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Oblivious Fronthaul-Constrained
Relay for a Gaussian Channel
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Abstract— We consider systems in which the transmitter
conveys messages to the receiver through a capacity-limited
relay station. The channel between the transmitter and the
relay station is assumed to be a frequency-selective additive
Gaussian noise channel. It is assumed that the transmitter
can shape the spectrum and adapt the coding technique so
as to optimize performance. The relay operation is oblivious
(nomadic transmitters), that is, the specific codebooks used are
unknown. We find the reliable information rate that can be
achieved with Gaussian signaling in this setting, and to that end,
employ Gaussian bottleneck results combined with Shannon’s
incremental frequency approach. We also prove that, unlike
classical water pouring, the allocated spectrum (power and bit
rate) of the optimal solution could frequently be discontinuous.
These results can be applied also to a MIMO transmission
scheme. We also investigate the case of an entropy-limited relay.
We show that the optimal relay function is always deterministic,
present lower and upper bounds on the optimal performance
(in terms of mutual information), and derive an analytical
approximation.

Index Terms— Oblivious processing, Gaussian information
bottleneck, quantization, finite entropy, relay, water-pouring.

I. INTRODUCTION

RELAYING exploits intermediate nodes to achieve com-
munication between two distant nodes. Elementary

relaying can be coarsely divided into compress-and-forward
(of which amplify-and-forward is viewed as a special case) and
decode-and-forward, depending on whether the relays decode
the transmitted message or just forward the received signal to
the destination. In this paper we examine the ‘oblivious’ relay
system. The oblivious approach constructs universal relaying
components serving many diverse users and operators and
is not dependent on a priori knowledge of the modulation
method and coding. Radio Frequency (RF) heads using the
Common Public Radio Interface (CPRI) [1] is a prominent
example of the oblivious relay. This approach might also
benefit systems used in ‘cloud’ communication [2] and Cloud
Radio Access Networks (CRAN) architecture [3]. Consider
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Fig. 1. The oblivious relay (blue) serving a user communicating via a
Gaussian scalar channel (green).

the system in Fig. 1. The information source U, H(U) ≤
R[nats/sec] is encoded into Gaussian symbols X and trans-
mitted via a Gaussian scalar channel; the relay compresses
the received symbols Y , encodes them into a bit-stream B
and forwards it (without errors) to the final user’s desti-
nation by a finite rate link with H(B) ≤ C [nats/sec].
At the destination, a relay agent at the receiver side, decodes
the bit-stream into symbols Z which are now an input for the
receiver for estimation of U i.e. Û . For the user, the relay
operation is hidden as it transmits the symbol X and receives
symbol Z , while the effective channel is governed by the
transition probability PZ|X(z|x). This setting provides the
user a memoryless communication channel which forwards
symbols from the transmitter to the receiver. We choose X to
be Gaussian because of its optimality subject to a large bit-rate
constraint C and because of its ubiquitous applications. In this
setting, the user faces the familiar memoryless communication
channel and can choose freely how to utilize it, e.g. the
user can select a good error correcting code and change the
codes after the oblivious system was already implemented. The
relay is oblivious of the channel code used, that is, it holds
no information about the transmitted codewords (randomized
encoding/ nomadic transmitters, for each transmission the error
correcting code is selected randomly by the transmitter and is
unknown to the relay) and treats the channel output to be
Gaussian and i.i.d (see [4] and [5] for a more detailed presen-
tation of obliviousness). The relay performs lossy compression
of the output of the Gaussian channel and is implemented by
source coding. The trade-off between compression rate and
mutual information between channel input and compressed
channel output has closed-form expressions for the scalar and
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vector case using the Gaussian Information Bottleneck (GIB)
theorem [6]–[8]. This deviates from the classical remote rate-
distortion approach [9]–[12] (rate distortion for sub-Nyquist
sampling scheme) and [13] (sampling stationary signals sub-
ject to bit-rate constraints), since the distortion is measured
by the equivocation h(X |Z) instead of by the Minimum
Mean Square Error (MMSE) MMSE = E(X − Z)2. Since
the distribution of X is fixed, minimizing h(X |Z) means
maximizing I(X ;Z) = h(X) − h(X |Z).

We further discuss the oblivious relay and focus our
attention on the quantization process. We examine also sim-
pler quantizers (bounded by entropy instead of by mutual-
information) which can be implemented by the standard
Lempel-Ziv algorithm instead of source coding. The perfor-
mance of such quantizers that are optimal relative to an entropy
constraint was studied for a wide class of memoryless sources
(e.g. [14]–[16]). Notwithstanding, it is interesting to investi-
gate the effect of such a constraint on the relay operation.

Our Contribution: The central contribution of this paper
is operation over the frequency-selective channel, specifically
deriving the frequency-domain allocation of the power and of
the bit-rate which maximizes the information throughput of the
oblivious relay when operating over the frequency-selective
AWGN channel, see Section IV. To this end, we provide joint
original treatment of the GIB and the classical water-pouring
(some preliminary results were presented in [17]) and evaluate
the optimal power allocation, which is very special and cannot
be deduced from the classical water-pouring solution (which
is a special case when C → ∞). We employ Gaussian
bottleneck results [6] combined with Shannon’s incremental
frequency approach [18]. The incremental approach leads to a
clear solution for the frequency-selective channel setting. Our
problem can be casted as a remote source coding as analyzed
in [19] and [20] and references within but with logarithmic loss
(distortion, i.e. conditional entropy) replacing the mean square
error in [19] and [20]. Analysis of frequency-flat channels and
MMSE optimization was reported in [21] and [22].

Our further contribution, presented in Section V, is analysis
of lower complexity practical schemes, namely, lower and
upper bounds on the mutual information between the trans-
mitter and the receiver when the mutual information constraint
of the full GIB is replaced by the entropy constraint as in the
“deterministic GIB” approach of [23].

The remainder of this paper is organized as follows:
Section II provides the system model. Section III outlines
preliminaries in which we summarize quantization alterna-
tives (III-A), demonstrate the advantages of stochastic quantiz-
ers (III-B), shows that the optimal transmitting scheme dictates
independent Zi (III-C), provide the required background and
definitions for the GIB (III-D) and review the classical water-
pouring method(III-E). In Section IV, we review the main
results relevant to frequency-flat channels from [7] and [18]
and present the new derivation for frequency selective channels
and infinite-processing-time. Section V is dedicated to the
finite entropy quantizer. Conclusions and proposals for future
work are found in Section VI.

