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NORM-INFLATION WITH INFINITE LOSS OF REGULARITY FOR
PERIODIC NLS EQUATIONS IN NEGATIVE SOBOLEV SPACES

by Rémi Carles & Thomas Kappeler

Abstract. — In this paper we consider Schrödinger equations with nonlinearities
of odd order 2σ + 1 on Td. We prove that for σd > 2, they are strongly illposed in
the Sobolev space Hs for any s < 0, exhibiting norm-inflation with infinite loss of
regularity. In the case of the one-dimensional cubic nonlinear Schrödinger equation
and its renormalized version we prove such a result for Hs with s < −2/3.

Résumé (Croissance de norme avec perte infinie de régularité pour les équations de
Schrödinger périodiques en régularité négative). — Nous considérons des équations de
Schrödinger avec des non-linéarités d’ordre impair 2σ+1 sur le tore Td. Nous montrons
que pour σd > 2, ces équations sont fortement mal posées dans l’espace de Sobolev
Hs pour tout s < 0, avec en outre un phénomène de perte infinie de régularité. Dans
le cas cubique mono-dimensionnel et sa version renormalisée, nous montrons le même
résultat dans Hs, sous l’hypothèse s < −2/3.
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624 R. CARLES & T. KAPPELER

1. Introduction

We consider nonlinear Schrödinger (NLS) equations of the form

(1.1) i∂tψ +
1

2
∆ψ = µ|ψ|2σψ, ψ = ψ(t, x) ∈ C, t ∈ R, x ∈ Td

and the renormalized versions

(1.2) i∂tψ +
1

2
∆ψ = µ|ψ|2ψ − 2µ

(2π)d

(∫
Td
|ψ(t, x)|2dx

)
ψ ,

where σ > 1 is an integer, T = R/2πZ, ∆ =
∑d
k=1 ∂

2
xk
, and µ ∈ {1,−1}.

For any s ∈ R and 1 6 p 6 ∞, denote by FLs,p(Td) ≡ FLs,p(Td,C) the
Fourier-Lebesgue space,

FLs,p(Td) = {f ∈ D′(Td,C); 〈·〉s f̂(·) ∈ `p(Zd)}

with `p(Zd) ≡ `p(Zd,C) denoting the standard `p sequence space. Note that
for any s ∈ R, FLs,2(Td) is the Sobolev space Hs(Td) ≡ Hs(Td,C) and for
any 1 6 p 6 ∞, ∩s∈RFLs,p(Td) coincides with C∞(Td) ≡ C∞(Td,C). The
aim of this paper is to establish the following strong ill-posedness property of
Equations (1.1) and (1.2).

Theorem 1.1. — Let σ, d > 1 be integers.
(i) Assume that dσ > 2 in the case of (1.1) and d > 2 in the case of

(1.2). Then for any s < 0, there exists a sequence of initial data (ψn(0))n>1

in C∞(Td) such that

‖ψn(0)‖FLs,p(Td) −→
n→∞

0, ∀p ∈ [1,∞],

and a sequence of times tn → 0 such that the corresponding solutions ψn to
(1.1) respectively (1.2) satisfy

‖ψn(tn)‖FLr,p(Td) −→
n→∞

∞, ∀r ∈ R, ∀p ∈ [1,∞].

(ii) If d = σ = 1, then for any s < −2/3, there exists a sequence of initial
data ψn(0) ∈ C∞(T) with

‖ψn(0)‖FLs,p(T) −→
n→∞

0, ∀p ∈ [1,∞],

and a sequence of times tn → 0 such that the corresponding solutions ψn to
(1.1) respectively (1.2) satisfy

‖ψn(tn)‖FLr,p(T) −→
n→∞

∞, ∀r ∈ R, ∀p ∈ [1,∞].

Theorem 1.1 implies the following

Corollary 1.2. — Let d, σ > 1 be integers and let s be as in Theorem 1.1.
Furthermore assume that p1, p2 ∈ [1,∞] and T > 0. Then for no r ∈ R,
there exists a neighborhood U of 0 in FLs,p1(Td) and a continuous function

tome 145 – 2017 – no 4



ILL-POSEDNESS FOR PERIODIC NLS 625

Mr : R>0 → R>0 such that any smooth solution ψ to (1.1) (or (1.2)) satisfy
the a priori estimate

‖ψ‖L∞(0,T ;FLr,p2 (Td)) 6Mr

(
‖ψ(0)‖FLs,p1 (Td)

)
.

In particular, for p1 = p2 = 2, there is no continuous function Mr such that
smooth solutions to (1.1) respectively (1.2) satisfy the a priori estimate

‖ψ‖L∞(0,T ;Hr(Td)) 6Mr

(
‖ψ(0)‖Hs(Td)

)
.

Comments. — In connection with the study of ill-posedness of nonlinear Schrö-
dinger and nonlinear wave equations on the whole space Rd, Christ, Colliander,
and Tao introduced in [10] (cf. also [11]), the notion of norm inflation with re-
spect to a given (Sobolev) norm, saying that there exist a sequence of smooth
initial data (ψn(0))n>1 and a sequence of times (tn)n>1, both converging to 0,
so that the corresponding smooth solutions ψn, evaluated at tn, is unbounded.
Further results in this direction were obtained in [2, 5, 6, 20], where in particular
norm inflation together with finite or infinite loss of regularity was established
for various equations on Rd. Theorem 1.1 states that such type of results (in the
strongest sense, since the loss of regularity is infinite) hold true for nonlinear
Schrödinger equations on the torus Td.

Recently, the renormalized cubic Schrödinger Equation (1.2) has caught
quite some attention. In particular, on T, some well-posedness / ill-posedness
results below L2 have been established – see [9], [15] as well as [8], [18]. Al-
though there are indications that (1.2) has better stability properties than
(1.1), our results show no difference between the two equations as far as norm
inflation concerns.

