Rapidly-exploring Sorted Random Tree, a self
adaptive random motion planning algorithm

Nicolas Jouandeau

Université Paris 8, LIASD,
2, rue de la Liberté,
93526 Saint-Denis Cedex - France,
n@ai.univ-paris8.fr,
WWW home page: http://wuw.ai.univ-paris8.fr/~n/

Abstract. We present a novel single shot random algorithm, named
RSRT, for Rapidly-exploring Sorted Random Tree and based on inher-
ent relations analysis between RRT components. Experimental results
are realized with a wide set of path planning problems involving a free
flying object in a static environment. The results show that our RSRT
algorithm is faster than existing ones. These results can also stand as a
starting point of a massive motion planning benchmark.

1 Motion planning with Rapidly Exploring Random
Trees

The problem of motion planning turns out to be solved only by high compu-
tationnal systems due to its inherent complexity [1]. As the main goal of the
discipline is to develop pratical and efficient solvers that produce automati-
cally motions, random sampling searches successfully reduce the determinist-
polynomial complexity of the resolution [2]. In compensation, the resolution
that consists in exploring the space, produce non-determinist solution [3]. Prin-
cipal alternatives of this search are realized in configuration space C [4], in state
space X [5] and in state-time space ST [6]. C' is intended to motion planning in
static environments. X adds differential constraints. ST adds the possibility of
a dynamic environment. The concept of high-dimensional configuration spaces
is initiated by J. Barraquand et al. [7] to use a manipulator with 31 degrees
of freedom. P. Cheng [8] uses these methods with a 12 dimensional state space
involving rotating rigid objects in 3D space. S. M. LaValle [9] presents such a
space with a hundred dimensions for a robot manipulator or a couple of mobiles.
S.M. LaValle [10] is based on the construction of a tree T in the considered space
S. Starting from the initial position g;,;:, the construction of the tree is carried
out by integrating control commands iteratively. Each iteration aims at bringing
closer the mobile M to an element e randomly selected in S. To avoid cycles, two
elements e of T' cannot be identical. In practice, RRT is used to solve various
problems such as negotiating narrow passages made of obstacles [11], finding
motions that satisfy obstacle-avoidance and dynamic balances constraints [12],

making Mars exploration vehicles strategies [13], searching hidden objects [14],
rallying a set of points or playing hide-and-seek with another mobile [15] and
many others mentioned in [9]. Thus the RRT method can be considered as the
most general one by their efficiency to solve a large set of problems,

In its initial formulation, RRT algorithms are defined without goal. The ex-
ploration tree covers the surrounding space and progress blindly towards free
space. A geometrical path planning problem aims generally at joining a final con-
figuration gop;. To solve the path planning problem, the RRT method searches
a solution by building a tree (ALG. 1) rooted at the initial configuration g;,:.
Each node of the tree results from the mobile constraints integration. Its edges
are commands that are applied to move the mobile from a configuration to an-
other.

rrt(Qinit, k, At, C)

1 init(qimt, T),

2 fori—1tok

3 Grand <— randomState(C);

4 Gprox < nearbyState(¢rana, T);

5 Gnew — newState(¢prox, Grand, At);
6 addState(gnew, T);
7 addLink(qproq, Gnew: T);
8 return T

AvLa. 1: Basic RRT building algorithm.

The RRT method is a random incremental search which could be casting in
the same framework of Las Vegas Algorithms (LVA). It repeats successively a
loop made of three phases: generating a random configuration ¢,qnq4, selecting
the nearest configuration gy, generating a new configuration gy, obtained by
numerical integration over a fixed time step A¢. The mobile M and its constraints
are not explicitly specified. Therefore, modifications for additional constraints
(such as non-holonomic) are considered minor in the algorithm formulation.

