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Abstract

We identify the physical mechanisms responsible for the optical homogeneous broad-

ening in Eu3+:Y2O3 nanoparticles to determine whether rare-earth crystals can be

miniaturized to volumes less than λ3 whilst preserving their appeal for quantum tech-

nology hardware. By studying how the homogeneous line width depends on temper-

ature, applied magnetic �eld, and measurement time scale the dominant broadening

interactions for various temperature ranges above 3 K were characterized. Below 3 K

the homogeneous line width is dominated by an interaction not observed in bulk crys-

tal studies. These measurements demonstrate that broadening due to size-dependent

phonon interactions is not a signi�cant contributor to the homogeneous line width,

which contrasts previous studies in rare-earth ion nanocrystals. Importantly, the re-

sults provide strong evidence that for the 400 nm diameter nanoparticles under study

the minimum line width achieved (45±1 kHz at 1.3 K) is not fundamentally limited. In

addition, we highlight that the expected broadening caused by electric �eld �uctuations
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arising from surface charges is comparable to the observed broadening. Under the as-

sumption that such Stark broadening is a signi�cant contribution to the homogeneous

line width, several strategies for reducing this line width to below 10 kHz are discussed.

Furthermore, it is demonstrated that the Eu3+ hyper�ne state lifetime is su�ciently

long to preserve spectral features for timescales up to 1 s. These results allow integrated

rare-earth ion quantum optics to be pursued at a sub-micron scale and hence, open up

directions for greater scaling of rare-earth quantum technology.
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The optical and spin transitions of rare-earth ions in crystalline hosts are among the

narrowest observed in the solid state. For example, in bulk Eu3+:Y2SiO5 crystals the optical

transition has a line width of 122 Hz1 and the nuclear spin transition has a broadening of

15 µHz.2 Because of these narrow transitions rare-earth-ion materials are an appealing system

to pursue the realization of quantum information technology. Indeed, a number of important

quantum-optical protocols have already been demonstrated including quantum memories,3�5

quantum sources,6 frequency conversion,7,8 and qubit manipulation and readout.9,10

Although the rare-earth-ion system is suitable for coupling photons and spins at the

quantum level, thus far such properties have only been achieved in bulk crystals. Despite

their proven performance, bulk crystals impose limitations on the miniaturization of rare-

earth ion quantum hardware and the performance of some protocols. One example is the high

spectral resolution optical detection of single rare-earth ions.11,12 The work in Refs. [ 11,12]

has shown that there are several advantages to studying single praseodymium ions in micron

or sub-micron crystals rather than in a bulk crystal. In particular, the collection e�ciency for

single emitter �uorescence can be an order of magnitude higher when sub-micron-diameter
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crystals are used.11 In addition, using small crystals signi�cantly reduces the background

�uorescence due to resonant ions outside of the collection focus. Rare-earth ion nanocrystals

also make it possible to optically couple to ions through the use of optical microcavities with

mode volumes of the order of λ3 [ 13,14]. Such systems o�er an opportunity to signi�cantly

increase the coupling strength between an optical cavity and the weakly allowed 4fN↔4fN

transitions toward the strong cooperativity regime.15,16

To advance the applications of rare-earth ion research, including single-ion devices, it is

necessary to create miniaturized and integrated platforms that preserve the material's appeal-

ing properties.16�18 Toward this goal, there are advantages in using a bottom-up approach for

creating well-dispersed sub-micron crystals. The greatest advantage of nanocrystal growth

compared to top-down approaches involving crushing and grinding bulk crystals is the abil-

ity to create a large number of highly homogeneous particles without the risk of introducing

additional stochastic defects or strain in the crystal lattice.19 The bottom-up approach also

allows the control and tunability of the crystals' size, morphology, and dispersion.

The aim of this paper is to study whether the optical transition line widths of rare-earth

ions in nanoparticles are su�ciently narrow to establish a foundation for pursuing miniatur-

ized quantum hardware architectures. The optical homogeneous line width Γh together with

the rate of spectral di�usion and nuclear spin-state lifetime ultimately limit the performance

of optical protocols in rare-earth ion crystals. We present a detailed spectroscopic study of

0.5% Eu3+:Y2O3 nanoparticles to examine the dominant homogeneous broadening mecha-

nisms of the optical 7F0↔5D0 transition. In doing so, the feasibility of achieving line widths

less than 10 kHz in sub-micron particles is investigated. The temperature dependence of

the homogeneous line width (Γh) between 1.3 K and 22.5 K was studied by performing hole

burning and two pulse photon echoes on powdered nanoparticle samples. We also investi-

gated the extent of time-dependent spectral di�usion through the use of three pulse photon

echoes, which also probes the nuclear spin level lifetimes of the optical ground state.

Through these measurements we determine the broadening contributions of interactions
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between europium ions and dynamic disorder modes, phonons, and magnetic �uctuations

within the host lattice in a system possessing the narrowest optical line width for any sub-

micron diameter particle. Importantly, the presented characterization shows that the total

broadening of 45 ± 1 kHz at 1.3 K is not fundamentally limited by size-dependent phonon

interactions, which have been proposed as the dominant mechanism in previous studies

on rare-earth ion doped nanocrystals.20�22 As an alternate mechanism, we show that the

expected broadening due to electric �eld perturbations arising from rapidly changing con�g-

urations of surface charge is consistent with the broadening observed in the studied sample.

