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Abstract

Advancements are constantly being made in oncology, improving prevention and treatment
of cancers. To help reduce the impact and deadliness of cancers, they must be detected
early. Additionally, there is a risk of cancers recurring after potentially-curative treatments
are performed. Predictive models can be built using historical patient data to model the
characteristics of patients that developed cancer or relapsed. These models can then be
deployed into clinical settings to determine if new patients are at high risk for cancer devel-
opment or recurrence. For large-scale predictive models to be built, structured data must
be captured for a wide range of diverse patients. This paper explores current methods for
building cancer risk models using structured clinical patient data. Trends in statistical and
machine learning techniques are explored, and gaps are identified for future research. The
field of cancer risk prediction is a high-impact one, and research must continue for these
models to be embraced for clinical decision support of both practitioners and patients.

Keywords: cancer prediction, cancer recurrence, cancer relapse, data mining, machine
learning, Electronic Health Records

1. Introduction

This paper aims to inform practitioners, namely oncology researchers, statisticians, and
data scientists, of the current methods used for performing cancer risk and recurrence pre-
diction. Additionally, this formal review identifies gaps in current research and paths for
advancing the field.

The goal of cancer risk prediction is to determine if a given patient will develop cancer
(or recur) at some point in the future [1]. The problem is distinct from patient identification
(also called phenotyping [2]), as the goal is not to determine if a patient has a certain disease
at the present moment, but to determine if the patient will develop it in the future. This
task can be formulated as a supervised learning problem, where the input data are certain
demographic and clinical elements (e.g. age, sex, and treatment history), and the output
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variable is the probability that the patient will develop the cancer at some point in the future.
This probability can be tracked over time, assigning risk as time increases. The problem can
also be formulated as a binary classification task, attempting to ascertain whether or not a
patient will develop cancer at a specified point in time (i.e. developing the cancer within the
next five years). A prediction model is built by supplying historical data from patients that
did, or did not, develop the cancer in question. Statistical and machine learning techniques
are used to fit a model to this historical data (i.e. training data). Then, to prove the model
will be generalizable to different patient populations, a validation set (or multiple validation
sets) is used to determine the performance of the model. When the performance of the
model is adequate, based on several metrics, it can be deployed into clinical settings to help
inform patients and providers. For more information about predictive modeling for medicine
in general, see [1][3].

In this review, a distinction is made between models that attempt to predict if a patient
will develop a cancer in the future (risk prediction), and those that predict whether or not
a patient will relapse after a potentially-curative treatment (recurrence prediction). These
problems are distinct in that they often have different types of input data. For example, a
risk prediction model will not have any variables about cancer in the patient, as the patient
has not yet developed cancer (although family histories of cancer would be relevant). For
recurrence models, as will be seen in the papers studied, information about the tumor
and treatments for the cancer are often chosen for inclusion in the models [4]. While the
problem scenarios are distinct, the approaches to solve them can be very similar; in this
paper, methods for both cancer risk and recurrence prediction are reviewed.

Accurate models are clinically relevant, as they can provide personalized treatment plans
for patients at risk for a new cancer or recurrence of cancer in remission. There are various
types of cancers, many of which have a very low incidence rate. It is not economically feasible
to screen all patients visiting a doctor for a wide range of different diseases [5][6]. Thus, a
model that can predict future development of cancer based on regularly captured clinical
biomarkers, demographic, and lifestyle information is of high value to a healthcare system.
As the model is built and tested, it can be used to flag high-risk patients for enrollment in a
surveillance program, catered towards each patients’ individual risk and clinical profile [7].
Therefore, a model must be applicable to large populations of patients, given that cancer is
still a relatively rare disease but one of high importance to humanity.

To build high-impact models that can be generalized to a diverse array of patients,
structured clinical data is required. As we discuss in Section 3, this review focuses on studies
that utilize structured clinical information, not free-text or genetic data. Section 2 outlines
the methodology used for our literature review. Rather than provide a summary of each
related article, this paper highlights certain patterns about predictive model usage, sources
of data (Section 3), statistical and machine learning methods (Section 4), and necessary
future work (Section 5). Relevant papers will be mentioned throughout the text, and a
summary of the papers profiled can be found in Appendix A.
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Table 1: Cancer Types and Risk/Recurrence Prediction

Prediction Problem
Cancer Type Risk Recurrence Total
Any 1 0 1
Bladder 0 1 1
Breast 0 8 8
Cervical 0 1 1
Colon 1 2 3
Hepatocellular Carcinoma 2 1 3
Lung 1 0 1
Pancreatic 1 0 1
Sarcoma 0 1 1
Gastric 1 1 2

2. Methodology

We conducted a comprehensive review of literature related to data mining for healthcare
applications, and filtered the list of works to those relevant for this review. Therefore, works
focusing on other diseases besides cancer, and those using non-clinical data (such as genomic
or proteomic data) or primarily free-text clinical notes were excluded.

Papers were first identified by browsing through related journals, followed by a breadth-
first search of articles using Pubmed1 and Google Scholar2. Keywords used included but
were not limited to: “cancer risk”, “cancer recurrence”, “cancer prediction”, “machine learn-
ing”, “data mining”, and permutations of these keywords. Then, each paper identified was
reviewed for relevance and a decision to keep or remove the paper was made. For each
paper that was kept, related articles and articles citing the paper (utilizing search features
available in both Pubmed and Google Scholar) were reviewed for relevance. This process
was repeated until no new papers could be identified, resulting in 22 papers analyzed.

There are many different types of cancers, with different risk factors and treatment
options, resulting in researchers with specific and invaluable knowledge of a specific type of
cancer. Therefore, each paper focuses on a particular type of cancer for modeling, with the
exception of Bayati et al., who attempted to predict cancer in general [8]. Table 1 outlines
the type of cancer and prediction problem for the 22 papers reviewed.

3. Cancer Risk Models

3.1. Data Sources and Features

Patient data is collected from a variety of sources, and the availability of each varies
based on the ease of collection, cost, and data storage methods [9]. This paper focuses on

1http://www.ncbi.nlm.nih.gov/pubmed
2https://scholar.google.com/
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studies that utilize structured (non-free text) clinical information, as this data is widely
collected and has the greatest value for efficient modeling of cancer risk and recurrence.

3.1.1. Molecular Data

Collection of molecular data, such as genomic or proteomic information, is still inhibited
by cost and availability of facilities to handle sequencing a large number of patients. While
molecular data has been shown to be highly valuable in many cancer research settings [10],
it is not yet captured for the majority of patients, so there would be a small impact in the
area of population-level cancer risk modeling. Therefore, papers using molecular data are
excluded from this review.

