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Abstract—Existing maintainability models are used to identify
technical debt of software systems. Targeting entire codebases,
such models lack the ability to determine shortcomings of smaller,
fine-grained changes. This paper proposes a new maintainability
model – the Delta Maintainability Model (DMM) – to measure
fine-grained code changes, such as commits, by adapting and
extending the SIG Maintainability Model. DMM categorizes
changed lines of code into low and high risk, and then uses
the proportion of low risk change to calculate a delta score. The
goal of the DMM is twofold: first, producing meaningful and
actionable scores; second, compare and rank the maintainability
of fine-grained modifications.

We report on an initial study of the model, with the goal
of understanding if the adapted measurements from the SIG
Maintainability Model suit the fine-grained scope of the DMM. In
a manual inspection process for 100 commits, 67 cases matched
the expert judgment. Furthermore, we report an exploratory
empirical study on a data set of DMM scores on 3,017 issue-fixing
commits of four open source and four closed source systems.
Results show that the scores of DMM can be used to compare
and rank commits, providing developers with a means to do root
cause analysis on activities that impacted maintainability and,
thus, address technical debt at a finer granularity.

I. INTRODUCTION

Software maintainability defines the ease with which soft-
ware can be modified, e.g., to correct defects, or to improve
its functionality [1]. Measuring and improving maintainabil-
ity helps managing technical debt, a concept introduced by
Cunningham [2] and then refined by Fowler [3], [4]. To
grasp technical debt, Ernst et al. [5] noted that code analysis
and measurements are the main concrete methods used to
understand technical debt.

Maintainability is a complex concept, and past research
shows efforts towards data-driven approaches to indicate main-
tainability, with several models proposed [6]. Some of these
models are in active use in research or in industry, such as
the SQALE method [7], the Software Improvement Group
Maintainability Model (SIG-MM) by Heitlager et al. [8], or
the QUAMOCO model [9]. These models take the source code
of complete software systems at fixed moments in time (i.e.,
snapshots) as their primary units of maintainability analysis.
Such an analysis matches well with the relatively low update
and release frequencies of larger (legacy) software systems.

In recent years however, development is driven by an
increasing level of change granularity. Smaller changes are
being implemented in software releases [10], continuous in-
tegration tools ensure that every committed code change is
integrated into the primary line of development [11], and

developers use fine-grained mechanisms such as pull requests
to review and accept code changes [12]. To support these
modern development practices, maintainability measurement
models need to take fine-grained code changes (i.e., a single,
or limited number of commits) as their primary unit of
analysis. In this scenario, developers could address bad code
that creates technical debt at a finer level of abstraction, and
promptly use actionable suggestions rather than refactor larger
portions of code. In fact, nonfunctional requirements such as
maintainability are a concern during the modern development
processes because they contribute to the completion of fea-
tures [13] and managing technical debt repercussions drain
project resources [5].

Despite measuring differences in code metrics (i.e., churn or
McCabe Complexity [14]) provide a superficial insight about
fine-grained change-maintainability, they lack the breadth of
formalized models available for complete software systems.
Such models, though, are not suitable to measure fine-grained
code maintainability as they carry the burden of the full
system codebase. In our view, a fine-grained maintainability
model should rely on code measurements able to detect the
amount of risk introduced over the total change performed,
meaningfully report the maintainability of fine-grained code
changes abstracting from the full system codebase, and use a
scoring system that allows result comparison aside from the
system it is applied.

In this paper we propose a new model for this purpose,
which we named the Delta Maintainability Model (DMM).
The DMM measures the maintainability of a code change as
ratio between low risk code and the overall code modified. The
DMM identifies code riskiness by reusing software metrics and
risk profiles of the SIG-MM, while applying new aggregations
and scoring for software metric deltas at the level of fine-
grained code changes like commits or pull requests, instead
of aggregating at the system level. The DMM does not aim
to replace the SIG-MM, rather, complement its system-level
analysis with direct support for fine-grained code changes.

In the study, we first focus on understanding if the SIG-
MM measurements suit the fine-grained scope of the DMM.
In a manual inspection process, we measure a sample of 100
code changes against the intuition and expertise of the main
authors. Then, we analyze data of the DMM’s outcomes on
3,017 fine-grained code changes, originating from four open-
source and four closed-source systems, to understand whether
the score produced suits the needs of ranking and interpret-



ing the maintainability of code changes. We summarize the
contributions of this paper as follows:

• The proposal and initial assessment of the Delta Main-
tainability Model (DMM), a novel approach to measure
the maintainability delta of fine-grained code changes.
DMM is an extension of, and a complement to the SIG
Maintainability Model.

• A data set of 2,336 fine-grained open-source code
changes with the initial DMM Scores to enable further
research in this direction. These code changes are a subset
of our data set, of which the closed-source code changes
cannot be disclosed.

II. RELATED WORK

Aggarwal et al. [15] proposed a model to measure soft-
ware maintainability based on code readability, documentation
quality, and understandability of software. They transform
measures into fuzzy values, using domain experts to process
results and quantify maintainability of a system.

