PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Haas, A Haas, A Non-feeding and feeding tadpoles in hemiphractine frogs: Larval head morphology, heterochrony, and systematics of Flectonotus goeldii (Amphibia: Anura: Hylidae) JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH English Article morphology; cranium; skeleton; feeding; larvae; heterochrony; development; systematics; Anura; Hylidae The Hemiphractinae (Hylidae) is group of neotropical egg-brooding frogs. It comprises species with different larval life history strategies. The larvae of Flectonotus hatch in an advanced stage of development. They are free-living but non-feeding. The putative sister taxon Gastrotheca includes species with feeding and free-living larvae, and others that undergo direct development. This study gives the first description of the skull of premetamorphic Flectonotus goeldii. Results are compared to the skulls of free-living Gastrotheca larvae. Some of the differences between the skulls can be explained as structural reductions of the larval feeding system in F. goeldii, due to the non-feeding mode of life: small and shallow branchial basket; simple ceratobranchialia; absence of branchial food traps, filter rows, ciliary cushions; only two open gill clefts; some branchial muscles weakly developed or missing. Many cranial structures appear to stop their differentiation and growth precociously in F. goeldii, compared to Gastrotheca: lack of commissura quadratoorbitalis anterior; short cornu trabeculae; persisting fenestrae parietales; and crista parotica without pronounced processus. The simplified feeding apparatus and the retarded features of the neurocranium can be accounted for by a heterochronic truncation of the larval developmental program in F. goeldii. Despite many structural differences, larvae of F. goeldii and Gastrotheca also share cranial features: similar ethmoidal region; lack of processus oticus; high cartilage orbitalis; intermediate suspensorium; large processus pterygoideus; copula anterior absent; musculus levator mandibulae externus and m. branchiohyoideus externus missing; m. levator mandibulae anterior lateralis not functionally differentiated before metamorphosis; ramus mandibularis (N.V) perforates m. levator mandibulae subexternus; rostral end of cornu trabeculae not conspicuously projecting laterally beyond cartilage labialis superior; and lateral rim of palatoquadrate curved dorsally and smooth. However, none of these shared character states is unique to the two taxa. They are also found in larvae of some other species of the Hylidae and Hyloidea and are probably symplesiomorphic for Gastrotheca and Flectonotus. Haas, A (reprint author), INST SPEZIELLE ZOOL & EVOLUT BIOL,ERBERTSTR 1,D-07743 JENA,GERMANY. Brooks DR, 1991, PHYLOGENY ECOLOGY BE; de VILLIERS C. G. S., 1929, SOUTH AFRICAN JOUR SCI, V26, P481; DEJONGH HJ, 1968, NETH J ZOOL, V18, P1; DELPINO EM, 1989, DEVELOPMENT, V107, P169; DELPINO EM, 1981, J MORPHOL, V167, P277, DOI 10.1002/jmor.1051670303; DELPINO EM, 1980, COPEIA, P10, DOI 10.2307/1444129; DESA RO, 1988, J MORPHOL, V195, P345, DOI 10.1002/jmor.1051950308; DINGERKUS G, 1977, STAIN TECHNOL, V52, P229, DOI 10.3109/10520297709116780; Duellman W. E., 1986, BIOL AMPHIBIANS; DUELLMAN WE, 1988, COPEIA, P527, DOI 10.2307/1445371; DUELLMAN WE, 1983, HERPETOLOGICA, V39, P333; DUELLMAN WE, 1993, SPECIAL PUBLICATION, V21, P1; DUELLMAN WE, 1992, SCI AM, P58; DUELLMAN WE, 1984, MISC PUBL MUS NAT HI, V75, P1; Fabrezi M., 1992, Acta Zoologica Lilloana, V41, P155; Fabrezi M, 1993, PHYSIS B, V48, P39; Frost D. R, 1985, AMPHIBIAN SPECIES WO; Gosner K. L., 1960, Herpetologica, V16, P183; HAAS A, 1995, J MORPHOL, V224, P241, DOI 10.1002/jmor.1052240302; HAAS A, 1996, IN PRESS VERH NATURW; HANKEN J, 1992, J MORPHOL, V211, P95, DOI 10.1002/jmor.1052110111; Jungfer K.-H., 1991, Revue Francaise d'Aquariologie Herpetologie, V18, P91; Jungfer KH, 1996, HERPETOLOGICA, V52, P25; JURASKE N, 1995, VERH DT ZOOL GESELL, V88, pA259; LAVILLA E O, 1987, Acta Zoologica Lilloana, V39, P81; LAVILLA E O, 1987, Physis Seccion B las Aguas Continentales y sus Organismos, V45, P77; LAVILLA E O, 1991, Amphibia-Reptilia, V12, P33, DOI 10.1163/156853891X00301; Lynn W. Gardner, 1942, CARNEGIE INST WASHINGTON PUBL, V541, P27; MAXSON LR, 1977, SYST ZOOL, V26, P72, DOI 10.2307/2412866; Reinbach W., 1939, JENAISCHE ZEITSCHR NATURW, V72, P211; Romeis B., 1989, MIKROSKOPISCHE TECHN; STPHESNSON NG, 1951, T ZOOL SOC LONDON, V27, P203; SWANEPOEL J H, 1970, Annale Universiteit van Stellenbosch Serie A, V45, P1; TAYLOR EDWARD H., 1954, UNIV KANSAS SCI BULL, V36, P589; Viertel B., 1987, Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, V115, P425; VIERTEL B, 1985, ZOOMORPHOLOGY, V105, P345, DOI 10.1007/BF00312278; VIERTEL B, 1984, VERH GES OKOL, V12, P563; WASSERSUG R, 1972, J MORPHOL, V137, P279, DOI 10.1002/jmor.1051370303; WASSERSUG RJ, 1984, J MORPHOL, V182, P1, DOI 10.1002/jmor.1051820102; WEYGOLDT P, 1991, Amphibia-Reptilia, V12, P67, DOI 10.1163/156853891X00347; WEYGOLDT P, 1989, Amphibia-Reptilia, V10, P419, DOI 10.1163/156853889X00052 41 15 16 0 3 BLACKWELL WISSENSCHAFTS-VERLAG GMBH BERLIN KURFURSTENDAMM 57, D-10707 BERLIN, GERMANY 0947-5745 J ZOOL SYST EVOL RES J. Zool. Syst. Evol. Res. SEP 1996 34 3 163 171 9 Evolutionary Biology; Zoology Evolutionary Biology; Zoology WA157 WOS:A1996WA15700005 2019-02-26 J Shine, R Shine, R Life-history evolution in Australian snakes: A path analysis OECOLOGIA English Article allometry; life history; reproduction; sexual dimorphism; snake SEXUAL SIZE DIMORPHISM; DETERMINANTS; ALLOMETRY; PATTERNS I recently attempted to investigate interspecific patterns in ecological traits of Australian snakes using univariate statistical techniques (Shine 1994), but high intercorrelations among variables (especially with mean adult body size) made it difficult to interpret the observed patterns. In the present paper, I attempt to tease apart causal factors using multivariate (path) analysis on the same data set (103 species, based on dissection of >22000 museum specimens). Two separate path analyses were conducted: one that treated each species as an independent unit (and thus, ignored phylogeny) and the other based on independent phylogenetic contrasts. Path coefficients from the two types of analyses were similar in magnitude, and highly correlated with each other, suggesting that most interspecific patterns among traits may reflect functional association rather than phylogenetic conservatism. Path analysis showed that indirect effects of one variable upon another (i.e., mediated via other traits) were often stronger than direct effects. Thus, even when two variables appeared to be uncorrelated in the univariate analysis, this apparent lack of relationship sometimes masked strong but conflicting indirect effects. For example, a tradeoff between clutch size and offspring size tends to mask the direct effect of mean adult body size on clutch size. Path analysis may also suggest original causal hypotheses. For example, interspecific allometry of sexual size dimorphism (as seen in Australian snakes, and many other animal groups) may result from a strong effect of another allometrically-tied trait (offspring size) on growth trajectories of females. UNIV SYDNEY,INST WILDLIFE RES,SYDNEY,NSW 2006,AUSTRALIA Shine, R (reprint author), UNIV SYDNEY,SCH BIOL SCI A08,SYDNEY,NSW 2006,AUSTRALIA. Shine, Richard/B-8711-2008; Rohlf, F/A-8710-2008 Andersson MB, 1994, SEXUAL SELECTION; Andrews R.M., 1982, Biology of Reptilia, V13, P273; HARVEY PH, 1991, OXFORD STUDIES ECOLO; KING RB, 1993, J HERPETOL, V27, P175, DOI 10.2307/1564934; KINGSOLVER JG, 1991, TRENDS ECOL EVOL, V6, P276, DOI 10.1016/0169-5347(91)90004-H; LOVICH JE, 1992, GROWTH DEVELOP AGING, V56, P269; MADSEN T, 1994, EVOLUTION, V48, P1389, DOI 10.1111/j.1558-5646.1994.tb05323.x; NUSSBAUM RA, 1985, MISC PUBL MUSEUM ZOO, V169, P1; Reiss M. J, 1989, ALLOMETRY GROWTH REP; SEIGEL R A, 1987, P210; Seigel Richard A., 1993, P395; SHINE R, 1990, HERPETOLOGICA, V46, P283; SHINE R, 1990, AM NAT, V135, P278, DOI 10.1086/285043; SHINE R, 1991, AM NAT, V138, P103, DOI 10.1086/285207; SHINE R, 1989, HERPETOLOGICA, V45, P195; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; SHINE R, 1994, COPEIA, P851; Shine Richard, 1993, P49; SINE R, 1994, COPEIA, P326; WEATHERHEAD PJ, 1994, EVOLUTION, V48, P671, DOI 10.1111/j.1558-5646.1994.tb01352.x 20 19 19 0 9 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia SEP 1996 107 4 484 489 10.1007/BF00333939 6 Ecology Environmental Sciences & Ecology VH672 WOS:A1996VH67200010 28307391 2019-02-26 J Thoren, LM; Karlsson, PS; Tuomi, J Thoren, LM; Karlsson, PS; Tuomi, J Somatic cost of reproduction in three carnivorous Pinguicula species OIKOS English Article LIFE-HISTORY EVOLUTION; RESOURCE-ALLOCATION; PLANTS; SELECTION; STRATEGIES; FLOWERS We estimated the cost of reproduction and reproductive effort in three iteroparous plant species, Pinguicula alpina, P. villosa and P. vulgaris, in a subarctic environment. The phenotypic costs of reproduction were quantified by comparing resource pools (dry weight, nitrogen or phosphorus) in reproductive and non-reproductive plants. Two types of non-reproductive plants were used; plants whose reproductive parts had been removed (RR) at the start of the growing season and naturally non-reproductive plants (NR). The reproductive effort was calculated as the resources invested in reproduction in relation to the total resource pool (somatic + reproductive parts). For P. vulgaris the amount of resources available was manipulated by feeding plants with insects and/or by leaf removal in a factorial design. A somatic cost of reproduction was found for all species and treatments since reproductive plants had smaller somatic resource pools than non-reproductive plants (both RR and NR). The total resource pool was higher in reproductive plants than in non-reproductive plants. Due to this difference, the reproductive effort exceeded the somatic cost of reproduction. This suggests that mechanisms may exist for decreasing the cost of reproduction. Mechanisms that potentially could explain the discrepancy between reproductive effort and the somatic cost are discussed. ABISKO SCI RES STN, S-98107 ABISKO, SWEDEN; UPPSALA UNIV, DEPT ECOL BOT, S-75236 UPPSALA, SWEDEN Thoren, LM (reprint author), LUND UNIV, DEPT ECOL, ECOL BLDG, S-22362 LUND, SWEDEN. Karlsson, Staffan/J-3082-2012 Karlsson, Staffan/0000-0002-5739-5213 Antonovics J., 1980, LIMITS ACTION ALLOCA, P1; Bazzaz F. A., 1985, STUDIES PLANT DEMOGR, P373; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; Calow P., 1981, PHYSL ECOLOGY EVOLUT, P3; DERIDDER F, 1990, THESIS U ANTWERP BEL; DOUST JL, 1989, TRENDS ECOL EVOL, V4, P230, DOI 10.1016/0169-5347(89)90166-3; EMLEN JM, 1984, POPULATION BIOL COEV; Fenner M, 1985, SEED ECOLOGY; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; Hansen M. H, 1953, SAMPLING SURVEY METH; HANSLIN HM, 1996, IN PRESS OECOLOGIA; HEIDE F, 1912, MEDDELELSER GRONLAND, V36, P441; HOROWITZ CC, 1988, ECOLOGY, V69, P1741; Karlsson PS, 1988, FUNCT ECOL, V2, P203, DOI 10.2307/2389696; KARLSSON PS, 1991, OECOLOGIA, V86, P1, DOI 10.1007/BF00317381; KARLSSON PS, 1986, CAN J BOT, V64, P2872, DOI 10.1139/b86-379; KARLSSON PS, 1994, OECOLOGIA, V99, P188, DOI 10.1007/BF00317100; KARLSSON PS, 1987, OECOLOGIA, V73, P518, DOI 10.1007/BF00379409; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; Levins R., 1968, EVOLUTION CHANGING E; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MOLAU U, 1993, NORD J BOT, V13, P149, DOI 10.1111/j.1756-1051.1993.tb00025.x; NEALES TF, 1968, BOT REV, V34, P107, DOI 10.1007/BF02872604; PINERO D, 1982, J ECOL, V70, P473, DOI 10.2307/2259916; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REEKIE EG, 1987, AM NAT, V129, P897, DOI 10.1086/284682; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; ROSE MR, 1983, J THEOR BIOL, V101, P137, DOI 10.1016/0022-5193(83)90277-1; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SLACK A, 1979, CARNIVOROUS PLANTS; SMITH AP, 1982, OECOLOGIA, V55, P243, DOI 10.1007/BF00384494; Sokal RR, 1987, INTRO BIOSTATISTICS; Sorensen Thorvald, 1941, MEDDELSER OM GRONLAND, V125, P1; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; SVENSSON BM, 1993, J ECOL, V81, P635, DOI 10.2307/2261662; THOMPSON K, 1981, AM NAT, V117, P205, DOI 10.1086/283700; TUOMI J, 1982, NEW PHYTOL, V91, P483, DOI 10.1111/j.1469-8137.1982.tb03326.x; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMS K, 1985, OECOLOGIA, V66, P530, DOI 10.1007/BF00379345 47 34 37 1 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos SEP 1996 76 3 427 434 10.2307/3546336 8 Ecology Environmental Sciences & Ecology VH374 WOS:A1996VH37400002 2019-02-26 J Wray, GA Wray, GA Parallel evolution of nonfeeding larvae in echinoids SYSTEMATIC BIOLOGY English Article larva; life history evolution; developmental evolution; disparity; Echinoidea URCHIN HELIOCIDARIS-ERYTHROGRAMMA; MARINE-INVERTEBRATES; SEA-URCHINS; PHYLOGENETIC HISTORY; ASTHENOSOMA-IJIMAI; ECHINODERMATA; MACROEVOLUTION; CLYPEASTEROIDA; MORPHOLOGY; DISPARITY The switch from feeding to nonfeeding larvae is an ecologically important transformation that has evolved on several separate occasions within the echinoids. In each case, this life history transformation has been accompanied by extensive changes in larval morphology. A phylogenetic approach is used here to reconstruct these morphological changes, to begin asking why they have taken the particular forms observed, and to assess the degree of parallel transformation in separate cases. Both traditional character mapping and a less usual aggregate analysis indicate massively parallel transformations in larval morphology associated with, and only with, this particular life history transformation. Some of these parallel morphological transformations may be due to relaxed functional constraints associated with the ancestral life history mode, but many are probably the result of new functional constraints associated with the derived mode. The comparative data suggest a simple and testable model for the switch from feeding to nonfeeding larvae involving three sequential steps. Wray, GA (reprint author), SUNY STONY BROOK,DEPT ECOL & EVOLUT,STONY BROOK,NY 11794, USA. AMEMIYA S, 1992, BIOL BULL, V182, P15, DOI 10.2307/1542177; AMEMIYA S, 1979, MAR BIOL, V52, P93, DOI 10.1007/BF00386862; BAUM DA, 1991, SYST ZOOL, V40, P1, DOI 10.2307/2992218; Byrne M., 1991, P499; CRACRAFT J, 1990, EVOLUTIONARY INNOVATIONS, P21; Emlet R.B., 1987, Echinoderm Studies, V2, P55; Emlet R.B., 1990, Advances in Invertebrate Reproduction, V5, P329; EMLET RB, 1986, J EXP MAR BIOL ECOL, V95, P183, DOI 10.1016/0022-0981(86)90202-9; EMLET RB, 1991, AM ZOOL, V31, P707; EMLET RB, 1995, DEV BIOL, V16, P405; FOOTE M, 1993, PALEOBIOLOGY, V19, P185; GOULD SJ, 1991, PALEOBIOLOGY, V17, P411; HART MW, 1991, BIOL BULL, V180, P12, DOI 10.2307/1542425; HART MW, 1996, IN PRESS EVOLUTION; Havenhand Jon N., 1995, P79; HENDLER G, 1982, BIOL BULL, V163, P431, DOI 10.2307/1541454; HENRY JJ, 1991, DEV GROWTH DIFFER, V33, P317; JABLONSKI D, 1986, B MAR SCI, V39, P565; Jagersten G., 1972, EVOLUTION METAZOAN L; Kier P. M., 1969, P215; Kume M, 1968, INVERTEBRATE EMBRYOL; LAUDER GV, 1982, J THEOR BIOL, V97, P57, DOI 10.1016/0022-5193(82)90276-4; LAUDER GV, 1990, ANNU REV ECOL SYST, V21, P317; LITTLEWOOD DTJ, 1995, PHILOS T R SOC B, V347, P213, DOI 10.1098/rstb.1995.0023; MADDISON WP, 1990, EVOLUTION, V44, P539, DOI 10.1111/j.1558-5646.1990.tb05937.x; MADDISON WP, 1992, MACCLADE VERSION 3 0; MCMILLAN WO, 1992, EVOLUTION, V46, P1299, DOI 10.1111/j.1558-5646.1992.tb01125.x; MLADENOV PV, 1979, MAR BIOL, V55, P55, DOI 10.1007/BF00391717; MOOI R, 1990, PALEOBIOLOGY, V16, P25; Morgan Steven G., 1995, P279; MORRIS VB, 1995, ZOOL J LINN SOC-LOND, V114, P349, DOI 10.1006/zjls.1995.0028; Mortensen T, 1921, STUDIES DEV LARVAL F; Okazaki K., 1975, P177; OKAZAKI K, 1954, BIOL BULL, V106, P83, DOI 10.2307/1538781; OLSON RR, 1993, BIOL BULL, V185, P77, DOI 10.2307/1542131; PARKS AL, 1989, BIOL BULL, V177, P96, DOI 10.2307/1541838; Philip G. M, 1971, Palaeontology, V14, P666; RAFF RA, 1987, DEV BIOL, V119, P6, DOI 10.1016/0012-1606(87)90201-6; RAFF RA, 1992, BIOESSAYS, V14, P211, DOI 10.1002/bies.950140403; RAFF RA, 1988, ECHINODERM PHYLOGENY, P29; ROMAN J, 1983, Annales de Paleontologie, V69, P13; RUMRILL SS, 1990, OPHELIA, V32, P163, DOI 10.1080/00785236.1990.10422030; SEILACHER A, 1990, EVOLUTIONARY INNOVATIONS, P231; SMITH AB, 1992, PHILOS T R SOC B, V338, P365, DOI 10.1098/rstb.1992.0155; SMITH AB, 1995, PHILOS T ROY SOC B, V349, P11, DOI 10.1098/rstb.1995.0085; SMITH MJ, 1990, MOL BIOL EVOL, V7, P315; STRATHMANN R R, 1971, Journal of Experimental Marine Biology and Ecology, V6, P109, DOI 10.1016/0022-0981(71)90054-2; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; SWOFFORD DL, 1993, PAUP PHYLOGENETIC AN; WILLIAMS DHC, 1975, AUST J ZOOL, V23, P371, DOI 10.1071/ZO9750371; WILLS MA, 1994, PALEOBIOLOGY, V20, P93; WRAY GA, 1994, DEVELOPMENT, P97; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D; WRAY GA, 1992, PALEOBIOLOGY, V18, P258; WRAY GA, 1995, ECHINODERMS TIME, P921 55 125 125 0 6 SOC SYSTEMATIC BIOLOGISTS WASHINGTON NATL MUSEUM NATURAL HISTORY NHB 163, WASHINGTON, DC 20560 1063-5157 SYST BIOL Syst. Biol. SEP 1996 45 3 308 322 10.2307/2413566 15 Evolutionary Biology Evolutionary Biology VN321 WOS:A1996VN32100005 Bronze 2019-02-26 J Grimes, CB; Isley, JJ Grimes, CB; Isley, JJ Influence of size-selective mortality on growth of gulf menhaden and king mackerel larvae TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article SALMON ONCORHYNCHUS-KETA; OTOLITH MICROSTRUCTURE; MARINE FISH; BREVOORTIA-PATRONUS; NORTHERN GULF; PREDATION; AGE; SURVIVAL; MODEL; ZOOPLANKTON Gulf menhaden Brevoortia patronus and king mackerel Scomberomorus cavalla represent two widely different larval life history strategies: feeding on large and small prey, respectively. We back-calculated lengths at age for wild and laboratory-reared larvae of gulf menhaden and wild king mackerel using direct proportion procedures then constructed matrices of observed age (rows) by increment number (columns) for mean back-calculated lengths at age. The coefficient of variation (100 . SD/mean) in length at age was greater for observed than for back-calculated