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Lecture 1 (yesterday):  
•  Compositional mixing 

Lecture 2 (today):  

•  Angular momentum transport 
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Lecture 2:  Angular momentum transport 

A. Introduction to stellar rotation and angular momentum 
transport.  
1.  Evidence for stellar rotation (surface and internal) 

2.  Effect of rotation & differential rotation on stellar evolution 
3.  Angular momentum transport: mathematical modeling and MESA 

implementation. 
4.  Activity #1:  Modeling the rotational evolution of RGB stars using 

MESA (basic mixing) 

 
 
 

 



1. Evidence for stellar rotation 

All stars rotate – but some rotate a lot faster than others.  We 
know this from 

•  Looking at the Sun (Gallileo, 1612). Rotation period ~ 27 days  
 



1. Evidence for stellar rotation 

All stars rotate – but some rotate a lot faster than others.  We 
know this from 

•  Looking at the Sun (Gallileo, 1612)  
•  Basic photometry (starspots modulate lightcurve) 
 

Roettenbacher et al. 2013, on star KIC 5110407: rotation period 3.47 days. 



1. Evidence for stellar rotation 

All stars rotate – but some rotate a lot faster than others.  We 
know this from 

•  Looking at the Sun (Gallileo, 1612)  
•  Basic photometry (starspots modulate lightcurve) 
•  Spectroscopy (rotation broadens spectral lines).  
 

If rotational velocity 
of star >> thermal 
velocity of emitting/
absorbing atoms 
then Doppler shift 
broadens the line 

ν

I(ν )

Reiners & Schmitt, 2003 

Deviation from dashed line model = 
evidence for differential rotation! 



1. Evidence for stellar rotation 

All stars rotate – but some rotate a lot faster than others.  We 
know this from 

•  Looking at the Sun (Gallileo, 1612)  
•  Basic photometry (starspots modulate lightcurve) 
•  Spectroscopy (rotation broadens spectral lines) 
•  Helio/asteroseismology (rotation causes “rotational splittings”). 

Differential rotation in the Sun Core rotation period in RBG stars 

Mosser et al. 2012 
SOI/MDI team. 



1. Evidence for stellar rotation 

All stars rotate – but some rotate a lot faster than others.  We 
know this from 

•  Looking at the Sun (Gallileo, 1612)  
•  Basic photometry (starspots modulate lightcurve) 
•  Spectroscopy (rotation broadens spectral lines) 
•  Helio/asteroseismology (rotation causes “rotational splittings”). 
•  For very rapid rotators only: rotation deforms the star, causing 

pole-to-equator luminosity variations, detectable via interferometry.  
 

Reconstruction of interferometric data 
(surface temperature and shape) for Altair 
by Petersen et al. 2006  
Star is rotating near breakup.  



2. Effect of rotation on stellar evolution 

Three types of effects need to be distinguished:  
�  The effect of rotation (i.e. solid-body rotation) 
�  The effect of temporal variations in the rotation rate (spin-up/

spin-down) 
�  The effect of spatial variations in the rotation rate (differential 

rotation) 

Although they are not entirely independent of one-another, it is 
sometimes useful to think about them as “different terms in the 
momentum equation”, which helps clarify how they affect the star.  
 
 



Suppose                                            then momentum equation is: 
 
 
 
 
 

2. Effect of rotation on stellar evolution 

Ω(r,θ, t) =Ω*(t)+ !Ω(r,θ, t)
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Suppose                                            then momentum equation is: 
 
 
 
 
Each of these “forces” acts in a somewhat different way.  
�  Centrifugal force: usually small (except for very rapid 

rotators), acts in direction perpendicular to rotation axis.  
 

2. Effect of rotation on stellar evolution 

Ω(r,θ, t) =Ω*(t)+ !Ω(r,θ, t)
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Centrifugal 
force 

It deforms the star, and causes discrepancies 
between isotherms (which remains nearly 
spherical) and constant pressure/density 
surfaces (which are more oblate). 
 
This drives global Eddington-Sweet flows, which 
are a form of mixing (cf. later)   

F F 



Suppose                                            then momentum equation is: 
 
 
 
 
Each of these “forces” acts in a somewhat different way.  
�  Euler’s force:  only appears when the frame of reference is 

spinning up or down.   
 

2. Effect of rotation on stellar evolution 

Ω(r,θ, t) =Ω*(t)+ !Ω(r,θ, t)

ρ
∂u
∂t
+u ⋅∇u+ 2Ω* ×u+Ω* ×Ω* × r+ !Ω* × r
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Euler’s 
force 

It acts in the azimuthal direction.  
 