3.1.2. Clinical and Practice Data

There is a large amount of information collected about routine clinical encounters in
hospitals and private practices. Billing data, such as insurance claims for procedures and
medications, have mature data sharing standards due to their financial impact and need
for consistency. Coding standards include Current Procedural Terminology (CPT) [11] for
procedures performed by a physician, and International Classification of Diseases (ICD)
for specifying which diagnoses warrant the procedure being billed for [12]. While these
codes provide a standard for data collection, there is more clinically-relevant information
that is not captured through routine billing data. For example, the ICD-10 code C50.111
represents “malignant neoplasm of central portion of right female breast”, but the tumor
information, progression of the patient’s health, and the patient’s medical and social history
are all unknown. Several papers reviewed utilize ICD codes to determine if a patient has a
certain condition.

Electronic Health Record (EHR) systems have the potential to capture large databases of
clinical patient data relating to office and hospital visits, medical history, lab and pathology
results, prescriptions, and social and demographic information. The biggest promise of EHR
systems is being able to collect structured data at the point of care by physicians themselves,
preventing the “garbage in-garbage out” problem of big data. This information is more
advantageous for cancer risk and recurrence prediction, because the clinical information is
often more valuable than the financial information (procedures and billing). For example
the number of adenomatous polyps, or family history determines the risk profile for colon
cancer. With melanoma, family history, proximity to the equator, number of sunburns, and
the number of clinically atypical nevi are all factors that lead to developing the cancer.
With the increasing adoption of these systems (due to governmental regulations such as the
Affordable Care Act [13]) comes greater possibilities for utilizing this data to both improve
patient outcomes and reduce healthcare costs. However, there are barriers to fully unlocking
the potential of this data. EHR systems are developed independently and often maintain
proprietary standards for data collection and storage. Furthermore, many EHRs capture
clinical information via free-text notes, making it difficult to extract structured information
for use in automated decision support algorithms. While there is a great deal of research
involving Natural Language Processing (NLP) techniques to extract structured elements
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from free-text data [14], papers using these techniques on free-text notes are excluded from
this review.

Though not mentioned in the articles reviewed, other standards exist for capturing clin-
ical data that is transferred between multiple parties to efficiently care for patients. ePre-
scriptions, prescriptions that are sent electronically from the doctor’s office to a pharmacy,
use standards such as National Drug Code (NDC) numbers and RxNorm [15] to ensure
the correct medications are given to the patient. Logical Observation Identifiers Names and
Codes (LOINC) are used to maintain consistency in the ordering and reporting of lab results
and other clinical observations. The Systematized Nomenclature of Medicine (SNOMED)
maintains coding standards for clinical information such as diagnoses, family history, aller-
gies, social information, and others. The adoption of these standards is not consistent across
medical providers, but when used, they provide valuable structured information that can be
used to further population health research.

3.1.3. Social and Lifestyle Data

Social and lifestyle data can be important to modeling the risk for certain cancers. Smok-
ing has been shown to be associated with lung cancer [16], alcohol consumption with liver
cancer [17], and UV light exposure with skin cancer [18]. This data can be captured through
routine clinical encounters using EHR systems, or through surveys and questionnaires given
to patients. Several studies from the National Cancer Center of the Republic of Korea use
data collected from health exams that include lifestyle information such as alcohol use and
smoking status [6].

3.1.4. Clinical Registries

Clinical registries help solve research problems by maintaining a centralized database
of clinical information specific to certain patient populations. The data points captured
are often based on expert knowledge of the disease being studied, and can be submitted
through electronic connections with digital record systems or manual input. Therefore, the
data stored in these registries can be from multiple different sources, such as demographic,
billing, pathologic, and tumor information. Registries are common for high-profile diseases,
such as cancer, and many governments require that all cancers be recorded in a local or
national cancer registry [19]. The same studies mentioned in Section 3.1.3, from the Korean
National Cancer Center [5], and one study from Linköping University in Sweden [20], link
data from a national cancer registry to determine when a patient developed cancer, and a
national death registry to determine when and why a patient died. Many articles in this
review build models from data stored in clinical registries.

3.1.5. Feature Types

Figure 1 outlines the different types of features for papers profiled in this review, based
on the prediction problem (risk or recurrence). Note that the feature types used refer to
those features that remained in the final model, not all features available to the researchers.
The feature categories are as follows:

5



0

5

10

15

Demographic Lab Histopathologic Clinical Lifestyle

Feature Type

N
um

be
r 

of
 A

rt
ic

le
s

Problem
Recurrence

Risk

Figure 1: Feature Types by Prediction Problem (22 total articles). Many articles use more than one feature
type.

• Demographic: Patient demographic information. The papers profiled only used age
and/or sex, while one paper used race [7].

• Lab: Laboratory test results, such as white blood cell count, hemoglobin, glucose,
triglycerides, etc.

• Histopathologic: Cancer and tumor-related information, such as the location, tumor
size, metastasis, stage, margins, etc.

• Clinical: Treatments, family history, vitals, and other routinely captured clinical
information that does not fit into any of the other categories.

• Lifestyle: Social history information such as smoking status and alcohol use.

Understandably, papers predicting disease risk do not use histopathologic data, since
the patient has not yet developed a cancer, while papers predicting recurrence have found
that the tumor information is valuable for their models. There is the possibility of using
histopathologic data for risk prediction, however, as one cancer may predict another type
of cancer. For example, pancreatic cancer patients are at a higher risk for melanoma,
while one breast cancer or melanoma puts a patient at risk for another. Four of the risk
prediction papers that used lifestyle information were all created from the same biennial
health examination program run by the Korean Health Insurance Corporation from 1996-
1999 [21]. Additionally, no papers used all five categories of data, while most papers used
two or three.
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3.2. Models in Practice

Several prognostic and predictive models are used, or available for use, in clinical prac-
tice. Some of these are not based on statistical or machine learning models, but rule-based
methods or clinical guidelines.

3.2.1. Cancer Staging

The TNM Classification of Malignant Tumors is an international standard developed and
maintained by the American Joint Committee on Cancer (AJCC) and Union for Interna-
tional Cancer Control (UICC) to describe the stage of a cancer tumor when it is diagnosed.
This standard measures the size of the primary tumor (T), spread to regional lymph nodes
(N), and the presence of distant metastasis (M) [22]. The staging is used to bucket patients
into mutually exclusive groups based on their tumor characteristics, providing a means to
determine prognosis of the disease, including the risk of recurrence [23][24]. Several papers,
namely Cahlon et al. [24], Weiser et al. [25], Bochner et al. [26], and Marelli et al. [27],
built models to predict the risk of cancer recurrence, and found that their models were more
accurate than using TNM staging alone.