The consequences of a signi�cant contribution from Stark broadening are discussed including

the feasibility of probing a regime where frequency shifts due to optically controlled inter-

actions between pairs of europium ions could be resolved. We also demonstrate that the

spin-state lifetime is long enough to allow optical coherent states to be mapped onto the

spin population and recalled after one second, with spectral di�usion on this time scale less

than 200 kHz. Given the current properties of the studied nanoparticles and the avenues for

improvement identi�ed in this paper, rare-earth nanocrystals o�er signi�cant advances for

the scalability of rare-earth quantum devices.

Because of the application of rare-earth-ion doped coatings and nanoparticles for lighting,

phosphor, and laser applications, many studies have probed the optical properties of these

materials, including Eu3+:Y2O3.
23 Although much is known about the optical transitions of

europium ions in Y2O3 nanoparticles, very few studies have examined the homogeneous line

width at the level of precision investigated in bulk crystals. There are, however, a set of

studies that concentrate on the phonon-electron interactions20�22 and interactions between

electrons and two level systems (TLS)24 in rare-earth-doped nanocrystals. In these works,

it was evident that the dominant broadening mechanisms in nanocrystals less than 30 nm in

diameter were signi�cantly di�erent from bulk crystals. As shown in Fig. 1, the homogeneous

line width for nanoparticles can be of the order of a factor of 104 broader than the narrowest
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line width observed in bulk crystals. This was attributed to a greatly enhanced phonon in-

teraction with the ion electronic states because of the con�nement of vibrational excitations

and the resultant atomic motion.22 Because the amplitude of the atomic motion is particle

size-dependent the phononic interaction varies according to a power law dα, where d is the

nanocrystal diameter, and α ≈ −2.5 was extracted for nanocrystals containing europium.22

Fig. 1 shows the data from Refs. [ 22,24] and a �t to the proposed d−2.5 power law.

The model suggests that the broadening due to the size-dependent phononic interaction will

be of the order of the lifetime limit for nanoparticles (≈ 200 Hz) for d ≈ 500 nm. Fig. 1

also includes a �t to the d−2 power law observed in semiconductor nanocrystals,25,26 which

gives a size limit that is larger by approximately a factor of two. If the scaling in either

of these models is correct, there would exist a signi�cant limitation on the miniaturization

of rare-earth-ion crystals for use in high spectral resolution applications, such as quantum

information processing. For example, in crystals containing europium, the process of shelving

ions to auxiliary nuclear spin levels of the ground state through optical pumping becomes

increasingly challenging for homogeneous line widths above 1 MHz.1 Fig. 1 suggests that

requiring the use of a shelving state limits the crystallite diameter to greater than 20 nm.

Even narrower line widths (typically of the order of kHz) and hence, larger crystallites, are

required to reversibly map optical quantum states onto spin coherences.27

The renewed interest in studying rare-earth-doped nanoparticles in high spectral resolu-

tion was initially motivated by the study of coherent processes in highly scattering media.29

Our subsequent study on Eu3+:Y2O3 nanoparticle powders revealed that the Γh of 60 nm

diameter crystallites prepared with a solvothermal method30 fell within the range predicted

by particle size-dependent phononic interactions (see Fig. 1). Although Perrot et al. studied

the cubic Y2O3 phase in contrast to the previous studies of Eu2O3 [ 22] and the monoclinic

phase of Eu3+:Y2O3 [ 24], mechanisms such as interactions with host spins and two-phonon

Raman (TPR) interactions should produce similar levels of broadening in all these materi-

als. One key di�erence between the results of Perrot et al. and these previous studies was
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Figure 1: The relationship between nanocrystal or crystallite diameter and the homogeneous
line width at 1.4 K. The shaded area representing the predictions of the phonon broadening
model shows the boundary between the d−2.5 power law proposed in Ref. [ 22] and the d−2

scaling observed in quantum dots.25,26 Although the data points appear consistent with the
model, we show in this work that the homogeneous line width in 130 nm diameter crystallites
is not dominated by size-dependent phonon interactions. This opens up opportunities for
achieving bulk crystal line widths (<300 Hz28) for smaller particles compared to the value
suggested by the models.

the observation of a strongly linear temperature dependence of Γh. This is strong evidence

that interactions between the electronic levels of the rare-earth ion and TLS dominate the

broadening due to phonons at low temperature. In Ref. [ 22], TLS mediated broadening is

discussed but the strong T 3 dependence of Γh in nanocrystals with d = 23± 3 nm (for 1.4 K

< T < 20 K) provided strong evidence to support particle size-dependent e�ects. In contrast,

the conclusions of Perrot et al. suggest that at least one signi�cant broadening contribution

is not linked to phonon interactions. Thus, a question addressed in this work is whether

rare-earth nanocrystals are a feasible candidate for quantum technology applications and

what is the minimum size at which their optical properties will remain suitable.

