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Abstract

Background: Welding involves exposure to fumes, gases and radiant energy that can be
hazardous to human health. Welding fumes (WFs) comprise a complex mixture of metallic
oxides, silicates and fluorides that may result in different health effects. Inhalation of WFs in
large quantities over a long periods may pose a risk of developing neurodegenerative diseases
(NDGDs), but the nature of this risk is poorly understood. To address this we performed
transcriptomic analysis to identify links between WF exposure and NDGDs.
Methods: We developed quantitative frameworks to identify the gene expression relation-
ships of WF exposure and NDGDs. We analyzed gene expression microarray data from
fume-exposed tissues and NDGDs including Parkinson’s disease (PD), Alzheimer’s disease
(AD), Lou Gehrig’s disease (LGD), Epilepsy disease (ED) and multiple sclerosis disease
(MSD) datasets. We constructed disease-gene relationship networks and identified dysreg-
ulated pathways, ontological pathways and protein-protein interaction sub-network using
multilayer network topology and neighborhood-based benchmarking.
Results: We observed that WF associated genes share 18, 16, 13, 19 and 19 differentially
expressed genes with PD, AD, LGD, ED and MSD respectively. Gene expression dysregu-
lation along with relationship networks, pathways and ontologic analysis indicate that WFs
may be linked to the progression of these NDGDs.
Conclusions: Our developed network-based approach to analysis and investigate the ge-
netic effects of welding fumes on PD, AD, LGD, ED and MSD neurodegenerative diseases
could be helpful to understand the causal influences of WF exposure for the progression of
the NDGDs.

Keywords: Welding fumes, Alzheimer’s disease, Parkinson’s disease, Epilepsy disease,
Neurodegenerative diseases.
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1. Introduction

Welding processes can expose an operator fumes, gases and radiant energy, often in a
confined space. Thus, welding fumes (WFs) are recognised as a particular health hazard
[1], comprising complex mixtures of metallic oxides, silicates and fluorides as well as heavy
metal contaminants such as cadmium, aluminium, chromium, copper and lead [2, 3]. A
welder may inhale these fumes in significant quantities over an extended period of time, and
an in addition to the risk of developing pulmonary ailments other very significant disease
risks are emerging, notably neurodegenerative diseases (NDGDs) [1, 4].

NDGDs are a collective term for a heterogeneous group of disorders that are incurable
and characterized by the progressive degeneration of the function and structure of the central
nervous system [5]. NDGDs primarily affect the neurons of the central nervous system and
progressively damage their function. Neurons are very vulnerable to injury and normally do
not divide or replace themselves directly, making damage repair slow [6, 7]. For this reason
NDGDs can be devastating and permanent with few options for treatment. To understand
how this such damage can occur we used a bioinformatic approach to investigate how welding
fume (WF) actions on tissues may influence development of PD, AD, LGD, ED and MSD .

PD is the second-most common neurologic disease that affects neural cells in the brain
which produce dopamine in the substantia nigra [8, 9]. There are several symptoms of PD
include tremors, muscle rigidity, and changes in gait and speech. Welding fumes contain
Manganese that can develop Parkinsons disease [10, 11]. The AD is the most common type
of incurable dementia that causes problems with progressive memory loss and other cogni-
tive abilities. Existing medical treatments for AD produce only a modest improvement of
symptoms but there is currently no cure [12]. Aluminum exposure to welding is a risk factor
to produce AD. LGD also cognizant as Amyotrophic lateral sclerosis (ALS), is a neurode-
generative disease that progressively damages motor neurons and muscle atrophy controlling
voluntary muscle movement. The initial symptoms of LGD are muscle weakness or stiffness,
can bring death by progressive muscular paralysis and respiratory system failure within 2 to
5 years. US Food and Drug Administration (FDA) approved Riluzole and Edaravone drugs
that may prolong LGD survival. Nevertheless, there is no effective cure or prevention for
this devastating disease [13, 14]. ED is a heterogeneous group of neurodegenerative disorder
that affects neural cells in the brain which are recognized by recurrent seizures or unusual
behavior, awareness and sensations suffering over 60 million people in the world. AEDs are
Current anti-epileptic drugs that can minimize symptoms but there is no permanent cure or
prevention of ED [15]. MSD is a severe neurodegenerative disorder that attacks the neurons
of the central nervous system in the spinal cord and brain, on young adults most commonly
[16]. The symptoms of MSD include muscle weakness, trouble with sensation and blindness
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. Medical treatments of MSD can prolong patient survival but there is no permanent cure or
prevention strategy for MSD. Manganese exposure to welding is thought to be an important
risk factor on the progression of LGD, ED and MSD [17].

