
 1

A C# code for solving 3D topology optimization problems

using SAP2000

Nikos D. Lagarosa,b 1, Nikos Vasileioua and Georgios Kazakisa
a Institute of Structural Analysis & Antiseismic Research,

Department of Structural Engineering,

School of Civil Engineering,

National Technical University of Athens,

9, Heroon Polytechniou Str., Zografou Campus,

GR-15780 Athens, Greece,

E-mail: nlagaros@central.ntua.gr, nickvasileiou93@gmail.com,
kzkgeorge@gmail.com

b ACE-Hellas,

6, Aigaiou Pelagous Str., Agia Paraskevi

 GR-15341 Athens, Greece,
E-mail: nikos.lagaros@ace-hellas.com

Abstract: SAP2000 is a well-known commercial software for analysis and design of structural

systems that is equipped with an open application programming interface (OAPI). A code written

in C# to solve three-dimensional topology optimization problems is presented in this work, where

taking advantage of the OAPI feature, a topology optimization framework was integrated into

SAP2000. The code is partially based on the 99 and 88 line codes written by Sigmund and co-

workers (Struct Multidisc Optim 21(2):120–127, 2001 and Struct Multidisc Optim 43(1):1–16,

2011). The code solves the problem of minimum compliance while through OAPI it takes ad-

vantage of all modelling capabilities of SAP2000. The paper covers the theoretical aspects of

topology optimization incorporated in the code and provides detailed description of their numer-

ical implementations. Special effort was made to the latter one, describing in detail all numerical

aspects of the code, in order to facilitate the reader to understand the code, and therefore being

able to further enhance its capabilities. The complete code can be downloaded from http://us-

ers.ntua.gr/nlagaros/TOCP/projectsSMO.zip.

Keywords: Topology optimization; SAP2000 OAPI; C# code; optimality criteria; method of

moving asymptotes; conceptual design.

1. INTRODUCTION

Since 1970 structural optimization has been the subject of intensive research and several method-

ologies for achieving optimized structural designs have been advocated [1-5]. Topology optimi-

zation represents a material distribution numerical procedure for synthesizing structural layouts

without any preconceived shape. In this study we present the C# code that was developed in the

framework of the research project “OPTARCH: Optimization Driven Architectural Design of

Structures” (H2020-MSCA-RISE-2015) aiming to facilitate the needs of the project. In the rest of

1 Corresponding author

mailto:nlagaros@central.ntua.gr
mailto:nikos.lagaros@ace-hellas.com
http://users.ntua.gr/nlagaros/TOCP/projectsSMO.zip
http://users.ntua.gr/nlagaros/TOCP/projectsSMO.zip

 2

the paper this code is abbreviated as TOCP standing for topology optimization computing plat-

form. One of the objectives of the project is to integrate architectural design criteria into shape

and topology (S&T) optimization procedures. In this direction, a first goal of the OPTARCH pro-

ject is to exploit the use of S&T optimization techniques in computer aided architectural design.

This scope, among others, will be fulfilled by formulating S&T problems as well as developing

procedures for dealing with. According to OPTARCH project, it is anticipated that specially tai-

lored topology optimization design tools will equip the engineer with the capacity to directly de-

fine various design alternatives. As a result, it is of importance to develop a platform that will

provide a common ground with computer aided design (CAD) tools both for defining the archi-

tectural design constraints and for depicting the optimized results. In this direction, TOCP code

was developed to become the basis and to serve OPTARCH objectives. Moreover, exchange of

ideas is considered as an issue of major importance and therefore the gold model for open access

was considered as an essential pillar for better communication and dissemination of OPTARCH’s

results. Consequently, it was decided that students and newcomers to the field of topology opti-

mization to be able to download TOCP code from the webpage http://users.ntua.gr/nlaga-

ros/TOCP/projectsSMO.zip. During the four years of the project, the code will further be

enhanced and new capabilities incorporated will also be provided for free through the above men-

tioned webpage. Among different S&T optimization techniques that exist in the literature, the

solid isotropic material with penalization (SIMP) [6,7] and level-set [8,9] methods are the most

popular ones. Although, in the framework of OPTARCH project both methods will be examined

with respect to their suitability for the needs of conceptual design for architectural criteria, in the

current version of TOCP only SIMP was implemented.

In literature, various free source codes are provided, among others by the pioneering research-

ers in the field of S&T optimization, like the Matlab codes by O. Sigmund [10,11] and the Scilab

ones by G. Allaire [12]. The applicability of most of these codes is limited to 2D elastic structural

systems. Indicatively, the two Matlab codes written by O. Sigmund and his co-workers [10,11]

both for solving 2D topology optimization problems based on SIMP. G. Allaire and his co-work-

ers released a set of Scilab routines [12] that perform S&T optimization for 2D elastic structures

based on the level set method. Talischi et al. [13] presented a 2D Matlab code for structural to-

pology optimization that includes a general finite element routine based on isoparametric polyg-

onal elements, which can be considered as an extension of linear triangles and bilinear quads. As

far as 3D topology optimization problems only limited number of codes can be found, like the

169-line Matlab code by Liu and Tovar [14] where SIMP is used and the 100-line Python code

by Zuo and Xie [15] that is based on the bi-directional evolutionary structural optimization method.

All these codes are limited to implementations of S&T optimization using interpret programming

languages (like Matlab, Python and Scilab) while the solution of the system of equations resulted

http://users.ntua.gr/nlagaros/TOCP/projectsSMO.zip
http://users.ntua.gr/nlagaros/TOCP/projectsSMO.zip

 3

from the finite element (FE) modelling is also part of these codes. More exceptional geometries

and structural systems are not easy to deal with these codes, while only linear analysis is support

by most of these codes. In this work a C# source code that is a general-purpose, object-oriented

programming language, is presented. C# language was developed by Microsoft within its .NET

initiative and standardized by ECMA (ECMA-334) and ISO (ISO/IEC 23270:2006), however it

is not limited to just Microsoft platforms; C# compilers exist for FreeBSD, Linux and Macintosh

computing platforms. C# language was chosen because it is a multi-paradigm programming lan-

guage encompassing strong typing, imperative, declarative, functional, generic, object-oriented

(class-based), and component-oriented programming disciplines.

The basic advantage of the C# code presented here in, is that it provides a fully functional

integration of the S&T optimization concept into a commercial structural and analysis software,

specially tailored for structural engineering purposes. Therefore, the users of TOCP code will be

able to benefit from all modelling and analysis-design capabilities that commercial software pro-

vide. SAP2000 [16], that was introduced over 30 years ago, is equipped with an advanced and

rather simple to use open application programming interface (OAPI) making ease the communi-

cation of external developers with the capabilities of the software. In addition, a second reason for

choosing SAP2000 [16] is because it is available for academic purposes almost free of charge.

The rest of the paper is organized as follows: In order to make the manuscript readable by

unfamiliar to S&T optimization researchers, a rather extensive theoretical background regarding

the optimization problem formulation and the solution methods implemented in TOCP code, are

presented in Section 2. Section 3 discusses the general framework of SAP2000 OAPI implemen-

tation in order to facilitate future developers. Section 4 is devoted to the description of TOCP

code, component by component, representing the numerical implementation of the theoretical

parts of Section 2. Finally, some simple optimization test examples are presented in order to assist

the understanding both of the code and also its integration into SAP2000, as well as how to take

advantage of a commercial software capabilities and use those in research practice.

2. TOPOLOGY OPTIMIZATION

In order to present the components of TOCP code and make the paper self-contained several the-

oretical parts of S&T optimization are provided in this section. Structural topology optimization

can be considered as a procedure for optimizing the topological arrangement of material into the

design domain, eliminating the material volume that is not needed. It can also be seen as the

problem of finding the structural layout that best transfers specific loading conditions to supports.

It can be employed in order to generate an acceptable initial layout of the structural system, which

is then refined by means of shape optimization procedure. Therefore, it can be used to assist de-

 4

signer to define the structural system that satisfies best the operating conditions. Topology opti-

mization procedure operates with gradual “removal” of low stressed material. This is treated as

typical structural reanalysis problem where small variations are encountered on the stiffness ma-

trix between subsequent optimization steps.

