
Design of Secure Data and Information Flow
in JavaScript Applications

Michael Fürmann
University of Applied Sciences Augsburg
Email: e.muae f a u rhn -e da gul @nc b.h ss grmi

Abstract—There are several techniques supporting the imple-
mentation of a secure data and information flow in applications.
But many of the tools required to apply them are hard to find
for complex JavaScript Projects. Nonetheless it is important to
identify potential security risks in a software project as early as
possible.

This paper proposes new methods, applicable in early project
stages, supporting the planning and implementation of a secure
data and information flow. They aim to identify application
components sensitive to data and information flow security,
find potential countermeasures and rate their value for security
analysing mainly data from stakeholder analysis, usage scenarios
and a conceptual application model.

I. INTRODUCTION

Most users of online software systems never think about
the data they disclose to the providers of their favourite
applications. They just assume, their personal informations
would be secure and protected against unauthorized access.

Even on large and prestigious platforms, this protection of
sensitive information is not always given, as shown by the
prominent case the platform Facebook fell victim to. The
clever combination of data from userprofiles, accessible via
official interfaces, enabled analysts to gain deep knowledge
about single, identified users of the plattform [1].

Web applications nowadays face a wide range of different
threats. The aims differ from disturbing the service itself or
shutting it down temporarily to massive altering, deleting or
copying of personal information stored on the systems.

The General Data Protection Regulation (GDPR) in the
European Union obliges extensive duties for the protection
of personal data in data processing systems. Thus not only
the integrity and confidentiality of sensitive personal data
has to be ensured, but also the possibility of unauthorized
combination of pseudonymous data for profile generation has
to be prevented. Therefore a developer or provider of an
application must not only ensure to protect personal data of
users, but also ensure, that pseudonymous data cannot be
gathered, neither in legal or unrestricted way that allows to
gain further personal information [2].

This increases the importance of identifying application
sections significant for information security in early stages
of the software project. Being aware of these, the conceptual
model of the application can be designed to meet security
requirements. Also developers can be made aware of identi-
fied, sensitive application components. So they are able to test
critical code more conscientious or carefully examine required

external JavaScript modules used in sensitive components
to prevent the accidental inclusion of malicious code from
external repositories [3].

II. PROBLEM DESCRIPTION

In order to support the implementation of a secure data
and information flow in an application, it is important to
identify potential risks as early as possible. There already are
some techniques to analyse the project, that provide valuable
information in several stages of the project. But whilst methods
in conceptual and planning phases are too generic to identify
risks, those for the implementation phase mostly need working
code and support of additional tools. For complex JavaScript
project setups, those tools often reach their boundaries. For
some techniques like the generation of a system dependence
graph as described in III-C, it is hard to find tool support
compatible to the projects code base.

Thus there is a need for methods, applicable in conceptual
or planning phases of a project, that are specialized to find
potential risks for data- and information flow. Because many
innovative applications are planned and developed by small
teams, they shouldn’t require a staff of experts to apply those
methods in due time and with affordable cost.

III. BASIC TECHNIQUES

This section describes some generally accepted methods,
that can be used to gather valuable information for the design
of an application with a secure data- and information flow.

A. Stakeholder Analysis

The classic stakeholder analysis aims to secure wide range
support for a project in the early concept- or planning phase.
After listing all possible stakeholders, which includes persons
and organizations having any contact points with the project,
all their requirements and interests are worked out. Thus it
is possible to detect not only requirements for the planning
phase but also to identify stakeholder, supporting the project
and those who are likely to slow down or block the project.
Knowledge gathered about their interests allows now to plan
countermeasures to convince and maybe turn them into sup-
porters of the project, too [4, p.148ff].



B. Program Analysis

As technique to analyse written program code, there are
many different approaches. The focus of this work lies on
dynamic code analysis.

