as ‘test-

linking’. This procedure was applied on each individual 

cohort and was conducted by IRT models which were 

appropriately fitted to the items. In addition, the IRT analysis 

revealed that the estimated neuroticism and extraversion 

scores were strongly independent of the corresponding 

inventory and heritable as well. Moreover, the 

unidimensionality of the items was assessed by plotting the 

test information curves (TIC) for combinations of inventories 

as well as for each inventory separately whereas the variance 

of these items was assessed by a proposed Bayesian method 
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for quantifying the non-invariance of the items across all 

cohorts. 

Furthermore, the authors in [79] extracted harmonized 

child personality factors from two cohorts based on a five 

factor model that was originally developed for harmonizing 

child personality factors across the two studies. Regression 

models were developed in order to control for age and sex 

interactions across samples based on best-fitting model 

estimations. The prediction model was tested on each sample 

to assess the structure of the five factor model. Correlations 

were also computed between the predicted personality factors 

and similar factors from existing studies. The fact that the 

strong correlations between the generated harmonized 

variables and similar constructs from previous studies were 

strong confirms that the child personality factors were 

harmonized, thus enabling comparisons across both studies. 

In [9], the BiobankConnect software was tested across 6 

biobanks under the EU-BioSHaRE Healthy Obese Project 

(HOP) [1, 48] on an integrated schema of 32 desired data 

elements across 6 biobanks from the BioSHaRE HOP which 

were marked as relevant or not for 5 out of 6 biobanks. Out of 

41184 matches, 420 were classified as relevant. An average 

precision of 0.75 was found at rank 1 and recall of 0.74, 0.82, 

and 0.88 at ranks 10, 20, and 50, respectively. According to 

the harmonization process, the potential of harmonizing a 

dataset was explored by means of manually matching the 

variables of interest to the target variables. 

The SMART (Statistical Modeling of Aging and Risk) 

project [80] aims on studying the clinical phenotypes and risk 

factors of different neuropathologies, such as Mild Cognitive 

Impairment (MCI) and dementia as well as their progress and 

related combinations. It is comprised by 11 cohorts which 

combine longitudinal data on cognition and aging. The studies 

comprising the SMART project are well-established allowing 

for the application of various data mining strategies and 

statistical analysis procedures on the field of dementia and 

relative neuropathologies as well. The SMART dataset is 

already standardized due to the fact that all research centers 

had similar data templates in general. As a matter of fact, data 

harmonization was applied only for classifying individuals 

into two classes; impaired and non-impaired, according to 

various neurophysiological test instruments. In order for the 

authors to deal with variations between scores, the latter were 

first predicted for various demographic factors (e.g., sex, age) 

using linear modeling. The predicted scores were then 

subtracted from the original ones and the normalized scores 

were used for classification. The ensuing results of the 

harmonization process were preliminary, representing a small 

portion of the SMART database. Table III highlights 

indicative case studies involving cohort harmonization in 

epidemiology which have further revealed important results 

related to successful harmonization outcomes with an 

additional high medical impact. These studies include tools 

that have been already presented in Table II (e.g., the 

BiobankConnect software, DataSHaPER, Opal), as well as, 

other similar tools. Moreover, the presented studies include 

valuable information about their open source data 

accessibility. For example, the DataSHaPER platform 

provides access to existing biobanks. 

Several EU-funded studies on data harmonization were 

recently initiated by the European Commission under the 

PM04: Networking and optimizing the use of population and 

patient cohorts at EU level, HORIZON 2020 EU Research 

and Innovation programme. The HarmonicSS project [81] is 

an ongoing initiative that aims to harmonize regional, national 

and international longitudinal cohorts of patients diagnosed 

with primary Sjögrens Syndrome (pSS) by taking into 

consideration ethical, legal and privacy issues to construct an 

integrative cloud-based cohort. On the latter, data mining, 

data governance and visual analytics then will be developed 

as well as tools for clinical trial patient selection. Another EU 

initiative is the EUROlinkCAT (Establishing a linked 

European Cohort of Children with Congenital Anomalies) 

[82] which aims to enrich the existing EuroCHILD Cohort 

Network by bringing together pregnancy and child cohorts as 

well as biobanks to provide a shared data-management 

platform and harmonization strategies. The LifeBrain project 

[83] focuses on the integration, harmonization and 

enrichment of major neuroimaging studies to obtain brain 

imaging, cognitive and mental health measures of more than 

6000 individuals in order to provide novel information 

regarding the brain deficits and diagnosis of brain disorders 

and therefore construct preventive and therapeutic strategies. 

