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Abstract:  

This review presents a broad overview of the biomedical application of surface 

functionalized iron oxide nanoparticles (IONPs) as MR-imaging agents for sensitive and 

precise diagnosis tool and synergistic combination with other imaging modalities. This review 

also describes the available computer models as molecular dynamics (MD), Monte Carlo (MC) 

and density functional theory (DFT), like a basis for a complete understanding of the behavior 

and morphology of functionalized IONPs, for a crucial point for improving NPs surface design 

and expanding the potential applications of such an object in nanomedicine. Then, we discuss 

the recent progress in therapeutic applications, such as hyperthermia. Finally, we address the 

available toxicity data of magnetic nanoparticles concerning in vitro and in vivo biomedical 

applications.   

Keywords: magnetic iron oxide nanoparticles; computational modeling; biomedical  

application; imaging;  toxicity 

Introduction 

Iron oxide based magnetic nanoparticles have received remarkable attention in a wide range of 

applications because of their unique nanoscale physicochemical properties. In addition to 

applications in electronics, catalysis, tissue-specific releasing of therapeutic agents, labelling 

and sorting of cells, as well as the separation of biochemical products, the magnetic iron oxides 
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nanoparticles (IONPs) have served humans as a contrast agents for in vitro  diagnostics from 

nearly half a century [1, 2]. The magnetic properties of iron oxide nanoparticles makes them 

attractive for many other bioapplications, such as separation techniques and contrast enhancing 

agents for MRI to drug delivery systems, magnetic hyperthermia  (local heat source in the case 

of tumour therapy), and magnetically assisted  transfection of cells [3, 4, 5]. To use IONPs for 

the biomedical application, they need to poses suitable core size and monodispersity, acceptable 

hydrodynamic diameter (HDD), high saturation magnetization (Ms), high stability in biological 

fluid media, to be bio-compatible and degradable with reduced toxicity over a large time scale. 

The nanosystems used to consist of iron oxide single-core or multi-cores and shell/s ensuring 

the colloidal stability in the biological environment, limiting the non-specific adsorption of 

biomolecules and fulfilling the roles of anchors, spacers and various functionalities. The single-

core particles contain single-domain nanocrystal per particle, while the multi-core particles 

contain several magnetic cores per particle assembled within a matrix  

[6].  

The magnetic behavior of IONPs are crucial for their effectiveness in biomedical 

applications, so the dependence of magnetic properties on the specific composition, structure, 

size, size distribution, crystallinity, shape, nature and thickness of surface coating are object of 

a many studies, part of which are summarized in [7, 8, 9, 10, 11]. The rheological behaviour of the 

ferrofluids also is a subject of investigation, e.g. [12, 13], since the knowledge about changes 

under an external magnetic field to ensure safe and effective treatment of living organisms is 

essential. However, it is very difficult to suggest, study and simulate all possible kind of 

interactions which could happen in the complex living organism (humans). The procedures for 

synthesis/surface coating/encapsulation, their effect on the physicochemical properties, and 

potential field of biomedical applications are reviewed throughout the years in several  

comprehensive works [14, 15, 16, 17, 18, 19, 20, 21,  22, 23, 24, 25 ]. A very detailed analysis of the 

advantages and disadvantages of different synthesis methods is given in [26], while in Reviews 

[27, 28] the focus is on the classification of the proven synthesis routes based on their capacity 

to produce either single-core (SC) or multi-core (MC)  IONPs.  The special attention is paid to 

the fact that the choice must obey to their specific biomedical application [29]. The MCIONPs, 

for example, are more promising for bioseparation, magnetic hyperthermia and drug targeting 

[30, 31]. Moreover, such classification to single and multicore nanosystems is important, because 

not only the magnetic properties are different [32, 33], but also the rheological behaviour of the 

corresponding ferrofluids [34]. 
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The main synthesis routes for the preparation of IONPs are well established during the 

last two decades, and some of them like co-precipitation, mild oxidative hydrolysis and thermal 

decomposition are readily available for producing IONPs in semi-industrial quantities. Initially, 

variations in the procedures were dealing not with the core but mainly with the stages of 

stabilisation, as well as in the surface modification so that the final product to be biocompatible 

and suitable for further coupling with different features like fluorescent dyes, drugs or specific 

bioactive molecules. In the last decade, the studies are directly related to the final specific 

application of IONPs and cover mainly: i) tuning of the magnetic properties by changing  the 

shape, by controlling size and size distribution, by using multi-core IONPs or assembling  and 

ii) obtaining  multimodal hybrid structures  for theranostic applications  by  

surface functionalisation with “universal” ligands [35, 36, 37, 38, 39, 40, 41]. 

Despite the vast amount of papers and the evidence for the potential applicability of 

prepared IONPs in nanomedicine, it has to be taken into account that a very little part of the 

reported synthesis procedures is in resonance with the nano-safety regulatory framework, and 

respectivvly, a little part of this innovative nanoplatforms have possibility for real biomedical  

application [[42, 43, 44, 45]. 

The present review is focused mainly on biomedical application of iron oxide 

nanoparticles, and in particular, on it is in silico, in vitro and in vivo aspects. The Review is 

organized as follows: in the first part we give a brief overview of the theoretical works on iron 

oxide nanoparticles; in the second part we cover the development of magnetic iron oxide 

nanoparticles as MR imaging agents and their synergistic integration with other imaging 

modalities; then, we discuss the recent progress  in the usage of  iron oxide nanoparticles  for 

in vitro  and in vivo cancer theranostic applications; and finally, we presents a broad overview 

of currently available in vitro  and in vivo toxicity data. Our goal is to show the potential of the 

iron oxide nanoparticles to become a useful platform material for theranostics and personalised 

medicine shortly and consequently the need for their large-scale industrial production setup.  

Computational investigations of SPIONs 

From an experimental point of view, the molecular design of SPIONs for biomedical 

applications is a great challenge. At the nanolevel, the efficiency of molecular design of SPIONs 

depends on the fundamental understanding of structural concepts and interfacial interactions in 
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the nanoparticle-coating complex. For example, it is essential to know what nanoparticle 

composition (iron oxide phase and an organic/inorganic coating) is suitable for a given 

biomedical application and why? Moreover, under an applied magnetic field, 

superparamagnetic particles can self-assembly in structures, such as chains and bundles. For 

stimuli-responsive materials and magnetophoresis applications, such self-assembly is the 

desired effect.   

On the other hand, for some biomedical applications, the self-assembly should be 

avoided because it by reducing the biocompatibility, by causing ageing or time dependency in 

properties [46]. Therefore, at the microscopic level, the efficiency of SPIONs design is 

determined by the state-of-the-art in methods for self-assembly, i.e. by the knowledge how to 

control the nanoparticle-nanoparticle and nanoparticle-environment interactions. However, the 

molecular design of SPIONs is still largely empirical, and their experimental multi-scale 

characterization in bioenvironement is limited from the system complexity. This hampers the 

possibility to guide the synthesis and to tune the performance of SPIONs materials for 

biomedical applications. Therefore, computer simulations and modelling methods play a crucial 

role in the improvement of molecular designs strategies in SPIONs with biomedical 

applications.  

In this section, we will give a brief overview of the application of the computational 

methods for SPIONs with attractive biomedical properties. The overview is focused mainly on 

three widely used and very popular types of computer simulations for SPIONs - molecular 

dynamics (MD), Monte Carlo (MC) and density functional theory (DFT).  The time evolution 

of a system composed of interacting particles - atoms, molecules or their clusters can be 

theoretically predicted by using MD method  [47,48]. 

In this simulation technique, the potential energy of the particle-particle interactions is 

described by using interatomic potentials or molecular mechanics force fields, the trajectories 

of the particles are obtained by numerical solution of Newton's equations of motion, and means 

of statistical mechanics derives the macroscopic properties of the system. Monte Carlo method 

relies on equilibrium statistical mechanics [2,49]. It uses random numbers to generate an 

ensemble of representative configurations of the system, from which thermodynamic properties 

can be calculated.  

Monte Carlo simulations are free of solving Newton's equations of motion and do not 

provide information about the time evolution. Similar to the case of MD, in MC the potential 

energy of the particle-particle interactions is described by using interatomic potentials or 

molecular mechanics force fields.  
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Density functional theory is a quantum-mechanical method and is based on the solution 

of the Schrödinger equation [50]. Therefore, DFT approach is applied to investigate the 

electronic structure and properties of atoms, molecules and solids – information that is crucial 

for the SPIONs performance but cannot be obtained by MD and MC simulations. By using DFT 

method one can model and predict molecular structures, IR and UV-vis spectra, ionization 

potential and electron affinity, as well as conducting optical and magnetic properties.  

L. Qiang et al. applied atomistic molecular dynamics simulations and COMPASS force 

field to investigate the interfacial interactions in a Fe3O4 surface coated with chitosan [51]. They 

calculated the interaction energy, radial distribution function and concentration profiles for 

chitosan adsorbed on different Fe3O4 crystallographic planes. The result indicated that the 

interaction of chitosan with Fe3O4 (1 1 1) surface is stronger than that with (1 1 0) and (0 0 1) 

surfaces. The higher probability explains this of formation of hydrogen bonds between the 

amino groups of chitosan and the oxygen atoms from the (1 1 1) surface. In another theoretical 

study by L. Qiang et al. the same computational strategy was used to reveal the interfacial 

interaction between Fe3O4 (1 1 1) crystallographic plane and different biocompatible polymers 

[52]. In particular, the authors explored coatings based on polysaccharides (chitosan and 

dextran) and polyesters (polyethylene glycol, polyethylenemine, polylactic acid, and 

poly(lactic-co-glycolic) acid). The MD study reveals stronger interfacial interactions in the case 

of polysaccharides than in the case of polyesters. The stronger interfacial interactions with 

polysaccharides are suggested to originate from the presence of hydrogen donor groups (such 

as hydroxyl and amino groups) that ensure hydrogen bond formation with the oxygen atoms 

from the Fe3O4 (1 1 1) surface.   

Using molecular dynamics simulations and charge consistent-valence force field R. A. 

Harris et al. investigated the adsorption of sebacic acid and 1,10-decanediol on the surfaces of 

Fe3O4  nanoparticle (d ≤ 2.6 nm) [53]. The calculations predicted stronger interfacial 

interactions in the case of 1,10-decanediol coating and showed that only this surfactant inhibits 

the oxidation of the Fe3O4 nanoparticle for the given size range. The theoretical findings are 

additionally confirmed by experimentally obtained transmission electron micrographs and Xray 

diffraction spectra. Two years later, R. A. Harris et al. reported theoretical results on the 

adsorption of oleic acid and oleylamine acid on Fe3O4 spherical nanoparticles (d=2.6 nm) 

obtained by the same computational procedure [54]. The organic coatings are modelled by 

different oleic acid/oleylamine acid ratios, as well as by different degree of protonation of the 

oleic acid. The authors concluded that the combination of two surfactants is crucial for the 

synthesis of Fe3O4 nanoparticles because the proton accepting properties of the oleylamine acid 
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regulate the electrostatic pressure, which prevents for oleic acid desorption caused by an excess 

of free protons. Such regulation of the electrostatic pressure and stabilisation is possible only at 

an ideal ratio of oleic acid/oleylamine acid ratios, which ensures a perfect fit between the surface 

charge of the nanoparticle, free proton concentration in the dispersion medium, and zeta 

potential. The computational results are corroborated by transmission electron microscopy 

(TEM), FTIR, and pH measurements. 

J. Yue et al. applied the molecular dynamics method and COMPASS force field. To 

investigate the deposition of gold nanoparticles on the Fe3O4 nanoparticles coated with an 

intermediate layer  [55]. The SPION core is modelled by Fe3O4 (1 1 1) surface, and the 

intermediate layer is composed by oleylamine, oleic acid, polyethylimine, polymethylacrylic 

acid, 3-aminopropyl triethylsilane, or tetraethylorthosilicate. Their results indicated that the 

intermediate layer introduces new functional groups such as carboxylates, amines, or thiols, 

which ensure better adsorption of gold nanoparticles on the Fe3O4 (1 1 1) surface. Moreover, 

they showed that the strength of linkage between the Fe3O4 (1 1 1) surface and the gold 

nanoparticles depends on the type of the functional groups present in the intermediate layer. 

The intermediate coatings with amino groups (oleylamine, polyethylimine and 3-aminopropyl 

triethylsilane) form a strongly bonded “primary layer” on the Fe3O4 (1 1 1) surface but loosely 

packed “secondary layer”, which is which is critical for the subsequent golden nanoparticles 

deposition. The authors also considered the interaction of cysteine with 

Au/polyethylimine/Fe3O4 nanocomposites and showed that the amino acid relatively strong 

absorption, which can be which can be useful for functional exploration in biomedical 

applications, Fig. 1. 
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Fig. 1.  Molecular structure of (A) cysteine, (B) methinone, and (C) arginine and (D) snapshots of the  

Au/PEI/Fe3O4nanocomposite with the addition of cysteine at simulation time of 0 and 200 ps - Reprinted with 

permission from Yue J, Jiang X, Yu A, J. Phys. Chem. B, 2011, 115: 11693 [10]. Copyright [Copyright © 2011 

American Chemical Society]. 

S. Yu et al. employed molecular dynamics simulations. To reveal the adsorption of 

proteins, in particular, bovine serum albumin, on SPIONs [56]. The bovine serum albumin 

proteins were modelled with an atomistic resolution by using the CHARMM27 force field, and 

the NP was simulated as a cluster of Lennard-Jones spheres. The solvent effects were also 

included by employing a generalised Born implicit solvent model. The authors computed the 

maximum theoretical number of albumin molecules adsorbed onto the NPs (d=6 nm) by 

simulating SPIONs complexes with 1, 2, 4, 8, 10, and 12 protein molecules. The computational 

results suggest monolayer of 10 bovine serum albumin molecules on one NP, which is also 

confirmed by experimental TEM and UV-vis measurements. The MD simulations also revealed 

three different stages in the adsorption process of bovine serum albumin proteins: (1) the protein 

migrates from the bulk solution in order to get in touch with the NP surface, (2) the protein 

spreads out on the NP surface in order to increase the contact region with the core (3) the protein 

relaxes to a more compact configuration The findings suggested that due to its protein-resistant 

surface the bovine serum albumin-SPIONs complex can be used as an efficient carrier for 

targeted drug delivery in vivo.  
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Recently, M. Z. Pedram et al. explored the magnetic field effect to deliver SPIONs 

through the blood-brain barrier using molecular dynamics simulations and CHARMM27 force 

field [57]. The solvent effects were also taken into account by using the TIP3P method for 

water. The endothelial cell membrane of the blood-brain barrier is modelled as a lipid bilayer 

of palmitoyl oleyl phosphatidyl choline (POPC). The SPIONs are simulated as are spherical 

shaped particles with 2 nm size with a gold coating (2 Å). The calculations reveal that by 

applying a magnetic force in the range of pN, the SPIONs open a gap in the membrane and 

cross it, Fig. 2.  Moreover, this process is reversible and totally non-invasive. Afterwards, the 

SPIONs can move through the cells with a much lower magnetic force. The results show that 

the maximum magnetic force depends on the nanoparticle size and that the crossing time can 

be controlled by variation of the magnetic pattern and magnetic field strength. 