Notation: X is a random variable. x is a realization of a
random variable. We use boldface letters for column vectors

Fig. 2. A finite rate relaying operation over a fronthaul AWGN frequency
selective channel.

and sequences. Xi and xi are the i− th element in vectors X
and x, receptively. The expectation operator is denoted by E[·]
and we follow the notation of [24] for entropy H(·), differen-
tial entropy h(·), and mutual information I(·; ·). A probability
mass/distribution function is denoted by P (·) or p(·), respec-
tively. All logarithms are natural and the unit of information
is nats unless stated otherwise.

II. SYSTEM MODEL

Consider the system depicted in Fig. 2. x(t) is the trans-
mitted signal, assumed to be Gaussian, H(f) is the frequency
response of the channel linear filter, and the impulse response
is F−1 [H(f)] = h(t) (here, F ,F−1 designate the Fourier
transform and its inverse)

y(t) = x(t) ∗ h(t) + n(t),

where n(t) is normalized additive white Gaussian noise with
one-sided power spectral density N0 = 1[Watt/Hz], and
∗ designates convolution. We are interested in the normal-
ized mutual information when standard coding theorems [25]
guarantee that the associated rate can be reliably transmitted
through the system

lim
T→∞

1
2T

I
�
XT

−T ;Z
�

� IC(X ;Z). (1)

Denote XT
−T as (X(t),−T ≤ t ≤ T ), Z ∈ Rm is the output

vector (containing the compressed channel outputs Zi), m
denotes the number of symbols in a transmitted block and
is of the dimension of Z. Also, Z is entropy constrained by
H(Z) ≤ C[nats/sec], The information in (1) is also measured
in terms of [nats/sec]. Again, we seek the (one-sided) power
spectral density of the input Gaussian process Sx(f) which
maximizes IC(X ;Z) under an average power constraint in
some bandwidth W :

� W

0 Sx(f)df ≤ P . The continuous signal
x(t) in Fig. 2 is represented by discrete symbols X in Fig. 1.
The symbols X may be either standard sampling of x(t) or the
Fourier transform of x(t), the later preserves the scalar relation
between X,Y and Z in Fig. 1 in the presence of the channel
response H(f).

III. PRELIMINARIES

In this Section, we outline preliminaries in which we
summarize quantization alternatives (III-A), demonstrate the
advantages of stochastic quantizers (III-B), show that the
optimal transmitting scheme dictates independent Zi (III-C),
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provide the required background and definitions for the
GIB (III-D) and review the classical water-pouring
method (III-E).

A. Quantization Alternatives

Denote by X,Y, Z the channel input, the received signal
and the quantized output, respectively. Our system will try
to maximize I(X ;Z) which clearly determines the maximal
information rate R of the whole system if the user utilizes
good error correcting codes, while minimizing the bit-rate of
the sequence B. Here we list some possible approaches to
quantization:

1) Using the Channel Code in the Relay: If the relay would
not be oblivious, it would decode the original information
(Û) and send it as the sequence B. In this case R =
min(C, radio channel capacity) would be achieved. But in
this work the relay is oblivious.

2) Mutual Information Constrained - Stochastic Quantizer
(MUIC-SQ): A class of oblivious quantizers is stochas-
tic, as mentioned for example in [6]. For each channel
output Yi, a compressed representation Zi is obtained by
a stochastic quantizer characterized by the probability mass
function PZ|Y (zi|yi) chosen to maximize I(Xi;Zi); then Zi is
compressed and sent to the user’s decoder using the bit rate
C = I(Yi;Zi). The practical implementation is by means
of source coding on sequences. The received sequence Y
is encoded into the sequence of bits B and the destination
recovers the sequence Z from B. The relay bit rate can
be limited to C = I(Yi;Zi). A proof following the steps
of the source coding theorem [24] can be constructed. The
probability mass function PZ|Y (zi|yi) will set I(Xi;Zi) and,
thus, enable a system communication rate of R = I(Xi;Zi)
by the classic channel coding theorem.

Letting the quantizer be stochastic improves performance,
similarly to a corresponding advantage of source coding
over memoryless deterministic quantization [6]. Koch [26]
treats a stochastic quantizer, where the randomness is lim-
ited to dither known to the quantizer; this is a special
case and may be considered a deterministic time-varying
quantizer.

The optimal stochastic quantizer for Gaussian signals is the
GIB, and was thoroughly analyzed in [7] and [6]. The GIB is
a corner stone in this paper and its attributes will be specified
in Section III-D.

3) Entropy Constrained Stochastic Quantizer (EC-SQ): The
entropy constrained stochastic quantizer (EC-SQ), works in
the same way as MUIC-SQ, except that the entropy of the
compressed channel output Zi, H(Zi) (instead of I(Xi, Zi))
is bounded to be less than C. Entropy compression schemes
such as Huffman or Lempel-Ziv are added after the quantizer,
as suggested in the literature.

It is evident that in terms of mutual information I(Xi;Zi),
the EC-SQ is inferior to MUIC-SQ since

I(Yi;Zi) = H(Zi) −H(Zi|Yi) ≤ H(Zi), (2)

thus enforcing a tight constraint on PZ|Y (zi|yi). For the
Gaussian case the upper bound is the IGIB .

4) Entropy Constrained Deterministic Quantizer (EC-DQ):
This quantizer assumes deterministic mapping Zi = f(Yi)
(i.e. H(Zi|Yi) = 0), where f(·) is some function on the
channel output Yi. It is clear that for general channels it is
inferior to the EC-SQ, as the deterministic domain is a subset
of the stochastic domain. In the AWGN channel, there is a
deterministic quantizer with identical performance. This can
be proven using the following steps:

• Split the range of the channel output Yi into small
segments.

• Perform a resource allocation operation on each segment
in order to have deterministic mapping that would yield
the desired transfer function from Yi to Zi.

See rigorous proof in Appendix D.
5) Memoryless Deterministic Quantizer: The received

signal Y is mapped to a discrete valued variable Z by a
deterministic function. The function is optimized for mutual
information I(X ;Z) per symbol with a constraint on the
number of bits, or alphabet size of Z , required to represent
the quantizer output symbol. The optimization can be done
by the Lloyd algorithm. This is well covered by published
papers, e.g. [27], which also show that the optimal probability
distribution function of the transmitted signal X is discrete in
many cases.

