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Abstrat. We present a novel single shot random algorithm, named

RSRT, for Rapidly-exploring Sorted Random Tree and based on inher-

ent relations analysis between RRT omponents. Experimental results

are realized with a wide set of path planning problems involving a free

�ying objet in a stati environment. The results show that our RSRT

algorithm is faster than existing ones. These results an also stand as a

starting point of a massive motion planning benhmark.

1 Motion planning with Rapidly Exploring Random

Trees

The problem of motion planning turns out to be solved only by high ompu-

tationnal systems due to its inherent omplexity [1℄. As the main goal of the

disipline is to develop pratial and e�ient solvers that produe automati-

ally motions, random sampling searhes suessfully redue the determinist-

polynomial omplexity of the resolution [2℄. In ompensation, the resolution

that onsists in exploring the spae, produe non-determinist solution [3℄. Prin-

ipal alternatives of this searh are realized in on�guration spae C [4℄, in state

spae X [5℄ and in state-time spae ST [6℄. C is intended to motion planning in

stati environments. X adds di�erential onstraints. ST adds the possibility of

a dynami environment. The onept of high-dimensional on�guration spaes

is initiated by J. Barraquand et al. [7℄ to use a manipulator with 31 degrees

of freedom. P. Cheng [8℄ uses these methods with a 12 dimensional state spae

involving rotating rigid objets in 3D spae. S. M. LaValle [9℄ presents suh a

spae with a hundred dimensions for a robot manipulator or a ouple of mobiles.

S.M. LaValle [10℄ is based on the onstrution of a tree T in the onsidered spae

S. Starting from the initial position qinit, the onstrution of the tree is arried

out by integrating ontrol ommands iteratively. Eah iteration aims at bringing

loser the mobile M to an element e randomly seleted in S. To avoid yles, two
elements e of T annot be idential. In pratie, RRT is used to solve various

problems suh as negotiating narrow passages made of obstales [11℄, �nding

motions that satisfy obstale-avoidane and dynami balanes onstraints [12℄,
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making Mars exploration vehiles strategies [13℄, searhing hidden objets [14℄,

rallying a set of points or playing hide-and-seek with another mobile [15℄ and

many others mentioned in [9℄. Thus the RRT method an be onsidered as the

most general one by their e�ieny to solve a large set of problems,

In its initial formulation, RRT algorithms are de�ned without goal. The ex-

ploration tree overs the surrounding spae and progress blindly towards free

spae. A geometrial path planning problem aims generally at joining a �nal on-

�guration qobj . To solve the path planning problem, the RRT method searhes

a solution by building a tree (Alg. 1) rooted at the initial on�guration qinit.

Eah node of the tree results from the mobile onstraints integration. Its edges

are ommands that are applied to move the mobile from a on�guration to an-

other.

rrt(qinit, k, ∆t, C)
1 init(qinit, T );
2 for i← 1 to k

3 qrand ← randomState(C);
4 qprox ← nearbyState(qrand, T );
5 qnew ← newState(qprox, qrand, ∆t);
6 addState(qnew, T );
7 addLink(qprox, qnew , T );
8 return T ;

Alg. 1: Basi RRT building algorithm.

The RRT method is a random inremental searh whih ould be asting in

the same framework of Las Vegas Algorithms (LVA). It repeats suessively a

loop made of three phases: generating a random on�guration qrand, seleting

the nearest on�guration qprox, generating a new on�guration qnew obtained by

numerial integration over a �xed time step ∆t. The mobile M and its onstraints

are not expliitly spei�ed. Therefore, modi�ations for additional onstraints

(suh as non-holonomi) are onsidered minor in the algorithm formulation.

In this �rst version, C is presented without obstale in an arbitrary spae

dimension. At eah iteration, a loal planner is used to onnet eah ouples

(qnew , qprox) in C. The distane between two on�gurations in T is de�ned by

the time-step ∆t. The loal planner is omposed by temporal and geometrial

integration onstraints. The resulting solution auray is mainly due to the

hosen loal planner. k de�nes the maximum depth of the searh. If no solution

is found after k iterations, the searh an be restarted with the previous T

without re-exeuting the init funtion (Alg. 1 line 1).

The RRT method, inspired by traditional Arti�ial Intelligent tehniques for

�nding sequenes between an initial and a �nal element (i.e. qinit and qobj) in

a well-known environment, an beome a bidiretional searh (shortened Bi-

RRT [16℄). Its priniple is based on the simultaneous onstrution of two trees
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(alled Tinit and Tobj) in whih the �rst grows from qinit and the seond from

qobj . The two trees are developped towards eah other while no onnetion is es-

tablished between them. This bidiretional searh is justi�ed beause the meet-

ing on�guration of the two trees is nearly the half-ourse of the on�guration

spae separating qinit and qobj . Therefore, the resolution time omplexity is re-

dued [17℄.