 

Fig. 2. .Several Steps of Crossing through the BBB. These steps come from simulation, and the main 

goal is to show how the membrane is opened and how it can rehabilitate itself upon the completion of the 

crossing. Reprinted with permission from Pedram M Z, Shamloo A, Alasty A, Ghafar-Zadeh E, Biosensors 

2016, 6: 25 [12]. 

E. Tombácz et al. investigated the adsorption of water vapour on the surface of Fe3O4 

nanoparticles by using grand canonical Monte Carlo method [58]. The authors applied UFF 

force field and TIP4P model of the water. The NP surface is simulated as a (001) and (011) 

surface of the magnetite crystal. The theoretically predicted adsorption isotherm reproduces 

very well the measured ones. The calculations show the adsorbed water is organised in a layered 

structure, which occurs by simultaneous formation of several molecular layers. The simulations 
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also suggest that the adsorption mechanism is similar to nucleation, i.e. new water molecules 

are attracted to the surface regions that already accommodate a large amount of water. 

Experimental results of S. Kumar et al. show a different state of dispersion for Fe3O4 

nanoparticles in an aqueous medium as a function of the nanoparticle coating. Namely, 

aggregates formation for Fe3O4 nanoparticles coated with citric acid and an individual isolated 

state for Fe3O4 nanoparticles coated. MC calculations were performed to confirm the 

experimentally observed behaviour of the aqueous dispersions [59]. To get further insight on 

the stability of the dispersions, the authors simulated the effect of four variables: particle volume 

percentage, particle diameter, shell thickness, and grafting density. Based on the theoretical 

predictions, the authors were able to recommend a possible range of values for these four 

variables, which can be directly applied experimentally to obtain a stable aqueous dispersion of 

isolated particles. 

Y. Matsumoto et al. applied MC method to simulate the T2 relaxation induced by 

clusters of SPIONs in magnetic resonance experiments [60]. The authors calculated the T2 

relaxation as a function of different geometric characteristics of the nanoparticle clusters: 

particle size, the number of particles per cluster, interparticle distance, compact or linear cluster 

shapes. The simulations reveal that for small particles, the cluster shape and cluster density 

significantly affect the T2 relaxation, while the for large particles the T2 relaxation become 

dependent on the cluster geometry only when the interparticle distances exceeded ten times the 

particle diameter. These results suggest that the performance of the aggregation-based sensors 

can be controlled by optimising the SPIONs size and coating thickness and that the changes in 

the magnetic resonance imaging contrast could be obtained by tuning the geometric parameters 

of the individual clusters. 

C. Martinez-Boubeta et al. performed MC simulations on SPIONs to describe their 

magnetic hyperthermia performance theoretically [61]. The MC calculations were performed 

by using atomistic and macrospin approximation approaches. The theoretical results are 

discussed on. The atomistic MC calculations corroborate experimental measurements and show 

larger anisotropy in the case of the cubic than in the case of spherical nanoparticles. Also, the 

authors reported a qualitative relation between the heat power and the interparticle interactions. 

Namely, they demonstrated that the assembling of the cubic nanoparticles in elongated chains 

represents a promising way to increase the hyperthermia performance. 

In their theoretical work, V. Russier et al. reported MC simulations on the mean size 

and polydispersity effects in densely packed iron oxide magnetic nanoparticles assemblies [62] 
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. The nanoparticles are modelled as uniformly magnetised spheres coated with the insulating 

organic layer. The results demonstrate that the linear magnetic susceptibility as a function of 

the median diameter may present a plateau. This was shown to lead to a quasi- independence 

of the magnetisation on the median diameter at low external fields and high concentration. The 

magneto crystalline anisotropy is then shown to play a role for larger values of the field when 

the particles remain in the superparamagnetic regime in agreement. 

Using three-dimensional MC simulations and electron magnetic resonance 

measurements, L. L. Castro et al. explored a fluid composed of Fe3O4 nanoparticles coated with 

dodecanoic acid molecules and dispersed in hydrocarbons [63]. The results reveal that the 

grafting (surface density of surfactant molecules) of isolated particles increases with the particle 

concentration, while the grafting of bonded nanoparticles shows a more complicated behaviour. 

The simulations demonstrate that the adsorbed molecules have a tendency to dissociate when 

the surfactant layers of two nanoparticles get in contact. On the other hand, the repulsion 

between the apolar solvent and the polar heads dissociated molecules increases the possibility 

for re-adsorption of the surfactants on available adsorption sites. The results suggest that the 

ratio between the grafting (steric repulsion) and Hamaker constant (van der Waals attraction) 

determines the degree of nanoparticle agglomeration. 

DFT investigation of the stability of SPIONs coatings in the physiological environment 

was reported by U. Aschauer and co-workers [64]. The DFT calculations were performed in 

vacuo with the PBE functional, taking into account van der Waals correction. The SPIONs were 

modelled by the (1 1 0) surface of Fe3O4 and coating molecules were represented by water, 

polyvinyl alcohol, polyethylene glycol, monomer and dimer of glycine as a prototype short 

peptide. The theoretical results show that the adsorption energy decreases in the following 

order: polyvinyl alcohol > water > polyethylene glycol ~ glycine. This proposes the stability of 

the polyvinyl alcohol coatings in the presence of water and polypeptides. The higher adsorption 

strength of polyvinyl alcohol was explained by the presence of OH side-group, which binds 

significantly stronger to the surface than the oxygen from the polyethylene glycol or the amino 

group of the peptide bond.   

E. Guénin et al. reported a combined DFT and experimental study on the ligand 

exchange on the surface of SPIONs dispersed in water [65]. The authors compared two strong 

chelating agents, containing catechol and bisphosphonate moieties. The DFT calculations were 

performed with the TPSSh functional, and they served to elucidate the interactions between 

catechol/bisphosphonate groups and the nanoparticle surface. The calculated spectra show good 

agreement with the FTIR measurements and confirm that the adsorption of ligands is realised 
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through their chelating groups. The experimental results demonstrate that catechol and 

bisphosphonate molecules can be exchanged and that the ligand exchange increases by using a 

large excess of bisphosphonate and sonication. 

J. Fouineau et al. demonstrated that the DFT simulations could be used to elucidate the 

electronic transfer and the binding mode between coating ligands of biological interest and the 

SPIONs surface [66]. In particular, the authors investigated γ-Fe2O3 nanoparticles 

functionalized with dopamine, and the calculations were performed with the PBE functional. 

The results reveal that dopamine binds preferentially to octahedral sites and that the linking 

bond is with covalent nature. Experimental data corroborate the results, and the agreement 

proves that the DFT simulations can serve as an appropriate supplemental approach to 

interpreting 57Fe Mössbauer spectra of SPIONs. 

By using DFT method, N. H. de Leeuw and co-workers investigated the hydration 

behaviour of three iron (hydro)oxide minerals, including hematite [67]. The results suggest that 

the interaction with water molecules is realised mainly between the oxygen and the surface iron 

ions from the hematite surface, followed by hydrogen-bonding to surface oxygen ions. The 

calculations show relatively larger hydration energies for hematite and Dissociative adsorption 

of water molecules. 

J. Faraudo and co-workers explored and analysed magnetophoretic separation of 

superparamagnetic particles under well-controlled magnetophoretic conditions [68]. They have 

obtained a simple analytical solution for the process of noncooperative magnetophoresis by 

which its kinetics can be predicted based on particle characterization data, such as size and 

magnetisation. In another paper by J. Faraudo et al. devoted to the theoretical aspects of 

cooperative magnetophoresis of superparamagnetic colloids, the authors analysed the 

physicochemical conditions at which reversible aggregation occurs, the timescale of aggregate 

formation and their aggregates shape [69]. In the case of colloids stabilised electrostatically, 

they found that the interaction potential between two superparamagnetic particles is such that 

allows the reversible formation of aggregates. Also, the authors showed that the particle 

aggregation is a fast process and that the lateral aggregation is preferred over the tip-to-tip 

aggregation for long chains. These findings are in agreement with experimental observations. 

An excellent review on computational methods for qualitative prediction of self-assembly 

processes of SPIONs the Readers can find in the very recent publication of J. Faraudo et al. [1]. 

The above presented investigations clearly illustrate the predictive power of the 

theoretical modelling for efficient design of SPIONs structures, aggregation behaviour and 

properties. To go  deeper in  understanding the  intimate structural,  chemical,  and physical  
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properties of  functionalized SPIONs, linked to the physicochemical conditions enforced during 

the synthesis procedure, we want to focus the attention of the reader to the role and impact of 

the computational methods rely on multiscaling approach.  

Biomedical applications of magnetic nanoparticles 

Magnetic Resonance Imaging 

The progressive development of new imaging modality became conceivable due to the 

recent progress in nanotechnology, molecular and cell biology, and imaging technologies. 

Diversity in types of imaging technique has inherent advantages and disadvantages. While 

molecular imaging applies to various techniques such as positron emission tomography (PET), 

computed tomograph (CT), or ultrasound, of particular interest is the magnetic resonance 

imaging (MRI) that provides the best spatial resolution, which in contrast with other techniques 

and is noninvasive or at least minimally invasive. [70,71]  

MRI is with excellent (submillimeter) spatial resolution, and it also avoids the radiation 

exposure, like in PET and CT. Additionally, soft tissue contrast is superb, and MRI readily 

yields anatomical information. [72]. MRI has not been applied to its full potential for the 

diagnosis of cancer in general case, because of unmet results concerning its quite low sensitivity 

(false-positive rate of 10% for breast cancer).  All these methods still represent the mainstay of 

clinical imaging; it has become clear that the acquisition of molecular and physiological 

information by nuclear magnetic resonance andoptical imaging technologies could vastly 

enhance our ability to fight with cancer.  

MRI for a biomedical imaging technique used to image soft tissues of the human body 

in very thin slices in two-dimensional as well as three-dimensional spaces.  
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Fig. 3.  Basic MRI principle.  

The water present in our body plays an important role in obtaining MRI images, Fig. 3. 

[73]. The hydrogen nucleus in water tends to align them in a direction parallel to the applied 

external magnetic field. Then a radiofrequency (RF) signal is applied to change the direction of 

alignment of protons in the hydrogen nucleus, where the frequency of the RF signal must be in 

resonance with the frequency of the hydrogen nucleus. As the directions of the protons are 

changed after applying the RF signal, the protons tend to re-align with the applied magnetic 

field. So while returning to its original position, these protons release energy as an RF signal 

that can be detected by detectors in MRI machine. The re-alignment speed of protons varies for 

various tissues in our body, which is helpful in imaging such tissues precisely and the time 

taken for this re-alignment is called as the relaxation time. Relaxation processes are two types:  

longitudinal relaxation (also called spin−lattice relaxation) and transverse relaxation (also 

called spin−spin relaxation).  

The T1 relaxation time is characterised by the time required for longitudinal 

magnetization to recuperate from zero to a value of 63% of the original state. For the transverse 

magnetization of the protons decays as the nuclear spins are dephased, which is transverse 

relaxation. The time for the transverse magnetization and drop from the maximum to a value of 

37% of its excited state value is the T2 relaxation time. The relaxivities (r1 and r2), that changes 

with the applied magnetic field in longitudinal and transverse directions, are the inverse of the 

relaxation times at the respective directions (i.e., r1 = 1/T1; r2 = 1/T2), where the ratio of 
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relaxivities is significant in deciding the fate of the nanoparticles to be used either as a positive 

or a negative contrast. Both T1 and T2 relaxations are dependent on the saturation magnetization 

of nanoparticles and their magnetic interactions with the protons of surrounding water 

molecules.  

The sensitivity of MRI can be significantly improved by the agents that enhance the 

contrast of the region of interest from the background. Numerous parameters like size of the 

iron oxide crystals, type of the coating, hydrodynamic size of the coated NPs, polydispersity, 

and surface charge of IONPs as MRI contrast agents accomplish their productivity and 

efficiency. The colloidal stability depends on in general, of these characteristics and has a 

significant impact on the: cellular uptake, protein adsorption and interactions with biological 

membranes, and biokinetic parameters such as biodistribution, biodegradation, metabolism, and  

elimination (see Fig. 4. ) [74,75,76,77].  

 
Fig. 4. The different physiochemical properties of SPIONs affect their biokinetics and fate in vivo. These changes 

can be observed in uptake, distribution, metabolism, and excretion of SPIONs from body. Protein corona is yet 

another factor that is influenced by various physiochemical features of NPs and can, in turn, affect the targeting 

capabilities of SPIONs in imaging applications. Not only can protein corona alter the toxicity, uptake, targeting, 
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and circulation time of SPIONs, but it can also affect the relaxivity of SPIONs as MRI contrast agents. - 

Reproduced from [78] with permission from the Wiley. Copyright 2015. 

MRI contrast agents can be summarised by two groups, i.e. positive contrast agents (or 

T1-weighted contrast agents) and negative contrast agents (or T2-weighted contrast agents). The 

positive contrast agents can shorten the longitudinal relaxation times (T1) of protons, resulting 

in a brighter image in T1-weighted MRI. However, the negative contrast agents can shorten the 

transverse relaxation times (T2) of protons, leading to  the darker image in T2-weighted.The 

contrast agent does not produce a signal itself, but it marks the proton relaxation rate. Thus, the 

contrast between healthy and diseased tissues can be achieved by varying number of protons  

and T1 and T2 relaxation times, similar to NMR [79].  

In the studies by Ersoy, Perazella and Ma indicate that these gadolinium chelates may 

raise the possibility of nephrotoxicity by forming strong complexes with biological ligands in 

vivo [80.81, 82]. The complexes have short circulating time due to rapid excretion through urine, 

which hampers the high-resolution imaging that requires long scan time. Also is important, that 

free gadolinium ions, leached from gadolinium complexes, are known to be very toxic. To 

overcome these disadvantages of Gd-complex based T1 MRI contrast agents, development of 

nanoparticulate T1 contrast agents that containing Gd3+ or Mn2+ ions has been intensively  

pursued in recent years [83,84,85,86,87.88,89,90,91,92,93,94,95,96]. 

T1 contrast agent 

Iron oxide nanoparticles can be suitable contrast agents as T1, in contrast with Gd3+ complexes, 

because of the advance properties of iron oxide nanoparticles,  based on their high 

biocompatibility, degradation ability in the body and are subsequently incorporated into iron 

pools or used in metabolic processes [97,98,99]. The magnetic properties of nanoparticles can 

significantly be affected by changing of their size, surface state and also the composition of 

nanoparticles. Moreover, the nanoparticles are advantageous for functionalization and longterm 

imaging.  