In this work we study the interactions governing the homogeneous broadening in nanopar-
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ticles comprised of single nanocrystals with d ≈ 100 nm. Despite the measured homogeneous

line width seeming consistent with the previously proposed model based on size-dependent

phonon interactions, the spectroscopic analysis demonstrates that this mechanism is not lim-

iting the observed line width. This suggests that rare-earth ion technology can be pursued

on smaller scales than previously thought possible.

0.5% Eu3+:Y2O3 nanoparticles were synthesized by calcining monodispersed spherical parti-

cles of Eu3+-doped yttrium basic carbonate (Eu3+:Y(OH)CO3·nH2O) grown by homogeneous

precipitation (See Ref. [ 31] for details). The structure and morphology of the nanoparticles

were characterized through x-ray di�raction and scanning electron microscopy. In general,

the synthesized nanoparticles can be described as nano-ceramics in that each particle con-

sists of an agglomerate of many single nanocrystals as shown in the inset of Fig. 2. The

average particle diameter measured by transmission electron microscopy was 400 ± 80 nm,

and the average crystallite diameter determined by x-ray di�raction was 130± 10 nm. The

x-ray di�raction pattern was characteristic of the yttrium oxide body-centered cubic Y2O3

structure (Ia3̄ space group) and no evidence of other parasitic phases were found. Further-

more, the line shape and narrow inhomogeneous line width shown in Fig. 2 is consistent with

broadening due to isolated Eu3+ point defects,1,31 which indicates that the concentration of

oxygen vacancies and other defects within the crystal structure is low. We note that the

nanoparticles studied in this work can be dispersed to be studied individually, which was not

the case in previous work where the solvothermal method was used.30 This is an important

distinction because individual nanoparticles can be coupled to optical microcavities to fully

capitalize on the narrow optical transition line widths obtained in this work.

The homogeneous broadening of the 7F0↔5D0 transition was studied on powdered sam-

ples of the nanoparticles to allow the measurement of coherent emission.29 An ensemble can

be manipulated to emit coherently using techniques that are the optical equivalents to pulsed

spin resonance techniques in the radio frequency and microwave regimes. Speci�cally, two
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coherent pulse sequences were used: two pulse, and three pulse photon echoes. In both tech-

niques the �rst pulse initializes the ensemble into a superposition of the ground and excited

states, the coherence of which decays at a rate governed by the inhomogeneous broadening

of the ensemble. In a two pulse echo, the second pulse is an inversion pulse (an optical π

pulse in this work), which causes the ensemble to rephase and emit an echo. In contrast,

in a three pulse echo, the inversion is divided into two pulses. The second pulse maps the

phase evolution to a frequency-dependent population grating, and the third pulse excites

this spectral feature resulting in an echo. In these coherent techniques the homogeneous line

width is calculated from the decay of the echo as a function of the separation between the

�rst two pulses. In addition to coherent techniques, hole burning measurements were also

performed. Hole burning is the use of optical pumping to redistribute ions among the ground

state nuclear spin structure of the Eu3+-ions, which results in spectral features with widths

governed by the homogenous line width. For details on the experimental method beyond

the summary provided in the main text, please refer to the Supporting Information (Section

S1) provided.

The powder was maintained at a temperature between 1.3 K and 22.5 K in a liquid helium

bath cryostat, using either gas cooling or immersion in liquid helium. The sample holder

consisted of a copper plate with a circular aperture (diameter equal to 2 mm and thickness

equal to 500 µm), which was �lled with the powder and capped on both sides by glass plates.

A similar holder made entirely of glass was used for the high magnetic �eld measurements,

which were conducted in a cryostat where both the sample and superconducting coil resided

in the helium reservoir. We excited the 7F0↔5D0 transition of the C2 symmetry Eu3+ site

within 1 GHz of the central frequency of the inhomogeneously broadened distribution (shown

in Fig. 2) at 516.098 THz (580.883 nm in vacuum) using a dye laser with a line width of the

order of 300 kHz (Sirah Matisse DS).

The laser was focused onto the powder with a 75 mm focal length lens and the scattered

light collected with a 5 mm focal length lens mounted directly behind the sample holder in
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the cryostat. For the two pulse and three pulse echo measurements, heterodyne detection was

used (see Ref. [ 30] for details) with large signals observed for a π pulse length of 1.8 µs at an

input power of 120 mW at the sample (see Supporting Information, Section S2). Although

this input power is large compared to single crystal measurements, the scattering e�ect of the

nanoparticles signi�cantly reduces the input power incident on the ions contributing to the

coherent signal. For the hole burning measurements, the depleted spectral region (hole) was

burned by a 1 ms pulse, and read out by a frequency scan with a duration of 500 µs. Both

the burn and scan had an input power of 12 mW (at the sample) and the hole was detected

by monitoring the transmitted intensity of the laser. In all measurements optically pumping

all resonant ions to a non-resonant hyper�ne ground state was avoided by slowly scanning

the laser frequency over a 500 MHz region or by applying a series of chirped pulses between

each measurement to return the ensemble to an equilibrium ground state occupancy.

