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Mass  production  of conducting  polymer  actuators  with  reliable  performance  is  envisaged  in the  field
of  artificial  muscles.  In this  study,  inkjet  printing  and  spin  coating  –  two  established  technologies  for
large-scale  production  –  were  combined  for microactuator  fabrication.  Actuators  based  on  poly(3,4-
ethylenedioxy-thiophene):poly(styrene  sulfonate)  electrodes  (PEDOT:PSS,  2.2  �m  thick,  190  S  cm−1),
which  were  inkjet-printed  onto  a spin-coated  membrane  of  an  interpenetrating  polymer  network  (IPN)
thin  film  composed  of  nitrile  butadiene  rubber  and  poly(ethylene  oxide)  (PEDOT:PSS-IPN-PEDOT:PSS)
with a total  thickness  of  12.7  �m,  were  prepared  and  studied.  Our goal  was  to investigate  the  perfor-
mance  of the  trilayers  in linear  actuation,  in aqueous  and  organic  (propylene  carbonate)  solutions  of
bis(trifluoromethane)sulfonimide  lithium  salt  (LiTFSI)  used  as electrolytes,  and  in  bending  actuation  in  air
using an  ionic  liquid  as  the  electrolyte.  Electro-chemo-mechanical  deformation  (ECMD)  measurements
inear actuation
EDOT:PSS-IPN
hin films

were  consistent  with  electrochemical  measurements  showing  a strain  of  3% in  aqueous  electrolyte  and
1% in  propylene  carbonate.  A  strain  of 0.14%  in the  bending  mode  in  the ionic  liquid  was  observed  due
to  electric  double  layer  charging,  while  in  electrolyte  solutions,  redox  reactions  determined  the  linear
actuation  properties.  In  the  aqueous  electrolyte,  a specific  capacitance  of 193  F g−1 was  measured  for  the
printed  PEDOT:PSS  films,  with  potential  for applications  in  supercapacitors.

©  2017  Elsevier  B.V.  All  rights  reserved.
. Introduction

In recent years, the development of new materials and devices
hat emulate natural muscles has attracted considerable attention,
ith the need to improve electromechanical behavior [1–7], real-

ze new materials [8], enhance the fabrication process [9–13], and
ccomplish miniaturization [14–17]. Ionic electroactive polymer
iEAP)-based artificial muscles are becoming a promising alterna-
ive to conventional actuators in medicine, soft robotics [18–20],
ab-on-a-chip devices [21], etc. due to their low power-to-mass

atio [22], softness and biocompatibility [23], and small dimensions
24].

∗ Corresponding author.
E-mail address: rudolf.kiefer@tdt.edu.vn (R. Kiefer).

ttps://doi.org/10.1016/j.snb.2017.11.147
925-4005/© 2017 Elsevier B.V. All rights reserved.
Electronic conductive polymers (ECPs), such as poly(3,4-
ethylenedioxythiophene) (PEDOT) and polypyrrole, are ionic
electroactive polymers. Such materials have some important
advantages over the other types of electroactive polymer mate-
rials such as dielectric elastomers and ferroelectric polymers,
including low driving voltage, inherent electrical conductivity, pas-
sively maintained tension (catch-states), and well reproducible and
widely tunable properties [25,26]. The main operation principle of
ECPs is based on redox-reactions that create mobile charges, induc-
ing counter-ion flux, which leads to a reversible volume change that
drives the actuation properties. Large anions such as PSS or dodecyl
sulphonates remain immobile in the ECP network, leading to cation
incorporation during reduction, which induces the volume change

[23].

Conducting polymer-IPN electromechanical systems using
nitrile butadiene rubber and poly(ethylene oxide) (NBR/PEO) have
previously been synthesized on the macro-[12] and micro-scale

https://doi.org/10.1016/j.snb.2017.11.147
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.snb.2017.11.147&domain=pdf
mailto:rudolf.kiefer@tdt.edu.vn
https://doi.org/10.1016/j.snb.2017.11.147
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15,16]. Direct electrochemical [25] and chemical [27] polymer-
zation of PEDOT onto the membrane enables homogeneous
overage of large areas; however, for microfabrication, generally

 multiple-step subtractive technique such as photolithography is
sed [17,28].

In this study, conducting polymer based ionic electroactive
olymer composites are fabricated by combining spin-coating
15] and inkjet printing technologies [10,29]. Novel thin poly(3,4-
thylenedioxy-thiophene):poly(styrene sulfonate)-nitrile butadi-
ne rubber/poly-(ethylene oxide) PEDOT:PSS-NBR/PEO trilayer
evices were built and characterized as linear and bending actu-
tors, with particular focus on the effect of the solvent on the
erformance of the actuators.

