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Abstract. This work provides the first hardware implementations of
PRIMATEs family of authenticated encryption algorithms. PRIMATEs
are designed to be lightweight in hardware, hence we focus on designs for
constrained devices. We provide several serial implementations, smallest
of which requires only 1.2 kGE. Additionally, we present a variety of
threshold implementations that range from 4.7 kGE to 10.3 kGE.
The second part of this work presents a design of a lightweight PRI-
MATEs coprocessor. It is designed to conform versatile use of the core
permutation, which allows implementation of the entire PRIMATEs
family, with small differences in hardware. We implement HANUMAN-
80 coprocessor, adapted for a 16-bit microcontroller from the Texas In-
struments MSP430 family of microcontrollers. The entire HANUMAN-
80 coprocessor is tested on a Spartan-6 (XC6SLX45) development board,
where it occupies 72 slices (1.06% of available resources). ASIC synthesis
yields a 2 kGE implementation using 90 nm library, achieves 33 kbits/sec
throughput at 100 kHz operating frequency. It dissipates 0.53µW of
power on average, resulting in energy consumption of 15.60 pJ/bit.

Keywords: PRIMATEs, CAESAR, Authenticated Encryption, Hard-
ware Implementation, Threshold Implementation, Lightweight

1 Introduction

Motivation Emerging Internet of Things (IOT) technologies require a swarm
of lightweight devices scattered in our surroundings. Various sensors, actuators,
or authenticators, have to provide reliable, uninterrupted service, while pro-
tecting users’ privacy and data confidentiality through encryption, and data
authenticity and integrity through authentication. Since adversaries may easily
gain access to these devices, protection against physical attacks must be taken
into account. Moreover, all of this has to be achieved at a very low price in
terms of chip area, power, and energy consumption. While exact constraints
vary between different kinds of these devices, we believe that passively powered



Radio Frequency IDentification (RFID) tags—which are used for identification,
access management and shipment tracking, handling payments; and are great
assets in aiding medical treatment—present the worst-case in terms of area and
power-budget limitations. Even though the notion of lightweightness seems sub-
jective and application-bound, statements from industry [28] and research com-
munity [6, 13, 14] agree that the area footprint of the cryptographic algorithm
must not exceed 2000 two-input NAND-gates equivalent (GE) in the selected
library. Having at least 12 kbits/sec throughput at the operating frequency of
100 kHz is the only bound used by researchers [6, 14] whereas industry requires
having 1 bit/cycle [28]. Unfortunately, there are no widely accepted upper and
lower bounds for low power and high throughput respectively, even though the
discussions suggest that it is of interest [22, 28]. Lastly, in terms of average power
usage industry suggests between 1 and 10 µW/MHz, with peaks between 3 and
30 µW, respectively.

Many standardized cryptographic algorithms, such as the Advanced Encryp-
tion Standard (AES) [23] of which the smallest implementation requires 2400
GE, are unfit for the lightweight area of application especially when they are
wrapped with a mode of operation to provide both encryption and authen-
tication. This results in the increasing number of stream ciphers [20], block
ciphers [6, 14, 17, 19, 30] and hash functions [5, 12, 18] together with the recent
standardization of the lightweight block cipher PRESENT which can be imple-
mented using 1000 GE [27].

Traditionally, the security goals of a system are achieved using generic com-
positions of cryptographic primitives providing only authentication or encryp-
tion often resulting in exploitable weaknesses [2, 7]. This problem of authenti-
cated encryption is formalized in [26], where a set of possible generic schemes
named authenticated-encryption with associated data (AEAD) is discussed. Ad-
vancement in lightweight cipher design, and the formalization of the problem,
followed by discussions in research community lead to the Competition for Au-
thenticated Encryption: Security, Applicability, and Robustness (CAESAR) [1]
which is running since 2014 with the goal of selecting a portfolio of AEAD ci-
phers. Currently 29 second-round candidates are being analyzed for security,
software and hardware performance. Out of several candidates that claim to
be lightweight, PRIMATEs [3] family grasped our attention for their claims of
versatile usability, and efficiency in hardware.

Related Work PRIMATEs [3] is a family of single-pass nonce-based AEAD
schemes. All members of PRIMATEs are designed for constrained hardware.
They differ slightly to provide trade-offs between security and performance.
High level of granularity allows PRIMATEs to find application in a number
of lightweight scenarios. Authors claim that PRIMATEs can efficiently be pro-
tected against Side-Channel Analysis (SCA), especially Differential Power Anal-
ysis (DPA) [25]. Namely, non-linear part of PRIMATEs has low algebraic de-
gree, which results in efficient Threshold Implementations (TI) [24]. TI provides
provable security against DPA for symmetric key algorithms (e.g., [11]).



Until now, only a reference software implementation of PRIMATEs is pro-
vided. The claims on efficiency in hardware, of unprotected and SCA-resistant
implementations, are still to be examined.

