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Abstract—In this work, novel upper and lower bounds on the
capacity of channels with arbitrary constraints on the support of
the channel input symbols are derived. As an immediate practical
application, the case of multiple-input multiple-output channels
with amplitude constraints is considered. The bounds are shown
to be within a constant gap if the channel matrix is invertible
and are tight in the high amplitude regime for arbitrary channel
matrices. Moreover, in the high amplitude regime, it is shown that
the capacity scales linearly with the minimum of the numbers of
transmit and receive antennas, similarly to the case of average
power-constrained inputs.

I. INTRODUCTION

While the capacity of a multiple-input multiple-output
(MIMO) channel with an average power constraint is well
understood [1], surprisingly, little is known about the capacity
of the more practically relevant case in which the channel
inputs are subject to amplitude constraints. The first major
contribution to this problem was a seminal work of Smith
[2] in which it was shown that, for the scalar Gaussian noise
channel with an amplitude-constrained input, the capacity
achieving inputs are discrete with finite support. In [3], this re-
sult was extended to peak-power-limited quadrature Gaussian
channels. Using the approach of [3], in [4] the optimal input
distribution was shown to be discrete for MIMO channels with
an identity channel matrix and a Euclidian norm constraint on
the input vector. Even though the optimal input distribution is
known to be discrete, very little is known about the number or
the optimal positions of the corresponding constellation points.
To the best of our knowledge, the only exception is the work
of [5] in which for a scalar Gaussian noise channel it was
shown that two point masses are optimal for amplitude values
smaller than 1.671 and three for amplitude values of up to
2.786.

Using a dual capacity expression, in [6] McKellips de-
rived an upper bound on the capacity of a scalar amplitude
constrained channel that is asymptotically tight in the high
amplitude regime. By using a clever choice of an auxiliary
channel output distribution in the dual capacity expression,
the authors of [7] sharpened McKellips’ bound and extended
it to parallel MIMO channels with a Euclidian norm constraint
on the input. The scalar version of the upper bound in [7] has
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been further sharpened in [8] by yet another choice of auxiliary
output distribution. In [9], asymptotic lower and upper bounds
for a 2×2 MIMO system were presented and the gap between
the bounds was specified.

In this work, we make progress on this open problem by
deriving several new upper and lower bounds that hold for
channels with arbitrary constraints on the support of the input
distribution. We then apply them to the special case of MIMO
channels with amplitude-constrained inputs.
A. Contributions and Paper Outline

Our contributions and paper outline are as follows. The
problem is stated in Section II. In Section III, we derive
upper and lower bounds on the capacity of a MIMO channel
with an arbitrary constraint on the support of the input. In
Section IV, we evaluate the performance of our bounds by
studying MIMO channels with invertible channel matrices.
In particular, in Theorem 6 it is shown that our upper and
lower bounds are within n log(ρ) bits, where ρ is the packing
efficiency and n is the number of antennas. For diagonal
channel matrices, it is shown in Theorem 7 that the Cartesian
product of pulse-amplitude modulation (PAM) constellations
achieves the capacity to within 1.64n bits. Section V is devoted
to MIMO channels with arbitrary channel matrices. It turns
out that in the high amplitude regime, similarly to the average
power constrained channel, it is shown that the capacity scales
linearly with the minimum of the numbers of transmit and
receive antennas. Section VI concludes the paper.

Due to space constraints, we omit the proofs of some of
the results. All details, however, can be found in an extended
version of this paper [10].

B. Notation
Vectors are denoted by bold lowercase letters, random vec-

tors by bold uppercase letters, and matrices by bold uppercase
sans serif letters (e.g., x, X, X). For any deterministic vector
x ∈ Rn, n ∈ N, we denote the Euclidian norm of x by ‖x‖.
For some X ∈ supp(X) ⊆ Rn and any p > 0 we define

‖X‖pp :=
1

n
E[‖X‖p] , (1)

where supp(X) denotes the support of X. Note that for p ≥
1, the quantity in (1) defines a norm. The norm of a matrix
H ∈ Rn×n is defined as

‖H‖ := sup
x:x6=0

‖Hx‖/‖x‖ .

978-1-5090-5019-2/17/$31.00 ©2017 IEEE



Let S be a subset of Rn. Then,

Vol(S) :=

∫
S

dx

denotes its volume.
Let R+ := {x ∈ R : x ≥ 0}. We define an n-dimensional

ball or radius r ∈ R+ centered at x ∈ Rn as the set

Bx(r) := {y : ‖x− y‖ ≤ r} .