2.1 Problem Formulation

In topology optimization problem formulations the quantities provided are the domain Ω, where

the optimized layout will be created, the required volume fraction of the optimized layout, the

boundary Γ and loading conditions F. As shown in Figure 1, the boundary conditions Γ consist of

Γο, Γs, Γt and Γu, parts where u t s . The surface tractions t are applied at region

Γt; regions Γs denote the non-optimizable areas; Γu represent the support conditions and Γo are the

geometric boundaries of Ω.

The problem can be solved using material distribution methods [6] for finding the optimum

layout of a structural system composed by linearly elastic isotropic material. Therefore, the ques-

tion under investigation is how to distribute material volume into domain Ω in order to minimize

a specific criterion; compliance C is a commonly used criterion. The distribution of the material

volume in domain Ω is controlled by the density values x distributed over the domain. More spe-

cifically, it is controlled by design parameters that are represented by the densities xe assigned to

the FE discretization of domain Ω. The densities (x or xe) take values in the range [0,1], where

zero denotes no material in the specific element. The mathematical formulation of the topology

optimization problem can be expressed as:

0

min

min () ()

()

. . () ()

0 1

T

x
C x F u x

V x
f

V

s t F K x u x

x x

 (1)

where C(x) is the compliance of the structure, F is a force vector and ()u x is the corresponding

global displacement vector. The second expression of Eq. (1) refers to a volume constraint where

f is the volume fractions of domain Ω that the optimized layout should occupy. The third equality

of Eq. (1) corresponds to the equilibrium equation where K(x) is the global stiffness matrix of the

structural system. The inequality of Eq. (1) denotes the definition set of the density values.

2.2 Solid Isotropic Material with Penalization

SIMP method was proposed by Bendsøe and Sigmund [6] aiming to deal with the problem of Eq.

(1) and is implemented in TOCP code presented herein. According to SIMP method the finite

 5

elements’ density values are correlated with the corresponding Young modulus value E, through

the following expression:
0 0() ()p p

e e e e e e e eE x x E k x x k (2)

where the parameter p is usually taken equal to 3. This power law correlation is implemented in

SIMP to achieve density values closer to the lower and upper bounds of the design variables (i.e.

0 and 1). The calculation formula of compliance can be written as follows:

() () () () ()T TC x F u x u x K x u x (3)

Therefore, based on Eq. (2), compliance calculation formula can be expressed as:

0

1

() () () () ()
N

T p T

e e e e

e

C x u x K x u x x u k u

 (4)

where N is the number of finite elements and ue is the displacement vector in the elements’ local

coordinate system. Thus, using Eqs. (2) and (4) the formulation of the topology optimization prob-

lem of Eq. (1) can now be expressed as follows:

0

1

0

min

min () () () () ()

()

. . () ()

0 1

N
T p T

e e e e
x

e

C x u x K x u x x u k u

V x
f

V

s t F K x u x

x x

 (5)

Among others, the optimization problem formulated according to SIMP in Eq. (5) can be solved

using either the optimality criteria (OC) method or the method of moving asymptotes (MMA),

both described in the following sections.

2.3 Optimality Criteria Method

Calculating the derivative of C(x) represents an important part of both OC and MMA algorithms.

In order to avoid calculating the derivative of the displacement vector ()u x with respect to design

vector (xe) a zero part is subtracted from C(x):

 () () () ()T TC x F u x K x u x F (6)

Therefore, the partial derivatives of C(x) become:

() () ()()
() ()

() ()
 () (())

e e e
e e

e e e e

e e
e e

e e

u x k x u xC x
F u x k x

x x x x

k x u x
u x F k x

x x

 (7)

Since vector λ takes an arbitrary value, the value λ = ue(xe) is used. Thus, the derivatives become:

()()
() ()T e

e e

e e

k xC x
u x u x

x x

 (8)

 6

OC is an iterative search algorithm where the solution vector is updated in very iteration until

convergence. First a linear approximation of C(x) is defined close to the design variable vector xk:

1

1 1

()
() () ()

() ()
 () y

k

k k

N
k k

e e

e e x x

N N
k k

e e

e ee ex x x x

C x
C x C x y y

y

C x C x
C x y

y y

 (9)

where
a

e ey x and the derivatives of C(x) with respect to ye are calculated as follows:
1

1
a

e e

a

ee e e e e

e

x xC C C C

xy x y x a x

x

(10)

Then C(x) becomes:
1

1 1

() ()
() () y

k aN N
k k k ae

e e e

e ee

x C x
C x C x b x

a x

 (11)

where

1()

k

k a
k e
e

e x x

x C
b

a x

 (12)

since the derivatives of the compliance (C(x)) can take negative values only:
1

1 1

()
y 0 and 0

k aN N
k k ae
e e ek

e ee

x C
b x

a x

 (13)

Therefore, in order to maximize the subtracting part of the objective function C(x) only the posi-

tive part need to be minimized:

1

0
N

k a

e e

e

b x

 (14)

The following subproblem can now be formulated as follows:

1

1

min ()

. .

0 1

e

N
k a

e e
x

e

N

e e

e

e

C x b x

x V
s t

x

 (15)

In order to solve this problem the Lagrangian Duality method is applied where the augmented

Lagrangian function is expressed as follows:

1 1

(,) ()
N N

k a

e e e e e

e e

L x b x x V

 (16)

The minimum value of xe resulted from the solution of the subproblem of Eq. (15) is obtained

minimizing L(xe,λ) with respect to xe and maximizing L(xe,λ) with respect to λ. In order to calculate

xe, the derivatives of L(xe,λ) with respect to xe are defined first:

 7

1k a

e e

e

L
ab x

x

 (17)

and therefore the values of xe are obtained:
1

1

0
k a
e

e

e e

abL
x

x

 (18)

Since xe takes values in the range [0,1] and large changes should be avoided, xe is updated accord-

ing to the following rules:
1

1

1
11

1

1

1

(0,) if (0,)

 if (0,) () (1,)

(1,) if (1,)

k a
e

e e

e

k ka
new e e a
e e e

e e

k a
e

e e

e

ab
max x m max x m

ab ab
x max x m min x m

ab
min x m min x m

 (19)

m is the maximum change allowed for xe. Similar to xe, in order to calculate λ, the derivatives of

L(x,λ) in respect to λ are defined:

1

N

e e

e

L
x V

 (20)

The calculation of λ is achieved by iteratively choosing values of λ for each xe until satisfaction of

the following equality:

1 1

0 0
N N

e e e e

e e

L
x V x V

 (21)

2.4 Method of Moving Asymptotes

Similar to OC, the method of moving asymptotes is an iterative procedure proposed for solving

nonlinear optimization problems, in particular of the following form:

0min ()

() , for 1,2, ,
. .

, for 1,2, ,

Nx R

i

j j j

f x

f x f i n
s t

x x x j N

 (22)

For every iteration k, the values of functions 0 1(), () to ()k k k

mf x f x f x together with their partial

derivatives need to be calculated. MMA rely on first order approximations, where the required

estimates for design xk are defined using the values of previous steps. Afterwards, Lagrangian

Duality method is implemented in order to derive design xk+1 using these approximations. Specif-

ically functions 0 1(), () to ()k k k

mf x f x f x are approximated through the following expression:
() ()

() ()

() ()
1

()
() ()

k kN
ij ijk k

i i k k
j j j j j

p q
f x r

U x x L

 (23)

 8

where

() () 2

()

() , 0

0 0

k k i i
j j

j jk

ij

i

j

f f
U x if

x x
p

f
if

x

 (24a)

()

() () 2

0 0

() , 0

i

jk

ij

k k i i
j j

j j

f
if

x
q

f f
x L if

x x

 (24b)

() ()

() ()

() () () ()
1

()
() ()

k kn
ij ijk k

i i k k k k
j j j j j

p q
r f x

U x x L

 (24c)

and the second order partial derivatives of fi with respect to xj are calculated through the following

expressions:

2

2

2

0

2

0

i

j i

k kk
j j ji

ij

j i

k k

j j j

f

x f
if

U x xf

fx

x f
f

x L x

 (25)

where, as it can be observed for Eq. (25) they are positive definite, and their values increase when

Uj and Lj, called “moving asymptotes”, tend to xj. The implementation of MMA into the topology

optimization problem of Eq. (5) requires some modifications, i.e. only compliance C(x) needs to

be approximated, while since its partial derivatives are always negative then pk = 0. Thus, the

topology optimization problem of Eq. (15) becomes:

()

()
1

1

() () ()