Contribution We challenge lightweightness and versatility claims by focusing
on low-end designs. Namely, we design several lightweight architectures in order
to analyze area, throughput and energy trade-offs. We discuss the overall per-
formance, and how our implementations can be used in practice. Additionally,
we provide a variety of TI to examine efficiency of SCA resistant implementa-
tions. We discuss the overall performance, and how our implementations can be
used in practice. Furthermore, in order to accommodate practical lightweight
scenarios, we present a PRIMATEs interface, designed to minimize area and
latency overhead. Lastly, we design and implement a PRIMATEs coprocessor
based on the aforementioned interface.

2 Preliminaries

We inherit the notation suggested by the PRIMATEs designers [3]. Namely,
calligraphic, capital and small letters represent a set, an element of the set
and the bit size of the element respectively, i.e. X := {0, 1}x, X ∈ X and
|X| = x. Let X ∈ {0, 1}x and Y ∈ {0, 1}y, then X||Y ∈ {0, 1}x+y represents
the concatenation of X and Y .

2.1 AEAD Scheme

An AEAD scheme is defined by the three tuple Π = (K, E ,D) as follows:
Key space. K is a non-empty set of k-bit strings, i.e. K := {0, 1}k.
Encryption. E is a deterministic algorithm which returns a pair of strings
(C, T ) = EK(N,A,M); where: the secret key K ∈ K, the public nonce N ∈
N := {0, 1}n, the public associated data A ∈ A := {0, 1}∗, the message M ∈
M := {0, 1}∗, the ciphertext C ∈ C := {0, 1}∗, and the tag T ∈ T := {0, 1}t.
The algorithm must work even if |M | = 0 and/or |A| = 0.
Decryption. DK(N,A,C, T ) is a deterministic algorithm that generates the
pair (M,T ′). D returns the value M to user if T = T ′. Otherwise D returns a
unique symbol ⊥. It is possible to release the message even if the tags do not
match if the AEAD scheme follows certain properties [4].

2.2 PRIMATEs

PRIMATEs is a family of three modes of operation named APE, HANUMAN
and GIBBON [3] with sponge-like construction [8]. Namely, they rely on a per-
mutation which operates on a binary state B ∈ {0, 1}b, comprised of the rate
R ∈ {0, 1}r, and the capacity C ∈ {0, 1}c (i.e. B = R‖C).

Each mode of operation may provide two levels of security. The security
level s ∈ {80, 120} defines several parameters, as described in Table 1. The
input block size is r = 40 bits independent of the mode or the security level.



PRIMATE. PRIMATEs family is based on a set of permutations, called PRI-
MATE permutations. Depending on the security level s, two subsets are dis-
tinguished, PRIMATE-80 and PRIMATE-120. PRIMATE-80 (resp. PRIMATE-
120) is based on P80 (P120), a 200-bit (resp. 280-bit) core permutation. Permu-
tations are designed as substitution-permutation networks (SPNs).

In both cases states are divided into 5-bit elements, with big-endian en-
coding. Elements themselves are arranged into matrices with 5 (resp. 7) 8-
element rows for PRIMATE-80 (resp. PRIMATE-120). The element in the ith

row and jth column of this matrix is denoted by ai,j where i ∈ {0, . . . , 4} (resp.
i ∈ {0, . . . , 6}) and j ∈ {0, . . . , 7}. The first row a0,∗ in the state matrix contains
the rate of the state, and will henceforth be referred to as the rate row. P80,
and P120 are calculated using a sequence of four transformations described as
follows:

1. SubElements (SE) is the only non-linear transformation. It consists of an
element-wise permutation X → S(X) : {0, 1}5 → {0, 1}5 (S-Box) applied to
each element of a state.

2. ShiftRows (SR) performs cyclical shifts of each row for a different number
of elements. Row i is shifted left by si = {0, 1, 2, 4, 7} in P80, or by si =
{0, 1, 2, 3, 4, 5, 7} in P120.

3. MixColumns (MC) operates on a state column at a time. It is a left-hand
multiplication by a 5× 5 (7× 7) Maximum Distance Separable (MDS) ma-
trix [3]. The matrices are chosen in a way that allows recursive calculation
of a smaller matrix five (resp. seven) times.

4. ConstantAddition (CA) modifies a single state element a1,1 by bitwise XOR-
ing a 5-bit constant in each round.

Round constants are generated by a 5-bit Fibonacci LFSR [3]. Varying on
the sequence of values sampled from this LFSR and the number of rounds, four
permutations p1, p2, p3, and p4 are derived from the core permutation (either
P80 or P120), as shown in Table 2.

PRIMATE Modes of Operation. All modes of operation are generic con-
structs, designed based on Sponge [8] methodology principles with slight differ-
ences in input output behavior, parameter size and used permutations. Table 1
gives an overview for the latter two differences. Please refer to [3] for details on
the former difference. We only emphasize the fact that decryptions of HANU-
MAN and GIBBON do not require the inverse transformation of PRIMATE
whereas APE does.

Table 1. PRIMATEs modes of operation.