Finally let us remark that the scaling symmetry of (1.1), considered on the
Sobolev spaces Hs(Rd), ψ(t, x) 7→ λ−2/σψ( t

λ2 ,
x
λ ) with λ > 0, has as critical

exponent s2,σ = d
2 −

1
σ since for this value of s, the homogeneous Hs−norm

is invariant under this scaling. More generally, for any given 1 6 p 6 ∞, the
homogeneous W s,p(Rd)−norm is invariant for sp,σ = d

p −
1
σ . It suggests that

the FLs,p(Rd)−norm is invariant for sFLp,σ = d
p′ −

1
σ with 1

p′ = 1− 1
p . Further-

more, the Galilean invariance of (1.1), ψ(t, x) 7→ e−iv·x/2ei|v|
2t/4ψ(t, x− vt) for

arbitrary velocities v, leaves the FL0,p(Rd)−norm invariant. Note that the
statements of Theorem 1.1 for (1.1), considered on Hs(Td), are valid in a range
of s, contained in the half line −∞ < s 6 min(s2,σ, 0).

Method of proof. — Let us give a brief outline of the proof of item (i) of
Theorem 1.1 in the case of Equation (1.1). Following the approach, developed
in [5] and [6] for equations such as nonlinear Schrödinger equations on the
whole space Rd, we introduce the following version of (1.1),

iε∂tu
ε +

ε2

2
∆uε = ε|uε|2σuε, x ∈ Td

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



626 R. CARLES & T. KAPPELER

with ε being a small parameter. The equation is in a form, referred to as
weakly nonlinear geometric optics. A solution uε of it, which is 2π−periodic in
its x−variables, is related to a solution ψ of (1.1) by

uε(t, x) = εβ/(2σ)ψ
(
εβt, ε

β−1
2 x
)

where β > 0 is a free parameter, but chosen so that ψ is also 2π−periodic
in the x−variables. We then construct a first order approximate solution
uεapp(t, x) of uε(t, x) of the form uεapp(t, x) =

∑
j∈Zd aj(t)e

iφj(t,x)/ε where the
phase function φj(t, x) and the amplitude aj(t) are determined in such a way
that uεapp(t, x) solves the above equation for uε up to O (ε). It turns out that

φj(t, x) = j · x − |j|
2

2 t and that the aj ’s satisfy a system of ODEs, defined in
terms of the resonance sets

Resj =

{
(k`)16`62σ+1 ∈ Z(2σ+1)d ;

2σ+1∑
`=1

(−1)`+1k` = j ;

2σ+1∑
`=1

(−1)`+1|k`|2 = |j|2
}
.

The strategy to prove Theorem 1.1 in the case considered is then to choose
initial data for uε of the form uε(0, x) =

∑
j∈S αje

iφj(0,x)/ε with S ⊂ Zd

finite and 0 /∈ S so that the zero mode a0(t)eiφ0(t,x)/ε is created by resonant
interaction of nonzero modes at leading order, ȧ0(0) 6= 0. With an appropriate
choice of the scaling parameter β, the zero mode of ψ comes with a factor
which is increasing in ε. Since the absolute value of the zero mode bounds the
norm ‖ · ‖FLs,p(Td) of any Fourier Lebesgue space from below, it follows that
for any s < 0, 1 6 p 6 ∞, the sequence (‖uεn(tn)‖FLs,p(Td))n>1 is unbounded
for appropriate sequences (εn)n>1, (tn)n>1, converging both to 0. The proofs
of the remaining statements of Theorem 1.1 are similar, although a little bit
more involved.

Related work. — There are numerous works on ill-posedness for equations such
as (1.1). Besides the papers already cited, we refer to the dispersive Wiki
page [1]. In [18] one finds a quite detailed account of existing results on the
one-dimensional cubic NLS equation below L2.

Organization. — In Section 2 we recall the geometrical optics approximation
of first order and a refined version of it, the latter being needed for the proof
of item (ii) of Theorem 1.1. In the subsequent section, we provide estimates
for the approximations of first and second order in the functional setup of the
Wiener algebra. In Section 4, the resonant sets of integer vectors, coming up
in the construction of the approximate solutions, are studied in more detail.
Finally, in Section 5, we study the geometrical optics approximation for the
renormalized NLS Equation (1.2). With these preparations, we then prove
Theorem 1.1 in Section 6.

The case of focusing (µ = −1) NLS equations can be treated in exactly
the same fashion as the case of defocusing (µ = 1) ones. Hence to simplify

tome 145 – 2017 – no 4



ILL-POSEDNESS FOR PERIODIC NLS 627

notation, in what follows we will only consider Equations (1.1) and (1.2) with
µ = 1. As already pointed out in [11], results of the type stated in Theo-
rem 1.1 for defocusing NLS equations maybe considered as more surprising as
the corresponding results for focusing ones.

Added in proof. — After this work has been completed, Nobu Kishimoto in-
formed us that in unpublished work, he obtained results similar to ours, using
techniques introduced by Bejenaru and Tao ([3], further developed in [16]). In
fact, his method of proof, being different from ours (it is based on a multiscale
analysis), allows him to prove norm inflation in the Sobolev spaces Hs(T) with
s 6 −1/2 for the cubic NLS equation in one dimension and its renormalized
version. In the article [19], posted after our work was made public, the authors
show norm inflation in homogeneous Sobolev spaces for the one-dimensional
cubic NLS equation, d = σ = 1, for any s 6 −1/2, using the method of
proof, introduced in [10]. However, the latter method seems not to be suited
to establish norm inflation with an (infinite) loss of regularity.

2. Geometrical optics approximation: generalities

2.1. Setup. — For 0 < ε 6 1, we consider

(2.1) iε∂tu
ε +

ε2

2
∆uε = ε|uε|2σuε, x ∈ Td,

along with initial data which are superpositions of plane waves,

(2.2) uε(0, x) =
∑
j∈Zd

αje
ij·x/ε, αj ∈ C.

To insure that uε(0, x) is 2π−periodic in x we will assume throughout the paper
that the parameter ε is of the from ε = 1/N for some N ∈ N. The goal of this
and the next two sections is to describe the solution uε in the limit ε→ 0. Let
us begin by briefly recalling the results detailed in [5]. We construct first order
approximations of solutions of (2.1)–(2.2) as a superposition of modes,

(2.3) uεapp(t, x) =
∑
j∈Zd

aj(t)e
iφj(t,x)/ε.

The regime (2.1) goes under the name of weakly nonlinear geometric optics
(see e.g., [4]) since according to the considerations below, the phase functions
φj turn out to be not affected by the nonlinearity in (2.1), while the amplitudes
aj are. To find φj and aj , substitute the ansatz (2.3) into (2.1) and for each
j ∈ Zd, consider the terms containing eiφj/ε separately. We then determine φj
and aj so as to cancel the terms of lowest orders in ε. Since the initial data are
assumed to be of the form (2.2), we find for any given j ∈ Zd at order O

(
ε0
)
,

O
(
ε0
)

: ∂tφj +
1

2
|∇φj |2 = 0, φj(0, x) = j · x,

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



628 R. CARLES & T. KAPPELER

hence

(2.4) φj(t, x) = j · x− |j|
2

2
t.