No direct consequence on stellar evolution, 
but it ensures conservation of angular 
momentum in an inertial frame.  
 

F F 



Suppose                                            then momentum equation is: 
 
 
 
 
Each of these “forces” acts in a somewhat different way.  
�  Coriolis force: apparent deflection of fluid motion in rotating 

frame compared with inertial frame. 
 

2. Effect of rotation on stellar evolution 

Ω(r,θ, t) =Ω*(t)+ !Ω(r,θ, t)

ρ
∂u
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+u ⋅∇u+ 2Ω* ×u+Ω* ×Ω* × r+ !Ω* × r
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)
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Coriolis 
force 

It acts in direction perpendicular to fluid 
motion and also ensures conservation of 
angular momentum in an inertial frame. 
 
Can turn meridional flows into azimuthal 
ones, or vice-versa, which are then sources 
of mixing.  

u 

u 
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Suppose                                            then momentum equation is: 
 
 
 
 
Each of these “forces” acts in a somewhat different way. 
�  Inertial terms: nonlinear terms, cause development and 

saturation of waves and instabilities from differential rotation. 
 
 

2. Effect of rotation on stellar evolution 

Ω(r,θ, t) =Ω*(t)+ !Ω(r,θ, t)
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Inertial 
forces 

Shear instabilities drive turbulence, and 
therefore turbulent mixing.  Waves can also 
cause mixing, both turbulent and non-
turbulent.  



 
 

2. Effect of rotation on stellar evolution 

In short:  
 
 
 
 
Rotation,  

Differential rotation, 
Spin-up/Spin-down 

Large-scale 
flows, waves 

Turbulence 

Heat 
transport 

Compositional 
transport 

Angular-
momentum 
transport 

Stellar 
evolution 

Magnetic 
fields 



 
 

3. Modeling angular momentum transport 

�  As in the case of chemical transport, modeling AM transport 
starts from the basic equations for fluid dynamics: 
◦  Mass conservation equation. 
◦  Momentum conservation equation (in the azimuthal direction). 
 

�  Assuming a spherically symmetric star (with a spherically 
symmetric angular velocity profile            then, if only viscous 
stresses (with viscosity   ) are taken into account, we have 

 
�  This looks quite similar (but not identical) to the equation for 

the evolution of the compositional field studied yesterday: 
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3. Modeling angular momentum transport 

�  Viscosity is, however, usually negligible in stellar interiors.  

�  If angular momentum transport processes other than viscosity 
are invoked (such as turbulence, or meridional flows), then the 
expression for the evolution of             is more complicated.  

 
�  By analogy, it is often assumed that these processes act as an 

effective turbulent viscosity, so that the expression for the 
evolution of             simplifies to: 

 

Note: this is generally not a good model for angular momentum transport, 
especially when the latter is mediated by waves, meridional flows or 
magnetic fields.  However, this is what MESA and most other codes do.  
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3. Modeling angular momentum transport 

�  The only remaining question is:  
 

   What is       ?  
 
�  As for Dmix, it has the dimensions of a length x velocity, or 

length2 / time, and can be estimated from the typical timescale / 
lengthscale / velocity scale of turbulent eddies (for angular 
momentum transport by turbulence).  

è the turbulent components of        should be similar to those 
of Dmix, and the same processes that transport angular momentum 
can transport chemical elements, and vice-versa. 

 

 

νAM

νAM



3. Modeling angular momentum transport 

 

 

The way in which MESA is organized is as follows: 

◦  Calculate “basic turbulent diffusivities” for each process 
separately (in mlt.f and rotation_mix_info.f) 
◦  Multiply them by one prefactor if they are to be used to mix 

chemical species, and by another prefactor if they are to be 
used to transport angular momentum. Default prefactor 
values can be viewed in star/defaults/
control.defaults. 
◦  Add the desired ones together to create Dmix and 

Note: simply adding mixing coefficients together is generally completely 
wrong, but this is what MESA and most stellar evolution codes do.  

 

νAM



3. Modeling angular momentum transport 

 

 

�  In MESA, we have: 
D_mix = D_mix_non_rotation + f*am_D_mix_factor*            !

      (D_DSI_factor*D_DSI + D_SH_factor*D_SH !

      + D_SSI_factor*D_SSI + D_ES_factor*D_ES !

      + D_GSF_factor*D_GSF + D_ST_factor*D_ST)      
where 
�  D_mix_non_rotation includes mixing from convection, 

overshoot + all additional compositional mixing coefficients that 
were calculated in mlt.f!