Our study employed a systematic and quantitative approach to identify welding fume-
responding genes (WFGs) which may indicate a link to development of NDGDs. For these
purposes, we studied several NDGDs including PD, AD, LGD, ED and MSD. To under-
stand the effects of WFs on NDGDs, we examined gene expression dysregulation, disease
association network, dysregulated pathway, gene expression ontology and protein-protein
interaction. We also investigated the validation of our study by using the gold benchmark
databases (dbGAP and OMIM).

2. Materials and Methods

2.1. Datasets employed in this study

To investigate the effects of WFs on NDGDs at the molecular level, we used gene expres-
sion microarray data. In this study, we used Gene Expression Omnibus from the National
Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/geo/). We
analyzed 6 different datasets for our study with accession numbers GSE62384, GSE19587,
GSE28146, GSE833, GSE22779 and GSE38010 [18, 19, 20, 21, 22, 23]. The WF dataset
(GSE62384) is a result of gene expression analysis of fresh welding fumes influence on upper
airway epithelial cells (RPMI 2650). This Data is collected from the people with spark-
generated welding fumes at high (760 g/m3) and low (85 g/m3) concentrations. The donors
inhaled welding fumes for 6 hours continuously, followed by zero hours or four hours post-
exposure incubation. The PD dataset (GSE19587) is taken from 6 postmortem brains of PD
patients and from 5 control brains. The AD dataset (GSE28146) is a microarray data on
RNA from fresh frozen hippocampal tissue blocks that contain both white and gray matter,
potentially obscuring region-specific changes. The LGD dataset (GSE833) is an Affymetrix
Human Full Length HuGeneFL [Hu6800] Array. In this data, postmortem spinal cord grey
matter from sporadic and familial ALGD patients are compared with controls. The ED
dataset (GSE22779) is a gene expression profiles of 4 non-leukemic individuals (1 healthy
and 3 with epilepsy) is generated from the mononuclear cells isolated from the peripheral
blood samples before, and after 2, 6, and 24 hours of in-vivo glucocorticoid treatment. The
MSD dataset (GSE38010) is a microarray data of multiple sclerosis (MS) patients brain
lesions compared with control brain samples.

2.2. Overview of analytical approach

We used systematic and quantitative approach to identify the effect of WFs on the
progression of the NDGDs using different sources of available microarray datasets. The
graphical representation of this approach is shown in figure 1. This approach included
gene expression, signaling pathway, Gene Ontology (GO) and protein-protein interaction
analyses. This approach also used Gold benchmark data to verify the validity of our study.
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Figure 1: Flow-diagram of the analytical approach used in this study.

2.3. Analysis methods

Gene expression analysis using microarrays is a global and popular method to develop
and refine the molecular determinants of human disorders that have proven to be a sensitive
method. We used these technologies to analyze the gene expression profiles of Parkinson’s
disease (PD), Alzheimer’s disease (AD), Lou Gehrig’s disease (LGD), Epilepsy disease (ED)
and Multiple Sclerosis disease (MSD) to find the effects of welding fumes on them [24, 25].
To uniform the mRNA expression data of different platforms and to avoid the problems
of experimental systems, we normalized the gene expression data (disease state or control
data) by using the Z-score transformation (Zij) for each NDGD gene expression profile using

Zij =
gij−mean(gi)

SD(gi)
,

where SD implies the standard deviation, gij represents the value of the gene expression
i in sample j. After this transformation we can directly compare of gene expression values of
various diseases under different platforms. We applied two conditions for t-test statistic. We
performed unpaired T-test to identify differentially expressed genes in patients over control
data and selected significant genes. We have chosen a threshold of at least 1 log2 fold change
and a p-value of <= 1 ∗ 10−2.

We applied the topological and neighborhood based benchmark methods to find gene-
disease associations. Gene-disease network (GDN) was constructed by using the gene-disease
associations, where the nods in the network represent either gene or disease [26, 27]. This
network can also be characterized as a bipartite graph. The diseases are connected in
GDN when they share at least one or more significant differentially expressed genes. These
topological and neighborhood based benchmark methods were adopted from our previous
studies [28].