In particular, for j = 0 one has φ0 = 0 and hence the zero mode a0e
iφ0/ε

equals a0 and is thus independent of ε. At next order, we obtain the following
evolution equation for the amplitude aj

(2.5) O
(
ε1
)

: iȧj =
∑

(k1,k2,...,k2σ+1)∈Resj

ak1 āk2 . . . ak2σ+1 , aj(0) = αj ,

where ȧj denotes the t−derivative of aj and Resj ⊂ Z(2σ+1)d the resonant set,
associated to j ∈ Zd and the nonlinearity |uε|2σuε . It is given by

Resj =

{
(k`)16`62σ+1 ∈ Z(2σ+1)d ;

2σ+1∑
`=1

(−1)`+1k` = j ;
2σ+1∑
`=1

(−1)`+1|k`|2 = |j|2
}
.

We describe these sets in more detail in Section 4. First we want to explain
why the above sum is restricted to the resonant set, preparing in this way the
justification of the geometrical optics approximation, presented in Section 3.

Duhamel’s formulation of (2.1)–(2.2) reads

(2.6) uε(t) = ei
t
2 ε∆uε(0)− i

∫ t

0

ei
t−τ
2 ε∆

(
|uε|2σuε

)
(τ)dτ .

Substituting the expression of the approximate solution (2.3) into the above
formula, we get∑

j∈Zd
aj(t)e

iφj(t,x)/ε ≈
∑
j∈Zd

αje
i t2 ε∆

(
eiφj(0,x)/ε

)
−i
∫ t

0

ei
t−τ
2 ε∆

∑
k1,k2,...,k2σ+1∈Zd

ak1(τ)eiφk1/εāk2(τ)e−iφk2/ε · · · ak2σ+1
(τ)eiφk2σ+1

/εdτ ,

where the symbol “≈” means that left and right hand sides in the formula above
are equal up to O (ε). Taking into account the identity

(2.7) ei
t
2 ε∆

(
eiφj(0,x)/ε

)
= eiφj(t,x)/ε,

we conclude that modulo ε,∑
j∈Zd

aj(t)e
iφj(t)/ε =

∑
j∈Zd

αje
iφj(t)/ε

− i
∑

k1,k2,...,k2σ+1∈Zd

∫ t

0

ei
t−τ
2 ε∆

(
ak1 āk2 · · · ak2σ+1

ei(
∑2σ+1
`=1 (−1)1+`φk`)/ε

)
(τ)dτ .

The aim of the next subsection is to analyze terms of the form as in the above
sum in order to infer (2.5).
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ILL-POSEDNESS FOR PERIODIC NLS 629

2.2. An explicit formula and a first consequence. — Given ω ∈ Z, j ∈ Zd, and
A ∈ L∞([0, T ]) ≡ L∞([0, T ],C) with T > 0, introduce

Dε(t, x) :=

∫ t

0

ei
t−τ
2 ε∆

(
A(τ)eij·x/ε−iωτ/(2ε)

)
dτ.

By the identity (2.7),

(2.8) Dε(t, x) = eij·x/ε−i|j|
2t/(2ε)

∫ t

0

A(τ)ei(|j|
2−ω)τ/(2ε)dτ.

Lemma 2.1 (From [5], Lemma 5.6). — Suppose that A, Ȧ ∈ L∞([0, T ]) for
some T > 0. Then the following holds:

(i) The function Dε is in C([0, T ]× Td) and

‖Dε‖L∞([0,T ]×Td) 6
∫ T

0

|A(t)|dt.

(ii) Assume in addition that ω 6= |j|2. Then there exists a constant C inde-
pendent of j, ω, and A such that

‖Dε‖L∞([0,T ]×Td) 6
Cε

||j|2 − ω|

(
‖A‖L∞([0,T ]) + ‖Ȧ‖L∞([0,T ])

)
.

Sketch of the proof. — Item (i) is obvious and item (ii) follows from (2.8) by
integrating by parts. �

Back to the above Duhamel’s formula, we have∑
j∈Zd

aj(t)e
iφj(t)/ε =

∑
j∈Zd

αje
iφj(t)/ε − i

∑
j∈Zd

eiφj(t)/εEj(t)

where

Ej(t) :=
∑

k1,k2,...,k2σ+1∈Zd
k1−k2+···+k2σ+1=j

∫ t

0

(
ak1 āk2 . . . ak2σ+1

)
(τ)ei(|j|

2−
∑2σ+1
`=1 (−1)1+`|k`|2)τ/(2ε)dτ.

By item (ii) of Lemma 2.1, all non-resonant terms yield a contribution of order
O (ε), hence are discarded in (2.5).

2.3. Refined Ansatz. — In the cubic one-dimensional case, we will need to go
one step further in the asymptotic description of the solution uε. To simplify
notations we therefore restrict the presentation to the cubic defocusing NLS
equation with d = 1,

(2.9) iε∂tu
ε +

ε2

2
∂2
xu

ε = ε|uε|2uε, x ∈ T.

For initial data as in (2.2), we construct an approximate solution of the form

(2.10) uεapp(t, x) =
∑
j∈Z

(aj(t) + εbj(t)) e
iφj(t,x)/ε,
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630 R. CARLES & T. KAPPELER

introducing terms of order ε in the amplitude. It turns out that for our appli-
cations, we may assume that bj(0) = 0 for all j. Following the procedure of
the previous section, we get, using again Formula (2.8),

bj(t) = −i
∑

(k,`,m)∈Resj

∫ t

0

(
akā`bm + ak b̄`am + bkā`am

)
(τ)dτ(2.11)

− i

ε

∑
k−`+m=j

k2−`2+m2 6=j2

∫ t

0

(akā`am) (τ)ei(j
2−k2+`2−m2)τ/(2ε)dτ .(2.12)

Note that despite the prefactor i
ε , the latter term is in fact of order O

(
ε0
)

since each of the summands is non-resonant and hence can be integrated by
parts (cf. item (ii) of Lemma 2.1). To be consistent, the above expression
for bj(t) should be considered modulo O(ε), but we may choose to keep some
terms of order ε for convenience. In this case, bj(t) might depend on ε and we
therefore write bεj(t) instead of bj(t). To give a precise definition of bεj(t), let
us analyze the above expression for bj in more detail. Let A := akā`am and
assume that A, Ȧ, Ä ∈ L∞([0, T ]) for some T > 0. Furthermore assume that
δj,k,`,m := j2 − k2 + `2 −m2 ∈ Z \ {0}. Then integrating by parts, one obtains
(cf. item (ii) of Lemma 2.1)

i

ε

∫ t

0

A(τ)ei(j
2−k2+`2−m2)τ/(2ε)dτ =

2

δj,k,`,m

(
A(t)ei(j

2−k2+`2−m2)t/(2ε) −A(0)
)

− 2

δj,k,`,m

∫ t

0

Ȧ(τ)ei(j
2−k2+`2−m2)τ/(2ε)dτ .