() min

. .
0 1

e

kN
k e

i kx
e e e

N

e

e

e

k k k

e e e

q
g x r

x L

x a V

s t
x

L x U

 (26)

where Lagrangian Duality method is applied also for solving this problem and the augmented

Lagrangian function is expressed as follows:
()

()
1 1

(,) ()
kN N

k e
e i e ek

e ee e

q
L x r x a V

x L

 (27)

The values of xe and λ are obtained by minimizing L(xe,λ) with respect to xe and maximizing L(xe,λ)

with respect to λ. In order to calculate xe, the derivative of L(xe,λ) with respect to xe is defined first:

 9

()

() 2

(,)

()

k

e e

k

e e e

L x q

x x L

 (28)

thus the values of xe are obtained as follows:

()
()0

k
ke

e e

e

qL
x L

x

 (29)

implementing a maximum movement factor m and a, b as move limits, xe is updated according to

the following rules:

()
() () ()

() ()
() () () ()

()
() ()

(0, ,) if (0, ,)

 if (0, ,) (1, ,)

(1, ,) if

k
k k ke

e e e e e

k k
new k k k ke e
e e e e e e e

k
k ke

e e e

q
max x m a L max x m a

q q
x L max x m a L min x m

q
min x m L

 ()(1, ,) k

e emin x m

 (30)

To obtain λ, L(xe,λ) is maximized with respect to λ:

1

(,)
0

N
e

e e

e

L x
x a V

 (31)

This is achieved using the bisection method. The “moving limits” are used to avoid division by

zero and can be calculated as follows:
() () ()

() () ()

0.9 0.1

and

0.9 0.1

k k k

j j j

k k k

j j j

a L x

U x

 (32)

Moving asymptotes
()k

jL and
()k

jU are selected based on the rule proposed by Svanberg [17]: In

case of oscillation values for the moving asymptotes closer to
()k

jx are selected, otherwise, in case

of slow convergence values far away from
()k

jx are used. According to Liu and Tovar [14] the

moving asymptotes are calculated using an update scheme that is based on three successive itera-

tions. In particular, for k=1 and 2:
() () () () ()

() ()() ()

2 0.5

0.51

k k k k k
j j j j j

k kk k
j jj j

U L x L x

U xU L

 (33a)

for k≥3:
() () () () () ()

() () ()() () ()

2 0.5

0.5

k k k k k k
j j j j j j

k k kk k k
j j jj j j

U L x L x

U xU L

 (33b)

where
() (1) (1) (2)

() () (1) (1) (2)

() (1) (1) (2)

0.7 if ()() 0

1.2 if ()() 0

1.0 if ()() 0

k k k k

j j j j

k k k k k

j j j j j

k k k k

j j j j

x x x x

x x x x

x x x x

 (33c)

 10

3. SAP2000 OAPI IMPLEMENTATION

In computer programming, an application programming interface (API) refers to a set of subrou-

tine definitions, protocols, and tools for building application software. In general terms, it's a set

of clearly defined methods of communication between various software components. A good API

makes it easier to develop a computer program by providing all the building blocks, which are

then put together by the programming developer. The SAP2000 open application programming

interface allows developers to automate many of the processes required to build, analyse, and

design models and to obtain customized analysis and design results. It also allows developers to

link SAP2000 with third-party tools, providing a path for two-way exchange of model information

with other applications. Based on these capabilities provided by SAP2000 OAPI, in this section

details on the TOCP C# implementation of minimum compliance topology optimization frame-

work, interfacing with SAP2000, is presented. Although, the code described herein is based on

SAP2000 version 15 OAPI documentation, the corresponding code for the latest version 19 will

also be provided and can be downloaded from the following site: http://users.ntua.gr/nlaga-

ros/TOCP/projectsSMO.zip, users are free to use these codes as long as they acknowledge their

source.

Before describing how parts of topology optimization described previously are modified in

order to take advantage of SAP2000 OAPI, the basic issues related to the use of OAPI are provided

in this section along with justification for choosing SAP2000 over other also well-known software

for analysis and design of structural systems.

3.1 Why Choosing SAP2000

Over the years, SAP2000 has proven to be one of the most integrated, general-purpose structural

software on engineering practice today. It is considered as one of the easiest, most productive

software for structural analysis and design needs (from a simple small 2D static frame analysis to

a large complex 3D nonlinear dynamic analysis). The interface of SAP2000 allows creating struc-

tural models rapidly and intuitively. Complex models can be generated and meshed using built in

templates. This is the reason of less importance we have decided to use the specific software to

integrate with the S&T optimization concept. Worth mentioning also that in case of academic

purposes needs, multiple licenses for unlimited usage are provided almost for free.

However, the main reason for choosing SAP2000 is due to the fact that through OAPI it’s

modelling, analysis-design capabilities are fully accessible. By means of its OAPI, integrated de-

sign code features can be used to automatically generate wind, wave, bridge, and seismic loads

with automatic steel and concrete design code checks per European, US, Canadian, Chinese and

other international design standards. In addition, various analytical techniques that allow for step-

by-step large deformation analysis, Eigen and Ritz analyses based on stiffness of nonlinear cases,

http://users.ntua.gr/nlagaros/TOCP/projectsSMO.zip
http://users.ntua.gr/nlagaros/TOCP/projectsSMO.zip

 11

catenary cable analysis, material nonlinear analysis with fibre hinges, buckling analysis, progres-

sive collapse analysis, or plasticity and nonlinear segmental construction analysis along with spe-

cialised modelling capabilities using multi-layered nonlinear shell element, velocity-dependent

dampers, or base isolators, are also accessible through OAPI.

3.2 SAP2000 OAPI basic features

In order to access SAP2000 from an external application using its OAPI the following steps need

to be followed: The first step is to reference SAP2000 from the application. Specifically, as soon

as a new visual studio (VS) C# console application project was created a reference (COM) is

added in the project to SAP2000.EXE. Next an instance of the SAP2000 object needs to be created

(also known as instantiating the object) within the developed application. This is accomplished as

follows:

L1
L2

SAP2000v15.SapObject Object;
Object = new SAP2000v15.SapObject();

where the command of first line #L1 creates the object variable and the second line #L2 creates

an instance of the SAP2000 object. Now that an instance of the SAP2000 object has been created

in the application, SAP2000 can be started using the following command:

L3 Object.ApplicationStart(SAP2000v15.eUnits.kN_m_C,true,"");

At this point an existing model can be opened, or a new one to be created and perform any action

required. In general, OAPI commands are accessed through Object.SapModel. It might be helpful

to define a SapModel object so that the OAPI commands are accessed through Model instead of

Object.SapModel. For example, a new SAP2000 is initiated with the following steps, a Model object

is created first:

L4
L5

SAP2000v15.cSapModel Model;
Model = Object.SapModel;

and then the model is initialized as follows:

L6 int ret = Model.InitializeNewModel(Sap2000.eUnits.kip_in_F);

When finished with a model, it might be needed to close SAP2000 application. This can be ac-

complished using the following command:

L7 Object.ApplicationExit(false);

As a last step, Model and Object objects should be set to null. This is accomplished as follows:

L8
L9

Model = null;
Object = null;

 12

Setting the objects to null is a very important step. It breaks the connection between developer’s

application and SAP2000 and frees up system resources. If the objects are not set to null, the

SAP2000 application will not completely close (it will still be seen running in Windows task

manager).

3.3 Specific Features of SAP2000 OAPI Used in Topology Optimization Imple-

mentation

Most of the functions of SAP2000 OAPI that are used in this study in order to integrate the topol-

ogy optimization implementation into SAP2000 are described in this section. GetNameList (ret

= Model.SolidObj.GetNameList();), this function retrieves the names of all defined solid objects.

