Journal article Open Access

Anticipatory grasping control modulates somatosensory perception

Dimitris Voudouris; Maximilian Davide Broda; Katja Fiehler

Somatosensory perception is hampered on the moving limb during a goal-directed movement. This somatosensory suppression is mostly attributed to a forward model that predicts future states of the system based on the established motor command. Here, we examined whether and how this suppression is modulated by the predictability of object features important for controlling a grasping movement. Participants reached-to-grasp an object between thumb and index finger and then lifted it as straight as possible. Objects with symmetric or asymmetric mass distributions were presented either in a blocked or random manner, so that the object’s mass distribution could be anticipated or not. At the moment of object contact, a brief vibrotactile stimulus of varying intensities was presented on the dorsal part of the moving index finger. Participants had to report whether they detected the stimulus. When the object’s mass distribution was predictable, contact points with the object were modulated to the object’s centre of mass. This modulation contributed to a minimized resultant object roll during lifting. When the object’s mass distribution was unpredictable, participants chose a default grasping configuration, resulting in greater object roll for asymmetric mass distributions. Somatosensory perception was hampered when grasping both types of objects compared to baseline (no-movement). Importantly, somatosensory suppression was stronger when participants could predict the object’s mass distribution. We suggest that the strength of somatosensory suppression depends on the predictability of movement-relevant object features.

Files (217.4 MB)
Name Size
217.4 MB Download
All versions This version
Views 1515
Downloads 33
Data volume 652.3 MB652.3 MB
Unique views 1414
Unique downloads 22


Cite as