This approach is used to collect runtime data and to get
insights into the programs behaviour at runtime, like exe-
cuted control structures and function calls for specific input
parameters. Therefore the application is compiled, executed,
monitored and fed with different input data for the tested usage
scenarios [5, p.339]. One example usage of this approach is an
automated live debugger, executing the application having the
possibility to intercept the code execution at any time, analyse
the stack trace and previously executed control statements, to
monitor the state of specific values or objects or to measure the
performance of specific methods. For dynamic code analysis in
JavaScript projects programs like Iroh1 or DLint2 can be used.
In addition, this approach is used for dynamic and automated
unit- or integration tests with tools like mocha3 or jasmine4.

C. Information flow Analysis

Using a system dependency graph, information flow Anal-
ysis is used to track the path of a specific piece of of
information through the whole application. Beginning at the
source of the information, the graph shows the way of all
contained data fields towards a data sink. As an example,
consider a function call submitting username and password,
being processed by several internal method calls and ending up
in an authentication call as illustrated in figure 1. Because the
system dependence graph works on the level of real function
calls, it requires existing program code or at least a very
specific concept of the internal application structure [6, p.768].

IV. EXPLANATION OF PROPOSED METHODS

While the methods described in chapter III provide valu-
able input about information being processed by the planned
application, they do not examine potential risks in early
project stages. In order to find appropriate countermeasures
for security issues, they are required to be recognized as early
as possible.

To be able to do so, this chapter introduces two new analysis
methods. These are not meant to replace existing methods as
described in chapter III, but to identify risks for information
security and to suggest possible solutions in early stages
of a software project that support the implementation of a
secure information flow in the whole software development
lifecycle [7]. Thus they follow the concept of ”Security by
modelling, verification and enforcement” [8, p.111].

All examples on how to use the methods in the next
subsections refer to a research project at University of Applied
Sciences Augsburg, which the author currently participates in.
Aim of the project named Autark5 is to build an application

1https://maierfelix.github.io/Iroh/
2https://berkeley-correctness-group.github.io/DLint/
3https://mochajs.org/
4https://jasmine.github.io/
5https://www.hs-augsburg.de/Informatik/Autark.html

for teenagers suffering from Autism Spectrum Disorder to
help them and their parents to structurize and organize their
everyday life.

A. Data Source and Sink Analysis

In order to identify potential risks, it is mandatory to know
which information are submitted to and requested by whom
from an application and which of them possibly could reveal
personal data. To gather this knowledge, Data Source and Sink
Analysis uses the result of a previous stakeholder analysis
to create a diagram (as shown in figure 2), that shows all
stakeholders of the application along with all information that
are provided or requested by them and those, that are generated
from details provided to the application. Also information, that
is implicitly generated by the usage of the application (like log
file entries) is added to the diagram.

The presentation in figure 2 further displays information
being personal or combinable to personal different from non
personal information. Also restricted or unwanted requests by
stakeholders can be distinguished from regular requests.

The graph developed this way now enables to identify
information flows between users by using the planned appli-
cation. Furthermore it highlights data access that needs to be
controlled or permitted as well as sensitive personal data and
information that should be prevented from being combined by
users not authorized to personal data access.

B. Conceptional Information Flow Simulation

Tracing the way of the information through the conceptual
model offers the possibility to identify security flaws for the
data- and information flow security in the conceptual structure.
As basis for this simulation it is obligatory to define usage
scenarios for the ways users exchange information with and
through the application. There should be at least one usage
scenario that connects information requested by a user to at
least one information source (as worked out in IV-A). For the
demonstration of the simulation, the following usage scenario
has been used:

1) Teenager performs a task
2) Teenager confirms the successful completion of the task

to the system
3) System adds the successful completion of the task to the

protocol
4) Teenager gets a confirmation by the system
5) Parents get informed about the successful completion of

the task
Now a conceptual model of the application with user

interactions and internal modules is used to visualize for
every usage scenario the way information-carrying data objects
are taking from their data sources to data sinks through
components of the application as shown in figure 3. If re-
quired, the conceptual model is extended by further application
components required to deal with the defined usage scenarios.
This simulation is based on the system dependence graph
used for security slicing in [6, p.768], but uses conceptual



Fig. 1. Example system dependence graph [6, p.768]

Fig. 2. All stakeholders of the application and their provided and requested information

application components instead of existing code statements
and can therefore be used in conceptual stages of the project.

