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Abstra
t. We present a novel single shot random algorithm, named

RSRT, for Rapidly-exploring Sorted Random Tree and based on inher-

ent relations analysis between RRT 
omponents. Experimental results

are realized with a wide set of path planning problems involving a free

�ying obje
t in a stati
 environment. The results show that our RSRT

algorithm is faster than existing ones. These results 
an also stand as a

starting point of a massive motion planning ben
hmark.

1 Motion planning with Rapidly Exploring Random

Trees

The problem of motion planning turns out to be solved only by high 
ompu-

tationnal systems due to its inherent 
omplexity [1℄. As the main goal of the

dis
ipline is to develop prati
al and e�
ient solvers that produ
e automati-


ally motions, random sampling sear
hes su

essfully redu
e the determinist-

polynomial 
omplexity of the resolution [2℄. In 
ompensation, the resolution

that 
onsists in exploring the spa
e, produ
e non-determinist solution [3℄. Prin-


ipal alternatives of this sear
h are realized in 
on�guration spa
e C [4℄, in state

spa
e X [5℄ and in state-time spa
e ST [6℄. C is intended to motion planning in

stati
 environments. X adds di�erential 
onstraints. ST adds the possibility of

a dynami
 environment. The 
on
ept of high-dimensional 
on�guration spa
es

is initiated by J. Barraquand et al. [7℄ to use a manipulator with 31 degrees

of freedom. P. Cheng [8℄ uses these methods with a 12 dimensional state spa
e

involving rotating rigid obje
ts in 3D spa
e. S. M. LaValle [9℄ presents su
h a

spa
e with a hundred dimensions for a robot manipulator or a 
ouple of mobiles.

S.M. LaValle [10℄ is based on the 
onstru
tion of a tree T in the 
onsidered spa
e

S. Starting from the initial position qinit, the 
onstru
tion of the tree is 
arried

out by integrating 
ontrol 
ommands iteratively. Ea
h iteration aims at bringing


loser the mobile M to an element e randomly sele
ted in S. To avoid 
y
les, two
elements e of T 
annot be identi
al. In pra
ti
e, RRT is used to solve various

problems su
h as negotiating narrow passages made of obsta
les [11℄, �nding

motions that satisfy obsta
le-avoidan
e and dynami
 balan
es 
onstraints [12℄,
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making Mars exploration vehi
les strategies [13℄, sear
hing hidden obje
ts [14℄,

rallying a set of points or playing hide-and-seek with another mobile [15℄ and

many others mentioned in [9℄. Thus the RRT method 
an be 
onsidered as the

most general one by their e�
ien
y to solve a large set of problems,

In its initial formulation, RRT algorithms are de�ned without goal. The ex-

ploration tree 
overs the surrounding spa
e and progress blindly towards free

spa
e. A geometri
al path planning problem aims generally at joining a �nal 
on-

�guration qobj . To solve the path planning problem, the RRT method sear
hes

a solution by building a tree (Alg. 1) rooted at the initial 
on�guration qinit.

Ea
h node of the tree results from the mobile 
onstraints integration. Its edges

are 
ommands that are applied to move the mobile from a 
on�guration to an-

other.

rrt(qinit, k, ∆t, C)
1 init(qinit, T );
2 for i← 1 to k

3 qrand ← randomState(C);
4 qprox ← nearbyState(qrand, T );
5 qnew ← newState(qprox, qrand, ∆t);
6 addState(qnew, T );
7 addLink(qprox, qnew , T );
8 return T ;

Alg. 1: Basi
 RRT building algorithm.

The RRT method is a random in
remental sear
h whi
h 
ould be 
asting in

the same framework of Las Vegas Algorithms (LVA). It repeats su

essively a

loop made of three phases: generating a random 
on�guration qrand, sele
ting

the nearest 
on�guration qprox, generating a new 
on�guration qnew obtained by

numeri
al integration over a �xed time step ∆t. The mobile M and its 
onstraints

are not expli
itly spe
i�ed. Therefore, modi�
ations for additional 
onstraints

(su
h as non-holonomi
) are 
onsidered minor in the algorithm formulation.