SetLocalAxes (ret = Model.SolidObj.SetLocalAxes();), this function sets the local axes angles for

solid objects. AddMaterial (ret = Model.PropMaterial.AddMaterial();) that is a function that adds

a new material property to the model based on the pre-defined material properties. GetMPIso-

tropic (ret = Model.PropMaterial.GetMPIsotropic();) that is a function that retrieves the mechanical

properties for a material with an isotropic directional symmetry type. SetMPIsotropic (ret =

Model.PropMaterial.SetMPIsotropic();) that is a function that sets the material directional sym-

metry type to isotropic, and assigns the isotropic mechanical properties. SetProp (ret =

Model.PropSolid.SetProp();), this function assigns a solid property to solid objects. ClearSelection

(ret = Model.SelectObj.ClearSelection();), this function deselects all objects in the model. Coor-

dinateRange (ret = Model.SelectObj.CoordinateRange();), this function selects or deselects objects

inside the box defined by the XMin, XMax, YMin, YMax, ZMin and ZMax coordinates. GetSelected (ret

= Model.SelectObj.GetSelected();), this function retrieves a list of selected objects. SetMod-

elIsLocked (ret = Model.SetModelIsLocked();) this function locks or unlocks the model. SolidJoint-

Force (ret = Model.Results.SolidJointForce();), this function reports the joint forces for the point

elements at every corner of the specified solid elements. JointDispl (ret = Model.Re-

sults.JointDispl();), this function reports the joint displacements for the specified point elements.

The displacements reported by this function are relative displacements. GetProperty (ret =

Model.AreaObj.GetProperty();), this function retrieves the area property assigned to an area object.

GetType (ret = Model.PropArea.GetType();), this function retrieves the property type for the spec-

ified area property. Delete (ret = Model.SolidObj.Delete();), this function deletes solid objects.

SetRunCaseFlag (ret = Model.Analyze.SetRunCaseFlag();), this function sets the run flag for load

cases. RunAnalysis (ret = Model.Analyze.RunAnalysis();), this function runs the analysis. The anal-

ysis model is automatically created as part of this function. DeselectAllCasesAndCombosForOut-

put (ret = Model.Results.Setup.DeselectAllCasesAnCombosForOutput();), this function deselects all

load cases and response combinations for output. SetCaseSelectedForOutput (ret = Model.Re-

sults.Setup.SetCaseSelectedForOutput();), this function sets a load case selected for output flag.

 13

4. C# IMPLEMENTATION-TOCP: CODE DESCRIPTION

The current study is accompanied by four visual studio C# projects that can be downloaded from

http://users.ntua.gr/nlagaros/TOCP/projectsSMO.zip. All four VS projects correspond to different

integrations of the S&T optimization concept into SAP2000 software using its OAPI. In particular,

the first two projects labelled as TOCP1 and TOCP2 refer to the implementations of OC and

MMA algorithms, respectively, and the mesh of the optimizable domain is provided by the user;

while the latter two projects labelled as TOCP3 and TOCP4 denote also the implementations of

the two algorithms however the mesh of the optimizable domain is generated automatically and

the user needs to provide also the representative element’s discretization nlx×nly×nlz. In this sec-

tion, the C# code corresponding to the implementation of OC is outlined while description of the

numerical implementation of MMA is also provided. Once this code is understood the rest ones

can easily be comprehended. The term method that is used in the current and next sections refers

to a group of statements that together perform a task. In this section ten methods that are used in

OC and MMA visual studio projects are described, together with the methods written for imple-

menting OC and MMA algorithms. All these methods are described in detail below:

4.1 ReadModel method

ReadModel refers to the method that is used first by the four projects. Taking advantage of the

modelling capabilities of SAP2000, a structural system can be modelled using 1D, 2D and/or 3D

finite elements. Using an instance of this method several arrays are returned containing the nodes,

the finite elements (solid, frame and area ones) of the model and the load cases considered. Part

of the ReadModel method is provided in the code below, where indicatively in line #30 the 3D finite

elements (solid ones) used in the model are retrieved using function GetNameList and in line #34

each solid element’s local axes angles are set the same as the global ones. Similar procedure is

implemented both for 1D and 2D finite elements and their corresponding nodes.

28
29
30
31
32
33
34
35

SolidName = new string[0];
SolidNumb = 0;
ret = Model.SolidObj.GetNameList(ref SolidNumb, ref SolidName);
Console.WriteLine("{0} solid objects", SolidNumb);
for (i = 0; i <= SolidNumb - 1; i++)
{
 ret = Model.SolidObj.SetLocalAxes(SolidName[i],a,b,c, SAP2000v15.eItemType.Object);
}

4.2 CreateMatSolid method

In order to define 3D finite elements in SAP2000, solid sections need to be defined first. Each

solid section property, containing among others the material characteristics, is assigned to groups

of solid finite elements. According to SIMP, the elements’ modulus of elasticity are penalized

through density values xe using the formula of Eq. (2). This is carried out by the CreateMatSolid

method, where a number of material classes are generated first (for example 101 different material

http://users.ntua.gr/nlagaros/TOCP/projectsSMO.zip

 14

classes as described in lines #72 to #77 of the following code); initially, having identical properties

and they are stored in array MatName. This is described in the following part of CreateMatSolid

method:

72
73
74
75a
75b
76
77

for (i = 0; i <= 100; i++)
{
 temp_name = "OptiMat" + Convert.ToString(i);
 ret = Model.PropMaterial.AddMaterial(ref temp_mat,
 SAP2000v15.eMatType.MATERIAL_CONCRETE, Region, Standard, Grade, temp_name);
 MatName[i] = temp_mat;
}

In subsequent part of CreateMatSolid method (i.e. lines #79 to #87), the modulus of elasticity is

modified according to the following formula (see Line #84):
00.01i iE E E (34)

In order to avoid section properties having modulus of elasticity values equal to zero, that might

generate numerical instability issues during the analysis, the first material property corresponding

to the lowest modulus of elasticity value becomes equal to
0

0 10.0E-07E E (where E0 corre-

sponds to the first material class while E0 is the initial value of the modulus of elasticity). This is

described in lines #79 and #80 of the code provided below along with the generation of the rest

of the material properties (i.e. lines #81 to #87):

79
80
81
82
83
84
85
86
87

ret = Model.PropMaterial.GetMPIsotropic(MatName[0], ref e, ref u, ref amat, ref g);
ret = Model.PropMaterial.SetMPIsotropic(MatName[0], e * 0.0000001, u, amat);
double metr = 0.01;
for (i = 1; i <= 100; i++)
{
 ret = Model.PropMaterial.SetMPIsotropic(MatName[i], e * metr, u, amat);
 metr = metr + 0.01;
 metr = Math.Round(metr, 2);
}

In the last part of the code of CreateMatSolid method (i.e. lines #89 to #96) each material property

defined according to Eq. (34) is assigned to a solid section property. Each solid section is labelled

as OptiSolidProp#, where # stands for an id value that denotes the modulus of elasticity value of

the specific section (i.e. OptiSolidProp0.01 stands for the solid section property whose modulus

of elasticity is equal to
00.01iE E). This is described in the code below:

89
90
91
92
93
94
95
96

metr = 0.00;
for (i = 0; i <= 100; i++)
{
 temp_name = "OptiSolidProp" + string.Format("{0:N2}", metr);
 ret = Model.PropSolid.SetProp(temp_name,MatName[i],0.0,0.0,0.0,true,-1,"","");
 metr = Math.Round(metr, 2) + 0.01;
 metr = Math.Round(metr, 2);
}

Using an instance of CreateMatSolid method, modulus of elasticity values that will be used in the

following steps of the topology optimization procedure are assigned to solid section properties.

 15

4.3 CreateOptiSolidName method

The use of an instance of the CreateOptiSolidName method creates the array OptiSolidName contain-

ing the ids of the model’s solid elements whose density values will be the design variables of the

topology optimization problem. The optimizable solid finite elements are generated into a rectan-

gular domain (optimizable domain) that is defined by the user providing the bounds of its three

dimensions (i.e. xmin, xmax, ymin, ymax, zmin and zmax, see Figure 2). In addition, the dimen-

sion of the quadratic finite elements needs also to be provided by the user.

CreateOptiSolidName method based on the nodal coordinates of the solid finite elements, in line

#119 selects which elements will be optimized using OAPI function Model.SelectObj.Coordinat-

eRange. Next, in line #124 the method obtains the id (i.e. ObjNameSel) of the selected solid element

and stores it in the proper location of array OptiSolidName (see line #134). The arrangement of the

solid elements’ ids in the array OptiSolidName is the same with that used in [14]. An example of

the numbering implementation for a mesh 5×3×5 of optimizable solid finite elements (along x, y

and z axes, respectively) can be seen in Figure 3.