PRIMATEs APE-s HANUMAN-s GIBBON-s

k 2s s s
t 2s s s
n s s s

PRIMATE p1 p1, p4 p1, p2, p3

Table 2. PRIMATE permuta-
tions.

PRIMATE p1 p2 p3 p4
#of rounds of P-s 12 6 6 12
Init. val. of the LFSR 1 24 30 24



3 Implementations of PRIMATE

Following the design rationale of the PRIMATEs family, we focus on hardware
implementations for heavily constrained devices. We abstain from using power-
saving techniques (e.g., clock gating). Instead we perform architectural opti-
mizations that lead to reduced area and power consumption. Lastly, we strive
towards the 12 kbit/sec throughput at the operating frequency of 100 kHz, dis-
cussed in Section 1, as the performance criterion.

As in all Sponge-based designs, the majority of implementation cost of PRI-
MATEs comes from core permutations. Therefore, we investigate several ways
to serialize P80 and P120. Additionally, we provide round-based versions of both
core permutations.

Lastly, in order to benefit from the granulated nature of the PRIMATE fam-
ily we have fragmented our implementations into several hierarchical levels, thus
creating a generic serial-implementation strategy independent of the permuta-
tion design. Therefore, we present the design of the control logic required for
generation of p1, p2, p3, and p4 separately from the core permutations.

3.1 PRIMATE Permutations’ Control

The 5-bit Fibonacci LFSR used for CA transformation is one of the lightweight
features predicted by design. Firstly, depending on the selected pi, rounds can be
decoded from the values of the LFSR, thereby alleviating the need for additional
counters. Secondly, pi’s defer from one another only by the sequence of Fibonacci
constants. Therefore, for each of the modes of operations, regardless of the
security level, control module ModeCtrl is realized using simple hardware.

Permutation pi starts by loading a corresponding constant of the Fibonacci
sequence into the LFSR. After each round—underlying permutation core must
provide a RndDone signal—LFSR progresses along its sequence. Output of the
LFSR is used as a round constant RCon for the underlying permutation core.
Lastly, small 5-bit decoders are used to detect rounds of interest (e.g., first, last)
for the control of upper layers of logic.

3.2 Core Permutations P80 and P120

In combination with the control module from Section 5, any of the implemen-
tations from this section can be used to provide encryption and decryption of
HANUMAN and GIBBON as well as APE encryption. Since APE requires in-
verse of p1 we have abstained from implementing this functionality. Justification
for this is twofold: from the area-performance-power perspective implementa-
tion of p1 is negligibly different from its inverse; from the usability perspective
it is likely that heavily constrained devices perform only encryption, while the
decryption is performed in the backend. Lastly, note that these implementations
include only the functionality of the core permutation, i.e. they allow computa-
tion of only one round. Depending on the way the core is used, different overhead
will be introduced in the design (e.g., a feedback multiplexer). Nevertheless, we



Fig. 1. Round-based architecture of the core permutation, P80-1.

find this sort of results useful, for the various use-cases that may be anticipated
for these architectures. More discussion on this topic is given in Section 5.

Round-Based Implementations of P80 and P120. Figure 1, where each
line represents a 5-bit element value, depicts the round-based architecture of
P80, called P80-1. S-Boxes, MDS matrix multiplications, and constant addition,
are implemented as combinational networks. SR transformation can be realized
by rewiring of rows, hence it is free in hardware. P120 version (P120-1) is
obtained using the same design approach. Lastly, these implementations include
a state-sized register—for fair comparison.

Serial Implementations of P80 and P120. Due to the relatively large
state, and combinatorial logic designed to be efficient in hardware, major cost
of a serial implementation of P80 and P120 comes from the register file used to
store the state. Consequently, we aim to minimize the number of multiplexed
inputs to every bit of the State Register File (SRF), and to avoid additional
registers in the design. Therefore, we abstain from using additional multiplexers
for controlling data flow, and design the SRF as a column-wise FIFO register.
Hence, all serial implementations of P80 feature a 25-bit data path, while P120
implementations use a 35-bit data path; which correspond to the number of bits
in a column of the state matrix.

Lastly, each of the permutation cores requires a dedicated Finite State Ma-
chine (FSM) for controlling the data flow, in addition to the ModeCtrl module
used to iterate rounds of pi.

P80-9 and P120-9. Figure 2 depicts a 9 clock cycle serial implementation (P80-
9). Here, the SRF has only two modes of operation MC, and SR. When MC is
active SRF is configured as a 25-bit FIFO register which feeds the data into the
combinational network at its output. This mode is used for data input, as well.
SR mode is always active during the first cycle of computation, during which it
rewires the SRF to perform the SR transformation. P120 version (P120-9) is
obtained using the same design approach.