In the linear actuation mode, instead of using 2.2-um-thick
CP free-standing films, the electromechanical properties of the
rilayers were analyzed to demonstrate that the same trilayer con-
guration can be used for both bending and linear actuation.

The development of fabrication methods based on printing or
oating technologies is of interest for the consistent industrial-
cale manufacturing of thin trilayer bending actuators that deliver
conomic use of the precursor material with high reproducibility.

In linear mode, electro-chemo-mechanical-deformation
ECMD) measurements coupled with cyclic voltammetry and
hronopotentiometry were used to determine the electrochemical
ehavior and charge-strain dependency, as well as to calculate
he diffusion coefficients. The performance of the trilayers in the
ending mode was investigated by measuring the displacement
f the actuator, which enables one to demonstrate the different
ctuation modes available in the same configuration.

. Material and methods

.1. Fabrication of a 50-50 NBR/PEO solid polymer electrolyte
embrane

Semi-Interpenetrating Polymer Network (semi-IPN) solid poly-
er  electrolytes were synthesized following Maziz et al. [15]. An

queous solution of 300 g L−1 of polyvinyl alcohol (PVA, Aldrich,
w = 6000 g mol−1) was  prepared by adding PVA to distilled water

n a covered beaker before mixing overnight at 60 ◦C. A PVA sac-
ificial layer was spin coated (1500 rpm/750 rpm s−1/15 s) onto a
icroscope slide and dried at 80 ◦C for 5 min  (Scheme 1a). Nitrile-

utadiene rubber (NBR, Lanxess, Germany) solution (17 wt%)
as prepared by dissolving NBR in cyclohexanone (Aldrich,

99.8%), which was left to stir overnight until complete
issolution. Poly(ethylene oxide) (PEO) (50 wt% vs NBR) con-
isting of poly(ethylene glycol) dimethacrylate (PEGDM, Aldrich,

n = 750 g mol−1) (25 wt% of PEO network) and poly(ethylene gly-
ol) methacrylate (PEGM, Aldrich, Mn = 500 g mol−1) (75 wt%  of PEO
etwork) was added to the previously prepared NBR solution and
tirred for 30 min. Dicyclohexyl peroxidicarbonate (DCPD, Groupe
rnaud, France) (3 wt% of PEO network), as an initiator for the PEO
etwork, was also added to the same solution, which was  stirred for
nother 30 min  and then degassed. A 50-50 NBR/PEO solution was
pin coated (3000 rpm/3000 rpm s−1/30 s) onto the top of the PVA
acrificial layer (Scheme 1b). Generally, solution viscosity, spinning
peed, and spinning time determine the thickness of a spin-coated
olymer film [15,30]. These parameters were adjusted to obtain a
olymer film with a thickness of approximately 6 �m.  Spin-coated
lms were placed in a heating bell under argon and cured for 4 h at

0 ◦C to initiate polymerization of the methacrylate derivatives in
he presence of DCPD. After polymerization, semi-IPN layers were
btained, where the PEO network promotes ionic conductivity and
he linear NBR imparts rubber-like properties to the membrane.
tors B 258 (2018) 1072–1079 1073

2.2. Actuator fabrication

CleviosTM P Jet 700 PEDOT:PSS ink in aqueous solution
(solids content 0.6–1.2 wt%, Heraeus Precious Metals GmbH & Co,
Germany) was  filtrated through syringe filters (Minisart

®
NML

Syringe Filters 17594-K) with a 5-�m pore size. Inkjet printing was
carried out using a jetlab

®
II Precision Printing Platform equipped

with a PH-46 drop-on-demand printhead (MicroFab Ltd., U.S.A.)
and a piezo-electrically driven MJ-AT-01 dispensing device with an
orifice diameter of 50 �m.  The jetting frequency was  800 Hz, with
a customized waveform. The temperature of the substrate holder
was set to 45 ◦C to enhance the evaporation of the solvent. Pat-
terns were designed using the vector graphics software Inkscape
(http://inkscape.org) and exported in a bitmap monochrome for-
mat  to be uploaded by the printer software. The color space used for
all images was binary, with white pixels corresponding to single-
ejection events.