Antonellis et al. [16] proposed a way to map object-oriented
metrics presented by Chidamber et al. [17] to the character-
istics of the ISO 9126 model to evaluate a software system’s
maintainability. They applied the methodology to an Open-
Source system, demonstrating that software maintainability
was measurable with a systematic process.

Heitlager et al. [8] proposed the SIG-MM to measure
maintainability for software systems, which we extensively
present in Section III. Later studies on SIG-MM provided
approaches with which the model measurements could be
aggregated to allow a comparison between systems [18]–[20].

The work of Bakota et al. [21] uses a probabilistic ap-
proach to compute high-level quality features that uses expert
knowledge as well. It integrates the uncertainty from the lack
of consensus, and the maintainability value is a probability
distribution.

The QUAMOCO model has been proposed by Wagner et
al. [9] to build an approach that integrates abstract quality
attributes and concrete quality assessments. Such a model
provides an assessment methodology that integrates with their
meta-model definition, and summarizes how to conduct a
quality check for different kinds of software.

The SQALE method [7] proposed by Letouzey and im-
plemented in practice by SonarQube [22] relies on so-called
Indices to rate various aspects of code quality. Recently,
though, SonarQube shifted towards continuous inspections of
code that integrates with DevOps toolchain.

The work by Conradt et al. [23] provided a first framework
that adapts to the needs of incremental quality and maintain-
ability checks on code. This work resulted in Teamscale [24],
[25], that measures multiple aspects of code such as file size,
method length, clones, etc. Teamscale can quickly provide
metrics and compute change in measurements without doing
a system-wide measurement, providing real-time feedback to
developers. Furthermore, Teamscale remembers which com-
mits caused the change in metric, thus allowing root cause
analysis. Teamscale reports finding “resulting from a violation

of a metric threshold (such as a file which is too long) or
revealed by a specific analysis such as clone detection or bug
pattern search” [24]. Such violations are counted against a
commit and used to account for quality. Teamscale, though, is
not able to rank the maintainability of a single code change
(or any aggregation) and combine the results in a quality or
maintainability score.

III. BACKGROUND: SIG MAINTAINABILITY MODEL

The maintainability model that we use as starting point is the
one proposed by Heitlager et al. (SIG-MM in the paper) [8].
It has been used in formal assessments of maintainability in
an industrial context for billions of lines of code, thousands
of projects, and a wide variety of application domains and
programming languages and technologies. SIG-MM was de-
signed to conduct system-level assessments with technology
independence, ease of understanding, root cause analysis, and
actionability as design choices. The model was originally
proposed in 2007, with later refinements [18]–[20], [26].

A common point of departure for maintainability models,
including SIG-MM, is the ISO standard 25010 for software
product quality [27]. This standard identifies maintainability
characteristics such as analyzability, modifiability, testability,
modularity, and reusability. What SIG-MM does is map these
ISO maintainability characteristics onto source code metrics,
as shown in Table I. The metrics relevant to this paper are
defined in Table II, discarding Volume, Component Balance
and Independence as unlikely being impacted by a fine-grained
change.

The SIG-MM takes absolute measurement numbers and
turns these into a rating in comparison to a benchmark of
hundreds of measured industrial systems. This rating is a (real)
number between 0 and 5, or, colloquially, a way to assign
between one and five stars to the maintainability of a system.

The process to move from measurement to rating is depicted
in Figure 1. Central to this process are risk profiles [18]. A risk
profile groups metric outcomes into (risk) bins, labeled low,
medium, high and very-high. The threshold values defining
each bin are obtained by a statistical approach proposed by
Alves et al. [18]. The risk profile then reflects the percentage
of code in the low to very high-risk categories. Risk profiles
can be created for individual metrics at the unit level, and
aggregated all the way up to the system level.

Once the risk profile of a system is known, it is turned into
a rating, using the relative size for the moderate, high and
very-high risk profiles for each system property. The rating
is again based on thresholds, this time expressing that, e.g., a
system in which at most 3.3% of its Volume is in the high-risk
category (five stars in Figure 1) can be considered substantially
easier to maintain than when, say 15% of its Volume is in the
high risk category (two stars only). The statistical procedure
for computing the rating thresholds is described by Alves et
al. [19].

IV. CONTEXT AND CHALLENGES

While traditional maintainability models such as SIG-MM
focus on system-level maintainability, our focus is on assessing



TABLE I. MAPPING ISO MAINTAINABILITY
SUB-CHARACTERISTICS TO SYSTEM PROPERTIES
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FIGURE 1. SIG-MM APPROACH TO MOVE FROM SOURCE CODE
MEASUREMENTS TO SYSTEM-WIDE RATINGS

the quality of actual changes. We seek an assessment of a fine-
grained change (commit) independent of the quality of the
surrounding bigger system, given that developers deal with a
high number of modifications to such systems on a daily basis.