We measured the temperature dependence of the homogeneous line width between 2 and

22.5 K in helium gas using two-pulse photon echoes and hole burning. Both techniques are

required because above 6 K the echo amplitude is below the noise level, whereas below 6 K

the width of the holes becomes dominated by the laser instability and spectral di�usion. The

measured temperature dependence of Γh (equal to half the measured hole width) is shown

in Fig. 3. This �gure also shows the �t of the data according to the model

Γh(T ) = Γ0 + Γl + αTLST + αTPRT
7 , (1)

where Γ0 is the temperature independent broadening, Γl is the broadening contribution of

the laser, αTLS describes the coupling of the Eu3+ ion to TLS,32 and αTPR describes the

rate of TPR interactions.33 The �tting gives a total value for Γ0 + Γl = 370 kHz, from

which we deduce Γ0 ≈ 70 kHz. The coe�cients for the two temperature-dependent terms
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Figure 2: The excitation spectrum of the 0.5% Eu3+:Y2O3 nanoparticle powder shows the
inhomogeneous broadening of the 7F0↔5D0 optical transition. The spectrum was recorded
by monitoring the red emission from the optical excited state to the 7F2 crystal �eld level.
The frequency at an o�set of 0 was 516.098±0.001 THz. The inset shows a scanning electron
microscope image of the studied nanoparticles.

are αTLS = 4.5± 0.5× 104 Hz/K and αTPR = 5± 1× 10−3 Hz/K7, respectively. According

to the model, the TLS-interaction dominates the broadening due to phonon interactions for

temperatures less than 10 K.

The inset of Fig. 3 shows the results of the two pulse echo study of the temperature

dependence below 6 K. In this temperature regime, the broadening due to TPR interactions

is negligible, which means that Γh can be modeled according to

Γh(T < 6 K) = Γ0 + αTLST . (2)

Fitting the photon echo data to Eqn. 2 yielded a TLS coe�cient αTLS = 9± 1× 103 Hz/K.

This is a more accurate measure of the contribution of the broadening due to TLS because

the hole burning data will also contain a contribution due to spectral di�usion on a 250 µs
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Figure 3: (main �gure) The temperature dependence of the homogeneous line width be-
tween 2 and 22.5 K measured by hole burning spectroscopy. The �t (dotted line) represents
the contributions due to TLS and TPR interactions (see text for details). (inset) Because
the hole burning measurement becomes limited by laser instability and spectral di�usion at
temperatures below 6 K, two-pulse echoes were used to measure Γh at these temperatures.
In both the main �gure and inset the shaded areas represent the temperature independent
broadening (lightest), TLS interaction broadening, and TPR interaction broadening (dark-
est).

time scale, which will increase more rapidly with temperature compared to the homogeneous

broadening.34,35

The photon echo measurements also provide a more accurate value for Γ0 because the

technique is insensitive to the laser line width Γl. Extrapolating the data shown in the inset

of Fig. 3 to the 0 K limit gives a Γ0 = 56 kHz. In the many measurements of Γh(T ) in

di�erent regions of the powder the value of Γ0 showed a variation of the order of 10 kHz

despite the fact that αTLS remained constant. For example, the narrowest line width mea-

sured to date was 45 ± 1 kHz measured at 1.3 K (see the inset of Fig. 4), which when

extrapolated to 0 K gives Γ0 = 36 ± 2 kHz. This variation is attributed to sampling di�er-

ent distributions of nanoparticles in the powder and to temperature di�erences between the
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Figure 4: (main �gure) 3 pulse photon echo measurements of the spectral di�usion of the
optical transition over time scales between 100 ns and 1 s (see text for details). The solid
lines are guides to the eye. (inset) Results of two-pulse photon echo measurements at 1.3 K
with zero applied �eld and with an applied �eld of 2.5 T, respectively. The homogeneous
broadening observed in both cases is 45± 1 kHz (equivalent to T2 = 7.0± 0.2 µs).

sample and temperature sensor. To re�ect this variation the average value of Γ0 is given as

Γ0 = 45± 10 kHz.

In bulk crystals, the temperature independent homogeneous broadening Γ0 often has a

signi�cant contribution from the magnetic �eld �uctuations due to nuclear or electron spins

in the host lattice or impurity spins in lattice defects. This contribution can be reduced by

applying static magnetic �elds to signi�cantly slow down the rate of spin �ips in the lattice.

We studied the decay of two-pulse photon echoes in the presence of an applied �eld ranging

from a few mT to 2.5 T. There was no observed variation in Γh with magnetic �elds applied

in this range even at a temperature of 1.3 K (see the inset of Fig. 4).

The spectral di�usion of the europium optical transition in the nanoparticle sample over

time is another important parameter for future high spectral resolution applications because
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it limits the time scale over which narrow spectral features can be preserved. We studied the

broadening of the ion ensemble on time scales between 100 ns and 1 s through three pulse

echo studies (see Section S1 in the Supporting Information for details). Fig. 4 shows the

results of these measurements at 2 K (cooled by gas) and 1.3 K (cooled by super�uid liquid).