In this �rst version, C is presented without obsta
le in an arbitrary spa
e

dimension. At ea
h iteration, a lo
al planner is used to 
onne
t ea
h 
ouples

(qnew , qprox) in C. The distan
e between two 
on�gurations in T is de�ned by

the time-step ∆t. The lo
al planner is 
omposed by temporal and geometri
al

integration 
onstraints. The resulting solution a

ura
y is mainly due to the


hosen lo
al planner. k de�nes the maximum depth of the sear
h. If no solution

is found after k iterations, the sear
h 
an be restarted with the previous T

without re-exe
uting the init fun
tion (Alg. 1 line 1).

The RRT method, inspired by traditional Arti�
ial Intelligent te
hniques for

�nding sequen
es between an initial and a �nal element (i.e. qinit and qobj) in

a well-known environment, 
an be
ome a bidire
tional sear
h (shortened Bi-

RRT [16℄). Its prin
iple is based on the simultaneous 
onstru
tion of two trees
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(
alled Tinit and Tobj) in whi
h the �rst grows from qinit and the se
ond from

qobj . The two trees are developped towards ea
h other while no 
onne
tion is es-

tablished between them. This bidire
tional sear
h is justi�ed be
ause the meet-

ing 
on�guration of the two trees is nearly the half-
ourse of the 
on�guration

spa
e separating qinit and qobj . Therefore, the resolution time 
omplexity is re-

du
ed [17℄.

RRT-Conne
t [18℄ is a variation of Bi-RRT that 
onsequently in
rease the

Bi-RRT 
onvergen
e towards a solution thanks to the enhan
ement of the two

trees 
onvergen
e. This has been settled to:

� ensure a fast resolution for �simple� problems (in a spa
e without obsta
le,

the RRT growth should be faster than in a spa
e with many obsta
les);

� maintain the probabilisti
 
onvergen
e property. Using heuristi
s modify the

probability 
onvergen
e towards the goal and also should modify its evolving

distribution. Modifying the random sampling 
an 
reate lo
al minima that


ould slow down the algorithm 
onvergen
e.


onne
tT(q, ∆t, T )
1 r ← ADVANCED;

2 while r = ADVANCED

3 r← expandT(q, ∆t, T );
4 return r;

Alg. 2: Conne
ting a 
on�guration q to a graph T with RRT-Conne
t.

In RRT-Conne
t, the two graphs previously 
alled Tinit and Tobj are 
alled

now Ta and Tb (Alg. 3). Ta (respe
tively Tb) repla
es Tinit and Tobj alterna-

tively (respe
tively Tobj and Tinit). The main 
ontribution of RRT-Conne
t is

the Conne
tT fun
tion whi
h move towards the same 
on�guration as long as

possible (i.e. without 
ollision). As the in
remental nature algorithm is redu
ed,

this variation is designed for non-di�erential 
onstraints. This is iteratively real-

ized by the expansion fun
tion (Alg. 2). A 
onne
tion is de�ned as a su

ession

of su

essful extensions. An expansion towards a 
on�guration q be
omes either

an extension or a 
onne
tion. After 
onne
ting su

essfully qnew to Ta, the algo-

rithm tries as many extensions as possible towards qnew to Tb. The 
on�guration

qnew be
omes the 
onvergen
e 
on�guration qco (Alg. 3 lines 8 and 10).
Inherent relations inside the adequate 
onstru
tion of T in Cfree shown in

previous works are:

� the deviation of random sampling in the variationsBi-RRT and RRT-Conne
t.

Variations in
lude in RRT-Conne
t are 
alled RRT-ExtCon, RRT-ConCon

and RRT-ExtExt; they modify the 
onstru
tion strategy of one of the two

trees of the method RRT-Conne
t by 
hanging priorities of the extension

and 
onne
tion phases [19℄.
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� the well-adapted qprox element sele
ted a

ording to its 
ollision probability

in the variation CVP and the integration of 
ollision dete
tion sin
e qprox

generation [20℄.

� the adaptation of C to the vi
inity a

essibility of qprox in the variation

RC-RRT [21℄.

� the parallel exe
ution of growing operations for n distin
t graphs in the

variation OR parallel Bi-RRT and the growing of a shared graph with a

parallel qnew sampling in the variation embarrassingly parallel Bi-RRT [22℄.