A data object might not always carry verified confidential
personal data as well as application components might not
be as trustworthy to be allowed to compute them or require
verified data to prevent code injections. To take this circum-
stance into account, all data objects are classified regarding

to their level of confidentiality and the reliability of their data
integrity as described in figure 4. Furthermore, because the
internet should be considered as an insecure medium, any data
object being transferred between client- and serverside of the
application should further be classified as unverified. Also the
application components get classified by their trustworthiness
to handle confidential data and their need for data integrity as



Fig. 3. Security Classified Information Flow Simulation with labelled breaks of security classification rules and suggestions for countermeasures (Solution
for S1.2 was split up into two countermeasures for architectural reasons)

Fig. 4. Security Lattice defining allowed information flow to application
components [6, p.771]

suggested by [6, p.771].
Data objects are only allowed to be handled by application

components having the same or a higher security classification
as shown in figure 4. All transitions, violating this require-
ment have been highlighted in figure 3 and labelled with an
ascending number. These are potential security flaws in the
application concept found by running an information flow
simulation on it.

To achieve a secured data and information flow during
implementation, for every break of the security classification a
potential solution must be found. The possibilities range from
actions to rise a components trustworthiness to reclassification
of data objects, like improving integrity by validations or lower
confidentiality by pseudonymisation or encryption, as also
shown in figure 3. If required or convenient for the planned
structure of the application, a solution can also be achieved by
implementing multiple reclassification components, as shown
by the countermeasures for violation S1.2 in figure 3.

TABLE I
PROPOSED SCORING SCHEMA FOR IDENTIFIED VIOLATIONS

Risk points for every determined violation
+2 Affected information is personal (according to IV-A)
+1 Affected information can be combined to personal (see IV-A)

Additional risk points for classification breaks

+3/2/1 Transfer of data object in contradiction with security
classification (1st time/2nd time/further, see IV-B)

+1 Access to information is subject to conditions (see IV-A)

Additional risk points for not requested information

+1 Information never requested by a user or only by unwanted
drains (see IV-A)

C. Derivation of Results

The aim of this last step is to extract requirements for
implementation and testing of the application as well as scored
advisories for conceptual changes. The score serves as a
measure for the countermeasures value in data and information
flow security of the application.

As preparation for the derivation of results, all data object
transactions violating the security classification scheme in
IV-B are listed in a table of violations along with all informa-
tion from IV-A that are, if at all, requested by unwanted drains.
For each violation it is noted, if the affected information



reflects by itself or combined with others personal data. The
table further shows, whether the information is not at all
or only requested by unwanted drains or the access to the
information is subject to further conditions (according to
IV-A). The violation level displays the position of an identified
violation in a chain of classification breaks by the same data
object since its last classification according to IV-B. This data
is now used to calculate risk points for every single entry
using the scoring scheme proposed in table I. The proposed
risk point scoring scheme presented here, is based on the
judgement of the author, developed for the current project.
It has to be confirmed whether it is generally applicable.

Using this scheme, violations are ranked by the confidential-
ity of affected information (personal, non personal or personal
when combined with further data, according to IV-A). The first
break of the security classification rules as shown in figure 4,
is scored with more risk points (+3) than the next violation
caused by the same object (+2) or any further violations
afterwards by the same object (+1). A countermeasure solving
the first violation in that chain in most cases will also solve all
follow up violations. So it is important to focus on this first.
Beside that, follow up violations scored the same way as the
first one in the chain had too much influence on the rating of
countermeasures in the last step. Last, also the access to the
affected information is scored for either conditional access,
unwanted access or never accessed information according to
IV-A.

That way a weighted overview of all identified security
flaws is gained, as shown in table II.