Let D is a specific set of diseases and G is a set of dysregulated genes, gene-disease
associations attempt to find whether gene g ∈ G is associated with disease d ∈ D. If Gi and
Gj, the sets of significant dysregulated genes associated with diseases Di and Dj respectively,
then the number of shared dysregulated genes (ng

ij) associated with both diseases Di and
Dj is as follows [29]:

ng
ij = N(Gi ∩Gj) (1)

The common neighbours are the based on the Jaccard Coefficient method, where the
edge prediction score for the node pair is as [29]:

E(i, j) =
N(Gi ∩Gj)

N(Gi ∪Gj)
(2)
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where G is the set of nodes and E is the set of all edges. We used R software packages
”comoR” [30] and ”POGO” [28] to cross check the genes-diseases associations.

To find molecular pathways of several NDGDs, we have analyzed pathway and gene
ontology using Enrichr (https : //amp.pharm.mssm.edu/Enrichr/), a comprehensive gene
set enrichment analysis web-based tool [31]. We used STRING (https : //string − db.org.)
for analyzing protein-protein interactions [32].

3. Results

3.1. Gene Expression Analysis

To investigate the potential effects of WFs on NDGDs, we analyzed the gene expression
microarray data from the National Center for Biotechnology Information (NCBI) (http :
//www.ncbi.nlm.nih.gov/geo/). We found that 903 genes were differentially expressed for
WF exposure with adjusted P <= .01 and |logFC| >= 1. Among them, 392 and 511 were
up and down regulated respectively. Similarly, our analysis identified the most significant
differentially expressed genes for each NDGD after various steps of statistical analysis. We
identified differentially expressed genes, 774 (263 up and 511 down) in PD, 565 (291 up and
274 down) in AD, 501 (296 up and 205 down) in LGD, 725 (350 up and down) in ED and
834 (455 up and 388 down) in MSD. The cross-comparative analysis was also performed to
find the common differentially expressed genes between WFs and each NDGD. We observed
that WFs shares 18, 16, 13, 19 and 19 differentially expressed genes with PD, AD, LGD, ED
and MSD respectively. To find the significant associations among these NDGDs with WF
exposure, we built two separate disease relationships networks for up and down-regulated
genes, centered on the WF-affected genes as shown in figure 2 and 3. Two diseases are
associated with each if there exist one or more common genes in between these diseases [27].
Noticeably, 2 significant genes, N4BD2L2 and NAAA are commonly differentially expressed
among WF exposure, LGD and WD; one gene DAAM1 is commonly dysregulated among
WF exposure, ED and MSD.

3.2. Pathway and Functional Association Analysis

Pathways are the key to know how an organism reacts to perturbations in its internal
changes. The pathway-based analysis is a modern technique to understand how different
complex diseases are related to each other by underlying molecular or biological mechanisms
[33]. We analyzed pathways of the common differentially expressed genes using Enrichr, a
comprehensive gene set enrichment analysis web-based tool. Pathways of the commonly
dysregulated genes in between WFGs and each NDGD were analyzed using four databases
includes KEGG, WikiPathways, Reactome and BioCarta. We combined pathways from
four mentioned databases and identified the most significant pathways of each disease after
various steps of statistical analysis.

We observed that PD has five significant pathways as shown in table 1. Among these
pathways, ’Glutamate Neurotransmitter Release Cycle’ is responsible to release the gluta-
mate from the presynaptic neuron and its binding to glutamate receptors on the postsynaptic
cell to generate a series of events that lead to the propagation of the synaptic transmission
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Figure 2: Disease network of welding fume-responding genes (WFGs) with Parkinson’s disease (PD),
Alzheimer’s disease (AD), Lou Gehrig’s disease (LGD), Epilepsy disease (ED) and multiple sclerosis disease
(MSD). Red colored octagon-shaped nodes represent different categories of disease, and round-shaped sky
blue colored nodes represent commonly up-regulated genes among WFGs with the other NDGDs. A link
is placed between a disorder and a disease gene if mutations in that gene may lead to (or otherwise has an
association with) the specific disorder.