PEDOT:PSS ink was  printed onto the spin-coated NBR/PEO
membrane by successively printing 10 layers directly on top of each
other (Scheme 1c). The composite was thereafter additionally dried
in a vacuum oven at 1 mbar pressure and at room temperature to
obtain a solid polymer film, which was then left submerged in a
water reservoir overnight, with the printed side facing downwards
towards a Teflon collection sheet, to enable dissolution of the PVA
layer (Scheme 1d). The microscope glass was carefully removed and
the water was  pipetted out to enable the membrane to flatten out
on the supporting Teflon surface. After drying the sample in a vac-
uum oven at room temperature for 3 h, 10 layers of PEDOT:PSS were
printed onto the other (flipped) side of the membrane; these layers
were aligned with the first electrode layer on the opposite side of
the membrane (Scheme 1e, f). Trilayer actuators were cut out from
the membrane using a scalpel without touching the electrodes to
avoid a short circuit.

0.2 M bis(trifluoromethane)sulfonimide lithium salt (LiTFSI,
99.95%, Solvionic, France) solution in water, 0.2 M LiTFSI in
propylene carbonate (PC, ≥99%, Sigma-Aldrich) and ionic liquid
1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
(EMImTFSI, 99.9%, Solvionic, France) were used as electrolytes.

2.3. ECMD measurements

The PEDOT:PSS-semi-IPN trilayers (thickness 12.7 �m) were
prepared with dimensions of 1.3 cm × 0.1 cm (mass: 91 ± 8 �g) and
0.7 cm × 0.1 cm (mass: 49 ± 4 �g) for measurements in LiTFSI-PC
and LiTFSI-aq electrolyte, respectively. The trilayers were clamped
onto an ECMD setup [31] and connected as a single working elec-
trode, with Pt used as the counter electrode and Ag/AgCl (3 M KCl)
as the reference electrode in 0.2 M LiTFSI aqueous or propylene
carbonate solution. Cyclic voltammetry measurements (scan rate
5 mV  s−1) and the application of square-wave potential steps in
the voltage range 0.65 V to −0.6 V at frequencies 0.0025 Hz–0.1 Hz
were carried out under isotonic ECMD measurement conditions
(constant force of 4.9 mN). Integration of the square-wave current
density gives the total consumed charge density Q at any oxidation
(reduction) time (Qt). As described in previous investigations [32],
one can use the calculated charge density and Eq. (1) to determine
the slope b.

ln
[

1 − Q

Qt

]
= −bt (1)

Therefore, the diffusion coefficient D can be calculated from Eq.

(2), given the thickness h of the electrode.

D = b ∗ h2

2
(2)

http://inkscape.org
http://inkscape.org
http://inkscape.org
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Scheme 1. Actuator fabrication. a: PVA is spin-coated onto a glass slide; b: NBR/PEO membrane solution is spin-coated onto PVA and cured; c: PEDOT:PSS is printed onto
N ; f: PE
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BR/PEO; d, e: the composite is flipped upside down onto the top of a Teflon film
lectrodes on the opposite side.

Chronopotentiometric measurements of PEDOT:PSS-IPN trilay-
rs were carried out at frequencies ranging from 0.1 Hz–0.0025 Hz
or a constant charge density of 33 mC  cm−2.

.4. Bending displacement of PEDOT:PSS-IPN

A PEDOT:PSS-IPN trilayer with dimensions of 20 mm x 2 mm
thickness of 12.7 �m)  was immersed in EMImTFSI. Strain mea-
urements were carried out using an in-house setup consisting
f a National Instruments PCI-6036E analog input DAQ and laser
isplacement meter LK-G82/LK-G3001P (Keyence). The actuators
ere mounted side-ways between flat gold contacts before a mir-

ored logarithmic sweep sine signal (0.0025–0.1 Hz, ±0.6 V) was
pplied to obtain the resonance frequency. Strain measurements
ere carried out at applied frequencies ranging from 0.0025 Hz

o 0.1 Hz in a potential range of ± 0.6 V. The displacement was
easured at a 5 mm distance from the contacts. The strain differ-

nce between the electrodes was calculated from the displacement
ignal using Eq. (3) [2]:

 = 2  ∗ d ∗ h

L2 + d2
∗ 100%, (3)

here � is the strain difference, d is half of the peak-to-peak
isplacement, h is the thickness of the actuator, and L is the mea-
urement distance from the fixed input contacts.