P80-41 and P120-57. Based on the 9 clock cycle approach, we present an-
other serial version by serializing the MC step. Namely, 5 matrix multiplications



Fig. 2. Data path architecture of the P80-9 permutation core.

that are required for MC transformation of PRIMATE-80, are now performed
in 5 clock cycles using 5 times less hardware. The same concept applies for
PRIMATE-120 with the difference that factor of 7 applies instead of 5 (since
the state of PRIMATE-120 has 7 rows). Therefore instead of 8 additional cycles
5× 8 (for PRIMATE-80), or 7× 8 (for PRIMATE-120) are required to perform
this computation. SR transformation remains performed in a single clock cycle
as before.

P80-16 and P120-16. Figure 3 depicts a 16 clock cycle serial implementation
(P80-16). Instead of serializing MC transformation, we serialize the SR trans-
formation. Namely, SR is performed by shifting the position of the column-wise
input by the number of shifts prescribed by the SR operation for each row of
SRF. After 8 clock cycles of shifting in this manner, SRF is reconfigured to
perform SE and MC for another 8 clock cycles, as done previously. This way a
number of 2-to-1 multiplexers around the SRF is traded for additional latency
of 7 clock cycles, resulting in minimal multiplexer overhead.

On the downside, this core can not preserve state between two consecutive
rounds. Namely, in both configurations SRF is written in 8 clock cycles, using 2
different patterns: regular column-wise shift (MC), and columns-wise shift with
offset (SR). Consequently, if the output of one round is sequentially looped back
in MC mode (as it would be done in P80-9), a number of elements in a row
equal to the row offset is overwritten. Therefore, feedback path for each row
should be delayed for the number of clock cycles equal to the row offset. In
hardware this delay maps to introducing additional flip-flops. We estimate that
the cost of this storage, and corresponding control and glue logic, increases the
size of this implementation beyond feasible. P120 version (P120-16) is obtained
using the same design approach.

P80-95 and P120-127. Lastly, we implemented single S-Box versions. These
two implementations have fully serialized MC operations (requiring an addi-
tional cycle to load new column), and require 7 clock cycles to perform SR
operation. Since 5-bit PRIMATEs S-Boxes are small (30–40 GE), we believe



Fig. 3. Data path architecture of the P80-16 permutation core.

that area savings are not worth the performance impact when it comes to un-
protected implementations. Nevertheless, this approach may lead to major area
savings with TI versions; since shared S-Boxes take 246 GE and 255 GE (see
4.1).

4 Threshold Implementations

Since the application of TI on affine functions is trivial [24], we mainly focus on
the sharing of the S-box. Then, we briefly discuss the shared architectures.

4.1 The Shared S-Box

The PRIMATEs S-Box is an almost bent permutation with excellent linear and
differential properties and is affine equivalent to the cubic power mapping in
GF (25). As can be seen from its algebraic normal form in Equation (1) (with
xi and yi correspond to input and output bits assuming 0 to be the index for
MSB), the S-Box is quadratic which makes it suitable for efficient TI.

y0 = x0x2 + x0x3 + x1x4 + x1 + x2x3 + x2 + x3

y1 = x0 + x1x2 + x1x3 + x2x3 + x2x4 + x3

y2 = x0x1 + x0x4 + x0 + x1 + x2x3 + x2x4

y3 = x0x2 + x0x4 + x0 + x1x2 + x3x4

y4 = x0x3 + x1 + x2x4 + x4 + 1

(1)

In this paper, we only consider the first-order TI of the PRIMATEs S-Box.
Since at least d+ 1 shares are required to implement any function of degree d,
we first implement the shared S-Box with 3 shares. We provide the component
functions of y0 for this version in Equation (2) as an example where xji refers
to the j-th share of xi.



y10 = ((x20 + x30)(x22 + x32)) + ((x20 + x30)(x23 + x33))+

((x21 + x31)(x24 + x34)) + ((x22 + x32)(x23 + x33)) + x22 + x23 + x21

y20 = (x10x
3
2 + x30x

1
2 + x10x

1
2) + (x10x

3
3 + x30x

1
3 + x10x

1
3)+

(x11x
3
4 + x31x

1
4 + x11x

1
4) + (x12x

3
3 + x32x

1
3 + x12x

1
3) + x31 + x32 + x33

y30 = (x10x
2
2 + x20x

1
2) + (x10x

2
3 + x20x

1
3)+

(x11x
2
4 + x21x

1
4) + (x12x

2
3 + x22x

1
3) + x11 + x12 + x13

(2)

This particular sharing fails to satisfy the uniformity property of TI. Since
we were not able to find a uniform 3-share TI with our limited computational
resources, we re-mask the S-box output in order to attain provable security. Re-
masking is performed similarly to [10] in order to reduce the fresh randomness
requirement.