6) Vector Quantizers: Assume a vector compression scheme
in which we group a few variables Z into small n -length vec-
tors Zk = [Zk+1, Zk+2, . . . , Zk+n], each being a deterministic
function of the vector Yk = [Yk+1, Yk+2, . . . , Yk+n] under the
constraint H(Zk) ≤ nC. Entropy coding will still be possible,
now over Zk instead of the scalars Z . This possibility leads
to the following observations:

• With large n we can implement the full GIB by com-
pressing the sequence Y into sequence Z by the MMSE
criterion under the constraint of bit-rate C.

• Vector quantizers provide many intermediate performance
levels starting at the deterministic entropy-constrained
quantizer (n = 1) and up to the GIB quantizer.

The advantage of the stochastic quantizer over the entropy
constrained quantizer is the advantage of source coding over
a scalar quantizer. Next, we shall present some attributes of
the stochastic quantizer.

B. Demonstrating the Advantages of the Stochastic Quantizer

The advantage of the stochastic quantizer is demonstrated
by a numerical example, see Fig. 3. We examine the
case of a Gaussian X over an AWGN channel with a
quantization rate C = 1[bits/symbol]. In the memoryless
deterministic quantizer case, the quantizer is the sign of
the received signal. Using Kindler et al. [28], the sign
of the received signal is the optimal one bit memory-
less deterministic quantizer, and not necessarily the opti-
mal entropy constrained deterministic quantizer. The curve
in Fig. 3 is the numerical evaluation of EX,Z log

P (z|x)
P (z) .

In the stochastic quantizer case we have, from [6],
the GIB I(X ;Z) = 1

2 log
�

1+SNR
1+SNR·e−2C

�
. The results

in Fig. 3 show the clear superiority of the stochastic quan-
tization over the deterministic one. Modifying the distribution
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Fig. 3. Mutual information and system information rate R with Gaussian
signal and two quantizers over an AWGN channel and with a quantization
rate of C = 1[bit/channel use] as a function of SNR. Binary input is also
presented for comparison.

of X would improve the rate [27] (see the improved perfor-
mance with a binary input in Fig. 3).

C. Independent Zi Achieve the Optimal Performance

We might still wonder if the stochastic quantizer, while
evidently better than the deterministic one, is optimal. That is,
the Zi in our scheme are statistically independent. Could this
scheme be outperformed if dependence between the Zi was
permitted? For example, the channel from X to Y could be a
BSC and the relay could convey information to the destination
by setting Zi to be parity bits obtained by the XOR operation
on pairs of Yi. We shall show next that the independent Zi,
each statistically dependent on a single Yi only, achieve the
best performance possible. To show this, we consider the
scheme as in Fig. 1, but instead of producing Z, the bit
sequence B = Z is derived directly from the sequence Y and
passed to the decoder together with the compression scheme.
Thus, we want to maximize I(X;Z), that is, the mutual
information of whole sequences, with a constraint on I(Y;Z).
The first term is the information rate of the whole system and
the second term is an achievable lower bound on the backhaul
bit-rate C. We can restate this question as an equivalent bot-
tleneck problem: Let X,Y,Z be sequences, each comprising
n elements Xi, Yi and Zi. Also, let the elements of X,Y be
i.i.d. and the channel X − Y be memoryless. In this case,
the bottleneck problem is finding PZ|Y(z|y) which maximizes
I(X;Z) with a constrained I(X;Y), and the question on
hand is: Is PZ|Y(z|y) = ΠiPZ|Y (zi|yi) ? The answer was
already proved positive by Witsenhausen and Wyner [29] for
discrete alphabets of X,Y and also for a Gaussian X over the
AWGN channel in Chechik et al. [6] (An alternative proof for
continuous alphabets is available in [30]).

D. Gaussian Information Bottleneck (GIB)

1) Information Rate - Scalar Channel: The GIB and its
derivation for the discrete-time signaling case was thoroughly
studied in [6], [6]–[8], and [31]. We will now give a
brief overview of the GIB. The interested reader is referred
to [7] and [8] for a full treatment. A complete derivation of

Fig. 4. Gaussian information bottleneck.

the information rate function for the vector case, as well as
the difference between the information rate function and the
rate-distortion function, namely, I(R) ≥ IRD(R), is presented
in [8].

Consider the system in Fig. 4. The GIB addresses
the following variational problem [6]: minP (z|y) I(Y ;Z) −
βI(X ;Z). In the context of the information bottleneck
method, X is called the relevance variable and I(X ;Z) is
termed relevant information. The trade-off between compres-
sion rate and relevant information is determined by the positive
parameter β. It has been shown that the optimal z is jointly
Gaussian with y and can be written as Z = αY + ξ, where
α ∈ R is scalar and ξ ∼ N (0, οξ) is independent of Y .

Definition 1: Let X − Y − Z be a Markov chain. The
information rate function I : R+ → [0, I(X ;Y )] is defined
by [7]: I(C) � maxP (z|y) I(X ;Z) subject to I(Y ;Z) ≤ C.
I(C) quantifies the maximum amount of the relevant infor-

mation that can be preserved when the compression rate is at
most C. Let us present I(C) for the channel depicted in Fig. 4.
Since X and Y are real zero-mean jointly Gaussian random
variables, they obey Y =

√
κX + N , where hκ ∈ R+ and

N ∼ N (0, ο2) is independent of X . Setting X ∼ N (0, P )
yields Y ∼ N (0, κP + ο2). The compressed representation
of Y is denoted Z = Q(Y ). By the Markovity of X −
Y − Z we have PZ|X(z|x) =

�
R PZ|Y (z|y)pY |X(y|x)dy,

where pY |X(y|x) is the transition probability distribution
function of the Gaussian channel and PZ|Y (z|y) describes
the compression mapping Q. The capacity of the Gaussian
channel pY |X(y|x) with average power constraint P and no
channel compression equals [24] (units are [nats/channel use]):
C(λ) � 1

2 log(1 + λ) with λ denoting the signal-to-noise ratio
(SNR) λ � κP

σ2 . The following corollary states a closed-
form expression for the information rate function and its
properties [7, Th. 2].

Corollary 1: The information rate function of a Gaussian
channel with SNR λ is given by

I(C) =
1
2
log

�
1 + λ

1 + λe−2C

�
. (3)

The proof is in [7]. It should be noted that it can also be
proved using the I-MMSE relation [32, Ch. 5, Sec. 7.1.3].
Fig. 5 illustrates the effect of limited-rate processing. It is
clear that the total mutual information is upper bounded by
the capacity for AWGN channels derived by Shannon [18].