As for system level maintainability models, our aim is to
provide an assessment that is technology independent, and that
supports understanding, root cause analysis, and actionability
(in line with [8]). Creating such an assessment method requires
addressing two challenges: measuring at the commit level, and
scoring and comparing commits.

A. Commits as the primary unit of measurement

The core issue with current maintainability measurement
models is that their primary unit of analysis is a snapshot of a
system’s (entire) code base. With the SIG-MM, for instance,
this leads to small changes to large systems typically having a
very minor impact on the maintainability rating. The reason is
that changes are always weighted towards the entire system’s
code base; this was in fact a design goal of the SIG-MM.

Consider for instance issue #402331 (a bug) in Mozilla
Rhino,1 fixed by one commit that changed about 200 lines
of code.2 The impact on the SIG-MM maintainability rating
is just −0.007, a negligible delta on a scale of -5 to 5 due to
the weighting against Rhino’s entire code base.3 This result
does not suggest any change in maintainability. In practice,
however, this change introduced less maintainable code, which
we discuss later in details. This delta is also only meaningful
in relation to Rhino’s code base prior to the change. A similar
change applied to a far smaller system would have a far greater
variation in maintainability.

The challenge here is to define a model that no longer
weights against a system’s entire code base, but instead intro-
duces a meaningful, actionable approach to measure commits
in their own right, irrespective of the parts of the code base
that are not involved in the changes.

B. Scoring and comparison of commits

With a new unit of measurement, i.e., commits, also comes
a new challenge to construct a new approach to score and
compare. Similar to SIG-MM’s context for systems, a specific
need in our circumstances is to score and compare commits to
each other. Ideally, this would mirror the ability to rank and
benchmark commits, analogously to the approach by Baggen
et al. to rank systems [20].

An issue to consider here is that many software (maintain-
ability) metrics follow heavy-tailed distributions [28]–[30],
which calls for additional steps to normalize values to facilitate
meaningful comparison. The challenge here thus consists of ei-
ther creating scoring mechanisms that do not require additional
normalization steps, or to define normalization approaches
similar the proposal by Alves et al. [19].

V. THE DELTA MAINTAINABILITY MODEL

The general idea behind the DMM is to calculate the
proportion of a change that is beneficial for maintainability,
given the various code properties already provided by the SIG-
MM. A change is considered to consist of LOCs being added
and removed (similar to a ’diff’) to units and modules touched
by the change. Adding LOCs to units or modules that stay low
risk (see Table II) is considered a beneficial change, as well
as removing LOCs from high risk units or modules. However,
adding LOCs to high risk, or removing LOCs from low risk
units or modules, is then considered harmful to maintainability.

The DMM utilizes the SIG-MM as base for its workings
because it uses a straightforward way of abstracting metrics
to maintainability properties. Code measurements are summa-
rized in risk profiles according to threshold per each system
property and threshold are defined according to a set of
systems used as benchmark. Furthermore, this approach allows
to measure code written in different programming languages
by generalizing measurements.

1https://bugzilla.mozilla.org/show bug.cgi?id=402331
2https://github.com/mozilla/rhino/commit/262602
3The absolute maintainability ratings are respectively 1.9487 for the system

before the bug fix was applied, and 1.9414 after the bug fix.

https://bugzilla.mozilla.org/show_bug.cgi?id=402331
https://github.com/mozilla/rhino/commit/262602


TABLE II. DESCRIPTIONS OF THE SIG-MM SYSTEM PROPERTIES AND THEIR THRESHOLDS FOR QUALIFYING CODE AS LOW RISK.

System Property Description Low risk code criteria
Duplication The degree of (textual) duplication in the source code of the software product.

A line of code is considered redundant if it is part of a code fragment (larger
than 6 lines of code) repeated literally (modulo white-space) in at least one other
location in the source code.

All non-duplicated code.

Unit Size Size of the source code units, based on Lines Of Code (LOC). Size is determined
from the number of lines of code (excluding lines consisting of only white space
or comments).

Units with at most 15 LOC.

Unit Complexity The degree of complexity in the units of the source code. The notion of unit
corresponds to the smallest executable parts of source code, such as methods or
functions. Complexity is measured using McCabe’s cyclomatic complexity [14].

Units with at most 5 McCabe complexity.

Unit Interfacing The size of the interfaces of the units in terms of the number of interface
parameter declarations (formal parameters).

Units with at most 2 parameters.

Module Coupling The coupling between modules, measured by the number of incoming dependen-
cies. The notion of module corresponds to a grouping of related units, typically
a file.

Modules with at most 10 fan-in.

Table II contains the system properties utilized by the DMM
brought over from the SIG-MM, with a short description and
the relative value that define their low-risk threshold.

In the following, we first provide the definition of the DMM
and then present a calculation example. Figure 2 provides an
overview of the model and its underlying calculations.