As by assumption, Ä ∈ L∞([0, T ]), the latter term can be integrated by parts
once more and is hence of order O (ε) . Taking into account the assumption
bj(0) = 0, we define bεj as follows:

bεj(t) = −i
∑

(k,`,m)∈Resj

∫ t

0

(
akā`b

ε
m + ak b̄

ε
`am + bεkā`am

)
(τ)dτ(2.13)

−
∑

k−`+m=j

k2−`2+m2 6=j2

2

j2 − k2 + `2 −m2

(
(akā`am) (t)ei(j

2−k2+`2−m2) t
2ε − αkᾱ`αm

)
.

Note that (2.13) is a linear system for the coefficients bεj . They might indeed
depend on ε through the inhomogeneity given by the latter term. We also note
that the expression−i

∑
(k,`,m)∈Resj

∫ t
0

(
akā`b

ε
m + ak b̄

ε
`am + bεkā`am

)
(τ)dτ may

have the effect of coupling the bεj ’s. We will make explicit computations on a
simple example in Subsection 6.4.
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3. Geometrical optics: justification of the approximation

3.1. Functional setting. — As in [5] (and following successively [17] and [12],
in the context of geometrical optics for hyperbolic equations), we choose to
work in the Wiener algebra.

Definition 3.1 (Wiener algebra). — The Wiener algebra consists of functions
of the form

f(y) =
∑
j∈Zd

αje
ij·y, αj ∈ C

with (αj)j∈Zd ∈ `1(Zd). It is endowed with the norm

‖f‖W =
∑
j∈Zd
|αj |.

Note that W = FL0,1(Td). The following properties of W are discussed
in [5]:

Lemma 3.2. — (i) For f in W and ε (= 1/N, N ∈ N, ) one has f(·/ε) ∈ W
and

‖f(·/ε)‖W = ‖f‖W .
(ii) W is a Banach space and continuously embeds into L∞(Td).
(iii) W is an algebra and

‖fg‖W 6 ‖f‖W ‖g‖W ∀f, g ∈W .

(iv) If F : C → C maps u to a finite sum of terms of the form upuq,
p, q ∈ N, then it extends to a map from W into itself which is Lipschitz on
bounded subsets of W .

(v) For any t ∈ R, the operator ei
t
2 ε∆ is unitary on W .

3.2. Existence results. — It turns out that the Wiener algebra is very well
suited for constructing both exact and approximate solutions of (2.1)–(2.2)
and for proving error estimates. By [5, Proposition 5.8], one has the following
results:

Proposition 3.3. — Let σ, d > 1 be integers. Then for any uε0 ∈W , there ex-
ists T ε > 0 so that (2.1) admits a unique solution uε ∈ C([0, T ε];W ) satisfying
uε|t=0

= uε0.

An existence result for the resonant system (2.5) is given in [5, Proposi-
tion 5.12]. In [7, Lemma 2.3], extra regularity properties are established in
the cubic case σ = 1 which can be readily proved to extend to higher order
nonlinearities, yielding the following proposition.
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Proposition 3.4. — Let σ > 1 be an integer and (αj)j∈Zd ∈ `1(Zd). Then
there exists T > 0 so that (2.5) admits a unique solution

(aj)j∈Zd ∈ C∞([0, T ]; `1(Zd)).

Note that (aj)j∈Zd needs to be in C2([0, T ]; `1(Zd)) in order to justify in
the analysis of the previous subsection that uεapp solves Duhamel’s formula
associated to (2.9) up to O(ε2). For the linear system (2.13), the following
result holds:

Lemma 3.5. — Let T > 0 and (aj)j∈Zd ∈ C([0, T ]; `1(Zd)). Then (2.13)
has a unique solution (bεj)j∈Zd ∈ C([0, T ]; `1(Zd)). In addition, (bεj)j∈Zd ∈
C1([0, T ]; `1(Zd)) and ‖bεj‖L∞([0,T ];`1) + ‖ḃεj‖L∞([0,T ];`1) is bounded uniformly
in ε ∈ (0, 1].

3.3. Error estimates. — In the case of the first order expansion presented in
Subsection 2.1, the approximate solution uεapp, defined by Proposition 3.4 on
an interval [0, T ], satisfies

iε∂tu
ε
app +

ε2

2
∆uεapp = ε|uεapp|2σuεapp − εrε, uεapp|t=0 = uε|t=0

where the term rε ≡ rε(t, x) is given by

rε =
∑
j∈Zd

∑
k1−k2+···+k2σ+1=j

|k1|2−|k2|2+···+|k2σ+1|2 6=|j|2

ak1 āk2 · · · ak2σ+1
ei(φk1−φk2+···+φk2σ+1

)/ε .

Since the k`’s are integer vectors and hence there are no issues of small nonzero
divisors, the integrated source term

Rε(t, x) =

∫ t

0

ei
t−τ
2 ε∆rε(τ, x)dτ

can be estimated in view of item (ii) of Lemma 2.1 by

‖Rε‖L∞([0,T ];W ) 6 Cε

where the constant C is independent of ε.