Recall that for any x ∈ Rn and r ∈ R+,

Vol
(
Bx(r)

)
=

π
n
2

Γ
(
n
2 + 1

)rn .
For any matrix H ∈ Rk×n and some S ⊂ Rn we define

HS := {y : y = Hx , x ∈ S} .

Note that for an invertible H ∈ Rn×n we have

Vol(HS) = |det(H)|Vol(S) .

We define the maximum and minimum radius of a set S ⊂ Rn
that contains the origin as

rmax(S) := min{r ∈ R+ : S ⊂ B0(r)} ,
rmin(S) := max{r ∈ R+ : B0(r) ⊆ S} .

For a given vector a = (a1, . . . , an) ∈ Rn+ we define

Box(a) := {x ∈ Rn : |xi| ≤ ai, i = 1, . . . , n}

and the smallest box containing a given set S ⊂ Rn as

Box(S) := inf{Box(a) : S ⊆ Box(a)} ,

respectively. Finally, all logarithms are taken to the base 2,
log+(x) := max{log(x), 0}, Q(x), x ∈ R, denotes the Q-
function, and δx(y) the Kronecker delta, which is one for
x = y and zero otherwise.

II. PROBLEM STATEMENT

Consider a MIMO system with nt ∈ N transmit and nr ∈ N
receive antennas. The corresponding nr-dimensional channel
output for a single channel use is of the form

Y = HX + Z ,

for some fixed channel matrix H ∈ Rnr×nt .1 Here and
hereafter, we assume Z ∼ N (0, Inr

) is independent of the
channel input X ∈ Rnt and H is known to both the transmitter
and the receiver, where Inr

denotes the nr×nr identity matrix.
Now, in all that follows let X ⊂ Rnt be a convex and

compact channel input space that contains the origin (i.e.,
the length-nt zero vector) and let FX denote the cumulative
distribution function of X. As of the writing of this paper, the
capacity

C(X ,H) := max
FX:X∈X

I(X; HX + Z) (2)

of this channel is unknown and we are interested in finding
novel lower and upper bounds. Even though most of the results

1Considering a real-valued channel model is without loss of generality.

in this paper hold for arbitrary X , we are mainly interested in
the two most important special cases:

(i) per-antenna amplitude constraints; that is, X = Box(a)
for some given a = (A1, . . . , Ant) ∈ Rnt

+ , and
(ii) nt-dimensional amplitude constraint; that is, X = B0(A)

for some given A ∈ R+.

Remark 1. Note that determining the capacity of a MIMO
channel with average per-antenna power constraints is also
still an open problem and has been solved for some special
cases only [11]–[13].

III. UPPER AND LOWER BOUNDS ON THE CAPACITY

A. Upper Bounds

To establish our first upper bound on (2), we need the
following result [14, Th. 1]:

Lemma 1. (Maximum Entropy Under p-th Moment Con-
straint) Let n ∈ N and p ∈ (0,∞) be arbitrary. Then, for
any U ∈ Rn such that h(U) <∞ and ‖U‖p <∞, we have

h(U) ≤ n log
(
kn,p n

1
p ‖U‖p

)
,

where

kn,p :=

√
π e

1
p
(
p
n

) 1
p Γ
(
n
p + 1

) 1
n

Γ
(
n
2 + 1

) 1
n

.

Theorem 1. (Moment Upper Bound) For any channel input
space X and any fixed channel matrix H, we have

C(X ,H) ≤ C̄M(X ,H) := inf
p>0

nr log

(
knr,p

(2πe)
1
2

n
1
p
r ‖x̃ + Z‖p

)
,

where x̃ ∈ HX is chosen such that ‖x̃‖ = rmax(HX ).

Proof: Expressing (2) in terms of differential entropies
results in

C(X ,H) = max
FX:X∈X

h(HX + Z)− h(Z)

a)

≤ max
FX:X∈X

nr log

(
knr,p

(2πe)
1
2

n
1
p
r ‖HX + Z‖p

)
b)
= nr log

(
knr,p

(2πe)
1
2

n
1
p
r max
FX:X∈X

‖HX + Z‖p
)
, (3)

where a) follows from Lemma 1 with the fact that h(Z) =
nr

2 log(2πe) and b) from the monotonicity of the logarithm.
Now, notice that ‖HX+Z‖p is linear in FX and therefore

it attains its maximum at an extreme point of the set FX :=
{FX : X ∈ X} (i.e., the set of all cumulative distribution
functions of X). As a matter of fact [15], the extreme points of
FX are given by the set of degenerate distributions on X ; that
is, {FX(y) = δx(y),y ∈ X}x∈X . This allows us to conclude

max
FX:X∈X

‖HX + Z‖p = max
x∈X
‖Hx + Z‖p .

