
Stellar Mixing: Day 1

Pascale Garaud and Chris Mankovich

MESA Summer School, 8/12/2014

Minilab 1: Lithium Depletion in Hyades

- Download and untar garaud_day1.tar.gz from the Teaching Materials section of mesas-
tar.org. Start in the ms/ work directory. Here the master inlist just includes inlist_project
and inlist_pgstar_ms.

- The default nuclear network basic.net only tracks 8 isotopes. Instead use an extended net
by adding these lines to &star_job (copy+paste at your own risk):

change_net = .true.

new_net_name = ’pp_and_cno_extras.net’

As the name suggests, this network adds some species and reactions that play a role in pp
and cno chains, including lithium-7, carbon-13, and more.

- The included history_columns.list already includes columns for surfaces abundances, and
the included inlist_pgstar has some plots set up for you to track relevant quantities during
the evolution. There are a few potentially mysterious controls already included in your
inlist_project; see the comments or ask Chris why those are there. log surface li7 mass
fraction will also be output in the terminal.

- Tell star to start from a homogeneous pre-MS model by including the line

create_pre_main_sequence_model = .true.

in &star_job.

- Generate a random number between zero and one, and map linearly to the interval [0.5 M�,
1.5 M�] to determine your initial mass. Set a maximum age equal to the Hyades age (625
Myr). Search in star/defaults/controls.defaults to figure out what the exact control is
called.

- Can you explain your final surface lithium abundance relative to that found by
your neighbors? You can revisit your saved pgstar output under the png/ directory—
compare histories with your peers!

- Convert your final surface lithium mass fraction to N(Li) and enter your final
log_Teff and N(Li) on the google sheet. Note the definition N(Li) = 12 + log10(XLi),
where XLi is the mass fraction.



2

Minilab 2: Lithium Depletion in the Sun

- Keep your current inlist, but to save time just run from the included 1.0 M� ZAMS model
m1_z02_zams_extras.mod. This model was evolved through the pre-MS phase with lithium
and friends included. e.g. in &star_job, modify:

create_pre_main_sequence_model = .false.

load_saved_model = .true.

saved_model_name = ’m1_z02_zams_extras.mod’

- Enable overshoot below the outer convection zone. Search in star/defaults/controls.defaults

for the appropriate control. (Hint: the OCZ is a ‘nonburning’ convection zone.) For the over-
shoot parameter f, which represents the e-folding length for the overshoot diffusion coefficient
in units of the local pressure scale height, use a (truly!) random value in the interval [0.05,
0.10].

- Set maximum age equal to the solar age (4.6 Gyr) and run. Watch the Mixing plot in
particular. Does your value of f succeed in reproducing the observed solar N(Li)?
Enter your overshoot f and final surface N(Li) in the google sheet.

Long Lab, part one: Canonical Mixing in RGB stars

- cd into the garaud_day1/rgb work directory.

- Again include overshoot below the OCZ, but this time with a more modest f value of 0.01.
(If you need a reminder of what the control is called, consult your ms/inlist_project.)

- Run from the included ZAMS model m1_z01_zams_extras.mod, which is just like the model
we used in the minilab except at half solar metallicity. This time include no age limit.

- Add an upper luminosity limit logL/L� = 1.5 as your stopping criterion, and run while we
continue the lecture.

- This time the main pgstar window includes the wonderful Kippenhahn diagram, which shows
mixing and burning throughout the star as a function of time. Watch for the first dredge-
up, when the inner boundary of the OCZ reaches a minimum in mass coordinate
before it starts receding again. Note: you’ll likely need to zoom in in mass
coordinate, using Kipp_mass_min and Kipp_mass_max. You can make changes to
inlist_pgstar in real time!

- The run should stop a little after the luminosity bump, which is when the H-
burning shell reaches a mass coordinate which was previously part of the OCZ
and stellar luminosity decreases a bit. We’ll use a recent saved photo for the next
exercise.

Long Lab, part two: Fingering Convection in RGB Stars

- Modify your inlist to allow fingering (“thermohaline”) mixing. Pick one of two prescriptions:

1. Kippenhahn, Ruschenplatt, & Thomas 1980

2. Brown, Garaud, & Stellmach 2013



3

For the efficiency parameter thermo_haline_coeff, choose a random value logarithmically
distributed over the interval [101, 104] for Kippenhahn, or [100, 102] for Brown et al.

- MESA star saves restart photos every so often. Restart from a saved photo from just before
the luminosity bump. (Hint: to decide which photo, open the most recent saved pgstar

plot in your png/ directory and consult the Kippenhahn plot. Pick a model number just
before stellar luminosity started decreasing. You would then restart from model 1700, say,
by running ./re x700 in the command line. To avoid this photo being overwritten 1000
steps from now, it is wise to copy it now, e.g. via cp photos/x700 photos/before_bump

and you’d restart accordingly with ./re before_bump.)