A. Model Calculation

The calculation of the DMM consists of two levels. The
first level in Figure 2a describes how a code change maps
into a Risk Profile - a concept originally from SIG-MM but
adapted for small code changes. The second level in Figure 2b
combines all Risk Profiles for a code change to generate a
DMM score. Below we provide simple instructions to generate
DMM scores from two inputs files (1) changed within a
commit (Fn) and the original files (or parent files) prior to the
change (Fn’). Formal definitions of the model are available in
our technical report [31]. Per each file:
(2) the DMM measures and classifies into a Risk Profile (low,

med, high, very-high) the five Code Properties listed in
Table II.

(3) Measurements are taken in lines of code according to the
specifications of the SIG-MM [19].

(4) Next, the model computes the various Deltas, i.e., the
difference measured in lines of code before and after the
change performed on a file. Deltas for a Code Property
are computed for all Risk Profile. When the difference
of the Delta is negative, we define it a Delta Decrease
(Increase otherwise) and transform its value to absolute
number.

To aggregate Deltas at commit level, following Figure 2b
and considering step (4) from Figure 2a as input:
(5) the DMM sum all the Delta values per each Code

Property, resulting in each commit having two values per
Risk Profile: one for the Increases, one for the Decreases.

(6) Notably, increases in LOC in low risk profile is a good,
highly-maintainable change, as well as the decrease in
LOC in medium, high and very-high category. These
values account for what we define Low Risk Profile Delta.
On the other hand, decrease in LOC in low risk category
and increase in LOC in medium, high and very-high

category are deemed as low-maintainability changes and
account for High Risk Profile Delta.

(7) Finally, the Delta Score for each Code Property is the
fraction of highly maintainable Low Risk Profile Delta
out of the total.

(8) When the five Code Properties are aggregated (here using
mean) we refer to it as the Delta Maintainability Score
(DMM Score).

Both the Delta Score and the DMM Score range between 0
and 1, to be interpreted as 0 being the lowest and 1 the highest
maintainability. Threats connected to aggregation techniques
for various DMM choices are discussed in Section VI-C.

B. Calculation example

We present a walkthrough example to explain the approach
used to obtain metric deltas from measurements and then
obtain the DMM Scores. Table III contains the data for this
example. For simplicity we illustrate only the Delta Unit Size,
as the rationale for the other system properties is identical.
In fact, the DMM maps its argument to LOC for all Risk
Categories and Code Properties as specified by the SIG-
MM [19].

We use issue #4023314 for Mozilla Rhino, already discussed
in Section IV. Mozilla Rhino is a system written in Java
comprising approximately 244K lines of code.

The general steps for moving from source code measure-
ments to Risk Profile Delta are showcased in Figure 2a. The
figure also refers to the steps 1-4 in Section V-A. For our
example, the steps taken involve: (1) Issue #402331 is fixed
by commit id 262602.5 It changes files Codegen.java
and OptRuntime.java. These files are analyzed from the
system checked out at commit id 833a2a as well (parent
of 262602); (2) measure all Code Properties included in
the DMM using the SIG-MM Benchmarked Risk Profile
Thresholds; (3) file measurements for Unit Size are shown
in Table IIIa; (4) measure the Risk Profile Delta for Unit Size
as shown in Table IIIb. The Risk Profile Delta still has positive
or negative values. Table IIIc shows the respective values for

4https://bugzilla.mozilla.org/show bug.cgi?id=402331
5https://github.com/mozilla/rhino/commit/262602

https://bugzilla.mozilla.org/show_bug.cgi?id=402331
https://github.com/mozilla/rhino/commit/262602
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FIGURE 2. OVERVIEW OF THE DMM.

Risk Profile Delta Increases and Decreases, that removes the
sign from the Risk Profile Delta.

Having completed the steps from Figure 2a, the collected
increases and decreases are converted into a single score. The
general approach is depicted in Figure 2b, and consists of the
following steps for our example: (5) aggregate the Risk Profile
Delta Increases/Decreases at commit level by sum of each
measurement; for the walkthrough example, Table IIId shows
the aggregation for Unit Size; (6) compute the Low/High Risk
Profile Delta by aggregating measures. Negative Deltas are
aggregated with their absolute value, resulting in: LRPD =
4 + 0 + 0 + 0 = 4; HRPD = 25 + 0 + 0 + 13 = 38;
(7) the Delta Score Unit Size is: 4

4+38 = 4
42 ≈ 0.09; (8)

for issue #402331, Mozilla Rhino, the Delta Scores for the
other system properties are: Unit Complexity = 0.09, Unit
Interfacing = 0.327, Module Coupling = 0.391, Duplication
= 0.795. Therefore, the computed value for the DMM Score
is: 0.09+0.09+0.327+0.391+0.795

5 ≈ 0.341.

VI. STUDY DESIGN

The proposed DMM has been subject to an initial assess-
ment study, consisting of two parts. First, the first two authors
of this paper performed a manual effort to assess the design
and implementation of DMM. In particular, we want to test
whether the SIG-MM metric are still valid and extend to the
fine-grained scope of analysis of the DMM. Second, a more
general exploratory study was done on the DMM scores for
a large number of code changes for several open and closed
source systems.