Observe that the Euclidian norm is a convex function, which
is therefore maximized at the boundary of the set HX .
Combining this with (3) and taking the infimum over p > 0
completes the proof.



The following theorem provides two alternative upper
bounds that are based on duality arguments.

Theorem 2. (Duality Upper Bounds) For any channel input
space X and any fixed channel matrix H

C(X ,H) ≤ C̄Dual,1(X ,H) := log

(
cnr

(d) +
Vol
(
B0(d)

)
(2πe)

nr
2

)
,

(4)
where

d := rmax(HX ) , cnr
(d) :=

nr−1∑
i=1

(
nr − 1

i

)
Γ
(
nr−1

2

)
2

nr
2 Γ
(
nr

2

)di ,
and

C(X ,H) ≤ C̄Dual,2(X ,H) :=

nr∑
i=1

log

(
1 +

2Ai√
2πe

)
, (5)

where a = (A1, . . . , Anr
) such that Box(a) = Box(HX ).

Proof: Using duality bounds, it has been shown in [7]
that for any centered n-dimensional ball of radius r ∈ R+

max
FX:X∈B0(r)

I(X;X+Z) ≤ log

(
cn(r) +

Vol
(
B0(r)

)
(2πe)

n
2

)
, (6)

where cn(r) :=
∑n−1
i=1

(
n−1
i

) Γ(n−1
2 )

2
n
2 Γ(n

2 )
ri.

Now, observe that

C(X ,H) = max
FX:X∈X

h(HX + Z)− h(HX + Z|HX)

= max
FX:X∈X

I(HX; HX + Z)

= max
FX̃:X̃∈HX

I(X̃; X̃ + Z) (7)

a)

≤ max
FX̃:X̃∈B0(d),d:=rmax(HX )

I(X̃; X̃ + Z)

b)

≤ log

(
cnr

(d) +
Vol
(
B0(d)

)
(2πe)

nr
2

)
.

Here, a) follows from enlarging the optimization domain and
b) from using the upper bound in (6). This proves (4).

In order to show the upper bound in (5), we proceed with
an alternative upper bound to (7):

C(X ,H) = max
FX̃:X̃∈HX

I(X̃; X̃ + Z)

a)

≤ max
FX̃:X̃∈Box(HX )

I(X̃; X̃ + Z)

b)

≤ max
FX̃:X̃∈Box(HX )

nr∑
i=1

I(X̃i; X̃i + Zi)

c)
=

nr∑
i=1

max
FX̃i

:|X̃i|≤Ai

I(X̃i; X̃i + Zi)

d)

≤
nr∑
i=1

log

(
1 +

2Ai√
2πe

)
,

where the (in)equalities follow from: a) enlarging the opti-
mization domain; b) single-letterizing the mutual information;
c) choosing individual amplitude constraints (A1, . . . , Anr ) =:
a ∈ Rnr

+ such that Box(a) = Box(HX ); and d) using the
upper bound in (6) for n = 1. This concludes the proof.

B. Lower Bounds

A classical approach to bound a mutual information from
below is to use the entropy power inequality (EPI).

Theorem 3. (EPI Lower Bounds) For any fixed channel
matrix H and any channel input space X with X absolutely
continuous, we have

C(X ,H) ≥ CEPI(X ,H) := max
FX:X∈X

nr
2

log

(
1 +

2
2

nr
h(HX)

2πe

)
.

(8)
Moreover, if nt = nr = n, H ∈ Rn×n is invertible, and X is
uniformly distributed over X , then

C(X ,H) ≥ CEPI(X ,H) :=
n

2
log

(
1 +
|det(H)| 2n Vol(X )

2
n

2πe

)
.

(9)

Proof: By means of the EPI

2
2

nr
h(HX+Z) ≥ 2

2
nr
h(HX) + 2

2
nr
h(Z) ,

we conclude

2
2

nr
C(X ,H) ≥ 1 + (2πe)−12

2
nr

max
FX:X∈X

h(HX)
, (10)

which finalizes the proof of the lower bound in (8).
To show the lower bound in (9), all we need is to recall that

h(HX) = h(X) + log |det(H)| ,

which is maximized for X uniformly distributed over X . But
if X is uniformly drawn from X , we have

2
2
nh(HX) = Vol(HX )

2
n = |det(H)| 2n Vol(X )

2
n ,

which completes the proof.
The results in [2]–[4] suggest that the channel input distri-

bution that maximizes (2) might be discrete. Therefore, there is
a need for lower bounds that, unlike the bounds in Theorem 3,
rely on discrete inputs.