length at age for both wild and laboratory-reared gulf menhaden and for king mackerel. Columns in the length-at-age matrix of wild gulf menhaden showed significant trends of increasing backcalculated length at age for older larvae, but the matrix for laboratory-reared fish did not. We suggest that size-selective mortality--the culling of slower-growing larvae--was the cause of the different error structures of observed and back-calculated lengths at age as well as of the increasing back-calculated lengths at age for older larvae in the matrix of wild gulf menhaden. Predation may have been the cause of size-selective mortality because wild larvae were exposed to predation and laboratory-reared larvae were not. Slopes of regressions of back-calculated length on observed age for columns of the matrices indicate the time trend and intensity of size-selective mortality; in wild gulf menhaden larvae, size-selective mortality began after hatching, reached a plateau at 5-8 d, then declined markedly after 14 d, which suggests that the influence of predation was mainly expressed during this period. Size-selective mortality caused average growth (mean backcalculated or observed length at age) to appear higher for both species, but especially for gulf menhaden, because the smallest larvae of a given age were removed. We adjusted back-calculated growth by removing the effect of size-selective mortality with analysis of covariance and estimated that the observed growth rate was 25% higher than the adjusted rate for wild gulf menhaden and 7% higher for wild king mackerel. Grimes, CB (reprint author), NATL MARINE FISHERIES SERV, SE FISHERIES SCI CTR, PANAMA CITY LAB, 3500 DELWOOD BEACH RD, PANAMA CITY, FL 32408 USA. ALHOSSAINI M, 1989, J FISH BIOL, V35, P81; ANDERSON J T, 1988, Journal of Northwest Atlantic Fishery Science, V8, P55; BAILEY KM, 1984, MAR BIOL, V79, P303, DOI 10.1007/BF00393262; BAILEY KM, 1989, ADV MAR BIOL, V25, P1; BAILEY KM, 1983, MAR BIOL, V72, P295, DOI 10.1007/BF00396835; BARKMAN RC, 1987, J FISH BIOL, V31, P683, DOI 10.1111/j.1095-8649.1987.tb05271.x; BEYER JE, 1980, ECOL MODEL, V8, P109, DOI 10.1016/0304-3800(80)90032-0; BEYER JE, 1989, DANA-J FISH MAR RES, V7, P45; Bradford MJ, 1987, AGE GROWTH FISH, P453; BROTHERS EB, 1976, FISH B-NOAA, V74, P1; CAMPANA SE, 1990, CAN J FISH AQUAT SCI, V47, P2219, DOI 10.1139/f90-246; CAMPANA SE, 1985, CAN J FISH AQUAT SCI, V42, P1014, DOI 10.1139/f85-127; CARLANDER KD, 1981, FISHERIES, V6, P2; Cowan J.H. Jr, 1992, Fisheries Oceanography, V1, P113, DOI 10.1111/j.1365-2419.1992.tb00030.x; DEVRIES DA, 1990, ENVIRON BIOL FISH, V29, P135, DOI 10.1007/BF00005030; FINUCANE J H, 1990, Northeast Gulf Science, V11, P145; Fitzhugh GR, 1995, BEL BAR LIB, P227; GERRITSEN J, 1977, J FISH RES BOARD CAN, V34, P73, DOI 10.1139/f77-008; GOVONI JJ, 1983, MAR ECOL PROG SER, V13, P189, DOI 10.3354/meps013189; GUTIERREZ E, 1986, J EXP MAR BIOL ECOL, V103, P163, DOI 10.1016/0022-0981(86)90139-5; HEALEY MC, 1982, CAN J FISH AQUAT SCI, V39, P952, DOI 10.1139/f82-130; HETTLER WF, 1983, PROG FISH CULT, V45, P45, DOI 10.1577/1548-8659(1983)45[45:TAALGM]2.0.CO;2; HOUDE ED, 1987, AM FISH SOC S, V2, P17; Hunter JR, 1981, MARINE FISH LARVAE M, P37; JENKINS GP, 1990, MAR ECOL PROG SER, V63, P93, DOI 10.3354/meps063093; JONES C, 1986, FISH B-NOAA, V84, P91; LEE RM, 1912, PUBLICATIONS CIRCONS, V63, P35; LITVAK MK, 1992, MAR ECOL PROG SER, V81, P13, DOI 10.3354/meps081013; MARGULIES D, 1993, MAR BIOL, V115, P317, DOI 10.1007/BF00346350; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; METHOT R D JR, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P424; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; MOLONY BW, 1990, J FISH BIOL, V37, P541; MOSEGAARD H, 1988, CAN J FISH AQUAT SCI, V45, P1514, DOI 10.1139/f88-180; NEILSON JD, 1985, FISH B-NOAA, V83, P91; PANNELLA G, 1971, SCIENCE, V173, P1124, DOI 10.1126/science.173.4002.1124; PENNEY RW, 1985, CAN J FISH AQUAT SCI, V42, P1452, DOI 10.1139/f85-183; PEPIN P, 1987, CAN J FISH AQUAT SCI, V44, P2012, DOI 10.1139/f87-247; PEPIN P, 1992, MAR ECOL PROG SER, V81, P1, DOI 10.3354/meps081001; PEPIN P, 1989, RAP PROCES, V191, P324; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; Pepin P., 1989, BIOL OCEANOGRAPHY, V6, P23; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; POST JR, 1987, CAN J FISH AQUAT SCI, V44, P1840, DOI 10.1139/f87-228; PURCELL JE, 1986, JELLYFISH PREDATORS, P139; RADTKE RL, 1989, CAN J FISH AQUAT SCI, V46, P1884, DOI 10.1139/f89-237; RICE JA, 1987, T AM FISH SOC, V116, P703, DOI 10.1577/1548-8659(1987)116<703:EOMRLS>2.0.CO;2; RICE JA, 1993, CAN J FISH AQUAT SCI, V50, P133, DOI 10.1139/f93-015; Ricker W. E., 1975, B FISH RES BOARD CAN, V191; ROSENBERG AA, 1982, MAR BIOL, V72, P73, DOI 10.1007/BF00393950; Savoy T.F., 1987, P413; SECOR DH, 1989, CAN J FISH AQUAT SCI, V46, P113, DOI 10.1139/f89-015; SHEPHERD JG, 1980, J CONSEIL, V39, P160; THORROLD SR, 1989, CAN J FISH AQUAT SCI, V46, P1615, DOI 10.1139/f89-206; VLYMEN W J, 1977, Environmental Biology of Fishes, V2, P211, DOI 10.1007/BF00005991; VOLK EC, 1984, CAN J FISH AQUAT SCI, V41, P126, DOI 10.1139/f84-012; WARLEN SM, 1988, FISH B-NOAA, V86, P77; Weisberg S., 1987, P127; WIEBE PH, 1976, J MAR RES, V34, P313 59 12 12 0 0 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. SEP 1996 125 5 741 752 10.1577/1548-8659(1996)125<0741:IOSMOG>2.3.CO;2 12 Fisheries Fisheries VJ089 WOS:A1996VJ08900009 2019-02-26 J King, JL; Simovich, MA; Brusca, RC King, JL; Simovich, MA; Brusca, RC Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools HYDROBIOLOGIA English Review temporary pools; vernal pools; crustaceans; wetlands; diversity PLANKTON COMMUNITIES; DAPHNIA-PULEX; GENETIC-VARIATION; LIFE-HISTORY; SAN-DIEGO; POPULATION; COMPETITION; ANOSTRACA; PREDATION; DIVERSITY Ephemeral pools occur worldwide, provide habitat for organisms with a variety of life history strategies, and may have served as evolutionary refugia for some taxa since Mesozoic times. Yet, our understanding of the ecology and evolutionary history of ephemeral pool communities is hampered by a paucity of such basic data as the species composition of pool assemblages. We surveyed 58 vernal (ephemeral spring-time) pools from 14 sites in northern California for crustaceans, and found diverse assemblages composed largely of endemic and rare species. Sixty-seven species of crustaceans were found, and as many as 30 of these may be new, undescribed species. Differences in species composition among pools correspond with physical and chemical aspects of the habitat (depth, solutes concentration, elevation, biogeographic region), and with existing geologic/floristic-based habitat descriptions. Species richness is positively correlated with both depth and surface area. This relationship can be explained in terms of hydroperiod (accommodation of species with slower developmental rates in long-lived pools, greater time for temporal resource partitioning) and size (spatial habitat heterogeneity). High species richness and numerous co-occurrences of congeneric species in temporary pools may be due to super-abundant resources, low levels of predation, and annual truncation of the community which prevents ecological interactions from going to completion. The results of this survey underscore the need for conservation of the vernal pool habitat and endemic vernal pool species in California. The best preservation strategy will include many pools at each site, multiple sites of each habitat type, and all identified habitat types. UNIV SAN DIEGO,DEPT BIOL,SAN DIEGO,CA 92110; UNIV CHARLESTON,GRICE MARINE BIOL LAB,CHARLESTON,SC 29412 King, JL (reprint author), UNIV CALIF DAVIS,SECT EVOLUT & ECOL,DAVIS,CA 95616, USA. ABELE LG, 1976, SCIENCE, V192, P461, DOI 10.1126/science.192.4238.461; AHL JSB, 1991, HYDROBIOLOGIA, V212, P137, DOI 10.1007/BF00025995; ANDERSON R. STEWART, 1968, NAT MUS CAN NATUR HIST PAP, V39, P1; ANDERSON RS, 1974, J FISH RES BOARD CAN, V31, P855, DOI 10.1139/f74-105; ARMITAGE K B, 1967, Hydrobiologia, V29, P205, DOI 10.1007/BF00142064; BALKO ML, 1984, U CALIFORNIA I ECOLO, V28, P76; Barclay W.R., 1984, UC DAV I EC PUBL, V28, P126; BARCLAY WR, 1981, THESIS UC DAVIS; BARLOCHER F, 1978, ARCH HYDROBIOL, V81, P269; BELK, 1994, ANOSTRACAN NEWS, V2, P2; BELK D, 1977, Southwestern Naturalist, V22, P99, DOI 10.2307/3670467; BELK D, 1990, J CRUSTACEAN BIOL, V10, P128, DOI 10.2307/1548675; BOILEAU MG, 1988, HYDROBIOLOGIA, V167, P393, DOI 10.1007/BF00026331; BOUCHER DH, 1982, ANNU REV ECOL SYST, V13, P315, DOI 10.1146/annurev.es.13.110182.001531; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; CARTER JCH, 1980, CAN J ZOOL, V58, P1355, DOI 10.1139/z80-188; CARVALHO GR, 1987, J ANIM ECOL, V56, P453, DOI 10.2307/5060; CATTELL RB, 1966, MULTIVAR BEHAV RES, V1, P245, DOI 10.1207/s15327906mbr0102_10; CHESSON P, 1989, TRENDS ECOL EVOL, V4, P293, DOI 10.1016/0169-5347(89)90024-4; COLE GA, 1966, AM MIDL NAT, V76, P351, DOI 10.2307/2423091; COLE J, 1978, AM MIDL NAT, V100, P15, DOI 10.2307/2424773; COLWELL RK, 1974, ECOLOGY, V55, P1148, DOI 10.2307/1940366; COX GW, 1983, OECOLOGIA, V57, P170, DOI 10.1007/BF00379577; CREASE TJ, 1990, MOL BIOL EVOL, V7, P444; Daborn G.R., 1975, Verhandlungen Int Verein Theor Angew Limnol, V19, P580; Daborn G. R., 1978, VERHANDLUNGEN INT VE, V20, P2442; DODSON S, 1991, VERH INT VER LIMNOL, V24, P1223; DODSON SI, 1975, LIMNOL OCEANOGR, V20, P426, DOI 10.4319/lo.1975.20.3.0426; DURRENBERGER RW, 1976, CALIFORNIA PATTERNS; EBERT TA, 1987, ARCH HYDROBIOL, V110, P101; ENG LL, 1990, J CRUSTACEAN BIOL, V10, P247, DOI 10.2307/1548485; EVERITT BS, 1992, APPL MULTIVARIATE DA; FRYER G, 1957, J ANIM ECOL, V26, P263, DOI 10.2307/1747; FRYER G, 1985, FRESHWATER BIOL, V15, P347, DOI 10.1111/j.1365-2427.1985.tb00206.x; FRYER G, 1993, FRESHWATER CRUSTACEA; Fugate M. L., 1992, THESIS U CALIFORNIA; GAUCH H. G, 1982, MULTIVARIATE ANAL CO; Gause G. F., 1934, STRUGGLE EXISTENCE; Grainger J.N.R., 1994, Anostracan News, V2, P3; HAMER ML, 1991, HYDROBIOLOGIA, V212, P105, DOI 10.1007/BF00025993; HAMMER UT, 1968, LIMNOL OCEANOGR, V13, P476, DOI 10.4319/lo.1968.13.3.0476; Hanes W. T, 1990, STUDIES HERBARIUM, P49; HANN BJ, 1986, CAN J ZOOL, V64, P2246, DOI 10.1139/z86-338; Hartland-Rowe R., 1966, Verhandlungen der Internationalen Vereinigung fuer Theoretische und Angewandte Limnologie, V16, P577; HARTLANDROWE R, 1972, ESSAYS HYDROBIOLOGY, P15; HAVEL JE, 1990, J EVOLUTION BIOL, V3, P65, DOI 10.1046/j.1420-9101.1990.3010065.x; HEBERT PDN, 1980, SCIENCE, V207, P1363, DOI 10.1126/science.207.4437.1363; HEBERT PDN, 1986, CAN J FISH AQUAT SCI, V43, P1416, DOI 10.1139/f86-175; HEBERT PDN, 1974, EVOLUTION, V28, P546, DOI 10.1111/j.1558-5646.1974.tb00788.x; HILL MO, 1980, VEGETATIO, V42, P47, DOI 10.1007/BF00048870; HILL MO, 1986, PRELIMINARY DESCRIPT; HOLLAND MO, 1988, CAL NAT PLANT SOC SP, V9, P515; HOLLAND RF, 1981, AM NAT, V117, P24, DOI 10.1086/283684; Hoover R. F, 1937, THESIS U CALIFORNIA; HURLBERT SH, 1981, HYDROBIOLOGIA, V83, P125, DOI 10.1007/BF02187157; HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366; HUTCHINSON G, 1961, AM NAT, V95, P137, DOI 10.1086/282171; Hutchinson G. E., 1937, Transactions of the Connecticut Academy of Arts and Science, V33, P47; Hutchinson G. E., 1967, TREATISE LIMNOLOGY, VII; HUTCHINSON G. EVELYN, 1953, PROC ACAD NAT SCI PHILADELPHIA, V105, P1; Hutchinson GE, 1941, AM NAT, V75, P406, DOI 10.1086/280983; HUTCHINSON GE, 1932, ARCH HYDROBIOL, V24, P1; HUTCHINSON GE, 1929, NATURE, V3109, P832; ISTOCK C, 1967, ECOLOGY, V48, P929, DOI 10.2307/1934536; ISTOCK CA, 1966, EVOLUTION, V20, P211, DOI 10.1111/j.1558-5646.1966.tb03357.x; JOLIFFE I. T., 1972, APPL STAT, V21, P160; Kerfoot WC, 1987, PREDATION DIRECT IND; KING JL, UNPUB SPATIAL PATTER, V1; LYNCH M, 1979, LIMNOL OCEANOGR, V24, P253, DOI 10.4319/lo.1979.24.2.0253; LYNCH M, 1987, GENETICS, V115, P657; LYNCH M, 1983, EVOLUTION, V37, P358, DOI 10.1111/j.1558-5646.1983.tb05545.x; MAC ARTHUR ROBERT H., 1967; MACARTHUR R, 1961, ECOLOGY, V42, P594, DOI 10.2307/1932254; MACARTHUR RH, 1963, EVOLUTION, V17, P373, DOI 10.1111/j.1558-5646.1963.tb03295.x; MAGUIRE B, 1963, ECOL MONOGR, V33, P161, DOI 10.2307/1948560; MAHONEY DL, 1990, AM MIDL NAT, V123, P244, DOI 10.2307/2426553; MAYNARD SD, 1977, THESIS U UTAH; MCKILLOP WB, 1992, CAN FIELD NAT, V106, P454; MCLACHLAN A, 1981, ECOL ENTOMOL, V6, P175, DOI 10.1111/j.1365-2311.1981.tb00603.x; MCLACHLAN AJ, 1981, ZOOL J LINN SOC-LOND, V71, P265, DOI 10.1111/j.1096-3642.1981.tb01133.x; MCLAY CL, 1978, CAN J ZOOL, V56, P1744, DOI 10.1139/z78-239; MCLAY CL, 1978, CAN J ZOOL, V56, P663, DOI 10.1139/z78-094; MOORE W G, 1970, Southwestern Naturalist, V15, P83, DOI 10.2307/3670204; Morin P.J., 1987, P174; MURA G, 1991, HYDROBIOLOGIA, V212, P45, DOI 10.1007/BF00025986; Murdoch W. W., 1975, ADV ECOL RES, V9, P1, DOI DOI 10.1016/S0065-2504(08)60288-3; NIKOLAEVA NV, 1985, SOV J ECOL, V15, P271; ODUM EP, 1963, AM I BIOL SCI B, V13, P39; PAINE RT, 1984, ECOLOGY, V65, P1339, DOI 10.2307/1939114; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; PATALAS K, 1971, J FISH RES BOARD CAN, V28, P231, DOI 10.1139/f71-034; PEDROSALIO C, 1983, FRESHWATER BIOL, V13, P227, DOI 10.1111/j.1365-2427.1983.tb00673.x; PRESTON FW, 1962, ECOLOGY, V43, P410, DOI 10.2307/1933371; PRESTON FW, 1962, ECOLOGY, V43, P185, DOI 10.2307/1931976; PRESTON FW, 1960, ECOLOGY, V41, P611, DOI 10.2307/1931793; PROCTOR VW, 1967, ECOLOGY, V48, P672, DOI 10.2307/1936517; QUADE HW, 1969, ECOLOGY, V50, P170, DOI 10.2307/1934843; REED EDWARD B., 1962, ARCTIC, V15, P27; REID JW, 1994, ARCTIC, V47, P80; RETALLACK JT, 1980, AM MIDL NAT, V103, P123, DOI 10.2307/2425046; RICH PH, 1978, AM NAT, V112, P57, DOI 10.1086/283252; RICHERSO.P, 1970, P NATL ACAD SCI USA, V67, P1710, DOI 10.1073/pnas.67.4.1710; SAUNDERS GW, 1980, FUNCTIONING FRESHWAT, P341; SAUNDERS JF, 1993, J CRUSTACEAN BIOL, V13, P184; SCHOLNICK DA, 1994, HYDROBIOLOGIA, V294, P111, DOI 10.1007/BF00016851; SEPERS ABJ, 1977, HYDROBIOLOGIA, V52, P39, DOI 10.1007/BF02658081; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; SIMOVICH MA, 1992, T W SEC WIL, V28, P6; TAYLOR DW, 1992, UNPUB VERNAL POOLS P; TAYLOR RJ, 1984, HYDROBIOLOGIA, V212, P117; THIERY RG, 1982, BIOL REV, V57, P671; THORNE RF, 1984, I ECOLOGY PUBLICATIO, V28, P1; WAGELE JW, 1992, ACTA ZOOL-STOCKHOLM, V73, P355; WEIDER LJ, 1985, J PLANKTON RES, V7, P101, DOI 10.1093/plankt/7.1.101; Weir H., 1990, VERNAL POOL MANAGEME; White G. E., 1969, Verhandlungen der Internationalen Vereinigung fuer Theoretische und Angewandte Limnologie, V17, P440; WHITESID.MC, 1967, ECOLOGY, V48, P664, DOI 10.2307/1936514; WIENS JA, 1977, AM SCI, V65, P590; WIGGINS G B, 1980, Archiv fuer Hydrobiologie Supplement, V58, P97; WILLIAMS CB, 1964, PATTERNS BALANCE NAT, P93; WILLIAMS WD, 1985, HYDROBIOLOGIA, V125, P85, DOI 10.1007/BF00045928; WILSON CC, 1992, ECOLOGY, V73, P1462, DOI 10.2307/1940690; Zaret T. M., 1980, PREDATION FRESHWATER; ZEDLER PH, 1987, 85 US FISH WILD SERV; 1994, FED REGISTER, V59, P39874; 1993, FED REGISTER, V58, P41700; 1991, FED REGISTER, V56, P61173; 1993, FED REGISTER, V58, P41384; 1994, FED REGISTER, V59, P48136; 1980, FED REGISTER, V45, P52807; 1992, FED REGISTER, V57, P24192 131 103 104 1 92 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia AUG 9 1996 328 2 85 116 10.1007/BF00018707 32 Marine & Freshwater Biology Marine & Freshwater Biology VG104 WOS:A1996VG10400001 2019-02-26 J Kenrick, DT; Gabrielidis, C; Keefe, RC; Cornelius, JS Kenrick, DT; Gabrielidis, C; Keefe, RC; Cornelius, JS Adolescents' age preferences for dating partners: Support for an evolutionary model of life-history strategies CHILD DEVELOPMENT English Article PHYSICAL ATTRACTIVENESS; SEX-DIFFERENCES; PSYCHOLOGY; SIMILARITY; MATES; SOCIOBIOLOGY; HYPOTHESIS; ATTITUDES The tendency for women to prefer older partners, and for men to prefer younger partners, has frequently been explained in terms of socialization to American sex-role norms specifying that men must be older and more powerful than their female partners. However, recent cross-cultural data reveal this same pattern in all societies studied, a finding more in line with an evolutionary life-history model. The evolutionary model assumes that what is attractive to males is not youth, per se, but features related to fertility. This perspective leads to a hypothesis concerning the development of age preferences among adolescents: teenage males should violate the normative pattern shown in adult males and express interest in females older than themselves. 