3.2.2. Nomograms

A nomogram is a graphical calculating device that allows a mathematical equation to be
answered by aligning a straight-edge across values of different inputs, with the end of the
straight-edge pointing to the result of the equation (see Figure 2a). Nomograms for oncology,
widely studied by researchers at the Memoral Sloan Kettering Cancer Center (MSKCC),
can produce succinct formulas that determine a patient’s risk for certain clinical events,
including the development or recurrence of a cancer [28]. Rather than utilize the archaic
means of aligning a ruler to a page, MSKCC publishes these nomograms as online forms
to be used by both physicians and patients3 (see Figure 2b). These nomograms were built
using regression techniques, such as Cox Proportional Hazards or competing risk survivial
analysis, with the aim to use the minimum number of variables necessary to produce accurate
results. Nomograms specific to cancer recurrence prediction were developed for: Sarcoma
(Cahlon et al. [24]), Colon Cancer (Weiser et al. [25]), Breast Cancer (Rudloff et al. [29]),
and Bladder Cancer (Bochner et al. [26]).

3.2.3. Breast Cancer Recurrence Models

Kim et al. [4] built a model for predicting breast cancer recurrence, and compared it
to several other established guidelines: St. Gallen, Nottingham Prognostic Index (NPI),
and Adjuvant! Online. The St. Gallen International Expert Consensus, in 2009, published
several factors that contribute to a low-risk of recurrence, thus informing the use of adju-
vant therapies post-surgery [30]. Researchers at the Nottingham City Hospital, in 1982,
conducted retrospective multivariate analysis of breast cancer patients to build a prognostic
model for survival, resulting in the NPI [31]. Kim et al. used this score to group patients into
risk groups for recurrence. Cirkovic et al. also used the NPI index as an input to their breast

3https://www.mskcc.org/nomograms
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(a) Manual nomogram. Lines are drawn from each feature to a particular score at the top line
depending on the value of that feature. These points are then added up to reveal the predicted
recurrence probability at either three or five years. The two styles of arrows indicate two different
predictions made using the nomogram.

(b) Online version of the nomogram.

Figure 2: Example Nomogram [24].

cancer relapse prediction model [32]. Adjuvant! Online is a web-based tool for determining
survival and recurrence rates based on several factors4 [33]. Kim et al. found their Support
Vector Machine (SVM) model to be superior to the three established models, indicating that
there is more research to be done to build clinically effective recurrence predictors.

4https://www.adjuvantonline.com/
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4. Statistical and Machine Learning Methods

All articles in this review build predictive models to determine if a patient will develop
a cancer, or recur, in the future. The techniques used, however, differ between studies.
Generally, a study used either classical statistical methods, such as regression and survival
analysis, or machine learning methods, such as Artificial Neural Networks (ANN), Support
Vector Machine, or tree models. A few studies used hybrid approaches or compared sta-
tistical and machine learning methods. Studies produced by the same institution tend to
use the same methods. For instance, four studies from MSKCC all used survival analysis
techniques, and four studies from the National Cancer Center in Korea also used survival
analysis techniques.

The goal of our analysis is to provide a snapshot of the current techniques used in
the literature and discuss gaps in research, but not to extensively describe the theory and
implementation of these models. For more details on models specifics, the references cited
in each section should be explored.

4.1. Statistical Models

Modeling of disease risk or recurrence is easily framed as a survival analysis problem, and
many studies utilize survival analysis techniques to construct their predictive models. Cox
Proportional Hazards [34] is typically the model of choice, as it allows for time censoring and
multivariate analysis. It is a regression model that creates a function of time, from baseline
covariate values, that model the probability of an event occurring at any future time. In risk
prediction studies, the event is the diagnosis of cancer, and time zero is either the enrollment
in a study, or start of the observation period. In recurrence prediction studies, the event is
the recurrence of cancer, and time zero is the date of a potentially curative treatment (often
the surgical removal of a tumor). A patient is censored when follow-up is lost before the event
occurs, which is typically the end of the follow-up period, but may be other scenarios such
as a patient dropping out of the study or death. To handle a large number of patient deaths
not due to the recurrence of Sarcoma, Cahlon et al. used a competing risk survival analysis
model [35], treating non-recurrent death as a competing risk [24]. This study is the only
one profiled performing survival analysis with a model different than the Cox Proportional
Hazards model.

To visualize and intepret the results of survival models, a Kaplan-Meier curve is often
generated. A Kaplan-Meier curve estimates the survival function of different cohorts of
patients and plots the probability of survival along a time axis. Traditionally, this allows
for comparison of patient cohorts with different characteristics of treatment regimens to
determine which treatment to select for a new patient. A Kaplan-Meier analysis is not
limited to predictions made from a statistical survival model, as a machine learning algorithm
can also output whether or not a patient will survive. An example is shown in Figure 3,
where Kim et al. use a Kaplan-Meier curve to compare the survival rates of high-risk and
low-risk patients as determined by a machine learning model [4].

Logistic regression (LR) is another widely used statistical model. This technique allows
for multivariate analysis and modeling of a binary dependent variable [36]. Essentially, a
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Figure 3: Example Kaplan-Meier curve [4]. The event is recurrence-free survival. The low-risk and high-risk
labels are assigned to patients based on the output of the predictive model. This graph shows that the
model does indeed discriminate between high-risk and low-risk patients.

linear regression model is built on the covariates, and then a logistic function is applied
to discriminate between the two classes of output. El-Serag et al. used logistic regression
models to predict the development of Hepatocellular Carcinoma (HCC), a form of liver
cancer, within 6 months of an α-fetoprotein (AFP) test [37]. Among other models, Cirkovic
et al. built a logistic regression model to predict recurrence after surgery for breast cancer
[32]. Bayati et al. compare a traditional LR model to their own improved LR models based
on multi-task learning, as their model attempts to predict risk of multiple different diseases
(of which cancer is one) [8]. Regression models are widely used and understood in medical
literature due to the simplicity of the fitted model. It is easy for a practitioner to see which
features contribute toward the prediction [38]. However, regression models are not ideal for
problems that do not easily fit to a linear model (or using non-linear techniques such as
restricted cubic splines or fractional polynomials). Additionally, interpretability is limited
for models that utilize a large number of variables.