E. Water-Pouring

We recall the classical water-pouring approach which yields
the maximum I∞(x; z) for C → ∞. The idea of splitting the
channel into incremental bands appears in [18] and [24], where
each incremental band of bandwidth df is treated as an ideal
(independent due to Gaussianity) band-limited channel with
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Fig. 5. GIB: Mutual information vs. rate(C) and ρ(SNR).

response H(f)df , and the result yields limC→∞ IC(x; z) �
I∞(x; z) =

� W

0 log
	
1 + Sx(f)|H(f)|2
df. Optimizing this

over Sx(f) under the power constraint yields (using the
standard Euler-Lagrange method [33]) |H(f)|2

1+Sx(f)|H(f)|2 = 1
b .

Thus, the result is (see [18, Ch. 8]) Iwater−pouring �
I∞(x; z) =

�
B log

	
b|H(f)|2
 df and the frequency region B

is given by B = {f : b− 1
|H(f)|2 ≥ 0}.

IV. WATER-POURING WITH THE OPTIMAL QUANTIZER

In this Section, we present the new derivation for frequency
selective channels and infinite-processing-time.

A. Processing Under Limited Bit-Rate C

As before, we adopt Shannon’s incremental view, taking
advantage of the fact that disjoint frequency bands are inde-
pendent under the Gaussian law and stationarity. Let 1

2C(f)
designate the number of [nats/channel use] assigned for deliv-
ering (processing) the band (f, f + df). Since we have 2 · df
independent channel uses (Nyquist) per second, the total rate
per second in each band is 1

2C(f)2df = C(f)df and, hence,� W

0 C(f)df = C. Culminating this view and incorporating (3),
we reach the equation (for simplicity we denote Sx(f) as

S(f)) I[f, S(f), C(f)] =
� W

0 log
�

1+S(f)|H(f)|2
1+S(f)|H(f)|2e−C(f)

�
df

leading to the following optimization problem:

max
S(f),C(f)


 W

0

I[f, S(f), C(f)]df

s.t.


 W

0

S(f)df = P,


 W

0

C(f)df = C. (4)

The solution of Eq. (4) follows the standard Euler-
Lagrange [33] reasoning. To that end, we follow the notation
presented in [33]. I[f, Ŝ, Ĉ] � log

�
1+Sx(f)|H(f)|2

1+Sx(f)|H(f)|2e−C(f)

�
is

the mutual information spectral density [nats/sec/Hz], where,
Ŝ � S(f), Ĉ � C(f). The Lagrangian is

L
�
f, Ŝ, Ĉ

�
= I[f, Ŝ, Ĉ] − λc · Ĉ − λs · Ŝ, (5)

where {λc, λs} ∈ 
 are Lagrange coefficient multipliers.
Differentiating Eq. (5) with respect to Ĉ, Ŝ and defining

Q̂ � exp(−Ĉ) and Xf � H(f)2 − λs − λcH(f)2, will lead
to the following equation (see complete derivation in VI-A):

0 = −H(f)2(1 − λc)Q̂2 +Xf Q̂− λsλc

1 − λc
. (6)

The quadratic equation (6) produces two curve sets
{Si(f), Qi(f)}, i ∈ {1, 2},

Si(f) =
Xf + ψi

�
X2

f − 4H(f)2λcλs

2H(f)2λs
, (7a)

Qi(f) =
Xf − ψi

�
X2

f − 4H(f)2λcλs

2H(f)2(1 − λc)
, (7b)

where ψi = (−1)i−1.
Proposition 1: We can discard the {S2(f), Q2(f)} solu-

tion, since for each frequency, regardless of H(f), I[f, Ŝ, Q̂]
is not concave in the pair {S2(f), Q2(f)}.

A rigorous proof can be found within Sec. VI-E, where
we derived that for each frequency f , the optimal values for
S(f), Q(f) are

S(f) =

⎧
⎪⎨

⎪⎩

Xf +
�
X2

f − 4H(f)2λcλs

2H(f)2λs
f ∈ Bl

0 f �∈ Bl,

(8a)

Q(f) =

⎧
⎪⎨

⎪⎩

Xf −
�
X2

f − 4H(f)2λcλs

2H(f)2(1 − λc)
f ∈ Bl

1 f �∈ Bl,

(8b)

where Bl is the set of frequencies that have non-zero resource
allocation (bit-rate and power). In general, Bl is unique unless
the channel has a flat sub-band response. The algorithm for
constructing Bl can be found in Sec. VI-C. In order to find the
appropriate values for {λc, λs} we had to use a grid search
and the following proposition was used:

Proposition 2: {λc, λs} are bounded by 0 ≤ λs ≤
maxH(f)2, 0 ≤ λc ≤ 1.

Proof: See Sec. VI-B.
In stark contrast to classical water-pouring [13], [24],

the optimal solution will frequently be discontinuous.
As shown in Fig. 11, zero resources is a singular point inside
the non-concave region. Since C(f) and S(f) can never drop
gradually down to zero, the transition will always have an
abrupt part. A simple example is the case where H(f) is con-
stant over f , the SNR is sufficient and C is rather low. In this
case an attempt to use frequency-constant S(f) and C(f) will
place us in the non-concave region; a better solution will use
only part of the available spectrum and utilize the available
nats better by transmitting less information about the channel
noise (see similar behavior in [21]). Fig. 6 demonstrates this
idea, assuming a flat channel (i.e. H(f) = 1). For a given
total power P = 2[Watt], capacity C = 0.5[nats/sec] and
allocated user’s bandwidth W = 100[Hz], we calculated the
mutual information rate when distributing the power and bit-
rate uniformly over the bandwidth B used:I [S(f), C(f)] =

B log
�

1+P/B

1+P/Be
−C
B

�
. It is clear that the best course would be

to use only part of the spectrum, namely B/W ≈ 0.3[%],
which is the maximum of the oblivious curve (blue).
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TABLE I

PERFORMANCE OVER DIFFERENT CHANNELS (ALL UNITS ARE [nats/sec])

Fig. 6. Information rate as a function of allocated bandwidth.

B. Numerical Analysis

The proposed method has been applied on different types
of channels (denoted as “Channel A”) of the form HA(f) ≡
α1N(f1, 1) + α2N(f2, 1), where N(μ, ο2) is the Gaussian
curve. We used P = 100[Watt] and C = 9[nats/sec],
while W = 10[Hz] is the allocated user bandwidth. We also
tested the “reciprocal” channel - denoted as “Channel B”
(i.e, HB(f) = max[HA(f)] − HA(f)). In each scenario,
we compared the overall information rate using the following
methods: the proposed method; uniform allocation of rate and
power; classical water-pouring, as presented in [18], for the
case of C → ∞; “limited-Rate Water-Pouring”, which is:

1) Calculate S(f) using the classical water-pouring
approach.