In the case of the second order expansion presented in Subsection 2.3 for the
cubic NLS equation on the circle (d = 1, σ = 1), one has by Proposition 3.4
and Lemma 3.5 that the approximate solution uεapp is defined on the interval
[0, T ] with T as in Proposition 3.4. Hence

iε∂tu
ε
app +

ε2

2
∂2
xu

ε
app = ε|uεapp|2uεapp − εrεb , uεapp|t=0 = uε|t=0
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where rεb ≡ rεb(t, x) is given by an explicit formula, similar to the one for rε.
Using again item (ii) of Lemma 2.1, one shows that the integrated source term

Rεb(t, x) =

∫ t

0

ei
t−τ
2 ε∂2

xrεb(τ, x)dτ

satisfies the estimate
‖Rεb‖L∞([0,T ];W ) 6 Cε

2

with a constant C independent of ε. In view of Proposition 3.3, a bootstrap
argument applies, yielding the following error estimate:

Proposition 3.6. — Let σ, d > 1 be integers, (αj)j∈Zd be a sequence in `1(Zd),
and T be given as in Proposition 3.4 . Then there exists a constant C > 0
independent of ε so that the following holds:

(i) The first order approximation uεapp, constructed in Subsection 2.1, satis-
fies

‖uε − uεapp‖L∞([0,T ];W ) 6 Cε .

(ii) In the case d = σ = 1, the second order approximation uεapp, constructed
in Subsection 2.3, satisfies

‖uε − uεapp‖L∞([0,T ];W ) 6 Cε
2 .

Remark 3.7 (Renormalized equation). — In the case of (1.2), one simply has
to substract

∑
` |a`|2 from the right hand side of (2.5). It is fairly easy to check

that taking this modification into account (as well as the modification regarding
the bεj ’s in the cubic one-dimensional case, as explained in Subsection 5.1),
Proposition 3.6 is readily extended to the case of (1.2).

4. Description of the approximate solution

4.1. Resonant sets and the creation of modes in the cubic case. — Using argu-
ments developed in [5] in connection with [13], the resonant sets Resj , intro-
duced in Subsection 2.1, can be characterized in the cubic case as follows:

Proposition 4.1. — Let σ = 1 and j ∈ Zd.
(i) If in addition d = 1, then

Resj = {(j, `, `), (`, `, j) ; ` ∈ Z \ {j}} ∪ {(j, j, j)}.

(ii) If in addition d > 2, then (k, `,m) ∈ Resj if and only if either the end-
points of the vectors k, `,m, j are the four corners of a nondegenerate rectangle
with ` and j opposing each other or this quadruplet corresponds to one of the
following three degenerate cases: (j, `, `) with j 6= `, (`, `, j) with j 6= `, or
(j, j, j).
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By item (i) of Proposition 4.1, we see that in the case d = σ = 1, (2.5)
becomes

(4.1) iȧj =

(
2
∑
k∈Z
|ak|2 − |aj |2

)
aj , aj(0) = αj .

It then follows that for any j ∈ Z, d
dt (|aj |

2) = 0 and hence

(4.2) aj(t) = αj exp

(
−i

(
2
∑
k∈Z
|αk|2 − |αj |2

)
t

)
.

In particular, if initially the j-mode vanishes, αjeφj(0,·)/ε = 0, then aj(t) = 0
for any t > 0. The situation is different in higher dimensions. The example
considered in [6] also plays an important role here: for d > 2, let

(4.3) uε(0, x) = eix1/ε + eix2/ε + ei(x1+x2)/ε.

Let k := (1, 0, 0Zd−2), ` := (1, 1, 0Zd−2), and m := (0, 1, 0Zd−2). Then (k, `,m) is
in Res0 and the initial data can be written as uε(0, x) = eix·k/ε+eix·m/ε+eix·`/ε.
The zero mode a0(t) then becomes instantaneously nonzero for t > 0 since
by (2.5),

iȧ0|t=0 = 2αkα`αm = 2.

In such a case we say that the zero mode is created by resonant interaction of
nonzero modes. Furthermore, by item (ii) of Proposition 4.1, no other modes
are created.

4.2. Creation of modes for higher order nonlinearities. — The key idea to prove
Theorem 1.1 is to choose initial data, causing instantaneous transfer of en-
ergy from nonzero modes to the zero mode. In the previous subsection we
provided an example for such initial data in the cubic multidimensional case
(σ = 1, d > 2). It turns out that for d > 2, a similar example also works for
higher order nonlinearities, based on the following observation: if in the case
σ = 1, one has (k, `,m) ∈ Resj , then for any σ > 2

(k, `,m, k, . . . , k︸ ︷︷ ︸
2σ−2 times

), (k, `,m, `, . . . , `︸ ︷︷ ︸
2σ−2 times

), (k, `,m, m, . . . ,m︸ ︷︷ ︸
2σ−2 times

) ∈ Resj .

For proving Theorem 1.1, it therefore remains to consider the case σ > 2 in the
one-dimensional case. In view of the above observation, it suffices to treat the
case of the quintic nonlinearity (σ = 2).

For d = 1 and σ = 2, the zero mode is created by resonant interaction of
nonzero modes if we can find k1, k2, k3, k4, k5 ∈ Z \ {0} such that{

k1 − k2 + k3 − k4 + k5 = 0,

k2
1 − k2

2 + k2
3 − k2

4 + k2
5 = 0.
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Squaring the first identity, written as k1 + k3 + k5 = k2 + k4, and using the
second identity, this system is equivalent to{

k1 + k3 + k5 = k2 + k4,

k1k3 + k1k5 + k3k5 = k2k4.

Assume that k1, k3, k5 are given. Then k2 and k4 are the zeroes of the quadratic
polynomial

X2 − (k1 + k3 + k5)X + k1k3 + k1k5 + k3k5 = 0 ,

whose discriminant is

∆ = (k1 + k3 + k5)2 − 4 (k1k3 + k1k5 + k3k5)

= k2
1 + k2

3 + k2
5 − 2k1k3 − 2k1k5 − 2k3k5 .

Assuming that k2 and k4 are listed in increasing order, they are then given by

k2 =
k1 + k3 + k5 −

√
∆

2
, k4 =

k1 + k3 + k5 +
√

∆

2
.

In particular, ∆ must be of the form ∆ = N2 with N an integer, having the
same parity as k1 + k3 + k5. One readily sees that k1, k3, and k5 cannot be all
equal. Furthermore, one can construct infinitely many solutions of the form

(k1, k3, k5) = (a,−a, b), a, b 6= 0, b 6∈ {a,−a}.
Indeed, for (k1, k3, k5) of this form, ∆ = b2 + 4a2. Hence we look for integer
solutions of

b2 + (2a)2 = N2,

meaning that (b, 2a,N) must be a Pythagorean triplet. We infer:

Lemma 4.2. — For any p, q ∈ Z with p, q 6= 0 and p 6= q, the 5-tuple

(k1, k2, k3, k4, k5) = (pq,−q2,−pq, p2, p2 − q2)

creates the zero mode by resonant interaction of nonzero modes.