We already mention above that the size, can greatly affect the magnetic properties of 

nanoparticles. The magnetic spins of the nanoparticle surface are disordered owing to the 

unique state of the surface atoms, which is called the spin-canting effect, [100,101].   The canted 
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spins can be enhanced by reducing the size of nanoparticles because of the intensification of 

the spin-canting layer portion in the nanoparticles and this is the basis for the T1 contrast effect.  

The inter-relationship between the size, magnetization and spin-canted surface layer can 

be express by Eq.1:  

ms = Ms[(r-d/r)]3 where ms saturation magnetization of the size-reduced nanoparticle, Ms is 

saturation magnetization of bulk materials r is the size of nanoparticle and d is the thickness of 

the disordered surface layer. In a recent investigation, it was estimated that about 93.6% of the 

surface spins in 3-nm sized iron oxide nanoparticles were canted as compared to 38.6% of 

surface spins in 12-nm sized nanoparticles (by assuming 0.9 nm spin canting layer thickness). 

As a result of the increased canting effects in 3 nm sized iron oxide nanoparticles, the 

magnetization values decreased correspondingly [102]. 

 It has been shown that small-sized iron oxide nanoparticles such as ultrasmall particles 

of iron oxide (USPIO) can be utilised as T1 contrast agents.[103,104,105]. Ultrasmall 

Superparamagnetic Iron Oxide Nanoparticles (USPIONs), on the other hand, can be used for 

example for lymph node imaging. Due to their reduced size (less than 50 nm), they can 

extravazate from the blood vessels into interstitial spaces and reach lymph nodes. Nodes with 

malignant cells cannot undergo phagocytosis, and therefore, the nanoparticles are uptaken only 

by the normal nodes [106,107]. These particles have already been proved to successfully detect 

lymph-node metastases in patients with prostate cancer, as shown by Harisinghaniet al. [108,109] 

. They claimed a study with eighty patients with prostate cancer and examined them by MRI 

before and 24h after administration of superparamagnetic nanoparticles, and stated that the 

sensitivity of MRI with the nanoparticles increased significantly. With the use  by using 

magnetic nanoparticles liver tumours and metastases as small as 2-3 mm have been 

distinguished, as well as lymph node metastases with a diameter of 5-10 mm, [110,111,112,113]. 

Hyeon et al.,Gao et al.,Muller et al., and Weller et al. also, reported the ultrasmall-sized iron 

oxide nanoparticles as high-resolution T1-weighted contrast agents in MRI.  The  iron oxide 

nanoparticles were synthesised generally by high-temperature thermal decomposition of 

organic ferric salts in organic solvents, and the sizes of nanoparticles were all less than 10 nm.  

[114, 115, 116, 117]. 

Zeng et al. reported the water-phase synthesis of ultrasmall iron oxide nanoparticles 

around room temperature like application as T1-weighted [118]. USPIO have been used 

successfully as coronary and ventricular MRI blood pool contrast agents. In the review article 

by Zhen et al. from 2016, [119] they introduce the methods for synthesising of magnetic iron 
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oxide nanoparticles and their application as MRI contrast agents. The focus of the review is on 

the extremely small-sized iron oxide nanoparticles ES-MIONs, smaller than 5 nm, which are 

potential positive contrast agents.  They focus on the ES-MIONs because ES-MIONs avoid the 

disadvantages of MION-based T2- and gadolinium chelate-based T1-weighted contrast agents. 

ES-MIONs face the future generation of T1 MRI contrast agents. The ES-MIONs may also be 

functionalized with other imaging agents or chemotherapeutic drugs as multi-modality imaging 

agents or/and theranostic agents. 

Also in work from 2011, Kim et al.[120] dedicated to synthesis of  uniform and extremely 

small  (ES-MIONs) through a thermal decomposition method using the iron-oleate complex as 

the precursor in the presence of oleic acid and oleyl alcohol in diphenyl ether. The size of the 

ES-MIONs is very uniform and can be controlled from 1.5 to 3.7 nm with high crystallinity. 

The magnetic property of the ES-MIONs is a function of the size of the particles. They are 

superparamagnetic when the particle size is larger than 2.2 nm, and paramagnetic when the 

particle size is 1.5 nm. The spin canting effect is the driving force for the low magnetisation of 

the ES-MIONs. The ES-MIONs are efficient   T1-weighted MRI contrast agents with brighter 

T1-weighted images at higher concentrations. For the ES-MIONs with a particle size of 12, 3 

and 2.2 nm, the r1 relaxivities are 2.37, 4.77 and 4.78 mM-1s-1. These results indicate that the 

smaller particles have better positive contrast. The in vivo T1 imaging efficiency of ES-MIONs 

was further studied and compared with DOTAREM®(Gd-DOTA). ES-IONs and DOTAREM 

enhanced kidney T1-weighted MR images with dynamic time-resolved MR sequence.   

Based on the data in literature we can conclude that ESIONs can be efficient T1contrast 

agents. In the in vivo T1-weighted magnetic resonance imaging, ESIONs showed longer 

circulation time than the clinically used gadolinium complex-based contrast agent, enabling 

high-resolution imaging. The low toxicity, high r1 relaxivity, long blood half-life, and low 

synthetic cost enable ESIONs to be competent T1 for MRI contrast agents for various for clinical 

applications including diagnosis of the myocardial infarction, renal failure, atherosclerotic 

plaque, thrombosis, and angiogenesis of tumour cells. Taking into account the composition of 

nanoparticles like another important parameter for the T1 contrast effect, we see in the work of 

Ling et al. from 2014 and 2015 [121,122] an example for pH-responsive magnetic nanogrenades 

(PMNs) by the assembly of ESIONs within pH-responsive ligands . The authors establish the 

method in which at neutral conditions, PMNs show high r2 relaxivity because of the clustering 

of nanoparticles, preventing an effective T1 contrast effect. The decrease in pH from 7.4 to 5.5 

is associated with r1 increase and r2 decrease, incited above from the article of Ling et al.The 
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positive T1 MR contrast effect is recovered at pH 5.5, and also the PMNs can be used for early 

stage diagnosis of tumours.  

 T2 MRI Contrast Agents 

The T2 contrast agents (or negative contrast agents) affected the MRI results by decreased in 

signal intensity. The affected regions appear darker because they produce hypointense signals 

in T2- and T2*-weighted images[123]. Even though iron oxide nanoparticles marked both the 

longitudinal and transverse relaxation processes, their effect on T2 relaxation is much greater 

than on T1 relaxation because their strong magnetic fields cause a rapid dephasing of the nuclei, 

resulting in visible signal attenuation. While the r2/r1 ratio of most Gd-based molecular 

complexes is approximately 1, most of the iron oxide nanoparticles are with greater ratio r2/r1. 

Consequently, iron oxide nanoparticles are typically considered as T2 contrast agents, and have 

been used as T2 contrast agents for more than 25 years. The T2 contrast agents are advantageous- 

exceptionally strong contrast enhancement effects. The contrast effect by T2 is highly dependent 

on the magnetization of a particle, and the r2 values can be increased by enhancing the magnetic 

moment of a nanoparticle or by producing and applying nanoparticles clusters. It was shown in 

the two works of Shapiro et al, that single micrometer-sized iron oxide particles (MPIOs) can 

be detected by high-field MRI.[124,125]. The r2 value is a function of the nanoparticles size. When  

the size of nanoparticles increases, three different regimes of r2 values exist, based on theoretical 

studies of the effect of size on relaxivity, explained in the review of Lee et al.[126] and Zanganeh  

et al. [127] - motional average regime (MAR), static dephasing regime (SDR), and echo limiting 

regime (ELR). Size in the motional average regime, static dephasing regime and echo-limiting 

regime as predicted by the quantum mechanical outer sphere theory [128,129, 130]. In the motional 

average regime[131,132], the relaxivity r2 is given by (where all of the nanoparticle contrast 

agents were simulated as a model of spheres), Equation 2 [133]. 

Eq: 2  r2= (256𝜋2𝜋2𝛾2/405)𝑘𝑀𝑠2𝑟2/𝐷(1+𝐿/𝑟) 

The size effect on a T2 contrast in MAR is investigated with a water-soluble 

superparamagnetic iron oxide nanoparticles (WSIONs) with diameter (ranging from 4 to 12 nm 

[134]. The larger nanoparticles exhibit higher r2 relaxivity. For larger nanoparticles, the r2 

relaxivity of nanoparticles does not continue to increase as the size does. This size regime is 

called SDR [135,136,137]. An example are water-dispersible ferrimagnetic iron oxide 
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nanoparticles (WFIONs) prepared by the encapsulation of ferrimagnetic iron oxide nanocubes 

(with an edge length of 22 nm) within PEG-phospholipids [138]. In SDR, nanoparticles create a 

magnetic field so strong that the T2 relaxation process is barely affected by diffusion.  

Accordingly,  it is predicted that a plateau of the maximum r2  would appear. In the case of r2, 

its value decreases as the size increases this regime is called the ELR [139]. The effect of a 

decrease in the r2 depends on the echo time, which is the time interval of the RF pulse that 

refocuses the nuclei spins. The nuclei spins are dephased when nanoparticles are too large; the 

fewer spins are refocused by the echo sequence, leading to decrease in the r2. The reduced r2 in 

magnetic nanoparticles in ELR are likely to lead to aggregates owing to ferrimagnetic dipole 

interactions. This is also problematic because aggregates of nanoparticles are likely to affect  

embolization of blood vessels [140]. The ferrimagnetic iron oxide nanoparticles (FIONs) can be 

used for tracking the biodistribution of labelled cells with MRI because the cell size is much 

larger than the aggregates of nanoparticles [141].  

To improve the performance of iron oxide nanoparticles as a promising T2 contrast 

agent,  the magnetic properties have been controlled through the modulation of size,  shape and 

composition.  SPIONs,  unlike gadolinium compounds,  are of various size and shape. They 

may also have a wide range of surface modification and, due to their super paramagnetic 

property are more effective at lower concentrations [142]. Based on their biocompatibility and 

powerful effects on T2 relaxation, SPIONs have been clinically approved as MRI contrast 

agents and suggested as a platform for synthesising materials that unify targeting, tracking, and 

hyperthermia treatment capability [143].  The larger SPIONs have conspicuous magnetic 

properties; the mononuclear phagocyte system removes them more quickly from the blood pool 

[144].  The transverse T2 relaxation time is affected by SPIONs, which darken the  T2-weighted  

image, wherever  they accumulate  in tissue [145].   

Many studies have been performed to investigate the MRI contrast efficiency of SPIONs 

in in vivo scenarios. For example, Saraswathy et al. prepared citrate-coated ultra-small SPIONs 

(C-USPIONs) with particle size and r2 relaxivity of 12 nm and 102 mM−1s−1, respectively. The 

hepatocellular uptake of CUSPIONs was identified by a 39% decrease in signal intensity in 

post-contrast MRI images of rat liver [146]. In another study, from the same group, they focused 

on the dextran-coated SPIONs (DSPIONs with r1: 2.5 mM−1s−1 and r2: 140.7 mM−1s−1) [147]. 

DSPIONs were injected into male Wistar rats at a dose of 2.17 mg/ml Fe/kg body to evaluate 

the liver fibrosis in these animal models, where the post contrast T2 weighted images showcased 

a hypointense liver with a 55% decrease in the average MRI signal intensity, indicating a higher 
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hepatocellular uptake of DSPIONs. Similarly, folate-targeted, poly(ethylene 

glycol)poly(epsilon-caprolactone) (FA-PEG-PCL) coated USPIONs were injected into BEL-

7402 tumour bearing nude mice via tail vein, where the MRI signal intensity decreased to 41.2% 

within 3 h of injection resulting in clear tumor images. Moreover, the intensity further decreased 

to 32.4% at 6 h after injection, which showed that the accumulation of folate receptor-based 

SPIONs at the target tumor site increased as compared to non-targeted ones [148]. In other 

investigation, poly(lactic acid)-d-alpha-tocopherol polyethylene glycol 1000 succinate 

copolymer (PLA-TPGS) coated SPIONs were injected into MCF-7 induced severe combined 

immune deficiency (SCID) female mice at a dose of 5 mg Fe/kg body weight [149]. In vivo MRI 

images of the liver of SCID mice were evaluated before and 0.33, 2, 5 and 12 h after the 

injection of PLA-TPGS coated SPIONs. The MRI signal intensity at the tumor site decreased 

after the injection of the SPIONs indicating their potential diagnostic usage in clinical trials. In 

another investigation, the core size (14 nm) of 1,2-distearoyl-sn-glycero-

3phosphoethanolamine-N-[methoxy(polyethylene glycol)] (DSPE-PEG) copolymer coated 

SPIONs were tuned resulting in an increase of T2 by more than 200-fold in non-biological 

conditions [150]. Moreover, these DSPE-PEG coated SPIONs had more half-life (i.e.23.2 min) 

in blood circulation of human U87 glioblastoma cells induced mice. Similarly in another study, 

PEG coated SPIONs (9 nm size) and PEG/polyethylenime (PEI) coated SPIONs (10 nm) 

showed enhanced MRI contrast effects after injecting them at a dose of 10 mg Fe/kg of body 

weight of Kunming mice [151] .  In the article from 2015 and 2016 Cano et al. [152, 153]  used a 

ligand exchange method  based on the  amine-silane  derivative  triethoxy-silane  (APTES)  to  

convert  hydrophobic  SPIONs  into hydrophilic ones.  The resulting NPs have virtually no 

cytotoxicity, and produce a very good T2 MRI contrast in  vivo,  Moreover,  they  can  be  

functionalized  further,  offering  a  tunable platform for the development of smart diagnostic 

and therapeutic nanosystems. 

In thе recent work of Chen et al., the team developed SPIO nanoclusters with a 

controlled clustering structure using alkyl-modified low molecular weight (2 kDa) PEI 

(AlkylPEI) to encapsulate SPIONs for efficient cell labelling with MRI monitoring capability. 

They exposed the hypothesis that amphiphilic low molecular weight PEI-modified SPIO 

nanoclusters might be a candidate for cellular MRI contrast agent due to their positive charge 

and good biocompatibility. The study of Chen et al. provides a potential magnetic nanoclusters 

system with good biocompatibility for the universal cell labelling and MRI tracking.  [154] 

The article of Smith et al.  [155] demonstrates the new trends for SPION worm-like 

clusters presented 3.5-fold higher T2-weighted molar MR relaxivity than conventional, single 
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SPIONs. These new nanoprobes were prepared by the controlled self-assembly of SPIONs into 

worm-like superstructures using glycogen-like amphiphilic hyperbranched polyglycerols 

(HPGs) functionalized with peptides capable of binding to the defective vasculature. The design 

principles exposed for these nanoprobes should be applicable to a range of other diseases where 

improved diagnostics are needed.  