�  D_DSI, D_SH,D_SSI, etc… are basic mixing coefficients 
associated with instabilities that arise from rotation (see later), 
and D_DSI_factor, etc… are multiplicative coefficients (set 
to 0 by default)  

�  am_D_mix_factor is a general multiplicative coefficient for 
the whole thing (set to 0 by default).  

 
 



3. Modeling angular momentum transport 

 

 

In MESA, we have: 
am_nu = am_nu_factor*(am_nu_non_rot + am_nu_rot)!

am_nu_non_rot = am_nu_non_rotation_factor*D_mix_non_rotation!

am_nu_rot = am_nu_visc_factor*D_visc + am_nu_DSI_factor*D_DSI !

! !   + am_nu_SH_factor*D_SH + am_nu_SSI_factor*D_SSI !

          + am_nu_ES_factor*D_ES + am_nu_GSF_factor*D_GSF !

          + am_nu_ST_factor*D_ST)             where 
�  D_mix_non_rotation is as before, this time multiplied by 
am_nu_non_rotation_factor multiplicative coefficient (set to 1 by 
default) 

�  D_visc is the basic viscosity, and am_nu_visc_factor is a 
multiplicative coefficient (set to 1 by default).  

�  D_DSI, D_SH,D_SSI, etc… are as before, this time multiplied by 
am_nu_DSI_factor, etc… multiplicative coefficients (set to 0 by 
default)  

 



4. Activity #1: Background material 

�  Recently, observations of the core rotation rates of RGB stars 
have become available. 

 
�  Let’s see what standard angular momentum mixing models 

predict for the angular velocity in RGB stars. 
 
 
 
 

Deheuvels et al. 2014. 

Mosser et al. 2012. 



4. Activity #1: Modeling rotational evolution 
of RGB stars with MESA.  

�  Start from 1Msun ZAMS model in solid-body rotation.  
�  Turn on mass loss (basic prescription)  

Part 1 
�  Turn off all angular momentum mixing except viscosity 
�  Evolve rotation profile and star all way up RGB (up to 6Rsun) 
�  Study results. 

Part 2 
�  Turn on minimum value of am_nu_min.  
�  Study results. 

See detailed instructions on mesastar.org, Day 2. 

 
 
 
 



Results 
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Outline 
 
Lecture 2:  Angular momentum transport 

B. Improving models for angular momentum transport.  
1.  Case study: shear instabilities. 

2.  Activity #2: Using existing shear instability routines in MESA. 
3.  Other shear-induced instabilities. 
4.  Activity #3: Improving the shear instability routines in MESA. 
5.  Discussion of the results. 

 
 
 

 



1. Mathematical models of shear instabilities 

 

�  Shear occurs when adjacent parcels of fluid are moving at different 
velocities.  

 

�  Interchanging 2 parcels of fluid (while equalizing their momenta, and 
densities, and conserving the total momentum) can be energetically 
favorable, thus causing the shear instability.  

 

z 

x 



�  If the background fluid is neutrally stratified (no change in the 
density with z), then the interchange is always energetically 
favorable.  

 

 

Mathematical models of shear instabilities 
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Mathematical models of shear instabilities 

 

�  If the background fluid is neutrally stratified (no change in the 
density with z), then the interchange is always energetically 
favorable.  

 

�  The (kinetic) energy gained in the exchange: 

                       

 

 

ΔE = ρ
4
U '(z)dz[ ]2 can serve to amplify the perturbations  

è positive feedback loop.  

Before interchange After interchange 
(equalized momenta) 

U(z)

  U(z+ dz) U(z)+ 1
2
U '(z)dz

U(z)+ 1
2
U '(z)dz

Mixing event 



Mathematical models of shear instabilities 

 

�  In stellar radiative zones, however, the background density is stably 
stratified (density decreases with z). Interchange is only favorable if 
gain in kinetic energy is larger than loss in potential energy.  

 
 
 
 
�  To see whether exchange is favorable, consider ratio R: 

 

 

R =
−ΔEpot
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Mathematical models of shear instabilities 

 

•  It is common to define the Richardson number Ri as  

 
•  This criterion is based on energetics, and is only an estimate. It 

seems to hold reasonably well in both linear stability analyses and 
in fully nonlinear calculations, with Ric=1/4 to Ric=1. 
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Mathematical models of shear instabilities 

 

•  It is common to define the Richardson number Ri as  

 
•  This criterion is based on energetics, and is only an estimate. It 

seems to hold reasonably well in both linear stability analyses and 
in fully nonlinear calculations, with Ric=1/4 to Ric=1. 