112a
112b
113
114a
114b
115
116a
116b
116c
117
118
119a
119b
119c
119d
119e
124a
124b
133
134
136
137
138

for (x_double = Math.Round(xmax,3); x_double >= Math.Round(xmin,3) +
Math.Round(diakr/2, 3); x_double = Math.Round(x_double, 3) - Math.Round(diakr, 3))
{
 for (z_double = Math.Round(zmax,3); z_double >= Math.Round(zmin,3) +
 Math.Round(diakr/2,3); z_double = Math.Round(z_double,3) - Math.Round(diakr,3))
 {
 for (y_double = Math.Round(ymax,3); y_double >= Math.Round(ymin,3)+
 Math.Round(diakr/2,3); y_double = Math.Round(y_double,3)-
 Math.Round(diakr, 3))
 {
 ret = Model.SelectObj.ClearSelection();
 ret = Model.SelectObj.CoordinateRange(Math.Round(x_double,3) –
 Math.Round(diakr,3), Math.Round(x_double,3), Math.Round(y_double,3)–
 Math.Round(diakr,3), Math.Round(y_double,3), Math.Round(z_double,3)–
 Math.Round(diakr,3), Math.Round(z_double,3), false, "Global", false,
 false, false, false, true, false);
 ret = Model.SelectObj.GetSelected(ref NumbSel, ref ObjTypeSel,
 ref ObjNameSel);
 count = count + 1;
 OptiSolidName[count - 1] = ObjNameSel[0];
 }
 }
}

4.4 CreateMapDist method

In order to avoid the checkerboard problem filtering needs to be applied both to new density values

and derivatives. In every iteration the filter is applied to each solid finite element based on its

neighbouring elements. To facilitate this process an instance of the CreateMapDist method needs

to be used first before initiating the iterations. This method is used for creating the array Map that

contains the ids of each solid finite element’s neighbouring elements. The first three iterative loops

(that begin in lines #175, #177 and #179) are implemented in order to identify in line #181 each

solid finite element (e_int) while the next three iterative loops (that begin in lines #189, #191 and

 16

#193) are employed in order to find in line #195 all its neighbouring located into a sphere having

radius equal to rmin. In addition, CreateMapDist method calculates the distances

 , 0, (,)e iH max rmin D e i for each solid finite element (see line #196), where D(e,i) is the dis-

tance between the solid finite element e and every of its neighbouring solid finite elements i, and

stores them in array Dist (see line #198).

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196a
196b
196c
197
198
199
200
201
202
203
204
205

for (x_int = 1; x_int <= nlx; x_int++)
{
 for (z_int = 1; z_int <= nlz; z_int++)
 {
 for (y_int = 1; y_int <= nly; y_int++)
 {
 e_int = (x_int - 1) * nlz * nly + (z_int - 1) * nly + y_int;
 x_double_min = Math.Truncate(Math.Max(x_int - rmin, 0.0)) + 1;
 z_double_min = Math.Truncate(Math.Max(z_int - rmin, 0.0)) + 1;
 y_double_min = Math.Truncate(Math.Max(y_int - rmin, 0.0)) + 1;
 x_double_max = Math.Min(Math.Truncate(x_int + rmin), nlx);
 z_double_max = Math.Min(Math.Truncate(z_int + rmin), nlz);
 y_double_max = Math.Min(Math.Truncate(y_int + rmin), nly);
 j = 0;
 for (x_double = x_double_min; x_double <= x_double_max; x_double++)
 {
 for (z_double = z_double_min; z_double <= z_double_max; z_double++)
 {
 for (y_double = y_double_min; y_double <= y_double_max; y_double++)
 {
 e_double = (x_double - 1) * nlz * nly + (z_double - 1) * nly + y_dou-
ble;
 H = (rmin - Math.Sqrt(Math.Pow(x_int - Convert.ToInt32(x_double), 2)
 + Math.Pow(y_int - Convert.ToInt32(y_double), 2)
 + Math.Pow(z_int - Convert.ToInt32(z_double), 2))) * diakr;
 Map[e_int - 1, j] = Convert.ToInt32(e_double);
 Dist[e_int - 1, j] = Math.Max(H, 0);
 j = j + 1;
 }
 }
 }
 }
 }
 }

The procedure of finding neighbouring elements that is implemented with the formulas of lines

#181 and #195 is based on the elements’ names that Sigmund [10] proposed and Liu and Tovar

[14] also applied in their 3D code and is currently adopted in CreateOptiSolidName method.

4.5 UpdateModel method

In this part of the VS project, the solid section properties with the corresponding modulus of

elasticity values are assigned to the optimizable solid finite elements. This is performed with the

use of an instance of UpdateModel method as described in the lines of the code below:

214
215
216
217
218
219
220

ret = Model.SetModelIsLocked(false);
for (i = 0; i <= OptiSolidNumb - 1; i++)
{
 temp_double = Math.Round(xkfil[i] * xkfil[i] * xkfil[i], 2);
 temp_string = "OptiSolidProp" + string.Format("{0:N2}", temp_double);
 ret = Model.SolidObj.SetProperty(OptiSolidName[i], temp_string, 0);
}

 17

The rounded in the second decimal digit of the 3rd power of the density value of the ith solid finite

element is calculated in line #217, over the total number of solid finite elements, whose density

values represent variables of the problem. In line #218, this density value is converted into a string

variable and is stored in the temporary variable temp_string composed by the prefix “OptiSolidProp”

and followed by the value (i.e. OptiSolidProp0.01). In line #219, a solid section property is as-

signed to every optimizable solid finite element based on the name that is stored in temporal var-

iable temp_string.

4.6 CalcCompliance method

In this part of the code, the compliance of the structure is calculated. In line #341 OAPI function

SolidJointForce is used over the solid elements in order to obtain from SAP2000 joint forces F1,

F2, F3, M1, M2 and M3 for every node and they are stored in arrays. In the next for loop, function

JointDispl is used in order to obtain the displacements U1, U2,U3, R1, R2 and R3 also for every

node. The cross product between the arrays of displacements and forces over the nodes of each

element results into the total compliance of the structural system (see line #347). Worth

mentioning that the calculation of compliance is not a required part for the implementation of the

optimization proccess, however, it is provided as a measure for the progress of the search

procedure.

339
340
341a
341b
341c
341d
341e
342
343
344
345
346a
346b
346c
346d
347a
347b
348
349
350
351
352a
352b
353
354
355
356

for (i = 0; i <= SolidNumb - 1; i++)
{
 ret = Model.Results.SolidJointForce(SolidName[i],
 SAP2000v15.eItemTypeElm.ObjectElm,
 ref nresultS, ref ObjeS, ref elmS, ref pointelmS, ref LoadCaseS, ref
 StepTypeS, ref StepNumS, ref F1S, ref F2S, ref F3S, ref M1S,
 ref M2S, ref M3S);
 if (nresultS == 8)
 {
 for (j = 0; j <= nresultS - 1; j++)
 {
 ret = Model.Results.JointDispl(pointelmS[j],
 SAP2000v15.eItemTypeElm.ObjectElm, ref nresult, ref Obje,
 ref elm, ref LoadCase, ref StepType, ref StepNum, ref U1,
 ref U2, ref U3, ref R1, ref R2, ref R3);
 comp = comp + U1[0] * F1S[j] + U2[0] * F2S[j] + U3[0] * F3S[j] +
 R1[0] * M1S[j] + R2[0] * M2S[j] + R3[0] * M3S[j];
 }
 }
 else
 {
 Console.WriteLine("Error: while calculating the compliance of a solid element
 (Method CalcCompliance). check nresultS");
 Console.WriteLine("number of results: {0}", nresultS);
 testbool = false;
 }
}

 18

4.7 CalcDerivatives method

The calculation of the partial derivatives with respect to xe is the most important part of the itera-

tive steps of the optimization procedure. This is performed with an instance of CalcDerivatives

method, whose input argument is the array xkfil. According to the theoretical part provided pre-

viously the partial derivatives are calculated using Eq. (8). However, the finite elements’ stiffness

matrices ()ek x are not available through the OAPI of SAP2000. In order to overcome this diffi-

culty a modified expression is proposed in this study. According to SIMP changing the modulus

of elasticity of the optimizable solid finite elements, results into modified stiffness matrices:

3 0 0

3

()
() e e

e e e e e

e

k x
k x x k k

x
 (35)

and

2 0 2

3

() () ()
3 3 3e e e e e e

e e e

e e e

k x k x k x
x k x

x x x

 (36)

Thus, Eq. (8) can be rewritten as follows:

()()
() ()

() () 3
 () 3 () 3

T e e
e e

e e

T
T e e e e

e e

e e e

k xC x
u x u x

x x

k x F u x C
u x u x

x x x

 (37)

CalcDerivatives method is used to calculate the work produced by the optimizable solid finite

elements based on the procedure described in the previous method (CalcCompliance) and then to

calculate the partial derivatives according to Eq. (37). The method returns the array der containing

the derivatives arranged in a similar fashion with the rest ones that have been created already.