Example 4.3. — With p = 2 and q = 1, we find

(k1, k2, k3, k4, k5) = (2,−1,−2, 4, 3).

Remark 4.4. — In [14], the creation of a mode k6 by resonant interaction
of the modes k1, k2, k3, k4, k5 is studied. Under the specific assumptions that
kj = k` for two distinct odd and kn = km for two distinct even indices in
{1, 2, 3, 4, 5}, a complete characterization of the corresponding resonant set is
provided. It implies that for the special case k6 = 0, any 5-tuple of the form
(k, 3k, k, 3k, 4k), (k, 3k, 4k, 3k, k), or (4k, 3k, k, 3k, k) with k ∈ Z \ 0 creates
the zero mode by resonant interaction. Note that the 5-tuples proposed in
Lemma 4.2, are not of the above form and hence are complementary to the
ones found in [14].
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5. Geometrical optics for the modified NLS equation

In this section, we consider the equation

(5.1) iε∂tu
ε +

ε2

2
∆uε = ε|uε|2uε − 2ε

(2π)d

(∫
Td
|uε(t, x)|2dx

)
uε, x ∈ Td,

along with the initial data (2.2).

5.1. One-dimensional case. — In view of the analysis of Subsection 2.3, one
has∫

T
|uεapp(t, x)|2dx =

∫
T

∣∣∣∣∣∣
∑
j∈Z

(
aj(t) + εbεj(t)

)
eiφj(t,x)/ε

∣∣∣∣∣∣
2

dx

=

∫
T

∑
j,k∈Z

(
aj(t) + εbεj(t)

) (
āk(t) + εb̄εk(t)

)
ei(φj(t,x)−φk(t,x))/εdx

= 2π
∑
j∈Z

(
|aj(t)|2 + ε

(
āj(t)b

ε
j(t) + aj(t)b̄

ε
j(t)
)

+ ε2|bεj(t)|2
)
,

since the family (eiφj(t,·)/ε)j∈Z is orthogonal in L2(T) and |T| = 2π. It then
follows that for any j ∈ Z, the formula corresponding to (4.2) in the case of
(5.1), becomes

(5.2) iȧj = −|aj |2aj , aj(0) = αj ,

and thus aj(t) = αje
i|αj |2t, showing that the a′js are no longer coupled. (This

is an indication that Equation (5.1) might be more stable than (1.1).) Further-
more (2.13) becomes

bεj(t) = −i
∑

(k,`,m)∈Resj

∫ t

0

(
akā`b

ε
m + ak b̄

ε
`am + bεkā`am

)
(τ)dτ

−
∑

k−`+m=j

k2−`2+m2 6=j2

2

j2 − k2 + `2 −m2

(
(akā`am) (t)ei(j

2−k2+`2−m2) t
2ε − αkᾱ`αm

)

+ 2i

∫ t

0

(
bεj
∑
k∈Z
|ak|2 + aj

∑
k∈Z

(
ākb

ε
k + ak b̄

ε
k

))
(τ) dτ.

5.2. Multi-dimensional case. — When d > 2, we argue as in Subsection 4.1,
choosing as initial data

uε(0, x) = eix1/ε + eix2/ε + ei(x1+x2)/ε .

The characterization of the resonant sets Resj , described in item (ii) of Propo-
sition 4.1, shows that the only possible new mode created by cubic interaction
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is the zero mode. Setting

k := (1, 0, 0Zd−2), ` := (1, 1, 0Zd−2), m := (0, 1, 0Zd−2),

the resonant set Res0 is given by

{(k, `,m), (m, `, k), (k, k, 0), (0, k, k),

(`, `, 0), (0, `, `), (m,m, 0), (0,m,m), (0, 0, 0)}

and the zero mode a0 satisfies

iȧ0 = 2akā`am − |a0|2a0, a0|t=0 = 0.

In particular, iȧ0(0) = 2, meaning that the zero mode is created through cubic
interaction of nonzero modes.

6. Proof of Theorem 1.1

6.1. Scaling. — We follow the same strategy as in [6]: as a first step, we relate
Equations (1.1) and (2.1) respectively (1.2) and (5.1) by an appropriate scaling
of all the quantities involved: let ψ(t, x) be a solution of (1.1) and uε be of the
form

uε(t, x) = εαψ(εβt, εγx) .

Such a function solves (2.1) iff

1 + β = 2 + 2γ = 1 + 2σα.

Keeping β as the only parameter, we have

(6.1) uε(t, x) = εβ/(2σ)ψ
(
εβt, ε

β−1
2 x
)
.

In order that the initial data for uε is of the form (2.2), the one for ψ is chosen
so that εβ/(2σ)ψ

(
0, ε

β−1
2 x
)

=
∑
j∈Zd αje

ij·x/ε. It means that

(6.2) ψ(0, x) = ε−β/(2σ)
∑
j∈Zd

αje
ij·x/ε

1+β
2 .

Furthermore, to assure that both ψ and uε are periodic functions and hence
welldefined on Td, we require that 1/ε = Nκ ∈ N, for some integers N,κ, where
κ is chosen so that for a given rational number β > 0,

1

ε
1+β
2

= Nκ 1+β
2 is an integer.

In the sequel, for any given rational number β > 0, we will consider sequences
εn → 0 so that the above requirements are fulfilled.
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The strategy for proving the statements of Theorem 1.1 is the following
one: the initial data for uε (or equivalently for ψ), is chosen to be a finite
sum of nonzero modes, which create the zero mode by resonant interaction
at leading order, ȧ0(0) 6= 0, except in the cubic one-dimensional case, where
the zero mode is created at the level of the corrector b0. Due to the choice of
the scaling, the zero mode of ψ comes with a factor which is increasing in ε.
Since the absolute value of the zero mode bounds the norm ‖ · ‖FLs,p(Td) of any
Fourier Lebesgue space from below, it follows that for any s < 0, 1 6 p 6 ∞,
the sequence (‖uεn(tn)‖FLs,p(Td))n>1 is unbounded for appropriate sequences
(εn)n>1, (tn)n>1, converging both to 0.