RRT-Connet [18℄ is a variation of Bi-RRT that onsequently inrease the

Bi-RRT onvergene towards a solution thanks to the enhanement of the two

trees onvergene. This has been settled to:

� ensure a fast resolution for �simple� problems (in a spae without obstale,

the RRT growth should be faster than in a spae with many obstales);

� maintain the probabilisti onvergene property. Using heuristis modify the

probability onvergene towards the goal and also should modify its evolving

distribution. Modifying the random sampling an reate loal minima that

ould slow down the algorithm onvergene.

onnetT(q, ∆t, T )
1 r ← ADVANCED;

2 while r = ADVANCED

3 r← expandT(q, ∆t, T );
4 return r;

Alg. 2: Conneting a on�guration q to a graph T with RRT-Connet.

In RRT-Connet, the two graphs previously alled Tinit and Tobj are alled

now Ta and Tb (Alg. 3). Ta (respetively Tb) replaes Tinit and Tobj alterna-

tively (respetively Tobj and Tinit). The main ontribution of RRT-Connet is

the ConnetT funtion whih move towards the same on�guration as long as

possible (i.e. without ollision). As the inremental nature algorithm is redued,

this variation is designed for non-di�erential onstraints. This is iteratively real-

ized by the expansion funtion (Alg. 2). A onnetion is de�ned as a suession

of suessful extensions. An expansion towards a on�guration q beomes either

an extension or a onnetion. After onneting suessfully qnew to Ta, the algo-

rithm tries as many extensions as possible towards qnew to Tb. The on�guration

qnew beomes the onvergene on�guration qco (Alg. 3 lines 8 and 10).
Inherent relations inside the adequate onstrution of T in Cfree shown in

previous works are:

� the deviation of random sampling in the variationsBi-RRT and RRT-Connet.

Variations inlude in RRT-Connet are alled RRT-ExtCon, RRT-ConCon

and RRT-ExtExt; they modify the onstrution strategy of one of the two

trees of the method RRT-Connet by hanging priorities of the extension

and onnetion phases [19℄.
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� the well-adapted qprox element seleted aording to its ollision probability

in the variation CVP and the integration of ollision detetion sine qprox

generation [20℄.

� the adaptation of C to the viinity aessibility of qprox in the variation

RC-RRT [21℄.

� the parallel exeution of growing operations for n distint graphs in the

variation OR parallel Bi-RRT and the growing of a shared graph with a

parallel qnew sampling in the variation embarrassingly parallel Bi-RRT [22℄.

� the sampling adaptation to the RRT growth [23�27℄.

rrtConnet(qinit, qobj , k, ∆t, C)
1 init(qinit, Ta);
2 init(qobj , Tb);
3 for i← 1 to k

4 qrand ← randomState(C);
5 r← expandT(qrand, ∆t, Ta);
6 if r 6= TRAPPED

7 if r = REACHED

8 qco ← qrand;

9 else

10 qco ← qnew ;

11 if onnetT(qco, ∆t, Tb) =
REACHED

12 sol ← plan(qco, Ta, Tb);
13 return sol;

14 swapT(Ta, Tb);
15 return TRAPPED;

Alg. 3: Expanding two graphs Ta and Tb towards themselves with RRT-Connet.

qnew mentionned line 10 orreponds to the qnew variable mentionned line 9 Alg. 4.

By adding the ollision detetion in the given spae S during the expansion

phase, the seletion of nearest neighbor qprox is realized in S ∩ Cfree (Alg. 4).

Although the ollision detetion is expensive in omputing time, the distane

metri evaluation ρ is subordinate to the ollision detetor. U de�nes the set of

admissible orders available to the mobile M. For eah expansion, the funtion

expandT (Alg. 4) returns three possible values: REACHED if the on�guration

qnew is onneted to T , ADVANCED if q is only an extension of qnew whih is not

onneted to T , and TRAPPED if q annot aept any suessor on�guration

qnew.
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expandT(q, ∆t, T )
1 qprox ← nearbyState(q, T );
2 dmin ← ρ(qprox, q);
3 success← FALSE;

4 foreah u ∈ U

5 qtmp ← integrate(q, u, ∆t);
6 if isCollisionFree(qtmp, qprox, M, C)
7 d← ρ(qtmp, qrand);
8 if d < dmin

9 qnew ← qtmp;

10 dmin ← d;

11 success← TRUE;

12 if success = TRUE

13 insertState(qprox, qnew , T );
14 if qnew = q

15 return REACHED;

14 return ADVANCED;

17 return TRAPPED;

Alg. 4: Expanding T with obstales.