The first part of the study had the aim to answer the
following research question:

TABLE III. CALCULATION EXAMPLE - UNIT SIZE - ISSUE
#402331 MOZILLA RHINO

commit id File name Low Medium High Very-High

262602 Codegen.java 359 465 1138 1935
OptRuntime.java 147 0 0 0

833a2a Codegen.java 355 465 1138 1922
OptRuntime.java 172 0 0 0

(A) LOC RISK PROFILE PER FILE IN COMMIT 262602 AND 833A2A

File name Low Medium High Very-High
Codegen.java 4 0 0 13
OptRuntime.java -25 0 0 0

(B) RISK PROFILE DELTA PER FILE
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RQ1. To what extent do the code metrics defined by SIG-
MM remain meaningful when applied to fine-grained code
changes (by DMM)?

After this step, the exploratory empirical study focused pri-
marily on understanding whether the DMM scores represents a
viable proposition to measure and compare the maintainability
of fine-grained changes. The following research question was
posed for this purpose:

RQ2. To what extent can the DMM Scores be used to
rank and compare the maintainability of fine-grained code
changes?

A. Data set creation

To answer both our research questions, we created a histor-
ical data set of issue fixing commits (e.g., commits that fix a
bug) performed on several open- and closed source software
systems.

1) Subject systems: We included four large open source
systems belonging to the dataset of Herzig et al. [32], which
consists of manually classified issues.6 We used this dataset
as being widely used in the past by multiple studies, and
because the projects feature an easy-to-explore issues tracker
and version control system (VCS), which we require to relate
issues to the code changes that resolved them.

Furthermore, we included four closed source systems that
the authors have access to under non-disclosure conditions.
For these systems only general information can be provided.
Cs1 is a tool written in Java to do static analysis on source
code; cs2 and cs3 are respectively the back-end and the front-
end for a web application written in Groovy/GSP. Cs4 is a
web application written in C#/ASP.NET. Table IV reports the
characteristics of the systems included in the data set.

TABLE IV. CHARACTERISTICS OF SYSTEMS IN THE DATA SET.

System Language # Issues KLOC
Apache Jackrabbit Java 1532 338
Apache Tomcat Java 294 308
Apache httpcomponents-client Java 154 67
Mozilla Rhino Java 356 244
Closed source 1 (cs1) Java 488 240
Closed source 2 (cs2) Groovy 92 9.6
Closed source 3 (cs3) Groovy/GSP 36 3.2
Closed source 4 (cs4) C#/ASP.NET 65 168
Total 3,017 1,378

2) Extraction of commits that resolve issues: Two ap-
proaches were applied to obtain the commit(s) that resolve an
issue, depending on whether they are open- or closed source.

a) Open source projects: We started from the list of
issues provided by Herzig et al., selecting those classified as
BUG, Request For Enhancement (RFE, adaptive maintenance),
and IMPROVEMENT (perfective maintenance) [32, Table II]).
We excluded the remaining issues like those that fix docu-
mentation, tests, etc. To extract the issue fixing commits, we

6https://www.st.cs.uni-saarland.de/softevo/bugclassify

analyzed the VCS log of each system and identifying the exact
match of the issue identifier in commit messages. When an
issue was fixed by more than one commit, we included all
commits. This process allowed us to identify fixing commits
for 2,336 issues in the original data set.

b) Closed source projects: For the closed source projects
a more limited amount of information was available to the
authors, constraining the analysis to just bug fixes.

To identify bugs we used the same strategy that Herzig et
al. used in their work [32]. The first author inspected the VCS
logs of the projects, selecting commits that were made to fix
bugs, as well as inspected manually their change set using
git diff. When issues were resolved by multiple commits, we
read the messages of the following commits after the first.
Commits were included in our dataset if the context was the
same (i.e., changing the same file(s) of the previous commit
in relevant parts). For project cs1 we had access to its Jira
Issue Tracker, that we used to first select issues that could be
classified as bugs. To assess the accuracy of the classification,
we manually analyzed a representative sample of 20 bug
fixes using the same technique described earlier, finding no
misclassified issues.

Finally, our data set consisted of 3,017 issues with a
matched issue fixing commit.

B. Manual assessment of DMM scores

To answer RQ1, we sampled 100 issues from the data set
constructed earlier and performed a manual assessment of the
issue-fixing commits and their DMM scores.

1) Sampling: The sampling was done with the following
criteria: (1) comprise all the open-source projects in the
dataset; (2) equal number of issues per project (25 issues
per project); (3) all issues are fixed by a single commit;
(3) 50 issues have DMM Score < 0.5, while the remaining
50 have DMM Score ≥ 0.5. The sample was constructed such
that it represents equally the four open-source projects and
their maintainability. Therefore, we drew 25 randomly sampled
issues per project. For simplicity, we selected only issues fixed
by a single commit. The model, however, works identically for
any number of commits.

2) Assessment: The first two authors were provided with a
document listing 100 URLs linking to code diffs (on GitHub)
of the sampled issues. The instruction given to both authors
was to read each diff and assess the maintainability risk of the
change. They were asked to categorize the change into either
Good or Bad for maintainability, keeping in mind the code
properties of the SIG-MM included in DMM (see Table II).