209 teenagers (103 males, 106 females) ranging in age from 12 to 19 were surveyed regarding the age limits they would find acceptable in a dating partner, as well as the age of a dating partner they would find ideally attractive. Although teenage males were willing to date girls slightly younger than themselves, they indicated a much wider range of acceptability above their own ages, and also reported that their ideally attractive partners would be several years older than themselves. Preferences of teenage females were similar in pattern to those of adult females, ranging, on average, from their own age to several years older. When combined with the consistent adult data obtained from numerous cultures, these data suggest the utility of viewing the development of sex differences in mate preference from the perspective of an evolutionary life-history model. NEW MEXICO STATE UNIV,LAS CRUCES,NM 88003; SCOTTSDALE COLL,SCOTTSDALE,AZ Kenrick, DT (reprint author), ARIZONA STATE UNIV,DEPT PSYCHOL,TEMPE,AZ 85287, USA. ACSADI G., 1970, HIST HUMAN LIFE SPAN; ALLEY TR, 1992, BEHAV BRAIN SCI, V15, P92, DOI 10.1017/S0140525X00067601; Barkow J, 1992, ADAPTED MIND EVOLUTI; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; BOLIG R, 1984, FAM RELAT, V33, P587, DOI 10.2307/583839; Bowlby J., 1969, ATTACHMENT LOSS, V1; BROUDE GJ, 1992, BEHAV BRAIN SCI, V15, P94, DOI 10.1017/S0140525X00067637; Buss D.M., 1992, ADAPTED MIND EVOLUTI, P249; BUSS DM, 1995, PSYCHOL INQ, V6, P1, DOI 10.1207/s15327965pli0601_1; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BYRNE D, 1986, J PERS SOC PSYCHOL, V51, P1167, DOI 10.1037//0022-3514.51.6.1167; CAMERON C, 1977, FAM COORD, V26, P27, DOI 10.2307/581857; CAMPBELL DT, 1975, AM PSYCHOL, V30, P1103, DOI 10.1037//0003-066X.30.12.1103; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; CUNNINGHAM MR, 1986, J PERS SOC PSYCHOL, V50, P925, DOI 10.1037/0022-3514.50.5.925; DALY M, 1983, SEX EVOLUTION BEHAVI; Darwin C, 1873, EXPRESSION EMOTIONS; DEUTSCH FM, 1986, J APPL SOC PSYCHOL, V16, P771; GOTTLIEB G, 1983, HDB CHILD PSYCHOL, V2, P1; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; HARPENDING H, 1992, BEHAV BRAIN SCI, V15, P102, DOI 10.1017/S0140525X00067716; HARRISON AA, 1977, J PERS SOC PSYCHOL, V35, P257, DOI 10.1037//0022-3514.35.4.257; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; KANDEL DB, 1978, J PERS SOC PSYCHOL, V36, P306, DOI 10.1037//0022-3514.36.3.306; KEIL FC, 1981, PSYCHOL REV, V88, P197, DOI 10.1037/0033-295X.88.3.197; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75, DOI 10.1017/S0140525X00067595; KENRICK DT, 1995, J PERS SOC PSYCHOL, V69, P1166, DOI 10.1037/0022-3514.69.6.1166; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P119, DOI 10.1017/S0140525X0006790X; KENRICK DT, IN PRESS EVOLUTION H; KENRICK DT, 1993, PSYCHOL GENDER, P148; Kessner DM, 1973, INFANT DEATH ANAL MA; KUNSTWILSON WR, 1980, SCIENCE, V207, P557, DOI 10.1126/science.7352271; LEONARD JL, 1989, BEHAV BRAIN SCI, V12, P26, DOI 10.1017/S0140525X00024134; MATHES EW, 1985, J SOC PSYCHOL, V125, P157, DOI 10.1080/00224545.1985.9922868; MENKEN J, 1986, AGING REPROD CLIMACT, P147; MORELAND RL, 1992, J EXP SOC PSYCHOL, V28, P255, DOI 10.1016/0022-1031(92)90055-O; Newcomb T. M., 1961, ACQUAINTANCE PROCESS; NEWCOMB TM, 1978, J PERS SOC PSYCHOL, V36, P1075, DOI 10.1037/0022-3514.36.10.1075; NIESCHLAG E, 1986, AGING REPRODUCTION C, P59; Peplau L. A., 1985, WOMEN GENDER SOCIAL; Pinker S, 1994, LANGUAGE INSTINCT; Plomin R., 1990, NATURE NURTURE INTRO; PRESSER HB, 1975, AM BEHAV SCI, V19, P190, DOI 10.1177/000276427501900205; RESNICK R, 1986, AGING REPRODUCT CUM, P167; ROSENBLATT PC, 1974, FDN INTERPERSONAL AT; ROSSER R, 1994, COGNITIVE DEV PSYCHO; ROWE DC, 1994, LIMITS FAMILY EXPERI; ROWE DC, IN PRESS THEORIES CR; RUSHTON JP, 1989, BEHAV BRAIN SCI, V12, P503, DOI 10.1017/S0140525X00057320; SCARR S, 1983, CHILD DEV, V54, P424, DOI 10.2307/1129703; Shaffer D. R., 1994, SOCIAL PERSONALITY D; Sheets V., 1996, SEX POWER CONFLICT E, P29; SINGH D, 1993, J PERS SOC PSYCHOL, V65, P293, DOI 10.1037/0022-3514.65.2.293; SINGH R, 1992, BRIT J SOC PSYCHOL, V31, P227, DOI 10.1111/j.2044-8309.1992.tb00967.x; Spence J., 1978, MASCULINITY FEMININI; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STUDD MV, 1991, ETHOL SOCIOBIOL, V12, P249, DOI 10.1016/0162-3095(91)90021-H; Symons D., 1987, SOCIOBIOLOGY PSYCHOL, P121; Symons D, 1979, EVOLUTION HUMAN SEXU; THORNHILL R, 1983, ETHOL SOCIOBIOL, V4, P137, DOI 10.1016/0162-3095(83)90027-4; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; *VIT HLTH STAT, 1972, INF MORT RAT SOC FAC, V22; WARNER RR, 1984, AM SCI, V72, P128; WEISFELD GE, 1992, ETHOL SOCIOBIOL, V13, P125, DOI 10.1016/0162-3095(92)90022-V; Wilson E. O., 1981, GENES MIND CULTURE 65 62 62 1 30 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0009-3920 CHILD DEV Child Dev. AUG 1996 67 4 1499 1511 10.1111/j.1467-8624.1996.tb01810.x 13 Psychology, Educational; Psychology, Developmental Psychology VP344 WOS:A1996VP34400014 8890497 2019-02-26 J Dobler, S; RowellRahier, M Dobler, S; RowellRahier, M Reproductive biology of viviparous and oviparous species of the leaf beetle genus Oreina ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article Oreina; Chrysomelidae; viviparity; offspring size; fecundity; maternal investment EGG SIZE; CHEMICAL DEFENSE; PARENTAL CARE; CLUTCH SIZE; NUMBER; EVOLUTION; CHRYSOMELIDAE; COLEOPTERA; SELECTION; TACTICS In five species of the genus Oreina Chevrolat (Coleoptera, Chrysomelidae) we compared the size of offspring, the fecundity of the females, the timing of offspring production and female investment over the season. Two of the species, O. elongata and O. luctuosa, laid eggs, while O. cacaliae, O. gloriosa and O. variabilis gave birth to larvae. Offspring size corrected for female size was similar in the two oviparous species and in the viviparous O. cacaliae. In the two other viviparous species the larvae were two to three times bi,, geer in relation to the female. The greater size of the offspring was not traded off for lower fecundity in these latter two species, yet the production of bigger larvae was associated with a longer laying period and thereby a spreading of reproductive investment over the season. The prediction of life history theory that higher investment in individual offspring should be traded off for lower fecundity could not be confirmed. The investigation of egg and larval development showed that in one of the oviparous species, O. luctuosa, the length of the egg stage was more variable. This corroborates the view that in this species the eggs can be retained for varying times before being laid. Greater size at birth does not necessarily lead to shortened developmental times: the larval periods of O. cacaliae, O. elongata, O. gloriosa and O. variabilis were all comparable although the larvae of the first two species were relatively smaller when laid; only the small larvae of O. luctuosa needed significantly longer for their development. For all growth parameters examined the differences between species were larger than the differences between populations. A comparison of larval growth of the oligophagous species O. cacaliae on three plant genera showed that larval growth rate is influenced by the food plant. However, the plant on which the larvae grew worst is apparently not chosen for oviposition in the field. A comparison with a phylogeny of the species based on allozymes suggests that species with similar reproductive parameters are closely related, yet that viviparity evolved independently in O. cacaliae on one hand and O. variabilis and O. gloriosa on the other. UNIV BASEL,INST ZOOL,CH-4051 BASEL,SWITZERLAND Dobler, Susanne/0000-0002-0635-7719 BLACKBURN DG, 1992, AM ZOOL, V32, P313; Bontems C., 1985, Bulletin de la Societe Entomologique de France, V89, P973; BONTEMS C, 1984, Nouvelle Revue d'Entomologie, V1, P179; BONTEMS C, 1981, Nouvelle Revue d'Entomologie, V11, P93; BONTEMS C, 1978, Nouvelle Revue d'Entomologie, V8, P69; Bontems C, 1988, BIOL CHRYSOMELIDAE, P299, DOI [10.1007/978-94-009-3105-3_18, DOI 10.1007/978-94-009-3105-3_]; Bontems C., 1981, THESIS U PARIS 6, P6; Breden F., 1985, Entomography, V3, P455; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Champion G. C., 1901, Transactions of the Entomological Society of London, P1; Chapman T. A., 1903, Transactions of the Entomological Society of London, P245; Dixon A.F.G., 1987, P3; DOBLER S, 1994, OECOLOGIA, V97, P271, DOI 10.1007/BF00323160; DOBLER S, 1996, EVOLUTION; EGGENBERGER F, 1991, NATURWISSENSCHAFTEN, V78, P317, DOI 10.1007/BF01221419; KRIEGBAUM H, 1988, THESIS U ERLANGEN NU; LIEBHERR JK, 1985, J NAT HIST, V19, P1079, DOI 10.1080/00222938500770681; Lloyd DG, 1988, EVOL ECOL, V2, P175, DOI 10.1007/BF02067276; MAC ARTHUR ROBERT H., 1967; MONTAGUE JR, 1981, AM NAT, V118, P865, DOI 10.1086/283877; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PASTEELS JM, 1995, J CHEM ECOL, V21, P1163, DOI 10.1007/BF02228318; PASTEELS JM, 1993, BIOCHEM SYST ECOL, V21, P135, DOI 10.1016/0305-1978(93)90019-N; PASTEELS JM, 1992, NATURWISSENSCHAFTEN, V79, P521, DOI 10.1007/BF01135774; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1976, AM ZOOL, V16, P775; RANK NE, 1992, NATURAL HIST E CALIF, P161; Rowell-Rahier M., 1991, Chemoecology, V2, P41, DOI 10.1007/BF01240665; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; *SAS I INC, 1990, SAS STAT US GUIDE VE; SCRIBER JM, 1981, ANNU REV ENTOMOL, V26, P183, DOI 10.1146/annurev.en.26.010181.001151; SEENO TN, 1982, ENTOMOGRAPHY, V1, P75; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; Sibly R., 1985, P75; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns SC., 1992, EVOLUTION LIFE HIST; STEWART LA, 1991, FUNCT ECOL, V5, P380, DOI 10.2307/2389809; Tabashnik B.E., 1987, P71; Tutin T.G., 1980, FLORA EUROPAEA; Tutin TG, 1980, FLORA EUROPAEA, VII; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; WOURMS JP, 1992, AM ZOOL, V32, P276; Zar J. H., 1984, BIOSTATISTICAL ANAL 43 6 6 1 11 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0013-8703 ENTOMOL EXP APPL Entomol. Exp. Appl. AUG 1996 80 2 375 388 10.1111/j.1570-7458.1996.tb00950.x 14 Entomology Entomology VC946 WOS:A1996VC94600006 2019-02-26 J Reznick, DN; Butler, MJ; Rodd, FH; Ross, P Reznick, DN; Butler, MJ; Rodd, FH; Ross, P Life-history evolution in guppies (Poecilia reticulata) .6. Differential mortality as a mechanism for natural selection EVOLUTION English Article adaptation; life-history evolution; mark-recapture; mortality; selection; size-selective predation GEOGRAPHIC-VARIATION; DROSOPHILA-MELANOGASTER; PISCES-POECILIIDAE; TRINIDAD GUPPY; PREDATION; BEHAVIOR; AGE; POPULATION; DENSITY; TRAITS We have previously reported a correlation between the life-history patterns of guppies and the types of predators with which they coexist. Guppies from localities with an abundance of large predators (high predation localities) mature at an earlier age and devote more resources to reproduction than those found in localities with only a single, small species of predator (low predation localities). We also found that when guppies were introduced from a high to low predation locality, the guppy life history evolved to resemble what was normally found in this low predation locality. The presumed mechanism of natural selection is differences among localities in age/size-specific mortality (the age/size-specific mortality hypothesis); in high predation localities we assumed that guppies experienced high adult mortality rates while in the low predation localities we assumed that guppies experienced high juvenile mortality rates. These assumptions were based on stomach content analyses of wild-caught predators and on laboratory experiments. Here, we evaluate these assumptions by directly estimating the mortality rates of guppies in natural populations. We found that guppies from high predation localities experience significantly higher mortality rates than their counterparts from low predation localities, but that these higher mortality rates are uniformly distributed across all size classes, rather than being concentrated in the larger size classes. This result appears to contradict the predictions of the age/size-specific predation hypothesis. However, we argue, using additional data on growth rates and the probabilities of survival to maturity in each type of locality, that the age-specific mortality hypothesis remains plausible. This is because the probability of survival to first reproduction is very similar in each type of locality, but the guppies from high predation localities have a much lower probability of survival per unit time after maturity. We also argue for the plausibility of two other mechanisms of natural selection. These results thus reveal mortality patterns that provide a potential cause of natural selection, but expand, rather than narrow, the number of possible mechanisms responsible for life-history evolution in guppies. OLD DOMINION UNIV,DEPT BIOL SCI,NORFOLK,VA 23529; FLORIDA STATE UNIV,DEPT BIOL SCI,TALLAHASSEE,FL 32306; UNIV CALIF SANTA BARBARA,DEPT BIOL SCI,SANTA BARBARA,CA 93106 Reznick, DN (reprint author), UNIV CALIF RIVERSIDE,DEPT BIOL,RIVERSIDE,CA 92521, USA. reznick, david/0000-0002-1144-0568 BIERBAUM TJ, 1989, EVOLUTION, V43, P382, DOI 10.1111/j.1558-5646.1989.tb04234.x; BREDEN F, 1987, ANIM BEHAV, V35, P618, DOI 10.1016/S0003-3472(87)80297-X; Charlesworth B., 1980, EVOLUTION AGE STRUCT; DIXON WJ, 1992, BMDP STATISTICAL SOF; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; Endler JA, 1986, NATURAL SELECTION WI; FARR JA, 1974, ANIM BEHAV, V22, P582, DOI 10.1016/S0003-3472(74)80003-5; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; Ford E.B., 1971, ECOLOGICAL GENETICS; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; JONES JS, 1977, ANNU REV ECOL SYST, V8, P109, DOI 10.1146/annurev.es.08.110177.000545; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1993, MAR BEHAV PHYSIOL, V23, P29, DOI 10.1080/10236249309378855; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MUELLER LD, 1991, SCIENCE, V253, P433, DOI 10.1126/science.1907401; MUELLER LD, 1993, FUNCT ECOL, V7, P469, DOI 10.2307/2390034; Power M.E., 1987, P333; PRICE TD, 1984, EVOLUTION, V38, P483, DOI 10.1111/j.1558-5646.1984.tb00314.x; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; REZNICK DN, 1982, EVOLUTION, V36, P1285; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; ROFF D, 1980, Evolutionary Theory, V4, P195; *SAS I, 1985, SAS US GUID; Seghers B. H., 1973, THESIS U BRIT COLOMB; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1974, OECOLOGIA, V14, P93, DOI 10.1007/BF00344900; Seghers BH, 1978, VERH INT VEREIN LIMN, V20, P2055; Stearns SC., 1992, EVOLUTION LIFE HIST; STONER G, 1988, BEHAV ECOL SOCIOBIOL, V22, P285, DOI 10.1007/BF00299844; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; TAUBERT BD, 1977, J FISH RES BOARD CAN, V34, P332, DOI 10.1139/f77-054; Vanni M.J., 1987, P149; WERNER PA, 1977, ECOLOGY, V58, P1103, DOI 10.2307/1936930; WILSON CA, 1987, T AM FISH SOC, V116, P668, DOI 10.1577/1548-8659(1987)116<668:CAAFMO>2.0.CO;2 49 289 295 3 126 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution AUG 1996 50 4 1651 1660 10.2307/2410901 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity VE700 WOS:A1996VE70000027 28565709 Bronze 2019-02-26 J Li, DQ; Jackson, RR Li, DQ; Jackson, RR How temperature affects development and reproduction in spiders: A review JOURNAL OF THERMAL BIOLOGY English Review temperature; spiders; development rate; thermal requirements; survival; fecundity; phenotypic plasticity ORB-WEAVING SPIDER; LIFE-HISTORY; SPECIES ARANEAE; PEST-CONTROL; CLUBIONIDAE; THERIDIIDAE; PLASTICITY; FECUNDITY; DURATION; BIOLOGY We review previously published studies on how temperature affects development and reproduction of spiders, with an emphasis on recent studies from China published in Chinese. We apply both linear and non-linear models to data from these papers to examine relationships between temperature and the spider's rate of development, and we estimate the thermal requirements of selected species. Intra-and interspecific variation in development time, survival, adult longevity, adult size, and reproduction are considered, and apparently, phenotypic plasticity in these above life history traits is induced by growth temperature. With respect to the life histories and life style of the spider species we argue that the thermal adaptations of spiders might have important roles in fine-tuning the species' life-history strategies: much of this variability is probably a consequence of adaptations to the different thermal conditions prevailing in the natural habitats of these species. Spiders living in warmer climates can withstand higher temperatures than species from colder climates, and species from colder climates can tolerate lower temperatures than species from warmer climates. Cold-habitat species develop more slowly at high temperatures, and warm-habitat species develop more slowly at low temperatures. Also, different species of spiders show different seasonal adaptations to the microenvironments in which they live: fast, low-temperature development is an indicator of adaptation to colder season(s) of the year, whereas slow, low-temperature development and fast, high-temperature development are indicators of adaptation to warm season(s) of the year. Copyright (C) 1996 Elsevier Science Ltd Li, DQ (reprint author), UNIV CANTERBURY,DEPT ZOOL,PRIVATE BAG 4800,CHRISTCHURCH 1,NEW ZEALAND. Li, Daiqin/D-6922-2013 Li, Daiqin/0000-0001-8269-7734 Andrewartha H.G., 1954, DISTRIBUTION ABUNDAN, pII; AUSTIN AD, 1984, J ARACHNOL, V12, P87; BAERT L, 1980, Bulletin de l'Institut Royal des Sciences Naturelles de Belgique Entomologie, V52, P1; Beck S, 1983, ANNU REV ENTOMOL, V29, P91; BENTON MJ, 1986, OECOLOGIA, V68, P395, DOI 10.1007/BF01036745; Blunck H, 1914, Z WISS ZOOL ABT A, V111, P76; Bonnet P., 1930, Bull Soc Hist nat Toulouse T, V59, P237; BOTTRELL HH, 1975, OECOLOGIA, V18, P63, DOI 10.1007/BF00350636; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRISTOWE WS, 1941, COMITY SPIDERS; BROWNING HC, 1941, P ZOOL SOC LOND, V11, P303; Buche W., 1966, Zeitschrift fuer Morphologie und Oekologie der Tiere, V57, P329; BURSELL E, 1974, PHYSL INSECTA, V2, P1; CAMPBELL A, 1974, J APPL ECOL, V11, P431, DOI 10.2307/2402197; Cariaso BL, 1967, PHILIPP AGR, V51, P171; Chen W.-h., 1991, Acta Ecologica Sinica, V11, P171; CHEN WH, 1990, J HUBEI U NAT SCI, V12, P346; CHEN WH, 1989, NAT ENEM INSECTS, V11, P122; CHEN WH, 1990, CONTRIBUTIONS ENTOMO; CHRISTOPHE T, 1977, B SOC ZOOL FR, V102, P187; Davidson J, 1944, J ANIM ECOL, V13, P26, DOI 10.2307/1326; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; Downes M.F., 1988, Bulletin of the British Arachnological Society, V7, P204; DOWNES MF, 1985, AUST J ECOL, V10, P261, DOI 10.1111/j.1442-9993.1985.tb00888.x; DOWNES MF, 1988, J ARACHNOL, V16, P41; Downes MF, 1987, J ARACHNOL, V14, P293; EDGAR WD, 1971, OIKOS, V22, P84, DOI 10.2307/3543365; FOELIX RF, 1982, BIOL SPIDERS; FORSTER L, 1983, NEW ZEAL ENTOMOL, V7, P431, DOI 10.1080/00779962.1983.9722437; Forster L.M., 1984, P273; GILBERT DW, 1995, ENVIRON ENTOMOL, V24, P771; HALLMAN J, 1989, J FORECASTING, V8, P189, DOI 10.1002/for.3980080305; HERZIG A, 1983, HYDROBIOLOGIA, V100, P65, DOI 10.1007/BF00027423; HIGGINS LE, 1992, J ARACHNOL, V20, P94; Hochachka P. W., 1973, STRATEGIES BIOCH ADA; HOFFMANN KH, 1985, ENV PHYSL BIOCH INSE, P1; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOWE RW, 1967, ANNU REV ENTOMOL, V12, P15, DOI 10.1146/annurev.en.12.010167.000311; Huffaker Carl B., 1944, ANN ENT SOC AMER, V37, P1; HUKUSIMA S, 1970, ACTA ARACHNOL, V20, P5; JACKSON RR, 1978, J ARACHNOL, V6, P1; JONES SARAH E., 1941, ANN ENT SOC AMERICA, V34, P557; KASTON B J, 1970, Transactions of the San Diego Society of Natural History, V16, P33; LEVY G, 1970, J ZOOL, V160, P523; Li C, 1985, ACTA ECOL SINICA, V5, P157; LI D, 1989, THESIS HUBEI U; LI D, 1989, J HUBEI U NAT SCI, V11, P74; LI D, 1991, J HUBEI U NAT SCI, V13, P170; LI D, 1995, B ENTOMOL RES, V86, P78; LI D, 1990, CONTRIBUTIONS ENTOMO, P20; Li D.