The ESCAPE-NET (European Sudden Cardiac Arrest 

network: towards Prevention, Education and NEw Treatment) 

[84] is another ongoing project where European scientific 

teams have been gathered in order to design SCA (Sudden 

Cardiac Arrest) prevention and treatment strategies by 

combining existing European databases. 

VI. DISCUSSION AND FUTURE DIRECTIONS 

Data harmonization comprises a fundamental procedure 

prior to any data analysis across longitudinal cohorts and has 

been adopted by a variety of epidemiological studies, some of 

which are presented in the sequel. These studies mainly aim 

to investigate the potential of harmonizing large 

epidemiological datasets in order to generate a sustainable and 

robust dataset with induced variable heterogeneity that is 

capable of increasing the statistical power of the studies. 

Afterwards, data pooling combined with straightforward data 

mining methods can be applied on the harmonized dataset to 

better comprehend the origins and the progress of the disease 

under examination, thus enabling the design of accurate 

treatment strategies. 

Data harmonization and integrative analysis of synthesized 

datasets have become increasingly important in the last 

decade. The invaluable sources of social, environmental, 

lifestyle factors and genetic interactions and determinants, 

with reference to the disease onset, progression and 

classification of different phenotypes, have given rise to data 

harmonization procedure. Moreover, this approach of data 

sharing facilitates the integration of the patient cohorts and the 

clinical picture and outcome during the disease management. 

Data harmonization can address the unmet needs of chronic 

diseases including the stratification of patients to distinct 
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subgroups, the selection of new targets for therapy as well as 

the validation or identification of novel biomarkers.  

Several key services and tools have been developed aiming 

to support data harmonization and co-analysis. Achieving 

harmonization of disparate studies as a rigorous scientific 

process improves the knowledge management and further the 

extraction of new scientific knowledge. When conducting 

data harmonization the definition of the research problem and 

the data quality, as well as the selection of the studies and the 

targeted variables constitute the basic steps. In addition, the 

processing of the final harmonized datasets and the estimation 

of their quality compose also key steps during the scientific 

procedure. In order to overcome the semantic heterogeneity 

obstacle among the different meanings of data elements, 

semantic technologies and matching techniques have been 

proposed and developed. Towards this, such approaches can 

help in data integration, when heterogeneity exists within 

different datasets and cohorts or when new relationships 

among data elements can be discovered. Besides that, 

ontologies and vocabularies can be used to organize 

knowledge regarding the power of linked data.  

In addition, one of the major issues to consider when 

sharing and harmonizing data from different cohorts is the 

protection of ethical and legal aspects of the shared data. 

Towards this, several policies have been identified by either 

the clinical centers participating in data integration or expert 

legal offices that have been assigned the role of solving the 

legal constraints to share heterogeneous sources of 

information from different countries with different data 

protection laws and regulations. Concerning the protection 

laws across Europe when harmonizing different cohorts, the 

GDPR overhauls the EU Data Protection Directive aiming to 
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[72] 
Create a harmonized dataset for 

aging studies across 2 cohorts 
(1768 records) 

Context-specific with appropriately pre-defined 
research questions and standardizations for 

dealing with variables heterogeneity among the 

datasets 

A harmonized dataset 

with 26 harmonized 
variables 

[75] 

Construct a harmonized database 

on osteoarthritis (OA) across 5 

European longitudinal cohorts 
(10107 persons) 

A sequentially-based algorithm using guidelines 
from the CLESA project [76] as well as 

adjusting for age, sex and sample size variations 

A harmonized database 
was successfully 

constructed 

[9] 

Harmonize data from the EU-

BioSHaRE HOP [1] on an 

integrated schema of 32 desired 
data elements across 6 biobanks 

which were marked as relevant or 

not for 5 out of 6 biobanks 

The BiobankConnect software [9] 

Out of 41184 matches, 

420 were classified as 
relevant with an average 

precision of 0.75 at rank 1 

and recall of 0.74, 0.82, 
and 0.88 at ranks 10, 20, 

and 50, respectively 

[74] 

Investigate the potential of 

harmonizing physical capabilities 
values across 8 UK cohorts (~ 

40000 individuals) 

 

A context-specific harmonization approach was 

adopted with further adjustments and 
standardizations to ensure compatibility as well 

as testing for gender and age interactions among 

studies 

Data harmonization is 

possible with 
(statistically) significant 

gender differences in two 

physical measures 

[5] 

Develop a retrospective 

harmonization data approach for 

the Healthy Obese Project (HOP) 
with the purpose of identifying 

metabolically healthy obese 

individuals across 8 large cohorts 
(229534 in total) 

A complete step-wise harmonization approach 

is presented based on the DataSHaPER 

approach [5] as well as on tools developed by 
OBiBa [1] 