� the sampling adaptation to the RRT growth [23�27℄.

rrtConne
t(qinit, qobj , k, ∆t, C)
1 init(qinit, Ta);
2 init(qobj , Tb);
3 for i← 1 to k

4 qrand ← randomState(C);
5 r← expandT(qrand, ∆t, Ta);
6 if r 6= TRAPPED

7 if r = REACHED

8 qco ← qrand;

9 else

10 qco ← qnew ;

11 if 
onne
tT(qco, ∆t, Tb) =
REACHED

12 sol ← plan(qco, Ta, Tb);
13 return sol;

14 swapT(Ta, Tb);
15 return TRAPPED;

Alg. 3: Expanding two graphs Ta and Tb towards themselves with RRT-Conne
t.

qnew mentionned line 10 
orreponds to the qnew variable mentionned line 9 Alg. 4.

By adding the 
ollision dete
tion in the given spa
e S during the expansion

phase, the sele
tion of nearest neighbor qprox is realized in S ∩ Cfree (Alg. 4).

Although the 
ollision dete
tion is expensive in 
omputing time, the distan
e

metri
 evaluation ρ is subordinate to the 
ollision dete
tor. U de�nes the set of

admissible orders available to the mobile M. For ea
h expansion, the fun
tion

expandT (Alg. 4) returns three possible values: REACHED if the 
on�guration

qnew is 
onne
ted to T , ADVANCED if q is only an extension of qnew whi
h is not


onne
ted to T , and TRAPPED if q 
annot a

ept any su

essor 
on�guration

qnew.



5

expandT(q, ∆t, T )
1 qprox ← nearbyState(q, T );
2 dmin ← ρ(qprox, q);
3 success← FALSE;

4 forea
h u ∈ U

5 qtmp ← integrate(q, u, ∆t);
6 if isCollisionFree(qtmp, qprox, M, C)
7 d← ρ(qtmp, qrand);
8 if d < dmin

9 qnew ← qtmp;

10 dmin ← d;

11 success← TRUE;

12 if success = TRUE

13 insertState(qprox, qnew , T );
14 if qnew = q

15 return REACHED;

14 return ADVANCED;

17 return TRAPPED;

Alg. 4: Expanding T with obsta
les.

In the next se
tion, we examine in detail some justi�
ations of our algorithm

and the inherent relations in the various 
omponents used. This study enables

to synthesize a new algorithm named Rapidly exploring Sorted Random Tree

(RSRT), based on redu
ing 
ollision dete
tor 
alls without modi�
ation of the


lassi
al random sampling strategy.

2 RSRT algorithm

Variations of RRT method presented in the previous se
tion is based on the

following sequen
e :

� generating qrand;

� sele
ting qprox in T ;

� generating ea
h su

essor of qprox de�ned in U .

� realizing a 
olliding test for ea
h su

essor previously de�ned;

� sele
ting a 
on�guration 
alled qnew that is the 
losest to qrand among su
-


essors previously de�ned; This sele
ted 
on�guration has to be 
ollision

free.

The 
onstru
tion of T 
orresponds to the repetition of su
h a sequen
e. The


ollision dete
tion dis
riminates the two possible results of ea
h sequen
e:

� the insertion of qnew in T (i.e. without obsta
le along the path between qprox

and qnew);
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� the reje
tion of ea
h qprox su

essors (i.e. due to the presen
e of at least one

obsta
le along ea
h su

essors path rooted at qprox).

The reje
tion of qnew indu
es an expansion probability related to its vi
inity

(and then also to qprox vi
inity); the more the 
on�guration qprox is 
lose to

obsta
les, the more its expansion probability is weak. It reminds one of funda-

mentalsRRT paradigm: free spa
es are made of 
on�gurations that admit various

number of available su

essors; good 
on�gurations admit many su

essors and

bad 
on�gurations admit only few ones. Therefore, the more good 
on�gurations

are inserted in T , the better the RRT expansion will be. The problem is that

we do not previously know whi
h good and bad 
on�gurations are needed dur-

ing RRT 
onstru
tion, be
ause the solution of the 
onsidered problem is not yet

known. This problem is also underlined by the parallel variation OR Bi-RRT [22℄

(i.e. to de�ne the depth of a sear
h in a spe
i�
 vi
inity). For a path planning

problem p with a solution s available after n integrations starting from qinit, the

question is to maximize the probability of �nding a solution; A

ording to the


on
ept of �rational a
tion�, the response of P3 
lass to adapt a on-line sear
h


an be solved by the de�nition of a formula that de�nes the 
ost of the sear
h

in terms of �lo
al e�e
ts� and �propagations� [28℄. These problems �nd a way in

the tuning of the behavior algorithm like CVP did [20℄.