-Q., 1991, Acta Ecologica Sinica, V11, P338; LI D-Q, 1992, Acta Zoologica Sinica, V38, P31; Li Dai-Qin, 1993, Acta Ecologica Sinica, V13, P205; Li Daiqin et al, 1989, Sichuan Journal of Zoology, V8, P12; LOGAN JA, 1976, ENVIRON ENTOMOL, V5, P1133, DOI 10.1093/ee/5.6.1133; LUCZAK J, 1979, Polish Ecological Studies, V5, P151; MANSOUR F, 1980, ENTOMOPHAGA, V25, P237, DOI 10.1007/BF02371923; MARSHALL SD, 1994, FUNCT ECOL, V8, P118, DOI 10.2307/2390120; McCRONE JOHN D., 1966, PSYCHE, V73, P180, DOI 10.1155/1966/67316; MESSENGER PS, 1959, ANNU REV ENTOMOL, V4, P183, DOI 10.1146/annurev.en.04.010159.001151; MINERVINO E, 1993, MEM I OSWALDO CRUZ, V88, P49, DOI 10.1590/S0074-02761993000100009; MIYASHITA K, 1968, Applied Entomology and Zoology, V3, P81; NYFFELER M, 1987, J APPL ENTOMOL, V103, P321, DOI 10.1111/j.1439-0418.1987.tb00992.x; PALANICHAMY S, 1985, J THERM BIOL, V10, P63, DOI 10.1016/0306-4565(85)90027-0; PALANICHAMY S, 1983, P INDIAN AS-ANIM SCI, V92, P369, DOI 10.1007/BF03186206; PEAIRS LM, 1914, W VIRG AGR EXP STAT, V208, P32; Peck W, 1970, B ARKANSAS AGR EXP S, V753, P1; Ratte H.T., 1985, P33; ROBINSON B, 1978, S ZOOL SOC LONDON, V42, P31; SCHAEFER M, 1977, PEDOBIOLOGIA, V17, P189; Schaefer M., 1976, Zoologische Jb (Syst), V103, P127; Schaefer M., 1987, P331; SCHAEFER M, 1977, ZOOL JAH SYST OKOL G, V17, P189; SHARPE PJH, 1977, J THEOR BIOL, V64, P649, DOI 10.1016/0022-5193(77)90265-X; Shelford V. E., 1927, Bulletin of the Illinois Natural History Survey, V16, P311; SOFTLY A, 1970, J I ANIM TECH, V21, P117; STEARNS SC, 1982, ROLE DEV EVOLUTION; STINNER RE, 1974, CAN ENTOMOL, V106, P519, DOI 10.4039/Ent106519-5; SUN LS, 1990, CHINESE J ECOL, V9, P10; TAYLOR F, 1981, AM NAT, V117, P1, DOI 10.1086/283683; TRUDGILL DL, 1995, FUNCT ECOL, V9, P136; TURNBULL AL, 1973, ANNU REV ENTOMOL, V18, P305, DOI 10.1146/annurev.en.18.010173.001513; UVAROV B. P., 1931, TRANS ENT SOC [LONDON], V79, P1; Valerio C.E., 1976, Bulletin Br arachnol Soc, V3, P194; VOLLRATH F, 1992, NATURE, V360, P156, DOI 10.1038/360156a0; VOLLRATH F, 1983, Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, V26, P277; WAGNER TL, 1984, ANN ENTOMOL SOC AM, V77, P208, DOI 10.1093/aesa/77.2.208; WANG HQ, 1982, ACTA ZOOL SINICA, V28, P69; Wang R, 1982, ACTA ECOL SIN, V2, P47; WHALON ME, 1979, CAN ENTOMOL, V111, P1025, DOI 10.4039/Ent1111025-9; Wise D. H, 1993, SPIDERS ECOLOGICAL W; WISE DH, 1976, AM MIDL NAT, V96, P66, DOI 10.2307/2424568; YAN HM, 1986, J HUNAN NORMAL U NAT, V9, P95; YOUNG OP, 1985, ENTOMOPHAGA, V30, P329, DOI 10.1007/BF02372339; Zhang C., 1983, Natural Enemies of Insects, V5, P108; Zhang Y. C., 1987, Chinese Journal of Biological Control, V3, P157; ZHAO J, 1988, Acta Zoologica Sinica, V34, P371; Zhao J., 1984, Natural Enemies of Insects, V6, P1; Zhao J.-z., 1988, Chinese Journal of Zoology, V23, P5; Zhao J.-z., 1989, Chinese Journal of Zoology, V24, P9; Zhao J. Z., 1989, J HUBEI U NATURAL SC, V1, P1; Zhao J. Z., 1991, CHINESE J ECOL, V10, P11; ZHAO JH, 1987, ACTA ZOOL SINICA, V33, P51; Zhao Jingzhao, 1988, Acta Ecologica Sinica, V8, P140; Zhao Jingzhao, 1989, Natural Enemies of Insects, V11, P174; ZHAO JZ, 1980, ACTA ZOOL SINICA, V26, P255; ZHAO JZ, 1982, ACTA ZOOL SINICA, V28, P271; ZHAO JZ, 1987, ACTA ZOOL SINICA, V33, P367; ZHAO JZ, 1986, ACTA ZOOL SINICA, V32, P152; ZHAO JZ, 1993, SPIDERS COTTON ECOSY; ZHAO JZ, 1981, ZOOL RES, V3, P125; ZHAO JZ, 1990, CONTRIBUTIONS ENTOMO, P154; ZHAO JZ, 1979, NAT ENEM INSECTS, V1, P25 113 62 70 2 45 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0306-4565 J THERM BIOL J. Therm. Biol. AUG 1996 21 4 245 274 10.1016/0306-4565(96)00009-5 30 Biology; Zoology Life Sciences & Biomedicine - Other Topics; Zoology VD929 WOS:A1996VD92900007 2019-02-26 J Irvine, SM; Martindale, MQ Irvine, SM; Martindale, MQ Cellular and molecular mechanisms of segmentation in annelids SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY English Review annelida; embryology; segmentation LEECH HELOBDELLA-TRISERIALIS; RIBOSOMAL-RNA SEQUENCES; GLOSSIPHONIID LEECH; HOMEOBOX GENES; EARTHWORM EMBRYO; EXPRESSION; LINEAGE; PATTERN; ARTHROPODS; EVOLUTION The annelids are a diverse phylum of metamerically segmented animals. they are of special interest embryologically because of their highly stereotyped pattern of development, much of which is shared by other spiralian phyla. They are also of interest phylogenetically for what they can tell us about the evolution of segmentation, and the relationships of coelomate protostomes in general. In this paper we review the embryology of the different annelid groups, showing considerable conservation of the basic character of segmentation, with modifications associated with evolving life history strategies. We also describe the current knowledge of molecular mechanisms of segmentation in annelids. The most is known at a cellular and molecular level about the phylogenetically derived leeches, while information is just emerging on the more basal annelids, the polychaetes and oligochaetes. This review is intended to provide a framework for comparison of the different annelid groups, and to suggest avenues for future research that might help to illuminate the evolution of annelid developmental patterns. UNIV CHICAGO,COMM NEUROBIOL,CHICAGO,IL 60637; UNIV CHICAGO,COMM DEV BIOL,CHICAGO,IL 60637 Irvine, SM (reprint author), UNIV CHICAGO,COMM EVOLUTIONARY BIOL,1025 E 57TH ST,CULVER HALL 402,CHICAGO,IL 60637, USA. AISEMBERG GO, 1993, J NEUROBIOL, V24, P1423, DOI 10.1002/neu.480241012; AISEMBERG GO, 1994, DEV BIOL, V161, P455, DOI 10.1006/dbio.1994.1044; AKAM M, 1995, PHILOS T R SOC B, V349, P313, DOI 10.1098/rstb.1995.0119; ANDERSON D. T., 1966, ACTA ZOOL STOCKHOLM, V47, P1; Anderson D T, 1973, EMBRYOLOGY PHYLOGENY; ANDERSON DT, 1959, Q J MICROSC SCI, V100, P89; BALLARD JWO, 1992, SCIENCE, V258, P1345, DOI 10.1126/science.1455227; BERRILL NJ, 1961, GROWTH DEV PATTERN, P288; BLAIR SS, 1982, DEV BIOL, V89, P389, DOI 10.1016/0012-1606(82)90327-X; BLAIR SS, 1982, DEV BIOL, V91, P64, DOI 10.1016/0012-1606(82)90008-2; BRUCSA RC, 1990, INVERTEBRATES; BRUSCA GJ, 1978, NATURALISTS GUIDE CO; DICK MH, 1994, MOL PHYLOGENET EVOL, V3, P146, DOI 10.1006/mpev.1994.1017; DORRESTEIJN AWC, 1993, ROUX ARCH DEV BIOL, V202, P260, DOI 10.1007/BF00363215; EERNISSE DJ, 1992, SYST BIOL, V41, P305, DOI 10.2307/2992569; Felsenstein J, 1993, PHYLIP PHYLOGENY INF; Glaessner M. F., 1966, Palaeontology, V9, P599; GLEIZER L, 1993, DEVELOPMENT, V117, P177; HENRY JJ, 1990, DEV BIOL, V141, P55, DOI 10.1016/0012-1606(90)90101-N; Kaufman T C, 1990, Adv Genet, V27, P309; KOSTRIKEN R, 1992, DEV BIOL, V151, P225, DOI 10.1016/0012-1606(92)90229-A; Kume M., 1957, INVERTEBRATE EMBRYOL; LAKE JA, 1990, P NATL ACAD SCI USA, V87, P763, DOI 10.1073/pnas.87.2.763; LANS D, 1993, DEVELOPMENT, V117, P857; Lillie F. R., 1899, Biological Lectures Wood's Hole 1898 Boston, P43; LILLIE RS, 1906, MITT ZOOL STA NEAP, V17, P341; MARTINDALE MQ, 1990, NATURE, V347, P672, DOI 10.1038/347672a0; MARTINDALE MQ, 1995, DEVELOPMENT, V121, P3175; MORRIS SC, 1993, NATURE, V361, P219, DOI 10.1038/361219a0; MORRIS SC, 1979, PHILOS T ROY SOC B, V285, P227, DOI 10.1098/rstb.1979.0006; NARDELLHAEFLIGER D, 1992, DEVELOPMENT, V116, P697; NARDELLIHAEFLIGER D, 1994, DEVELOPMENT, V120, P1839; NARDELLIHAEFLIGER D, 1993, DEVELOPMENT, V118, P877; PATEL NH, 1994, NATURE, V367, P429, DOI 10.1038/367429a0; PATEL NH, 1989, DEVELOPMENT, V107, P201; PATEL NH, 1989, CELL, V58, P955, DOI 10.1016/0092-8674(89)90947-1; SANDIG M, 1988, J MORPHOL, V196, P217, DOI 10.1002/jmor.1051960210; SAVAGE RM, 1996, IN PRESS DEV BIOL; SCHUBERT FR, 1993, P NATL ACAD SCI USA, V90, P143, DOI 10.1073/pnas.90.1.143; Segrove F, 1941, Q J MICROSC SCI, V82, P467; SEIMIYA M, 1994, EUR J BIOCHEM, V221, P219, DOI 10.1111/j.1432-1033.1994.tb18732.x; SHANKLAND M, 1991, DEV BIOL, V144, P221, DOI 10.1016/0012-1606(91)90416-Z; SHANKLAND M, 1991, DEVELOPMENT S, V2, P29; Shimizu T., 1982, P283; SNOW P, 1994, MOL PHYLOGENET EVOL, V3, P360, DOI 10.1006/mpev.1994.1042; SOMMER RJ, 1992, P NATL ACAD SCI USA, V89, P10782, DOI 10.1073/pnas.89.22.10782; STOREY KG, 1989, DEVELOPMENT, V107, P519; STOREY KG, 1989, DEVELOPMENT, V107, P533; SWOFFORD DL, 1991, PAUP PHYLOGENETIC AN; TURBEVILLE JM, 1991, MOL BIOL EVOL, V8, P669; Verdonk N.H., 1983, P91; WEDEEN CJ, 1991, DEVELOPMENT, V113, P805; WEISBLAT DA, 1984, DEV BIOL, V101, P326, DOI 10.1016/0012-1606(84)90146-5; WEISBLAT DA, 1985, PHILOS T ROY SOC B, V312, P40; Willmer P, 1990, INVERTEBRATE RELATIO; Wilson E. B., 1898, BIOL LECTURES MARINE, P21; WONG VY, 1995, J NEUROSCI, V15, P5551; WYSOCKADILLER JW, 1989, NATURE, V341, P760, DOI 10.1038/341760a0; ZACKSON SL, 1984, DEV BIOL, V104, P143, DOI 10.1016/0012-1606(84)90044-7 59 31 31 0 11 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 1084-9521 SEMIN CELL DEV BIOL Semin. Cell Dev. Biol. AUG 1996 7 4 593 604 10.1006/scdb.1996.0073 12 Cell Biology; Developmental Biology Cell Biology; Developmental Biology VK483 WOS:A1996VK48300016 2019-02-26 J Dale, S; Gustavsen, R; Slagsvold, T Dale, S; Gustavsen, R; Slagsvold, T Risk taking during parental care: A test of three hypotheses applied to the pied flycatcher BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article parental care; predation risk; risk taking; reproductive value; Ficedula hypoleuca REPRODUCTIVE SUCCESS; COLORED MALES; NEST DEFENSE; MALE-REMOVAL; BROOD SIZE; FEMALES; BIRDS; INVESTMENT; PREDATION; SURVIVAL According to life-history theory, there will often be a conflict between investment in current versus future reproduction. If a predator appears during breeding, parents must make a compromise between ensuing the growth and survival of offspring (nest defence, feeding and brooding of young), and reducing the risk of predation to ensure their own survival. We model three hypotheses for the outcome of this conflict which are particularly relevant for altricial birds. They are not mutually exclusive, but focus on different costs and benefits. (1) Parental investment is determined by the parents' own risk of predation. This hypothesis predicts that a lone parent should take smaller risks than a parent that has a mate. (2) Parental investment is related to the reproductive value of the offspring: Parents are predicted to take greater risks for larger broods, larger-sized or older offspring. (3) Finally, we present the new hypothesis that parental investment is related to the harm that offspring would suffer during a period of no parental care (incubation, brooding, feeding). This hypothesis predicts that parents should take greater risks for younger offspring, or for offspring in poorer condition, because the marginal benefit of parental care is largest in such cases. Hence, one may also expect that lone parents should take greater risks than two parents because their offspring are more in need of care. We tested these hypotheses on the pied flycatcher (Ficedula hypoleuca) by presenting a stuffed predator of the parents (a sparrowhawk, Accipiter nisus) close to the nest when parents were feeding the young. Risk taking was measured as the time that elapsed until the first visit to the nest. Most support was found for the ''harm to offspring'' hypothesis. Previous studies have usually measured the intensity of nest defence against typical nest predators, and have found evidence for the ''reproductive value of offspring'' hypothesis. However, our model predicts that the importance of the reproductive value of the offspring should decrease relative to the harm that offspring would suffer if they were not cared for when the predator type changes from a nest predator to a predator of adults, and when conditions for breeding turn from good to bad. UNIV OSLO,DEPT BIOL,N-0316 OSLO,NORWAY ALATALO RV, 1982, ANIM BEHAV, V30, P585, DOI 10.1016/S0003-3472(82)80072-9; ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; BART J, 1989, BEHAV ECOL SOCIOBIOL, V24, P109, DOI 10.1007/BF00299642; BLANCHER PJ, 1982, ANIM BEHAV, V30, P929, DOI 10.1016/S0003-3472(82)80167-X; BREITWISCH R, 1988, ANIM BEHAV, V36, P62, DOI 10.1016/S0003-3472(88)80250-1; BUITRON D, 1983, BEHAVIOUR, V87, P209, DOI 10.1163/156853983X00435; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CURIO E, 1975, ANIM BEHAV, V23, P1, DOI 10.1016/0003-3472(75)90056-1; DROST R, 1936, VOGELZUG, V6, P179; GREIGSMITH PW, 1980, ANIM BEHAV, V28, P604, DOI 10.1016/S0003-3472(80)80069-8; LARSON S, 1960, OIKOS, V11, P277; LAZARUS J, 1986, ANIM BEHAV, V34, P1791, DOI 10.1016/S0003-3472(86)80265-2; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lundberg A., 1992, PIED FLYCATCHER; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MEEK SB, 1994, IBIS, V136, P305, DOI 10.1111/j.1474-919X.1994.tb01099.x; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Newton I., 1986, SPARROWHAWK; PERRINS CM, 1980, ARDEA, V68, P133; REGELMANN K, 1986, ANIM BEHAV, V34, P1206, DOI 10.1016/S0003-3472(86)80180-4; REGELMANN K, 1983, BEHAV ECOL SOCIOBIOL, V13, P131, DOI 10.1007/BF00293803; SAETRE GP, 1994, ANIM BEHAV, V48, P1407, DOI 10.1006/anbe.1994.1376; SAETRE GP, 1995, J ANIM ECOL, V64, P21, DOI 10.2307/5824; SHALTER MD, 1975, J COMP PHYSIOL PSYCH, V89, P258, DOI 10.1037/h0076817; SLAGSVOLD T, 1994, AM NAT, V143, P59, DOI 10.1086/285596; SLAGSVOLD T, 1995, J ANIM ECOL, V64, P563, DOI 10.2307/5800; SLAGSVOLD T, 1995, ANIM BEHAV, V50, P1109, DOI 10.1016/0003-3472(95)80110-3; Stearns SC., 1992, EVOLUTION LIFE HIST; STENMARK G, 1988, ANIM BEHAV, V36, P1646, DOI 10.1016/S0003-3472(88)80105-2; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VONHAARTMAN L, 1988, P INT ORN C, V18, P1; WALLIN K, 1987, BEHAVIOUR, V102, P213, DOI 10.1163/156853986X00135; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WINKLER DW, 1987, AM NAT, V130, P526, DOI 10.1086/284729 34 81 82 2 50 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUL 1996 39 1 31 42 10.1007/s002650050264 12 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology UZ040 WOS:A1996UZ04000004 2019-02-26 J Lewis, JB Lewis, JB Spatial distributions of the calcareous hydrozoans Millepora complanata and Millepora squarrosa on coral reefs BULLETIN OF MARINE SCIENCE English Article ACROPORA-CERVICORNIS; POPULATION-STRUCTURE; PATTERN; COMMUNITIES; ECOLOGY; BARBADOS The abundance and spatial distributions of Millepora complanata and Millepora squarrosa were determined from contiguous, m(2) quadrats laid out along transects on three fringing reefs at Barbados, W.I. Spatial pattern of millepore colonies, determined by an analysis of variance at increasing, hierarchical block sizes, indicated clumped or contagious distributions. It is concluded that the patchy distribution of M. complanata is due to stolonal growth of colony bases and to breakage and reattachment of colony branches. The patchy distribution of M. squarrosa is more Likely due to settlement preferences and differential survival of recruits. The life-history strategies of M. complanata which lead to contagious distributions would be advantageous in competition for space on coral reefs. Lewis, JB (reprint author), MCGILL UNIV, DEPT BIOL, 1205 AVE DR PENFIELD, MONTREAL, PQ H3A 1B1, CANADA. ABEL DJ, 1983, MAR ECOL PROG SER, V12, P257, DOI 10.3354/meps012257; ADEY WH, 1977, P 3 INT COR REEF S M, V2, P21; ANDREW NL, 1987, OCEANOGR MAR BIOL, V25, P39; CHOAT JH, 1982, ANNU REV ECOL SYST, V13, P423, DOI 10.1146/annurev.es.13.110182.002231; CHORNESKY EA, 1991, MAR BIOL, V109, P41, DOI 10.1007/BF01320230; DANA TF, 1976, B MAR SCI, V26, P1; Done T.J., 1983, PERSPECTIVES CORAL R, P107; DUSTAN P, 1985, ATOLL RES B, V288, P1; FISHELSON L, 1973, OECOLOGIA, V12, P55, DOI 10.1007/BF00345470; Glynn P.W., 1973, P271; GOREAU TF, 1959, ECOLOGY, V40, P67, DOI 10.2307/1929924; Grassle J.F., 1973, P247; Greig-Smith P., 1983, QUANTITATIVE PLANT E; HIGHSMITH RC, 1982, MAR ECOL PROG SER, V7, P207, DOI 10.3354/meps007207; HUGHES TP, 1980, SCIENCE, V209, P713, DOI 10.1126/science.209.4457.713; JACKSON JBC, 1983, BIOTIC INTERACTIONS, P39; JOKIEL PL, 1983, B MAR SCI, V33, P181; JONES GP, 1990, MAR ECOL PROG SER, V62, P109, DOI 10.3354/meps062109; Lewis J.B., 1974, Proceedings int Coral Reef Symp, V2, P201; LEWIS JB, 1970, NATURE, V227, P1158, DOI 10.1038/2271158a0; LEWIS JB, 1991, MAR ECOL PROG SER, V70, P101, DOI 10.3354/meps070101; LEWIS JB, 1989, CORAL REEFS, V8, P99, DOI 10.1007/BF00338264; LEWIS JB, 1960, CAN J ZOOL, V38, P1130; Loya Y, 1971, S ZOOL SOC LONDON, V28, P117; MALATESTA RJ, 1992, MAR ECOL PROG SER, V87, P189, DOI 10.3354/meps087189; MARAGOS JE, 1974, PAC SCI, V28, P257; NEIGEL JE, 1983, EVOLUTION, V37, P437, DOI 10.1111/j.1558-5646.1983.tb05561.x; OSTARELLO GL, 1976, COELENTERATE ECOLOGY, P331; PIELOU E C, 1969, P286; POLACHECK T, 1994, J EXP MAR BIOL ECOL, V181, P189, DOI 10.1016/0022-0981(94)90127-9; SHEPPARD CRC, 1982, MAR ECOL PROG SER, V7, P83, DOI 10.3354/meps007083; SMITH SV, 1992, ANNU REV ECOL SYST, V23, P89, DOI 10.1146/annurev.es.23.110192.000513; STEARN CW, 1973, LETHAIA, V6, P187, DOI 10.1111/j.1502-3931.1973.tb01192.x; STEARN CW, 1977, B MAR SCI, V27, P479; STIMSON J, 1974, ECOLOGY, V55, P445, DOI 10.2307/1935234; STODDART DR, 1969, BIOL REV, V44, P433, DOI 10.1111/j.1469-185X.1969.tb00609.x; TOMASCIK T, 1987, MAR BIOL, V94, P53, DOI 10.1007/BF00392900; TUNNICLIFFE V, 1981, P NATL ACAD SCI-BIOL, V78, P2427, DOI 10.1073/pnas.78.4.2427; YOSHIOKA PM, 1989, MAR ECOL PROG SER, V54, P257, DOI 10.3354/meps054257 39 6 6 1 10 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 USA 0007-4977 1553-6955 B MAR SCI Bull. Mar. Sci. JUL 1996 59 1 188 195 8 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography VB343 WOS:A1996VB34300012 2019-02-26 J Bonis, A; Lepart, J; Laloe, F Bonis, A; Lepart, J; Laloe, F Effect of temperature on the installation and growth of annuals in Mediterranean temporary marshes CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE French Article macrophytes; germination dynamics; water regime; ''preemption'' FRESH-WATER MACROPHYTES; SEEDLING ESTABLISHMENT; WESTERN-EUROPE; COMMUNITIES; DYNAMICS; DEMOGRAPHY; AUTECOLOGY; GRASSLAND; ECOLOGY; IMPACT The abundance of annual plants in temporary marshes is subjected to strong fluctuations through time. Such fluctuations could be linked with the variability of the Mediterranean climate. We studied experimentally the relationships between those fluctuations of abundance and the water temperature. The establishment and growth pattern of the species were studied in