Additionally, we implement a 4-share uniform TI which is provided for y0 in
Equation (3), as an example. Even though this implementation has bigger area
compared to its 3-share counterpart, it does not require fresh randomness after
the initial sharing. This may lead to significant savings once a random number
generator is included in the design.

y10 = ((x20 + x30 + x40)(x22 + x32 + x42)) + ((x20 + x30 + x40)(x23 + x33 + x43))+

((x21 + x31 + x41)(x24 + x34 + x44)) + ((x22 + x32 + x42)(x23 + x33 + x43))+

x21 + x22 + x23

y20 = ((x10(x32 + x42)) + (x12(x30 + x40)) + (x10x
1
2))+

((x10(x33 + x43)) + (x13(x30 + x40)) + (x10x
1
3)) + ((x11(x34 + x44)) + (x14(x31 + x41))+

(x11x
1
4)) + x31 + ((x12(x33 + x43)) + (x13(x32 + x42)) + (x12x

1
3)) + x32 + x33
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2
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1
3)) + x42 + x43

y40 = x11 + x12 + x13
(3)

4.2 Architectures

We implement a total of 6 threshold implementations of PRIMATEs. Firstly,
implementations vary in number of shares. Secondly, we utilize different degrees
of serialization to ensure tradeoffs between cost and performance. For conve-
nience we name them P80-93, P80-94, P120-94, P80-953, P80-954, P120-
1274, where the superscript numbers indicate the number of shares.

Figure 4 depicts the datapath of P80-93. For each of the S-Box shares a copy
of the MC circuit, and an additional SRF, needs to be added to the design to
maintain the masked state. The additional control logic required to implement
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the circuit is minimal. This is in contrast to the serialized threshold implemen-
tation of AES [23], where the S-Box needed to be implemented using pipelined
stages. The structure of the Primates S-Box obviates the need for such pipelin-
ing.

5 Implementation Results

All implementations are synthesized from RTL code written in VHDL. We use
Synopsys Design Compiler v2015.06 to synthesize each design. Furthermore, we
use Synopsys PrimeTime v2015.06 with PX add-on to perform more accurate
static timing analysis and switching activity based power estimation.

We provide synthesis results using 2 standard-cell libraries: Faraday UMC
90 nm, generic core in Low-K RVT process, 1.2 V power supply (UMC90), and
NangateOpenCellLibrary 45 nm, PDKv1 3 v2010 12 (NAN45), in Table 3.

Along the maximum frequency and area we provide performance figures at
the operating frequency of 100 kHz. These include throughput, implementation
efficiency (throughput per unit of area), dynamic and static power consumption,
and energy efficiency (energy per state bit in every round). We use these figures
to benchmark P80 and P120 permutations, in order to identify the most suitable
lightweight scenario for each of the permutation cores.

Firstly, we observe that the control logic ModeCtrl discussed in Sec-
tion utilizes negligible amount of resources—under 100 GE. All control modules



Table 3. Post-synthesis hardware implementation results.

Design Library
Max. Freq. Area

@ 100 kHz
T’put Impl. Eff’cy D. Pwr. S. Pwr. E. Eff’cy

[MHz] [kGE] [Mbit
s ] [ Mbit

kGE·s
] [µW] [nW] [

pJ
bit

]