[34]. The pathway ’Sphingolipid de novo biosynthesis’ is responsible to provide signals in
molecules that regulate various biological functions [35]. The pathway ’Intrinsic Pathway
for Apoptosis’ is responsible to manage a variety of intracellular stress signal including
DNA damage, growth factor withdrawal, unfolding stresses in the endoplasmic reticulum
and death receptor stimulation [36]. Kinesins are a super-group of motor proteins based on
microtubule that has various functions in the transport of vesicles, organelles, chromosomes,
and regulate microtubule dynamics [37]. The pathway ’Neurotransmitter Release Cycle’
is responsible to control electrical signals passing through the axons in the form of action
potential.

We observed that AD has four significant pathways as shown in table 2. Among these
pathways, ’Circadian rhythm pathway’ is responsible to feed and influence clocks in other
tissues by hormone secretion and nervous stimulation from the brain [38]. Sphingomyelin
synthesis appears to be regulated primarily at the level of this transport process through
the reversible phosphorylation of CERT (Saito et al. 2008). ’Amyotrophic lateral sclerosis
(ALS)’ is responsible for most common motor neuron disease [39]. ’MAPKinase Signaling
Pathway’ is responsible for manage signals of reactions that regulate cell proliferation and
apoptosis [40].
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Figure 3: Disease network of welding fume-responding genes (WFGs) with Parkinson’s disease (PD),
Alzheimer’s disease (AD), Lou Gehrig’s disease (LGD), Epilepsy disease (ED) and Multiple Sclerosis disease
(MSD). Red colored octagon-shaped nodes represent different categories of disease, and round-shaped green
colored nodes represent commonly down-regulated genes among WFGs and ND. A link is placed between a
disorder and a disease gene if mutations in that gene is linked to the specific disorder.

Table 1: Pathways Associated with Significantly Common Differentially Expressed Genes of the PD with
WFs.

Pathway Genes in the pathway Adjusted p-value
Glutamate Neurotransmitter Release Cycle GLS 2.02E-02
Sphingolipid De Novo Biosynthesis VAPB 2.77E-02
Intrinsic Pathway for Apoptosis PMAIP1 3.51E-02
Kinesins Pathway KIF1A 3.68E-02
Neurotransmitter Release Cycle GLS 4.25E-02

Table 2: Pathways Associated with Significantly Common Differentially Expressed Genes of the AD with
WFs.

Pathway Genes in the pathway Adjusted p-value
Circadian rhythm pathway BHLHE40 2.23E-02
Sphingolipid metabolism pathway SGMS2 3.47E-02
Amyotrophic lateral sclerosis (ALS) MAP2K3 3.76E-02
MAPKinase Signaling Pathway MAP2K3 4.12E-02

We observed that LGD has six significant pathways as shown in table 3. Among these

7



pathways, ’Rap1 signaling pathway’ is responsible for controlling a variety of processes, such
as cell adhesion, cell polarity and cell-cell junction formation [41]. ’P53 signaling pathway’
manages various stress signals, including activated oncogenes, oxidative stress and DNA
damage.

Table 3: Pathways Associated with Significantly Common Differentially Expressed Genes of the LGD with
WFs.

Pathway Genes in the pathway Adjusted p-value
Signaling Pathways in Glioblastoma CDKN1A, PLCG1, PRKCZ 1.48E-05
MAPK Signaling Pathway CD14, PRKCZ 4.38E-03
TRIF-mediated programmed cell death CD14 5.99E-03
EPO Signaling Pathway PLCG1 6.58E-03
Rap1 signaling pathway PLCG1, PRKCZ 6.82E-03
P53 signaling pathway CDKN1A 4.06E-02

We observed that ED has five significant pathways as shown in table 4. Among these
pathways, ’Neurotransmitter Release Cycle’ is responsible to control electrical signals passing
through the axons in the form of action potential. ’Glycogen Metabolismserves’ serves as a
major stored fuel for several tissues. The keratinocytes function is to form a barrier against
environmental damage by fungi pathogenic bacteria, parasites, viruses, and UV radiation.

Table 4: Pathways Associated with Significantly Common Differentially Expressed Genes of the ED with
WFs.

Pathway Genes in the pathway Adjusted p-value
Ectoderm Differentiation NUMA1, SERPINB6 6.82E-03
NR3C Signaling EGR1 1.70E-02
Glycogen Metabolism PHKB 3.19E-02
Neurotransmitter Release Cycle NAAA 4.49E-02
Keratinocyte Differentiation ETS1 4.67E-02

We observed that MSD has five significant pathways as shown in table 5. Among these
pathways, ’Endocrine and other factor-regulated calcium reabsorption’ is essential for numer-
ous physiological functions including muscle contraction, intracellular signalling processes,
neuronal excitability and bone formation [42]. ’Mineral absorption’ provides mineral in the
neural cell to sustain life. ’Cholesterol biosynthesis’ controls cholesterol to the nucleus and
activating genes.