The author judgements were done in two rounds. In the
first round, the first author inspected all 100 issue fixes in the
sample, while the second author inspected a randomly selected
set of 50 issues. In the second round, the authors worked
together to achieve consensus on mismatching scores using
the negotiated agreement technique [33]. We discuss possible
bias in section VI-C.

3) Comparing author judgements and DMM scores: Fi-
nally, the authors compared their judgements with the DMM

https://www.st.cs.uni-saarland.de/softevo/bugclassify


scores, for both the individual code properties and the overall
score. To ease comparison, the DMM scores were first sim-
plified into either a Good or Bad category as follows:

• ≥ 0.5 means Good for maintainability,
• < 0.5 means Bad for maintainability.

The threshold score of 0.5 was chosen since it reflects the
point at which a change contains proportionally more low than
high risk changes (step 7, Figure 2). We would like to stress the
experimental nature of this threshold, provided that we have
no empirical data to support this value choice. We evaluate
and discuss this choice in the result section for RQ1.

C. Threats to validity

a) Construct validity: We identify limits of our study
regarding the definition of maintainability that applies to small,
fine-grained changes. Provided that no previous study has tried
to formalize such concept, we try to bring one first definition.

Moreover, the DMM assumes certain aggregation in risk
profiles for the measurements considered, with the method-
ology for deriving their thresholds proposed in the past and
widely benchmarked [18].

The DMM definitions might be sensitive to aggregation
techniques such as summation and mean. Previous studies
showed that aggregations could impact defect prediction mod-
els [34]. Additionally, measuring the maintainability of a
software system (or change) as defined by the DMM, some
Code Properties might have more importance than others.
Unfortunately, lack of empirical data prevents us addressing
the two aforementioned possibilities. Future research should
provide evidence about impact of aggregation techniques to
metric-based maintainability assessment and relative metric
relevance being better at estimating maintainability.

b) Reliability: Despite our dataset sampled to answer
our first research question does not contain issues fixed by
multiple commits, our data closely matches that of an average
pull request. Our study sample considers code changes that
have median churn of 13.5. Gousios et al. [12] shows that
the median number of commits per pull request is 1, and the
median churn per pull requests is 20.

The manual analysis performed poses an inherent threat
to the assessment of the DMM. Ideally, experts of partic-
ular systems are the best candidates as researchers might
not be familiar with a system’s specifics. We mitigate this
by gathering a deep understanding of the code analyzed,
by repeated inspections, and by employing the negotiated
agreement technique [33].

c) Conclusion validity: Threats to conclusion validity
can be identified in the way our study evaluates the model.
Data selected for the systems (Section VI-A1) are retrieved
from a known dataset. This, although represents a reliable
source, still has breadth limitations. Finally, we filter their
VCS using only the master branch, to make sure that only
merged commits were selected as subject for our study.

VII. RESULTS AND ANALYSIS

RQ1: To what extent do the code metrics defined by SIG-MM
remain meaningful when applied to fine-grained code changes
(by DMM)?

TABLE V. RESULTS OF THE MANUAL ASSESSMENT. A1 AND A2
ARE AUTHORS 1 AND 2. A1 6= A2 IS WHERE THEY DISAGREED.

DMM Score A1+A2 Good A1+A2 Bad A1 6= A2
Good 14 12 1
Bad 6 16 1

DMM Score A1 Good A1 Bad
Good 16 5 -
Bad 7 21 -

Table V shows results from the manual assessment per-
formed by the two authors. They manually classified 48 out
of 50 issues assigned to them as good or bad in terms
of maintainability. Out of the 48 issues classified (see the
first confusion matrix in Table V), the result of the two
authors matched for 30 issues (14 good and 16 bad). The
two authors, then, discussed each of the remaining 18 issues
until a consensus was reached. Finally, we manually assessed
the maintainability for 48 issues. These manually assessed
and cross-validated issues where then matched against their
actual DMM scores. Out of the 48 issues classified, manual
classification matched DMM scores for 30 issues.

Likewise, the first author classified 50 other issues manually.
This time, 49 out the 50 issues were classified. Out of the 49
issues classified (see the second confusion matrix in Table V),
the classification matched with the DMM scores in 37 cases
(16 good and 21 bad). In total, 67 issues were assigned the
correct score by the DMM out of the 97 issues that were
manually classified, corresponding to an accuracy of 69%.

Further, we analyzed the issues we could not manually
classify or were incorrectly ranked by DMM. The three issues
which the authors could not manually classify are JCR-31837

and JCR-20108 for Apache Jackrabbit, and issue 480499 for
Apache Tomcat. The first two issues not classified had two
common characteristics: (a) they involved large code changes
spanning several files (> 200 lines of code change; > 3 files)
(b) files containing both good and bad changes in terms of
maintainability. These aspects made hard for the authors to
decide. Finally, the third issue renamed one variable which is
too small of a change to be classified.