4.2. Machine Learning Models

Decision trees are fairly interpretable ML models that can be used for regression or
classification. They produce an output similar to a flow chart, allowing a path to be traversed
based on the value of the instance in question, resulting in a predicted value. The model
is trained by selecting a feature that best discriminates between the different outcomes,
splitting the tree on this feature (node), and recursively performing this split on each new
node that is generated. This produces a tree-like graph, and new instances can be scored by
traversing the path created based on the instance’s feature values. Various parameters of the
model will determine when this splitting stops (number of iterations, number of nodes, etc.).
Since the model is selecting features to split the tree on at each node, there is an inherent
feature reduction that occurs, resulting in the most informative features being included in
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Figure 4: Example Decision Tree [40]. Each node presents the number of training instances in that node,
and the percentage of those that did not recur within 5 years.

the model. Several studies use trees for feature selection, as will be seen in Section 4.3.
Common algorithms for decision trees are C4.5 [39], C5.0 (an improved, commercialized
version of C4.5), and Bayesian trees [40]. An example tree is shown in Figure 4, with
the percentage at each node representing the probability of not having local recurrence of
breast cancer in 5 years [40]. Tseng et al. find that their C5.0 model performed best when
selecting two features to model the risk of recurrent cervical cancer [41]. Radespiel-Tröger
et al. construct decision trees to model the recurrence of colon cancer within five years of
curative resection [42]. Cirkovic et al. and Ahmad et al. both utilize a C4.5 model (among
others) to predict recurrent breast cancer [32][43].

An adaptation to the decision tree model is called Random Forest. In a Random Forest,
multiple trees are built and predictions are decided by majority voting. Bagging is used to
construct the trees so that a random subset (with replacement) of features and a random
subset of data are selected to build each tree. While building the trees, a random subset
of features are considered at each decision node. After all trees are built, classification
takes place by evaluating the instance with respect to all trees and the decision is the one
agreed by the majority of the trees. Singal et al. utilize a Random Forest to predict the
development of HCC in patients with cirrhosis [7]. While Random Forests can often be
superior to single decision trees, the multiplicity of trees in the model makes it difficult to
interpret and present to those not familiar with the technique.

Another widely used model in healthcare analytics is the Support Vector Machine (SVM).
An SVM creates a set of hyperplanes for each feature in an infinite dimensional space, and
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Figure 5: Basic framework of an SVM [4].

fits linear or nonlinear models that most effectively discriminate between the values of a
binary output variable [4]. Kim et al. (Figure 5) provide a basic description of an SVM
model in their paper that discriminates between recurrence and non-recurrence in breast
cancer patients [4]. Tseng et al. [41], Cirkovic et al. [32], Liang et al. [44], and Ahmad et
al. [43] all use SVMs to predict cancer recurrence.

A popular model in the machine learning community is the Artificial Neural Network
(ANN). Variations of ANNs have been shown to be highly effective in unsupervised learning
tasks such as image recognition [45]. ANNs, however, are very useful for supervised learning
tasks such as disease prediction [46]. A neural network is roughly modeled after the way
the human brain works, by creating nodes (neurons) that give weights to certain inputs and
produce an ouput value. Multiple layers of nodes are tied together with an input layer taking
in the value of the independent variables, and an output layer with nodes repsenting each of
the possible outcome values. The weights at each layer in the network are modified as the
model learns through back-propagation. When one node in the output layer is positive, the
value at the node is taken as the prediction. When there is a large number of intermediate
layers, this is often called “deep learning”, and has shown impressive results for very complex
modeling problems [46]. Ahmad et al. provide an illustration of a basic network in Figure
6 [43]. Jerez-Aragonés et al. construct neural networks to predict the recurrence of breast
cancer after surgery [47]. They construct multiple models with different network toplogies
based on different time intervals, with the theory that recurrence risk is dependent on the
amount of time after surgery, and not all features will have the same weight at different
follow-up times [47]. Tseng et al. used a modification of an ANN, called Extreme Learning
Machine (ELM), that randomly assigns the input weights while modeling the output weights
of the network [41]. This makes the ELM model much faster to train than a typical ANN.
Razavi et al. [20], Kim et al. [4], Cirkovic et al. [32], and Ahmad et al. [43] also use an
ANN to model disease risk.

While machine learning methods can improve prediction accuracy over traditional regres-
sion techniques, there are several considerations when exploring different types of models.
Van der Ploeg et al. showed that machine learning models can be “data hungry”, mean-
ing that they require more samples than classical techniques to achieve stable results [48].
Since modern machine learning techniques have been shown to have very good predictive
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Figure 6: Basic framework of an ANN [43].

accuracy in other domains, it may be tempting to take a large medical dataset and blindly
apply a robust model (such as Random Forest) to the data. This may not produce ideal
results, because there are likely only a small number of variables that have clinical meaning
for the particular problem [38]. Machine learning researchers should work closely with do-
main experts to determine which types of models work best for a particular problem. For
more considerations when choosing between classical and machine learning methods, see
Steyerberg et al. [38].

4.3. Feature Reduction

The first step in training a predictive model is determining what input features to provide
to the model. Often, this is limited by the availability of variables in the database that is
used to collect and store the clinical data (see Section 3.1). Additionally, computational and
inferential complexity is a factor that can limit the number of features that can be used by
the model. In most statistical models, a small number of features is necessary to interpret
the significance of features and their combinations. For both statistical and machine learning
models, there can be too many iterations or computations necessary, resulting in models that
require too much time or computational resources to be built. Feature reduction can also
be important in the context of deploying models for use in the clinical setting. If users of
the prediction model need to manually enter the variables before a prediction can be made
(i.e. in an online nomogram), the least number of variables should be included to improve
the user experience of the model.

In most papers profiled, the authors have access to a dataset with a certain number of
attributes, and these attributes are examined in the context of the research problem. In
nearly every case, a domain expert, such as a physician or oncology researcher, will inform
the analysts about features he or she believes will be important to the model. These studies
then only focus on these features.

Most studies perform a univariate analysis to find which covariates have a statistically
significant correlation with the output variable (see Figure 7). Then, only these features are
used for the subsequent model. Methods include the Pearson correlation coefficient, mutual
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information, or distance correlation. This generally results in less than 10 features input to
the model, which is desirable to allow interpretation of regression models.

4.3.1. Feature Selection Techniques

One approach to feature reduction is the use of feature selection algorithms, commonly
used for ML models that require large feature vectors [49]. Many of these algorithms uti-
lize univariate analysis methods, such as information gain or mutual information. They
can, however, produce more than a single output for each feature (i.e. significant or not
significant). Feature rankers order the features according to a certain statistic, leaving the
practitioner to determining how many of the top features he or she wants to include in the
model. Cirkovic et al. combined three different feature rankers from the Weka ML toolkit
[50] (mRMR, ReliefF, and Information Gain), to select the top 20 most relevant features for
use in their ML models.