Each data point re�ects the value of Γh obtained by measuring the echo amplitude as the

delay τ between the �rst two pulses was varied for a �xed delay Tw between the second and

third pulses. At both temperatures the broadening for Tw < 100 µs is less than 25 kHz. The

dominant contribution is likely to be broadening due to TLS interactions, which increases

proportional to ln(Tw/t0) for t0 equal to the minimum chosen value of Tw.
34,35

When Tw becomes longer than the excited state lifetime T1 ≈ 1.2 ms,31 there is a clear

di�erence in the spectral di�usion at the two temperatures. At 2 K, the broadening increases

rapidly for Tw > T1, which prevented measurements on longer time scales because the signal

at the shortest achievable delay (τ ≈ 1 µs) became indistinguishable from the noise �oor.

In contrast, at 1.3 K, a su�ciently large signal was observed for Tw > T1 to measure the

broadening for time scales up to Tw = 1 s. An increase in broadening is expected for Tw > T1

in both measurements because relaxation from the excited state back to the initial ground

state degrades the spectral grating created by the �rst two pulses. The spectral grating can

also be degraded if the lifetime of the ground state nuclear spin levels Tz is short compared

to Tw. Although a change in Tz between 2 K and 1.3 K could be a contributing factor to the

observed di�erence in spectral di�usion behavior, we propose that the dominant mechanism

is the long term �uctuations present in our cryostat. Variations in pressure or temperature

on a time scale of 1 ms will contribute to the observed broadening. This is because the

even distribution of crystalline orientations in the powder means that environmental changes

produce a broadening of the ensemble rather than the well de�ned frequency shift that would

be observed in a single crystal. When the sample is immersed under super�uid helium

the pressure and temperature stability is greatly improved, which is consistent with the

observed results. Although it is not possible to rule out spectral di�usion due to magnetic
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perturbations, these interactions are unlikely to be the dominant mechanism. Interactions

between Eu3+ and nuclear spins are generally much weaker than 200 kHz, whilst electron

spins are unlikely to have ms lifetimes at zero �eld.

At the lower temperature of 1.3 K, the three pulse photon echo can be measured for

time scales long compared to T1. This is clear evidence that the population grating initially

created on the optical transition has been transferred to a population grating between the

nuclear spin states through incoherent relaxation. Given that the nuclear spin population

grating will relax at a rate of exp[−t/Tz], it is possible to estimate Tz based on the reduction

of the echo amplitude for Tw > T1. If the reduction of the echo amplitude for τ = 1 µs and

Tw > 4 ms is attributed entirely to lifetime decay, the exponential �t yields Tz ≈ 450 ms.

The spin lifetime and total spectral di�usion observed over 1 s (< 200 kHz) will both be

discussed further in the following section.

The primary aim of this work is to determine the current limit on the optical transition

line width, whether there are opportunities for reducing this line width, and what lower

bound this �xes for the miniaturization of rare-earth quantum technology hardware. The

temperature dependence of Γh reveals the dominant broadening mechanisms for tempera-

tures greater than 5 K. Above 15 K, TPR interactions cause the majority of the broadening.

In this respect, the observed behavior of the nanoparticles is equivalent to the behavior of

europium in bulk crystal samples with the measured value of αTPR = 5 ± 1 × 10−3 Hz/K7

being consistent with measurements in bulk Eu3+:Y2O3 (αTPR = 1.4×10−3 Hz/K7 [ 36]) and

bulk Eu3+:Y2SiO5 (αTPR = 1.8(7.2) × 10−3 Hz/K7 for site 1 (site 2)1). In the temperature

range between 5 K and 10 K, the TPR broadening reduces to the extent where interactions

between the rare-earth and TLS dominate the homogeneous line width. Although signi�cant

TLS interaction broadening is not observed in the highest quality bulk Eu3+:Y2O3 [ 28] it has

been observed in some bulk Eu3+:Y2O3 samples, where αTLS can be as high as 18 kHz/K.37

Our previous work on Eu3+:Y2O3 nanoparticles also reported αTLS = 18 kHz/K.30 Hence,
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the value obtained in this work (αTLS = 9 ± 1 kHz/K) is the lowest value measured in a

submicron-diameter particle and within the range observed for bulk crystals.

Importantly, the analysis of the hole burning study enables a bound on the broadening due

to the type of size-dependent phonon interactions proposed in Ref. [ 22]. By �tting the data in

Fig. 3 to a model that adds another phonon broadening term βT 3 to Eqn. 1, β is found to be

90 Hz/K3. Thus, the contribution of size-dependent phonon interactions at 1.3 K is less than

200 Hz. This is strong evidence that the mechanism proposed in Ref. [ 22] is not signi�cantly

contributing to the observed line width in our samples. Therefore, the observed relationship

between the model proposed in Ref. [ 22] and the values of Γh in nanoparticles with 130 nm

diameter crystallites as shown in Fig. 1 is due to another mechanism. Consequently, the

observed line width is not necessarily a fundamental limit, allowing the possibility of reducing

the line width further. The following analysis characterizes Γh to determine what are the

contributing interactions and shows that narrower line widths are indeed possible.