ApeCtrl
UMC90 361.58 0.06 — — 0.01 1.15 —
NAN45 606.76 0.09 — — 0.01 1.37 —

HanCtrl
UMC90 487.02 0.05 — — 0.01 1.02 —
NAN45 683.06 0.08 — — 0.01 1.11 —

GibCtrl
UMC90 599.23 0.05 — — 0.01 1.04 —
NAN45 749.29 0.07 — — 0.01 1.23 —

P80-1
UMC90 179.60 3.68

20.00
5.43 2.32 74.00 0.12

NAN45 341.53 4.72 4.24 1.63 83.30 0.09

P80-9
UMC90 256.74 1.43

2.22
1.56 0.74 29.80 0.35

NAN45 439.77 2.05 1.08 0.78 32.80 0.37

P80-16
UMC90 509.50 1.20

1.25
1.04 0.68 25.20 0.57

NAN45 896.38 1.78 0.70 0.42 27.60 0.36

P80-41
UMC90 204.18 1.32

0.49
0.37 0.46 26.70 0.99

NAN45 267.61 1.98 0.25 0.30 31.80 0.68

P120-1
UMC90 142.27 6.32

28.00
4.42 4.61 137.00 0.17

NAN45 281.31 8.23 3.51 3.65 159.00 0.14

P120-9
UMC90 183.69 2.17

3.11
1.43 1.26 46.00 0.42

NAN45 490.17 3.10 1.00 1.17 165.00 0.43

P120-16
UMC90 447.21 1.82

1.75
0.96 1.13 38.60 0.67

NAN45 722.33 2.69 0.65 0.80 42.60 0.48

P120-57
UMC90 114.32 1.87

0.49
0.26 0.63 36.80 1.37

NAN45 239.24 2.79 0.18 0.40 44.80 0.91

P80-93 UMC90 162.60 5.18
2.22

0.428 0.81 1.04 0.36
NAN45 251.25 7.20 0.308 0.49 65.90 0.25

P80-953 UMC90 151.74 4.72
0.21

0.044 0.60 0.86 2.55
NAN45 315.45 6.33 0.033 0.35 54.40 1.92

P80-94 UMC90 133.15 6.15
2.22

0.360 0.87 1.07 0.39
NAN45 249.33 9.24 0.240 0.53 86.20 0.28

P120-94 UMC90 79.05 10.30
3.11

0.302 1.41 2.34 0.45
NAN45 104.20 13.84 0.225 0.81 125.00 0.30

P80-954 UMC90 181.49 6.19
0.21

0.033 0.78 1.12 3.71
NAN45 298.50 8.31 0.025 0.50 70.40 2.71

P120-1274 UMC90 204.45 8.60
0.22

0.025 1.04 1.60 4.72
NAN45 300.00 11.51 0.019 0.70 96.50 3.61

have shorter critical paths than any of the permutation cores, therefore they
can not pose as a computational bottleneck. Secondly, we observe that areas of
P80 and P120 scale in a linear fashion with respect to the state-size. Therefore,
we focus discussion on the P80, for simplicity.

On the one hand, P80-1 is dominant in throughput and energy efficiency.
Area costs of computing the entire round in parallel make P80-1 large for most



resource-constrained devices (e.g., RFID tags). Therefore P80-1 is better suited
for battery powered devices, and applications where high throughput and long
battery life is of greater interest (e.g., wireless sensor nodes).

On the other hand, serial implementations seem very suited for constrained
devices. P80-16 is the smallest implementation, which requires only 1.2 kGE.
Unfortunately, this low resource cost comes at the requirement of storing value
of the state between rounds externally. Hence, feasibility of this implementation
strongly depends on the specifics of the application and resources of the plat-
form that relies on PRIMATEs-80. Also, this implementation has maximum
frequency considerably higher than the rest. Second largest implementation,
P80-41 removes the problem of external storage requirement, and has the low-
est power consumption. Decrease in power consumption is due to the decreased
size of combinatorial logic used for MC transformation. Nevertheless, it is not
followed by area decrease, since SRF of P80-41 is more costly. Namely, SRF
size is increased by additional multiplexers1 required for performing SR trans-
formation in one clock cycle, as well as additional control that makes rest of the
SRF idle while MC transformation is performed on a column. Still, the pitfall of
this implementation is the heavily reduced throughput due to the high latency.
Lastly, P80-9 is 50% (320%) more efficient than P80-16 (P80-41), at the price
of 20% (8%) area, and 9% (61%) power, increase.

When it comes to TI, we see that due to the efficient design of the S-Box,
there is no need for pipelining S-Boxes. Therefore, the circuit size is increased
approximately linearly with respect to the number of shares.

6 Usability, Comparison, and Discussion

Implementation results presented in Section 5 serve the purpose of benchmark-
ing the core permutation. Here we discuss how these results fit real-world appli-
cations. Figure 5 gives estimated encryption throughput of PRIMATEs based
on different serial implementations, with respect to the size of authenticated
data and plaintext in bytes; assuming 100 kHz operating frequency. Through-
put is estimated based on the latency of encryption in all 3 modes of operation,
APE, GIBBON, HANUMAN. Due to the fact that PRIMATEs may be used
for applications that require encryption and (or) authentication of very short
messages, we include the latency of initialization for each mode. Lastly, note
that Figure 5 does not take any interface overhead into account, other than
assuming that input of data into state (e.g., initialization of key and nonce),
and XOR-ing of data into state (e.g., for tag generation) introduces latency of
one round of the core permutation.

Since GIBBON employs p2, and p3 which use only 6 rounds, it is asymp-
totically twice as fast as the other two modes, allowing throughput up to 70
kbits/sec for GIBBON using P80-9. Therefore it is preferred when performance

1 Note that further area decrease SRF can be done by replacing flip-flop-multiplexer
pairs with scan flip-flops. This has no practical significance as scan flip-flops are
intended for test inputs in the during production.



takes precedence over slightly lowered security. Furthermore, APE is slightly
slower than HANUMAN, due to the initial processing of the nonce (cf. [3]) and
the highest level of security that follows. Taking the 12 kbits/sec throughput
at 100 kHz operating frequency into account, serializing MC transformation in
P80-41, and P120-57 versions makes them suitable for devices where their low
power consumption outweighs low throughput. Namely, as p1, and p4 permu-
tations which are effectively used for encryption (authentication) of each block
require 12 rounds, this results in 492 clock cycles latency for P80-41 (684 for
P120-57). On the other hand, 9 (108 cycles per block in APE, HANUMAN; 54
cycles per block in GIBBON), and 16 (144 cycles per block in APE, HANUMAN;
72 cycles per block in GIBBON) clock cycle version satisfies these requirements
with a significant margin; and we deem them very usable for most constrained
application even with significant interface overhead. Moreover, since it requires
no external storage, we recommend P80-9, and P120-9 as the most sound
choices.