Feature subset selection techniques evaluate features in groups to determine which sub-
set is most informative for the predictive model. Razavi et al. apply Canonical Correlation
Analysis (CCA) to reduce their feature set in the context of breast cancer recurrence predic-
tion. CCA is a subset selection technique that finds the subset of features that most correlate
with an output set of features. In CCA, the output must be a set of features, rather than
a single variable, so the authors broke down the recurrence variable into different types
of recurrence (loco-regional recurrence or distant metastasis) for the feature selection step.
Once the most informative features were selected, they included those features in a neural
network to predict the binary outcome of recurrence. Liang et al. utilized two feature subset
selection techniques, namely Genetic Algorithm (GA) [51] and Simulated Annealing (SA)
[52] to reduce the feature space provided to their SVM model.

Several predictive models, such as decision trees, effectively perform feature selection as
part of the model building process. The p-values from a statistical model can also be used
as a form of feature selection, by only selecting those features that have significant p-values
(often <0.05). Jerez-Aragonés et al. use a decision tree model to first select important
features, then build ANNs to predict recurrence of breast cancer [47]. Tseng et al. [41],
Radespiel-Tröger et al. [42], Cheng et al. [40], and Singal et al. [7] built models with trees
or forests, limiting the features used to those in the resultant trees. Li et al. built a logistic
regression model using features that were found to be statistically significant from a Cox
survival model [53]. In addition to feature subset selection techniques alone, Liang et al.
combined both the GA and SA algorithms with Random Forest to create a hybrid model
and subset-based feature selection approach [44].

4.4. Hybrid Models and Comparisons

In complex modeling problems, there is often not a one-size-fits-all approach that can be
used. Researchers must explore various model options and determine which one works best
in the context of the research problem. Additionally, different techniques can be combined
to produce the best results.

Several studies profiled in this paper compare different ML models to each other, or
compare ML models to a statistical model. Jerez-Aragonés et al., Kim et al., and Singal et
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Figure 7: Feature Selection and Model Algorithm Methods. Studies with more than one method are counted
multiple times. Feature Selection indicates use of a feature ranker or feature subset-selector. Left: Model
Algorithms are grouped by their algorithm family. Right: Each model algorithm is outlined.

al. all find an ML model to have better performance than a Cox survival analysis model.
Bayati et al. compare their enhanced multi-task regression models to a typical logistic model
and find their method to be superior [8]. Tseng et al. find that a C5.0 decision tree performs
better than an SVM and ELM model [41], while Cirkovic et al. find that an ANN model
performs better than a C4.5 tree, SVM, logistic, and Näıve Bayes models [32]. Ahmad et
al. find that an SVM outperforms both a C4.5 and ANN model [43].

Jerez-Aragonés et al. use a hybrid model by building a decision tree for feature selection,
then an ANN for prediction [47]. Li et al. use Cox regression for finding important covariates
then use those features as inputs for a logistic predictive model [53].

Figure 7 illustrates the different statistical and machine learning models, and feature
selection methods used in the articles reviewed. The most widely used model combination
is Cox regression, and most of those models utilized univariate analysis to select important
features. SVM models tended to use feature rankers, subset selectors, or model-based feature
selection.

4.5. Model Evaluation

Performance evaluation is an important step when creating a classification model, as the
model must be proven to be accurate before using it to inform clinical decision-making. The
most basic form of performance evaluation is predictive accuracy, which gives the percentage
of instances that the model correctly labeled. This can be a biased measure, especially in
cancer settings, as the class labels can be imbalanced, meaning there are many more patients
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that do not develop the disease than those that do. For example, if 10 out of 1,000 patients
in a dataset develop the disease, the model can simply label all 1,000 patients as negative
(not developing the disease), and still achieve an accuracy of 99%. Therefore, other metrics
based on a confusion matrix (see Table 2) are calculated:

• True Positive Rate (TPR, sensitivity, recall): TP/(TP + FN)

• True Negative Rate (TNR, specificity): TN/(TN + FP )

• False Negative Rate (FNR): FN/(TP + FN)

• False Positive Rate (FPR, 1 - specificity): FP/(FP + TN)

• Positive Predictive Value (PPV, precision): TP/(TP + FP )

Confusion matrix-based metrics can also be biased, as many models produce a score, or
a probability as the output rather than a concrete class label. A discrimination threshold
must be set to determine at which point the score results in a positive or negative class
value. It is important to evaluate these metrics in the context of the research problem.
Many papers in the healthcare space report metrics using sensitivity and specificity, and
since these metrics are inversely proportional to each other, the importance of each of will
vary depending on what is being modeled. For example, if the model is trying to flag patients
to screen for a particular cancer, a high sensitivity is desired to make sure that patients at
risk for the disease are not missed. Setting the discrimination threshold for a maximum
sensitivity, however, will drastically decrease the specificity and increase the false positive
rate. This results in many low-risk patients being advised for screening, increasing patient
mental burden and overall healthcare costs.

To handle multiple different discrimination thresholds, a Receiver Operating Character-
istic curve (ROC) is generated [54]. The ROC curve plots the TPR (or sensitivity) against
the FPR (or 1 - specificity) against a range of discrimination thresholds. An example ROC
curve is shown in Figure 8, taken from Kim et al. [4]. By taking the area under the curve
(AUC), a single metric is produced that is not dependent on the discrimination threshold.
This metric is the probability that the model will rank an arbitrary positive instance higher
than an arbitrary negative instance (in terms of the probability of an instance being posi-
tive). In papers that use statistical methods, the AUC is also denoted as the Concordance
Index, or C-index. Most papers profiled report confusion matrix-based metrics, as well as
an AUC score, for their models.

In addition to reporting performance measures on the training dataset, some sort of
validation set must be used to prove that the prediction model can accurately predict on new
instances, and is not overfit to the training data. This can be accomplished by splitting the
dataset into training and testing sets, using an independent validation set, or by performing
boostrapping or cross-validation. Validation using bootstrapping resamples the training
data with replacement to create a training set, and uses the rest of the instances as a test
set. This is repeated n number of times and the results combined to produce the final
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Table 2: Confusion Matrix.

Predicted
Values

Positive Negative

Actual
Values

Positive
True

Positive (TP)
False

Negative (FN)

Negative
False

Positive (FP)
True

Negative (TN)

Figure 8: Example ROC Curve [4]. A larger area under the curve indicates better model performance.

performance score. Cross-validation is similar to bootstrapping, but divides the dataset into
n folds, using n− 1 folds for training and the final fold for testing. This is then repeated for
the rest of the folds and the results are combined to produce the final performance score.