3.3. Gene Ontological Analysis

The Gene Ontology (GO) refers to a universal conceptual model for representing gene
functions and their relationship in the domain of gene regulation. It is constantly expanded
by accumulating the biological knowledge to cover regulation of gene functions and the
relationship of these functions in terms of ontology classes and semantic relations between
classes [43]. GO of the significantly dysregulated genes were analyzed using Enrichr, a
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Table 5: Pathways Associated with Significantly Common Differentially Expressed Genes of the MSD with
WFs.

Pathway Genes in the pathway Adjusted p-value
Steroid biosynthesis LIPA, TM7SF2 1.44E-04
Metabolism of lipids and lipoproteins CDS1, NCEH1, SEC24D, TM7SF2 2.47E-03
Cholesterol biosynthesis TM7SF2 2.05E-02
Endocrine and other factor-regulated calcium reabsorption ATP2B1 4.15E-02
Mineral absorption ATP2B1 4.49E-02

comprehensive gene set enrichment analysis web-based tool [31]. GO of the commonly
differentially expressed genes (i.e., dysregulated genes common to WFGs and each NDGD)
for each NDGD and WFGs were analyzed using two databases of Enrichr including GO
Biological Process and Human Phenotype Ontology. We combined ontologies from two
mentioned databases and identified the most significant GO term of each disease after various
steps of statistical analysis. We observed that 15, 15, 24, 19 and 17 gene ontology classes are
associated with the significantly commonly dysregulated (i.e., Dysregulated genes linkning
WFGs and each NDGD) genes for WFs with the PD, AD, LGD, Ed and MSD respectively
as shown in table 6-10.

Table 6: Gene Ontologies Associated with the Significantly Common Dysregulated Genes of the PD with
WFs.
GO Term Pathway Genes in the pathway Adjusted p-value
GO:0001844 Protein insertion into mitochondrial membrane involved in apoptotic signaling pathway PMAIP1 5.94E-03
GO:1902043 Positive regulation of extrinsic apoptotic signaling pathway via death domain receptors PMAIP1 5.94E-03
GO:0006987 Activation of signaling protein activity involved in unfolded protein response VAPB 6.78E-03
GO:0001881 Receptor recycling LMTK2 8.47E-03
GO:0045837 Negative regulation of membrane potential PMAIP1 5.94E-03
GO:0043029 T cell homeostasis PMAIP1 9.31E-03
GO:0032463 Negative regulation of protein homooligomerization CRYAB 7.63E-03
GO:0032075 Positive regulation of nuclease activity VAPB 9.31E-03
GO:0016192 Vesicle-mediated transport LMTK2, ARAP3, KIF1A 4.73E-03
GO:1905906 Regulation of amyloid fibril formation CRYAB 7.63E-03
HP:0003677 Slow progression KIF1A, CRYAB 3.08E-03
HP:0007210 Lower limb amyotrophy KIF1A 8.47E-03
HP:0200073 Respiratory insufficiency due to defective ciliary clearance ZMYND10 7.63E-03
HP:0003323 Progressive muscle weakness VAPB 9.31E-03
HP:0003555 Muscle fiber splitting CRYAB 6.78E-03

