Conference paper Open Access

Attend2trend: Attention Model for Real-Time Detecting and Forecasting of Trending Topics

Ahmed Saleh; Ansgar Scherp


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/2600798</identifier>
  <creators>
    <creator>
      <creatorName>Ahmed Saleh</creatorName>
      <affiliation>ZBW - Leibniz Information Centre for Economics</affiliation>
    </creator>
    <creator>
      <creatorName>Ansgar Scherp</creatorName>
      <affiliation>University of Stirling</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Attend2trend: Attention Model for Real-Time Detecting and Forecasting of Trending Topics</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Deep learning</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-11-17</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2600798</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/ICDMW.2018.00222</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/moving-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;pre&gt;Knowing what is increasing in popularity is important to researchers, news organizations, auditors, government entities and more. In particular, knowledge of trending topics provides us with information about what people are attracted to and what they think is noteworthy. Yet detecting trending topics from a set of texts is a difficult task, requiring detectors to learn trending patterns  while simultaneously making predictions.&lt;/pre&gt;

&lt;pre&gt;In this paper, we propose a deep learning model architecture for the challenging task of trend detection and forecasting. The model architecture aims to learn and attend to the trending values&amp;#39; patterns. Our preliminary results show that our model detects the trending topics with a high accuracy. &lt;/pre&gt;</description>
    <description descriptionType="Other">This is the author's version of the work. It is posted here for your personal use, not for redistribution. The definitive Version of Record was published in the proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW), https://doi.org/10.1109/ICDMW.2018.00222.</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/693092/">693092</awardNumber>
      <awardTitle>Training towards a society of data-savvy information professionals to enable open leadership innovation</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
26
24
views
downloads
Views 26
Downloads 24
Data volume 3.8 MB
Unique views 19
Unique downloads 20

Share

Cite as