Of the papers profiled, only two papers did not use a form of validation when reporting
performance of their models. Cheng et al. [40] did not report any model metrics, and Li et
al. [53] only reported performance metrics on their training data. Yu et al. [6], Eom et al.
[5], Shin et al. [55], and Park et al. [21] all utilize the same dataset collected through biennial
health examinations conducted by the Korean Health Insurance Corporation. These four
papers use patients examined from 1996-1997 as their training dataset, and patients exam-
ined from 1998-1999 as their validation dataset. Radespiel-Tröger et al. perform a similar
split, using patients from 1984-1998 for training, and patients from 1978-1983 for testing
[42]. Bochner et al. utilize an international multicenter prospective database from twelve
different institutions [26]. To evaluate model performance, they treat each institution’s data
as a fold, effectively creating a 12-fold institution-based cross-validation. The rest of the
papers analyzed use a typical train/test split, cross-validation, or bootstrapping methods.
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5. Discussion

There are several patterns that can be seen from the studies reviewed in this paper.
Many of the studies achieved relatively low performance compared to predictive results seen
in other domains [56]. These may be improved through certain statistical and machine
learning techniques, while other improvements may be more systemic to the healthcare
system.

5.1. Advanced Methods

Performance of cancer risk and recurrence models can be improved by employing ad-
vanced data mining techniques. While many articles in this field apply statistical survival
analysis models, it has been shown that machine learning techniques can outperform the
statistical techniques [7]. There are many statistical models with acceptable AUC values
(see Table A.4); but as the goal of this field is to provide the most accurate predictions,
potential gains in AUC are worth the exploration of advanced methods.

The papers employing machine learning models tend to use decision tree, neural network,
or SVM models. Decision tree models, similar to regression models, are easy to interpret, but
they can lack in predictive performance. SVMs and ANNs are difficult to interpret, but can
achieve good classification results. Other models, such as Näıve Bayes and Random Forest,
were only used once in the papers studied. Random Forest has been shown to be particularly
useful in the field of genetics [57]. Future work is needed to compare the performance of
different machine learning algorithms in the context of cancer risk prediction.

While algorithm choice can improve model performance, there can be a bottleneck related
to the quality of the input data and how it is structured. The following sections explore
these ideas.

5.2. Temporal Data

Most studies, especially those employing Cox models, take a snapshot of patient data
at the beginning of the follow-up period (time 0), and use this data to make predictions
months or years into the future. While some variables do not change (such as tumor staging
information), clinical data about a patient (such as vitals, lab tests, treatment, or prescrip-
tion history) can change as time progresses. Models that only use data from one point in
time can lose this information. Bayati et al. build predictive models using lab results taken
during one month; these results may be captured multiple times during the month, in which
case they average the results of the lab tests [8]. The four papers built using physical ex-
amination data from the Korean Health Insurance Corporation only use a snapshot of data
taken from a certain point in time. Liang et al. only used data that is closest to the treat-
ment time [44]. All other articles studying recurrence prediction use data from the time of
the potentially curative surgery. Predictive models should exploit the value of longitudinal
data, rather than suppress it. Changes in patient characteristics could potentially result in
biomarkers that are valuable to a predictive model.
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5.3. Missing Data

Missing data is an important problem in all modeling efforts, especially in the healthcare
domain. If certain patient data is missing, such as tumor information or treatment history,
the results can be significantly skewed. In addition to dropping patients, some studies will
merely ignore variables that are available because there is not enough information filled
in. El-Serag et al. chose to ignore lab results because they were too sparsely recorded in
the input data [37]. It is important that all clinical variables are present, as to not bias
the model, but it is also important to have a large sample size to make the model more
generalizable for future instances. While most studies drop patients with missing clinical
variables, there are several techniques that can help keep as many patients as possible in
the model.

The benefit of using a Cox Proportional Hazards model, as opposed to simpler survival
models, is that Cox models allow for censoring of patients that drop out of the study without
experiencing the event in question. This may be due to death not related to the cancer, or
simply not following up at the clinic.

Prospective databases and clinical registries can help produce the most integrous data,
as they can make certain fields mandatory for practitioners to populate as they see patients.
There is a trade-off however, if too many fields are required, the participating investigators
may simply not submit data as it takes away from their time seeing patients. Additionally,
there is an overhead of regulation and management in dealing with prospective studies, as
compared to retrospective studies from EHR systems that are used regularly in practice
[58]. Cahlon et al. [24], Tseng et al. [41], Singal et al. [7], and Bochner et al. [26] all
use prospective databases or registries and do not mention the problem of missing data.
This does not mean they did not encounter missing data, however, as they could have been
filtered from their cohort counts beforehand. Weiser et al. were able to fill in some missing
tumor information by having pathologists review the original slides [25].

Algorithmic techniques can be used to fill in missing values, such as mean imputation, or
the Expectation-Maximization (EM) method. In mean imputation, a certain variable with
missing data is filled in by taking the mean of the other instance’s values [59]. Bayati et
al. utilize mean imputation to substitute values for missing lab tests [8]. Naturally, this
technique can only be used for continuous variables, and may not be desirable as it may
bias those instances that do not have the value recorded by reducing the variance between
values. EM is another method to impute missing values, and involves iteratively maximizing
the log-likelihood of certain parameter values [60]. Radespiel-Tröger et al. dropped patients
with more than one missing variable, but imputed values for one variable with EM as to not
drop too many patients [42]. Ahmad et al. dropped patients with certain missing values, but
used EM to impute other values [43]. While no studies reviewed used multiple imputation
methods [61], techniques such as predictive mean matching can provide additional options
for handling missing clinical data.

5.4. Feature Reduction

While feature reduction is useful for making models more interpretable, it can negatively
impact the performance of the model. Nearly all studies reviewed used features that were
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deemed useful by a domain expert. A machine learning model, however, can often pick up
on hidden patterns in data that humans cannot. Therefore, it can be advantageous to at
least try building a model with all available features, or use a feature selection algorithm
to reduce the feature set. Additionally, many studies only included covariates that were
found to be statistically significant through univariate analysis. This can also decrease
model performance, as a variable can still provide value to a model even if the p-value is
not significant. Liang et al. found that univariate analysis resulted in only one significant
variable, but their feature selection techniques selected four features to be included in their
predictive models [44]. The models that utilized feature selection had better results than
those that used the single significant variable.

5.5. Necessity of Structured Clinical Data

The field of cancer risk modeling can benefit most by increasing the amount of data
that is available to researchers and machine learning experts. This advancement is hindered
by the lack of structured clinical data available in EHR systems, as many still record free-
text clinical notes. Medical providers must also utilize all the functionalities available in
an EHR system to capture the most complete and valuable data. Paré et al. studied
family practice physicians in Canada, and found that the majority of them did not utilize
all available features in their EHR systems, which included e-prescribing, electronic lab
ordering, secure data transmissions, and more [62]. Additionally, data privacy concerns
often result in institutions or cloud-based EHR systems keeping terabytes of data locked
away in private servers, especially if the data is free-text, as it is especially difficult to de-
identify clinical notes [63]. Research in anonymization techniques must continue to help
alleviate these concerns [64], as well as policies put in place to allow for more data sharing
without breaching patient privacy.