A 73% compatibility of 
creating a harmonized 

HOP database 

[80] 

Study the clinical phenotypes and 

risk factors of different 

neuropathologies (e.g., MCI, 
dementia) across 11 longitudinal 

cohorts 

Simple due to already standardized datasets; 

Classification of individuals into two classes 

(impaired and non-impaired) based on 
neurothapological test instruments and 

prediction models 

Preliminary results of the 

overall SMART database 
harmonization process 
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[78] 

Explore the suitableness of Item 

Response Theory (IRT) in 

neuroticism and extraversion 

phenotypes harmonization across 
23 GPC cohorts from Europe, USA 

and Australia 

An un-biased scores estimation process (known 
as ‘test-linking’) based on appropriately fitted 

IRT models 

The estimated neuroticism 

and extraversion scores 
were strongly independent 

of the corresponding 

inventory and heritable 

[4] 

Assess the potential of 
retrospective harmonization on a 

large variety of epidemiological-

related variables (e.g. cancer, 
stroke, diabetes, etc.) across 53 of 

the world’s largest longitudinal 

population-based epidemiological 
studies (~ 6.9 million participants) 

The DataSHaPER approach [5] 

A 36% compatibility for 
creating a harmonized 

database (62% if only the 

‘essential’ variables are 
taken into consideration) 

 

Table III. Summary of the highlights from selected harmonization case studies. 
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assure the availability and legality of the use of personal 

sensitive data. Specific rights of the data have been introduced 

with reference to the concept of privacy and the conditions of 

personal consent. Furthermore, the Framework for 

Responsible Sharing of Genomic and Health-Related Data 

has been developed, during the EU BioSHARE Project, and 

facilitates the responsible sharing of genomic and health-

related patient data. In terms of the technological solutions for 

data protection, DataSHIELD initiative enables the co-

analysis of data from heterogeneous sources, while 

addressing any ethics-related concern and data access 

approval. 

In most of the described case studies, data harmonization is 

usually performed in a context-specific manner. More 

specifically, researchers define questions based on the type of 

epidemiology under examination. These research questions 

are combined with pairing rules in order to construct 

harmonized databases. In fact, the potential of harmonizing 

each individual dataset is explored by matching each study-

related variable with those derived by a pre-defined 

(common) template based on the pairing rules. This process 

is a step-wise harmonization approach and is the most 

preferable way for harmonization, according to the existing 

literature. Moreover, the semantic interlinking mechanisms 

are easier to be implemented in this way since it is a study-

related approach. 

Noteworthy attempts have been recently accomplished 

towards establishing a semi-automatic data harmonization 

platform. An example of such an attempt is the DataSHaPER 

tool which is able to generate a complete harmonized dataset 

mainly for cancer epidemiology studies. In addition, the tools 

that were developed under the EU FP7 BioSHaRE project 

(i.e., the BiobankConnect software) constitute the 

fundamental basis for data harmonization and have been used 

in several studies which are described in the current paper. 

The Opal and Mica software combined with the DataSchema 

variable template (from the DataSHaPER method) comprise 

the two main mechanisms used for data harmonization. 

Statistical methods and Item Response Theory aspects 

comprise an alternative strategy for data harmonization. 

Towards this direction, regression models have been used for 

predicting measures (scores) in various epidemiological 

studies based on ‘best-fitting’ models as well as to control for 

population (e.g., age, sex) differences among the cohorts 

under examination. Then, the predicted measures are 

compared with the original ones in order to evaluate the 

prediction model for data harmonization. Such approaches are 

less time-consuming than context-specific procedures but 

they are often complex. 

Summarizing, harmonization is a challenging field with 

crucial methodological challenges yet to be met. These 

challenges mainly focus on barriers introduced by language 

differentiation and variables variation across the datasets, as 

well as by the definition and the context of the research 

questions. Harmonization is crucial prior to any meta-analysis 

in order to generate a sustainable and robust dataset with 

induced variable heterogeneity that will be capable of 

increasing the statistical power of the studies. However, in 

order to extend and better understand data harmonization, it 

is necessary to promote the description of existing 

harmonization procedures in epidemiology. 

Harmonization is a rapidly evolving research field which 

has recently gained attention since it constitutes an emerging 

and promising approach for ensuring homogeneity across 

longitudinal epidemiological studies. Its importance lies on 

the innovation it offers for heterogeneous data integration. 

This evidence combined with the recent advances in machine 

learning, reinforcement learning, data mining strategies and 

artificial intelligence can lead to the development of new data 

harmonization strategies yielding higher statistical power and 

harmonization quality, with minimum loss. The current 

review can enhance relevant knowledge to such initiatives and 

thus provide a good impact in the scientific community. 
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