2) The allocated rate is: C(f) = C
P S(f).

The results are summarized in Table I. Fig. 7 contains curves
of S(f), C(f), H(f) normalized to a unity average, and
also a (normalized) classical water-pouring power allocation
curve, S(f)Water−Pouring , for comparison to the proposed
approach. It should be noted that the curves S(f), C(f) of
Fig. 7(b) are not unique (algorithm dependent) since the chan-
nel has a flat response; however, the total mutual information
is maximized nonetheless. It is clear from the results that:

• The proposed approach for allocating the power S(f)
and rate C(f) is indeed optimal and superior to the other
methods that were presented. Evidently, the rate is upper
bounded by the classical water-pouring result (C → ∞).

It is evident that

I∞(X ;Z) ≥ IC(X ;Z)|Our Optimal Scheme

≥ IC(X ;Z)|Limited-Rate Water-Pouring

≥ IC(X ;Z)|Uniform Allocation

• The price of obliviousness is demonstrated; as for a
cognitive relay the reliable rate is min(I∞(X ;Z), C),
achieved by a relay that decodes the signal and then trans-
mits the decoded information at the maximum allowable
rate (C).

V. FINITE OUTPUT ENTROPY H(Z)

In this section we analyze the performance of finite output
entropy quantizers which can be implemented by a standard
Lempel-Ziv algorithm, at a small cost in terms of performance.
Analytic solutions for optimal information bottleneck quan-
tizers are rarely available; here, we investigate optimization
algorithms, since most practical algorithms cannot guarantee
reaching a global optimum [34].

A. Deterministic Quantizer Model and Preliminaries

Reviewing the scalar bottleneck problem, we assume

Y =
√
snr ·X +N, (9)

where X and N are unit variance independent Gaussian sig-
nals, and, hence, Y designates the output of a scalar Gaussian
channel with a Gaussian input. The Finite-Entropy-Bottleneck
Problem, reads: Find the maximum of I(X ;Z) under the
Markov conditionX−Y −Z , while H(Z) ≤ C. In mathemati-
cal form: maxPZ|Y (Z|Y ):H(Z)=C I(X ;Z). As mentioned in the
preliminaries, the deterministic solution is optimal. In order to
make computation feasible, the search was carried out for a
K-bin or (K-level) deterministic quantizer Q̂. Q̂ maps the real
input Y into one of K-bins, Z = Q̂(Y ), producing discrete
outputs with alphabet Z ∈ χ, |χ| < ∞. Bear in mind that
H(Z) ≤ C, but now H(Z|Y ) = 0 since the quantizer is
deterministic: hence I(Y ;Z) = H(Z). First we list a few
definitions: Assume that Z = zi if Y ∈ [qi−1, qi]. We know
that PY |X(y|x) = N

�√
snr ·x, 1�

, οY =
√

1 + snr and hence
the probabilities PZ|X(z|x) and PZ(z) are

PZ|X(zi|x) = pY |X(qi−1 ≤ y ≤ qi|x)
= Q

�
qi−1 −

√
snr · x

�
−Q

�
qi −

√
snr · x

�
,

PZ(zi) = pY (qi−1 ≤ y ≤ qi) = Q
�qi−1

οY

�
−Q

� qi
οY

�
.
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Fig. 7. (a) Allocated (normalized) power and bit-rate vs arbitrary channel and comparison to the allocated power resulting from water-pouring method; user
bandwidth W = 10[Hz]. (b) An example of the abrupt nature of the optimal spectral allocation of power and bit-rate vs flat channel and comparison to the
allocated power resulting from water-pouring method; user bandwidth W = 10[Hz].

Fig. 8. (a) Lower bound: setting the probability mass function PZ (z) s.t H(Z) ≤ C, for each bit-rate constraint C, we present the numerical result for the
optimal quantizer, the GIB upper bound, and the lower bound resulting from setting H(PZ ) ≤ C. (b) Lower bound: Uniform quantization. For each bit-rate
constraint C, we present the numerical result for the optimal quantizer, the GIB upper bound, and the lower bound resulting from uniform quantization of
the channel output.

The resulting H(Z|X), H(Z) and I(X ;Z) are

H(Z|X = x) =
�

zi∈χ

�
− PZ|X(zi|x) · log

�
PZ|X(zi|x)

��
,

H(Z|X) =


dF (x)H(Z|X = x),

H(Z) =
�

zi∈χ

�
− PZ(zi) logPZ(zi)

�
,

I(X ;Z) = H(Z) −H(Z|X).

Q(x) denotes the complementary Gaussian distribution func-
tion 1√

2π

� ∞
x e−t2/2dt. F (x) is the cumulative distribution

function (cdf) of x. Since both the information source and
the noise are symmetric, we limit ourselves to the class of
symmetric quantizers such as Eq. (10). The optimal quantizer
problem can be stated as follows: max{qi}:H(Z)≤C I(X ;Z).
The maximization is performed over the quantizer thresh-
olds, {qi}. In the following subsections we present numerical
results of the problem under various conditions, and will gain
some insights on the nature of the optimal quantizer and
develop bounds and an analytical approximation.

B. Numerical Analysis of the Entropy Constrained
Deterministic Quantizer

Our numerical optimization yields a 3-bit symmetric quan-
tizer with thresholds

{qi}7
1 = {−q3,−q2,−q1, 0, q1, q2, q3}. (10)

The thresholds were optimized to maximize the mutual infor-
mation I(X ;Z) for various types of SNR and C. In Fig. 8(a)
we see the resulting mutual information, as well as upper and
lower bounds. From the results we see that:

• The mutual information I(X ;Z) increases with SNR
and C

• The mutual information is bounded by the GIB.

C. The Effect of an Entropy Constraint on the Deterministic
Quantizer Operation

We examine the case of an entropy constraint deterministic
quantizer (C ≤ log2 |χ|, where Z ∈ χ, χ is the alphabet
of Z). From Fig. 9, it is evident that increasing the number
of levels of the quantizer above the entropy constraint has
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Fig. 9. Entropy constraint deterministic quantizer C = 2[bits]. The
performance with six and eight levels is nearly identical.

almost no effect on the mutual information; thus the number of
bins used was sufficient. The mutual information is bounded,
as expected, by log2 |χ|. One can see that even in a low SNR
scenario the difference between the quantizers is negligible.