To gather more insight on the manual assessment mis-
matches, we separate the DMM scores in equal thirds. Select-
ing 0.33 (low DMM Score) and 0.66 (high DMM Score) as
separation values, we expected that maximum misclassification
would happen in the range where DMM score is around 0.5
(i.e., DMM ∈ (0.33, 0.66)) as these are cases where separating
well and badly maintainable changes gets challenging.

The data analysis confirms our hypothesis, as shown in
Table VI: we found that 3 out of 14 issues (14%) with DMM

7https://issues.apache.org/jira/browse/JCR-3183
8https://issues.apache.org/jira/browse/JCR-2010
9https://bz.apache.org/bugzilla/show bug.cgi?id=48049

https://issues.apache.org/jira/browse/JCR-3183
https://issues.apache.org/jira/browse/JCR-2010
https://bz.apache.org/bugzilla/show_bug.cgi?id=48049


TABLE VI. MISMATCHED CLASSIFIED ISSUES VS. DMM SCORE

DMM Score # Mismatched # Data points # Unclassified
≤ 0.33 3 14 0
∈ (0.33, 0.66) 22 56 1
≥ 0.66 5 30 2
All 30 100 3

score less to or equal than 0.33 were incorrectly classified. In
the high DMM score group, 5 out of 30 issues (16%) mismatch
the manual assessment. Finally, 39% of the data (22 out of 56
issues) with DMM score between 0.33 and 0.66 is incorrectly
classified.

We derived additional insights into the DMM scores from
the experiences of the two authors who did the manual as-
sessment. They collectively expressed difficulty in identifying
duplicates. Duplication, in DMM, is checked in a file, consid-
ering duplicates at least 6 consecutive lines. For very small
changes, duplication cannot be defined. For bigger changes,
the two authors used some basic methodologies to search code
in the files to accelerate and facilitate this (e.g., search in files
and the GitHub code search functionality). Nonetheless the
GitHub user interface proved to be a non-optimal solution
because of the visualization limitations.

Another challenge is when larger changes span different
files comprising of both good and bad maintainable changes.
In cases of large code changes, deciding on one category is
difficult. Over time, this still can be considered a suboptimal
change. The assessment for these specific cases asks for a
judgement call.

In light of this further analysis on the DMM scores we see
that the scores follow the intuition of the manual classification.
From this observation we can conclude that the five SIG-
MM measures in the DMM suit the end goal of measuring
fine-grained maintainability and maintain their meaningfulness
within the DMM. We include the list of issues, their manual
assessment by the two authors and their DM Score in the
additional dataset attached to our Technical Report [31].

RQ2: To what extent can the DMM Scores be used to rank and
compare the maintainability of fine-grained code changes?

TABLE VII. SUMMARY STATISTICS FOR DMM SCORES.

All Data Open Source Closed Source
n = 3,017 n = 2,336 n = 681

DM Score mean sd mean sd mean sd
Maintainability 0.65 0.24 0.65 0.23 0.68 0.28
Unit Size 0.48 0.38 0.46 0.37 0.54 0.41
Unit Complexity 0.57 0.39 0.54 0.38 0.65 0.40
Unit Interfacing 0.67 0.38 0.67 0.38 0.68 0.38
Module Coupling 0.77 0.34 0.76 0.34 0.78 0.34
Duplication 0.78 0.34 0.78 0.34 0.77 0.35

Table VII contains the means and standard deviations for the
DMM scores. Given the minor differences in the mean visible
between the open- and closed source subsets, in particular
for Unit Size and Unit Complexity, and considering standard
deviations, we evaluate these differences too small to support
further splitting of the data set.

Figure 3 then shows the Cumulative Distribution Function
of DMM scores, together with a theoretical normal distribution
(the solid lines). The theoretical normal distributions have the
same mean and standard deviation as the scores in the data
set. The dashed lines are the scores for all issues in the data
set, while the dotted lines are the scores of issues that have a
churn of at least 15.

Given the above results, the DMM enables ranking the
maintainability of changes, despite our empirical data showing
minor differences between open and closed source systems.
Furthermore, we witness skewed distributions for some Code
Properties. Our hypothesis is that some SIG-MM thresholds
could be refined to suit the purpose of the DMM. For these two
aforementioned reasons, additional research should provide
empirical data to either confirm or refute our conjecture.

To the ends of detecting technical debt and helping devel-
opers identify its root-causes, the DMM yields result that can
be leveraged in a straightforward manner. As the calculation
example in Section V shows, the DMM Score = 0.341 suggests
that the overall change on average is poorly maintainable.
Exploring the Delta Score results for the single properties is
unequivocal as a developer can understand both where and
how much her code is maintainable and address introduced
technical debt. Taking as example Unit Size (DS Unit Size =
0.09) the change has low Score as only 9% of the Risk Profile
Delta is low-risk. This enables developers to act towards
improving the change maintainability, as extracting code in
a new method and performing a call from the existing code
will likely improve its maintainability. Smaller units are easier
to understand, test, and maintain.