.5. Characterization of PEDOT:PSS-IPN

A cross section of the PEDOT:PSS-IPN was studied using scan-
ing electron microscopy (SEM, Helios NanoLab 600, FEI) coupled
ith energy dispersive X-ray (EDX) spectrometry to determine the

hickness of the actuator and, based on the sulfur signal inten-

ity, the thickness of the PEDOT:PSS layers. A four-point probe
RM232-2000 (Guardian Manufacturing, USA) was used together
ith in-house flat gold contacts to measure the surface resistivity

f the printed electrodes. Sheet conductivity �s (Eq. (4)) was  calcu-
DOT:PSS is printed onto the other side of the membrane aligned with the printed

lated according to Heraeus Precious Metals GmbH & Co [33], where
Rs is the sheet resistivity and h the thickness of the electrode:

�S = 1
Rs ∗ h

, (4)

3. Results and discussion

3.1. Characterization of the trilayer

From the SEM image of the cross section of the actuator
in Fig. 1a, one can distinguish the semi-IPN membrane layer
(thickness of 10.4 ± 1.8 �m)  and PEDOT:PSS layers (with thick-
ness of 2.2 ± 0.66 �m)  on both sides, as confirmed by EDX analysis
(Fig. 1b). The mass of one dry PEDOT:PSS electrode (with dimen-
sions 2 cm × 0.2 cm)  was 140 ± 8 �g. The surface conductivity of
the printed PEDOT:PSS electrodes was  192 ± 18 S cm−1, which is
similar to that of PEDOT:PSS electrodes fabricated in a roll-to-roll
process, 220 S cm−1, for flexible solar cells [34].

3.2. Isotonic ECMD measurements of linear actuation

3.2.1. Cyclic voltammetry
Most studies of actuators based on a trilayer design with inkjet-

printed conducting polymer electrodes have been conducted by
evaluation of the bending mode in air using ionic liquids as non-
volatile electrolytes [10]. However, little attention has been paid
to the role of the electrolyte solution in such devices. In this study,
the effect of solvent on the actuation of a PEDOT:PSS-IPN trilayer
was investigated in the linear mode, with samples immersed in
electrolyte in a three-electrode configuration. It has been found
previously that the solvent can affect the extent of strain and even
change the type/direction of actuation between anion and cation
driven states [35]. The linear length change of the actuator in aque-
ous and organic electrolyte solutions was measured and compared

under cyclic voltammetry control (Fig. 2).

A 3% strain for the PEDOT:PSS-IPN trilayer in an aqueous elec-
trolyte was achieved using mainly cation (Li+) driven actuation at
reduction, with minor anion incorporation at oxidation (Fig. 2a).
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Fig. 1. SEM image of the cross section of a PEDOT:PSS-IPN trilayer (scale bar is 10 �m);  and b: the corresponding EDX analysis of sulfur across the cross section (thickness is
12.7  �m).
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ig. 2. Cyclic voltammetric (scan rate 5 mV s−1, 5th cycle, potential range 0.65 to −0
nd  propylene carbonate (PC, dotted line) LiTFSI (0.2 M)  solutions. a: strain � vs. po

n an organic electrolyte solution, the strain reached 1%. A simi-
ar trilayer configuration has been studied previously but using a

ore rigid PVdF membrane [29], where the strain only reached
.2%. Contrary to a previous study of electrochemically poly-
erized conducting polymers, where actuation direction changed
ith changing the solvent [35], the PEDOT:PSS-IPN trilayer shows

xpansion at reduction independent of the solvent. For both sol-
ents, the main feature observed in the cyclic voltammograms is a
arge wave at large negative potentials, corresponding to a flux of
ations [36]. Due to the chosen scan rate feasible for actuation, the
ave is not quite a clearly formed peak (Fig. 2b). In case of the aque-

us system, both the cyclic voltammogram and the strain curve
ndicate some minor anion activity, represented by a slight oxida-

ion wave starting approximately 0.3 V with a corresponding strain

inimum at 0.4 V. The charge density calculated from the current
ensity curves showed values of 57 and 97 mC  cm−2 in organic and
queous electrolyte, respectively. The charging/discharging were in
ECMD measurements of PEDOT:PSS-IPN linear actuators in aqueous (aq, solid line)
l, b: current density j vs. potential, and c: charge density Q vs. potential.

balance, which can be seen from the closed cycles in Fig. 2c, indicat-
ing that no over-oxidation/over-reduction processes were involved
[37].