In this first version, C' is presented without obstacle in an arbitrary space
dimension. At each iteration, a local planner is used to connect each couples
(Gnews @proz) in C. The distance between two configurations in T is defined by
the time-step At. The local planner is composed by temporal and geometrical
integration constraints. The resulting solution accuracy is mainly due to the
chosen local planner. k defines the maximum depth of the search. If no solution
is found after k iterations, the search can be restarted with the previous T
without re-executing the init function (ArLG. 1 line 1).

The RRT method, inspired by traditional Artificial Intelligent techniques for
finding sequences between an initial and a final element (i.e. ginit and gop;) in
a well-known environment, can become a bidirectional search (shortened Bi-
RRT [16]). Its principle is based on the simultaneous construction of two trees

(called Tipnir and Top;) in which the first grows from gin+ and the second from
Qob;- The two trees are developped towards each other while no connection is es-
tablished between them. This bidirectional search is justified because the meet-
ing configuration of the two trees is nearly the half-course of the configuration
space separating ¢;n;+ and gop;. Therefore, the resolution time complexity is re-
duced [17].

RRT-Connect [18] is a variation of Bi-RRT that consequently increase the
Bi-RRT convergence towards a solution thanks to the enhancement of the two
trees convergence. This has been settled to:

— ensure a fast resolution for “simple” problems (in a space without obstacle,
the RRT growth should be faster than in a space with many obstacles);

— maintain the probabilistic convergence property. Using heuristics modify the
probability convergence towards the goal and also should modify its evolving
distribution. Modifying the random sampling can create local minima that
could slow down the algorithm convergence.

connectT(q, At,T')
1 r < ADVANCED;

2 while r = ADVANCED
3 |r — expandT(q, At, T);
4 return 7;

ALG. 2: Connecting a configuration ¢ to a graph T' with RRT-Connect.

In RRT-Connect, the two graphs previously called T;,;; and Top; are called
now T, and Ty (ALG. 3). T, (respectively Ty) replaces Tipir and Top; alterna-
tively (respectively Top; and Tipi). The main contribution of RRT-Connect is
the ConnectT function which move towards the same configuration as long as
possible (i.e. without collision). As the incremental nature algorithm is reduced,
this variation is designed for non-differential constraints. This is iteratively real-
ized by the expansion function (ALG. 2). A connection is defined as a succession
of successful extensions. An expansion towards a configuration ¢ becomes either
an extension or a connection. After connecting successfully gneq to Ty, the algo-
rithm tries as many extensions as possible towards gnew to 1. The configuration
Gnew becomes the convergence configuration g., (ALG. 3 lines 8 and 10).

Inherent relations inside the adequate construction of 7' in Cfyee shown in
previous works are:

— the deviation of random sampling in the variations Bi-RRT and RRT-Connect.
Variations include in RRT-Connect are called RRT-ExtCon, RRT-ConCon
and RRT-FExtEzt; they modify the construction strategy of one of the two
trees of the method RRT-Connect by changing priorities of the extension
and connection phases [19].

— the well-adapted gpro, element selected according to its collision probability
in the variation C'VP and the integration of collision detection since gprox
generation [20].

— the adaptation of C' to the vicinity accessibility of gpro. in the variation
RC-RRT [21].

— the parallel execution of growing operations for n distinct graphs in the
variation OR parallel Bi-RRT and the growing of a shared graph with a
parallel ¢ne sampling in the variation embarrassingly parallel Bi-RRT [22].

— the sampling adaptation to the RRT growth [23-27].

rrtConnect(nit, Gobj, k. At, C)
1 init(qim-t, Ta);
2 init(qoby, Ip);
fori—1tok
Qrand — randomState(C);
r — expandT(qrand, At, Ty);
if r # TRAPPED
if r = REACHED
|qco “ Qrand;
else
|qCO — QHe’w;
if connectT(geo, At, Tp) =
REACHED
sol < plan(gco, Tu, Tt);
13 return sol;
14 |swapT(Ty, Ty);
15 return TRAPPED;

== QO 00~ O Ot ik W
= O

Ju—
N

ALG. 3: Expanding two graphs T, and T}, towards themselves with RRT-Connect.
Gnew mentionned line 10 correponds to the gne. variable mentionned line 9 ALG. 4.