6.2. Norm inflation in the multidimensional case. — Suppose d > 2, σ > 1.
For any fixed s < 0, there exists a rational number β > 0 so that

|s|β + 1

2
>

β

2σ
.

Note that β → 0 as s→ 0. We then choose a sequence (εn)n>1 with εn → 0 as
above. Taking into account the discussion at the beginning of Subsection 4.2,
it suffices to consider Example (4.3). With the above scaling, ψn(0, x) is then
given by

ψn(0, x) = ε−β/(2σ)
n

(
eix1/ε

1+β
2

n + eix2/ε
1+β
2

n + ei(x1+x2)/ε
1+β
2

n

)
.

For any p ∈ [1,∞], we have

‖ψn(0)‖FLs,p(Td) ≈ ε−β/(2σ)−s(β+1)/2
n = ε−β/(2σ)+|s|(β+1)/2

n ,

implying that
‖ψn(0)‖FLs,p(Td) −→

n→∞
0 .

In Section 4 we have seen that there exists τ > 0 with a0(τ) 6= 0. Setting
tn = τεβn, one has tn −→

n→∞
0. With ψn,app(t, x) obtained from uεnapp(t, x) by the

above scaling, it follows that for any r ∈ R and p ∈ [1,∞],

‖ψn,app(tn)‖FLr,p(Td) > ε
−β/(2σ)
n |a0(τ)| −→

n→∞
+∞ .

Note that W ↪→ FLr,p(Td) for any r 6 0 and p ∈ [1,∞] and hence

‖ψn(t)− ψn,app(t)‖FLr,p(Td) . ‖ψn(t)− ψn,app(t)‖W .

In view of (6.1) and the scaling invariance of the norm ‖ · ‖W (see item (i) of
Lemma 3.2), Proposition 3.6 then implies

‖ψn(tn)− ψn,app(tn)‖FLr,p(Td) . ε
1−β/(2σ)
n . εn‖ψn,app(tn)‖FLr,p(Td).

Altogether we have shown that ‖ψn(tn)‖FLr,p(Td) ∼ ‖ψn,app(tn)‖FLr,p(Td) →∞
and item (i) of Theorem 1.1 is proved in the case d > 2, σ > 1.
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6.3. Norm inflation in the quintic one-dimensional case. — The case d = 1,
σ > 2, is dealt with along the same lines as the case d > 2, σ > 1, treated in
the previous subsection. Since by Lemma 4.2, it is possible to create the zero
mode by quintic interaction of nonzero modes, the above argument is readily
adapted by choosing, for instance, initial data as in Example 4.3,

ψn(0, x) = ε−β/(2σ)
n

(
e2ix/ε

1+β
2

n + e−ix/ε
1+β
2

n + e−2ix/ε
1+β
2

n + e4ix/ε
1+β
2

n + e3ix/ε
1+β
2

n

)
.

6.4. Norm inflation in the cubic one-dimensional case. — In the cubic one-
dimensional case, we have seen in Subsection 4.1 that αj = 0 implies aj(t) = 0
for any t. The same phenomena is true in the case of (5.1). Therefore, the
previous analysis has to be modified. We consider the higher order approxima-
tion, discussed in Subsection 2.3. We want to show that for appropriate initial
data ψn(0, x) , bε0(τε) ≈ 1 for some τε > 0 with τε ≈ ε. Note that in view of
(2.13), initial data with only one nonzero mode is not sufficient to ensure that
bεj has this property. We therefore choose

ψn(0, x) = ε−β/2n

(
eix/ε

1+β
2

n + e2ix/ε
1+β
2

n

)
as initial data. By (6.2), the corresponding initial data for uε is given by

uε(0, x) = eix/ε + e2ix/ε .

It means that α1 = 1, α2 = 1, and αj = 0 for all j ∈ Z \ {1, 2}. By the analysis
of Subsection 4.1,

a1(t) = a2(t) = e−3it, aj(t) ≡ 0 for j ∈ Z \ {1, 2}.
The creation of bεj ’s can have two causes:
• the source term (2.12) is not zero, or
• the coupling between the bεj ’s, due to (2.11), causes the creation of bεj ’s

after others have been created by a nonzero source term.
We examine the two possibilities separately. Let us begin with the analysis
of (2.12). The only non-resonant configurations k, `,m ∈ {1, 2} in the sum in
(2.12) are

(k, `,m) = (1, 2, 1) and (k, `,m) = (2, 1, 2).

Since 1 − 2 + 1 = 0 and 2 − 1 + 2 = 3, bε0 respectively bε3 are created through
these configurations. Furthermore, for j ∈ Z \ {0, 3}, (2.12) is zero. To address
the possibility of creation of bεj ’s through coupling, consider the first term in
the integral of (2.11):

akā`b
ε
m, (k, `,m) ∈ Resj .

For this term to be non-zero, we have necessarily k, ` ∈ {1, 2}. Then, in
view of item (i) of Proposition 4.1, m ∈ {1, 2}, and we infer j ∈ {1, 2}. The
same argument can be repeated for the other two terms, ak b̄ε`am and bεkā`am.
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Therefore, the terms bε1 and bε2 are coupled. But since they solve a homogeneous
system with zero initial data, they remain identically zero.

Since by (2.11)–(2.12), ḃε0(0) = −i/ε and ḃε3(0) = −i/ε, altogether we have
proved that precisely bε0 and bε3 are created. In particular, we compute

bε0(t) = −4i

∫ t

0

bε0(τ)dτ −
(
e−3it+it/ε − 1

)
,

yielding the following explicit solution

bε0(t) = −1− 3ε

1 + ε
e−4it

(
eit+it/ε − 1

)
and hence the following formula

|bε0(t)| = 2
1− 3ε

1 + ε

∣∣∣∣sin((1 + ε)
t

2ε

)∣∣∣∣ .
Thus, for 0 < ε� 1, there exists τε ≈ ε such that |bε0(τε)| = 1. From this point
on we can argue as in the previous subsections. For any p ∈ [1,∞],

‖ψn(0)‖FLs,p(T) ≈ ε−β/2+|s|(β+1)/2.

Hence to ensure that ‖ψn(0)‖FLs,p(T) → 0 as n→∞, we need to impose that

(6.3) |s| > β

β + 1
.