3.2.2. Square-wave potential step
The strains measured for PEDOT:PSS-IPN trilayers in organic

and aqueous electrolytes under an applied square-wave poten-
tial from 0.65 to −0.6 V were compared over a frequency range of
0.0025–0.1 Hz (Fig. 3a, b). The actuation speed (strain rate) plotted
against the diffusion coefficient is shown in Fig. 3d.

As can be seen in the cyclic voltammetry at 0.005 Hz and above
(Fig. 2a), the strain in the PEDOT:PSS-IPN trilayer in aqueous solu-
tion is three times higher (2.7% vs 1%,) compared to that in organic

solution (Fig. 3a). The profiles of the strain curves for the actuators
in aqueous and organic LiTFSI electrolyte solutions are qualita-
tively similar. At applied frequencies from 0.0025 to 0.1 Hz, the
strain in the case of both solvents decreases with increasing fre-
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Fig. 3. ECMD analysis of a PEDOT:PSS-IPN trilayer in 0.2 M LiTFSI aqueous (line, �) and propylene carbonate (dotted, �) electrolytes at a square-wave potential (0.65 to −0.6
V,  3-electrode cell). a: strain � vs time (0.005 Hz, 2nd and 3rd cycle); b: strain � vs. frequency (measured at 0.0025 Hz, 0.005 Hz, 0.01 Hz, 0.025 Hz, 0.05 Hz, and 0.1 Hz), mean
v ifferent frequencies; d: the strain rate on reduction (�red) against diffusion coefficient at
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Fig. 4. Chronopotentiograms (charge density of 33 mC  cm−2) of PEDOT:PSS-IPN tri-
layers. A: potential vs. time curves in LiTFSI-aq (solid line) and LiTFSI-PC (dotted) at
alue  with standard regression; c: the diffusion coefficients on reduction (Dred) at d
eduction.

uency (Fig. 3b), similar to electrochemically deposited conducting
olymers [38]. The charge density at oxidation and reduction of
EDOT:PSS-IPN in the aqueous solution (0.0025 Hz, 88 mC  cm−2) is
early double that in the organic solution (47 mC  cm−2) (Fig. S1a).
he dependency between the strain and the consumed charge (Fig.
1b) is linear in both cases. The correlation between the diffusion
oefficients at reduction and the applied frequencies (Fig. 3c) is
lso linear, with diffusion coefficients increasing with increasing
requency, as expected [39]. Surprisingly, there is no big differ-
nce between the diffusion coefficients at reduction in aqueous and
ropylene carbonate LiTFSI solutions. In both cases, the solvated Li+

ons move into the PEDOT:PSS layer during reduction. The solva-
ion shell of the Li+ ions in propylene carbonate has been shown
o consist of 3–4 PC molecules [40]; according to the same investi-
ation, Li+ ions enter the conducting polymer/electrolyte interface
nshelled. In an aqueous system, the hydrophilic nature of PSS leads
o significant swelling, and the Li+ ions carry 5–6 water molecules
ith them [41] into the film, leading to higher swelling of the

EDOT:PSS at reduction. The nearly identical diffusion coefficient
f Li+ ions in aqueous and propylene carbonate solutions indicate
hat the unswollen PEDOT:PSS in PC offers the same resistance to
i+ ion transport as the swollen material in aqueous solution does to
he solvated Li+ ions. Comparison of the strain rates (�red) (Fig. 3d)
hows that at all applied frequencies, the strain rate in aqueous
lectrolyte solution is faster than in propylene carbonate. However,
he difference in strain rate decreases from 3.7 times to 1.2 times
ith increasing frequency.

.2.3. Chronopotentiometric measurements
PEDOT:PSS-IPN trilayer linear actuators were characterized by
onsecutive square-wave currents at frequencies ranging from
.0025–0.1 Hz. The chronopotentiograms at a frequency of 0.005 Hz
2 consecutive cycles) in aqueous and propylene carbonate solu-
ions are shown in Fig. 4a. The specific capacitance Cs (F g−1) of the

0.005 Hz (2 subsequent cycles at an applied current of ± 0.1 mA)  and b: the specific
capacitance CS against the applied frequency in LiTFSI-aq (�) and LiTFSI-PC (�).
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ig. 5. Strain of PEDOT:PSS-IPN trilayers (2 cm × 0.2 cm)  loaded with EMImTFSI. Act
0.6  V. The bending displacement was  measured at a distance of 5 mm from the co

mages  of the displacement at opposite polarization, c: strain difference vs. frequen

EDOT:PSS-IPN was calculated from Eq. (5). The slope is taken from
he discharging curve of the potential versus time curves.

s = i

(−slope ∗ m)
(5)

he applied current i and the mass m of the PEDOT:PSS-IPN mate-
ial were measured, and the slope was obtained from the potential
ersus time curves for discharging (after IR drop correction) (Fig. 4a)
s �E/�t  [42]. The results are shown in Fig. 4b.