Remark 2. We note that the problem of finding the optimal
input distribution of a general MIMO channel with an ampli-
tude constraint is still open. The technical difficulty relies on
the fact that the identity theorem from complex analysis, a key
tool in the method developed by Smith [2] for the scalar case,
does not extend to Rn and Cn. The interested reader is referred
to [16] for a detailed discussion on this issue with examples
of why the identity theorem fails in the MIMO setting.

Theorem 4. (Ozarow-Wyner Type Lower Bound) Let XD ∈
supp(XD) ⊂ Rnt be a discrete random vector of finite
entropy, g : Rnr → Rnt a measurable function, and p > 0.
Furthermore, let Kp be a set of continuous random vectors,



independent of XD, such that for every U ∈ Kp we have
h(U) <∞, ‖U‖p <∞, and

supp(U + xi) ∩ supp(U + xj) = ∅ (11)

for all xi,xj ∈ supp(XD), i 6= j. Then,

C(X ,H) ≥ COW(X ,H) := [H(XD)− gap]+ ,

where

gap := inf
U,g,p

(
G1,p(U,XD, g) +G2,p(U)

)
with

G1,p(U,XD, g) := nt log

(
‖U + XD − g(Y)‖p

‖U‖p

)
,

G2,p(U) := nt log

knt,p n
1
p

t ‖U‖p
2

1
nt
h(U)

 ,

and knt,p as defined in Lemma 1, respectively.

Proof: The proof is identical to the proof of [14, Th.2]
and omitted due to space constraints.

Interestingly, the bound in Theorem 4 holds for arbitrary
channels and the interested reader is referred to [14] for details.

We conclude this section by providing a lower bound that
is based on Jensen’s inequality and holds for arbitrary inputs.

Theorem 5. (Jensen’s Inequality Lower Bound) For any
channel input space X and fixed channel matrix H, we have

C(X ,H) ≥ CJensen(X ,H)

:= max
FX:X∈X

log+

((
2

e

)nr
2

E
[
e−
‖H(X−X′)‖2

4

]−1
)
,

where X′ is an independent copy of X.

Proof: In order to show the lower bound, we follow an
approach of [17]. Note that by Jensen’s inequality

h(Y) = −E[log fY(Y)] ≥ − logE[fY(Y)]

= − log

∫
Rnr

fY(y)fY(y) dy. (12)

Now, evaluating the integral in (12) results in∫
Rnr

fY(y)fY(y) dy

=
1

(2π)nr

∫
Rnr

E
[
e−
‖y−HX‖2

2

]
E
[
e−
‖y−HX′‖2

2

]
dy

a)
=

1

(2π)nr
E
[∫

Rnr

e−
‖y−HX‖2+‖y−HX′‖2

2 dy

]
b)
=

1

(2π)nr
E
[
e−
‖HX−HX′‖2

4

∫
Rnr

e−‖y‖
2

dy

]
c)
=

1

2
nr+1

2 π
nr
2

E
[
e−
‖H(X−X′)‖2

4

]
, (13)

where a) follows from the independence of X and X′ and
Tonelli’s theorem, b) from completing a square, and c) from
the fact that

∫
Rnr

e−‖y‖
2

dy = (2π)
nr
2 .
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Fig. 1. Comparison of the upper and lower bounds of Theorems 1–3 and 5
evaluated for a 2×2 MIMO system with amplitude constraints A1 = A2 = A
(i.e., a = (A,A)) and channel matrix H = ( 0.3 0

0 0.1 ).

Finally, combining (12) and (13), subtracting h(Z) =
nr

2 log(2πe), and maximizing over FX proves the result.
In Fig. 1, the upper bounds of (5) and Theorem 1 and
the lower bounds of Theorems 3 and 5 are evaluated for a
diagonal 2 × 2 MIMO channel with per-antenna amplitude
constraints. It turns out that the moment upper bound and the
EPI lower bound perform well in the small amplitude regime
while the duality upper bound and Jensen’s inequality lower
bound perform well in the high amplitude regime (note that
the Jensen’s inequality lower bound becomes strictly positive
around 9 dB).