By taking into account only the term εbε0(t)eiφ(t,x)/ε in uεapp(t, x), it follows
that for tn = εβnτεn ,

(6.4) ‖ψn,app(tn)‖FLr,p(T) > ε
−β/2+1
n ,

where the extra power of ε stems from the factor in front of bε0. Finally,
for r 6 0,

‖ψn(tn)− ψn,app(tn)‖FLr,p(T) . ‖ψn(tn)− ψn,app(tn)‖W
. ε−β/2n ‖uεn(τεn)− uεnapp(τεn)‖W .

By item (ii) of Proposition 3.6, it then follows that

‖ψn(tn)− ψn,app(tn)‖FLr,p(T) . ε
2−β/2
n ,

implying that

‖ψn(tn)− ψn,app(tn)‖FLr,p(T) . εn‖ψn,app(tn)‖FLr,p(T),

and hence ‖ψn(tn)‖FLr,p(T) ≈ ‖ψn,app(tn)‖FLr,p(T) as n → ∞. By (6.4), the
sequence (‖ψn(tn)‖FLr,p(T))n>1 is thus unbounded provided that β > 2. Taking
into account that s is assumed to be negative, the condition β > 2 is compatible
with (6.3) provided that s < −2/3.
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6.5. Norm inflation for Equation (1.2). — To complete the proof of Theo-
rem 1.1, it remains to consider Equation (1.2). We already noted in Subsec-
tion 6.1 that the scaling introduced there establishes a one-to-one correspon-
dence between solutions of (1.2) and those of (5.1). In the one-dimensional
case, as initial data for uε we again choose

uε(0, x) = eix/ε + e2ix/ε .

By (5.2),
a1(t) = a2(t) = eit, aj(t) ≡ 0 ∀j ∈ Z \ {1, 2}.

A similar combinatorial analysis as above shows that only bε0 and bε3 are created.
In the case considered, b0 is given by

bε0(t) = −
(
eit+it/ε − 1

)
,

implying that

|bε0(t)| = 2

∣∣∣∣sin((1 + ε)
t

2ε

)∣∣∣∣ .
To finish the proof, we then can argue in the same way as in the previous
subsection. In particular, the multi-dimensional case can be handled in exactly
the same fashion as the one considered in Subsection 6.2.

BIBLIOGRAPHY

[1] “Dispersive Wiki page, Cubic NLS ” – http://wiki.math.toronto.edu/
DispersiveWiki.

[2] T. Alazard & R. Carles – “Loss of regularity for super-critical nonlin-
ear Schrödinger equations”, Math. Ann. 343 (2009), p. 397–420.

[3] I. Bejenaru & T. Tao – “Sharp well-posedness and ill-posedness re-
sults for a quadratic nonlinear Schrödinger equation”, J. Funct. Anal. 233
(2005), p. 228–259.

[4] R. Carles – Semi-classical analysis for nonlinear Schrödinger equations,
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.

[5] R. Carles, E. Dumas & C. Sparber – “Multiphase weakly nonlin-
ear geometric optics for Schrödinger equations”, SIAM J. Math. Anal. 42
(2010), p. 489–518.

[6] , “Geometric optics and instability for NLS and Davey-Stewartson
models”, J. Eur. Math. Soc. (JEMS) 14 (2012), p. 1885–1921.

[7] R. Carles & E. Faou – “Energy cascade for NLS on the torus”, Discrete
Contin. Dyn. Syst. 32 (2012), p. 2063–2077.

[8] M. Christ – “Nonuniqueness of weak solutions of the nonlinear
Schrödinger equation”, preprint arXiv:math/0503366.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

http://wiki.math.toronto.edu/DispersiveWiki
http://wiki.math.toronto.edu/DispersiveWiki
http://arxiv.org/abs/math/0503366


642 R. CARLES & T. KAPPELER

[9] , “Power series solution of a nonlinear Schrödinger equation”, in
Mathematical aspects of nonlinear dispersive equations, Ann. of Math.
Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, p. 131–155.

[10] M. Christ, J. Colliander & T. Tao – “Ill-posedness for nonlinear
Schrödinger and wave equations”, preprint arXiv:math.AP/0311048.

[11] , “Asymptotics, frequency modulation, and low regularity ill-
posedness for canonical defocusing equations”, Amer. J. Math. 125 (2003),
p. 1235–1293.

[12] M. Colin & D. Lannes – “Short pulses approximations in dispersive
media”, SIAM J. Math. Anal. 41 (2009), p. 708–732.

[13] J. Colliander, M. Keel, G. Staffilani, H. Takaoka & T. Tao –
“Transfer of energy to high frequencies in the cubic defocusing nonlinear
Schrödinger equation”, Invent. math. 181 (2010), p. 39–113.

[14] B. Grébert & L. Thomann – “Resonant dynamics for the quintic non-
linear Schrödinger equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire
29 (2012), p. 455–477.

[15] A. Grünrock & S. Herr – “Low regularity local well-posedness of the de-
rivative nonlinear Schrödinger equation with periodic initial data”, SIAM
J. Math. Anal. 39 (2008), p. 1890–1920.

[16] T. Iwabuchi & T. Ogawa – “Ill-posedness for the nonlinear Schrödinger
equation with quadratic non-linearity in low dimensions”, Trans. Amer.
Math. Soc. 367 (2015), p. 2613–2630.

[17] J.-L. Joly, G. Métivier & J. Rauch – “Coherent nonlinear waves and
the Wiener algebra”, Ann. Inst. Fourier (Grenoble) 44 (1994), p. 167–196.

[18] T. Oh & C. Sulem – “On the one-dimensional cubic nonlinear
Schrödinger equation below L2”, Kyoto J. Math. 52 (2012), p. 99–115.

[19] T. Oh & Y. Wang – “On the ill-posedness of the cubic nonlinear
Schrödinger equation on the circle”, An. S, tiint,. Univ. Al. I. Cuza Ias,i.
Mat. (N.S.), to appear, archived as arXiv:1508.00827.

[20] L. Thomann – “Instabilities for supercritical Schrödinger equations in
analytic manifolds”, J. Differential Equations 245 (2008), p. 249–280.

tome 145 – 2017 – no 4

http://arxiv.org/abs/math.AP/0311048
http://arxiv.org/abs/1508.00827

	1. Introduction
	2. Geometrical optics approximation: generalities
	3. Geometrical optics: justification of the approximation
	4. Description of the approximate solution
	5. Geometrical optics for the modified NLS equation
	6. Proof of Theorem 1.1
	Bibliography