For a square-wave current, the potential curves (Fig. 4a) of
he PEDOT:PSS-IPN trilayer in LiTFSI-aq and LiTFSI-PC electrolyte
how that the peak potentials at oxidation and reduction are
ower in aqueous solvent than in propylene carbonate. The calcu-
ated specific capacitances (Eq. (5)) at 0.0025 Hz (0.05 mA) were
93.4 ± 16.8 F g−1 and 109 ± 11 F g−1‘in LiTFSI-aq and LiTFSI-PC
lectrolyte, respectively (Fig. 4b). It has been previously reported
hat the specific capacitance of PEDOT:PSS mixed with 40% carbon
anotubes (CNT) reached 133 F g−1 [43]. The specific capacitance of
ristine PEDOT:PSS is expected to be in the range of 100 F g−1 [44].

.3. PEDOT:PSS-IPN trilayer actuation in air

The bending strain of a PEDOT:PSS-IPN trilayer in air was ana-
yzed using ionic liquid (EMImTFSI) as the electrolyte (similar to
he study of Maziz et al. [15]), drifts related to solvent evaporation
ere excluded. The strain profile against time (0.1 Hz) and images

f the bending displacement of a PEDOT:PSS-IPN trilayer (videos at
.1 Hz and 0.05 Hz, supplementary files, S1 and S2) are shown in
ig. 5a and b, respectively. For these measurements, a square-wave
otential signal in the range of ± 0.6 V was applied at frequencies
anging from 0.1 Hz to 0.0025 Hz, as shown in Fig. 5c.

The strain of the PEDOT:PSS-IPN trilayer at 0.1 Hz shows a uni-
orm profile (Fig. 5a), as also seen in the images of the bending
isplacement (Fig. 5b, video S1, S2). It can be observed that the
rilayer bends at reduction and returns to its original position at
xidation. The strain is higher at lower frequencies, but between
.0025 and 0.1 Hz, the strain decreases only from 0.13% to 0.11%

Fig. 5c). The charge density at oxidation/reduction (Fig. S2a) at all

easured frequencies except 0.0025 Hz was found to be in a sim-
lar range of ±4–5 mC  cm−2. Comparing the charge density curves
t 0.0025 Hz (Fig. S2b) to those of linear actuation in aqueous and
 in air was  conducted by applying square-wave potential steps ranging from 0.6 to
. a: strain difference (solid line) at 0.1 Hz square-wave potential steps (dashed); b:

organic solutions, it can be observed that in ionic liquid, the charge
density is less frequency dependent than in the case of LiTFSI elec-
trolyte solutions. For a PEDOT:PSS polyurethane trilayer in the
same ionic liquid [45], the actuation mechanism below 1.5 V was
attributed to an electric double layer (EDL) charging mechanism,
which we  assume is the reason for the small change in strain in
the applied frequency range (Fig. 5c) and the typical capacitor-like
behavior observed in the current density versus time curves (Fig.
S2a). The frequency response of the strain showed two  resonance
frequencies (Fig. S3) at 11 Hz (0.04%) and 44 Hz (0.004%).

4. Conclusion

Inkjet-printed PEDOT:PSS (2.2 �m)  deposited on both sides of
spin-coated films of semi-IPN (NBR/PEO) formed electromechani-
cally active trilayers with a combined thickness of 12.7 �m; using
semi-IPN as a membrane, the trilayer showed improved strain
response in linear actuation mode and confirmed also effective
application in bending mode. The printed PEDOT-PSS electrodes
with a high conductivity of 190 S cm−1 led to a specific capacity as
high as 193 F g−1. In the linear actuation mode, involving mainly a
cation-driven faradaic charging mechanism, the composite showed
a strain of 3% and 1% in 0.2 M LiTFSI aqueous and propylene car-
bonate solutions, respectively. The actuation of a PEDOT:PSS-IPN
trilayer with a room temperature ionic liquid EMImTFSI as the
electrolyte followed an EDL charging mechanism. The use of a scal-
able and consistent processing technology in the form of ink-jet
printed PEDOT:PSS on thin spin-coated IPN membranes opens up
novel opportunities for the mass production of linear and bending
actuators with potential applications in energy storage.
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