D. Lower and Upper Bounds on the Optimal Performance

We now try to bound the mutual information and apply an
upper bound and two lower bounds. As before, the GIB can
serve as an upper bound. For the lower bound (which are also
interesting achievability schemes), we tested two schemes:

1) Lower Bound - Setting Output Entropy H(Z) = C:
We chose a quantization scheme which will lead to an output
entropy H(Z) = C. In order to assure the required entropy,
we changed the cardinality of the output |Z| and the induced
(probability mass function) PZ(z) using the method described
in Sec. VI-F. Once the output probability mass function PZ(z)
was set, the (symmetric) quantizer thresholds, {qi}|Z|−1

1 , can
be found by taking an auxiliary variable νi: νi =

�i
z=1 PZ(z).

The threshold qi = οY ·Q−1(νi), where Q−1(x) denotes the
inverse of Q(x). Fig. 8(a) demonstrates these results.

2) Lower Bound - Uniform Quantizer: We tested a uniform
quantizer, in which the quantizer step q was increased until
the resulting probability mass function PZ(z) of the quantizer
output had output entropy H(PZ) = C. The output of the
uniform quantizer has infinite cardinality since its input is
unbounded. To that end, we discarded values that are higher (in
their absolute value) than MοY , ensuring output cardinality
of |Z| ≈ 2MσY

q for some large M .
Fig. 8(b) presents the results. For each bit-rate constraint C,

we plot the numerically optimized quantizer, the GIB upper
bound, and the lower bound resulting from uniform quantiza-
tion. As one can see, the lower bound is fairly near to the curve
of the numerically optimized quantizer. This method produced
a tighter bound than the previous.

E. Analytic Approximation of Optimal Performance

Let Z −Y −X be the inverse of the Markov chain defined
in Sec. V and Eq. (9). Define Y − X , the inverse channel,
as X = E[X |Y ] + (X − E[X |Y ]). Thus, X can also be

written as X =
√

snr
1+snrY + 1√

1+snr
M. Since E[X |Y ] = αY

(where α =
√

snr
1+snr ), and due to the fact that the error term

X − E[X |Y ] is independent of the measurement Y , M is a
normalized Gaussian variable independent of Y . Having done
so, note that

I(X ;Y, Z) = I(X ;Z) + I(X,Y |Z)
= I(X ;Y ) + I(X ;Z|Y )
= I(X ;Y ) + 0.

I(X ;Z|Y ) = 0 due to Markovity, leading to I(X ;Z) =
I(X ;Y ) − I(X,Y |Z). Then I(X ;Y |Z) is no more than a
standard Gaussian channel from Y → X , but Y is conditioned
on Z since Gaussian inputs are optimal given the variance
constraint

I(X ;Y |Z) ≤ EZ

�
1
2

log
� snr

1 + snr
V AR(Y |Z) + 1

�
�

,

where V AR(Y |Z) = EY |Z{[Y−E(Y |Z)]2|Z}. Incorporating
the Jensen inequality will lead to

I(X ;Y |Z) ≤ 1
2

log
� snr

1 + snr
MMSE(Y |Z) + 1

�
, (11)

where the MMSE(Y |Z) = E[Y − E(Y |Z)]2 is the MMSE
error of Y given Z . At this point we can utilize the results of
Gish and Pierce [14], where E[Y − E(Y |Z)]2 is minimized
under the constraint of the entropy of Z,H(Z), leading to the
lower bound

I(X ;Z) ≥ 1
2

log (1 + snr)

− 1
2

log
� snr

1 + snr
MMSE(Y |Z) + 1

�
. (12)

Now, from Gish (when large output entropy is permit-
ted or the quantization interval tends to zero), C[bits] =
H(Z) ≈ 0.5 log2

�
σ2

Y

MMSE(Y |Z)

�
+ 0.255[bits], where

ο2
Y = 1 + snr; hence (converting bits to nats),

MMSE(Y |Z) ≈ (1 + snr)e(0.354−2C). (13)

One can see that the quantization noise, MMSE(Y |Z)
decreases as C → ∞, and increases with SNR (as the
power of Y increases with it). As mentioned by Gish,
the approximation is tight for low quantization noise and
high output entropy (i.e. both MMSE(Y |Z) and the SNR
tend to 0, C → ∞). Incorporating (13) into (12) will lead to
I(X ;Z) ≥ 1

2 log
�

1+snr
1+snr·e(0.354−2C)

�
. Massey [35] has proved

that in an AWGN channel at low SNR and with a zero-mean
input, the capacity is the same function of the mean power
regardless of the input’s probability distribution function. It is
also evident that zeroing the added component 0.354[nats]
leads to the GIB and Gish’s bounds coinciding, since

MMSE(Y |Z) = (1 + snr)e−2C . (14)

Incorporating (14) in (11) will lead exactly to the GIB bound,
which is achieved in the case where the inverse channel input
Y |Z is Gaussian, as GIB dictates. Fig. 10 demonstrates these
results. Thus, the difference in performance at a low SNR and
high C between the stochastic mutual information constrained
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Fig. 10. Analytical approximation: For each bit-rate constraint C, we present
the numerical result for the optimal quantizer, the GIB upper bound, and the
analytical approximation.

quantizer and the deterministic entropy constrained quantizer
is exactly the 0.255 bits per symbol in the relay bit-rate C.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We presented and analyzed the rate- and power-limited
oblivious relay over the frequency selective AWGN chan-
nel and derived the optimal transmit power spectral density
and the optimal allocation of the relay bit-rate for Gaussian
signaling. Our results relate directly to the classical water-
pouring method, as well as to the Gaussian bottleneck frame-
works. The advantage of this approach over other methods
was demonstrated. Our problem can be viewed as a remote
source coding [19] but with the logarithmic loss (distortion)
replacing the mean square error and leading to basically
different conclusions. We also investigated the class of finite
entropy quantizers and, while it is difficult to find an analyt-
ical expression for the optimal quantizer, we devised lower
and upper bounds for this case. We showed that with a
Gaussian channel, a deterministic relaying is optimal. Our
results on water-pouring also apply directly to the frequency
dependent vector (MIMO) channels. Such channels can be
transformed to a set of parallel independent channels [36].
Thus, equation (17) and the optimization algorithms can be
applied on them with no need for modification by con-
sidering those independent channels as occupying indepen-
dent frequency bands. A modern implementation of such a
MIMO system might use the OFDM framework in which the
MIMO channel diagonalization is convenient to implement
(see, for example, [37]). One could extend the method pre-
sented in this paper to the setting where only partial channel
state information is available to the transmitter. For example,
the transmitter may assume a flat channel and a lower bound
on the SNR at the relay. We expect such an approach to
improve the performance with respect to other methods since
the optimal scheme would use only part of the spectrum,
as presented above.