In the work of Zhao et al. [156] they report a new strategy to achieve high transverse 

relaxivity by controlling the morphology and shape of iron oxide nanoparticles. They 

successfully fabricate size-controllable octopod iron oxide nanoparticles by introducing 

chloride anions. The octopod iron oxide nanoparticles (edge length of 30 nm) exhibit an 

ultrahigh transverse relaxivity value (679.3±30 mM−1 s−1).   The octopod iron oxide 

nanoparticles are much more effective T2 contrast agents for in vivo imaging and small tumour 

detection. The article from 2015 from Mohapatra et al. [157],  demonstrated that iron oxide 

nanorods of  ~70  nm length showed an improved MRI  contrast properties in comparison with 

spherical magnetic nanoparticles. In a series of works [158, 159, 160, 161] anisotropic IONPs such 

as cubes, octahedral, disks and rings have been explored.  In comparison with spherical shape 

IONPs they are found to be more appropriate for MRI and hyperthermia applications. Although 

the anisotropic IONPs exhibit promising advantages over the spherical counterpart, their 

advantages have not been well demonstrated in the literature because its preparation is 

challenging. Also, the surface energy favours the formation of spherical nanoparticles. The 

work of Chen et al. from 2010 [162] demonstrated mesoporous Fe3O4@SiO2 nanocapsules as a 

potential candidate for the MRI imaging.  Thus, the porous silica coating on anisotropic IONPs 

could improve the MRI contrast. Porous  Fe3O4@SiO2 nanorods  of  520  nm length and  180  

nm diameter  with  significantly  improved  r2 relaxivity  was reported very recently in the work 

of Muhammad  et al. [163] 

When liposomes encapsulate iron oxide nanoparticles, the general term 

‘magnetoliposomes’ (MLs) is used for the resulting colloidal structures [164]. Depending on 

their structure, there are two kinds of MLs - classical and extruded. In the classical MLs, each 

iron oxide nanoparticle is surrounded by a bilayer of phospholipids. This kind of ML was first 

prepared by De Cuyper et al. [165], and has a magnetic core of 14 nm. Different types of 

phosphatidylglycerols are used to form the liposomes. The overall size of the MLs is 

approximately 20 nm. For the preparation of these classical MLs, magnetite nanoparticles were 

first stabilised with lauric acid and then sonicated phospholipid dispersions were added to the 

magnetite suspension. MLs can act as an efficient MRI contrast agent with enhancing T2 

contrast. For these MLs, the ratios of the transverse and longitudinal magnetic resonance  
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relativities of water protons is between 6 and 18 mM−1 s−1  , which ranks them among the best 

T2 contrast agents. Also, these MLs have been targeted successfully to solid tumours by 

applying an external magnet above one flank of Swiss mice bearing a PC3 human prostate 

carcinoma tumour in each flank. They led to a 52% contrast enhancement in the magnetically 

targeted tumour, while there was only  7%  enhancement in the nontargeted tumour [166,167]. 

Magnetoliposomes formed by the encapsulation of a SPION suspension in a liposome 

[168] (Fig. 5) are a specific group within the large diversity of magnetoliposomes that have been 

developed so far for multiple ranges of applications, including contrast enhancement in MRI. 

New long circulating magnetoliposomes with 10 nm SPION coated with polyethene glycol and 

were developed. The magnetoliposomes relaxivities r1, r2 showed a minor effect on T1, but a 

major effect on T2. These nanosystems were used as a negative contrast agent for MRI in a 

nonclinical study to visualise ischemia–reperfusion injuries. These new long circulating 

magnetoliposomes improved the detection of lesions, which indicating their potential use as 

efficient MRI negative contrast agent for the detection of liver ischemia–reperfusion injuries.  

 

Fig. 5. Model of magnetoliposomes formed by the encapsulation of a SPION suspension in a 

liposome 

Table 1   

Combined Multimodal MR Imaging Agents / 

Multimodality molecular imaging is now playing a pivotal role in biomedical research. 

Multimodality imaging is emerging as a technology that utilises the strengths of different 
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modalities and yields a  combined imaging platform with benefits superior to those of any of 

its individual components [169]. The commonly used imaging modalities include MRI, X-ray 

computed tomography (CT), PET, single-photon emission CT (SPECT) and ultrasound.  

Several new promising imaging modalities, such as fluorescence-mediated tomography,  optical 

coherence tomography and photoacoustic tomography are being developed [170]. The 

advantages and disadvantages of each of these diagnostic modalities are described. For 

example, MRI and CT have high spatial resolution and can  provide detailed  anatomical 

information, but they lack sensitivity. The PET and SPECT are highly sensitive, but have 

limited resolution and cannot provide anatomical information. The improvement can be reached 

by using two or more techniques simultaneously. For example, the first fused PET/CT 

instrument was available commercially in 2001 [171], moreover, the first commercial PET/MRI 

prototype was proposed in 2007 [172]. For combined multimodal modalities, the use of 

multifunctional nanoparticles is often crucial because the corresponding information can be 

provided with a single injection of contrast agent.[173] Varied multimodal imaging probes based 

on iron oxide nanoparticles are summarised in the next Table 2.  

Table 2  

Dual T1-T2 MR Imaging probes 

In particular, nanoparticles for dual -modal imaging have been generated ex novo or 

have been generated based on existing nanoparticles to support simultaneous MRI/PET, 

PET/CT and CT/MRI. Therefore, simultaneous achievements of positive and negative contrasts 

have been extensively followed to obtain complementary information on T1-weighted MRI and 

T2 -weighted MRI. [174,175] 

The application of a potential of SPIONs as a T1 MRI contrast agent has been identified 

in the work of Chan et al.,2014, where the size of SPIONs should be optimum (<5 nm) to 

achieve good T1 contrast effect [176]. Moreover, both T1 and T2 relaxations can be enriched in a 

single iron oxide nanoparticle by optimising their size, shape and surface coatings.  

In an investigation of Zhou et al. SPIONs with both longitudinal and transverse 

relaxivities were obtained by simple manipulation of morphology and exposed facet (111) of 

SPIONs to enhance both positive and negative contrasts in SPIONs [177]. In another 

investigation Ghobril et al., dendron-modified SPIONs showed better T1 and T2 contrasts [178], 

when compared with commercial SPIONs used for MRI contrast [179,180]. Prassl et al., showed 



 

24 

that the encapsulation of ultra-small SPIONs in liposomes can be used at to improve visualmode 

MRI contrast efficacy [181]. 

In the work of Sandiford et al., 2013, ultra-small SPIONs produced T1 contrast effect 

better than other commercially available SPIONs at specific sizes [182]. Analogously, Jung et 

al. achieved T1 and  T2* MRI contrast concomitantly in in vivo and in vitro  conditions by 

controlling the size of the SPION ( 7 nm), where r1 relaxivities (13.31 mM−1s−1 at 1.43 T and 

6.84 mM−1s−1  at 3 T) of SPIONs were relatively higher than the conventional ones 

(gadoliniumbased moreover, r2* relaxivity was maintained at 49.50 mM−1s−1 at 3 T) [183]. 

A simple way to construct T1–T2 dual-mode contrast agents is the conjugation of T1 

elements (e.g. Gd- or Mn-based chelates) and T2 elements,as indicated in work of Zhaou et al. 

[184].  They tailor iron oxide nanoparticles by including paramagnetic metal ions, such as Gd3+ 

and Mn 2+. The strong magnetic fields generated by T2 contrast materials disrupt the T1 

relaxation processes, which result in signal decrease, therefore, the direct interaction of 

magnetic nanoparticles and paramagnetic ions should be avoided. [185]. Therefore, the 

separating layers, such as long PEG chains and silica shells, are required to control the magnetic 

coupling between T1 and T2 contrast materials. [186, 187,188]. The r1 relaxivity is dramatically 

increased from 2.0 to 32.5 mM−1s−1, while the r2 relaxivity is ascetically decreased from 340 to 

213 mM−1s−1 by increasing the thickness of the separating silica layer. 

Radionuclide-MR / CT – MR Imaging / PET-MRI/Ultrasound-MR Imaging Probes 

One of the major applications of radionuclide imaging is the noninvasive evaluation of 

biodistribution and pharmacokinetic properties of drugs and nanoparticles [189,190] The 

T2contrast producing by SPIONs  have been investigated for combined SPECT and PET with 

MRI. Using these NP platforms, like an inherent multimodality imaging agent for dual PET/MR 

or SPECT/MRI, as well as for trimodal imaging MR/NIR/PET. In the work of Madru et al.[191]  

SPIONs with a polyethylene glycol coating were labelled with (99m)Tc. The stability of the 

radiolabeled superparamagnetic iron oxide nanoparticles was verified in both sterile water and 

human serum at room temperature 6 and 24 h after labelling.The efficiency of labelling of the 

SPIONs was 99% 6 h after labelling in both water and human serum. Digital autoradiography 

images revealed a nonhomogeneous distribution of (99m)Tc-SPIONs within the lymph nodes; 

nanoparticles were found in the cortical, subcapsular, and medullary sinuses.The same authors 

developed 68Ga-SPIONs for use as a single contrast agent for dynamic, quantitative and 

highresolution PET/MR imaging of Sentinel Lymph Node (SLN). SPIONs were labelled with 
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68Ga in ammonium acetate buffer, pH 5.5. The labelling yield and stability in human serum 

were determined using instant thin layer chromatography. An amount of 0.07-0.1 mL (~5-10 

MBq, 0.13 mg Fe) of 68Ga-SPIONs was subcutaneously injected in the hind paw of rats. The 

animals were imaged at 0-3 h and 25 h post injection with PET/CT, 9.4 T MR and CCDbased 

Cherenkov optical systems. A biodistribution study was performed by dissecting and measuring 

the radioactivity in lymph nodes, kidneys, spleen, liver and the injection site. The labelling yield 

was 97.3 ± 0.05% after 15 min, and the 68Ga-SPIONs were stable in human serum. PET, MR 

and Cherenkov luminescence imaging clearly visualised the SLN. Biodistribution confirmed a 

high uptake of the 68Ga-SPIONs within the SLN. We conclude that generator produced 68Ga 

can be labelled to SPIONs. Subcutaneously injected 68Ga-SPIONs can enhance the 

identification of the SLNs by combining sensitive PET and high-resolution MR imaging. 

Clinically, hybrid PET/MR cameras are already in use and 68Ga-SPIONs have a great potential 

as a single-dose, tri-modality agent for diagnostic imaging and potential Cherenkov luminescent 

guided resection of SLN [192]. 

Fast and efficient click chemistry strategies have also been leveraged to produce 

18Fradiolabelled IONPs. 18F-labelling was conducted with Huisgen cycloaddition of a 

fluorinated alkyne to azide-modified NP surfaces [193]. This PET/MRI agent permitted 

macrophage tracking in aortic aneurysms in mice [194] IONPs have also been radiolabelled for 

PET imaging with radiometals such as 68Ga (doped) [195],  64Cu (doped or 

DOTA/bisphosphonate chelated) [196, 197,198] or 89Zr (doped or DFO chelated) [199,200]. This 

PET-MRI dual contrast agent is used for targeted tumour imaging. However, the chelated 

radioisotopes can be leached in vivo because of the transmetalation and transchelation induced 

by endogenous divalent ions and  

proteins, respectively.[201,202]. 

 Novel radiolabeling method have been reported by de Rosales et al.[203]. The authors 

used small molecules that simultaneously bind to a PET isotope and the surface of SPIONs.  

A novel bifunctional chelator, 64Cu-bis(dithiocarbamatebisphosphonate) [64Cu(dtcbp)2] 

contains a dithiocarbamate group for chelating the 64Cu PET isotope and phosphonate group 

for binding nanoparticles. To avoid transmetalation, binding of 64Cu-(dtcbp)2 does not affect 

the polymeric coating and provides a protective effect.  

CT is one of the most common imaging modalities used in clinics[204,205]. Compared 

with MRI, CT provides high temporal resolution and enables the imaging of various organs, 

including hard tissues (e.g., bone) and the lung. Currently, iodinated compounds, such as 
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diatriozate, iopromide, ioxaglate, and iodixanol, are available as injectable contrast agents. For 

successful bimodal CT-MRI contrast agents based on SPIONS, the amount of iodine should be 

much larger than that of iron oxide, as shown in a recent report [206]. Heterostructured 

nanocrystals composed of radiopaque elements and magnetic nanoparticles can be an effective 

approach for bimodal CT-MRI probes[207,208.209]. One of the advantages of heterostructured 

nanoparticles is that the contrast effect for each modality can be controlled by changing the 

sizes of the nanoparticles. Also, the different characteristics of each nanoparticle allow 

particlespecific functionalization with different functional molecules. Kim et al.  described 

hybrid nanoparticles, composed of iron oxide and gold nanoparticles, as potential dual contrast 

agents for both computed tomography and magnetic resonance imaging [210]. Using a nano-

emulsion method, the nanoparticles are coated with amphiphilic poly(DMA-r-mPEGMA-r-

MA) to impart water-dispersity and anti-biofouling properties. An in vitro  phantom study 

shows that the hybrid nanoparticles have high CT attenuation, because of the constituent gold 

nanoparticles, and afford a good MR signal, attributable to the contained iron oxide 

nanoparticles. These results suggest that the hybrid nanoparticles may be useful as CT/MRI 

dual contrast agents for in vivo hepatoma imaging.  

There has also been increased interest in combining SPION with SPECT probes for 

MRI/SPECT dual-modality imaging. One advantage of SPECT is the opportunity to obtain 

information on molecular processes using specific radiolabels. SPECT also allows a clinician 

to determine the biodistribution of the radiotracer tagged particles in vivo non-invasively in the 

picomolar concentration range. However, a disadvantage of SPECT is that it offers limited 

anatomical details and spatial resolution. MRI is used in conjunction with SPECT to obtain 

quality anatomical images, thus offering both the structural and functional benefits of dynamic 

imaging. Misri and colleagues have developed an antibody-conjugated MRI/SPECT 

dualmodality imaging probe specifically for malignant mesothelioma [211]. Mesothelin targets 

antigens for malignant mesothelioma using 111In labelled anti-mesothelin monoclonal antibody 

(mAbMB) coated on iron oxide nanoparticles. A cell uptake study showed specific uptake of 

In-mAbMB-SPION by mesothelin-positive cells. This result was well correlated with 

autoradiography images.  

 In recent years, dual-mode agents for ultrasound imaging (UI)    and MRI  

[212,213,214,215,216,217], or for the high temporal resolution of UI and the high spatial resolution of 

MRI, have been proposed. Ultrasound contrast agents are typically microbubbles (MBs) with a 

gas core that is stabilised by a shell made of lipids, proteins, or polymers. Microbubbles can be 
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developed as molecular imaging probes via functionalization with targeting ligands such as 

antibodies and peptides [218]. 

In the work of Sciallero et al. [219] different densities of superparamagnetic iron oxide 

nanoparticles were anchored to the external surface of polymer-shelled microbubbles (MBs) or 

were physically entrapped into the shell.  Under proper conditions, different imaging 

techniques, set-up parameters and SPION densities were used to achieve satisfactory detection 

of the contrast agent by using both UI and MRI. When the SPION density was increased, the 

MRI contrast improved, whereas the UI contrast worsened due to the reduced elasticity of the 

MB shell. For both UI and MRI, MBs with externally anchored SPIONs provided better 

performance than MBs with SPIONs entrapped into the shell.  