Below 3 K, the total broadening due to TLS and TPR interactions are contributing

less than 30 kHz of homogeneous broadening. If the homogeneous line width continues to

decrease linearly with temperatures below 1.3 K, as is expected for TLS interactions, the

extrapolated line width at absolute zero is Γ0 = 45 ± 10 kHz. In Eu3+-doped bulk crystals

the mechanisms that can contribute to Γ0 can be expressed as

Γ0 = ΓT1 + ΓISD + Γmagnetic , (3)

where ΓT1 is the lifetime limited line width, ΓISD is the broadening due to instantaneous spec-

tral di�usion (ISD) due to dipole-dipole interactions between europium ions,28 and Γmagnetic

is the broadening due to magnetic �uctuations due to spins in the crystal lattice. Through

our measurements we can bound the contributions of the interactions represented in Eqn. 3.

The contribution of ΓT1 in these particles is (2π×1.2 ms)−1 = 133 Hz, which is well below

the current limit. To investigate the broadening due to ISD the variation of the homoge-
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neous line width was measured as a function of the excitation pulse power from 120 mW

to ≈30 mW (see Section S3 of the Supporting Information). Because Γh was insensitive to

this variation in excitation power, and hence, the excitation density of Eu3+, we conclude

that ISD is not a major broadening interaction. Indeed, from excitation density dependent

ISD measurements conducted in bulk Eu3+:Y2O3 [ 28] and the excitation bandwidth of the

current measurement, we expect ΓISD to be less than 2 kHz (see Section S3 of the Support-

ing Information). Finally, it is possible to bound Γmagnetic through the results of the photon

echo measurements in an applied magnetic �eld. A �eld of 2.5 T is su�cient to signi�cantly

change the magnetic broadening caused by the �ipping of both nuclear and electron spins,

yet the homogeneous line width was independent of the applied �eld. This is strong evidence

that magnetic broadening due to lattice or defect-related spins is not the dominant contribu-

tion to Γh. Given the uncertainty on any one measurement, we can bound the contribution

of magnetic broadening to the order of a few kHz.

Therefore, the expected combined broadening in the low temperature limit due to ΓT1 ,

ΓISD, and Γmagnetic is not more than 5 kHz. In contrast, our measurements indicate that the

value for the currently studied nanoparticles is almost an order of magnitude greater than

this. Because of the strong evidence that the homogeneous broadening is now dominated

by e�ects other than those observed in bulk crystals it is likely that Γh is limited by surface

related e�ects.

Broadening due to �uctuating electric �elds at surfaces have previously been studied on

spin transitions in nitrogen vacancy centers38 and on optical transitions of quantum dots39

and shown to be a signi�cant source of dephasing. In the following section we analyze

the expected broadening due to electric �eld �uctuations in the europium ion environment

arising from charge �uctuations at interfaces between crystallites or the nanoparticle surface.

A simple model demonstrates that such an electric �eld perturbation is su�cient to produce

the measured Γh and the observed two pulse echo decays are consistent with this mechanism.

We model the change in Stark shift experienced by an ensemble of Eu3+ ions within a
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spherical Y2O3 nanoparticle with volume V due to a point charge �uctuation ∆q on the

surface of the sphere. Because we are studying the system as a powder it is su�cient to

consider the charge ∆q in an in�nite dielectric such that the �eld at a Eu3+ site at a distance

r from ∆q is

E(r) =
∆q

4πε0κr2
r̂ , (4)

where ε0 is the vacuum permittivity, and κ = 15 is the dielectric constant of bulk Y2O3 [

40].

The Eu3+ experiences a linear Stark shift with a Stark coe�cient S

ΓStark(r) = S ·E(r) , (5)

but because the crystallites within each nanoparticle are randomly oriented, over the ensem-

ble average it can be assumed that S and E(r) are aligned at every point within the sphere.

To model the decay of the two pulse echo amplitude as the delay τ between the two pulses

is increased we calculate

∫
V

exp[−2πτΓStark(r)]dV (6)

In Fig. 5 the echo amplitude decay over the range of τ used in our experiment is shown

for S = 350 Hz/ V m−1 (the value for site 1 Eu3+:Y2SiO5 [ 41]), |∆q| = 1.602× 10−19 C (a)

and |∆q| = 0.05× 1.602× 10−19 C (b), and various sphere diameters. The Stark coe�cient

for Eu3+:Y2SiO5 is used because it has been well characterized, whereas only an estimate of

S ≈ 100 Hz/ V m−1 [ 42] is published for Eu3+:Y2O3.