As final result for guidance on conceptual changes, coun-
termeasures from IV-B, that solve one or more violations are
collected and scored by accumulating the solved violations risk
points as shown in table III. Some identified risks, especially
from IV-A, might not be solvable by conceptual changes, but
by requirements for the planned infrastructure on which the
application will run. Those are also noted as solutions in
the result table and scored the same way as the conceptual
changes.
The calculated score reflects the benefit of the countermeasures
found for the data- and information security in the application.
If not all advisories are affordable, it can be used in a cost-
benefit-assessment to decide about their realization.

In addition the graph created in IV-B allows to derive
requirements for the implementation and testing of the applica-
tion to achieve a more secure data and information flow. First
and foremost, this concerns application components classified
as ”HL” or ”HH” and thus are needed to be trustworthy
as well as all added measures for reclassification of data
objects. These, as listed in table IV, are subject to more
intense testing and code reviews. At last violations like S1.5
deserve consideration. Even if it was indirectly solved by
countermeasures for S1.2 and S1.3, ”Add Entry” as a classified
”HL” component is still allowed to handle HL-classified data
objects. So, in order to avoid a security flaw at S1.5, it is
required to treat ”Add Entry” as HH-classified component
during implementation.

V. RESULTS

As shown by the example sliced from the research project
Autark, it was possible to gather valuable information about
security flaws (table II) along with advisories on how to fix
them (tables III, IV). These recommend different counter-
measures for violations, implementable in all phases of the
project. Furthermore a scoring system provided a value of
countermeasures for the security of the data and information
flow.

The methods introduced have been shown to be applicable
according to the requirements sentenced in II, at least for this
project. However, a statement about universal applicability of
the approach still requires further investigation.

VI. CONCLUSION

As described in IV-C, the introduced methods provide valu-
able input for all project phases from conception over planning
to implementation and testing. In combination with existing
basic techniques (as described in III), it enabled to identify
personal data and combinable personal information as well as
potential security flaws in the data- and information flow of
a conceptual application model in an early project phase. For
the implementation and testing phase, advice was gathered,
which parts of the application will require more intense testing
and reviews. Furthermore, requirements for securing the later
infrastructure running the application have been worked out.
A scoring model for risks and possible solutions allows at last
to decide about the realization of countermeasures in a cost
and benefit assessment.

Chapter V already mentioned, that, although this approach
worked for the examples taken from the research project Au-
tark, it can not yet be seen as generally applicable. Especially
the risk point scoring schema, as proposed in IV-C, being
based on the authors knowledge of information security and
experience as software developer, needs further research and
development by being applied to further application models.
If the shown methods are practicable for other JavaScript soft-
ware projects or maybe for software development in general
has to be subject to further studies.

Furthermore there is still a need for research and develop-
ment regarding supporting analysis tools for JavaScript. While
some programs for code analysis (III-B) catch up to the latest
language specification, convenient tools for the generation of
System Dependence Graphs (used in information flow analysis
as described in III-C) of a complex JavaScript code base are
still hard to find.

ACKNOWLEDGMENT

The author would like to thank Prof. Dr.-Ing. Alexandra
Teynor from University of Applied Sciences Augsburg for her
kind support and lots of valuable discussions on this research
topic. This research is part of the research project Autark at
University of Applied Sciences Augsburg6.

6https://www.hs-augsburg.de/Informatik/Autark



TABLE II
IDENTIFIED VIOLATIONS WITH DETAILS TO PERSONAL REFERENCES OF AFFECTED DATA FROM SOURCE AND SINK ANALYSIS (IV-A), INCREASING

VIOLATION LEVEL FOR EACH DATA OBJECT COUNTING CLASSIFICATION FLAWS SINCE ITS LAST CLASSIFICATION IN INFORMATION FLOW SIMULATION
(IV-B), SCORED WITH RISK POINTS ACCORDING TO THE SCORING SCHEMA PROPOSED IN TABLE I

Violation Personal data
(see fig. 2)

Combined personal data
(see fig. 2)

Violation level
(see fig. 3)

Not / only unwanted accessed
(see fig. 2)