three temperate ranges. Each species has its own germination pattern, which varies with the temperature. The speed of seedling emergence changes with the temperature for all species. The germination rate is modified significantly only for charophytes, with a strong decrease under cold conditions. The size of the diaspore bank explains a large part of the germination dynamics for Chara sp. and Zannichellia spp. At the end of the establishment stage, the cover is maximum under warm conditions and Callitriche truncata and Zannichellia spp. have the largest cover values. At the end of the growth period, Ranunculus boudotii generally dominates the community in terms of biomass, whereas C. truncata is dominated. Species biomass varies with the temperature during the establishment or (and) the growth stage, except for Zannichellia spp. There is no obvious ''preemption'' effect: the contrasted life history strategies among species allow dominance relationship modifications during the life cycle. CNRS,CTR ECOL FONCT & EVOLUT,F-34003 MONTPELLIER,FRANCE; STN BIOL TOUR VALAT,F-13200 LE SAMBUC,FRANCE; ORSTOM,INST FRANCAIS RECH SCI DEV COOPERAT,F-34032 MONTPELLIER 1,FRANCE BARTOLOME JW, 1979, J ECOL, V67, P273, DOI 10.2307/2259350; BONIS A, 1993, J VEG SCI, V4, P461, DOI 10.2307/3236073; BONIS A, 1994, VEGETATIO, V112, P127, DOI 10.1007/BF00044687; BONIS A, 1995, OIKOS, V74, P91; CHESSON P, 1989, TRENDS ECOL EVOL, V4, P293, DOI 10.1016/0169-5347(89)90024-4; CHESSON PL, 1981, AM NAT, V117, P923, DOI 10.1086/283778; CHESSON PL, 1986, COMMUNITY ECOLOGY, P229; *COMM STAT DEP, 1988, GENST 5 REF MAN; CORILLION R, 1957, CHAROPHYCEES FRANCE; Cox DR, 1984, ANAL SURVIVAL DATA; EGLER FE, 1954, VEGETATIO, V4, P212; GRACE JB, 1987, ECOL MONOGR, V57, P283, DOI 10.2307/2937088; GRILLAS P, 1991, AQUAT BOT, V42, P1, DOI 10.1016/0304-3770(91)90101-A; GRILLAS P, 1992, THESIS U RENNES 1 RE; GRILLAS P, 1991, HYDROBIOLOGIA, V228, P29; Grillas Patrick, 1993, Journal of Vegetation Science, V4, P453, DOI 10.2307/3236072; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; Harper J.L., 1977, POPULATION BIOL PLAN; HARPER JOHN L., 1961, SYMPOSIA SOC EXPTL BIOL, V15, P1; HUTCHINSON G, 1961, AM NAT, V95, P137, DOI 10.1086/282171; KELLY D, 1989, J ECOL, V77, P785, DOI 10.2307/2260985; MARAZANOF F, 1972, THESIS U ORLEANS ORL; MCCARTHY KA, 1987, THESIS RUTGERS U PIC; ROSS MA, 1972, J ECOL, V60, P77, DOI 10.2307/2258041; SALE PF, 1977, AM NAT, V111, P337, DOI 10.1086/283164; SANDJENSEN K, 1991, J ECOL, V79, P749, DOI 10.2307/2260665; SMART RM, 1985, AQUAT BOT, V21, P251; SMITH BH, 1983, J ECOL, V71, P413, DOI 10.2307/2259724; SUTHERLAND JP, 1974, AM NAT, V108, P859, DOI 10.1086/282961; TALAVERA S, 1986, Lagascalia, V14, P241; Tutin TG, 1964, FLORA EUROPAEA; VANVIERSSEN W, 1982, AQUAT BOT, V12, P103, DOI 10.1016/0304-3770(82)90010-9; VERHOEVEN JTA, 1979, AQUAT BOT, V6, P197, DOI 10.1016/0304-3770(79)90064-0; WATKINSON AR, 1990, J ECOL, V78, P196, DOI 10.2307/2261045; Winer BJ, 1991, STATISTICAL PRINCIPL 35 8 8 0 6 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4026 CAN J BOT Can. J. Bot.-Rev. Can. Bot. JUL 1996 74 7 1086 1094 10.1139/b96-133 9 Plant Sciences Plant Sciences UY563 WOS:A1996UY56300012 2019-02-26 J Abrams, PA Abrams, PA Evolution and the consequences of species introductions and deletions ECOLOGY English Article character displacement; coevolution; competition; evolution; food web; interaction; mathematical model; predation ECOLOGICAL CHARACTER DISPLACEMENT; LIFE-HISTORY EVOLUTION; INTERSPECIFIC COMPETITION; FIELD EXPERIMENTS; NICHE SHIFT; PERTURBATION EXPERIMENTS; APPARENT COMPETITION; ADAPTIVE RESPONSES; ALTERNATIVE MODELS; PREY COMMUNITIES The addition or deletion of a species from a community is likely to have effects on the trait values of other species and on their population densities. This article argues that current theory is insufficiently developed to provide guidance in predicting what might happen to either traits or population densities. In addition, there has been relatively little empirical work to examine many of the phenomena that have been predicted by the limited available theory. The example of character displacement of competitors is reviewed to reveal some of the gaps in our knowledge about the evolutionary consequences of additions or deletions. The example of evolution of traits related to predation in food webs is used to reveal gaps in our knowledge of the population-level consequences of evolutionary changes initiated by a species addition or deletion. Several approaches to studying combined evolutionary and ecological processes in multispecies communities are discussed. Some previous multispecies models have been too abstract to be easily related to more mechanistic two-species models, but recent methods derived from quantitative genetics may result in significant advances in understanding multispecies systems and their relationship to communities with fewer species. Abrams, PA (reprint author), UNIV MARYLAND,DEPT ZOOL,COLLEGE PK,MD 20742, USA. Abrams, Peter/A-5240-2008 Abrams, Peter/0000-0002-1828-326X Abrams P., 1987, P38; ABRAMS PA, 1991, THEOR POPUL BIOL, V39, P241, DOI 10.1016/0040-5809(91)90022-8; Abrams PA, 1996, ECOLOGY, V77, P610, DOI 10.2307/2265634; ABRAMS PA, 1986, EVOLUTION, V40, P1229, DOI 10.1111/j.1558-5646.1986.tb05747.x; ABRAMS PA, 1992, EVOL ECOL, V6, P449, DOI 10.1007/BF02270691; ABRAMS PA, 1991, OIKOS, V62, P167, DOI 10.2307/3545262; ABRAMS PA, 1995, AM NAT, V146, P112, DOI 10.1086/285789; ABRAMS PA, 1986, THEOR POPUL BIOL, V29, P107, DOI 10.1016/0040-5809(86)90007-9; ABRAMS PA, 1987, EVOLUTION, V41, P651, DOI 10.1111/j.1558-5646.1987.tb05836.x; ABRAMS PA, 1990, EVOL ECOL, V4, P93, DOI 10.1007/BF02270907; ABRAMS PA, 1987, AM NAT, V130, P271, DOI 10.1086/284708; ABRAMS PA, 1993, EVOL ECOL, V7, P465, DOI 10.1007/BF01237642; ABRAMS PA, 1992, AM NAT, V140, P573, DOI 10.1086/285429; ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ABRAMS PA, 1994, EVOL ECOL, V8, P667, DOI 10.1007/BF01237849; ABRAMS PA, 1990, EVOL ECOL, V4, P103, DOI 10.1007/BF02270908; ARTHUR W, 1982, ADV ECOL RES, V12, P127, DOI 10.1016/S0065-2504(08)60078-1; BELOVSKY GE, 1986, AM ZOOL, V26, P51; BENDER EA, 1984, ECOLOGY, V65, P1, DOI 10.2307/1939452; BENKMAN CW, 1989, EVOLUTION, V43, P1324, DOI 10.1111/j.1558-5646.1989.tb02581.x; BROWN JS, 1992, EVOLUTION, V46, P1269, DOI 10.1111/j.1558-5646.1992.tb01123.x; BROWN WL, 1956, SYST ZOOL, V5, P49, DOI 10.2307/2411924; CASE TJ, 1979, FORTS ZOOL, V25, P235; CONNELL JH, 1983, AM NAT, V122, P661, DOI 10.1086/284165; Dawkins R, 1986, BLIND WATCHMAKER; Ebenman B., 1988, SIZE STRUCTURED POPU; Endler JA, 1986, NATURAL SELECTION WI; GOULD F, 1991, ENTOMOL EXP APPL, V58, P1, DOI 10.1111/j.1570-7458.1991.tb01445.x; GRANT P R, 1972, Biological Journal of the Linnean Society, V4, P39, DOI 10.1111/j.1095-8312.1972.tb00690.x; Grant P. R., 1986, ECOLOGY EVOLUTION DA; Grant P. R, 1975, EVOL BIOL, V8, P237; GUREVITCH J, 1992, AM NAT, V140, P539, DOI 10.1086/285428; HOLT RD, 1977, THEOR POPUL BIOL, V12, P197, DOI 10.1016/0040-5809(77)90042-9; HOLT RD, 1994, ANNU REV ECOL SYST, V25, P495, DOI 10.1146/annurev.es.25.110194.002431; HOLT RD, 1987, AM NAT, V130, P412, DOI 10.1086/284718; Hubbell S. P., 1986, COMMUNITY ECOLOGY, P314; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; Kauffman S., 1993, ORIGINS ORDER; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; LAWLOR LR, 1976, AM NAT, V110, P79, DOI 10.1086/283049; LOSOS JB, 1990, EVOLUTION, V44, P558, DOI 10.1111/j.1558-5646.1990.tb05938.x; MATSUDA H, 1993, OIKOS, V68, P549, DOI 10.2307/3544924; MATSUDA H, 1994, EVOL ECOL, V8, P628, DOI 10.1007/BF01237846; MILLER TE, 1996, ECOLOGY, V77; PACALA SW, 1988, AM NAT, V132, P576, DOI 10.1086/284873; PEASE CM, 1984, EVOLUTION, V38, P1099, DOI 10.1111/j.1558-5646.1984.tb00379.x; Pimm S. L., 1982, FOOD WEBS; Pimm SL, 1991, BALANCE NATURE; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROBINSON BW, 1994, AM NAT, V144, P596, DOI 10.1086/285696; Rosenzweig ML, 1987, EVOL ECOL, V1, P59, DOI 10.1007/BF02067269; RUMMEL JD, 1985, EVOLUTION, V39, P1009, DOI 10.1111/j.1558-5646.1985.tb00444.x; SALONIEMI I, 1993, AM NAT, V141, P880, DOI 10.1086/285514; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; SCHLUTER D, 1985, SCIENCE, V227, P1056, DOI 10.1126/science.227.4690.1056; SCHLUTER D, 1994, SCIENCE, V266, P798, DOI 10.1126/science.266.5186.798; SCHLUTER D, 1988, AM NAT, V131, P799, DOI 10.1086/284823; SCHLUTER D, 1986, AM NAT, V127, P95, DOI 10.1086/284470; SCHOENER TW, 1983, AM NAT, V122, P240, DOI 10.1086/284133; SMITH J M, 1976, American Naturalist, V110, P331, DOI 10.1086/283071; SOULE M, 1966, AM NAT, V100, P47, DOI 10.1086/282399; STENSETH NC, 1984, EVOLUTION, V38, P870, DOI 10.1111/j.1558-5646.1984.tb00358.x; TAKADA T, 1991, J MATH BIOL, V29, P513, DOI 10.1007/BF00164049; Taper M.L., 1992, Oxford Surveys in Evolutionary Biology, V8, P63; TAPER ML, 1992, EVOLUTION, V46, P317, DOI 10.1111/j.1558-5646.1992.tb02040.x; Thompson JN., 1994, COEVOLUTIONARY PROCE; Tilman D., 1988, DYNAMICS STRUCTURE P; Van Valen L., 1973, EVOL THEORY, V1, P1, DOI DOI 10.1017/CBO9781139173179; VANDERMEER J, 1993, AM NAT, V141, P687, DOI 10.1086/285500; VANDERMEER J, 1980, AM NAT, V116, P441, DOI 10.1086/283637; Vermeij G. J., 1987, ESCALATION EVOLUTION; VERMEIJ GJ, 1994, ANNU REV ECOL SYST, V25, P219, DOI 10.1146/annurev.es.25.110194.001251; YODZIS P, 1988, ECOLOGY, V69, P508, DOI 10.2307/1940449; Yodzis P, 1989, INTRO THEORETICAL EC 75 60 62 1 24 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology JUL 1996 77 5 1321 1328 10.2307/2265529 8 Ecology Environmental Sciences & Ecology UX396 WOS:A1996UX39600002 2019-02-26 J Austad, SN Austad, SN The uses of intraspecific variation in aging research EXPERIMENTAL GERONTOLOGY English Article aging; genetic variation; mammals; intraspecific variation; geographic variation; longevity LIFE-HISTORY EVOLUTION; BODY SIZE; DROSOPHILA-MELANOGASTER; HOUSE MICE; CAENORHABDITIS-ELEGANS; MUS-DOMESTICUS; ISLAND; POPULATIONS; SENESCENCE; MAMMALS The artificial creation of genetically long-lived populations of several invertebrate species has illustrated how researchers may take advantage of genetic variation within a species to investigate the nature and mechanisms of aging. The advantage of studying intraspecific variation is that populations will be generally similar except for the relevant demographic differences. Also, there are reasons to suspect that genetic mechanisms of aging may differ from mechanisms associated with life extension via environmental manipulations such as caloric restriction, However coating a long-lived mammalian aging model will be expensive and time consuming. An alternative approach is to seek to identify naturally occurring slowly aging populations to contrast mechanistically with a reference population. Ecologists have already noted that demographic alterations of the appropriate type are frequently associated with populations from differing latitudes, differing altitudes, or from islands. Therefore, it is likely that genetically longer- (and shorter)-lived mammal populations of the same species already exist in nature, and could potentially be exploited to inquire into the genetics and mechanisms of aging and longevity. Of particular interest is the indication that some island populations of house mice may exhibit extended longevity compared with laboratory strains. Austad, SN (reprint author), UNIV IDAHO,DEPT BIOL SCI,MOSCOW,ID 83843, USA. NIA NIH HHS [AG11534] ABBOTT I, 1980, ADV ECOLOGICAL RES A, V2, P329; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; AUSTAD SN, 1993, AGING-CLIN EXP RES, V5, P259, DOI 10.1007/BF03324171; BALLINGER RE, 1979, ECOLOGY, V60, P901, DOI 10.2307/1936858; BELLAMY D, 1981, S ZOOL SOC LOND, V47, P267; BERRY RJ, 1979, J MAMMAL, V60, P222, DOI 10.2307/1379782; BERRY RJ, 1986, BIOL J LINN SOC, V28, P205, DOI 10.1111/j.1095-8312.1986.tb01754.x; BERRY RJ, 1978, J ZOOL, V185, P73; BERRY RJ, 1975, J ZOOL, V176, P375; BERRY RJ, 1969, J ZOOL, V158, P247; BERRY RJ, 1981, MAMMAL REV, V11, P91, DOI 10.1111/j.1365-2907.1981.tb00001.x; BERRY RJ, 1975, J ZOOL, V175, P523; BERVEN KA, 1983, AM ZOOL, V23, P85; BOURSOT P, 1993, ANNU REV ECOL SYST, V24, P119, DOI 10.1146/annurev.es.24.110193.001003; Boyce M.S., 1988, EVOLUTION LIFE HIST; BRONSON FH, 1979, Q REV BIOL, V54, P265, DOI 10.1086/411295; BRONSON MT, 1979, ECOLOGY, V60, P2723; BROWN JH, 1969, EVOLUTION, V23, P329, DOI 10.1111/j.1558-5646.1969.tb03515.x; BROWNELL E, 1983, EVOLUTION, V37, P1034, DOI 10.1111/j.1558-5646.1983.tb05631.x; CAMERON GN, 1988, EVOLUTION LIFE HIST; CARLQUIST S, 1974, ISLAND B IOL; Case T.J., 1982, P184; CASE TJ, 1975, ECOLOGY, V56, P3, DOI 10.2307/1935296; CASE TJ, 1978, ECOLOGY, V59, P1, DOI 10.2307/1936628; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CLARK J, 1980, J ANIM ECOL, V49, P185; CLEVELAND AG, 1971, THESIS N TEXAS STATE; COCKBURN A, 1983, EVOLUTION, V37, P86, DOI 10.1111/j.1558-5646.1983.tb05517.x; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; CROWELL KL, 1981, IBIS, V123, P42, DOI 10.1111/j.1474-919X.1981.tb00171.x; Deeb BJ, 1994, VET MED S, V89, P702; EDNEY EB, 1968, NATURE, V220, P281, DOI 10.1038/220281a0; EKLUND J, 1977, NATURE, V265, P48, DOI 10.1038/265048b0; FALCONER DS, 1984, GENET RES, V44, P47, DOI 10.1017/S0016672300026240; Finch C. E., 1990, LONGEVITY SENESCENCE; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; FLEMING TH, 1979, ECOLOGY SMALL MAMMAL; FRIEDMAN DB, 1988, GENETICS, V118, P75; GARLAND T, 1991, ANNU REV ECOL SYST, V22, P193, DOI 10.1146/annurev.es.22.110191.001205; GEIST V, 1987, CAN J ZOOL, V65, P1035, DOI 10.1139/z87-164; GLIWICZ J, 1980, BIOL REV, V55, P109, DOI 10.1111/j.1469-185X.1980.tb00690.x; GOLDSTON RTB, 1989, VET CLIN N AM-SMALL, V19, pR9; GRANT PR, 1966, CAN J ZOOLOG, V44, P391, DOI 10.1139/z66-042; GRANT PR, 1966, CONDOR, V69, P249; HEANEY LR, 1978, EVOLUTION, V32, P29, DOI 10.1111/j.1558-5646.1978.tb01096.x; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; Huxley Julian, 1942, EVOLUTION MODERN SYN; JAMES FC, 1970, ECOLOGY, V51, P365, DOI 10.2307/1935374; JEWELL P. A., 1966, SYMP ZOOL SOC LONDON, V15, P89; JOHNSON TE, 1987, P NATL ACAD SCI USA, V84, P3777, DOI 10.1073/pnas.84.11.3777; KAVALIERS M, 1990, PHYSIOL ZOOL, V63, P388, DOI 10.1086/physzool.63.2.30158503; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LIDICKER WZ, 1975, SMALL MAMMALS PRODUC, P105; LINDSEY CC, 1966, EVOLUTION, V47, P456; LOMOLINO MV, 1985, AM NAT, V125, P310, DOI 10.1086/284343; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; LYNCH CB, 1992, AM NAT, V139, P1219, DOI 10.1086/285383; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1972, ECOLOGY, V53, P330, DOI 10.2307/1934090; MARSHALL JT, 1962, PACIFIC ISLAND RAT E, P240; MATTINGLY DK, 1985, ECOLOGY, V66, P928, DOI 10.2307/1940555; Mayr E., 1963, ANIMAL SPECIES EVOLU; McDowall RM, 1988, DIADROMY FISHES MIGR; MCNAB BK, 1971, ECOLOGY, V52, P845, DOI 10.2307/1936032; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; PELIKAN J, 1981, S ZOOL SOC LOND, V47, P205; PENDERGRASS WR, 1993, J CELL PHYSIOL, V156, P96, DOI 10.1002/jcp.1041560114; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, IN PRESS EXP GERONTO; ROBERTS RC, 1961, HEREDITY, V16, P369, DOI 10.1038/hdy.1961.46; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1991, EVOLUTIONARY BIOL SE; SACHER GA, 1978, GENETIC EFFECTS AGIN, P71; SCHOLANDER PF, 1955, EVOLUTION, V9, P115; SHIRE JGM, 1976, BIOL REV, V51, P105, DOI 10.1111/j.1469-185X.1976.tb01121.x; STAMPS JA, 1985, Q REV BIOL, V60, P155, DOI 10.1086/414314 79 23 23 1 7 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0531-5565 EXP GERONTOL Exp. Gerontol. JUL-AUG 1996 31 4 453 463 10.1016/0531-5565(95)02068-3 11 Geriatrics & Gerontology Geriatrics & Gerontology UV634 WOS:A1996UV63400003 9415103 2019-02-26 J Nusbaum, TJ; Mueller, LD; Rose, MR Nusbaum, TJ; Mueller, LD; Rose, MR Evolutionary patterns among measures of aging EXPERIMENTAL GERONTOLOGY English Article Gompertz equation; measures of aging; evolution of aging LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; POSTPONED SENESCENCE; SPAN; POPULATIONS; RESISTANCE; SELECTION; STRESS Maximum lifespan has been one of the most common aging measures in comparative studies, while the Gompertz model has recently attracted both proponents and critics of its capacity to adequately describe the acceleration of mortality in the oldest age classes. The Gompertz demographic model describes age-dependent mortality rate acceleration and age-independent mortality using the parameters a and A, respectively. Evolutionary biologists have predominantly used average longevity in studies of aging. Little is known about the evolutionary relationships of these measures on the microevolutionary time scale. We have simultaneously compared Gompertz parameters, average longevity, and maximum longevity in 50 related populations of Drosophila melanogaster, many of which have been selected for postponed aging. Overall, these populations have differentiated significantly for the A and a parameter of the Gompertz equation, as well as average and maximum longevity. These indices of aging appear to measure the same genetic changes in aging. However, in some specific population comparisons, the relationships among these measures are more complex. In a second experiment, environmental manipulation of longevity had substantially different effects from genetic differentiation, with the A parameter accounting for chances in overall mortality. The adequacy of the maximum lifespan and the Gompertz equation as indices of aging in evolutionary studies is discussed. Nusbaum, TJ (reprint author), UNIV CALIF IRVINE,DEPT ECOL & EVOLUTIONARY BIOL,IRVINE,CA 92717, USA. NIA NIH HHS [AG09970] BROOKS A, 1994, SCIENCE, V263, P668, DOI 10.1126/science.8303273; CAREY JR, 1992, SCIENCE, V258, P457; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Comfort A., 1979, BIOL SENESCENCE; CURTSINGER JW, 1992, SCIENCE, V258, P461, DOI 10.1126/science.1411541; Falconer D.S., 1981, INTRO QUANTITATIVE G; Finch C. E., 1990, LONGEVITY SENESCENCE; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; FRIES JF, 1980, NEW ENGL J MED, V303, P130, DOI 10.1056/NEJM198007173030304; Gavrilov L. A, 1991, BIOL LIFE SPAN QUANT; Gompertz B., 1825, PHILOS T ROY SOC LON, V115, P513, DOI [10.1098/RSTL.1825.0026, DOI 10.1098/RSTL.1825.0026, 10.1098/rstl.1825.0026]; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HUGHES KA, 1994, NATURE, V367, P64, DOI 10.1038/367064a0; JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681; JOHNSON TE, 1987, P NATL ACAD SCI USA, V84, P3777, DOI 10.1073/pnas.84.11.3777; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; Mueller LD, 1995, EXP GERONTOL, V30, P553, DOI 10.1016/0531-5565(95)00029-1; NUSBAUM TJ, 1993, SCIENCE, V260, P1567, DOI 10.1126/science.8503001; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; PROMISLOW DEL, 1993, J GERONTOL, V48, pB115, DOI 10.1093/geronj/48.4.B115; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; Stearns SC., 1992, EVOLUTION LIFE HIST 28 34 34 0 1 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0531-5565 EXP GERONTOL Exp. Gerontol. JUL-AUG 1996 31 4 507 516 10.1016/0531-5565(96)00002-2 10 Geriatrics & Gerontology Geriatrics & Gerontology UV634 WOS:A1996UV63400007 9415107 2019-02-26 J Combs, DL; Fredrickson, LH Combs, DL; Fredrickson, LH Foods used by male mallards wintering in southeastern Missouri JOURNAL OF WILDLIFE MANAGEMENT English Article Anas platyrhynchos; diet; foods; foraging; habitat; invertebrates; mallard; mast; Missouri; molt FEMALE MALLARDS; MOLT; MISSISSIPPI; WETLANDS; HABITS; DUCKS; TEXAS Although winter foods of mallards (Anas platyrhynchos) have been documented in several studies, the importance of ecological or biological factors on the consumption of specific food groups often was ignored. Consequently, we evaluated whether age, pair status, molt status, habitat, year, or season influenced foods consumed by male mallards in southeastern Missouri during winters 1983-86. Seeds of moist-soil plants composed 61.4 and 46.0% of the aggregate dry mass diet of ducks collected in 1983-84 and 1984-85. Agricultural grain made up 33.8% of the aggregate dry mass diet in 1984-85, and acorns accounted for 54.5% of the diet in 1985-86. Our analysis revealed that habitat where birds were collected (P < 0.01) and annual variation (P < 0.01) were predominate factors influencing male mallard diet during winter. We attribute annual differences in food consumption primarily to annual variation in mast production. Invertebrates were present in 82% of 156 food samples, but composed only 7.3% dry mass of all ducks collected. Invertebrate consumption was greater during mid-winter than during other portions of winter (P < 0.01), probably a result of population growth and life history strategies of invertebrate species. Consumption of food groups did not differ among adult and immature males (P = 0.75), paired and unpaired males (P = 0.15), or males of different molt status (P = 0.22). These results suggest that age and physiological factors are less important than environmental factors in determining food use by male mallards during winter. Providing a diversity of habitats and suitable foods may be the best management approach to compensate for annual variation in availability of individual food resources. UNIV MISSOURI,SCH NAT RESOURCES,GAYLORD MEM LAB,PUXICO,MO 63960 ALLEN CE, 1980, J WILDLIFE MANAGE, V44, P232, DOI 10.2307/3808376; BALDASSARRE GA, 1984, J WILDLIFE MANAGE, V48, P63, DOI 10.2307/3808453; BARTONEK JC, 1984, TRANS N AM WILDL NAT, V49, P501; Bellrose F., 1980, DUCKS GEESE SWANS N; Carney S. M, 1964, 82 US FISH WILDL SER; COMBS DL, 1995, WILSON BULL, V107, P359; COMBS DL, 1987, THESIS U MISSOURI CO; DELNICKI D, 1986, J WILDLIFE MANAGE, V50, P43, DOI 10.2307/3801486; FORSYTHE SW, 1985, T N AM WILDL NAT RES, V50, P566; FREDRICKSON LH, 1978, WETLAND FUNCTIONS VA, P296; GODFREY RK, 1981, AQUATIC WETLAND PLAN; GODFREY RK, 1979, AQUATIC WETLAND PLAN; GRUENHAGEN NM, 1990, J WILDLIFE MANAGE, V54, P622, DOI 10.2307/3809359; HEITMEYER ME, 1988, CONDOR, V90, P263, DOI 10.2307/1368465; HEITMEYER ME, 1985, THESIS U MISSOURI CO; Hochbaum H. Albert, 1942, TRANS NORTH AMER WILDLIFE CONF, V7, P299; Johnsgard P.A, 1965, HDB WATERFOWL BEHAV; Johnson R. A., 1988, APPLIED MULTIVARIATE; KORTE P. A., 1977, T N AM WILDL NAT RES, V42, P31; KRAPU GL, 1977, J WILDLIFE MANAGE, V43, P384; LANDERS JL, 1976, FLA MISC PUBL, V4; Martin A. C, 1961, SEED IDENTIFICATION; MCQUILKIN RA, 1977, J WILDLIFE MANAGE, V41, P218, DOI 10.2307/3800598; MERRITT RW, 1984, INTRO AQUATIC INSECT; Pennak R. W., 1978, FRESHWATER INVERTEBR; Prince HH, 1979, WATERFOWL WETLANDS I, P103; Reid F. A., 1983, THESIS U MISSOURI CO; Reinecke K.J., 1989, P203; RICHARDSON DM, 1992, J WILDLIFE MANAGE, V56, P531, DOI 10.2307/3808869; *SAS I INC, 1991, SAS SYST LIN MOD; SHERMAN DE, 1992, WILDLIFE SOC B, V20, P148; STEYERMARK J, 1963, FLORA MISSOURI; SWANSON GA, 1974, J WILDLIFE MANAGE, V38, P302, DOI 10.2307/3800737; SWANSON GA, 1970, J WILDLIFE MANAGE, V34, P739, DOI 10.2307/3799138; Tiner R. W., 1984, WETLANDS US CURRENT; WHITE DC, 1982, THESIS U MISSOURI CO; Wright TW, 1959, P ANN C SE ASS GAM F, V13, P291; YOUNG DA, 1982, CAN J ZOOL, V60, P3220, DOI 10.1139/z82-408 38 19 19 3 15 WILDLIFE SOC BETHESDA 5410 GROSVENOR LANE, BETHESDA, MD 20814-2197 0022-541X J WILDLIFE MANAGE J. Wildl. Manage. JUL 1996 60 3 603 610 10.2307/3802078 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology UZ985 WOS:A1996UZ98500015 2019-02-26 J Martin, TE; Clobert, J Martin, TE; Clobert, J Nest predation and avian life-history evolution in Europe versus North America: A possible role of humans? AMERICAN NATURALIST English Article MITOCHONDRIAL-DNA VARIATION; CLUTCH-SIZE; PHYLOGENETIC REGRESSION; POPULATION-STRUCTURE; REPRODUCTIVE EFFORT; PASSERINE BIRDS; SURVIVAL RATES; BODY-WEIGHT; GENETICS; PATTERNS Life-history theory predicts that decreased mortality in early life can favor increased fecundity and reduced iteroparity. Similar to other causes of environmental variation, modification of the environment by humans potentially can change age-specific mortality and, hence, affect life-history evolution. Forests were removed throughout western Europe long ago, and nest predation (early mortality) is reduced in human-settled environments there, whereas nest predation is generally increased in areas settled by humans in North America. We controlled statistically for effects of body size and phylogeny and compared songbirds (Passeriformes) of Europe to those of North America and found that nest predation was lower in Europe. Associated with this decrease in early mortality in Europe, fecundity was increased and iteroparity was reduced via decreased adult survival rates, as predicted by theory. Moreover, continental differences were greater for species that were more vulnerable to nest predation (open-nesting species) than for species that used safer nest sites (hole-nesting species). These results suggest that nest predation can be an important influence on avian life-history evolution but that evolutionary constraints of nest predation may have been reduced in European systems because of large-scale modification of the environment. UNIV PARIS 06, INST ECOL, ECOL LAB, F-75252 PARIS, FRANCE Martin, TE (reprint author), UNIV MONTANA, MONTANA COOPERAT WILDLIFE RES UNIT, US NATL BIOL SERV, MISSOULA, MT 59812 USA. Martin, Thomas/F-6016-2011; Langerhans, R./A-7205-2009 Martin, Thomas/0000-0002-4028-4867; AVISE JC, 1980, J HERED, V71, P303, DOI 10.1093/oxfordjournals.jhered.a109376; AVISE JC, 1980, AUK, V97, P135; AVISE JC, 1980, SYST ZOOL, V29, P323, DOI 10.2307/2992339; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; BERMINGHAM E, 1992, P NATL ACAD SCI USA, V89, P6624, DOI 10.1073/pnas.89.14.6624; BLEDSOE AH, 1988, AUK, V105, P504; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; BRITTINGHAM MC, 1988, ECOLOGY, V69, P581, DOI 10.2307/1941007; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CRAMP S, 1989, BIRDS W PALEARCTIC, V6; CRAMP S, 1985, BIRDS W PALEARCTIC, V5; Cramp S., 1993, BIRDS W PALEARCTIC, V7; CURIO E, 1989, TRENDS ECOL EVOL, V4, P81, DOI 10.1016/0169-5347(89)90155-9; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Dobson Andrew, 1990, V7, P115; DRENT RH, 1980, ARDEA, V68, P225; Dunning JB, 1984, W BIRD BANDING ASS M, V1; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; GILL FB, 1993, EVOLUTION, V47, P195, DOI 10.1111/j.1558-5646.1993.tb01210.x; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; GRAFEN A, 1992, J THEOR BIOL, V156, P405, DOI 10.1016/S0022-5193(05)80635-6; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; JOHNSON NK, 1988, CONDOR, V90, P428, DOI 10.2307/1368571; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; MARTEN JA, 1986, CONDOR, V88, P409, DOI 10.2307/1368266; Martin T.E., 1992, Current Ornithology, V9, P163; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; MARTIN TE, 1993, AM NAT, V141, P897, DOI 10.1086/285515; MARTIN TE, 1988, AM NAT, V132, P900, DOI 10.1086/284896; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MARTINS EP, 1991, EVOLUTION, V45, P534, DOI 10.1111/j.1558-5646.1991.tb04328.x; MARTINS EP, 1993, AM NAT, V142, P994, DOI 10.1086/285585; MATHER AS, 1990, GLOBAL FOREST RESOUR; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MOLLER AP, 1994, EVOLUTION, V48, P1089, DOI 10.1111/j.1558-5646.1994.tb05296.x; Murray B. G., 1979, POPULATION DYNAMICS; MURRAY BG, 1985, ORNITHOL MONOGR, V36, P505; Newton Ian, 1993, British Birds, V86, P638; NILSSON SG, 1986, AUK, V103, P432; NILSSON SG, 1984, ORNIS SCAND, V15, P167, DOI 10.2307/3675958; PAGEL M, 1994, P ROY SOC B-BIOL SCI, V255, P37, DOI 10.1098/rspb.1994.0006; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; PIOTROWSKA M, 1989, Acta Ornithologica (Warsaw), V25, P25; PURVIS A, 1993, SYST BIOL, V42, P569, DOI 10.2307/2992489; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; Ricklefs RE, 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI DOI 10.5479/SI.00810282.9; ROBBINS CS, 1989, P NATL ACAD SCI USA, V86, P7658, DOI 10.1073/pnas.86.19.7658; ROBBINS CS, 1989, WILDLIFE MONOGR, P1; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; SAETHER BE, 1989, ORNIS SCAND, V20, P13, DOI 10.2307/3676702; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Sibley C.G., 1990, PHYLOGENY CLASSIFICA; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; SMALL MF, 1988, OECOLOGIA, V76, P62, DOI 10.1007/BF00379601; SNOW D, 1958, SUDY BLACKBIRDS; STJERNBERG T, 1979, Acta Zoologica Fennica, P1; SUTHERLAND WJ, 1989, TRENDS ECOL EVOL, V4, P273, DOI 10.1016/0169-5347(89)90200-0; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; TAMPLIN JW, 1993, WILSON BULL, V105, P93; THORPE H, 1978, CONSERVATION AGR, P17; TOMIALOJC L, 1984, Acta Ornithologica (Warsaw), V20, P241; TOMIALOJC L, 1980, Polish Ecological Studies, V5, P141; WEBSTER MS, 1992, EVOLUTION, V46, P1621, DOI 10.1111/j.1558-5646.1992.tb01158.x; WILCOVE DS, 1985, ECOLOGY, V66, P1211, DOI 10.2307/1939174; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; ZINK RM, 1982, AUK, V99, P632; ZINK RM, 1993, WILSON BULL, V105, P399; ZINK RM, 1991, CONDOR, V93, P98, DOI 10.2307/1368611; ZINK RM, 1991, AUK, V108, P578, DOI 10.2307/4088098; ZINK RM, 1991, CONDOR, V93, P318, DOI 10.2307/1368947; ZINK RM, 1984, SYST ZOOL, V33, P205, DOI 10.2307/2413021; ZINK RM, 1990, SYST ZOOL, V39, P148, DOI 10.2307/2992452 88 133 134 1 19 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JUN 1996 147 6 1028 1046 10.1086/285891 19 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology UP976 WOS:A1996UP97600008 2019-02-26 J Cox, JA; Conran, JG Cox, JA; Conran, JG The effect of water stress on the life cycles of Erodium crinitum Carolin and Erodium cicutarium (L) L'Herit ex Aiton (Geraniaceae) AUSTRALIAN JOURNAL OF ECOLOGY English Article drought; Erodium; fecundity; Geraniaceae; life history strategy WINTER ANNUALS; MOJAVE-DESERT; GERMINATION; AUSTRALIA; ALLOCATION; COMPONENTS; DYNAMICS Erodium cicutarium (L.) L'Herit. ex Aiton (Geraniaceae) from temperate Mediterranean Eurasia is naturalized across large areas of arid and semi-arid Australia to which Erodium crinitum Carolin is native. The response of seed cohorts from Koonamore, SA, of these two species to water stress on plant height, leaf numbers, buds and fruit under artificial drought was investigated to see if there were significant differences in their life history strategies which might reflect their evolution under different water regimes. Although in E. cicutarium plant size, leaf and bud numbers and fruit/plant biomass ratio were significantly lower under drought, flower and fruit number, fruit size and total mass were unaffected. In contrast, E. crinitum was largely unaffected by the drought conditions, showing only an increase in the fruit/plant biomass ratio. UNIV ADELAIDE,DEPT BOT,ADELAIDE,SA 5005,AUSTRALIA BEATLEY JC, 1974, ECOLOGY, V55, P856, DOI 10.2307/1934421; BEATLEY JC, 1967, ECOLOGY, V48, P745, DOI 10.2307/1933732; BELL KL, 1979, J ECOL, V67, P781, DOI 10.2307/2259214; BLACK J. N., 1957, AUSTRALIAN JOUR AGRIC RES, V8, P1, DOI 10.1071/AR9570001; COX JA, 1992, THESIS U ADELAIDE; CRISP MD, 1975, THESIS U ADELAIDE; Cunningham GM, 1981, PLANTS W NEW S WALES; DELPH LF, 1986, OECOLOGIA, V69, P471, DOI 10.1007/BF00377071; FOX GA, 1990, EVOLUTION, V44, P1404, DOI 10.1111/j.1558-5646.1990.tb03835.x; FOX GA, 1990, AM NAT, V135, P829, DOI 10.1086/285076; GREEN RH, 1993, AUST J ECOL, V18, P81, DOI 10.1111/j.1442-9993.1993.tb00436.x; GUTTERMAN Y, 1994, BOT REV, V60, P373, DOI 10.1007/BF02857924; HICKMAN JC, 1977, J ECOL, V65, P317, DOI 10.2307/2259080; HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661; JURADO E, 1992, J ECOL, V80, P407, DOI 10.2307/2260686; LORIA M, 1979, Israel Journal of Botany, V28, P211; MARSHALL DL, 1986, AM NAT, V127, P508, DOI 10.1086/284499; MARTIN MM, 1982, EVOLUTION, V36, P1290, DOI 10.1111/j.1558-5646.1982.tb05498.x; MEIDAN E, 1990, J ARID ENVIRON, V19, P77, DOI 10.1016/S0140-1963(18)30831-0; MOTT JJ, 1975, J ECOL, V63, P825, DOI 10.2307/2258604; MOTT JJ, 1972, J ECOL, V60, P293, DOI 10.2307/2258347; NEWMAN EI, 1965, J ECOL, V53, P211, DOI 10.2307/2257578; NICHOLSON KP, 1985, THESIS U ADELAIDE; NOBLE IR, 1977, AUST J BOT, V25, P639, DOI 10.1071/BT9770639; NOBLE IR, 1980, ISRAEL J BOT, V28, P495; Noy-Meir I., 1973, Annual Review of Ecology and Systematics, V4, P25, DOI 10.1146/annurev.es.04.110173.000325; OSBORN T. G. B., 1931, PROC LINNEAN SOC NEW SOUTH WALES, V56, P299; RICE KJ, 1985, ECOLOGY, V66, P1651, DOI 10.2307/1938027; SHREVE F, 1951, PUBL CARNEGIE I, V591; STAMP NE, 1990, AM J BOT, V77, P82; UNDERWOOD AJ, 1993, AUST J ECOL, V18, P99, DOI 10.1111/j.1442-9993.1993.tb00437.x; von Ende Carl N., 1993, P113; WENT FW, 1949, ECOLOGY, V30, P1, DOI 10.2307/1932273; WENT FW, 1948, ECOLOGY, V29, P242, DOI 10.2307/1930988; WENT FW, 1955, SCI AM, V193, P68; WILKINSON L, 1990, SYSTAT SYST STAT REF; YOUNG JA, 1975, AGRON J, V67, P54, DOI 10.2134/agronj1975.00021962006700010014x; YOUNG JA, 1981, HILGARDIA, V49, P1 38 14 15 0 10 BLACKWELL SCIENCE CARLTON 54 UNIVERSITY ST, P O BOX 378, CARLTON VICTORIA 3053, AUSTRALIA 0307-692X AUST J ECOL Aust. J. Ecol. JUN 1996 21 2 235 240 10.1111/j.1442-9993.1996.tb00604.x 6 Ecology Environmental Sciences & Ecology UX378 WOS:A1996UX37800012 2019-02-26 J Magurran, AE; Paxton, CGM; Seghers, BH; Shaw, PW; Carvalho, GR Magurran, AE; Paxton, CGM; Seghers, BH; Shaw, PW; Carvalho, GR Genetic divergence, female choice and male mating success in trinidadian guppies BEHAVIOUR English Article LIFE-HISTORY EVOLUTION; COSTLY MATE PREFERENCES; MALE COLOR PATTERNS; POECILIA-RETICULATA; SEXUAL SELECTION; ARTIFICIAL INTRODUCTION; NATURAL-POPULATIONS; N-TRINIDAD; BEHAVIOR; PREDATION Guppy, Poecilia reticulata, populations from two major Trinidadian drainages, the Caroni and Oropuche, are characterised by high levels of genetic divergence. Our aim in this paper was to determine whether this divergence is linked to behaviourally-based reproductive isolation. We compared two populations of guppies, one from the Tacarigua River in the Caroni drainage, the other from the Oropuche River in the Oropuche drainage. Guppies in both sites are subject to predation from the pike cichlid, Crenicichla alta, and other predators. In visual choice tests, virgin females from both the Oropuche and Tacarigua populations showed no preference for either type of male. This result was confirmed when females had free access to males. However, a population asymmetry in male mating behaviour resulted in Tacarigua males gaining virtually all copulations. We argue that predation risk has constrained female choice and discuss the evolutionary significance of population differences in male behaviour. UNIV OXFORD,DEPT ZOOL,ANIM BEHAV RES GRP,OXFORD OX1 3PS,ENGLAND; UNIV COLL SWANSEA,SCH BIOL SCI,SWANSEA SA2 8PP,W GLAM,WALES Magurran, AE (reprint author), UNIV ST ANDREWS,SCH BIOL & MED SCI,ST ANDREWS KY16 9TS,FIFE,SCOTLAND. Langerhans, R./A-7205-2009; Magurran, Anne/D-7463-2013 Paxton, Charles/0000-0002-9350-3197; Magurran, Anne/0000-0002-0036-2795 BALLIN PJ, 1973, THESIS U BRIT COLUMB; Barlow G. W., 1967, Zeitschrift fuer Tierpsychologie, V25, P315; Butlin R.K., 1994, P43; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; DOUGLAS ME, 1982, J THEOR BIOL, V99, P777, DOI 10.1016/0022-5193(82)90197-7; DUGATKIN LA, 1992, P ROY SOC B-BIOL SCI, V249, P179, DOI 10.1098/rspb.1992.0101; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FAJEN A, 1992, EVOLUTION, V46, P1457, DOI 10.1111/j.1558-5646.1992.tb01136.x; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; HASKINS CP, 1951, EVOLUTION, V5, P216, DOI 10.1111/j.1558-5646.1951.tb02780.x; HASKINS CP, 1950, P NATL ACAD SCI USA, V36, P464, DOI 10.1073/pnas.36.9.464; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HOUDE AE, 1988, ANIM BEHAV, V36, P510, DOI 10.1016/S0003-3472(88)80022-8; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HOUDE AE, 1994, P ROY SOC B-BIOL SCI, V256, P125, DOI 10.1098/rspb.1994.0059; IWASA Y, 1994, EVOLUTION, V48, P853, DOI 10.1111/j.1558-5646.1994.tb01367.x; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; KODRICBROWN A, 1993, BEHAV ECOL SOCIOBIOL, V32, P415, DOI 10.1007/BF00168825; KODRICBROWN A, 1992, ANIM BEHAV, V44, P165, DOI 10.1016/S0003-3472(05)80766-3; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; Liley N. R., 1966, Behaviour Suppl, V13, P1; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; LUYTEN PH, 1991, BEHAV ECOL SOCIOBIOL, V28, P329, DOI 10.1007/BF00164382; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1994, BEHAVIOUR, V128, P121, DOI 