IV. INVERTIBLE CHANNEL MATRICES

In this section, we consider the special case of nt = nr = n
antennas with H ∈ Rn×n being invertible. Our first result
bounds the gap between (2) and the lower bound in (9).

Theorem 6. Let H ∈ Rn×n be of full rank and

ρ(X ,H) :=
Vol
(
B0 (rmax(HX ))

)
Vol(HX )

.

Then,

C(X ,H)− CEPI(X ,H) ≤ n

2
log
(

(πn)
1
n ρ(X ,H)

2
n

)
.

Proof: For notational convenience let the volume of an
n-dimensional ball of radius r > 0 be denoted as

Vn(r) := Vol
(
B0(r)

)
= Vn(1)rn =

π
n
2 rn

Γ
(
n
2 + 1

) .
First, observe that by choosing p = 2, the upper bound of

Theorem 1 can further be upper bounded as

C̄M(X ,H) ≤ n log

(
kn,2

(2πe)
1
2

n
1
2 ‖x̃ + Z‖2

)
a)
=
n

2
log

(
1

n
E
[
‖x̃ + Z‖2

])
b)
=
n

2
log

(
1 +

1

n
‖x̃‖2

)
,



where a) follows since kn,2 =
√

2πe
n and b) since E[‖Z‖2] =

n. Therefore, the gap between (9) and the moment upper
bound of Theorem 1 can be upper bounded as follows:

C̄M(X ,H)− CEPI(X ,H) =
n

2
log

 1 + 1
n‖x̃‖

2

1 + Vol(HX )
2
n

2πe


a)
=
n

2
log

1 + 1
n

(
Vn(‖x̃‖)
Vn(1)

) 2
n

1 + Vol(HX )
2
n

2πe


=
n

2
log

1 + 1
n

(
ρ(X ,H)Vol(HX )

Vn(1)

) 2
n

1 + Vol(HX )
2
n

2πe


b)

≤ n

2
log

(
1

n
2πe

(
ρ(X ,H)

Vn(1)

) 2
n

)
c)

≤ n

2
log
(
(πn)

1
n ρ(X ,H)

2
n

)
.

Here, a) is due to the fact that ‖x̃‖ is the radius of an n-
dimensional ball, b) follows from the inequality 1+cx

1+x ≤ c
for c ≥ 1 and x ∈ R+, and c) follows from using Stirling’s

approximation to obtain
(

1
Vn(1)

) 2
n ≤ 1

2eπ1− 1
n
n1+ 1

n .
We conclude this section by characterizing the gap to the

capacity when H is diagonal and the channel input space
is the Cartesian product of n PAM constellations. In this
context, PAM(N,A) refers to the set of N ∈ N equidistant
PAM-constellation points with amplitude constraint A ∈ R+,
whereas X ∼ PAM(N,A) means that X is uniformly dis-
tributed over PAM(N,A) [14].

Theorem 7. Let H = diag(h11, . . . , hnn) ∈ Rn×n be fixed
and X = (X1, . . . , Xn). Then, if Xi ∼ PAM(Ni, Ai), i =
1, . . . , n, for some given a = (A1, . . . , An) ∈ Rn+, it holds
that

C̄Dual,2(Box(a),H)− COW(Box(a),H) ≤ c · n bits , (14)

where Ni :=
⌊
1 + 2Ai|hii|√

2πe

⌋
and

c := log(2) +
1

2
log
(πe

6

)
+

1

2
log

(
1 +

6

πe

)
≈ 1.64 .

Moreover, if Xi ∼ PAM(Ni, A), i = 1, . . . , n, for some given
A ∈ R+, it holds that

C̄Dual,2(B0(A),H)− COW(B0(A),H) ≤ c · n bits , (15)

where Ni :=
⌊
1 + 2A|hii|√

n
√

2πe

⌋
.

Proof: The proof can be found in [10].

V. ARBITRARY CHANNEL MATRICES

For a MIMO channel with an arbitrary channel matrix and
an average power constraint, the capacity is achieved by a
singular value decomposition (SVD) of the channel matrix
(i.e., H = UΛVT ) and considering the equivalent channel

Ỹ = ΛX̃ + Z̃ ,
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Fig. 2. Comparison of the upper bound in Theorem 1 to the lower
bounds in Theorem 8 for a 3× 1 MIMO system with amplitude constraints
A1 = A2 = A3 = A (i.e., a = (A,A,A)) and channel matrix
H = (0.6557, 0.0357, 0.8491).

where Ỹ := UTY, X̃ := VTX, and Z̃ := UTZ, respectively.
The following theorem provides lower bounds for this channel
with amplitude constraints.

