Conference paper Open Access

Attend2trend: Attention Model for Real-Time Detecting and Forecasting of Trending Topics

Ahmed Saleh; Ansgar Scherp


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Deep learning</subfield>
  </datafield>
  <controlfield tag="005">20191110190824.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This is the author's version of the work. It is posted here for your personal use, not for redistribution. The definitive Version of Record was published in the proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW), https://doi.org/10.1109/ICDMW.2018.00222.</subfield>
  </datafield>
  <controlfield tag="001">2600798</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">17-19 November 2018</subfield>
    <subfield code="g">ICDMW</subfield>
    <subfield code="a">IEEE International Conference on Data Mining Workshops</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Stirling</subfield>
    <subfield code="a">Ansgar Scherp</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">160308</subfield>
    <subfield code="z">md5:61d777f6599037d453ff607db4e4ab8f</subfield>
    <subfield code="u">https://zenodo.org/record/2600798/files/2018-ICDM-Attend2Trend-preprint.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://ICDM2018.org</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-11-17</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-moving-h2020</subfield>
    <subfield code="o">oai:zenodo.org:2600798</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">ZBW - Leibniz Information Centre for Economics</subfield>
    <subfield code="a">Ahmed Saleh</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Attend2trend: Attention Model for Real-Time Detecting and Forecasting of Trending Topics</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-moving-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">693092</subfield>
    <subfield code="a">Training towards a society of data-savvy information professionals to enable open leadership innovation</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;pre&gt;Knowing what is increasing in popularity is important to researchers, news organizations, auditors, government entities and more. In particular, knowledge of trending topics provides us with information about what people are attracted to and what they think is noteworthy. Yet detecting trending topics from a set of texts is a difficult task, requiring detectors to learn trending patterns  while simultaneously making predictions.&lt;/pre&gt;

&lt;pre&gt;In this paper, we propose a deep learning model architecture for the challenging task of trend detection and forecasting. The model architecture aims to learn and attend to the trending values&amp;#39; patterns. Our preliminary results show that our model detects the trending topics with a high accuracy. &lt;/pre&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/ICDMW.2018.00222</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
25
24
views
downloads
Views 25
Downloads 24
Data volume 3.8 MB
Unique views 18
Unique downloads 20

Share

Cite as