While the adoption of EHRs has increased due to governmental requirements (such as
the Affordable Care Act), the EHR industry is fragmented and data sharing is difficult.
Standards need to be developed and enhanced to allow sharing of detailed clinical informa-
tion. Through a study of mental health patients in Massachusetts, Madden et al. found
that over half of the incidents of outpatient care were not captured in the patients’ EHR
system, as they occurred outside of the medical practice [65]. These data points were still
covered, however, by insurance claims data. Ahmadian et al. specifically studied the data
standards used in Clinical Decision Support Systems (CDSS), and found that many users
of these systems were limited by incomplete data sharing standards and capabilities [66].

All papers studied only have age or sex as available demographic information (except
one that uses race [7]). Due to practical necessity and Meaningful Use (MU) requirements
from the Affordable Care Act, many other variables such as geographic information, smok-
ing status, and alcohol use, are collected. These can provide valuable insights for modeling
cancer risk, as there may be hidden biomarkers that contribute to cancer development. Ad-
ditionally, EHR systems record real-world clinical data at the point-of-care, making models
built from these datasets more generalizable to the public. Clinical trials and prospective
observational studies may have small cohort sizes and can be biased towards the patients in
the study.

20



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●Ahmad
Cahlon
Cheng

El−Serag
Eom

Jerez−Aragones
Kim

Li
Liang

Marrelli
Park

Radespiel−Troger
Razavi
Rudloff

Shin
Singal

Weiser
Yu

1985 1990 1995 2000 2005 2010 2015

Year

P
ap

er

● ●Published Study Period

●

●

●●

5

10

15

20

25

30

Study Start Study End

Ye
ar

s
Figure 9: Year Published vs. Study Period. Four papers did not disclose study period and are excluded from
this figure. Left: The line with arrows indicates the duration of the study period, and the dot indicates the
year of publication. Right: Boxplot summarizing the distributions of the time between the year published
and year of study start or end.

Data must also be shared between clinical and non-clinical settings. For example, four
papers studied data from Korea that were linked from a physicial health examination, the
national cancer registry, and the national death registry. This allowed for large-scale popu-
lation health analysis, and they where able to build personalized predictive models for many
different types of cancers. Razavi et al. were able to used linked data from the breast cancer
registry, tumor registry, and death registry from Sweden [20].

5.6. Old Data

Due to the overhead of prospective data collection, privacy and legal issues, and modeling
difficulty, studies often analyze data from many years in the past. This is not desirable, as
clinical guidance is constantly changing based on medical breakthroughs and clinical trial
results. A model built from data that is ten years old will be biased towards the treatments
used and knowledge from that era, and may not be as accurate for current patients. Rudloff
et al. created a covariate indicating if a patient was treated from either 1991-1998 or 1999-
2006, as several key articles were published, resulting in significant changes in treatment
patterns of breast cancer [29]. They found this covariate to be a statistically significant
predictor in their model. Figure 9 illustrates the time between the study period start or end
and the date of publication of the study. It can be seen that most studies are published at
least five years after the end of the study period. Operational, policy, and data management
efforts must be made to enhance the speed at which models can be built from current
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data. Additionally, online models can be built to utilize real-time data coming from EHR
systems. While this requires major enhancements in infrastructure and data management,
it will provide the most valuable models for predicting the risk and recurrence of different
types of cancers.

6. Conclusion

This paper presents a comprehensive review of literature utilizing data mining techniques
to perform cancer risk and recurrence prediction. This field is important, as these models
can inform patient screening and treatment patterns, potentially improving patient outcomes
and reducing overall healthcare costs. The key impact of these models is reducing costs.
Governments spend billions of dollars on chronic conditions and acute end of life care. These
models can determine who to spend those resources on, and more importantly, who not to
spend those resources on. This both improves patient care and reduces operating costs,
allowing funds to be spent advancing cutting-edge developments in cancer care.

The data provided to these models must be structured, frequently captured, and clinically
relevant as to apply to large populations of patients. Coding standards must be enhanced
to allow many different clinics and hospitals to exchange structured clinical data. While
many standards exist for financial, laboratory, and prescription data, there are gaps in the
transfer of point-of-care data such as outcomes and treatment plans.

Trends in statistical and machine learning techniques are presented, and analysis is per-
formed to provide several valuable avenues for future work. Many studies utilize statistical
survival analysis techniques, such as the Cox Proportional Hazards Model. Those that do
not use survival analysis build predictive models using machine learning techniques such as
Decision Trees, Neural Networks, and Support Vector Machines. To propel research in this
area, advanced modeling methods using state of the art machine learning techniques must
be employed, including time-series analysis, missing data imputation, and feature selection.
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Appendix A. Appendix

Tables A.3 and A.4 summarize all articles reviewed in this survey. Both tables have a
row for each paper, while the columns display different information.
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Table A.3: Summary of Articles

Paper Data Source(s) Cancer Type Prediction
Problem

Published Study
Period

# Instances # Features

Park et al.
[21]

Korean Health Insurance
Corporation, Korean Central
Cancer Registry, National
Statistical Office (Korea)

Lung Risk 2013 1996-2007 1,309,144 Unknown

Singal et al.
[7]

University of Michigan Hepatology
and Transplant Hepatology clinics
(prospective database), Hepatitis
C Antiviral Long- term Treatment
against Cirrhosis (HALT-C)
Clinical Trial

Hepatocellular
Carcinoma

Risk 2013 2004-2010 1,492 Unknown

El-Serag et
al. [37]

Department of Veterans Affairs
Hepatitis C Virus Clinical Case
Registry

Hepatocellular
Carcinoma

Risk 2014 1998-2006 11,721 Unknown

Shin et al.
[55]

Korean Health Insurance
Corporation, Korean Central
Cancer Registry, National
Statistical Office (Korea)

Colon Risk 2014 1996-2007 1,326,008

Bayati et al.
[8]

Kaggle Practice Fusion (KPF) &
Stanford Hospitals and Clinics
(ST)

Any Risk 2015 Unknown 75,619 (ST)
1,096 (KPF)

1,313 (ST)
285 (KPF)

Eom et al.
[5]

Korean Health Insurance
Corporation, Korean Central
Cancer Registry, National
Statistical Office (Korea)

Gastric Risk 2015 1996-2007 2,176,501

Yu et al. [6] Korean Health Insurance
Corporation, Korean Central
Cancer Registry, National
Statistical Office (Korea)

Pancreatic Risk 2016 1996-2007 2,975,369 Unknown

Jerez-
Aragonés et
al. [47]