In the study of, Nutte Teraphongphom et al. from 2015 [220]. They developed  MBs by 

encapsulating nanoparticles including aqueous or organic quantum dots (QD), magnetic iron 

oxide nanoparticles or gold nanoparticles (AuNP) to create bimodality platforms in a manner 

that minimally compromised the performance of each imaging technique. 

In the work of He et al. [221] they described the MBs ability to enhance UI and MRI 

image contrast. In this study, the authors synthesised microbubbles with a novel structure, 

which included a nitrogen gas core, a polymer shell, and SPIONs on the shell surfaces. In vitro  

experiments showed that microbubbles with such structure provided both higher ultrasound and 

MR enhancement than blank microbubbles without SPION and previously designed 

SPIOembedded microbubbles.  Fig. 6 is the SEM and TEM characterization of microbubbles. 

SEM images showed that all microbubbles were spherical. Blank microbubbles surfaces were 

smoothest and SPIO-embedded microbubbles surfaces were coarser.  TEM images showed the 

distributions of nanoparticles. No nanoparticles could be observed from blank microbubble. On 

SPIO-coated microbubble's surface nanoparticles were randomly distributed, but for 

SPIOembedded microbubble, nanoparticles were mostly distributed within the shell, only a few 

were adsorbed on the surface (Fig. 6.). 
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 Fig. 6 

SEM images of (a) blank microbubbles, (b) SPIO-coated microbubbles, (c) SPIO-embedded 

microbubbles, TEM images of (d) blank microbubble, (e) SPIO-coated microbubble, (f) 

SPIOembedded microbubble, (g–i) are partially enlarged images of (d–f). Reproduced from [208] 

with permission from the ELSELVIER.  

We can conclude that some SPIONs -loaded MBs have been developed as contrast 

agents for US/MR dual-modality imaging investigations. However, the disadvantage of such 

type of US/MRI contrast agents were reported like a low degraded in the body [222,223].   

Developing biodegradable multifunctional nanoscale particles as contrast agents for US/MRI 

dual-modality imaging is highly desirable.  The group of P.  Yang et al.[224] develop a new class 

of multi-responsive biodegradable yolk-shell magnetic microspheres for US/MRI dualmodality 

imaging.  The nanosystem involves PGA-stabilized Fe3O4 nanoclusters (magnetic core) and 

disulphide cross-linkage biodegradable poly(methacrylic acid (PMAA) (functional shell).  To 

obtain excellent ultrasound imaging signal, the authors introduced perfluorohextane  

(PFH) like an ultrasound-sensitive object into the inner cavities of yolk-shell microspheres.   
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Such yolk-shell microspheres exhibit an obvious pH, redox and ultrasound multi-responsive 

capability.  The yolk-shell microspheres serve as ideal contrast agents for US/MR 

dualmodality imaging. The entire process of fabricating biodegradable Fe3O4@PMAA 

microspheres is demonstrated in Fig. 7.  

 

Fig. 7.  (a)  Schematic  illustration  of the  preparation  of  uniform biodegradable yolk-shell  

Fe3O4@PFH@PMAA-DOX  microspheres;  (b)  Schematic setup  for  US  and  MRIdual-modality  

imaging and  drug  delivery  system  using  Fe3O4@PFH@PMAA-DOX  microspheres. Reproduced 

from [211] with permission from the ELSELVIER.  

In the review, we also want to focus the attention to magnetoliposomes like another 

object that can serve as a multimodality contrast agent. The flexible nature of the  ML  coatings, 

together with the simple production procedure, allow rapid and easy modification of the coating, 

offering many exciting applications as multimodal contrast agents. From the encapsulation of 

SPIONs nside liposomes arises an increase of their intrinsic relaxivities like mixing of positron 

emitters into liposomes,   incorporation of a specific chelator inside, or on the surface of, the 

liposomes, incorporation of radionuclides inside magnetic particles. The experimental protocols 

are very demanding and also not viable with existing clinical protocols. In the work of Malinge 

et al. from 2017 [225], they describe a new liposomal formulation enabling PET and magnetic 
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resonance MR imaging. By coupling a 68Ga-based radiotracer on the bilayer of magnetic 

liposomes, the bimodality is achieved. Two new phospholipids were synthesised, one with a 

specific chelator of 68Ga (DSPE-PEG-NODAGA) and one with a glucose moiety (DSPE-PEG-

glucose). The liposomes were produced according to a fast and safe process, with a high 

radiolabeling yield. MR and PET imaging were performed on mice bearing human glioblastoma 

tumours (U87MG) after iv injection. The MR and PET imaging is produced by the 

accumulation of the liposomes in solid tumour. 

These magnetic nanoparticle-based multimodal imaging approaches hold new promise 

to secure enhanced imaging sensitivity and accuracy for a better understanding of biological 

systems and accurate imaging of biological targets.  

Therapeutic platform based on magnetic nanoparticles - 

 Magnetothermal Treatment 

Although the magnetothermal effect  values of superparamagnetic iron oxide 

nanoparticles increase as the frequency (f) and/ or the amplitude (H) of the magnetic field 

increases, it is recommended that the product of the frequency and the amplitude (Hf) should 

be smaller than 5 × 109 A m−1 s−1 for the safety of patient [226,227]. For example, Magforce’s 

NanoTherm therapy, which has been approved in Europe for the treatment of brain tumors, uses 

magnetic field at a frequency of 100 kHz and field amplitudes in the 2−15 kA m−1 range where 

the product Hf is below the threshold [228]. Significant efforts are devoted to maximize heating 

efficiency (i.e., high SLP) of nanoparticles in a given frequency/amplitude of magnetic field 

and to develop an external magnetic field setup that generates a focused AMF. In a traditional 

magnet setup, magnetic nanoparticles dispersed in any tissues including normal tissues are 

equally heated because AMF is nonselectively applied inside the solenoid. This unwanted and 

nonselective heating is the most serious shortcoming in this type of technique.  Recent studies 

on the application of a static magnetic field shows the potential of AMF focusing [229,230]. The 

focusing position can also be changed by giving different amplitudes of direct current to the 

solenoids.  

Temperature measurements with high resolution and accuracy are important in 

nanoparticle-based thermal therapeutic applications [231,232]. The optical approach is one of the 

useful methods for the quantification of the local temperature around magnetic nanoparticles 

[233,234,235.236,237] Magnetic nanoparticles linked with fluorescent dyes such as DyLight549 

fluorophore or coated with a thermoresponsive fluorescence polymer such as 
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poly(Nisopropylacrylamide-fluorescent modified acrylamide) (pNIPAM-co-FMA) changes  

their fluorescence intensity depending on the surrounding temperature. Absolute temperature 

detection is also possible. For instance, maghemite nanoparticles coated with rare earth metal 

chelates (e.g., Tb3+ and Eu3+) were embedded in a silica shell and it was found that the emission 

from Tb 3+ chelates is temperature-dependent since that of Eu3+ chelates remains constant over 

the whole temperature range. Thus, the determination of the ratio of Tb3+ over Eu3+ emission 

allows the absolute temperature measurement. In another study [238] subnanometer scale 

temperature gradient profile versus the distance from the surface of the magnetic nanoparticles 

was demonstrated by a thermolabile azo linker, 2,2′-azobis[N-(2-carboxyethyl)-

2methylpropion-amide], functionalized with fluoresceine amine. The distance between the dye 

and the surface of the magnetic nanoparticles is controlled through the introduction of PEG 

with different molecular weights. Another similar example is the utilization of a rigid DNA 

double helix structure [239] The 12 nm core iron oxide nanoparticles stabilized with 2 nm thick 

amphiphilic polymer are conjugated with single-stranded DNA and subsequently hybridized 

with fluorophore-modified DNA having lengths of 3.0, 3.3, and 3.6 nm, each with different 

melting temperature. After AMF application, local temperatures at three different distances 

from the surface of the nanoparticles (i.e., 5.0, 5.3, and 5.6 nm) are determined by correlating 

the denaturation profiles of the DNA.  

Despite satisfactory spatial resolution, high-cost and the requirement of significant 

facility investment are limitations. With these limitations in mind, ultrasound can be an 

alternative imaging technique to monitor temperature because of its low cost and real-time 

imaging capability [240] Among others, attenuation is known to be one of the most promising 

parameters and has been widely used in ultrasound thermometry. Attenuation is the amount of 

energy lost due to the reflection, scattering, or absorption of energy when ultrasound passes 

through a medium. Many studies have shown that the attenuation rate increases at high 

temperature. 

Thermal Ablation.  

Exposure to high temperature above 50 °C causes cancer cell death [241,242]. The use of 

magnetic nanoparticles can be an alternative method because of the advantageous features of 
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magnetic nanoparticles and the magnetic field. Once the magnetic nanoparticles are 

administrated, the nanoparticles can be preferentially accumulated at the tumor site. Therefore, 

the concurrent external magnetic field application can possibly ablate the tumor in a remote and 

noninvasive manner. One in vivo animal feasibility test was carried out using human breast 

adenocarcinomas-implanted immunodeficient mice [243]. Iron oxide nanoparticles (4−18 mg 

per 100 mg tumor tissue) are injected intratumorally, and the mice are exposed to an AMF for 

4 min where the amplitude is 6.5 kA m−1 and the frequency is 400 kHz. During the treatment, 

temperature increases up to 73 °C and histologic examinations show the presence of early stages 

of coagulation necrosis in the treated tumors. Although this study indicates that iron oxide 

nanoparticles can generate a localized hot spot, which is high enough to kill tumor cells, their 

poor energy-transfer efficiency (i.e., low SLP) as a mediator presents challenging obstacles. In 

fact, repetitions of thermal treatments with a high concentration of magnetic nanoparticles are 

generally necessary to achieve a useful level of therapeutic efficacy. One recent advance is a 

core−shell type magnetic nanoparticle, CoFe2O4@MnFe2O4, with a very high SLP of 2280 W 

g−1
(magnetic atom) [244] A small amount (75 μg) of 15 nm CoFe2O4@MnFe2O4 nanoparticles 

dispersed in normal saline (50 μL) are injected into a U87MG human brain tumor (100 mm3) 

in mice; then, an AMF of 500 kHz at 37.3 kA m−1 is applied for 10 min. After 18 days, the 

tumor treated with the core−shell nanoparticles is completely eliminated. For the mice treated 

with Feridex possessing low SLP of 115 W g−1
(magnetic atom), the tumor size increases by 9-fold 

in 18 d and its growth behavior is similar to that of the untreated control mice group. The tumors 

initially regress in the doxorubicin-treated group, but their regrowth results in a four times larger 

size than their original size by day 26.  

Apoptotic Hyperthermia.  

Although the use of thermal ablation has the advantage of quick tumor removal, the 

surrounding normal tissues are possibly damaged and cannot be preserved at the high 

temperatures needed to kill surrounding cancer cells. A lower-temperature window between 42 

and 45 °C can offer the possibility of destroying the cancer cells preferentially [245,246], which 

is called hyperthermia – Fig. 8 [247,248]. Generally, a temperature below 45 °C induces apoptotic 

cell death which is a more benign form of the “programmed” cell death compared to necrosis 

[249,250]. Nonliving cells that die through the apoptotic process are cleaned by phagocytosis 

without affecting their neighboring normal cells [251,252]. Many magnetic nanoparticles, 

including Fe2O3 coated with stabilizers and Fe3O4 encapsulated in cationic liposomes, have 
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been tested for magnetic hyperthermia, and this form of hyperthermia is clinically approved in 

Europe for the treatment of glioblastoma [253]. 

 

Fig. 8. Therapeutic strategy using magnetic particles - hyperthermia 

If superparamagnetic nanoparticles are considered, many recent approaches for 

magnetic hyperthermia, which is self-controlled heat mediator based on ferromagnetic  

nanoparticles with optimized Curie temperature (Tc) could be cited [254,255,256,257,258,259,260]. The 

surrounding temperature of nanoparticles can be monitored, but heat conduction or energy 

absorption in vivo is often difficult to control, resulting in the overheating of normal tissues. 

Magnetic materials change their magnetic properties above Tc and cannot convert 

electromagnetic energy into heat, which means Tc is the maximum temperature achieved by 

magnetic nanoparticles. Controlling Tc can be an effective way to prevent overheating.  

Recent studies show ways to improve the magnetic hyperthermia efficacy, and the first 

approach is targeted intracellular hyperthermia. Carboxymethyldextran-coated iron oxide 

nanoparticles conjugated with epidermal growth factor (EGF) can target overexpressed surface 

EGF receptors in cancer cells. The intracellular hyperthermia effect is then monitored at 

different specific absorption rates (SAR). At a high SAR, the survival factor of cancer cells 

treated with the magnetic nanoparticles and magnetic field decreases by 0.06% without a 

noticeable rise in temperature [261]. Another example is the folic acid (FA) and PEG 

functionalized superparamagnetic nanoparticle clusters (FA-PEG-SPION NCs) [262]. The 

FAPEG-SPION NCs, produced via the thiolene click reaction between allyl-SPIONs and thiol 
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of FA-functionalized PEG, are intravenously injected and AMF (8 kA m−1, 230 kHz) is applied 

to tumor-bearing mice to significantly inhibit tumor growth. 

A relatively new approach is heat shock protein (Hsp) 90 targeted hyperthermia where 

Hsp90 is closely linked to stress-mediated chaperonic functional responses [263,264]. The 

thermo-tolerance is known to come from Hsps, which protect cells from apoptosis by 

preventing the unfolding and aggregation of key proteins when they are exposed to thermal 

stress. Geldanamycin (GM), a benzoquinone ansamycin antibiotic and a known Hsp90  

inhibitor, is linked to 15 nm Zn0.4Fe2.6O4 nanoparticles via thermosensitive 4,4′-

azobis(4cyanovaleric acid) [265]. Upon the application of an AMF (500 kHz, 37.4 kA m−1), the 

magnetic nanoparticles generate the heat necessary for MDA-MB-231 cancer cell death and 

also release GM by thermal cleavage of the azo bond. The released GM effectively blocks 

Hsp90’s chaperonic function in cell survival and significantly enhances the efficacy of 

hyperthermiamediated apoptosis. While the conventional magnetic hyperthermia at 43 °C for 

80 min induces only 25% cell death, this newly developed magnetic nanoparticle system 

significantly increases the cell death to 89% in 60 min and completely removes all the cancer 

cells in 70 min. In vivo efficacy of this method is also validated where the breast cancer, 

xenografted in mice, is completely removed with the GM-linked magnetic nanoparticles, while 

the conventional magnetic nanoparticles show a 2.5-fold increase of the tumor volume on day 

14 after a single hyperthermia treatment. 