3.4. Protein-Protein Interaction Analysis

Protein-protein interaction networks (PPINs) are the mathematical representation of the
physical contacts of proteins in the cell. Protein-protein interactions (PPIs) are essential
to every molecular and biological process in a cell, so PPIs are crucial to properly under-
stand cell physiology in disease and healthy states [44]. PPIs of the differentially expressed
genes were analyzed using STRING, a biological database and web resource of known and
predicted protein-protein interactions. We constructed protein-protein interaction network
of significantly commonly dysregulated genes (i.e., dysregulated genes common to WFGs
and each NDGD) of all NDGDs using STRING. We clustered into five different groups of
interactions of five NDGDs as shown in figure 4.
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Table 7: Gene Ontologies Associated with the Significantly Common Dysregulated Genes of the AD with
WFs.
GO Term Pathway Genes in the pathway Adjusted p-value
GO:0043619 Regulation of transcription from RNA polymerase II promoter in response to oxidative stress SESN2 6.73E-03
GO:0032055 Negative regulation of translation in response to stress SESN2 5.24E-03
GO:0006684 Sphingomyelin metabolic process SGMS2 7.48E-03
GO:0035414 Negative regulation of catenin import into nucleus WWTR1 7.48E-03
GO:1990253 Cellular response to leucine starvation SESN2 8.22E-03
GO:0032309 Icosanoid secretion ABCC4 8.97E-03
GO:0045859 Regulation of protein kinase activity MAP2K3, WWTR1 5.36E-03
HP:0001156 Brachydactyly syndrome NTNG1, BBS9 8.87E-03
HP:0002141 Gait imbalance BBS9 1.34E-02
HP:0007707 Congenital primary aphakia BBS9 1.34E-02
HP:0010747 Medial flaring of the eyebrow BBS9 1.56E-02
HP:0009806 Nephrogenic diabetes insipidus BBS9 1.49E-02
HP:0002370 Poor coordination BBS9 1.71E-02
HP:0006829 Severe muscular hypotonia IBA57 1.79E-02
HP:0001827 Genital tract atresia BBS9 1.93E-02

Table 8: Gene Ontologies Associated with the Significantly Common Dysregulated Genes of the LGD with
WFs.
GO Term Pathway Genes in the pathway Adjusted p-value
GO:2000737 Negative regulation of stem cell differentiation N4BP2L2, ZFP36L2 1.81E-05
GO:0034128 Negative regulation of MyD88-independent toll-like receptor signaling pathway CD14 4.79E-03
GO:0071364 Cellular response to epidermal growth factor stimulus PLCG1, ZFP36L2 1.06E-04
GO:1901988 Negative regulation of cell cycle phase transition ZFP36L2 4.19E-03
GO:1903708 Positive regulation of hemopoiesis N4BP2L2 4.79E-03
GO:1901991 Negative regulation of mitotic cell cycle phase transition CDKN1A, ZFP36L2 1.02E-03
GO:0071363 Cellular response to growth factor stimulus PLCG1, ZFP36L2 3.07E-03
GO:0050821 Protein stabilization CDKN1A, CCT5 3.65E-03
HP:0001738 Exocrine pancreatic insufficiency CDKN1A 1.13E-02
HP:0010832 Abnormality of pain sensation CCT5 1.49E-02
HP:0002717 Adrenal overactivity CDKN1A 1.79E-02
HP:0003431 Decreased motor nerve conduction velocity CCT5 1.79E-02
HP:0001258 Spastic paraplegia CCT5 1.84E-02
HP:0002936 Distal sensory impairment CCT5 3.66E-02

Table 9: Gene Ontologies Associated with the Significantly Common Dysregulated Genes of the ED with
WFs.
GO Term Pathway Genes in the pathway Adjusted p-value
GO:0086069 Bundle of His cell to Purkinje myocyte communication DSP 8.07E-03
GO:0086073 Bundle of His cell-Purkinje myocyte adhesion involved in cell communication DSP 6.28E-03
GO:0030575 Nuclear body organization ETS1 7.18E-03
GO:0003223 Ventricular compact myocardium morphogenesis DSP 6.28E-03
GO:0002934 Desmosome organization DSP 8.07E-03
GO:0051639 Actin filament network formation COBLL1 8.07E-03
GO:1903708 Positive regulation of hemopoiesis N4BP2L2 7.18E-03
HP:0011902 Abnormal hemoglobin HBG2 1.25E-02
HP:0001663 Ventricular fibrillation DSP 8.97E-03
HP:0003445 EMG: neuropathic changes DCAF8 1.79E-02
HP:0011663 Right ventricular cardiomyopathy DSP 8.07E-03
HP:0001730 Progressive hearing impairment SERPINB6 1.70E-02