Medical Oncology Service of the
Hospital Clinico Universitario of
Málaga, Spain

Breast Recurrence 2003 1990-2000 1,035 85

Radespiel-
Tröger et al.
[42]

Erlangen Registry of Colorectal
Carcinoma

Colon Recurrence 2004 1984-1998 641 16

Razavi et al.
[20]

Breast cancer registry, Tumor
registry, Death registry (Sweden)

Breast Recurrence 2005 1986-2003 5,787 150

Marrelli et
al. [27]

Italian Research Group for Gastric
Cancer Prospective Database

Gastric Recurrence 2005 1988-1999 536

Bochner et
al. [26]

International Bladder Cancer
Nomogram Consortium Post-RC
Database

Bladder Recurrence 2006 Unknown 9,064 14

Cheng et al.
[40]

Koo Foundation, Sun Yat-Sen
Cancer Center, Taipei, Taiwan

Breast Recurrence 2006 1999-2001 1010 (Cox)
255 (tree)

Weiser et al.
[25]

Memorial Sloan-Kettering Cancer
Center

Colon Recurrence 2008 1990-2000 1,320 Unknown

Rudloff et
al. [29]

Memoral Sloan-Kettering Cancer
Center Prospective DCIS Database

Breast Recurrence 2010 1991-2006 1,681 14

Li et al. [53] Shanghai Cancer Hospital of
Fudan University Prospective
Breast Malignancy Database

Breast Recurrence 2011 1995-2009 454

Cahlon et
al. [24]

Memoral Sloan-Kettering Cancer
Center Prospective Sarcoma
Database

Sarcoma Recurrence 2012 1982-2006 684 Unknown

Kim et al.
[4]

Korean tertiary teaching hospital Breast Recurrence 2012 1994-2002 679 193

Ahmad et
al. [43]

Iranian Center for Breast Cancer Breast Recurrence 2013 1997-2008 547 22

Tseng et al.
[41]

Chung Shan Medical University
Hospital Tumor Registry (Taiwan)

Cervical Recurrence 2014 Unknown 168 12

Liang et al.
[44]

National Taiwan University
Hospital

Hepatocellular
Carcinoma

Recurrence 2014 2007-2009 83 16

Cirkovic et
al. [32]

Clinical Center of Kragujevac,
Serbia prospective database

Breast Recurrence 2015 58
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Table A.4: Summary of Articles (continued)

Paper Feature
Reduction

# Selected
Features

Feature Types Handle Missing
Data?

Models Best Results

Park et al.
[21]

Univariate
Analysis

7 Demographic, Lab,
Clinical, Lifestyle

Dropped patients Cox 0.864 (AUC)

Singal et al.
[7]

Univariate
Analysis

2 Demographic, Lab,
Clinical, Lifestyle

Cox, Random Forest 0.64 (AUC)

El-Serag et
al. [37]

Univariate
Analysis

4 Demographic, Lab Dropped features Logistic Regression 0.815 (AUC)

Shin et al.
[55]

Univariate
Analysis

10 (men), 8
(women)

Demographic, Lab,
Clinical, Lifestyle

Dropped patients Cox 0.77 (men), 0.72
(women)

Bayati et al.
[8]

30 Demographic, Lab Imputed missing
lab values

Single task learning,
Multi-task learning,
OLR-M

0.87 (AUC,
Stanford), 0.73
(AUC, Kaggle)

Eom et al.
[5]

Univariate
Analysis

7 (men), 5
(women)

Demographic, Lab,
Clinical, Lifestyle

Imputed values
from nearest
time point

Cox 0.782 (AUC, men),
0.705 (AUC, women)

Yu et al. [6] Univariate
Analysis

7 Demographic, Lab,
Clinical, Lifestyle

Dropped patients Cox 0.80 (AUC)

Jerez-
Aragonés et
al. [47]

Decision
Tree

4-7
(multiple
models)

Demographic, Lab,
Histopathologic,
Clinical

Dropped patients ANN, Cox 0.948 (accuracy)

Radespiel-
Tröger et al.
[42]

Univariate
Analysis

6 Histopathologic,
Clinical

EM imputation
for one missing
feature, else
dropped patients

Decision Tree 0.23 (Brier score)

Razavi et al.
[20]

Canonical
Correla-
tion
Analysis

12 Lab, Histopathologic Dropped patients ANN 0.71 (accuracy)

Marrelli et
al. [27]

Maximum
Likelihood

5 Demographic,
Histopathologic,
Clinical

Dropped patients Logistic Regression 0.861 (accuracy)

Bochner et
al. [26]

7 Demographic,
Histopathologic

Cox 0.75 (AUC)

Cheng et al.
[40]

Univariate
Analysis

5 Demographic,
Histopathologic,
Clinical

Dropped patients Cox, Bayesian Tree Unknown

Weiser et al.
[25]

11 Demographic, Lab,
Histopathologic,
Clinical

Reviewed
pathology
specimen for
missing variables

Cox 0.77 (AUC)

Rudloff et
al. [29]

Univariate
Analysis

10 Histopathologic,
Clinical

Dropped patients Cox 0.68 (AUC)

Li et al. [53] Univariate
Analysis

3 Histopathologic Dropped patients Logistic Regression 0.70 (AUC)

Cahlon et
al. [24]

Univariate
Analysis

5 Demographic,
Histopathologic

Competing Risk
Survival Analysis

0.74 (AUC)

Kim et al.
[4]

Univariate
Analysis

7 Histopathologic Dropped patients Cox, SVM, ANN 0.85 (AUC)

Ahmad et
al. [43]

Demographic, Lab,
Histopathologic,
Clinical

EM imputation,
dropped patients

C4.5, ANN, SVM 0.957 (accuracy)

Tseng et al.
[41]

2 Demographic,
Histopathologic,
Clinical

C5.0, SVM, Extreme
Learning Machine
(ELM)

0.924 (accuracy)

Liang et al.
[44]

GA, SA,
RF

Unknown Demographic, Lab,
Histopathologic

SVM 0.69 (AUC)

Cirkovic et
al. [32]

mRMR,
ReliefF,
InfoGain

20 Demographic, Lab,
Histopathologic,
Clinical

Näıve Bayes, C4.5,
SVM, Logistic
Regression, ANN

0.96 (AUC)
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[62] G. Paré, L. Raymond, A. O. d. Guinea, P. Poba-Nzaou, M.-C. Trudel, J. Marsan, T. Miche-

neau, Electronic health record usage behaviors in primary care medical practices: A survey of
family physicians in Canada, International Journal of Medical Informatics 84 (10) (2015) 857–867.
doi:10.1016/j.ijmedinf.2015.07.005.
URL http://linkinghub.elsevier.com/retrieve/pii/S1386505615300228
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