•  However, this only tells us when an instability is expected, but not 
what the induced turbulent diffusivity may be.  

•  Using                                              
what could a typical velocity & lengthscale be for these eddies?  

 

 

Dshear ∝νAM ,shear ∝υl∝ l
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Mathematical models of shear instabilities 

 

•  In MESA, this process is supposed to be described by the 
“dynamical shear instability” coefficient, D_DSI 

•  The calculation of D_DSI is based on the model described in 
Heger, Langer & Woosley (2000), in which: 

where L is the height of the region unstable to shear, Ric=1/4, and  
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Note: I do not condone 
the use of this formula for 
mixing, but this won’t 
change the result for RGB 
stars (see later). 



5. Activity #2: Using existing angular-
momentum mixing routines in MESA.  

Part 1 
�  Look at rotation_mix_info.f to see where D_DSI is 

calculated.  
�  Run RGB evolution as before, but this time add dynamical shear 

instability, with different am_nu_DSI_factor!
�  Study results: what do you notice?  

Part 2 
�  Plot the Richardson number in the star. What do you notice? 

Does it explain your results?  
 
 
 



Results 



6. Other shear-induced instabilities. 

 

•  If  “standard” shear instabilities don’t work, what else could do the 
trick?  

•  MESA has a number of built-in routines to calculate diffusion 
coefficients from other rotationally-induced or shear-induced 
processes  
•  ES: Eddington-Sweet flows (rotation & shear induced) 
•  SSI: Secular Shear Instability (shear-induced) 
•  SH: Solberg-Høiland (shear-induced) 
•  GSF: Goldreich-Shubert-Fricke (shear-induced) 
•  ST: Spruit-Taylor (shear-induced, magnetic).  

  
 

 

 



6. Other shear-induced instabilities 
(abridged) 

 

Eddington-Sweet flows 
•  Rotation (or differential rotation) causes isobars and isotherms to 

deviate from sphericity:                                    and same for p.      
•  Assuming thermal equilibrium implies that large-scale meridional 

flows must be generated to compensate for the offset. These are 
Eddington-Sweet flows.  

 
 
 
 
 
•  This leads to large-scale advective transport, which cannot 

(therefore should not!) be modeled as a diffusion process. See 
Zahn (1992) for detail. HLW2000/MESA still do it, however. 
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Other shear-induced instabilities (abridged) 

 

Secular shear instability. 
•  The Richardson Criterion for DSI is very stringent because it 

assumes that the exchange of the parcels is fast, so one has to pay 
a hefty price in potential energy to make it happen. 

•  But if the exchange is slow, temperature can diffuse out of the 
parcels, and equalize with the background before the exchange is 
finished.  We still have to worry about chemical stratification, 
however, but that is not always important. 

•  This relaxes the Richardson criterion significantly  
 

 

After interchange  

U(z)

  U(z+ dz) U(z)+ 1
2
U '(z)dz

U(z)+ 1
2
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Other shear-induced instabilities (abridged) 

 

Secular shear instability. 
•  The Richardson Criterion for DSI is very stringent because it 

assumes that the exchange of the parcels is fast, so one has to pay 
a hefty price in potential energy to make it happen. 

•  But if the exchange is slow, temperature can diffuse out of the 
parcels, and equalize with the background before the exchange is 
finished.  We still have to worry about chemical stratification, 
however, but that is not always important. 

•  This relaxes the Richardson criterion significantly  
•  As with most of these instabilities, very little is known about 

induced mixing. Use MESA/HLW2000 at your own risk.   
•  However the “relaxed” stability criterion used is not un-

reasonable, so using the routine can at least give a good idea as to 
when the instability may occur.  

 



Other shear-induced instabilities (abridged) 

 

Solberg-Høiland instability 
•  In unstratified fluids, a powerful “centrifugal” instability can occur if 

the angular momentum ever decreases outward. 

 

d
dr

r2Ω( ) < 0 Rayleigh criterion 

Fardin et al. 2014 



Other shear-induced instabilities (abridged) 

 

Solberg-Høiland instability 
•  In unstratified fluids, a powerful “centrifugal” instability can occur if 

the angular momentum ever decreases outward. 

•  In stratified fluids, this becomes the Solberg-Høiland criterion, 
which (as in the case of the Richardson criterion) captures the 
stabilizing effect of buoyancy.    

 

•  As with most of these instabilities, very little is known about 
induced mixing. Use MESA/HLW2000 at your own risk.   

