Conference paper Open Access

Fusion of Compound Queries with Multiple Modalities for Known Item Video Search

Ilias Gialampoukidis; Anastasia Moumtzidou; Stefanos Vrochidis; Ioannis Kompatsiaris


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/2581316</identifier>
  <creators>
    <creator>
      <creatorName>Ilias Gialampoukidis</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5234-9795</nameIdentifier>
      <affiliation>CERTH-ITI</affiliation>
    </creator>
    <creator>
      <creatorName>Anastasia Moumtzidou</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-7615-8400</nameIdentifier>
      <affiliation>CERTH-ITI</affiliation>
    </creator>
    <creator>
      <creatorName>Stefanos Vrochidis</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2505-9178</nameIdentifier>
      <affiliation>CERTH-ITI</affiliation>
    </creator>
    <creator>
      <creatorName>Ioannis Kompatsiaris</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6447-9020</nameIdentifier>
      <affiliation>CERTH-ITI</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Fusion of Compound Queries with Multiple Modalities for Known Item Video Search</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-06-10</date>
  </dates>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2581316</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/IVMSPW.2018.8448876</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Multimedia collections are ubiquitous and very often contain hundreds of hours of video information. The retrieval of a particular scene of a video (Known Item Search) in a large collection is a difficult problem, considering the multimodal character of all video shots and the complexity of the query, either visual or textual. We tackle these challenges by fusing, first, multiple modalities in a nonlinear graph-based way for each subtopic of the query. In addition, we fuse the top retrieved video shots per sub-query to provide the final list of retrieved shots, which is then re-ranked using temporal information. The framework is evaluated in popular Known Item Search tasks in the context of video shot retrieval and provides the largest Mean Reciprocal Rank scores.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/700475/">700475</awardNumber>
      <awardTitle>Enhancing decision support and management services in extreme weather climate events</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/779962/">779962</awardNumber>
      <awardTitle>Visual and textual content re-purposing FOR(4) architecture, Design and video virtual reality games</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
155
98
views
downloads
Views 155
Downloads 98
Data volume 66.0 MB
Unique views 143
Unique downloads 97

Share

Cite as