By modeling the system using a single point charge we simulate the maximum possible

inhomogeneity of the electric �eld in the nanoparticle. The result is a broad distribution

of line widths, with the maximum broadening for a single electron charge perturbation in
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excess of 10 GHz for ions directly adjacent to ∆q, > 3 MHz for ions at a distance of 100 nm,

and < 250 kHz for ions at a distance of 400 nm. Despite this large inhomogeneity, nearly-

exponential two-pulse photon echo decays are predicted for the range of τ accessible in our

measurements (see Fig. 5). This is because ions with Γh� τ−1 do not contribute to the

coherent signal. Therefore, in the regime where Γh> τ−1 for all the ions in the nanoparticle,

the photon echo inherently selects the ions with the narrowest Γh. The predicted line widths

are approximately 3.4 MHz, 880 kHz, and 240 kHz for a sphere diameter of 100 nm, 200 nm,

and 400 nm, respectively. Given the signal to noise ratio achieved in our experiments, the

echo signals shown in part (a) of the �gure would only be able to be observed for τ < 5 µs

(2.2 µs) for the 400 nm (100 nm) diameter nanoparticles.

Although using ∆q equal to a single electron charge provides an easily visualized reference

point for comparison, electric �eld perturbations are more likely to arise from �uctuations in

the position and number of multiple surface charges. For a sphere of diameter d and a given

surface charge density σ the total number of charges N = σπd2 will �uctuate according to

Poissonian statistics: ±
√
N . Because the studied nanoparticles are approximately spherical,

that is, their morphology provides symmetry, the average electric �eld will approach zero

for large N . To compare this mechanism to the single electron case, ∆q can be scaled to

re�ect the relative �uctuation
√
N/N in the electric �eld. The right hand panel (b) of

Fig. 5 shows the photon echo decay curves for ∆q a factor of 20 less than a single electron

charge, which re�ects N = 400 or equivalently σ ≈ 8× 1010 cm−2 for a diameter of 400 nm.

Single exponential �ts to the modeled decays yield additional broadening of approximately

20 kHz (200 kHz) for a sphere of diameter 400 nm (100 nm). Given the calculated σ in

other systems,39 it is more likely that the observed broadening is due to charge �uctuations

on the surface of the nanoparticle rather than at the interfaces of the contained crystallites.

However, the latter cannot be ruled out given the general nature of our model.

Further experiments are needed to con�rm that the electric �eld �uctuation due to surface

charges is the dominant broadening mechanisms in our nanoparticles at low temperature.
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Figure 5: Simulated two-pulse photon echo amplitude decays for Eu3+:Y2O3 nanoparticles
of di�ering diameter where the only broadening mechanism is that due to a single �uctuating
surface charge ∆q as described in the text. In (a) ∆q is equal to an electron charge, whereas
in (b) ∆q is reduced by a factor of 20. Even though there is a distribution of homogeneously
broadened line widths within each nanoparticle, the echo amplitude decay averaged over the
ensemble remains close to exponential. For the case of the smaller ∆q, the broadening that
produces the echo decay is 200 kHz (100 nm), 60 kHz (200 nm), and 20 kHz (400 nm).

The clearest evidence would be to measure the noise spectrum of the dominant perturbation

to con�rm that it is consistent with electric �eld noise. This is possible in the optical

domain by employing radiation locking techniques43�45 or by performing noise spectrum

measurements using optically detected nuclear magnetic resonance techniques38 on the Eu3+

spin state transitions.

We now brie�y explore to what extent the narrowest observed Γh in our system could

be reduced under the assumption that the two major broadening interactions at 1.3 K are

TLS (≈ 12 kHz) and Stark broadening (≈ 35 kHz). The broadening due to TLS interactions

can be reduced by an order of magnitude by cooling the nanoparticles from 1.3 K to the

100 mK operating temperatures possible with dilution fridges. To reduce the remaining Stark

19



broadening we suggest two strategies. First, using photon echo methods,46 it is possible to

select ions with the narrowest line widths and shelve ions with broader Γh to non-resonant

ground state nuclear spin levels. The `good' ions could then be manipulated on a time

scale limited by the shelving state lifetime. Second, the nanoparticles could be coated or

embedded in a material with a high dielectric constant,38 which would reduce the electric

�eld �uctuations and hence, the broadening. A combination of these techniques should

reduce Γh to less than 10 kHz for the current nanoparticles.

Although it should be possible to reduce Γh to the kHz-level by cooling to 100 mK

and employing strategies to reduce ΓStark, the narrowest line width measured in this work

(45±1 kHz) is su�ciently narrow for preliminary investigations of Eu3+-Eu3+ electric dipole-

dipole interactions. The frequency shift induced by the electric dipole-dipole interaction ∆fij

is47

∆fij =
µ2

4πhε0κr3ij
[µ̂i · µ̂j − 3(µ̂i · r̂ij)(µ̂j · r̂ij)] , (7)

where µ is the Eu3+ electric dipole moment, h is Planck's constant, and rij is the separation

between ion i and ion j. Based on measured values for µ in other europium crystals,41,48

the ∆fij in Eu3+:Y2O3 should exceed 45 kHz for rij < 9 nm. In comparison, the average

separation between Eu3+ ions in 0.5% Eu3+:Y2O3 is approximately 1.3 nm. If Γh could be

decreased to 5 kHz, ∆fij > Γh for separations up to 20 nm; a volume that would contain

approximately 3000 ions.