Restricted access
(see fig. 2)

Risk points
(see tab. I)

S1.1 n (+1) y (+3) 1 n n 4

S1.2 n (+1) y (+3) 1 n n 4

S1.3 n (+1) y (+2) 2 n n 3

S1.4 n n (+3) 1 n n 3

S1.5 (+2) y n (+3) 1 n n 5

S1.6 (+2) y n (+2) 2 n n 4

S1.7 (+2) y n (+1) 3 n n 3

S1.8 (+2) y n (+3) 1 n n 5
Detailed presentation
of daily personal
routine

(+2) y n - (+1) y n 3

Log data (+2) y n - (+1) y n 3

Detailed activity log (+2) y n - (+1) y n 3

TABLE III
RESULT: CONCEPTUAL CHANGES SCORED BY ACCUMULATION OF SOLVED

VIOLATIONS RISK POINTS FROM TABLE II

Action Solves Score

Reclassifications
Formvaidation, Validation of data schema before
API call, ensure code integrity of API library S1.1 4

Validation of data scheme at API Endpoint,
further validation in context of module call

S1.2, S1.3,
S1.5 12

Validate data schema of received confirmation S1.4 3
Secure data object cryptographically before
sending out to parents

S1.6, S1.7,
S1.8 12

Validate data schema of received protocol entry S1.7 3

Systems and Infrastructure
Deactivate server logs D2, D3 6
Spread Data across multiple systems D1, D3 6

Secure SSH access to systems D1, D2,
D3 9

TABLE IV
REQUIREMENTS FOR IMPLEMENTATION AND TESTING

Subject to intense testing, additional reviews

All reclassification actions

Taskbook API Endpoint

Taskbook Logging Module call

Taskbook DB Request

Taskbook Build Answer

Protocol Add Entry

Protocol DB Request

Protocol Build Notification

Restrictions / Relabeling

Protocol - Add Entry Treat as HH

REFERENCES

[1] C. Cadwalladr and E. Graham-Harrison. (2018) How Cambridge
Analytica turned Facebook ‘likes’ into a lucrative political tool.

[Online]. Available: https://www.theguardian.com/technology/2018/mar/
17/facebook-cambridge-analytica-kogan-data-algorithm

[2] (2017) DSGVO: Grundsätze für die Verar-
beitung personenbezogener Daten. intersoft consulting.
[Online]. Available: https://www.datenschutzbeauftragter-info.de/
dsgvo-grundsaetze-fuer-die-verarbeitung-personenbezogener-daten/

[3] F. Y. Rashid. (2017) Malicious code in the Node.js
npm registry shakes open source trust model. [Online].
Available: https://www.csoonline.com/article/3214624/security/
malicious-code-in-the-node-js-npm-registry-shakes-open-source-trust-model.
html

[4] U. Holzbaur, M. Bühr, D. Dorrer, A. Kropp, E. Walter-Barthle, and
T. Wenzel, Die Projekt-Methode: Leitfaden zum erfolgreichen Einsatz
von Projekten in der innovativen Hochschullehre (German Edition).
Springer Gabler, 2017. [Online]. Available: https://link.springer.com/
book/10.1007/978-3-658-15462-2

[5] L. Sampaio and A. Garcia, “Exploring context-sensitive data flow analysis
for early vulnerability detection,” Journal of Systems and Software, vol.
113, pp. 337–361, mar 2016.

[6] J. Thomé, L. K. Shar, D. Bianculli, and L. Briand, “Security slicing
for auditing common injection vulnerabilities,” Journal of Systems and
Software, vol. 137, pp. 766–783, mar 2018.

[7] G. Deepa and P. S. Thilagam, “Securing web applications from injection
and logic vulnerabilities: Approaches and challenges,” Information and
Software Technology, vol. 74, pp. 160–180, jun 2016.

[8] M. Bugliesi, S. Calzavara, and R. Focardi, “Formal methods for web
security,” Journal of Logical and Algebraic Methods in Programming,
vol. 87, pp. 110–126, feb 2017.