An additional advantage of the magnetic nanoparticle-based thermal treatment is that 

magnetic nanoparticles are versatile platform materials that can be synergistically combined 

with other treatments such as chemotherapy, radiation therapy, gene therapy, and photodynamic 

therapy. For instance, hyperthermia combined with radiation or gene therapy is more effective 

than either hyperthermia or radiation/gene therapy alone because of the complementary 

mechanisms of cell death. One example is the use of 20 nm dextran-coated iron oxide 

nanoparticles in the treatment of prostate cancer cells [266] The exposure of the 

nanoparticletreated cancer cells to AMF followed by radiation results in a significant cell death. 

Another example is 23 nm ZnFe2O4 magnetic nanoparticles complexed with lethal-7a miRNA 

using branched PEI via a layer-by-layer approach [267]. The lethal-7a miRNA (let-7a) is known 

to be a tumor suppressor that targets malignant growth factors, such as the BRCA family, RAS, 

IGF1R, and c-Myc [268].  

Magnetic radioimmuno-nanoparticles also have had promising results in preclinical 

studies by improving efficacy and safety through specific tumor cell targeting via decorating 

targeting molecules, such as antibodies and small molecules. After conjugating chimeric L6 
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mAb labeled with 111In, 20 nm dextran-coated Fe3O4 nanoparticles are injected intravenously 

into mice for the treatment of a HBT 3477 human breast tumor [269]. Through the increased 

retention of the magnetic nanoparticles in the tumor sites, the antibody-labeled magnetic 

nanoparticles show enhanced efficacy as a result of tumor targeting, magnetic hyperthermia, 

and radiation. therapy and chemotherapy, for the therapeutic efficacy enhancement. 

Magnetic hyperthermia therapy 

Hyperthermia therapy (HTP) is a heat induced malignant cancer treatment where 

SPIONs serve as heat producers. SPIONs are introduced near to the cancer site by the use of 

magnetic targeting. An alternating magnetic field (AMF) is applied for a certain  period to 

produce heat for initiating apoptosis in cancer cells. Optimal results could be achieved by 

controlling the size, shape, crystallinity, magnetic properties of SPIONs and parameters of the 

applied AMF. The efficiency of the treatment is assessed by the specific absorption rate (SAR) 

which measures the convertion of the  AMF into heat based on Brownian and Néel relaxations 

of individual SPIONs. Cervadoro et al. [270,271] reported that the relaxations required for 

inducing heat from SPIONs (5, 7 and 14 nm sized) started to take place at a frequency range 

i.e., less than 1 MHz and stopped above this frequency range when tested for wide range of 

frequencies (up to 30 MHz). Additionally, magnetic nanoflakes, made of deoxy-chitosan 

polymer stabilised 20 nm sized nanocubes, yielded a comparatively high SAR value of 73.8 ± 

2.3 W/gFe for a frequency of 512 kHz as compared to individual nanocubes. In a similar fashion 

as reported by Lartigue et al., 2012 [272], multicore magnetic nanoparticles exhibited a high 

SAR value of almost 2000 W/g (applied field of 29 kA/m and frequency of 520 kHz) with an 

increase in temperature rate of 1.04°C/s for an iron concentration of 0.087 M. As indicated by 

Fantechi et al., 2014 [273], doping of SPIONs with other metal atoms (for instance, manganese) 

can improve the hyperthermia activity of magnetic nanoparticles. However, copper (5%, 10%, 

15%, mol/mol) doped iron oxide core (7 nm) resulted in very low SAR values, owing to the 

lower size of ferritin molecules coated magnetic core. 

SPIONs showed good therapeutic results in cancer treatments in in vitro  and in vivo 

scenarios. For example, 14 nm magnetic nanoclusters (with SAR value of 500 Watt/g) killed 

almost 74% of MCF-7 cancer cells in in vitro  conditions, where a therapeutic temperature of 

45 0C for 1 h was maintained [274]. The cell viability of HeLa cells was reduced to 42% as these 

cells were exposed to a temperature of 43 0C (for 1000 s) which was induced by applying an 

alternating magnetic field to silica-coated iron oxide nanoparticles [275]. In another study [276], 

the magnetic nanoparticles reached their in vitro  hyperthermia levels (42–45 0C) in less than 
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200 s at a frequency of 26.48 kA/m, when the nanoparticles were incubated with three different 

cancer cell lines (DA3, MCF-7 and HeLa). It was proven that the induction of apoptosis in 

cancer cells through magnetic nanoparticles increases with an increase in the 

concentration/quantity and the size of these nanoparticles. Jadhav et al. [277] reported that the 

induction of apoptosis process in WEHI-164 tumour cells increased near to 80% when the 

quantity of sodium carbonate-stabilized-oleic acid-functionalized magnetic nanoparticles was 

increased from 0.22 mg to 0.44 mg. Khandhar et al. [278] found that only 40% of Jurkat cells 

survived for a low dose (490 g Fe/ml) of 16 nm magnetic nanoparticles as compared to 80% 

and 90% survival rate for 12 nm and 13 nm nanoparticles at 600 g Fe/ml concentration. In a 

new study, polymer (combination of poly(vinyl alcohol) and polyvinylpyrrolidone)-

stabilizediron oxide-graphene nanocomposite attained a heat of 42°C for a concentration of 2.5 

mg/ml within 15 min of application of AMF at 418 Oe, where −40 ± 4% and −76 ± 3% of cell 

death was observed after 4 and 8 h incubation of nanocomposites with HeLa cells [279]. 

Hayashi et al. [280] reported that the exposure of magnetic nanoclusters to AMF intensity 

of 8 kA/m and frequency of 230 kHz decreased the size of the tumor in Female 

CB17/IcrPrkdcscid mice, where the folic acid attached magnetic nanoclusters (with an average 

SAR value of 248 W/g) were injected intravenously. A rise in the temperature of 6°C was 

observed at 20 min as compared to the surrounding tissues. Moreover, the volume of the tumour 

decreased to one-tenth times of the tumour in control mice after 35 days of treatment, where 

the life-span of hyperthermia treated mice extended by 4 weeks. In the study of Basel et al. [281], 

intraperitoneally injected magnetic nanoparticles helped in the reduction of tumour created via 

injection of Pan02 cells into C57BL/6 mice, after getting exposed to 15–20 min of AMF, 

thereby improved the life expectancy rate of mice by 31%. In another case, the volume of 

SCCVII squamous cell carcinoma induced in mice was comparatively reduced through 

magnetic nanoparticles at a specific intravenous dose and applied a field of 38 kA/m at 980 kHz 

[282,283]. In a similar fashion, polypyrrole coated Fe3 O4 nanoparticles showed an SAR value of 

487 W/g, where the nanoparticles considerably inhibited the growth of myeloma tumor induced 

in Female CB17/Icr-Prkdcscid mice but completely when a combination of Fe3 O4 nanoparticles 

and a chemotherapeutic drug at a quantity of 5 mg/kg was used for cancer therapy. 

In a new study [284] a novel injectable, liquid to the solid phase transitional magnetic 

material, polymethylmethacrylate (PMMA)–Fe3O4 designed for highly efficient magnetic 

hyperthermia ablation of tumours was developed. The morphology characterization, the 

magnetic properties and the heating efficiency of PMMA–Fe3O4 were studied. The Fe3O4 
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particles were evenly distributed in the PMMA and the hysteresis curve of Fe3O4 and PMMA– 

Fe3O4 indicated that they were magnetic materials. When exposed to an alternating current 

magnetic field in vitro , the magnetic PMMA–Fe3O4 generated heat. The increased temperature 

of excised bovine liver was positively correlated to the iron content and time, which suggested 

that the temperature inside the tumour was controllable. The ablated liver tissue area for 0.1 ml 

10% PMMA–Fe3O4 was 1.24 ± 0.28, 1.70 ± 0.57, 2.76 ± 0.31, 4.17 ± 1.07 cm3, respectively, at 

60, 120, 180 and 240 s time points. In the in vivo animal experiments, a MB-231 breast cancer 

xenograft model was obtained in nude mice. In this tumour model, PMMA–Fe3O4 was injected 

precisely using guided ultrasound imaging. After the injection, the computer tomography 

images showed that it was well confined in the tumour tissues without any leakage. The tumours 

were completely ablated by a dose of 0.1 ml, 10% PMMA–Fe3O4 with 180 s exposure time in 

the magnetic field. The results demonstrated that PMMA–Fe3O4 was an excellent magnetic 

material for the localised magnetic hyperthermia ablation of tumours. 

The study presented by Grillo et al., from 2016  [285], describes the synthesis of 

submicrometer and magnetic polymer nanocomposite capsules (MPNCs) by combining in one 

single platform the biodegradable polymer poly-ε-caprolactone (PCL) and different 

concentrations of 8 nm oleic acid (OA)-functionalized magnetite nanoparticles (Fe3O4@OA), 

employing the oil-in-water emulsion/solvent evaporation method. The MPNCs showed a 

significant increase in particle size from 400 - 800 nm as the magnetic loading in the organic– 

inorganic hybrids increases from 1.0% to 10%. The MPNCs presented high incorporation 

efficiency of Fe3O4@OA nanoparticles, good colloidal stability, and super-paramagnetic 

properties. Interestingly, electron microscopy results showed that the Fe3O4@OA nanoparticles 

were preferentially located at the surface of the capsules. Evaluation of the magnetic properties 

showed that the saturation magnetization and the blocking temperature of the MPNCs samples 

increased as a function of the Fe3O4@OA loading. All the MPNCs exhibited heating when 

subjected to MH, and showed good specific absorption rates. Use of the formulations decreased 

the longitudinal (T1) and transverse (T2) relaxation times of water protons’ nuclei, with 

excellent transverse relaxivity (r2) values, especially in the case of the formulation with lowest 

Fe3O4@OA loading. Furthermore, the MPNCs-cell interaction was studied, and MPNCs 

showed lower cellular toxicity to normal cells compared to cancer cells. These findings help in 

understanding the relationships between magnetic nanoparticles and polymeric capsules, 

opening perspectives for their potential clinical uses as simultaneous heating sources and 

imaging probes in MH and MRI, respectively. 
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In the work of Cristofolini [286], they validated the applicability to hyperthermia 

treatment of magnetic nanocapsules prepared by the sequential layer-by-layer adsorption of 

polyelectrolytes and magnetic, Fe3O4 nanoparticles. The hyperthermia effect was demonstrated 

by applying the radio frequency (rf) magnetic field with maximum fields up to 0.025 T and 

frequencies up to 430 kHz; they found sizable heating effects, with a heating rate up to 0.46 

°C/min. They also comment the effects of irradiation on capsules morphology that indicated 

their disruption potential use as nanocarriers of drugs that can be locally released on demand. 

Therefore, these magnetically responsive nanocapsules could be a promising platform for 

multifunctional biomedical applications such as the controlled release of pharmaceuticals in 

combination with hyperthermia treatment.  

Magnetoliposomes, hybrid nanoparticles made of superparamagnetic iron oxide 

nanoparticles coated with liposomes, are emerging as new class of bio-nanomaterials due to 

their potential applications in hyperthermia cancer therapy. Coating SPIONs with liposomes 

enhances their biocompatibility and dispersibility and therefore their applicability in biomedical 

applications. The hyperthermia treatment is based on the fact that SPIONs, when subjected to 

an oscillating magnetic field generate heat and thus can kill tumor cells which are more sensitive 

to temperature above 41 °C than the normal cells. Magnetoliposomes are particularly useful for 

hyperthermia because lipid bilayer properties are highly dependent on temperature, allowing 

for the design of bilayer temperature response. The produced SPIONS are stabilized by a 

surface-attached  oleate molecule and dispersed in an organic solvent. Consequently, additional 

steps might be required to transfer  the SPIONs to an aqueous environment. This phase transfer 

relies on NP surface derivatization strategies replacing the originally grafted hydrophobic 

molecule with  hydrophilic compounds, or direct functionalization of the  surface-grafted 

hydrophobic molecules themselves [287].  Surface chemistry not only determines the colloidal 

stability of the NPs, but also their association to the liposome,  i.e., whether they will be 

embedded in the hydrophobic bilayer or within the hydrophilic lumen.[288] 

Di Corato et al. [289] designed an optimized smart nanoplatform based on dually loaded 

hybrid liposomes to achieve enhanced tumor therapy. The aqueous core was highly loaded with 

iron oxide nanoparticles, while the lipid bilayer was supplied with a photosensitizer payload. 

The double cargo translated into double functionality: generation of singlet oxygen under laser 

excitation and heat production under alternating magnetic field stimulation, coupling 

photodynamic therapy (PDT) to magnetic hyperthermia (MHT). These liposomes address both 

therapeutic agents within tumor cells, and the combined PDT/MHT therapy resulted in 
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complete cancer cell death in vitro  while total solid-tumor ablation was achieved in an in vivo 

rodent model. 

An excellent review dealing with recent advances in application of SPIONs for in vitro  

and in vivo cancer theranostic was published by Kandasami and Maity [290]. 

Toxicity  

It is well known that the chemical, physical and biological features of the new 

nanoparticles being a constant source of scientific and engineering interest differ substantially 

from the properties of the bulk phase they originate from. For instance, typical magnetic 

materials (ferromagnetic iron oxides) lose their permanent magnetization if they are studied or 

used as nanoparticles. Thus, they appear as completely new type of material with unknown 

impacts on any environmental compartment including human beings.  

The potential risk of the broad application of nanomaterials in near future catalyzes 

series of specific scientific programs and action plans to assess the possible hazardous effects 

of the new materials on human health and environment [291]. Iron oxide nanoparticles have 

proven to be useful in a broad range of applications besides its original design intention as high 

performance seals in space application [292]. Iron oxide nanoparticles have been frequently used 

to label cells for in vitro separation and sorting and in vivo tracking magnetically. Although 

IONPs are generally considered to be biocompatible, the literature presents conflicting results 

concerning their toxicity.  The most frequently suggested description  of  IONP  toxicity  

encompasses  the  generation  of  reactive  oxygen  species  (ROS),  which  causes  lipid  

peroxidation,  disrupting  the phospholipid-bilayer  membrane,  resulting  in  cell death. IONPs 

are easily internalized by cells via endocytosis because of their nanoscale size. The IONPs are 

degraded by hydrolysis into iron ions within acidic organelles such as endosomes or lysosomes. 

The free iron ions are then transported through the organelle membranes through the divalent 

metal transporter-1 (DMT1) into cytosol, where they undergo the Fenton reaction with the 

mitochondrial  hydrogen  peroxide  (H2O2)  to  form  hydroxyl  radicals (•OH),  a  highly  

reactive  ROS.  

In the very recent work of Huang et al. [293] from 2016, they  posed hypotheses for 

toxicity of IONPs that are internalized  into  cells  by  endocytosis,  depending   on  the  pH  of  

the environment to which the particles are exposed during their endocytotic  transportation.  