492
493
494
495a
495b
495c
495d
496
497
498
499
500a
500b
500c
500d
501a
501b
502
503
504
505
506a
506b
507
508
509
510

for (i = 0; i <= OptiSolidNumb - 1; i++)
{
 compder = 0.0;
 ret = Model.Results.SolidJointForce(OptiSolidName[i],
 SAP2000v15.eItemTypeElm.ObjectElm, ref nresultS, ref ObjeS, ref elmS,
 ref pointelmS, ref LoadCaseS, ref StepTypeS, ref StepNumS, ref F1S, ref F2S,
 ref F3S, ref M1S, ref M2S, ref M3S);
 if (nresultS == 8)
 {
 for (j = 0; j <= nresultS - 1; j++)
 {
 ret = Model.Results.JointDispl(pointelmS[j],
 SAP2000v15.eItemTypeElm.ObjectElm,ref nresult,ref Obje,ref elm,ref
 LoadCase, ref StepType, ref StepNum, ref U1, ref U2, ref U3, ref R1,
 ref R2, ref R3);
 compder = compder + (U1[0] * F1S[j]) + (U2[0] * F2S[j]) + (U3[0] * F3S[j])
 +(R1[0] * M1S[j]) + (R2[0] * M2S[j]) + (R3[0] * M3S[j]);
 }
 }
 else
 {
 Console.WriteLine("Error: while calculating the compliance of a solid element
 (Method CalcDerivatives). check nresultS");
 Console.WriteLine("number of results: {0}", nresultS);
 testbool = false;
 }
 der[i] = -3 * compder / Math.Max(xkfil[i], Math.Pow(10,-3));

 19

511
512

 comp2 = comp2 + compder;
 }

4.8 FilterDer method

Given that the derivatives have been calculated, their values need to be filtered in order to avoid

the checkerboard problem. The input arguments of FilterDer method are the arrays der, xkfil, Map

and Dist defined previously by an instance of CreateMapDist method. For each optimizable solid

finite element, the ids of its neighbouring elements are retrieved through array Map, the correspond-

ing distances Hei are obtained through array Dist and then the summations of the following ex-

pression are calculated:

, ,

()
 and

e e

e i i e i

i N i Ni

C x
H x H

x

 (38)

where ,e iH are distances calculated for each solid finite element over its neighbouring solid finite

elements eN . Line #547 describes the implementation of derivatives’ filtering procedure that is

performed according to the following expression:

,3

,

() 1 ()

max(10 ,)
e

e

e i i

i Ne e e i i

i N

C x C x
H x

x x H x

(39)

Finally, FilterDer method returns the array derfil[i] containing the filtered derivatives.

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

for (i = 0; i <= OptiSolidNumb - 1; i++)
{
 SHXC = 0.0;
 SH = 0.0;
 for (j = 0; j <= 26; j++)
 {
 if ((Map[i, j] - 1) >= 0)
 {
 SHXC = SHXC + Dist[i, j] * xkfil[Map[i, j] - 1] * der[Map[i, j] - 1];
 SH = SH + Dist[i, j];
 }
 else if ((Map[i, j] - 1) != -1)
 {
 Console.WriteLine("problem: Map[i,j]-1 is {0}", Map[i, j] - 1);
 testbool = false;
 }
 }
 derfil[i] = SHXC / (SH * Math.Max(xkfil[i],Math.Pow(10,-3)));
}
return derfil;

4.9 OptimalityCriteria method

An instance of OptimalityCriteria method preforms the process described in the theoretical part

of the study. In order to calculate the value of λ the bisection interval algorithm is applied, where

the definition set of λ is defined first:

571
572

al = 0.0;
bl = Math.Pow(10, 10);

 20

For each value of λ defined as the average value of the corresponding interval, a new density value

(variable xnew[i]) is calculated according to Eq. (19), using the unfiltered density value of the

previous iteration (variable xk[i]).

573
574
575
576
577
578a
578b
579

do
{
 lamda = (al + bl) / 2;
 for (i = 0; i <= OptiSolidNumb - 1; i++)
 {
 xnew[i] = Math.Max(0, Math.Max(xk[i] - 0.2, Math.Min(1, Math.Min(xk[i] + 0.2,
 Math.Sqrt(be[i] / lamda)))));
 }

In order to avoid the checkerboard problem filtering is performed over the optimizable solid ele-

ments’ density values xe according to the following expression:

,

,

1

e

e

e e i i

i Ne i

i N

x H x
H

(40)

This is described in the code that follows:

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

metrx = 0.0;
for (i = 0; i <= OptiSolidNumb - 1; i++)
{
 SHX = 0.0;
 SH = 0.0;
 for (j = 0; j <= 26; j++)
 {
 if ((Map[i, j] - 1) != -1)
 {
 SHX = SHX + Dist[i, j] * xnew[Map[i, j] - 1];
 SH = SH + Dist[i, j];
 }
 }
 xnewfil[i] = SHX / SH;
 metrx = metrx + xnewfil[i];
}

In the code of lines #596 to #608 the constraint described in Eq. (21) is verified. If the sum (vari-

able metrx) of filtered density values (xe) over all optimizable solid finite elements is greater than

the required volume fraction value (V), then density values need to be reduced, and therefore λ

(variable lamda) that lies in the interval 0.5(),a b b needs to be increased. Accordingly, if the

sum of density values (xe) is less than the required volume fraction value, density values need to

be increased and the value of λ that lies in the interval ,0.5()a a b needs to be decreased. The

division process continues until a suitable value of λ is achieved.

 21

596
597
598
599
600
601
602
603
604
605
606
607
608

 if ((bl - al) / (al + bl) < Math.Pow(10, -3))
 {
 testlamda = true;
 }
 else if (metrx > V)
 {
 al = lamda;
 }
 else
 {
 bl = lamda;
 }
} while (testlamda == false);

4.10 MMA method

Similar to the previous section, an instance of MMA method preforms the steps of moving asymp-

totes algorithm described in the theoretical part of the current study. In particular, the commands

in lines #641 to #695 are used to calculate L and U for each solid element according to Eq. (33)

and then α and β according to Eq. (32). As it can be observed in lines #645 and #649 the method

requires information from two previous iterations (i.e. xkm1 stands for the element’s density value

in the previous iteration and xkm2 stands for the element’s density in before previous iteration).

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
673
674
675
676
677
678
679
680
681
682
694
695

if (epanal >= 3)
{
 for (i = 0; i <= OptiSolidNumb - 1; i++)
 {
 if ((xk[i] - xkm1[i]) * (xkm1[i] - xkm2[i]) < 0)
 {
 gamma = 0.7;
 }
 else if ((xk[i] - xkm1[i]) * (xkm1[i] - xkm2[i]) > 0)
 {
 gamma = 1.2;
 }
 else
 {
 gamma = 1.0;
 }
 Lk[i] = xk[i] - 0.5 * gamma;
 Uk[i] = xk[i] + 0.5 * gamma;

 ak[i] = 0.9 * Lk[i] + 0.1 * xk[i];
 bk[i] = 0.9 * Uk[i] + 0.1 * xk[i];
 }
}
else
{
 for (i = 0; i <= OptiSolidNumb - 1; i++)
 {
 Lk[i] = xk[i] - 0.5;
 Uk[i] = xk[i] + 0.5;
 ak[i] = 0.9 * Lk[i] + 0.1 * xk[i];
 bk[i] = 0.9 * Uk[i] + 0.1 * xk[i];
 }
}

In the following lines of the method, the calculation formulas of Eqs. (24a) and (24b) for the

calculation of quantities p and q are implemented. As it is explained in the theoretical part, the

 22

derivatives of compliance can take negative values only; thus, lines #709 and #710 of condition

if are selected, while in case of positive values an error message is returned (see line #704).