APPENDIX

A. Solution of Eq. (5)

Differentiating Eq. (5) with respect to Ĉ, Ŝ leads to
∂I[f,Ŝ,Ĉ]

∂Ŝ
− λs = 0, ∂I[f,Ŝ,Ĉ]

∂Ĉ
− λc = 0. Hence,

0 =
H(f)2(1 − e−Ĉ)

(1 + ŜH(f)2)(1 + ŜH(f)2e−Ĉ)
− λs, (15a)

0 =
ŜH(f)2e−Ĉ

1 + ŜH(f)2e−Ĉ
− λc. (15b)

In order to simplify notation we use the following definitions:
Q̂ � exp(−Ĉ), Xf � H(f)2 − λs − λcH(f)2. From (15b) it
is clear that

Ŝ =
λc

Q̂H(f)2(1 − λc)
. (16)

Substituting (16) in (15a) will lead to Eq. (6). We now have
two sets of solutions for {Ŝ, Q̂}, where ψi = (−1)i−1, then
the solution for {Ŝ, Q̂} is

Ŝi =
2λc

Xf − ψi

�
X2

f − 4H(f)2λcλs

,

Q̂i =
Xf − ψi

�
X2

f − 4H(f)2λcλs

2H(f)2(1 − λc)
.

Multiplying the denominator and numerator by Xf +
ψi

�
X2

f − 4H(f)2λcλs will lead to

Ŝi =
Xf + ψi

�
X2

f − 4H(f)2λcλs

2H(f)2λs
, (17)

Q̂i =
Xf − ψi

�
X2

f − 4H(f)2λcλs

2H(f)2(1 − λc)
. (18)

At this point, we continue in accordance with Proposition 1
and discard the {Ŝ2, Q̂2} curve since it is a non-concave
solution.

B. Proof of Proposition 2

By investigating the derivatives of I[f, Ŝ, Ĉ] w.r.t {Ŝ, Ĉ}
and taking into account that Ŝ ≥ 0, Ĉ ≥ 0 one can see that

λs =
∂I[f, Ŝ, Ĉ]

∂Ŝ
=

H(f)2(1 − e−Ĉ)

(1 + ŜH(f)2e−Ĉ)(1 + ŜH(f)2)
> 0,

(19a)

λs =
∂I[f, Ŝ, Ĉ]

∂Ŝ
≤ H(f)2 ≤ maxH(f)2, (19b)

λc =
∂I[f, Ŝ, Ĉ]

∂Ĉ
=

ŜH(f)2e−Ĉ

(1 + ŜH(f)2e−Ĉ)
≥ 0, (19c)

λc =
∂I[f, Ŝ, Ĉ]

∂Ĉ
=

ŜH(f)2e−Ĉ

(1 + ŜH(f)2e−Ĉ)
≤ 1. (19d)

The bounds for {λc, λs} follow from (19).
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C. Constructing the Set of Operating Frequencies Bl

We perform a bounded grid search (see Proposition 2) on
{λs, λc} that will yield the maximum mutual information:� W

0
I[f, S(f), Q(f)]df. For each λs, λc, the produced curves

of S(f), Q(f) (and hence, S(f), C(f)) might not meet the
resource constraint (

� W

0 S(f)df > P or
� W

0 C(f)df > C).
At this point, we sort I[f, S(f), Q(f)] and discard the frequen-
cies (i.e. S(f) = 0, Q(f) = 1) that contribute least to the total
mutual information, until compliance. The set of frequencies
that were not discarded is Bl.

D. Proof of Equivalence Between Entropy Constraint
Stochastic and Deterministic Quantizers

A stochastic quantizer with limited H(z) over the AWGN
channel is characterized by PZ|Y (z|y). We construct a deter-
ministic quantizer with the same performance as follows.
Divide the range of y into segments γj small enough so that in
each segment pY |X(y|x) changes as little as desired. Denote
by yj the value of y in the center of γj . Divide each segment
γj into subsegments, each mapped into a different zk by the
deterministic quantizer so that PZ|Y (zk|γj) is preserved. The
division is straightforward since in each segment pY |X(y|x) is
as constant as desired for all x and, clearly, so is pY (y). Then,
the probability of each subsegment when γj is given is the ratio
of the length of the subsegment to the length of the segment.
Thus, in each segment, each zk is mapped to a subsegment the
length of which is proportional to PZ|Y (zk|γj) in the original
stochastic quantizer. To prove equal performance of both
the quantizers it is sufficient to establish that PZ|X(zk|x) is
preserved since it determines I(x; z), PZ(z) and H(z). For the
stochastic quantizer and using the relations pY (y) = pY (yj),
pY |X(y|x) = pY |X(yj |x) holding to any desired accuracy in
each segment, we have

PZ|X(zk|x) =

 ∞

−∞
PZ|Y (zk|y)pY |X(y|x)dy (20a)

=
�

j




γj

PZ|Y (zk|y)pY |X(y|x)dy (20b)

=
�

j




γj

PZ|Y (zk, y)
pY (y)

pY |X(y|x)dy (20c)

=
�

j

pY |X(yj|x)
pY (yj)




γj

pZ,Y (zk, y)dy (20d)

=
�

j

pY |X(yj|x)
pY (yj)

pZ,Y (zk, γj)dy (20e)

=
�

j

pY |X(γj |x)
pY (γj)

pZ,Y (zk, γj)dy (20f)

=
�

j

pY |X(γj |x)PZ|Y (zk|γj)dy. (20g)

Where (20a) stems from Markovity. (20g) clearly also holds
for the deterministic quantizer.

E. Proof of Proposition 1

In this subsection we prove that we can discard the
solution {S2(f), Q2(f)} of (17), based on the concavity

of I[f, S(f), C(f)] on the set {S(f), C(f)} at each fixed
frequency f (for simplicity we discard the channel dependence
from now on and denote I[S(f), C(f)]). To this end, we shall
prove that:

• Any point in the optimal solution, cannot reside in the
non-concave region of I[S(f), C(f)].