IONP toxicity consideration is a necessary is we want to design and use    IONP nanosystems 

with a vast range of clinical applications. 
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The authors claimed a thermo responsive liposomal system that contained ammonium 

bicarbonate (ABC, NH4HCO3) for localized drug delivery (Fig. 9).  At an elevated temperature 

(42 °C), the decomposition of ABC generates CO2 bubbles that creates permeable defects in 

the lipid bilayer of the liposomes.  The proposed model revealed that the  local  environment  

in  cellular  organelles,  in  which  the  pH dependent degradation of IONPs and the release of 

iron ions occur, critically affects the amount of intracellular generated  ROS,  which  causes  

lipid  peroxidation  and  eventual  cell mortality. In the literature concerning IONP toxicity 

[294,295.296.297] we observed a contradictory results. The toxicity may    be  strongly  related  to 

the  environment  to  which  the  IONPs  are  exposed  during  their intracellular  transport.  For 

applications in cancer diagnosis and cell separation/sorting and tracking, the early endosomal 

escape of IONPs is crucial to preventing toxicity toward target cells.  Conversely,  the  direct  

exposure  of  IONPs  in  lysosomes  can  significantly  elevate  their  intracellular  toxicity, 

possibly improving their effectiveness in cancer treatment. 

 

Fig. 9.Schematic illustrations showing the structure of thermoresponsive bubble-generating liposomal 

system and its process of spatially precise, controlled intracellular liberation of IONPs in specific cellular 

organelles in various endocytotic stages. The degradation of IONPs, release of iron ions, and subsequent 

reactive oxygen species (ROS) generation within cells are indicated. IONPs: iron oxide nanoparticles; 

ABC: ammonium bicarbonate; DMT1: divalent metal transporter-1.  Reproduced from [280] with 

permission from the American Chemical Society. Copyright 2017.  
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The SPIONS materials are considered like targeted drug delivery, biomedical imaging 

agent, or for biosensing [298,299,300,301]. Just this type of application requires knowledge about 

potential interaction between nanoparticles and biosystems. Although nanomaterials related to 

biomedicine were subject to serious investigations (both in vivo and in vitro) the results obtained 

are limited to a restricted number on materials and products. It is a general opinion that 

individual assessment is needed when hazardous impacts by nanomaterials are considered and 

the major concerns are related to the size of the particles, their surface charge and their 

unspecific protein absorption ability.  

In vitro toxicity assessment 

In various studies [302,303] it is shown that different in vitro  toxicity tests used for 

determination of the toxicity of other that SPIONS nanoparticles could be applied to SPIONS 

as well, e.g. the viability of cells, i.e., cytotoxicity, oxidative stress, inflammatory reactions, and 

genotoxicity. Usually, the in vitro toxicity tests are related to assessment of the metabolic 

activity of cells, membrane integrity of cells, cell apoptosis and proliferation. In vitro  

nanotoxicity assays of SPIONS could be simply presented as follows [304]: 

Nanoparticles cell interactions (including cell morphology and attachment of 

nanoparticles to cell membrane and further uptake) to be transformed into cellular response 

signals (cell decay or cytotoxicity, metabolic activity, antioxidant production due to oxidative 

stress, inflammation, genotoxicity); the respective assays are MTT Assay, PI Assay, BrdU 

Assay, LDH Assay (checking mitochondria activity, DNA staining, DNA replication staining 

and membrane integrity assessment, respectively). 

Dextran-coated SPIONS were the first model systems used to study nanoparticle cellular 

uptake [305.306,307]. It was found that different cells could be reliably labelled with SPIONS and 

further used for in vivo tracking procedures.  

Initial information about significant toxicity in SPIONS was presented by Mueller et al. 

[308] more than 20 years ago. This was followed by several studies of Berry et al. as well as by 

Gupta et al. [309,310,311.312,313,314] showing that uncoated or dextran-coated SPIONs or bare 

SPIONs could cause varying degrees of cell death, vacuole formation and disruptions of the 

skeleton of dermal fibroblasts cytotoxicity and cytoskeletal damage. The coating of SPIONs by 

different proteins (lactoferrin, ceruloplasmin) has shown that the cell response could be 

modulated by the proper selection of coating. Later, van den Bos et al. [315] proved that Feridex 

material (dextran coated SPION) reveals serious toxic impact upon macrophage exposure with 
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decreased proliferation and cell death. Stroh et al. [316] have found that significant amount of 

SPIONs coated with citrate increase protein oxidation and oxidative stress.  

An interesting aspect of the in vitro toxicity of SPIONs is the comparison between their 

toxic impact and the toxicity (cancerogenic impact) of asbestos nanoparticles as done in [317, 

318,319]. It was convincingly shown by transmission electron microscopy and toxicity assays that 

murine macrophage cells exposed to bare SPIONs showed cytotoxicities nearing 90% of the 

asbestos-treated cultures. It was reported that the EC50 value is approximately 40 times lower 

that of iron ions. The authors explain the possible role of Haber – Weiss reactions due to the 

more rapid uptake and transportation of nanoparticles through the cells as compared of those of 

bare ions [320]. Significant morphological effects but relatively low toxicity upon a 

neuroblastoma cell line by SPIONs is reported in [321]. Au et al. have studied the impact of a 

commercial material (NanoSonics (Blacksburg, VA) based on SPIONs upon astrocytes and 

have found detectable effects on the mitochondrial function and decreased cell viability [322]. 

In a similarly designed study [323] Pisanic et al. present a model cell system which response to 

the toxicity impact of SPIONs coated with dimercaptosuccinic acid. It was found that the 

particles show a dose-dependent diminishing ability of the cells to survive and keep normal 

biological functions and morphology.  

It is proven that the surface coating of nanoparticles is of substantial importance for the 

stability, aggregate size and cellular interactions related to the SPIONs uptake in intercellular 

medium [324]. Diaz et al. [325] report results on the uptake of SPIONs, which were related to the 

employed cell type. The responses were quite different indicating the role of the tested cell line. 

The same study shows that the number of particles per cell (not the concentration) might 

influence the response of the toxicological assay. It hinders the opportunity to find a direct 

relation between ROS production and cellular toxicity. For instance, in [326] is indicated that 

SPIONs coated with different saccharides could show variations drastically in cell responses 

and viability with minor changes in coatings.  

It is accepted that there are at least four primary sources of oxidative stress caused by 

SPIONs. According to several studies, it seems that there is a direct impact of SPIONs on ROS 

damage [327,328,329]. Alekseenko et al. studied the effects of uncoated SPIONs on neuronal cells. 

Theil et al. investigated the role of ferritin (natural iron storage protein) which seems to have a 

key role for the direct generation of ROS in rat synaptosomes. Further, Li et al. stated that the 

redox active surface of SPIONs could seriously affect electron flow and alter mitochondrial 

functionality. That is why many toxicological tests using active reductase enzymes within the 

mitochondria of living cells may be sources of significant errors.  
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Other recognisable targets for SPIONs toxicity seem to be the plasma membrane and 

proteins [330,331] where nicotinamideadenine dinucleotide phosphate oxidase and its analogues 

are considered targets for SPIONs induced redox reactions. Take-up of SPIONs by phagocytic 

cells both in vitro and in vivo environments is extensively studied in [332,333,334,335].  

Both coated and uncoated SPIONs have been studied for induction of inflammatory 

pathways and cytokines. Siglienti et al. [336] found that loading macrophages with SPIONs 

(uncoated) lead to increased interleukon-10 production and inhibition of tumour necrosis factor 

α which could be an indication for immunomodulatory function. In [337] Hsiao et al. report on 

the response of SPIONs ferucarbotran loading on macrophages and come to the conclusion 

specific levels of nanoparticles cause secretion of tumour necrosis factor α and production of 

nitric oxide. It was also found [338] significant inflammation response is observed when coated 

anionic SPIONs are used for labelling of human gingival fibroblasts (increase secretion of 

metalloproteases). Radu et al.[339] investigated the impacts of SPIONs on lipid peroxidation 

and antioxidative systems in lung fibroplast cells showing that an increased lipid peroxidation 

is observed. In the study of Choi et al. [340] in vitro  cytotoxicity of iron oxide Fe3O4 and 

manganese oxide MnO were assessed by the use of different toxicity assays - using live/dead 

cell assay, lactate dehydrogenase assay, and reactive oxygen species detection with variation of 

the concentration of nanoparticles, incubation time, and different human cell lines (lung 

adenocarcinoma, breast cancer cells, and glioblastoma cells). The toxicity has been checked by 

changes in pH and composition in cells and the tendency of SPIONs to adsorb proteins, 

vitamins, amino acids, and ions. As discussed by the authors some of the results obtained show 

that the toxicity assays used for assessing SPIONs are not entirely adapted for this goal and 

could lead to wrong interpretation. As stressed, however, in [341] the model toxicity studies in 

vitro  are cheap and represent a good option to the complex and expensive in vivo assessments.  

In vivo toxicity assessment 

Natarajan et al.[342] employed magnetic nanoparticles with diameters of 20, 30, and 100 

nm and evaluated their application for alternating magnetic field therapy and their in vivo 

performance depending on their size. The results showed that tumour targeting and heating 

capacity depended on the size of the nanoparticles.  

SPIONs are often classified as biocompatible, showing no significant toxic effects in 

vivo. Jain et al.[343] have shown that in vivo administration of SPIONs did not cause a negative 

effect on liver function. It is worth to mention that the correct prediction of the biological fate 
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of SPIONs is strongly dependent on the composition and amounts of associated proteins at the 

surface of the nanomaterial. For instance, oleic acid/pluronic-coated SPIONs (i.e., 55% of the 

intravenously injected dose) were found to accumulate in the liver of rats; however, elimination 

of dextran-coated SPIONs, via urine and feces, was around 25% of injected dosage in the same 

animal model [344].  These differences in the elimination of the nanoparticles are probably due 

to their protein corona composition.  

The physicochemical properties of the nanoparticles are a substantial factor for cell 

uptake, but as shown by Mahmoudi et al. [345] cell type is also an important feature for cellular 

uptake, intracellular fate, and toxic response of the nanoparticles. In this study, it is shown that 

SPIONs with various surface chemistries (uncoated and cyanoethyltrimethoxysilane - and 

aminopropyltriethoxysilane-coated) had toxic effects on human brain cells at iron 

concentrations above 2.25 mM, whereas the same concentration of NPs was compatible with 

human kidney cells  

Hanini et al. tested SPIONs in vivo and could confirm that SPIONs induced toxicity in 

the liver, kidneys, and lungs; however, the brain and heart organs remained unaffected [346]. It 

is in good agreement with earlier statements that negatively charged SPIONs do not cause 

serious changes on the actin skeleton of heart cells but could disrupt the actin skeleton in kidney 

and brain. In the study of Chertok et al. [347] on the possibility of applying SPIONs as drug 

delivery remedy in the magnetic targeting of brain tumours is shown that accumulation of 

SPIONs in gliosarcomas in rats could be enhanced by suitable concentration of nanoparticles 

and optimal parameters of the magnetic field without any toxicity effects.  

Yu et al.[348] reported that the passive tumour targeting efficiency of thermally 

crosslinked -SPIONs allowed detection of tumours by magnetic resonance imaging and at the 

same time delivery of sufficient amounts of anticancer drugs released from the nanoparticles to 

exhibit anticancer activity. The tested SPIONs showed exceptional antitumor effects without 

any systemic toxicity. After the successful performance of animal tests SPION material called 

Feridex (Endorem) was applied to human patients [349]. The most frequent side effect was 

focused on back pain, which was detected in nine patients (4%) and required interruption of the 

infusion of ferumoxides in five of these. Although lumbar pain has been associated with the 

administration of a variety of colloids and emulsions, the physiological causes are unknown, 

because no significant changes in chemistry values, vital signs, and electrocardiographic 

findings were found. It is worthy to note that limitations may also arise in extrapolating from 

animal models to humans. There are many physiological parameters to consider, ranging from 



 

45 

variations in weight, blood volume, cardiac output, and circulation time to tumour 

volume/location/blood flow, complicating the extrapolation of data obtained in animal  

models.[350,351,352].  

The last form of toxicity evaluation that is becoming increasingly popular is computer 

simulation processing.[353] Although this method is not routinely integrated into toxicology 

assessment, it is becoming a useful technique to look at the toxicity of drugs even before their 

synthesis during drug discovery. Dames et al.[354] showed theoretically by computer-aided 

simulation, and for the first time experimentally in mice, that targeted aerosol delivery to the 

lung can be achieved with aerosol droplets comprising SPIONs in combination with a target 

directed magnetic gradient field. They suggested that nanomagnetosols may be useful for 

treating localised lung disease, by targeting foci of bacterial infection or tumour nodules.  

Conclusion: 

The complete assessment of the role of SPIONs in contemporary science, technology 

and medical development requires a constant check of the achievements of the mutual 

relationships between nanoparticles size, shape, surface coating, magnetic properties, size 

distribution, crystallinity, on the one hand, and their biological application, on the other. 

Numerous previous reviews stressed the importance of synthetic and theranostic applications 

aiming the enhancement of the efficacy of diagnostic applications. The present review 

summarises some of the most important recent advances in the development and application of 

IONPs like functionalization, computational models to study the structural aspects of the 

nanoparticles, biomedical applications and the significance of the nanoparticles biosafety. The 

collected set of cites studies makes it possible to conclude that the effective application of the 

SPIONs requires effective physicochemical studies and computational modelling to achieve 

safe and useful theranostics.  
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Name  Average 

magnetic core 

size (nm) 

Average total  

hydrodynamic 

size (nm) 

 Surface coatings r1 relaxation 

(mM−1 s−1 ) 
r2 relaxation 

(mM−1 s−1 ) 

Magneti 
c field 

(T) 

Refs. 