 

d
dr

r2Ω( ) < 0 Rayleigh criterion 
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Other shear-induced instabilities (abridged) 

 

Goldreich Schubert Fricke instability 
•  The GSF instability is a double-diffusive version of the Solberg-

Høiland instability, where the two (or more) competing gradients 
are an unstable gradient of angular momentum and a stable 
gradient of entropy or composition. In fact, 

•  As with most of these instabilities, very little is known about 
induced mixing. Use MESA/HLW2000 at your own risk.   

 

 

 

Ledoux criterion  
for thermo-
compositional 
convective instability 

Solberg-Høiland 
criterion  
for thermo-centrifugal 
instability 

Standard convection 
vs. fingering 
convection. 

Solberg-Høiland 
instability vs. GSF 
instability. 



Other shear-induced instabilities (abridged) 

 

Spruit-Tayler mechanism 
•  Magnetic fields can also transport angular momentum by  

•  Causing instabilities that drive turbulence 
•  Being themselves sources of angular momentum transport (via 

Maxwell stresses).   

•  Note: the Maxwell stresses don’t look anything like the 
turbulent diffusion term.  
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Constant C depends 
on field geometry. 

Add turbulent 
transport here 



Other shear-induced instabilities (abridged) 

 

Spruit-Tayler mechanism 
•  Magnetic fields can also transport angular momentum by  

•  Causing instabilities that drive turbulence 
•  Being themselves sources of angular momentum transport (via 

Maxwell stresses).   

•  Note: the Maxwell stresses don’t look anything like the 
turbulent diffusion term.  

•  However, field and shear interact nonlinearly with each-other, 
so there is presumably a relationship between the two.  
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Other shear-induced instabilities (abridged) 

 

Spruit-Tayler mechanism 
•  Magnetic fields can also transport angular momentum by  

•  Causing instabilities that drive turbulence 
•  Being themselves sources of angular momentum transport (via 

Maxwell stresses).   
•  Tayler (1973+) studied instabilities of various magnetic field 

configurations in stellar radiative zones. 
•  Spruit (2002) proposed that these could drive a dynamo (self-

sustaining process of magnetic field generation) within the 
radiative zone. This is controversial.  

•  Spruit, and later Heger, Woosley & Spruit (2005) proposed an 
associated angular momentum “mixing” coefficient from this 
mechanism. (Use at your own risk, etc…). 
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Results. 



Make-up-your-own prescription!  

 

In general: Regardless of the driving mechanism:  
•  We know that shear probably drives the instability.  
•  We know that stratification probably quenches the instability.  
•  This balance is probably well-measured by the Richardson number. 
•  We want to create a diffusion coefficient that has the dimensions 

of cm2/s (as all the diffusion coefficients do). 

Possible very general prescription based only on dimensional 
arguments above: 
 
where C is either a constant, or a function of other non-dimensional 
parameters.   
Note that with          we recover prescription from Zahn (1974) for Secular 
Shear Instability, partially validated numerically by Prat & Lignieres (2014).   

 

 

 

νAM ,shear =CAM
κT

Riα
    and   Dshear =Cmix

κT

Riα

α =1



4. Activity #3: Modifying the dynamical shear 
instability routine in MESA.  

Part 1 
�  Test the effectiveness of the different AM transport prescription 

in MESA.. Do any of them explain observations?  
�  Collate and study results on Google spreadsheet.  
Part 2 
�  Using run_star_extras, implement your own prescription 

for am_new. Think about the stability criterion (if you want to 
implement one), and the mixing coefficient. You can use formula 
on previous slide, or any other of your choice.  

�  Collate and study results. Do any of them explain observations? 
Part 3 (If there is time)  
�  Turn compositional mixing back on, and add the rotationally 

induced mixing corresponding to your new model. See what 
happens to abundances.  

 
 



Result.  

Example run with only new angular momentum mixing implemented, 
with alpha = 0.5 and C = 1000. 



Result.  

Example run with both new angular momentum mixing implemented, 
and equivalent Dmix, with alpha = 0.5 and C = 1000. 



Result.  

Something terribly wrong is happening: the star becomes core 
convective (see Brunt-Vaisala frequency for instance, is 0 in most of 
the star now).  
This is because with an equivalent compositional mixing coefficient, 
hydrogen gets mixed back into the core very efficiently, and H-burning 
reignites.  
 
This shows that in order to explain RGB stars, we both need 
�  Extremely efficient AM transport but 
�  Only weak compositional transport.  



Solution to problem (AM mixing only) 

Sample code to be added to run_star_extras.f can be found 
in run_star_extras_solution.f!
!

Also do not forget to set use_other_am_mixing = .true. 
in your inlist 