VIII. DISCUSSION

Looking back at the assessment study, we are now in the
position to discuss implications of DMM for further research
and for applications in practice. We argue that our work
progresses towards meeting two challenges in this context,
i.e., being able to measure the maintainability delta of commits
directly, and score and compare commits.

A. Practical implications

DMM is the first step towards an objective way to assess the
maintainability of fine-grained code changes. Commits are the
finest grain feasible in development practice today, creating
many options for flexible aggregations matching practical
use cases. For instance, commits can be aggregated into
time periods (e.g., into days, weeks, etc.), and developers
can leverage tailored analysis to target technical debt at an
early stage of development, rather than dealing with major
refactoring resulting from accumulated bad code.

In the context of providing management insight into the
maintainability impact of ongoing development, DMM pro-
vides a novel way to measure, score, and compare changes.
Current system-level maintainability model struggle in as-
signing maintainability scores to fine-grained code changes,
hindering root-cause analysis to the activities that caused
maintainability risks that piles up as technical debt.
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FIGURE 3. RQ2 – CUMULATIVE DISTRIBUTION FUNCTIONS FOR THE DELTA SCORE IN THE DMM.

DMM reuses concepts of the SIG-MM, therefore being
largely technology independency as the SIG-MM and its
underlying tooling currently support close to 200 programming
languages. However, DMM still needs to deal with VCS’s
to analyze commits, for which we foresee new tools to be
developed to feed the DMM with the required VCS change
information. As this consists of mostly basic diff information,
developing such tool support is not prohibitive.

B. Research implications

The assessment study performed on DMM gives rise to
follow-up projects aimed at improving DMM. Furthermore,
we see various synergies with research in the direction of
technical debt, and the socio-technical domain of providing
feedback to software engineering teams.

From Figure 3, it is clear that not all code properties in-
cluded in DMM produce the desired behavior of scores yet. In
particular Unit Interfacing, Module Coupling, and Duplication,
exhibit strong left skew in the scores. Many scores perfectly
(i.e., 1), indicating that the DMM is not yet sensitive or strict
enough with those code properties. Further research will be
needed to tune the thresholds at which code properties should
consider committed code poorly maintainable. Currently, these
thresholds are identical to those of the SIG-MM.

Another issue appeared in both the manual assessment
and data analysis of code properties Module Coupling and
Duplication: many commits contain hardly any duplicates or
dependencies within the code they changed, leading to many
perfect scores. In our assessment study the underlying coupling
and duplication analyses were, for reasons of run time limi-
tations, restricted to the files touched by a commit. Probably,
more dependencies and duplicates would have been found in

commits when analyzing entire code bases. This would imply
the score distribution for these two code properties could,
without the run time restriction, become more favorable.

The DMM’s measurement of commits provides a fine-
grained feedback method to developers to fix bad code creating
technical debt. This opens up research directions asking for
socio-technical methods into the effectiveness of fine-grained,
and arguably, more timely, maintainability feedback to devel-
opers. Are developers more willing to act on commit-level
feedback than on snapshot-based feedback? Does this lead
in the long term to less technical debt? Does the direct link
between the ‘who, what, and when’ that commits provide,
combine well with maintainability feedback? Are there pitfalls
to avoid in applying such metrics, e.g., like “treating the
metric” [35]?

IX. CONCLUSION

The goal of this paper is to create a model that measures
the maintainability of code changes and deal with fine-grained
technical debt. To that end, we propose the Delta Maintain-
ability Model, which measures the percentage of low risk lines
of code in the change. The DMM bulids upon the concept of
maintainability as proposed in the SIG Maintainability Model,
focusing on metrics for Unit Size, Complexity, Interfacing,
Duplication, and Coupling as underlying metrics.

We assess the extent to which the SIG-MM maintainability
metrics remain meaningful for fine-grained measurements
by manually analyzing 100 issues among four open source
systems and contrasting the results with the Model Score. Our
findings show that the DMM matches 67% of the manually
assessed sample, and that most disagreements occur when the
DMM is around 0.5. Our exploratory empirical analysis on



over 3000 issue fixing commits shows that DMM is suitable
for ranking and comparing commits, with properties akin to
that of a normal distribution.

As showed in Section V, the DMM can be used to measure
the maintainability of a fine-grained software change such
as an issue fix, or a pull-request. Furthermore, it provides
actionable results for developers to address technical debt
in the form of nonfunctional maintainability problems, with
measurements that can be generalized across different software
systems. Finally, the DMM Score can rank maintainability
of changes allowing for direct comparison among different
software changes.

Our initial analysis suggests that the DMM has strong
possibilities to pinpoint technical debt code shortcomings by
outlining the maintainability of individual change sets. In our
future work, we will seek to refine the model and evaluate to
what extent the Delta approach proposed can be generalized,
for example to assess commits beyond bug fixes, taking teams,
organizations, and packages into account. Furthermore, our
intent is to put the model into practice, and report on our
experiences.
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