- Run until logL/L� = 1.7, and watch the Kippenhahn and Surface Abundance plots. Does
material from the H-burning shell get mixed up to the surface? How do surface
abundances (Li) change?

- Enter final surface li7 mass fraction, final log_L, and fingering prescription + efficiency, in
the google sheet.

Long Lab, part three: Add-your-own-mixing

Disable any fingering convection option in your inlist. The goal is to use the other_D_mix hook to
set up your own routine to implement chemical transport via the horizontal instrusion instability
wherever both of the following criteria are met:

1. the presence of an inverse composition gradient, i.e. ∇µ < 0, and

2. stability with respect to the Ledoux criterion, i.e. ∇ < ∇L, where ∇L ≡ ∇ad +
ϕ

δ
∇µ.

Look in star/other/other_D_mix.f for a skeleton subroutine. Useful comments are absent
from that file in the present version, but refer to star/other/other_am_mixing.f for a perfectly
analagous routine; this file does include helpful comments.

The other_D_mix hook only passes you id, which you can use to get the star pointer with a sin-
gle call to the routine star_ptr from star/public. For more details on this and run_star_extras

in general, consult Josiah’s tutorial at http://mesa.sourceforge.net/run_star_extras.html or
ask your nearest/favorite TA.

Your local copy of src/run_star_extras.f already includes a subroutine called get_diff_coeffs

which uses data from the star_info structure to calculate:

- the thermal diffusivity κT ,

- the molecular diffusivity κµ, and

- the viscosity ν.

Also included is a function numu(R0,r_th,Pr,tau) which returns the ratio Nuµ of macroscopic
transport diffusivity to the molecular diffusivity. The quantity R0 is defined by

R0 =
∇−∇ad
ϕ
δ∇µ

, (1)

where the numerator handily lives in the star_info pointer as s% gradT_sub_grada and the
denominator is likewise available and is called s% gradL_composition_term. The quantities rth,
Pr, and τ are defined by

rth =
R0 − 1

1/τ − 1
, Pr =

ν

κT
, τ =

κµ
κT
. (2)

http://mesa.sourceforge.net/run_star_extras.html


4

In both cases you’ll need to calculate

Numax
µ = Nuµ(R0 = 1, rth = 0,Pr, τ). (3)

1. If you want to implement the simplest case, the diffusion coefficient for chemical transport
will just be

Dnew = Numax
µ κµ. (4)

2. More experienced users should try the harder, somewhat more realistic case in which the
macroscopic diffusivity depends on layer height L relative to the finger size d, for example via

Dnew = Numax
µ κµ tanh

[
L

4d

(
Numax

µ

)−1
]
. (5)

You can either treat the nondimensional number L/d as the free parameter, or you can
calculate the (dimensional) finger size d from local quantities:

d =

(
κT νHP

δg(∇ad −∇)

)1/4

and δ ≈ 1 for an ideal gas. (6)

If you do this calculation using variables from the star_info pointer, you’ll get out a d in
centimeters—make sure you’re thinking in consistent units when you choose a value for L.

Whether you choose to treat the ratio L/d or the length L in cm as your parameter, you can
add an inlist control for the parameter by setting e.g. x_ctrl(1) = 1d2 in your &controls

namelist, and grabbing that value in your routine using s% x_ctrl(1). This way you can
change the value for your free parameter at the inlist level and avoid recompiling many times.

When you have a Dnew in hand for each zone in which the instability is active, you can finally
make the change by adding the new diffusion coefficient to the existing D_mix. For instance, for an
unstable zone with index k:

s% D_mix(k) = s% D_mix(k) + D_new

As a final tip, flag the zones as ‘thermohaline’ zones via

s% mixing_type(k) = 4

and they will appear in the Kippenhahn and Mixing plots with a pinkish-purplish color.
Remember to set use_other_D_mix = .true. in your inlist. Again restart from your photo

saved before the luminosity bump. Again run to logL/L� = 2. Does the new transport
mechanism link the H-burning shell to convective envelope? Is the transport efficient
enough to change surface abundances? How does your final surface Li abundance
compare to the existing thermohaline implementation you tried before?

Some more specific hints to help if you are stuck:

1. You need to loop over all zones and ask whether the current zone fulfills both criteria for
instability. Simple if statements will do the trick.

2. Zones k with an inverse composition gradient will have s% gradL_composition_term(k) less
than zero.



5

3. You can check for Ledoux stability by comparing the gradients s% gradT and s% gradL

directly.

4. Look at the definition of the subroutine get_diff_coeffs to understand the call structure.
All of the variables it takes as inputs can be found in the star_info pointer—ask a TA if
you’re stuck looking for one.

5. Setting s% mixing_type(k)=4 for the zones in which your extra mixing is active will let you
visualize the new mixing as purple regions on the Kippenhahn and Mixing plots.