• The regions of concavity of I[S(f), C(f)] coincide with
the {S1(f), C1(f)} solution.

The optimal solution at any frequency f cannot be in the
non-concave region of I[S(f), C(f)], because such a solution
can be improved as follows: Suppose the solution assigned the
resources df ·S and df ·C in an infinitesimal frequency band df
around f such that I[S(f), C(f)] is not concave at this point.
Then, the df band can be split into two sub-bands with the
resource assignment perturbed in each, but with the sum of the
resources in df unchanged while increasing the performance I
in df using the non-concavity. This is to be expected since
our optimization equations are necessary but not sufficient
conditions of global optimality [33]. Since we are dealing
with a single frequency, H(f) is constant and its influence is
only a scaling of S(f). Let us rewrite the Lagrangian at (5):

L = log

�
1+S

1+Se−C

�
− λsS − λcC and equation (17) becomes

(remembering that Q � e−C , C = −log(Q))

S =
1 − λc − λs + ψi

�
(1 − λc − λs)2 − 4λcλs

2λs
, (21a)

Q =
1 − λc − λs − ψi

�
(1 − λc − λs)2 − 4λcλs

2(1 − λc)
. (21b)

We can also write λs, λc as a function of (S,Q):

λc = − ∂L

∂C
=

SQ

1 + SQ
, (22a)

λs = −∂L
∂S

=
1

1 + S
− λc

S
. (22b)

We would like to choose only the concave solution, that is to
choose (S,C) such that

∂2I

∂S2

∂2I

∂C2
− ∂2I

∂S∂C

∂2I

∂C∂S
≥ 0, (23a)

∂2I

∂S2
≤ 0 and

∂2I

∂C2
≤ 0. (23b)

We then prove that regions with a value of Ψi = 1 and
concavity are identical.

Lemma 1: Different ψi in (21) enforce different (S,C).
Proof: Each (S,C) pair corresponds by (22) to a unique

(λs, λc). Thus, the same (S,C) cannot be the outcome of two
distinct (λs, λc) with different ψ.

The next step will be to show that the lines S(λs, λc) =
f(C;λs, λc) that split the regions of concavity and the sign
of ψ coincide. Let us derive the dividing line between the ±
regions in (21). At the dividing line (1+λc+λs)2−4λcλs must
be zero by the proof of Lemma 1 and the fact the functions
are continuous, so at any point the dividing line must be the
result of (21) regardless of the value of ψ.

Particularly: two points infinitesimally near and each on a
different side of the dividing line have the same S,C in the
limit and, on the other hand, also the same (λs, λc) by (22),
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Fig. 11. Unified plot of concavity/sign regions.

so in the limit the value of ψ will not matter. (1−λc −λs)2−
4λcλs = 0, leading to

λs,i = (λc + 1) + ηi

�
4λc, (24)

where ηi = (−1)i−1. Substituting (24) back into (21) yields
Si = 1−λs,i−λc

2λs,i
= λc+ηi

√
λc

λc+1+2ηi

√
λc
. The allocated power Si must

be non-negative; hence, by elimination, we discard η1:

Splus/minus =
−(λc −

√
λc)

λc + 1 − 2
√
λc

=
√
λc

1 −√
λc

, (25)

where Splus/minus is S on the dividing line defined by the sign
of ψi. Remembering that Q = 1

S
λc

1−λc
and C = −log(Q) we

have the curve (S(λc), C(λc)). We now examine the concavity
regions of (23). We use the following derivatives:

∂2I

∂S2
= − 1

(1 + S)2
+

e−2C

(1 + Se−C)2

= − 1
(1 + S)2

+
λc

S2
, (26a)

∂2I

∂C2
=

S2e−2C

(1 + Se−C)2
− Se−C

1 + Se−C
= λ2

c − λc, (26b)

∂2I

∂S∂C
=

∂2I

∂C∂S

= − Se−2C

(1 + Se−C)2
+

e−C

1 + Se−C

=
1
S

(λ2
c − λc). (26c)

It is easy to see that ∂2 I
∂S2 < 0 and ∂2 I

∂C2 < 0, but we
need to examine the sign regions of ∂2 I

∂S2
∂2 I
∂C2 − ∂2 I

∂S∂C
∂2 I
∂C∂S .

Substituting (26) in (23) we get

0 =
∂2I

∂S2

∂2I

∂C2
− ∂2I

∂S∂C

∂2I

∂C∂S

=
�
− 1

(1 + S)2
+
λc

S2

��
λ2

c − λc

�
−

� 1
S

(λ2
c − λc)

�2

. (27)

Eq. (27) leads to the following quadratic equation in S:
S2(λc − 1) + 2Sλc + λc = 0.

Once more, we get to solution

Si =
λc + ηi

√
λc

1 − λc
=

√
λc(

√
λc + ηi)

1 − λc
. (28)

We can discard η2(−) in order to ensure a non-negative
solution for Si, leading to Sconcave/convex =

√
λc

1−√
λc
, which is

exactly the dividing line as in (25). Thus, we have that regions
with the sign of ψ and concavity/convexity regions of (S,C)
are identical (since λc determines the same unique S in both
cases and (λc, S) determine a unique C). This phenomenon
can be easily demonstrated also numerically. We choose a
square domain of (S,C); calculate (λs, λc) by (22) and choose
the correct sign function Ψi in order to get back (S,C).
Once the sign is set, we test for concavity. Fig. 11 shows
that the regions of concavity and sign are identical. In this
case we select the plus sign in order to get the concave
solution. To conclude, let us investigate the lower limit on C
using (25): Q = 1

S · λc

1−λc
=

√
λc

1+
√

λc
, and hence, limλc→1 C =

limλc→1 −log(Q) = log(2). This is the analytic derivation of
the 1[bits/Hz] limit.

F. Calculating PZ (Z) s.t. H(Z) = C

This algorithm is designed to calculate the (entropy-limited
deterministic) quantizer’s output probability mass function, Z ,
that would meet the entropy constraint. The main idea here is
to set an appropriate alphabet size |Z|, which is dependent
upon C. If eC is a natural number, the alphabet size would
be |Z| = eC and the probability for each output would
be e−C . If not, we define the alphabet size |Z| = �eC�.
Setting equal probability to this alphabet would yield output
entropy H(Z) > C. At this point, we can reach the desired
entropy by gradually decreasing the probability of one of the
outcomes, say Z = 1, and increasing (uniformly) the others,
thus reaching the desired entropy (H(Z) = C).
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