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

for (i = 0; i <= OptiSolidNumb - 1; i++)
{
 if (derfil[i] > 0)
 {
 pk[i] = (Uk[i] - xk[i]) * (Uk[i] - xk[i]) * derfil[i];
 qk[i] = 0;
 Console.WriteLine("Error: positive derivative");
 testbool = false;
 }
 else if (derfil[i] < 0)
 {
 pk[i] = 0;
 qk[i] = -(xk[i] - Lk[i]) * (xk[i] - Lk[i]) * derfil[i];
 }
}

Subsequently, the new density values are calculated according to the formula of Eq. (30), instead

of that of OC algorithm that is provided by Eq. (19):

714
715
716
717
718
719
720
721
722
723a
723b
723c

al = 0.0;
bl = Math.Pow(10, 10);
testlamda = false;
do
{
 lamda = (al + bl) / 2;
 metrx = 0;
 for (i = 0; i <= OptiSolidNumb - 1; i++)
 {
 xnew[i] = Math.Max(Math.Max(0, ak[i]), Math.Max(xk[i] - 0.2,
 Math.Min(Math.Min(1, bk[i]), Math.Min(xk[i] + 0.2,
 (Math.Sqrt(qk[i] / lamda) + Lk[i])))));

Then, filtering is implemented on the density values and the constraint of Eq. (31) is verified,

similarly to the procedure implemented for OC algorithm.

4.11 TestProcedure method

In this method the convergence criterion is verified based on the difference of the elements’ den-

sity values between two successive iterations. An instance of the TestProcedure method receives

as input arguments the arrays of unfiltered density values of the previous and current iterations,

denoted in the following code (lines #757 to #769) with variables xk and xnew. When the maximum

difference over the solid finite elements, whose density value represent design variable, is less

than 0.001 (see line #766), then variable testpro that is returned by the method becomes equal to

true (see line #768) and the iterative process is terminated. Otherwise, testpro variable value re-

mains equal to false and the process continues.

757
758
759
760
761

int i;
max = -1.0;
for (i = 0; i <= OptiSolidNumb - 1; i++)
{
 if (Math.Abs(xk[i] - xnew[i]) > max)

 23

762
763
764
765
766
767
768
769

 {
 max = Math.Abs(xk[i] - xnew[i]);
 }
}
if (max < Math.Pow(10, -3) || (epanal > fixedepanal))
{
 testpro = true;
}

4.12 DeleteSolid method

At the end of topology optimization procedure, an instance of DeleteSolid method is used in order

to remove those solid finite elements having density values lower than the threshold value set by

the user. In most of the implementations this value was set equal to 0.6. If the element’s density

value is greater than this threshold value 0.6 then the procedure described in lines #782 to #784 is

performed where its solid section property is updated based on its density value, otherwise the

element is deleted (see line #788). When this threshold checked is performed for all optimizable

solid finite elements, the optimized layout can be seen through SAP2000 environment.

777
778
779
780
781
782
783
784
785
786
787
788
789
790

ret = Model.SetModelIsLocked(false);
for (i = 0; i <= OptiSolidNumb - 1; i++)
{
 if (xkfil[i] > 0.6)
 {
 temp_double = Math.Round(xkfil[i] * xkfil[i] * xkfil[i], 2);
 temp_string = "OptiSolidProp" + string.Format("{0:N2}", temp_double);
 ret = Model.SolidObj.SetProperty(OptiSolidName[i], temp_string, 0);
 }
 else
 {
 ret = Model.SolidObj.Delete(OptiSolidName[i], 0);
 }
}

5. TEST EXAMPLES

In order to present the capabilities and to provide more information about the use of TOCP source

code several test examples are considered in this section. Initially a couple of simple test examples

such as the cantilever and simply supported beams are examined. In the second group of tests

indicative issues related to conceptual design are integrated into the optimum layout design of

moment resisting frames (MRFs), that represent an important representative of the structural

members in case of building structures. For all optimization runs that will follow the value of p

used in Eq. (2) was set equal to 3 and density filtering was applied having filter size min 3r .

5.1 Simple examples

In the collection of simple examples a cantilever beam and two simply supported ones (beam-A

and -B) are studied. For all optimization runs the value of the volume fraction (volfrac) used to

obtain the optimized domains was set equal to 30%.

 24

The dimensionless lengths and height, of the cantilever beam of Figure 4(a) are 1.2 along the

longitudinal axis x, 0.5 along the transverse axis y and 0.8 along the vertical axis z. For the finite

element discretization of the cantilever beam shown in Figure 4(a), the following parameters were

used: nlx = 12, nly = 5 and nlz = 8 resulting into 480 cubic solid elements where each edge of the

basic cubic solid is equal to 0.1 dimensionless length size. All nodes on the right side of the can-

tilever beam were restrained, while a uniformly distributed load is applied along the upper part of

the left side at the vertical direction (i.e. axis z). Both OC and MMA algorithms were used in

order to solve the topology optimization problem converging to similar results, both methods con-

verged based on the maximum number of iterations criterion that was set to 150 finite element

analyses. The optimized domain obtained by OC is shown in Figure 4(b), a similar one was ob-

tained by MMA as well.

For the simply supported beam-A of Figure 5(a) the corresponding dimensionless lengths and

height are 3.0 along the longitudinal axis x, 0.8 along the transverse axis y and 1.0 along the

vertical axis z. For the finite element discretization of the simply supported beam-A shown in

Figure 5(a), the following parameters were used: nlx = 30, nly = 8 and nlz = 10 resulting into

2400 cubic solid elements where each edge of the basic cubic solid is equal to 0.1 dimensionless

length size. The nodes of the two lower extreme edges were restrained, while a uniformly distrib-

uted load is applied along the centre of the beam at the vertical direction i.e. axis z (as shown in

Figure 5(a), corresponding to loading case 1). Both OC and MMA algorithms were used in order

to solve the topology optimization problem converging again to similar results; however, OC

method converged earlier when the stopping criterion of the maximum difference of the density

values between two successive iterations was satisfied at the 90th iterations while MMA converged

when the maximum number of iterations criterion was achieved that was set to 150 finite element

analyses. The optimized domain obtained by OC is shown in Figure 5(b), a similar one was also

obtained by MMA. For the simply supported beam-A a second loading case was also considered,

where additional uniformly distributed loads are applied along the upper extreme edges of the

beam at the vertical direction (i.e. axis z, see Figure 6(a)), the optimized domain obtained by OC

for loading case 2 is shown in Figure 6(b), a similar one was obtained also by MMA algorithm.

The last simple example is the second simply supported beam-B, where the dimensionless

lengths and height are equal to 1.2 along the longitudinal axis x, 0.5 along the transverse axis y

and 0.8 along the vertical axis z. For the finite element discretization of the simply supported

beam-B shown in Figure 7, the following parameters were used: nlx = 24, nly = 10 and nlz = 16

resulting into 3840 cubic solid elements where each edge of the basic cubic solid is equal to 0.05

dimensionless length size. The nodes of the lower extreme edges were restrained, while a uni-

formly distributed load is applied along the upper left edge at the horizontal direction of axis x.

Similar to the previous examples both OC and MMA algorithms were used in order to solve the

 25

topology optimization problem converging, however, to rather different results both after satisfy-

ing the maximum number of iterations criterion that was set to 150 finite element analyses. In

particular, OC resulted into the optimized domain presented in Figure 8(a), while MMA algo-

rithm’s result is shown in Figure 8(b).

5.2 MRF Design Test Example

Moment-resisting frames are rectilinear assemblages of beams and columns, with the beams rig-

idly connected to the columns. Resistance to lateral loads is provided primarily by rigid frame

action, i.e. by the development of bending moments and shear forces in the frame members and

joints. By virtue of the rigid beam-column connections, a moment frame cannot displace laterally

without bending the beams or columns depending on the geometry of the connection. The bending

rigidity and strength of the frame members is therefore the primary source of lateral stiffness and

strength for the entire frame. The 1994 Northridge earthquake revealed a common flaw in the

construction, and building design codes were revised to strengthen them.