In the next setion, we examine in detail some justi�ations of our algorithm

and the inherent relations in the various omponents used. This study enables

to synthesize a new algorithm named Rapidly exploring Sorted Random Tree

(RSRT), based on reduing ollision detetor alls without modi�ation of the

lassial random sampling strategy.

2 RSRT algorithm

Variations of RRT method presented in the previous setion is based on the

following sequene :

� generating qrand;

� seleting qprox in T ;

� generating eah suessor of qprox de�ned in U .

� realizing a olliding test for eah suessor previously de�ned;

� seleting a on�guration alled qnew that is the losest to qrand among su-

essors previously de�ned; This seleted on�guration has to be ollision

free.

The onstrution of T orresponds to the repetition of suh a sequene. The

ollision detetion disriminates the two possible results of eah sequene:

� the insertion of qnew in T (i.e. without obstale along the path between qprox

and qnew);
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� the rejetion of eah qprox suessors (i.e. due to the presene of at least one

obstale along eah suessors path rooted at qprox).

The rejetion of qnew indues an expansion probability related to its viinity

(and then also to qprox viinity); the more the on�guration qprox is lose to

obstales, the more its expansion probability is weak. It reminds one of funda-

mentalsRRT paradigm: free spaes are made of on�gurations that admit various

number of available suessors; good on�gurations admit many suessors and

bad on�gurations admit only few ones. Therefore, the more good on�gurations

are inserted in T , the better the RRT expansion will be. The problem is that

we do not previously know whih good and bad on�gurations are needed dur-

ing RRT onstrution, beause the solution of the onsidered problem is not yet

known. This problem is also underlined by the parallel variation OR Bi-RRT [22℄

(i.e. to de�ne the depth of a searh in a spei� viinity). For a path planning

problem p with a solution s available after n integrations starting from qinit, the

question is to maximize the probability of �nding a solution; Aording to the

onept of �rational ation�, the response of P3 lass to adapt a on-line searh

an be solved by the de�nition of a formula that de�nes the ost of the searh

in terms of �loal e�ets� and �propagations� [28℄. These problems �nd a way in

the tuning of the behavior algorithm like CVP did [20℄.

newExpandT(q, ∆t, T )
1 qprox ← nearbyState(q, T );
2 S ← ∅;
3 foreah u ∈ U

4 q ← integrate(qprox, u, ∆t);
5 d← ρ(q, qrand);
6 S ← S + {(q, d)};
7 qsort(S, d);

8 n← 0;
10 while n < Card(S)
11 s← getTupleIn(n, S);
12 qnew ← �rstElementOf(s);
13 if isCollisionFree(qnew, qprox, M, C)
14 insertState(qprox, qnew, T );
15 if qnew = q

16 return REACHED;

17 return ADVANCED;

18 n← n + 1;
19 return TRAPPED;

Alg. 5: Expanding T and reduing the ollision detetion.
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In the ase of a spae made of a single narrow passage, the use of bad on�gu-

rations (whih suessors generally ollide) is neessary to resolve suh problem.

The weak probability of suh on�gurations extension is one of the weakness of

the RRT method.

To bypass this weakness, we propose to redue researh from the losest

element (Alg. 4) to the �rst free element of Cfree. This is realized by reversing

the relation between ollision detetion and distane metri; the solution of eah

iteration is validated by subordinating ollision tests to the distane metri; the

�rst suess all to the ollision detetor validates a solution. This inversion

indues:

� a redution of the number of alls to the ollision detetor proportionally

to the nature and the dimension of U ; Its goal is to onnet the ollision

detetor and the derivative funtion that produe eah qprox suessor.

� an equiprobability expansion of eah node independently of their relationship

with obstales;

The T onstrution is now based on the following sequene:

1. generating a random on�guration qrand in C;

2. seleting qprox the nearest on�guration to qrand in T (Alg. 5 line 1);
3. generating eah suessors of qprox (Alg. 5 lines 3 to 6); eah suessor is

assoiated with its distane metri from qrand. It produes a ouple alled s

stored in S;

4. sorting s elements by distane (Alg. 5 lines 7);
5. seleting the �rst ollision-free element of S and breaking the loop as soon

as this �rst element is disovered (Alg. 5 lines 16 and 17);

3 Experiments

This setion presents experiments performed on a Redhat Linux Cluster that

onsists of 8 Dual Core proessor 2.8 GHz Pentium 4 (5583 bogomips) with 512

MB DDR Ram.