By adding the collision detection in the given space S during the expansion
phase, the selection of nearest neighbor gpros is realized in S N Crpee (ALG. 4).
Although the collision detection is expensive in computing time, the distance
metric evaluation p is subordinate to the collision detector. U defines the set of
admissible orders available to the mobile M. For each expansion, the function
expandT (ALG. 4) returns three possible values: REACHED if the configuration
(new 1s connected to T, ADVANCED if ¢ is only an extension of ¢y, which is not
connected to T, and TRAPPED if ¢ cannot accept any successor configuration

qnew .

expandT(q, At,T)

0O U Wi

= e e e e e e O
R TR W N RO

dproz < nearbyState(q, T);
dmin < p(‘];m“oacv q);
success — FALSE;
foreach w € U
Qimp — integrate(q, u, At);
if isCollisionFree(qimyp, ¢prozs M, C)
d — p(@tmp: Grand);
Gnew <~ Qtmp;
dmin — d;
success <+ TRUFE;
if success =TRUFE
insertState(gprox, Gnew, I);
if Anew = 4
return REACHED;
|return ADVANCED;
return TRAPPED;

ALG. 4: Expanding T with obstacles.

In the next section, we examine in detail some justifications of our algorithm
and the inherent relations in the various components used. This study enables
to synthesize a new algorithm named Rapidly exploring Sorted Random Tree
(RSRT), based on reducing collision detector calls without modification of the

classical random sampling strategy.

2 RSRT algorithm

Variations of RRT method presented in the previous section is based on the

following sequence :

— the insertion of ¢new in T (4.e. without obstacle along the path between gpro

genera‘ting Grand;

selecting gproz in T

generating each successor of gpro, defined in U.
realizing a colliding test for each successor previously defined;

selecting a configuration called ¢peq that is the closest to grqng among suc-
cessors previously defined; This selected configuration has to be collision

The construction of 7' corresponds to the repetition of such a sequence. The
collision detection discriminates the two possible results of each sequence:

— the rejection of each gproz Successors (i.e. due to the presence of at least one
obstacle along each successors path rooted at gproz)-

The rejection of g,e induces an expansion probability related to its vicinity
(and then also t0 @prog Vvicinity); the more the configuration ¢pro. is close to
obstacles, the more its expansion probability is weak. It reminds one of funda-
mentals RRT paradigm: free spaces are made of configurations that admit various
number of available successors; good configurations admit many successors and
bad configurations admit only few ones. Therefore, the more good configurations
are inserted in 7', the better the RRT expansion will be. The problem is that
we do not previously know which good and bad configurations are needed dur-
ing RRT construction, because the solution of the considered problem is not yet
known. This problem is also underlined by the parallel variation OR Bi-RRT [22]
(i.e. to define the depth of a search in a specific vicinity). For a path planning
problem p with a solution s available after n integrations starting from ¢y, the
question is to maximize the probability of finding a solution; According to the
concept of “rational action”, the response of P3 class to adapt a on-line search
can be solved by the definition of a formula that defines the cost of the search
in terms of “local effects” and “propagations” [28]. These problems find a way in
the tuning of the behavior algorithm like C'VP did [20].

newExpandT (g, At, T)
dproz < nearbyState(q, T);
S« 0;
foreach u € U
q < integrate(gproz, u, At);
d < p(q; Grand);
S S+{(@dk
gsort(S, d);
8 n«0;
10 while n < Card(S)
11 s « getTupleln(n, S);
12 Inew — firstElement Of(s);
13 it isCollisionFree(gnew, ¢proz, M, C)

N O U W N

14 insertState(qprox s Gnew, T);
15 if Inew = ¢

16 |return REACHED;

17 return ADVANCED;

18 |n —n+1;
19 return TRAPPED;

Avra. 5: Expanding T and reducing the collision detection.