Lastly, we look into some of the industrial standards, devised for lightweight
devices (e.g., smartcards). For example, EPCGlobal Gen2 and ISO/IEC 18000-
63 passive UHF RFID air interface standards discussed in [28] prescribes the fol-
lowing constraints: clock frequency (1.5–2.5 MHz) and response latency (39.06–
187.50µs). These constraints allow RFID devices between 58 and 468 clock
cycles to respond. Considering this type of constraints, and the 12 kbits/sec at
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100 kHz requirement, we believe that lightweight ciphers can be fairly compared
based on the metric presented in Table 4. Assuming a fixed operating frequency,
and the corresponding throughput, performance constraints of implementations
can be compared solely based on the block size. We believe this is a practical
usability metric, which can be easily used in conjecture with area, power, and
energy constraints.

Table 4. Maximal cycle latency per block assuming 12 kbits/sec, 100 kHz.

Block size [bit] 16 32 40 64 80 96 128 256

Max. number of cycles 132 261 326 521 651 782 1042 2084

7 PRIMATEs Coprocessor

In this section we present a coprocessor architecture which can be used for all
PRIMATEs. It is designed to be compatible with 8-, and 16-bit microprocessors;
and features an interface to PRIMATEs cores, efficient in terms of latency and
hardware overheads. Moreover, this approach can be applied for other sponge-
based ciphers (e.g., [9, 15]).

The key to the interface design is depicted in Figure 6. Namely, instead
of mapping the entire SRF into microprocessor memory space, we introduced
a single row-sized InterFace (IF) register. IF is treated as a number of mem-
ory mapped registers with 8-, or 16-bit parallel input, by the microprocessor.
Alternatively, IF provides element-wise shift capability; which allows it to com-
municate with each row of the underlying SRF via circular shifts. This way
of accessing SRF (row-wise) has multiple benefits: IF allows data to be writ-
ten to the permutation core in block-pipeline fashion, effectively introducing
clock cycle latency overhead equal to the number of elements in a row; it pro-
vides translation from the microprocessor word to element-sized word without
any precomputation; element-sized data path conforms FIFO construction of
each row, hence it results in zero area overhead; allows implementation of all
PRIMATEs. Namely, all steps required for PRIMATEs schemes (cf. [3]) can
be divided into two groups: computationally expensive pi permutations, and
computationally feasible data flow operations (e.g., data parsing and writing to
the core, etc.). Therefore, we believe that the best design strategy is to leave
data flow operations to a microprocessor (or an upper level FSM), and dedicate
coprocessor to performing pi. All required read, write, and XOR operations can
be achieved using three types of row interfaces depicted in Figure 6.

Namely, Rc encapsulates a row of the SRF with all of its logic, can only
be written to, and introduces no hardware overhead. Rb is a row which can
also be read-written via circular shifts, where reading introduces overhead of
5-bit multiplexer entry at the output (5-bit AND2 is 6.25 GE in UMC90), and
slightly more control logic. Ra allows the data from IF register to be circularly



Fig. 6. Coprocessor interface and the Xor instruction support.

shifted as is (same as Rb), or circularly XOR-ed to the value stored in the row,
depending on the value of the Xor bit of the instruction (see Table 5). This
approach requires no additional latency for the encryption of blocks, as they are
XOR-ed to the rate as they are being written to SRF. Lastly, Ra row can be
read without changing its content by a circular XOR of 040. The cost of each
5-bit XOR-multiplexer required to support XOR is 23.75 GE in UMC90.

In the particular case of PRIMATEs IF register is 40-bits wide, hence it
can be mapped to 5 8-bit registers, or 3 16-bit registers. Additionally, an 8-bit
Instruction Register (IR) is required for PRIMATEs instructions, which can be
mapped to the remaining byte of one of the 3 16-bit registers.

7.1 HANUMAN-80 Coprocessor

As an example, we design and implement a HANUMAN-80 coprocessor, based
on the preferred P80-9 core. Subset of PRIMATEs micro-instructions, required
for HANUMAN-80 encryption and decryption (cf. [3]), is given in Table 5. Top-
level architecture, depicted in Figure 7, is adapted to MSP430 microcontroller
family [21].

We use Spartan-6 FPGA (XC6SLX45-3CSG324) to implement and test our
design, next to an OpenMSP430 implementation [16]. On this platform copro-
cessor fits in a total of 72 (1.06%) slices (206 FFs and 278 LUTs.) In ASIC,
using UMC90 standard-cell library from Section 5, the entire coprocessor re-
quires 2 kGE. Note that HANUMAN-80 compliant P80-9 (with the data path
arhictecture from Figure 2) requires 1.69 kGE. Overhead of 0.26 kGE (18.68%
larger than the raw P80-9 core of 1.43 kGE) includes all the glue logic; and entire
control logic, including HanCtrl and the FSM of the coprocessor for fetching,



decoding, and executing micro-instructions. Since each row has separate enable
signal, area as well as power savings can easily be achieved by gating the clock
instead of using flip-flops with enable. Furthermore overhead of 0.31 kGE is in-
troduced for the 8-bit instruction unit and the 40-bit IF register , which enables
circular access to SRF in a block-pipeline manner, allowing to almost negligible
interface overhead. Alternatively, this register can be removed, and the SRF
redesigned to be accessible to the microprocessor. This leads to area decrease;
but also increases the latency, and makes it heavily dependent on the latency
of the write cycle of the microprocessor, since pipeline feature is absent. Aver-
age dynamic power at the operating frequency of 100 kHz is 0.49µW, while the
39.90 nW of power are dissipated statically; consuming 5.3µW/MHz in total,

Table 5. Instruction Set of the HANUMAN-80 coprocessor.