10.1163/156853994X00073; MAGURRAN AE, 1995, ADV STUD BEHAV, V24, P155, DOI 10.1016/S0065-3454(08)60394-0; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; Magurran AE, 1993, BEHAV ECOLOGY FISHES, P29; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MEYER A, 1994, GENETICS AND EVOLUTION OF AQUATIC ORGANISMS, P219; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; POMIANKOWSKI A, 1991, EVOLUTION, V45, P1422, DOI 10.1111/j.1558-5646.1991.tb02645.x; POMIANKOWSKI A, 1994, TRENDS ECOL EVOL, V9, P242, DOI 10.1016/0169-5347(94)90287-9; POMIANKOWSKI A, 1993, P ROY SOC B-BIOL SCI, V253, P173, DOI 10.1098/rspb.1993.0099; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SHAW PW, 1991, J FISH BIOL, V39, P203, DOI 10.1111/j.1095-8649.1991.tb05084.x; SHAW PW, 1992, P ROY SOC B-BIOL SCI, V248, P111, DOI 10.1098/rspb.1992.0049; Siegel S, 1988, NONPARAMETRIC STAT B; SOKAL R., 1981, BIOMETRY 49 16 16 0 16 E J BRILL LEIDEN PO BOX 9000, 2300 PA LEIDEN, NETHERLANDS 0005-7959 BEHAVIOUR Behaviour JUN 1996 133 7-8 503 517 10.1163/156853996X00189 15 Behavioral Sciences; Zoology Behavioral Sciences; Zoology UX416 WOS:A1996UX41600002 2019-02-26 J Abrams, PA; Rowe, L Abrams, PA; Rowe, L The effects of predation on the age and size of maturity of prey EVOLUTION English Article age at maturity; development time; food supply; foraging effort; growth rate; life history; optimization; predation; size at maturity LIFE-HISTORY EVOLUTION; FRESH-WATER SNAIL; PHENOTYPIC PLASTICITY; DAPHNIA-PULEX; TIME CONSTRAINTS; REACTION NORMS; TRADE-OFF; GROWTH; METAMORPHOSIS; RESPONSES The effects oi nonselective predation on the optimal age and size of maturity of their prey tire investigated using mathematical models of a simple life history with juvenile and adult stages. Fitness is measured by the product of survival ro the adult stage and expected adult reproduction, which is usually an increasing function of size at maturity. Size is determined by both age at maturity and the value of costly traits that increase mean growth rate (growth effort), The analysis includes cases with fixed size but flexible time to maturity, fixed time but flexible size, and adaptively flexible values of both variables. In these analyses, growth effort is flexible. For comparison with previous theory, models with a fixed growth effort are analyzed, In each case, there may he indirect effects of predation on the prey's food supply. The effect of increased predation depends on (I) which variables are flexible; (2) whether increased growth effort requires increased exposure to predators; and (3) how increased predator density affects the abundance of Pc,od for juvenile prey; Ii there is no indirect effect of predators on prey food supply, size at maturity will generally decrease in response to increased predation. However, the indirect effect from increased food has the opposite effect, and the net result of predation is often increased size. Age at maturity may either increase or decrease, depending on functional forms and parameter values; this is true regardless of the presence of indirect effects. The results are compared with those of previous theoretical analyses. Observed shifts in life history in response to predation am reviewed, and the role of lie-selective predation is reassessed. UNIV MINNESOTA, DEPT ECOL EVOLUT & BEHAV, ST PAUL, MN 55108 USA; UNIV TORONTO, DEPT ZOOL, TORONTO, ON M5S 1A1, CANADA Langerhans, R./A-7205-2009; Abrams, Peter/A-5240-2008 Abrams, Peter/0000-0002-1828-326X ABRAMS PA, 1991, OIKOS, V62, P167, DOI 10.2307/3545262; ABRAMS PA, 1993, ECOLOGY, V74, P726, DOI 10.2307/1940800; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ABRAMS PA, 1991, ECOLOGY, V72, P1242, DOI 10.2307/1941098; ALFORD RA, 1993, AM NAT, V141, P717, DOI 10.1086/285501; BLACK AR, 1993, LIMNOL OCEANOGR, V38, P986, DOI 10.4319/lo.1993.38.5.0986; Carpenter S. R., 1993, TROPHIC CASCADES LAK; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CROWL TA, 1990, OECOLOGIA, V84, P238, DOI 10.1007/BF00318278; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DODSON SI, 1988, LIMNOL OCEANOGR, V33, P1274, DOI 10.4319/lo.1988.33.6.1274; Endler JA, 1986, NATURAL SELECTION WI; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; GILINSKY E, 1984, ECOLOGY, V65, P455, DOI 10.2307/1941408; GILLAM JF, 1982, THESIS MICHIGAN STAT; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; Kerfoot WC, 1987, PREDATION DIRECT IND; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KUSANO T, 1982, RES POPUL ECOL, V24, P329, DOI 10.1007/BF02515580; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEIBOLD M, 1991, OECOLOGIA, V86, P342, DOI 10.1007/BF00317599; LIMA SL, 1992, ANN ZOOL FENN, V29, P217; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; PERRIN N, 1990, FUNCT ECOL, V4, P53, DOI 10.2307/2389652; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1996, IN PRESS EVOLUTION; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Roff Derek A., 1992; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SEGHERS BH, 1973, THESIS U BRIT COLUMB; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; Sih A., 1987, P203; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HIST; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1991, ECOLOGY, V72, P1709, DOI 10.2307/1940970; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILBUR HM, 1990, AM NAT, V135, P176, DOI 10.1086/285038 55 292 304 1 117 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 1996 50 3 1052 1061 10.2307/2410646 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UY555 WOS:A1996UY55500008 28565288 Bronze 2019-02-26 J Bradshaw, W; Holzapfel, CM Bradshaw, W; Holzapfel, CM Genetic constraints to life-history evolution in the pitcher-plant mosquito, Wyeomyia smithii EVOLUTION English Article diapause; mosquito; pleiotropy; tradeoffs; wyeomyia BUGS ONCOPELTUS-FASCIATUS; DROSOPHILA-MELANOGASTER; QUANTITATIVE CHARACTERS; ANTAGONISTIC PLEIOTROPY; CORRELATED RESPONSES; SELECTION; TRAITS; REPRODUCTION; FITNESS; COSTS Life-history theory relies heavily an the hypothesis that genetic tradeoffs among the components of fitness constrain their independent evolution and joint maximization. Herein we show that selection on preadult development time in the pitcher-plant mosquito, Wyeomyia smithii,, leads to a correlated response in cohort mean generation time but no correlated response in survivorship, fecundity. or cohort replacement rare. Lines selected for fast development achieve a higher capacity for increase (r(c)) than lines selected for slow development, independently of larval density. These results imply that tradeoffs due to underlying antagonistic pleiotropy affecting growth, development, survivorship. and reproduction are not necessary constraints to life-history evolution. Previous work with W. smithii has shown a positive generic correlation between development time and a general, genetically coordinated diapause syndrome. We propose that the observed nontradeoffs among the components of r(c) may be subsumed into an even more fundamental tradeoff between performance during the summer generations and synchronization of development and reproduction with the changing seasons, Consequently, critical tests of genetic tradeoffs as a constraint to the independent evolution or simultaneous optimization of fitness components may need to consider the seasonal context. Bradshaw, W (reprint author), UNIV OREGON, DEPT BIOL, EUGENE, OR 97403 USA. BARTON NH, 1987, GENET RES, V49, P157, DOI 10.1017/S0016672300026951; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; Bradshaw W.E., 1983, P161; BRADSHAW WE, 1989, AM NAT, V133, P869, DOI 10.1086/284957; BRADSHAW WE, 1977, EVOLUTION, V31, P546, DOI 10.1111/j.1558-5646.1977.tb01044.x; BRADSHAW WE, 1980, OECOLOGIA, V46, P13, DOI 10.1007/BF00346959; BRADSHAW WE, 1972, CAN J ZOOLOG, V50, P713, DOI 10.1139/z72-098; CAMPBELL MD, 1992, ANN ENTOMOL SOC AM, V85, P445, DOI 10.1093/aesa/85.4.445; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Clark A, 1987, GENETIC CONSTRAINTS, P25; DAY RW, 1989, ECOL MONOGR, V59, P433, DOI 10.2307/1943075; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEJONG G, 1993, FUNCT ECOL, V7, P75, DOI 10.2307/2389869; DINGLE H, 1988, EVOLUTION, V42, P79, DOI 10.1111/j.1558-5646.1988.tb04109.x; Dingle H., 1986, P187; GUPTA AP, 1982, EVOLUTION, V36, P934, DOI 10.1111/j.1558-5646.1982.tb05464.x; HARD JJ, 1993, J EVOLUTION BIOL, V6, P707, DOI 10.1046/j.1420-9101.1993.6050707.x; Hegmann J.P., 1982, P177; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1992, GENETICS, V130, P195; Istock C.A., 1978, P171; Istock C.A., 1983, PROCEEDINGS OF THE ANNUAL BIOLOGY COLLOQUIUM (OREGON STATE UNIVERSITY), P61; Istock C.A., 1981, P113; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1980, GENETICS, V94, P203; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1991, PHILOS T ROY SOC B, V332, P25, DOI 10.1098/rstb.1991.0029; PALMER JO, 1986, EVOLUTION, V40, P767, DOI 10.1111/j.1558-5646.1986.tb00536.x; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1985, GENET RES, V46, P279, DOI 10.1017/S0016672300022783; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF DA, 1987, HEREDITY, V58, P103, DOI 10.1038/hdy.1987.15; Roff Derek A., 1992; Rose M.R., 1990, P29; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1981, GENETICS, V97, P187; ROSE MR, 1991, EVOLUTIONARY BIOL AI; *SAS I, 1985, SAS US GUID; SCHEINER SM, 1991, GENETICA, V84, P123, DOI 10.1007/BF00116552; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WILLIS JH, 1991, EVOLUTION, V45, P441, DOI 10.1111/j.1558-5646.1991.tb04418.x 49 30 31 0 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 1996 50 3 1176 1181 10.2307/2410658 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UY555 WOS:A1996UY55500020 28565280 Bronze 2019-02-26 J Nunney, L Nunney, L The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: An example of a fitness trade-off EVOLUTION English Article body size; development time; fecundity; fitness trade-off; genetic correlation; life-history evolution; longevity; selection LIFE-HISTORY; ANTAGONISTIC PLEIOTROPY; ARTIFICIAL SELECTION; CORRELATED RESPONSES; EVOLUTIONARY DEMOGRAPHY; NATURAL POPULATIONS; GENETIC-ANALYSIS; BRUCHID BEETLE; BODY-WEIGHT; COMPETITION A selection experiment using Drosophila melanogaster revealed a strong trade-off between adult weight and larval development time (LDT), supporting the view that antagonistic pleiotropy for these two fitness traits determines mean adult size. Two experimental lines of flies were selected for a shorter LDT (measured from egg laying to pupation). After 15 generations LDT was reduced by an average of 7.9%. The response appeared to be controlled primarily by autosomal loci. A correlated response to the selection was a reduction in adult dry weight: individuals from the selected populations were on average 15.1% lighter than the controls. The lighter females of the selected lines showed a 35% drop in fecundity, bur no change in longevity. Thus, there is no direct relationship between LDT and adult longevity. The genetic correlation between weight and LDT, as measured from their joint response to selection, was 0.86. Although there was weak evidence for dominance in LDT, there was none for weight, making it unlikely that selection acting on this antagonistic pleiotropy could lead to a stable polymorphism. In all lines, sex differences in weight violated expectations based on intrasex genetic correlations: Females, being larger than males, ought to require a longer LDT, whereas there was a slight trend in the opposite direction. Because the sexual dimorphism in size was nor significantly altered by selection, it appears that the controlling loci are either invariant or have very limited pleiotropic effect on developmental time. Iris suggested that they probably control some intrinsic, energy-intensive developmental process in males. Nunney, L (reprint author), UNIV CALIF RIVERSIDE,DEPT BIOL,RIVERSIDE,CA 92521, USA. Nunney, Leonard/0000-0002-4315-3694 BAKKER K., 1959, Entomologia Experimentalis et Applicata, V2, P171; Bakker K., 1963, Entomologia Experimentalis et Applicata, V6, P37; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BURNET B, 1977, GENET RES, V30, P149, DOI 10.1017/S0016672300017559; CLARKE JM, 1961, GENET RES, V2, P70, DOI 10.1017/S0016672300000550; CURTSINGER JW, 1994, AM NAT, V144, P210, DOI 10.1086/285671; Falconer D.S., 1981, INTRO QUANTITATIVE G; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; HIRAIZUMI Y, 1961, GENETICS, V46, P615; Kerkis J, 1931, GENETICS, V16, P0212; Kirk R. E., 1982, EXPT DESIGN PROCEDUR; Lindsley D.L., 1980, Genetics and Biology of Drosophila, V2d, P225; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; MUKAI T, 1971, GENETICS, V69, P385; NUNNEY L, 1990, ECOLOGY, V71, P1904, DOI 10.2307/1937598; NUNNEY L, 1983, AM NAT, V121, P67, DOI 10.1086/284040; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; POWSNER J, 1935, PHYSIOL ZOOL, V8, P474; PROUT T, 1989, GENETICS, V123, P803; PROUT T, 1993, GENETICS, V134, P368; ROBERTSON FW, 1957, J GENET, V55, P428, DOI DOI 10.1007/BF02984061; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; SANG J. H., 1957, JOUR HEREDITY, V48, P265; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SIBLY RM, 1991, FUNCT ECOL, V5, P594, DOI 10.2307/2389477; Sokal R. R., 1994, BIOMETRY; SOKAL RR, 1958, 10 INT C ENT, V2, P842; Stearns SC., 1992, EVOLUTION LIFE HIST; TANTAWY AO, 1970, GENETICS, V64, P79; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x 36 112 115 1 41 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution JUN 1996 50 3 1193 1204 10.2307/2410660 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UY555 WOS:A1996UY55500022 28565282 Bronze 2019-02-26 J Olsson, M; Gullberg, A; Shine, R; Madsen, T; Tegelstrom, H Olsson, M; Gullberg, A; Shine, R; Madsen, T; Tegelstrom, H Paternal genotype influences incubation period, offspring size and offspring shape in an oviparous reptile EVOLUTION English Article Lacerta agilis; incubation period; multiple paternity; offspring size and shape; paternal genes CLUTCH SIZE; EGG SIZE; TERRITORY ACQUISITION; UTA-STANSBURIANA; LACERTA-AGILIS; PARENTAL CARE; SAND LIZARD; NUMBER; TEMPERATURE; SELECTION Theoretical models for tie evolution of life-history traits assume a genetic basis for a significant proportion of the phenotypic variance observed in characteristics such as hatching date and offspring size. However, recent experimental work has shown that much oi the phenotypic variance in hatchling reptiles is induced by nongenetic factors, such as maternal nutrition and thermoregulation, and the physical conditions experienced during embryogenesis. Thus, there is no unambiguous evidence for strictly genetic (intraspecific) influences on the phenotypes of hatchling reptiles. We report results from a technique that uses a genetic marker trait and DNA fingerprinting to determine paternity of offspring from multiply sired clutches of European sand lizards, Lacerta agilis. By focusing on paternal rather than maternal effects, we show that hatchling genotypes exert a direct influence on the duration of incubation, the size (mass, snout-vent length) and shape !relative tail length) of the hatchling, and subsequent growth rates of the lizard during the first 3 mo oi life. Embryos with genes that code for a few days' delay in hatching are thereby larger when they hatch, having undergone further differentiation (and hence, have changed in bodily proportions), and are able to grow faster after hatching. Our data thus provide empirical support for a crucial but rarely tested assumption of life-history theory, and illuminate some of the proximate mechanisms that produce intraspecific variation in offspring phenotypes. UNIV SYDNEY,SCH BIOL SCI,SYDNEY,NSW 2006,AUSTRALIA; UPPSALA UNIV,DEPT GENET,S-75007 UPPSALA,SWEDEN Olsson, M (reprint author), GOTHENBURG UNIV,DEPT ZOOL,SECT ANIM ECOL,MEDICINAREGATAN 18,S-41390 GOTHENBURG,SWEDEN. Shine, Richard/B-8711-2008 Olsson, Mats/0000-0002-4130-1323; Madsen, Thomas/0000-0002-0998-8372 AUSTIN CR, 1984, REPROD MAMMALS, V4; Bischoff W., 1984, HDB REPTILIEN AMPHIB, V2/I, P23; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Bulmer MG., 1985, MATH THEORY QUANTITA; BURGER J, 1990, J HERPETOL, V24, P158, DOI 10.2307/1564223; BURGER J, 1989, BEHAV ECOL SOCIOBIOL, V24, P201, DOI 10.1007/BF00295199; CHEVERUD JM, 1983, GENET RES, V42, P62; Falconer D. S., 1989, INTRO QUANTITATIVE G; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; Ford EB, 1927, BR J EXP BIOL, V5, P112; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Gould S. J, 1977, ONTOGENY PHYLOGENY; Grafen A., 1988, REPROD SUCCESS, P454; GUILETTE LJ, 1992, J MORPHOL, V212, P1; GUILLETTE LJ, 1985, J MORPHOL, V184, P85, DOI 10.1002/jmor.1051840109; HEULIN B, 1990, CAN J ZOOL, V68, P1015, DOI 10.1139/z90-147; Hochberg Y, 1987, MULTIPLE COMP PROCED; KING RB, 1993, J HERPETOL, V27, P175, DOI 10.2307/1564934; LANG JW, 1985, AM ZOOL, V25, pA18; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MADSEN T, 1992, OECOLOGIA, V92, P40, DOI 10.1007/BF00317260; NEWMAN RA, 1994, EVOLUTION, V48, P1773, DOI 10.1111/j.1558-5646.1994.tb02213.x; NUSSBAUM RA, 1989, AM NAT, V133, P591, DOI 10.1086/284939; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; OLSSON M, 1994, ANIM BEHAV, V48, P607, DOI 10.1006/anbe.1994.1280; OLSSON M, 1994, ANIM BEHAV, V48, P193, DOI 10.1006/anbe.1994.1226; OLSSON M, 1994, NATURE, V369, P528, DOI 10.1038/369528b0; OLSSON M, 1994, NATURE, V372, P230, DOI 10.1038/372230a0; OLSSON M, 1992, THESIS U GOTEBORG SW; Packard G.C., 1991, P213, DOI 10.1017/CBO9780511585739.014; PALMER BD, 1994, IN PRESS J MORPHOL; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PRICE TD, 1985, AM NAT, V125, P169, DOI 10.1086/284336; Rykena S., 1988, MERTENSIELLA, V1, P41; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; SHINE R, 1977, AUST J ZOOL, V25, P655, DOI 10.1071/ZO9770655; SHINE R, 1993, OECOLOGIA, V96, P122, DOI 10.1007/BF00318039; SHINE R, 1995, AM NAT, V145, P809, DOI 10.1086/285769; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STAMPS JA, 1994, ANIM BEHAV, V47, P1387, DOI 10.1006/anbe.1994.1186; STAMPS JA, 1994, ANIM BEHAV, V47, P1375, DOI 10.1006/anbe.1994.1185; VAISANEN R A, 1972, Ornis Fennica, V49, P25; VANNOORDWIJK