In the case of a space made of a single narrow passage, the use of bad configu-
rations (which successors generally collide) is necessary to resolve such problem.
The weak probability of such configurations extension is one of the weakness of
the RRT method.

To bypass this weakness, we propose to reduce research from the closest
element (ALG. 4) to the first free element of Cyee. This is realized by reversing
the relation between collision detection and distance metric; the solution of each
iteration is validated by subordinating collision tests to the distance metric; the
first success call to the collision detector validates a solution. This inversion
induces:

— a reduction of the number of calls to the collision detector proportionally
to the nature and the dimension of U; Its goal is to connect the collision
detector and the derivative function that produce each gpro; successor.

— an equiprobability expansion of each node independently of their relationship
with obstacles;

The T construction is now based on the following sequence:

1. generating a random configuration ¢,qnq in C;

. selecting gpror the nearest configuration to ¢rane in 7' (ALG. 5 line 1);

3. generating each successors of gpror (ALG. 5 lines 3 to 6); each successor is
associated with its distance metric from ¢,q,q. It produces a couple called s
stored in S;

4. sorting s elements by distance (ALG. 5 lines 7);

5. selecting the first collision-free element of S and breaking the loop as soon
as this first element is discovered (ALG. 5 lines 16 and 17);

N

3 Experiments

This section presents experiments performed on a Redhat Linux Cluster that
consists of 8 Dual Core processor 2.8 GHz Pentium 4 (5583 bogomips) with 512
MB DDR Ram.

To perform the run-time behavior analysis for our algorithm, we have gen-
erated series of problems that gradually contains more 3D-obstacles. For each
problem, we have randomly generated ten different instances. The number of
obstacles is defined by the sequence 20, 40, 60, ..., 200, 220. In each instance,
all obstacles are cubes and their sizes are randomly varying between (5,5, 5) and
(20,20, 20). The mobile is a cube with a fixed size (10,10, 10). Obstacles and
mobile coordinates are varying between (—100, —100, —100) and (100, 100, 100).
For each instance, a set of 120 gn¢ and 120 gop; are generated in Clyyee. By
combinating each g;n;; and each gop;, 14400 configuration-tuples are available
for each instance of each problem. For all that, our benchmark is made of more
than 1.5 million problems. An instance with 20 obstacles is shown in FI1G. 1 on
the lower part and another instance with 100 obstacles in FI1G. 1 on the left part.
On these two examples, g;niz and gop; are also visible. We used the Proximity

Fig. 1: 20 obstacles problem and its solution (upper couple). 100 obstacles problem and
its solution (lower couple).

Query Package (PQP) library presented in [29] to perform the collision detec-
tion. The mobile is a free-flying object controlled by a discretized command that
contains 25 different inputs uniformly dispatched over translations and rotations.
The performance was compared between RRT-Connect (using the RRT-ExtCon
strategy) and our RSRT algorithm (ALG. 5).

The choice of the distance metric implies important consequences on config-
urations’ connexity in Cfpc.. It defines the next convergence node g, for the
local planner. The metric distance must be selected according to the behavior
of the local planner to limit its failures. The local planner chosen is the straight
line in C. To validate the toughness of our algorithm regarding to RRT-Connect,
we had use three different distance metrics. Used distance metrics are:

— the Euclidean distance (mentioned Eucl in F1G. 2 to 4)

d(q,q'") = (Z(Ck —)+ nf?) (o — 042)2>

k=0 k=0

where nf is the normalization factor that is equal to the maximum of ¢y
range values.
— the scaled Euclidean distance metric (mentioned Fucl2 in F1G. 2 to 4)

d(q,q") = (S Y= +nfl—s)> (an - 042)2>

k=0 k=0

where s is a fixed value 0.9;
— the Manhattan distance metric (mentioned Manh in F1G. 2 to 4)

i J
dg,d) = lew —cill +nf Y lla — ot
k=0 k=0

where ¢ are axis coordinates and «ay, are angular coordinates.