Mnemonic Code Description

Reset 0------- Perform software reset.
Wait 1000-000 Put coprocessor in a idle state.
P1 1----001 Perform p1 permutation.
P1S 1----101 Perform p1 permutation with padding spill into capacity.
P4 1----001 Perform p4 permutation.

RateX 10011111 XOR in to rate.
RateS 10010111 Shift in to rate.
RdRate 10011111 XOR in 040 to rate; emulated rate read.
Cap1S 10100111 Shift in to capacity row 1, R/W.
Cap2S 10110111 Shift in to capacity row 2, R/W.
Cap3S 11000111 Shift in to capacity row 3, W.
Cap4S 11010111 Shift in to capacity row 4, W.

Dash, ”-”, can be replaced by either zero or one.

Fig. 7. HANUMAN-80 coprocessor architecture.



Table 6. Implementation comparison.

Design Tech.
Area Block size

# TCLK # TCLK
Table 4

· 100 [%]
[kGE] [bit]

AES♠[23] UMC 180 2.4 128 226 21.69
HANUMAN-80 UMC 90 2.00 40 118 36.20

GIBBON-80 UMC 90 ≈2.00♦ 40 64 19.63

Minalpher [29] NAN 45 2.81♣ 256 304 14.59
Ascon-64 [15] UMC 90 5.86 64 354 67.95
Ascon-x-low-area [15] UMC 90 3.75 64 3072 589.63
♠ UMCL18G212T3 based on a UMC 180 nm library. ♦ GIBBON-80 coprocessor

estimated area. ♣ Authors state that no optimization is performed.

which fits requirements of the industry [28]. Throughput estimated based on the
118 clock cycles (12×9 for pi, 8 for circular shift, and 2 for instruction fetch and
decode) latency per data block (asymptotically) is 33 kbits/sec. This is a valid
assumption, since no additional storage is required for pre-computing and stor-
ing the initialization phase, while tag generation is simply the XOR operation.
Under these assumptions, estimated energy consumption is 15.60 pJ/bit.

Implementation Comparison. Performing a fair evaluation of different can-
didates is a difficult task for several reasons. Firstly, it requires a common inter-
face, equally suitable for all candidates. Secondly, broad area of use cases, rang-
ing from RFID chips to high-end hardware accelerators, might not make use of a
single interface objective enough. Thirdly, implementers present their results in
different technological libraries and processes of each library; which makes area
and power comparison more difficult. Consistently with the lightweight tone of
this work, and assumed real-world limitations, we use Table 6 to benchmark sev-
eral implementations of second-round CAESAR candidates, against the smallest
implementation of AES [23]. Coherently to the discussion from Section 5, we
use area, clock cycle latency(# TCLK), and block size as main comparison pa-
rameters. Additionally, we present how well does each implementation fit the
constraints setting from Table 4 (lower percentage is better). Only two candi-
dates are chosen at this time for the lack of lightweight ASIC implementations
of others.

8 Conclusions and Future Work

Based on the hardware implementations of PRIMATEs family of authenticated
ciphers, and adjacent discussion we find PRIMATEs to be very suitable for con-
strained devices. Namely, uninterfaced implementations of the permutation that
lies in the heart of PRIMATEs takes only 60–72% of the 2 kGE lightweightness
criteria. As shown by example of the HANUMAN-80 coprocessor, this leaves
plenty of space for the implementation of interface and control logic. Further-
more, without any circuit-level optimizations (e.g., clock gating, power gating),



or picking technology library for low-power application, our coprocessor fits the
all of the commonly accepted criteria in practice; in terms of throughput, area,
and average power consumption proposed in [28]. Additionally, presented variety
of TI shows that securing PRIMATEs against first order DPA can be achieved
using as little as 4.3 kGE.

Additionally, by looking at the PRIMATEs AEAD schemes in [3], and the
design of our interface, we observe that by simply using different row interfaces
depicted in Figure 6 coprocessor can be turned into GIBBON-80, and APE-
80. Similarly, by using P120-9 instead of P80-9 all 3 modes of operation can
be satisfied for the increased security level, with minor changes in hardware,
conforming the same architecture. Therefore, both security levels, for all modes
of operation can be achieved on the same chip—or any reasonable combination
tailored for the specific application—with very little hardware overhead.

Further evaluation of this family requires a tapeout of a versatile PRIMATEs
chip, which would allow detailed assessment of SCA security. This study would
also allow us to study how efficiently can different modes of operation and
security levels coexist on a single chip. Furthermore, we plan to study TI of
PRIMATEs in order to achieve same levels of security using less randomness
and resources, as well as higher-order DPA security.
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