1  2 3 4 5 6 7 8 

         

SPIO@PEG  14 28.6 DSPE-mPEG- 

1000  

– 385 0.47 [355] 

SPIO@PEG  5 14.8 DSPE-mPEG1000 – 130 0.47  

MIONs@PEG  11.0 12.5 DSPE-mPEG-550 12.7 317 0.47 [356] 

  13.6 10.4 DSPE-mPEG-750 12.6 360 0.47  

  13.23 12.0 DSPE-mPEG1000 25.2 1947 0.47  

  14.6 16.4 DSPE-mPEG2000 24.4 147 0.47  

  16.2 21.6 DSPE-mPEG5000 21.5 173 0.47  

USPIO@PEG  7.7–7.9 24 PEG-2000 30.4 

11.2 

62.2 

59.7 

0.47 

1.41 

[357] 

USPIO@PEG @RGD 7.7–7.9 17 natural peptide  31.9 

14.8 

73.9 

68.9 

0.47 

1.41 

 

USPIO@PEG @RGDp 7.7–7.9 34 synthetic RGD 

peptidomimetic  

30.1 

12.2 

106.5 

103.3 

0.47 

1.41 

 

USPIO@BP-P EG(5)      5.5 

(Fe3O4) 

24 PEG-5000 with 

bisphosphonate 

groups 

9.5 28.2 3 [358] 

SPIO@PSSS  13.4 

(Fe3O4) 

94.7 PSSS 3.2 26 3 [359] 

SPIO@SPP  10.1 104.9 SPP 2.7 17 3  

Table 1: MRI relaxivity values of synthetic and commercial iron oxide (Fe3O4 and Fe2O3) nanoparticles 

having different sizes and surface coatings. 
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 (Fe3O4)       

Cationic USPIOs  7 - ethylamine - 178 0.47 [360] 

ESION@PEG 2.2 - PEG-phosphine 

oxide  

4.8 17.5 3 [361] 

ESION@PEG  3 15 PEG-phosphine 

oxide   

4.8 29.2 3  

USPIO@PEG 12 - PEG-phosphine 

oxide   

2.4 58.8 3  

WSION@DMSA 6 - DMSA - 106 1.5 [362] 

 9 - DMSA - 130 1.5  

 12 - DMSA - 218 1.5  

WFION@PEG 22 44 DSPE-mPEG - 761 3 [363] 

WFION@PEG 28 56 DSPE-mPEG - 740 3  

FION@PEG 32 261 DSPE-mPEG - 532 3  

FION@PEG 49 534 DSPE-mPEG - 296 3  

FION@PEG 42 378 DSPE-mPEG - 343 3  

Fe3 O4 – - Uncoated – 100.4 0.5 [364] 

Porous SiO2/Fe3O4 rods 350/62 150 Silica - 192 3 [365] 

STPP/ SPION 8.5 

(Fe3O4) 

11.9 STPP 18.9 73 1.4 [366] 

Citrate/ SPION 8.5 

(Fe3O4) 

14.5 sodium citrate 18.7 122.4 1.4  

Citrate/ SPION  6 

(Fe3O4) 
24 Citric acid  198 3 [367] 

 8 

(Fe3O4) 

30 Citric acid - 265 3  

 12  

(Fe3O4) 

43 Citric acid - 353 3  

Fe3O4@PEG-350  4 30 PEG-phosphine 

oxide  

5.9 39 1.4 [368] 
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Fe3O4@PEG-1100 4 10-15 PEG-phosphine 

oxide   

7.3 17.5 1.4  

Fe3O4 @MSN 8.5 70 Silica,PEG - 76.2 1.5 [369] 

 

Copolymer coated  

clusters of Iron oxide 
7.4 

95% Fe3O4 

+ 5% α-Fe2O3 

89 (12% IO) 

117 (21% IO) 

147 (32% IO) 

163(42% IO) 

Poly(ethylene 

oxide-b-d,l- lactide)   

2.4 

2.9 

3.1 

3.4 

90 

137 

202 

229 

1.4 [370] 

DMSA coated Iron/iron 

oxide core/shell structure 

16 

(α-Fe/Fe3O4 

core/shell) 

- DMSA - 324 9.4 [371] 

γ-Fe2O3 4.8 7.2 uncoated 3.5 28.3  [372] 

Linear copolymer/SPIOs 11 107.5 PEI-b–PCL-b– 

PEG 

– 256 1.41 [373] 

BSA/SPION 8 18 Bovine serum 

albumin 

11.6 154.2 1.41 [374] 

D-SPION 12 50 Dextran – 140.7 1.5 [375] 

SPION 10 100 Chitosan 1.6 369 1.5 [376] 

SPION@APTES@PEG 10.4  

(Fe3O4) 
47.6 PEG 2.4 

1.1 

121.5 

98.7 

1.5 

9.4 

[377] 

mPEG/ γ-Fe2O3 ~ 20 40-80 mPEG - 112.,3 - [378] 

SPIO-nanosomes 6 250 lipoproteins 2.5 410 3 [379] 

PEG/SPION 5 - PEG 2.1 41.5 7 [380] 

 10 - PEG 2.4 47.4 7  

PEGylated 

liposome/PEG-SPION 
5 130 Egg- 

PC:Chol:DSPEPEG 
3.9 

(40μgFe/ml) 

198.5 7  

PEGylated 

liposome/PEG-SPION 

10 130 Egg- 

PC:Chol:DSPEPEG 

3.7 

(14μgFe/ml) 

210.5 7  
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Liposome/ IONPs  

Magnetoliposomes 

7 (γ-

Fe2O3) 

102 DOPC:CHOL   - 80 

(18 and 24 

NPs/lip.) 

152 

(44 NPs/lip.  

) 

320 

(88 NPs/ 

lip.) 

4.7 [381] 

 

Hydrophilic SPIONS 5 - Comercial  0.8 50.7  [382]  

Hydrophobic SPIONS 5 - Comercial  1.0 74.5   

Hydrophilic  

SPIONS@DMPC 

5 220–335 DMPC 9.1 (3 NPs / 

lip.) 

1282 7  

Hydrophobic  

SPIONS@DMPC 

5 220–335 DMPC 0.9 

(16 NPs / lip.) 

340 7  

Hydrophobic  

SPIONS@DMPCCHOL 

5 220–335 DMPC-CHOL 0.8 

(11 NPs / lip.) 

230 7 пак 

Hydrophobic  

SPIONS@DMPC-PS 

5 220–335 DMPC-PS 0.8 

(10 NPs /lip.) 

798 7 пак 

Hydrophilic  

SPIONS@DOPC 

5 220–335 DOPC 3.4 

(2 NPs /lip.) 

678 7 пак 

Hydrophobic  

SPIONS@DOPC 

5 220–335 DOPC 0.9 

(17 NPs /lip.) 

630 7 пак 

Hydrophobic  

SPIONS@DOPC-

CHOL 

5 220–335 DOPC-CHOL 0.9 

(15 NPs /lip.) 

281 7 пак 

Hydrophobic  

SPIONS@DOPC-PS 

5 220–335 DOPC-PS 0.9 (9 NPs / 

lip.) 

995 7 пак 

PEG/PEI-SPIONs  

(200◦C) 

6.8 – PEG/PEI 3.1 58.8 7 [383] 

PEG/PEI-SPIONs  

(260◦C) 

10 21.8 PEG/PEI 1.7 143 7  

SPIONs 5 30 Ascorbic acid 1.0 22 9.4 [384] 
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DS/ Fe3O4+Gd2O3 4.8 6.5 DS  7.8 41.1 0.5 [385] 

NANOMAGNETIC 

POMEGRANATE  
16 

MnFe2O4 

86 Silica,PEG - 695 0.5 [386] 

DMSA/MnFe2O4 12 - DMSA - 358 1.5 [387] 

 DMSA/NiFe2O4 - - DMSA - 152 1.5  

DMSA/ CoFe2O4 12 - DMSA - 172 1.5  

DMSA/ Zn0.1 Mn0.6 Fe2 

O4 

15 - DMSA - 516 4.5 [388] 

        

DMSA/ Zn0.2 Mn0.6 Fe2  

O4 

15 - DMSA - 637 4.5  

DMSA/ Zn0.3 Mn0.6 Fe2  

O4 

15 - DMSA - 754 4.5  

DMSA/ Zn0.4 Mn0.6 Fe2  

O4 

15 - DMSA - 860 4.5  

DMSA/ Zn0.8 Mn0.6 Fe2  

O4 

15 - DMSA - 307 4.5 

 

        

extremely small iron oxide nanoparticles (ESIONs) micrometer-

sized iron oxide particles (MPIOs) water-soluble superparamagnetic 

iron oxide nanoparticles (WSIONs) water-dispersible ferromagnetic 

iron oxide nanoparticles (WFIONs) ferrimagnetic iron oxide 

nanoparticles (FIONs) 

STPP: sodium tripolyphosphate  

DMSA: 2,3-dimercaptosuccnic acid. 

DS:  dopamine sulfonate   

APTES (3-aminopropyl)trimethoxysilane  

PSSS:  poly(sodium 4-styrenesulfonate) 

SPP: sodium polyphosphate 
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PEI: poly(ethyleneimine)  

PCL: poly(ε-caprolactone) 

CHOL: cholesterol  

PS: phosphatidylserine. 

Egg-PC: egg phosphatidylcholine  

DMPC:  1,2-dimyristoyl-sn-glicerol-3 phosphatidylcholine;  

DOPC: 1,2-dioleoyl-sn-glycero-3-phosphocholine  
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DSPE-mPEG-X: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy  

(polyethylene glycol)-X], when  X is the molecular weight of methoxy (polyethylene glycol).  

 

   
Radionuclide-MR Imaging Probes 

 

64Cu-NOTA-SPIO MRI/PET 68 r2 = 101.9 mM−1s−1 (4.7 T), 64Cu-NOTA chelation 
398 

64Cu-(dtcbp)2-Endorem MRI/PET 108 small dtcbp chelator 
399 

Table 2. Multimodal MRI probes based on magnetic nanoparticles  

     

Nano probes Modali-ties Sizea  

(nm) 

Imaging properties Refs 

1 2 3 3 5 

     
Dual T1-T2 MR Imaging Probes 

 

SPIONs MRI 8.8 
r1 = 38.11±1.04 mM−1 s−1  

;         

r2 = 311.88±7.47 mM−1 s−1 (0.5  

T)    

389 

SPIONs MRI 4.8 r1=182.2±7.73 mM−1 s−1 ; 

r =43.18±3.33 mM−1 s−1  

 2     (0.5  
T) 

 

SPIONs MRI 7.0 
r1=13.31 mM−1 s−1 (1.43  

T)         
r2=6.84 mM−1 s−1     (3 T) 

390 

SPION@CPP-Feb MRI 64.0 r1 = 2.8 mM−1 s−1  ;             r2 = 185.3 mM−1 s−1           
391 

FeCo MRI 30 r1 = 70 mM−1 s−1  ;             r2 = 644 mM−1 s−1 (1.5 T) 
392 

Gd2O3-embedded Fe3O4 MRI 14 r1 = 69.5 mM−1s−1 ; r2 = 146 mM−1 s−1 (0.5 T) 
393 

MnFe2O4 core−SiO2 

layer− Gd2O(CO3)2 shell 
MRI 60 r1 = 32.5 mM−1s−1 ; 

r2 = 213 mM−1 s−1 (4.7 T)  

SiO2 layer thickness-dependent 

394 

Zn0.4Fe2.6O4 core−SiO2 

layer− Mn- MOF shell 
MRI 50 r1 = 8.2 mM−1s−1 ; r2 = 238.4 mM−1 s−1 (1.5 T) 

395 

Fe3O4 nanoplate  MRI 4.8 r1 = 43.18 mM−1s−1 ;  r2 = 182.2 mM−1 s−1 (0.5 T) 
396 

MPNCs-1 ; [Fe]= 0.133 g  

L-1  MRI 400-500 r1=5.7   mM−1s−1 ;   r2=346.6 mM−1 s−   (3 T) 
397 

MPNCs-3 ;[Fe] = 0.410 g  

L-1  MRI 400-800 r1=3.6  mM−1s−1 ;       r2=  175.7 mM−1 s− (3 T) 
 

MPNCs-5 ;[Fe] = 0.680 g  
L-1  MRI 400-800 r1=2.5   mM−1s−1 ;     r2=142.9 mM−1 s−  (3 T) 

 

MPNCs-10 ;[Fe]=1.287 g  

L-1  MRI 400-800 r1=1.5  mM−1s−1  ;  r2=103.2 mM−1 s−    (3 T) 
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124I-SA-MnMEIO MRI/PET 32 
r2 = 321.6 mM−1s−1 (1.5 T), direct introduction of 124I at 

ortho-position of tyrosine 

400 

111In-doped Fe3O4 MRI/PET 37.4 
coating incorporation of 111In during nanoparticle 

synthesis 

401 

 69Ge-SPION MRI/PET 23 
r2 = 93.8 mM−1s−1 (4.7 T), adsorption of 69Ge onto  

SPION 

402 

99mTc-Labeled Iron Oxide  

Nanoparticles 
MRI/SPECT 3.5  

(core) 

r1=8.2   mM−1s−1 ;  r2 = 20.1 mM−1s−1    

The particles were functionalized using c(RGDyC) 

peptides and labeled with 99mTc 

403 

PEG(5)-BP(1,1- 

bisphosphonate)-USPIOs  

(radiolabeled-BP) 

T1MRISPECT 106 ± 60 

nm, (Fe3O4 

core    

+dextran) 

r1 = 9.5 mM–1s–1  (3 T)      

SPECT studies confirmed low reticuloendothelial system 

(RES) uptake and long blood circulation times (t1/2 = 

2.97 h) 

404 

  

   
CT-MR Imaging Probes 

 

Au−Fe3O4 heterodimer MRI/CT 30.4 r2 = 245 mM−1s−1 (3 T), 723 HU at 100 mM Au 
405 

Fe3O4/TaOx core/shell MRI/CT 21 r2 = 81.2 mM−1s−1 (3 T), 900 HU at 28 mg Ta/ml 
406 

PEGylated GION -gold 

iron oxide nanoparticles  

MRI/CT 47 Nanoparticles had high CT intensity and mild MRI signal 

due to the presence of gold for CT and SPION for MRI. 

 407 

FeBi@SiPE (Core-shell 

bismuth-oxide-capped 

iron oxide nanocrystal) 

MRI/CT 8  r1= 3.65 mM−1s−1  ;  r2 = 175 mM−1s−1 (1.5 T) 408 

   
Ultrasound-MR Imaging Probes 

 

SiO2@FePt MRI/US 660 r2 = 60 mM−1s−1 (1.5 T), US amplitude = 125 
409 

USPIO-PBCA 

microbubble (MB) 
MRI/US ~2.5 μm  

MB, ~50 

nm shell  

For  USPIO-MB,  the  difference  in  r2* values  vs.  

baseline  was highly significant, demonstrating  that  the  

increase  in  r2*  is  primarily  due  to  the  presence  of 

the  USPIO nanoparticles  within  the  MB  shell. 

Realtime  US  recording  of USPIO-MB  circulating  

through  the  brain  upon  in vivo  infusion,  showing  that  

USPIOMB can  be  sensit ively and  specifically  

detected  in  the  brain  of mice. 

410 
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encapsulated microbubble 

(EMB ) –SPIONS  

Microbubbles: PVA outer 

layer, inner layer- PLA 

MRI/US 12 

SPION 

In vivo MRI experiments show that the SPION-inclusion 

microbubbles have longer contrast-enhancement duration 

time in rat liver than non-SPION-inclusion 

microbubbles. 

An in vitro ultrasound imaging experiment of 

SPIOinclusion microbubbles also shows that they can 

enhance the ultrasound contrast significantly. 

  

   
Tri mode Imaging Probes 

 

Co0.16Fe2.84O4@NaYF4(Yb 
, Er)  

MRI/PET/SPECT  r1=5 mM−1s−1  ;   r2=102 mM−1s−1  (3 T)  411 

Fe3O4@NaYF4(Yb, Tm)-  
1,1-bisphosphonate-PEG 

MRI/PET/SPECT  
r1=326 mM−1s−1     ;    r2= 159 mM−1s−1  (7 T) r1=0.4 

mM−1s−1     ;     r2=3 mM−1s−1  (3 T) 

 

a) Overall average size including coating. In some cases the diameter of core or coated core is 

given. 

b) CPP-Fe - catechol-based Fe3+ coordination polymer nanoparticles  

PBCA: poly(n-butyl cyanoacrylate);  PLA: poly(d,l-lactide) 
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