To perform the run-time behavior analysis for our algorithm, we have gen-

erated series of problems that gradually ontains more 3D-obstales. For eah

problem, we have randomly generated ten di�erent instanes. The number of

obstales is de�ned by the sequene 20, 40, 60, . . . , 200, 220. In eah instane,

all obstales are ubes and their sizes are randomly varying between (5, 5, 5) and
(20, 20, 20). The mobile is a ube with a �xed size (10, 10, 10). Obstales and
mobile oordinates are varying between (−100,−100,−100) and (100, 100, 100).
For eah instane, a set of 120 qinit and 120 qobj are generated in Cfree. By

ombinating eah qinit and eah qobj , 14400 on�guration-tuples are available

for eah instane of eah problem. For all that, our benhmark is made of more

than 1.5 million problems. An instane with 20 obstales is shown in Fig. 1 on

the lower part and another instane with 100 obstales in Fig. 1 on the left part.

On these two examples, qinit and qobj are also visible. We used the Proximity
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Fig. 1: 20 obstales problem and its solution (upper ouple). 100 obstales problem and

its solution (lower ouple).

Query Pakage (PQP) library presented in [29℄ to perform the ollision dete-

tion. The mobile is a free-�ying objet ontrolled by a disretized ommand that

ontains 25 di�erent inputs uniformly dispathed over translations and rotations.

The performane was ompared between RRT-Connet (using the RRT-ExtCon

strategy) and our RSRT algorithm (Alg. 5).

The hoie of the distane metri implies important onsequenes on on�g-

urations' onnexity in Cfree. It de�nes the next onvergene node qco for the

loal planner. The metri distane must be seleted aording to the behavior

of the loal planner to limit its failures. The loal planner hosen is the straight

line in C. To validate the toughness of our algorithm regarding to RRT-Connet,

we had use three di�erent distane metris. Used distane metris are:
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� the Eulidean distane (mentioned Eul in Fig. 2 to 4)

d(q, q′) =

(

i
∑

k=0

(ck − c′k)2 + nf2

j
∑

k=0

(αk − α′

k)2

)

1

2

where nf is the normalization fator that is equal to the maximum of ck

range values.

� the saled Eulidean distane metri (mentioned Eul2 in Fig. 2 to 4)

d(q, q′) =

(

s

i
∑

k=0

(ck − c′k)2 + nf2(1− s)

j
∑

k=0

(αk − α′

k)2

)

1

2

where s is a �xed value 0.9;
� the Manhattan distane metri (mentioned Manh in Fig. 2 to 4)

d(q, q′) =

i
∑

k=0

‖ck − c′k‖+ nf

j
∑

k=0

‖αk − α′

k‖

where ck are axis oordinates and αk are angular oordinates.

For eah instane, we ompute the �rst thousand suessful trials to establish

average resolving times (Fig. 2), standard deviation resolving times (Fig. 3) and

midpoint resolving times (Fig. 4). These trials are initiated with a �xed random

set of seed. Those �xed seed assume that tested random suite are di�erent be-

tween eah other and are the same between instanes of all problems. As eah

instane is assoiated to one thousand trials, eah point of eah graph is the

average over ten instanes (and then over ten thousands trials). On eah graph,

the number of obstales is on x-axis and resolving time in se. is on y-axis.

Figure 2 shows that average resolving time of our algorithm osillates be-

tween 10 and 4 times faster than the original RRT-Connet algorithm. As the

spae obstrution grows linearly, the resolving time of RRT-Connet grows expo-

nentially while RSRT algorithm grows linearly. Figure 3 shows that the standard

deviation follows the same pro�le. It shows that RSRT algorithm is more robust

than RRT-Connet. Figure 4 shows that midpoints' distributions follow the aver-

age resolving time behavior. This is a reinforement of the suess of the RSRT

algorithm. This assumes that half part of time distribution are 10 to 4 times

faster than RRT-Connet.

4 Conlusion

We have desribed a new RRT algorithm, alled RSRT algorithm, to solve mo-

tion planning problems in stati environments. RSRT algorithm aelerates on-

sequently the resulting resolving time. The experiments show the pratial per-

formanes of the RSRT algorithm, and the results re�et its lassial behavior.
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Fig. 2: Averages resolving times.

The results given above (have been evaluated on a luster whih provide a mas-

sive experiment analysis. The hallenging goal is now to extend the benhmark

that is proposed to every motion planning method. The proposed benhmark will

be enhaned to spei� situations that allow RRT to deal with motion planning

strategies based on statistial analysis.
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