For each instance, we compute the first thousand successful trials to establish
average resolving times (F1G. 2), standard deviation resolving times (F1G. 3) and
midpoint resolving times (F1G. 4). These trials are initiated with a fixed random
set of seed. Those fixed seed assume that tested random suite are different be-
tween each other and are the same between instances of all problems. As each
instance is associated to one thousand trials, each point of each graph is the
average over ten instances (and then over ten thousands trials). On each graph,
the number of obstacles is on x-axis and resolving time in sec. is on y-axis.

Figure 2 shows that average resolving time of our algorithm oscillates be-
tween 10 and 4 times faster than the original RRT-Connect algorithm. As the
space obstruction grows linearly, the resolving time of RRT-Connect grows expo-
nentially while RSRT algorithm grows linearly. Figure 3 shows that the standard
deviation follows the same profile. It shows that RSRT algorithm is more robust
than RRT-Connect. Figure 4 shows that midpoints’ distributions follow the aver-
age resolving time behavior. This is a reinforcement of the success of the RSRT
algorithm. This assumes that half part of time distribution are 10 to 4 times
faster than RRT-Connect.

4 Conclusion

We have described a new RRT algorithm, called RSRT algorithm, to solve mo-
tion planning problems in static environments. RSRT algorithm accelerates con-
sequently the resulting resolving time. The experiments show the practical per-
formances of the RSRT algorithm, and the results reflect its classical behavior.

10

T T T T
—8— Rrt with Eucl
25 L ---4--- Rrt with Eucl2 E
---=+--- Rrt with Manh o
~—m-— new Rrt with Eucl
20 | ~~+— new Rrtwith Eucl2 .
---%-- new Rrt with Manh ! A
15 7
10 T
.
5 *
0

Fig. 2: Averages resolving times.

The results given above (have been evaluated on a cluster which provide a mas-
sive experiment analysis. The challenging goal is now to extend the benchmark
that is proposed to every motion planning method. The proposed benchmark will
be enhanced to specific situations that allow RRT to deal with motion planning
strategies based on statistical analysis.

References

1. Canny, J.: The complexity of robot motion planning. PhD thesis, Massachusetts
Institute of Technology. Artificial Intelligence Laboratory. (1987)

2. Schwartz, J., Sharir, M.: On the piano movers problem:I, IT, ITI, IV, V. Technical
report, New York University, Courant Institute, Department of Computer Sciences
(1983)

3. Latombe, J.: Robot Motion Planning (4th edition). Kluwer Academic (1991)

4. Lozano-Pérez, T.: Spatial Planning: A Configuration Space Approach. In: Trans.
on Computers. (1983)

5. Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic Motion Planning. Journal
of the ACM (1993)

6. Fraichard, T.: Dynamic trajectory planning with dynamic constraints: a "state-
time space" approach. In: Int. Conf. Robotics and Automation (ICRA’93). (1993)

7. Barraquand, J., Latombe, J.: A Monte-Carlo Algorithm for Path Planning with
many degrees of Freedom. In: Int. Conf. on Robotics and Automation (ICRA’90).
(1990)

8. Cheng, P.: Reducing rrt metric sensitivity for motion planning with differential
constraints. Master’s thesis, Iowa State University (2001)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

11

T T T T
30 —&— Rrt with Eucl

---a--- Rrt with Eucl2

---=+--- Rrt with Manh

25 | ——m-- new Rrt with Eucl 1
--a— new Rrt with Eucl2 g o
---%-- new Rrt with Manh o

. | -1
T

Fig. 3: Standard deviation resolving times.

LaValle, S.: Planning Algorithms. [on-line book] (2004)
http://msl.cs.uiuc.edu/planning/.