It is also important to consider how Γh scales with the nanoparticle diameter d under the

assumption of surface charge �uctuations being the dominant broadening mechanism. The

rate at which ΓStark increases as d is reduced depends on the value of σ. For σ ≤ (πd2)−1,

the single surface charge regime, the model derived in this work aptly describes the electric

�eld �uctuations and ΓStark becomes proportional to d−2. Therefore, in the limit where

either σ or d becomes su�ciently small, the model of �uctuating surface charge broadening
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would provide a d−2-scaling of the line width with nanocrystal diameter. In contrast, for

σ � (πd2)−1, ΓStark will vary more rapidly as a function of nanocrystal diameter. This is

because the strength of the electric �eld is proportional to d−2 and electric �eld �uctuations

due to charges on a spherically symmetric surface are approximately proportional to d−1.

This latter regime is most consistent with our experimental results. We note that although

attributed to a di�erent interaction, the d−2.5-scaling of the nanocrystal line width observed

in Refs. [ 22,24] lies between the limiting cases discussed above.

If Stark �uctuations on the nanoparticle surface are responsible for the observed Γh,

by reducing ΓStark it is feasible to produce isolated 100 nm diameter single crystals with

line widths of the order of 10 kHz. Such nanocrystals would be an appealing platform for

investigating rare-earth ion quantum information technology in sub-micron scale devices.

Contrastingly, without any modi�cation of the Stark broadening interaction, the predicted

Γh for a 100 nm diameter nanocrystal is of the order of 1 MHz. However, if charge �uctuations

at the interface between nanocrystals is the dominant broadening mechanism, the observed

Γh already re�ects the line width for an isolated 100 nm diameter nanocrystal.

The other component of our study was investigating the broadening on longer time scales.

The three pulse echo measurements show that spectral di�usion at 1.3 K is less than 100 kHz

for time scales less than 1 ms, and less than 200 kHz for time scales up to 1 s. The observed

rate of spectral di�usion is at least an order of magnitude less than the rates measured in other

disordered systems such as glasses32 and previous studies on Eu3+:Y2O3 nanoparticles.30

Although low for a disordered material, the rate of spectral di�usion for the nanoparticles

studied in this work is large compared to bulk Eu3+:Y2SiO5, in which no observable spectral

di�usion is exhibited on 10 ms time scales.49 The likely interactions contributing to the

spectral di�usion on short time scales include TLS and Stark broadening. On time scales

above 1 ms there will also be a contribution due to pressure and temperature �uctuations

in the cryostat.

Importantly, at 1.3 K the spectral di�usion was su�ciently low to observe the decay of
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the three pulse echo due to the hyper�ne state lifetime Tz ≈ 450 ms. The measured lifetime is

signi�cantly shorter than the value measured in both Eu3+:Y2O3 bulk crystals (Tz ≈ 80 h36)

and transparent ceramics (Tz > 30 min50). At this stage it is not possible to identify the

mechanism responsible for the reduced Tz but it is likely that a contributing factor is the

Eu3+ spin �ips induced by resonant coupling of magnetic �eld noise that accompanies the

�uctuations in surface charge. Despite the short spin-state lifetime, Tz is long enough to

preserve the mapping of a coherent optical state onto the ions' spin state population for up

to 1 s. Although further work is required to determine the spin coherence time of the hyper-

�ne transitions, this result opens up interesting opportunities to pursue solid-state quantum

optics experiments in a completely new regime. For example, in a regime with 5 kHz optical

line widths and spin transitions capable of storing coherence on a 10 ms time scale, it is

conceivable to map a photonic quantum state onto the spin states of a known number of

nanoparticles and then to change the relative positions of those nanoparticles before the state

is retrieved. Such experiments would be able to probe and manipulate spin-wave entangled

states in a way not possible in bulk crystals.

In this paper we have performed a thorough spectroscopic analysis of the optical homoge-

neous line width of europium ions in Y2O3 nanoparticles. By studying how the homogeneous

line width varied with temperature, magnetic �eld, and interaction time scale we have char-

acterized the broadening contribution of the known and proposed interactions for rare-earth

ion crystals. At high temperature, the broadening is dominated by two phonon Raman pro-

cesses, completely analogous to bulk crystal systems. For temperatures between 5 and 10 K

interactions with TLS cause the majority of the broadening. In the limit of low tempera-

ture, these results indicate that size-dependent phonon interactions are not the dominant

broadening mechanism for 100 nm crystallites. The remaining 45± 10 kHz of broadening is

consistent with surface charge �uctuations that create a rapidly varying electric �eld, which

broaden the transition through the linear Stark interaction. Although broadening due to
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surface charges has a strong dependence on the size of the nanoparticle, it does not present

a fundamental limit to the homogeneous line width. Our study indicates that it is already

feasible to resolve ion-ion interaction induced frequency shifts in the measured rare-earth

doped nanoparticles. Furthermore, by signi�cantly reducing the e�ects of surface charge

�uctuations and by lowering the temperature below 1 K it should be possible to probe much

longer range ion-ion interactions. This result combined with the more complete understand-

ing of the broadening mechanisms gained from this work, and the ability to store coherent

states on the longer lived hyper�ne transitions, establish an interesting platform for future

studies of fundamental and applied quantum mechanics.
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