In the context of OPTARCH research project, among others, topology optimization problems

are formulated for deriving multiple alternatives. In this direction, topology optimization is used

as a tool to design aesthetically acceptable layouts of MRFs used in the design of high-rise build-

ings. In order to present the integration of topology optimization formulations in the conceptual

design of civil structures, the MRF shown in Figure 9(a) is employed, where the domain and finite

element mesh discretization is also depicted. The dimensionless lengths and height of the MRF

are equal to 2.0 along the longitudinal axis x, 0.3 along the transverse axis y and 9.0 along the

vertical axis z. For the optimization runs of MRF test example various values of the volume frac-

tion were used to obtain variants of optimized domains. For the finite element discretization of

the MRF shown in Figure 9(a), the following parameters were used in all cases examined, i.e. nlx

= 20, nly = 3 and nlz = 90 resulting into 5400 cubic solid elements. Each edge of the basic cubic

solid is equal to 0.1 dimensionless length size and the bottom extreme edges of the domain were

fully fixed.

For the MRF test example two loading cases have been applied. Among others, these two load-

ing cases included, several issues concerning the conceptual design of high-rise buildings have

been examined by Stromberg et al. [18]. According to the first case horizontally loads were ap-

plied on the left side of MRF (at the level of the three storeys of the structural system, loading

case-1) and in the second one on its both sides (loading case-2). For the first loading case, OC

algorithm was adopted and the volume fraction used to obtain the optimized domain was set equal

to 40%. The optimized domain obtained for loading case-1 by OC is shown in Figure 9(b). For

loading case-2, shown in Figure 10(a), both search algorithms were implemented, and OC resulted

in the optimized domain of Figure 10(b) where the volume fraction was set equal to 55% whereas

 26

MMA algorithm resulted in the optimized domain of Figure 10(c) where the volume fraction was

set equal to 47%. For all optimization runs performed for this test example the maximum number

of iterations criterion was set equal to 400 finite element analyses.

6. CONCLUSIONS

In this work we present a code implementing the integration of a minimum compliance shape and

topology optimization framework into the SAP2000 structural analysis and design software. The

code is written in C# programming language and exploiting the open application programming

interface provided by SAP2000, it provides the possibility to take advantage of all its modelling,

analysis and design capabilities. The paper covers all theoretical aspects of topology optimization

incorporated in the code and provides detailed description of their numerical implementation. For

purposes of understanding several simple test examples are also provided in the current study.

In particular, four visual studio projects implementing variants of a simple minimum compli-

ance based topology optimization frameworks, are available from the webpage http://us-

ers.ntua.gr/nlagaros/TOCP/projectsSMO.zip which can be used for educational purposes. The

codes can easily be extended to include additional optimization criteria and also to handle prob-

lems requiring nonlinear and dynamic analyses. Using the four projects in C# are not independent,

since the finite element analysis part required by topology optimization is performed by SAP2000;

this is considered as the basic advantages of the TOCP codes provided herein. This is because,

the analysis and design features that the commercial software provides will enhance significantly

the capabilities of future researchers that will extend the TOCP codes’ capacities. Furthermore,

the user needs not to care for issues like sparsity in the assembly of the global stiffness matrix,

acceleration of the finite element equations solution, modelling and analysis issues. Since they

will benefit from the acceleration capability and memory management that an advanced commer-

cial software has inherently implemented in its computational core. Worth mentioning that in case

of academic purposes usage the specific software provides multiple licenses almost for free.

The authors would be happy to receive suggested improvements that can be implemented in

the public domain TOCP codes (please address to the first author by his e-mail address nlaga-

ros@central.ntua.gr).

ACKNOWLEDGEMENTS

This research has been supported by the OptArch project: “Optimization Driven Architectural

Design of Structures” (No: 689983) belonging to the Marie Skłodowska-Curie Actions (MSCA)

Research and Innovation Staff Exchange (RISE) H2020-MSCA-RISE-2015.

http://users.ntua.gr/nlagaros/TOCP/projectsSMO.zip
http://users.ntua.gr/nlagaros/TOCP/projectsSMO.zip
mailto:nlagaros@central.ntua.gr
mailto:nlagaros@central.ntua.gr

 27

REFERENCES

[1] Gallagher R.H., Zienkiewicz O.C., Optimum Structural Design: Theory and Applications,

John Wiley & Sons, New York, USA, 1973.

[2] Haug E.J., Arora J.S. Optimal mechanical design techniques based on optimal control meth-

ods, ASME paper No 64-DTT-10, Proceedings of the 1st ASME design technology transfer

conference, New York, 65-74, October, 1974.

[3] Moses F., Mathematical programming methods for structural optimization, ASME Struc-

tural Optimisation Symposium AMD; 7, 35-48, 1974.

[4] Sheu C.Y., Prager W. Recent development in optimal structural design, Applied Mechanical

Reviews; 21(10): 985-992, 1968.

[5] Spunt L., Optimum Structural Design, Prentice-Hall, Englewood Cliffs, New Jersey, USA,

1971.

[6] Bendsøe, M.P., Sigmund, O. Material interpolations in topology optimization. Archive of

Applied Mechanics; 69: 635-654, 1999.

[7] Bendsøe, M.P., Sigmund, O. Topology Optimization-Theory, Methods and Applications.

Springer Verlag, Berlin Heidelberg, 2003.

[8] Allaire, G. Shape Optimization by the Homogenization Method, Applied Mathematical Sci-

ences, Volume 146. Springer, New York, USA, 2002.

[9] Allaire, G., Jouve, F., Toader, A.M. Structural optimization using sensitivity analysis and a

level-set method. Journal of Computational Physics; 194(1):363-393, 2004.

[10] Sigmund, O. A 99 line topology optimization code written in Matlab, Structural and Multi-

disciplinary Optimization; 21(2): 120-127, 2001.

[11] Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O. Efficient topology

optimization in Matlab using 88 lines of code, Structural and Multidisciplinary Optimiza-

tion; 43(1): 1-16, 2011.

[12] Allaire, G. codes: http://www.cmap.polytechnique.fr/~allaire/levelset_en.html.

[13] Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M. Polytop: a matlab implementation

of a general topology optimization framework using unstructured polygonal finite element

meshes. Structural and Multidisciplinary Optimization; 45(3): 329-357, 2012.

[14] Liu, K., Tovar, A. An efficient 3D topology optimization code written in Matlab, Structural

and Multidisciplinary Optimization; 50(6): 1175-1196, 2014.

[15] Zuo, Z.H., Xie, Y.M. A simple and compact Python code for complex 3D topology optimi-

zation, Advances in Engineering Software; 85, 1-11, 2015.

[16] Wilson, E.L., Habibullah, A. SAP 2000 software, version 19. Computer and Structures, Inc.

(CSI), Berkeley, CA, USA, 2017.

[17] Svanberg, K. The method of moving asymptotes-a new method for structural optimization,

International Journal for Numerical Methods in Engineering; 24 (2): 359-373, 1987.

[18] Stromberg L.L., Beghini A., Baker W.F., Paulino G.H. Topology optimization for braced

frames: Combining continuum and beam/column elements. Engineering Structures;

37:106-124, 2012.

http://www.cmap.polytechnique.fr/~allaire/levelset_en.html

 28

FIGURES

Figure 1. The generalized shape design problem of finding the optimal material distribution in 2D do-

main.

Figure 2. Optimizable domain.

(a)

(b)

Figure 3. Arrangement of the optimizable solid finite elements.

x

y

Γu

Γs

Ω

Γο
Γt

t

 29

(a)

(b)

Figure 4. Simple test examples – cantilever beam: (a) domain - mesh discretization and (b) optimized

layout obtained by OC (volume fraction equal to 30%).

(a)

(b)

Figure 5. Simple test examples – simply supported beam A (loading case 1): (a) domain - mesh discreti-

zation and (b) optimized layout obtained by OC (volume fraction equal to 30%).

(a)

(b)

Figure 6. Simple test examples – simply supported beam-A (loading case 2): (a) domain - mesh discreti-

zation and (b) optimized layout obtained by OC (volume fraction equal to 30%).

 30

Figure 7. Simple test examples – simply supported beam-B: domain and mesh discretization.

(a)

(b)

Figure 8. Simple test examples – simply supported beam-B, 3D and side views of the optimized domain

obtained by (volume fraction equal to 30%): (a) OC and (b) MMA.

 31

(a)

(b)

Figure 9. MRF test example: (a) domain - mesh discretization and (b) optimized layout obtained by OC

(volume fraction equal to 40%).

(a)

(b)

(c)

Figure 10. MRF test example: (a) domain - mesh discretization and (b) optimized layout obtained by OC

(volume fraction equal to 55%) and (c) optimized layout obtained by MMA (volume fraction equal to

47%).