LaValle, S.: Rapidly-exploring random trees: A new tool for path planning. Tech-
nical Report 98-11, Dept. of Computer Science, Iowa State University (1998)
Ferré, E., Laumond, J.: An iterative diffusion algorithm for part disassembly. In:
Int. Conf. Robotics and Automation (ICRA’04). (2004)

Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning for
humanoid robots. In: Int’l Symp. Robotics Research (ISRR’03). (2003)

Williams, B.C., B.C., Kim, P., Hotbaur, M., How, J., Kennell, J., Loy, J., Ragno,
R., Stedl, J., Walcott, A.: Model-based reactive programming of cooperative ve-
hicles for mars exploration. In: Int. Symp. on Artificial Intelligence, Robotics and
Automation in Space. 2001

Tovar, B., LaValle, S., Murrieta, R.: Optimal navigation and object finding with-
out geometric maps or localization. In: Int. Conf. on Robotics and Automation
(ICRA’03). (2003)

Simov, B., LaValle, S., Slutzki, G.: A complete pursuit-evasion algorithm for
two pursuers using beam detection. In: Int. Conf. on Robotics and Automation
(ICRA’02). (2002)

LaValle, S., Kuffner, J.: Randomized kinodynamic planning. In: Int. Conf. on
Robotics and Automation (ICRA’99). (1999)

Russell, S., Norvig, P.: Artificial Intelligence, A Modern Approach (2éme édition).
Prentice Hall (2003)

Kuffner, J., LaValle, S.: RRT-Connect: An efficient approach to single-query path
planning. In: Int. Conf. on Robotics and Automation (ICRA’00). (2000)

LaValle, S., Kuffner, J.: Rapidly-exploring random trees: Progress and prospects.
In: Workshop on the Algorithmic Foundations of Robotics (WAFR’00). (2000)

12

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

14 . T T '
——&— Rrt with Eucl
12 | ——4-- Rrtwith Eucl2 7
---=+--- Rrt with Manh
~—m- new Rrt with Eucl
10 | ---a— new Rrt with Eucl2 [
---%-- new Rrt with Manh /
ol]
oL]
nl]
L]
0

Fig. 4: Midpoint resolving times.

Cheng, P., LaValle, S.: Reducing Metric Sensitivity in Randomized Trajectory
Design. In: Int. Conf. on Intelligent Robots and Systems (IROS’01). (2001)
Cheng, P., LaValle, S.: Resolution Complete Rapidly-Exploring Random Trees.
In: Int. Conf. on Robotics and Automation (ICRA’02). (2002)

Carpin, S., Pagello, E.: On Parallel RRTs for Multi-robot Systems. In: 8th Conf.
of the Italian Association for Artificial Intelligence (AI*IA’02). (2002)
Jouandeau, N.; Chérif, A.A.: Fast Approximation to gaussian random sampling for
randomized motion planning. In: Int. Symp. on Intelligent Autonomous Vehicules
(IAV’04). (2004)

Corteés, J., Siméon, T.: Sampling-based motion planning under kinematic loop-
closure constraints. In: Workshop on the Algorithmic Foundations of Robotics
(WAFR’04). (2004)

Lindemann, S.R., LaValle, S.M.: Current issues in sampling-based motion plan-
ning. In: Int. Symp. on Robotics Research (ISRR’03). (2003)

Lindemann, S., LaValle, S.: Incrementally reducing dispersion by increasing
Voronoi bias in RRTs. In: Int. Conf. on Robotics and Automation (ICRA’04).
(2004)

Yershova, A., Jaillet, L., Simeon, T., LaValle, S.M.: Dynamic-domain rrts: Efficient
exploration by controlling the sampling domain. In: Int. Conf. on Robotics and
Automation (ICRA’05). (2005)

Russell, S.: Rationality and Intelligence. In Press, O.U., ed.: Common sense,
reasoning, and rationality. (2002)

Gottschalk, S., Lin, M., Manocha, D.: Obb-tree: A hierarchical structure for rapid
interference detection. In: Proc. of ACM Siggraph’96. (1996)