Theorem 8. (Lower Bounds with SVD Precoding) Let H ∈
Rnr×nt be fixed, nmin := min(nr, nt), and X = Box(a) for
some a = (A1, . . . , Ant

) ∈ Rnt
+ . Furthermore, let σi, i =

1, . . . , nmin, be the i-th singular value of H. Then,

CJensen(Box(a),H) = log+

((
2

e

)nmin
2 1

ψ(H,b?)

)
(16)

and

CEPI(Box(a),H) =
nmin

2
log

(
1 +
|
∏nmin

i=1 Aiσi|
2

nmin

2πe

)
,

where

ψ(H,b?) := min
b∈Box(a)

nmin∏
i=1

ϕ(σiBi)

with b := (B1, . . . , Bnt
) and ϕ : R+ → R+ given by

ϕ(x) :=
1

x2

(
e−x

2

− 1 +
√
πx
(
1− 2Q(

√
2x)
))

.

Proof: The proof is deferred to [10].
Notice that choosing the optimal b for the lower bound (16)

is an amplitude allocation problem, which is reminiscent of
waterfilling in the average power constraint case. It would be
interesting to study whether the bound in (16) is connected to
what is known as mercury waterfilling [18], [19].

In Fig. 2, the lower bounds of Theorem 8 are compared to
the moment upper bound of Theorem 1 for the special case of
a 3×1 MIMO channel. Similarly to the example presented in
Fig. 1, the EPI lower bound performs well in the low amplitude
regime while Jensen’s inequality lower bound performs well
in the high amplitude regime.

We conclude this section by showing that for an arbitrary
channel input space X , in the large amplitude regime the
capacity pre-log is given by min(nr, nt).



Theorem 9. Let X be arbitrary and H ∈ Rnr×nt fixed. Then,

lim
rmin(X )→∞

C(X ,H)

log
(

1 + 2rmin(X )√
2πe

) = min(nr, nt) .

Proof: Notice that there always exists a ∈ Rnt
+ and c ∈

R+ such that Box(a) ⊆ X ⊂ cBox(a). Thus, without loss
generality we can consider X = Box(a), a = (A, . . . , A), for
sufficiently large A ∈ R+. To prove the result we therefore
start with enlarging the constraint set of the bound in (5):

Box
(
HBox(a)

)
⊆ B0

(
rmax

(
HBox(a)

))
⊆ B0

(
rmax

(
HB0(

√
ntA)

))
= B0

(
rmax

(
UΛVTB0(

√
ntA)

))
= B0

(
rmax

(
UΛB0(

√
ntA)

))
= B0

(
rmax

(
ΛB0(

√
ntA)

))
⊆ B0(r)

⊆ Box(a′) ,

where r :=
√
ntA

√∑nmin

i=1 σ
2
i and a′ :=

(
r√
nmin

, . . . , r√
nmin

)
∈

Rnmin
+ . Thus, by using the upper bound in (5) it follows that

C(Box(a),H) ≤
nr∑
i=1

log

(
1 +

2Ai√
2πe

)

≤ nmin log

(
1 +

2√
2πe

√
ntA

√∑nmin

i=1 σ
2
i√

nmin

)
.

Moreover,

lim
A→∞

C(Box(a),H)

log
(

1 + 2A√
2πe

)

≤ nmin lim
A→∞

log

(
1 + 2√

2πe

√
ntA
√∑nmin

i=1 σ
2
i√

nmin

)
log
(

1 + 2A√
2πe

) = nmin .

Next, using the EPI lower bound in (8), we have that

lim
A→∞

CEPI(Box(a),Λ)

log
(

1 + 2A√
2πe

)

= nmin lim
A→∞

1
2 log

(
1 +

A|∏nmin
i=1 σi|

2
nmin

2πe

)
log
(

1 + 2A√
2πe

) = nmin .

This concludes the proof.

VI. CONCLUSION

In this work, we have focused on studying the capacity of
MIMO systems with bounded channel input spaces. Several
new upper and lower bounds have been proposed and it has
been shown that the lower and upper bounds are tight in
the high amplitude regime. An interesting direction for future
work is to determine the exact scaling in the massive MIMO
regime (i.e., nmin → ∞). Another interesting future direction
is to study generalizations of our techniques to MIMO wireless
optical channels [20].
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