4. Discussion

We investigated the gene expression relationship of WF exposure and neurodegenerative
diseases (NDGDs) based on the associations of genetics, signaling pathways, gene expres-
sion ontologies and protein-protein interactions network. For the purpose of our study, we
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Table 10: Gene Ontologies Associated with the Significantly Common Dysregulated Genes of the MSD with
WFs.
GO Term Pathway Genes in the pathway Adjusted p-value
GO:0021795 Cerebral cortex cell migration EFHC1 6.28E-03
GO:0048678 Response to axon injury FLRT3 1.07E-02
GO:1902187 Negative regulation of viral release from host cell TRIM13 1.25E-02
GO:0014033 Neural crest cell differentiation KBTBD8 1.43E-02
GO:0006293 Nucleotide-excision repair, preincision complex stabilization CHD1L 1.96E-02
HP:0004311 Abnormality of macrophages LIPA 1.70E-02
HP:0001433 Hepatosplenomegaly LIPA 2.23E-02
HP:0100639 Erectile abnormalities FLRT3 2.84E-02
HP:0002612 Congenital hepatic fibrosis LIPA 3.37E-02
HP:0001522 Death in infancy LIPA 3.98E-02

Figure 4: Protein-Protein Interaction Network of the significant genes dysregulated by the NDGDs and WF
exposure.

analyzed Gene Expression Omnibus (GEO) microarray data from WFs, Parkinson’s dis-
ease (PD), Alzheimer’s disease (AD), Lou Gehrig’s disease (LGD), Epilepsy disease (ED),
Multiple Sclerosis disease (MSD) and control datasets [45]. We found a good number of
significantly commonly dysregulated genes found among both WFGs and NDGDs by gene
expression analysis [46]. As there have a good number of significantly commonly dysregu-
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lated genes among WFGs and NDGDs, it indicates that WFGs are likely to have influences
on NDGD risk. Our two separate disease relationships networks for up and down-regulated
genes strongly indicated that WFGs are linked to NDGDs as shown in Figure 2 and 3.
The pathway-based analysis is a new approach to understand how different complex condi-
tions can be related to each other through underlying molecular or biological mechanisms
[47, 48]. We identified pathways among dysregulated genes common to WFGs and each
NDGD. These identified pathways accorded that WF exposure could have a strong associa-
tion with NDGDs. Similarly, gene expression ontologies and protein-protein interactions of
common differentially expressed genes determine that WF exposure may be a risk factor for
several NDGDs that may affect a welder’s long term health.

Figure 5: Disease network of WFGs with several NDGDs. Red colored octagon-shaped nodes represent
different categories of NDGDs, Violet colored octagon-shaped nodes represent our selected five NDGDs and
round-shaped sky blue colored nodes represent differentially expressed genes among WFGs. A link is placed
between a disorder and a disease gene if mutations in that gene is known to lead to the specific disorder.

We verified our results using the gold benchmark databases (dbGAP and OMIM) and
found that there are some shared genes between the WFGs and NDGDs as shown in figure
5. We collected genes and disease names from OMIM Disease, OMIM Expanded and dbGap
databases using differentially expressed genes among WFGs for cross checking the validity of
our study. We combined the diseases from three mentioned databases and selected only neu-
rodegenerative diseases (NDGDs) after various steps of statistical analysis. Interestingly, we
found our selected five NDGDs among the list of collected NDGDs from the gold-benchmark
databases as shown in figure 5. Moreover, we found our identified genes in figure 5 had been
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shown in other studies to be associated with disease progression in NDGDs. Specifically,
Liu H et al. has shown a link between NR4A2 and PD [49]; Taguchi K et al. found POU2F1
to be linked to AD incidence [50]; A Hggmark et al. found SLC9A3R1 and SLC39A11
are associated with AD [51]; J Wang et al. found SCN1A and FOS is associated with ED
[52]; J Wang et al. showed SCN1A and FOS to be linked to ED [52]; and Mahurkar et al.
showed GPC5 to be linked to MSD [53]. In summary, we have found that the welding fume
associated genes have strong associations with progression of PD, AD, LGD, ED and MSD
and these findings are supported by previous work on these neurodegenerative diseases by
other researchers.

5. Conclusions

In this study, we have considered GEO microarray data from WFs, PD, AD, LGD, ED,
MSD and control datasets to analyze and investigate the gene expression effects of WFs
on neurodegenerative diseases (NDGDs). We analyzed dysregulated genes, disease rela-
tionship networks, dysregulated pathways, gene expression ontologies and protein-protein
interactions of WFs and NDGDs. Our findings showed that WFs have a strong association
with genes dysregulated in NDGDs. This kind of study will be useful for making genomic
evidence based recommendations about the accurate disease prediction, identification and
therapeutic treatments. This study also will be useful indicate the nature of dangerous
effects that welding may pose to human health.
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