newExpandT(q, ∆t, T )
1 qprox ← nearbyState(q, T );
2 S ← ∅;
3 forea
h u ∈ U

4 q ← integrate(qprox, u, ∆t);
5 d← ρ(q, qrand);
6 S ← S + {(q, d)};
7 qsort(S, d);

8 n← 0;
10 while n < Card(S)
11 s← getTupleIn(n, S);
12 qnew ← �rstElementOf(s);
13 if isCollisionFree(qnew, qprox, M, C)
14 insertState(qprox, qnew, T );
15 if qnew = q

16 return REACHED;

17 return ADVANCED;

18 n← n + 1;
19 return TRAPPED;

Alg. 5: Expanding T and redu
ing the 
ollision dete
tion.
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In the 
ase of a spa
e made of a single narrow passage, the use of bad 
on�gu-

rations (whi
h su

essors generally 
ollide) is ne
essary to resolve su
h problem.

The weak probability of su
h 
on�gurations extension is one of the weakness of

the RRT method.

To bypass this weakness, we propose to redu
e resear
h from the 
losest

element (Alg. 4) to the �rst free element of Cfree. This is realized by reversing

the relation between 
ollision dete
tion and distan
e metri
; the solution of ea
h

iteration is validated by subordinating 
ollision tests to the distan
e metri
; the

�rst su

ess 
all to the 
ollision dete
tor validates a solution. This inversion

indu
es:

� a redu
tion of the number of 
alls to the 
ollision dete
tor proportionally

to the nature and the dimension of U ; Its goal is to 
onne
t the 
ollision

dete
tor and the derivative fun
tion that produ
e ea
h qprox su

essor.

� an equiprobability expansion of ea
h node independently of their relationship

with obsta
les;

The T 
onstru
tion is now based on the following sequen
e:

1. generating a random 
on�guration qrand in C;

2. sele
ting qprox the nearest 
on�guration to qrand in T (Alg. 5 line 1);
3. generating ea
h su

essors of qprox (Alg. 5 lines 3 to 6); ea
h su

essor is

asso
iated with its distan
e metri
 from qrand. It produ
es a 
ouple 
alled s

stored in S;

4. sorting s elements by distan
e (Alg. 5 lines 7);
5. sele
ting the �rst 
ollision-free element of S and breaking the loop as soon

as this �rst element is dis
overed (Alg. 5 lines 16 and 17);

3 Experiments

This se
tion presents experiments performed on a Redhat Linux Cluster that


onsists of 8 Dual Core pro
essor 2.8 GHz Pentium 4 (5583 bogomips) with 512

MB DDR Ram.

To perform the run-time behavior analysis for our algorithm, we have gen-

erated series of problems that gradually 
ontains more 3D-obsta
les. For ea
h

problem, we have randomly generated ten di�erent instan
es. The number of

obsta
les is de�ned by the sequen
e 20, 40, 60, . . . , 200, 220. In ea
h instan
e,

all obsta
les are 
ubes and their sizes are randomly varying between (5, 5, 5) and
(20, 20, 20). The mobile is a 
ube with a �xed size (10, 10, 10). Obsta
les and
mobile 
oordinates are varying between (−100,−100,−100) and (100, 100, 100).
For ea
h instan
e, a set of 120 qinit and 120 qobj are generated in Cfree. By


ombinating ea
h qinit and ea
h qobj , 14400 
on�guration-tuples are available

for ea
h instan
e of ea
h problem. For all that, our ben
hmark is made of more

than 1.5 million problems. An instan
e with 20 obsta
les is shown in Fig. 1 on

the lower part and another instan
e with 100 obsta
les in Fig. 1 on the left part.

