Conference paper Open Access

Design of Low-Complexity Convolutional Codes over GF(q )

Klaimi, Rami; Abdel Nour, Charbel; Douillard, Catherine; Farah, Joumana


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Klaimi, Rami</dc:creator>
  <dc:creator>Abdel Nour, Charbel</dc:creator>
  <dc:creator>Douillard, Catherine</dc:creator>
  <dc:creator>Farah, Joumana</dc:creator>
  <dc:date>2018-12-09</dc:date>
  <dc:description>This paper proposes a new family of recursive systematic convolutional codes, defined in the non-binary Domain over different Galois fields GF(q) and intended to be used as component codes for the design of non-binary turbo codes. A general framework for the design of the best codes over different GF(q) is described. The designed codes offer better performance than the non-binary convolutional codes found in the literature. They also outperform their binary counterparts when combined with their corresponding QAM modulation or with lower order modulations.</dc:description>
  <dc:identifier>https://zenodo.org/record/2579623</dc:identifier>
  <dc:identifier>10.1109/GLOCOM.2018.8647824</dc:identifier>
  <dc:identifier>oai:zenodo.org:2579623</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/760150/</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/epic_h2020</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Finite field,</dc:subject>
  <dc:subject>non-binary codes,</dc:subject>
  <dc:subject>recursive systematic convolutional codes,</dc:subject>
  <dc:subject>coded modulation,</dc:subject>
  <dc:subject>turbo codes.</dc:subject>
  <dc:title>Design of Low-Complexity Convolutional Codes over GF(q )</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
34
17
views
downloads
Views 34
Downloads 17
Data volume 19.1 MB
Unique views 33
Unique downloads 16

Share

Cite as