On these two examples, qinit and qobj are also visible. We used the Proximity
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Fig. 1: 20 obsta
les problem and its solution (upper 
ouple). 100 obsta
les problem and

its solution (lower 
ouple).

Query Pa
kage (PQP) library presented in [29℄ to perform the 
ollision dete
-

tion. The mobile is a free-�ying obje
t 
ontrolled by a dis
retized 
ommand that


ontains 25 di�erent inputs uniformly dispat
hed over translations and rotations.

The performan
e was 
ompared between RRT-Conne
t (using the RRT-ExtCon

strategy) and our RSRT algorithm (Alg. 5).

The 
hoi
e of the distan
e metri
 implies important 
onsequen
es on 
on�g-

urations' 
onnexity in Cfree. It de�nes the next 
onvergen
e node qco for the

lo
al planner. The metri
 distan
e must be sele
ted a

ording to the behavior

of the lo
al planner to limit its failures. The lo
al planner 
hosen is the straight

line in C. To validate the toughness of our algorithm regarding to RRT-Conne
t,

we had use three di�erent distan
e metri
s. Used distan
e metri
s are:



9

� the Eu
lidean distan
e (mentioned Eu
l in Fig. 2 to 4)

d(q, q′) =

(

i
∑

k=0

(ck − c′k)2 + nf2

j
∑

k=0

(αk − α′

k)2

)

1

2

where nf is the normalization fa
tor that is equal to the maximum of ck

range values.

� the s
aled Eu
lidean distan
e metri
 (mentioned Eu
l2 in Fig. 2 to 4)

d(q, q′) =

(

s

i
∑

k=0

(ck − c′k)2 + nf2(1− s)

j
∑

k=0

(αk − α′

k)2

)

1

2

where s is a �xed value 0.9;
� the Manhattan distan
e metri
 (mentioned Manh in Fig. 2 to 4)

d(q, q′) =

i
∑

k=0

‖ck − c′k‖+ nf

j
∑

k=0

‖αk − α′

k‖

where ck are axis 
oordinates and αk are angular 
oordinates.

For ea
h instan
e, we 
ompute the �rst thousand su

essful trials to establish

average resolving times (Fig. 2), standard deviation resolving times (Fig. 3) and

midpoint resolving times (Fig. 4). These trials are initiated with a �xed random

set of seed. Those �xed seed assume that tested random suite are di�erent be-

tween ea
h other and are the same between instan
es of all problems. As ea
h

instan
e is asso
iated to one thousand trials, ea
h point of ea
h graph is the

average over ten instan
es (and then over ten thousands trials). On ea
h graph,

the number of obsta
les is on x-axis and resolving time in se
. is on y-axis.

Figure 2 shows that average resolving time of our algorithm os
illates be-

tween 10 and 4 times faster than the original RRT-Conne
t algorithm. As the

spa
e obstru
tion grows linearly, the resolving time of RRT-Conne
t grows expo-

nentially while RSRT algorithm grows linearly. Figure 3 shows that the standard

deviation follows the same pro�le. It shows that RSRT algorithm is more robust

than RRT-Conne
t. Figure 4 shows that midpoints' distributions follow the aver-

age resolving time behavior. This is a reinfor
ement of the su

ess of the RSRT

algorithm. This assumes that half part of time distribution are 10 to 4 times

faster than RRT-Conne
t.

4 Con
lusion

We have des
ribed a new RRT algorithm, 
alled RSRT algorithm, to solve mo-

tion planning problems in stati
 environments. RSRT algorithm a

elerates 
on-

sequently the resulting resolving time. The experiments show the pra
ti
al per-

forman
es of the RSRT algorithm, and the results re�e
t its 
lassi
al behavior.
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Fig. 2: Averages resolving times.

The results given above (have been evaluated on a 
luster whi
h provide a mas-

sive experiment analysis. The 
hallenging goal is now to extend the ben
hmark

that is proposed to every motion planning method. The proposed ben
hmark will

be enhan
ed to spe
i�
 situations that allow RRT to deal with motion planning

strategies based on statisti
al analysis.
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