AJ, 1981, GENETICA, V55, P221, DOI 10.1007/BF00127206; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 48 39 41 0 19 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution JUN 1996 50 3 1328 1333 10.2307/2410672 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UY555 WOS:A1996UY55500034 28565274 Bronze 2019-02-26 J Amat, JA; Carrascal, LM; Moreno, J Amat, JA; Carrascal, LM; Moreno, J Nest defence by chinstrap penguins Pygoscelis antarctica in relation to offspring number and age JOURNAL OF AVIAN BIOLOGY English Article BROOD SIZE; PARENTAL RESPONSE; CICHLID FISH We manipulated clutches of Chinstrap Penguins to examine the effects of brood size and offspring age on brood defence le, els. Nest defence intensity increased with increasing offspring age, Experimental birds reduced nest defence intensity after losing one egg, These results support predictions derived from life-history theory a which assumes changes in nest defence intensity to be related to changes in the reproductive value of the brood. Amat, JA (reprint author), CSIC, MUSEO NACL CIENCIAS NAT, J GUTIERREZ ABASCAL 2, E-28006 MADRID, SPAIN. carrascal@pinar1.csic.es; mcnjm19@pinar1.csic.es CSIC, EBD Donana/C-4157-2011; Evolutionary Ecology, Ecologia Evolutiva/M-3553-2014; Carrascal, Luis M./B-8381-2008 CSIC, EBD Donana/0000-0003-4318-6602; Carrascal, Luis M./0000-0003-1288-5531; Amat, Juan A./0000-0003-1685-1056 AINLEY DG, 1983, BREEDING BIOL ADELIE; AMAT JA, 1993, COLON WATERBIRD, V16, P213, DOI 10.2307/1521441; ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; BUITRON D, 1983, BEHAVIOUR, V87, P209, DOI 10.1163/156853983X00435; CARLISLE TR, 1985, ANIM BEHAV, V33, P234, DOI 10.1016/S0003-3472(85)80137-8; CURIO E, 1986, ETHOLOGY, V72, P75; KNIGHT RL, 1986, AUK, V103, P318; LAVERY RJ, 1990, ANIM BEHAV, V40, P1128, DOI 10.1016/S0003-3472(05)80179-4; MARCHANT S, 1990, HDB AUSTR NZ ANTARCT, V1; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; MORENO J, 1994, POLAR BIOL, V14, P21; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PUGESEK BH, 1983, BEHAV ECOL SOCIOBIOL, V13, P161, DOI 10.1007/BF00299919; REDONDO T, 1989, BEHAVIOUR, V111, P161, DOI 10.1163/156853989X00646; RIDGWAY MS, 1989, ETHOLOGY, V80, P47; SARGENT RC, 1985, BEHAV ECOL SOCIOBIOL, V17, P43, DOI 10.1007/BF00299427; THORNHILL R, 1989, ETHOLOGY, V83, P31, DOI 10.1111/j.1439-0310.1989.tb00517.x; VINUELA J, 1995, ETHOLOGY, V99, P323; WALLIN K, 1987, BEHAVIOUR, V102, P213, DOI 10.1163/156853986X00135; WALTER D, 1983, BR BIRDS, V76, P312; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 22 12 12 0 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. JUN 1996 27 2 177 179 10.2307/3677150 3 Ornithology Zoology VF155 WOS:A1996VF15500013 2019-02-26 J Leimar, O Leimar, O Life history plasticity: Influence of photoperiod on growth and development in the common blue butterfly OIKOS English Article SEASONAL PLASTICITY; PIERIS-RAPAE; SIZE; LARVAE; ANTS; SELECTION; LEPIDOPTERA; LYCAENIDAE; PROTANDRY; QUALITY The daylength experienced by a larva provides information about the progression of the season, so that plasticity in growth and development with photoperiod might serve as an adaptation allowing efficient timing relative to the favorable part of the season. In an experiment with Polyommatus icarus it was found that shorter daylengths, indicating less time available until the season ends, resulted in faster development from hatching to adult eclosion. From hatching and into the earlier part of the final instar, larval mass increased approximately exponentially with time, but the rate of growth during this phase was not affected by photoperiod. Both the later part of the final instar and pupal development proceeded more rapidly in shorter daylengths. The decrease in total development time did not reduce female final size, measured as pupal mass, whereas males became somewhat smaller. Males developed slightly faster than females (protandry) and were heavier than females in the longer daylengths but lighter in the shorter daylengths. The observed lack of a trade-off between development time and adult size in females is discussed in the light of life history theory of optimal age and size at maturity. Leimar, O (reprint author), UNIV STOCKHOLM, DEPT ZOOL, S-10691 STOCKHOLM, SWEDEN. Leimar, Olof/L-3781-2014 Leimar, Olof/0000-0001-8621-6977 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Beck SD, 1980, INSECT PHOTOPERIODIS; BLAU WS, 1981, OECOLOGIA, V48, P116, DOI 10.1007/BF00346997; COURTNEY SP, 1983, ECOL ENTOMOL, V8, P271, DOI 10.1111/j.1365-2311.1983.tb00508.x; DANKS HV, 1994, SERIES ENTOM, V52, P5; Dempster J. P., 1984, The biology of butterflies. Symposium of the Royal Entomological Society of London Number 11., P97; FEENY P, 1985, ECOL MONOGR, V55, P167, DOI 10.2307/1942556; FIEDLER K, 1992, OECOLOGIA, V91, P468, DOI 10.1007/BF00650318; FIEDLER K, 1990, OECOLOGIA, V83, P284, DOI 10.1007/BF00317767; Fiedler K, 1991, J RES LEPIDOPTERA, V28, P239; Frohawk F. W., 1924, NATURAL HIST BRIT BU, VII; GILBERT N, 1986, J ANIM ECOL, V55, P317, DOI 10.2307/4711; GILBERT N, 1984, J ANIM ECOL, V53, P599, DOI 10.2307/4538; JONES RE, 1982, AUST J ZOOL, V30, P223, DOI 10.1071/ZO9820223; KARLSSON B, 1990, FUNCT ECOL, V4, P609, DOI 10.2307/2389728; KRISTENSEN CO, 1994, J APPL ENTOMOL, V117, P92, DOI 10.1111/j.1439-0418.1994.tb00712.x; Masaki S., 1978, P72; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1992, BIOL J LINN SOC, V47, P301, DOI 10.1111/j.1095-8312.1992.tb00672.x; OHSAKI N, 1994, ECOLOGY, V75, P59, DOI 10.2307/1939382; PIERCE NE, 1981, SCIENCE, V211, P1185, DOI 10.1126/science.211.4487.1185; PIERCE NE, 1986, J ANIM ECOL, V55, P451, DOI 10.2307/4730; PIERCE NE, 1985, AM NAT, V125, P888, DOI 10.1086/284387; Reiss M. J, 1989, ALLOMETRY GROWTH REP; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff Derek A., 1992; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; SCHROEDER LA, 1986, ECOLOGY, V67, P1628, DOI 10.2307/1939094; Scriber J.M., 1992, P429; SINGER MC, 1982, AM NAT, V119, P440, DOI 10.1086/283924; Stearns SC., 1992, EVOLUTION LIFE HIST; WICKMAN PO, 1990, HOLARCTIC ECOL, V13, P238; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917 35 70 72 1 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos JUN 1996 76 2 228 234 10.2307/3546194 7 Ecology Environmental Sciences & Ecology VC125 WOS:A1996VC12500004 2019-02-26 J Tanaka, Y Tanaka, Y How is life history variation generated from the genetic resource allocation? RESEARCHES ON POPULATION ECOLOGY English Article antagonistic pleiotropy; trade-off; resource allocation; quantitative genetics; life history AZUKI-BEAN WEEVIL; DROSOPHILA-MELANOGASTER; CALLOSOBRUCHUS-CHINENSIS; QUANTITATIVE TRAITS; EVOLUTION; REPRODUCTION; MUTATIONS; CHARACTERS; SENESCENCE; DOMINANCE A simple quantitative genetic model is proposed to explain the observed genetic correlation structure of a bruchid beetle Callosobruchus chinensis in terms of two underlying variables: the resource acquisition and the resource allocation. Heritabilities and genetic correlations among age-specific fecundities are regarded as consequences of genetic variations of the two variables. Genetic correlations are predominantly positive in both predictions and observations. Nonetheless, comparison between observed and predicted values in heritabilities, genetic correlations, and genetic principal components suggested significant genetic variances both of the resource allocation and the resource acquisition. The prediction of the model is discussed in relation to experimental tests of trade-off in life history evolution. MCGILL UNIV, DEPT BIOL, MONTREAL, PQ H3A 1B1, CANADA Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; CROW JF, 1983, GENETICS BIOL DRSOPH, V3; EMLEN JM, 1970, ECOLOGY, V51, P588, DOI 10.2307/1934039; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GIESEL JT, 1986, AM NAT, V128, P593, DOI 10.1086/284590; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1994, GENETICS, V138, P773; HOULE D, 1992, GENETICS, V130, P195; KEIGHTLEY PD, 1989, GENETICS, V121, P869; KONDRASHOV AS, 1988, NATURE, V336, P435, DOI 10.1038/336435a0; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; MUKAI T, 1972, GENETICS, V72, P335; NOMURA T, 1990, APPL ENTOMOL ZOOL, V25, P423, DOI 10.1303/aez.25.423; Roff Derek A., 1992; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1983, AM ZOOL, V23, P15; ROSE MR, 1981, GENETICS, V97, P187; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SIMMONS MJ, 1977, ANNU REV GENET, V11, P49, DOI 10.1146/annurev.ge.11.120177.000405; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; Stuart A, 1987, KENDALLS ADV THEORY, V1, P1; TANAKA Y, 1993, HEREDITY, V70, P318, DOI 10.1038/hdy.1993.46; TANAKA Y, 1990, RES POPUL ECOL, V32, P329, DOI 10.1007/BF02512567; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 33 7 7 0 1 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0034-5466 RES POPUL ECOL Res. Popul. Ecol. JUN 1996 38 1 11 17 10.1007/BF02514966 7 Ecology Environmental Sciences & Ecology VE183 WOS:A1996VE18300002 2019-02-26 J Meesters, EH; Wesseling, I; Bak, RPM Meesters, EH; Wesseling, I; Bak, RPM Partial mortality in three species of reef-building corals and the relation with colony morphology BULLETIN OF MARINE SCIENCE English Article SCLERACTINIAN CORALS; INTERSPECIFIC AGGRESSION; POPULATION-DYNAMICS; PORITES-ASTREOIDES; ACROPORA-PALMATA; LIFE HISTORIES; STONY CORALS; RED-SEA; GROWTH; REGENERATION Partial tissue mortality (lesions) in three coral species with distinctly different colony morphologies was quantified in a series of field surveys on a shallow reef, Extent and type of partial mortality was related to differences in size and morphology of the colonies within and between species. Lesion size-frequency distributions were found to be very skewed to the right, meaning that most partial mortality is small in size and well within the regeneration capabilities of all coral species. However, large lesions may make a considerable contribution in terms of surface area to total partial mortality. Within partial mortality two types of lesions must be distinguished. Type I lesions are completely surrounded by living tissue and their occurrence is mostly related to non-bottom associated processes. Type II lesions, at the edge of a colony, are only partly surrounded by living tissue, and are caused mostly by bottom associated processes. The ratio of number of type II/type I lesions differed between species and was related to the ratio of colony edge (circumference)/colony surface area in the three species studied. Type II lesions were larger in size than type I lesions and can make a large contribution to total partial mortality. Species differed in the number of type I and type II lesions per colony and per unit of tissue area. Type II lesions were almost absent on branched colonies, but very frequent on colonies of massive species. Lesion number increased with colony size in the massive species. Most partial mortality is caused by bottom related processes and our results show that ''escape in height'' is a significant feature in the life history strategies of corals. The surveys showed small colonies to be very vulnerable to partial mortality. Because their circumference/surface area ratio is high, they are very susceptible to colony edge (i.e., bottom-associated) processes that cause mortality. Consequently, small colonies will often suffer whole colony death. On the other hand, large colonies, although unlikely to escape partial mortality, will less often suffer complete mortality. The relationship between this ratio and susceptibility to partial mortality holds as well within species as between species and suggests an important effect of colony morphology on survival. Colony genetic identity also affected susceptibility to partial mortality. Other factors that may influence sensitivity to mortality are discussed. Regeneration capabilities of corals suggest that scleractinian corals have become adapted to the very common occurrence of small lesions. INST SYST POPULAT BIOL,1090 GT AMSTERDAM,NETHERLANDS BABCOCK RC, 1991, ECOL MONOGR, V61, P225, DOI 10.2307/2937107; Bak R. P., 1977, AAPG STUDIES GEOLOGY, V4, P3; BAK RPM, 1981, MAR ECOL PROG SER, V6, P43, DOI 10.3354/meps006043; BAK RPM, 1983, MAR BIOL, V77, P221, DOI 10.1007/BF00395810; BAK RPM, 1975, OECOLOGIA, V20, P111, DOI 10.1007/BF00369023; BAK RPM, 1979, MAR BIOL, V54, P341, DOI 10.1007/BF00395440; BAK RPM, 1982, MAR BIOL LETT, V3, P67; BAK RPM, 1980, B MAR SCI, V30, P883; BAK RPM, 1982, MAR BIOL, V69, P215, DOI 10.1007/BF00396901; BAK RPM, 1981, 4TH P INT COR REEF S, V2, P221; BAK RPM, 1977, 3RD P INT COR REEF S, V1, P143; CHORNESKY EA, 1987, BIOL BULL, V172, P161, DOI 10.2307/1541790; DONE TJ, 1987, CORAL REEFS, V6, P75, DOI 10.1007/BF00301377; FISHELSON L, 1973, MAR BIOL, V19, P183, DOI 10.1007/BF02097137; GLADFELTER WB, 1982, B MAR SCI, V32, P639; GLYNN PW, 1988, P 6 INT COR REEF S A, V2, P51; Harrison P.L., 1990, ECOSYSTEMS WORLD, V25, P133; HIGHSMITH RC, 1982, MAR ECOL PROG SER, V7, P207, DOI 10.3354/meps007207; HIGHSMITH RC, 1980, OECOLOGIA, V46, P322, DOI 10.1007/BF00346259; Hudson J.H., 1988, P231; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; HUGHES TP, 1984, AM NAT, V123, P778, DOI 10.1086/284239; HUGHES TP, 1980, SCIENCE, V209, P713, DOI 10.1126/science.209.4457.713; JACKSON JBC, 1986, PHILOS T R SOC B, V313, P7, DOI 10.1098/rstb.1986.0022; JACKSON JBC, 1979, BIOL SYSTEMATICS COL, P499; KNOWLTON N, 1981, NATURE, V294, P251, DOI 10.1038/294251a0; KOJIS BL, 1982, 4TH P INT COR REEF S, V2, P145; LANG J, 1973, B MAR SCI, V23, P260; LANG J, 1971, B MAR SCI, V21, P952; LASKER HR, 1991, OECOLOGIA, V86, P503, DOI 10.1007/BF00318316; LOYA Y, 1976, NATURE, V261, P490, DOI 10.1038/261490a0; MCFADDEN CS, 1991, ECOLOGY, V72, P1849, DOI 10.2307/1940983; MEESTERS EH, 1993, MAR ECOL PROG SER, V96, P189, DOI 10.3354/meps096189; MEESTERS EH, 1992, P 7 INT COR REEF S G, V1, P681; MEESTERS EH, 1994, IN PRESS DAMAGE REGE; OTT B, 1972, CAN J ZOOL, V50, P1651, DOI 10.1139/z72-217; PEARSON RG, 1981, MAR ECOL PROG SER, V4, P105, DOI 10.3354/meps004105; PETERS EC, 1984, HELGOLANDER MEERESUN, V37, P113, DOI 10.1007/BF01989298; ROBERTSON R, 1970, PAC SCI, V24, P43; ROGERS CS, 1989, MAR ECOL-PROG SER, V78, P189; RYLAARSDAM KW, 1983, MAR ECOL PROG SER, V13, P249, DOI 10.3354/meps013249; SIEGEL S, 1989, NONPARAMETRIC STAT B; SOKAL R., 1981, BIOMETRY; SOONG K, 1993, CORAL REEFS, V12, P77, DOI 10.1007/BF00302106; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; SZMANT AM, 1986, CORAL REEFS, V5, P43, DOI 10.1007/BF00302170; VANMOORSEL GWNM, 1983, MAR ECOL PROG SER, V13, P273, DOI 10.3354/meps013273; WOODLEY JD, 1981, SCIENCE, V214, P749, DOI 10.1126/science.214.4522.749 48 87 90 0 18 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 0007-4977 B MAR SCI Bull. Mar. Sci. MAY 1996 58 3 838 852 15 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography UP205 WOS:A1996UP20500017 2019-02-26 J Charnov, EL Charnov, EL Optimal flower lifetimes EVOLUTIONARY ECOLOGY English Article dimensional analysis; life-history theory; sex allocation; dimensionless variables; pollination ESS floral lifetimes satisfy the product theorem from sex allocation theory. The dimensionless time investment per flower is a symmetric function of two dimensionless gain:cost ratios, one for each gender function. Charnov, EL (reprint author), UNIV UTAH,DEPT BIOL,SALT LAKE CITY,UT 84112, USA. ASHMAN TL, 1994, NATURE, V371, P788, DOI 10.1038/371788a0; CHARNOV E L, 1982; CHARNOV EL, 1995, P NATL ACAD SCI USA, V92, P1446, DOI 10.1073/pnas.92.5.1446; CHARNOV EL, 1979, P NATL ACAD SCI USA, V76, P2480, DOI 10.1073/pnas.76.5.2480; Charnov Eric L., 1993, P1; SCHOEN DJ, 1995, IN PRESS EVOLUTION; STEPHENS DW, 1993, BEHAV ECOL, V4, P172, DOI 10.1093/beheco/4.2.172 7 7 8 0 2 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAY 1996 10 3 245 248 10.1007/BF01237682 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UN976 WOS:A1996UN97600003 2019-02-26 J Lorentsen, SH Lorentsen, SH Regulation of food provisioning in the Antarctic petrel Thalassoica antarctica JOURNAL OF ANIMAL ECOLOGY English Article Antarctica; body mass; body condition; reproductive effort; chick growth WANDERING ALBATROSS; FEEDING RATES; ENERGY COSTS; STORM-PETREL; MEAL SIZE; REPRODUCTION; INCUBATION; DIOMEDEA; ISLAND; CHICK 1. Life-history theory predicts that individual birds should invest in reproduction according to their current body condition and the future prospects for survival and reproduction. Thus, it could be expected that current adult body condition should significantly influence food provisioning rates, food loads and concurrent chick growth in the Antarctic petrel. 2. In order to study the significance of parental body condition I correlated meal sizes, feeding frequencies and chick growth with the body condition of the parents. 3. There was a strong correlation between the average meal size delivered to a chick and its growth rare. Adult body condition at the time of hatching was strongly correlated with the average size of meals delivered to individual chicks. Male and female body condition at the time of hatching and average body condition of the pair at the first incubation shift and at hatching significantly influenced the body mass of the chick on day 30. Male body condition and the average body condition of the pair correlated significantly with the growth rate of the chick. 4. The difference in body mass at the age of 30 days of chicks from parents with good body condition compared with chicks from parents with poorer body condition was nearly double that expected. 5. The results strongly suggest that the effort spent during the chick-rearing period, and thus reproductive success, is regulated by the body condition of the parents. Lorentsen, SH (reprint author), NORWEGIAN INST NAT RES,TUNGASLETTA 2,N-7005 TRONDHEIM,NORWAY. ANDERSEN R, 1995, POLAR BIOL, V15, P65; BOLTON M, 1995, FUNCT ECOL, V9, P161, DOI 10.2307/2390560; CHAURAND T, 1994, J ANIM ECOL, V63, P275, DOI 10.2307/5546; COPESTAKE PG, 1988, POLAR BIOL, V8, P271, DOI 10.1007/BF00263175; CROXALL JP, 1982, J ANIM ECOL, V51, P177, DOI 10.2307/4318; CROXALL JP, 1983, IBIS, V125, P33, DOI 10.1111/j.1474-919X.1983.tb03081.x; Fisher H.I., 1971, Living Bird, V10, P19; HAMER KC, 1994, J AVIAN BIOL, V25, P198, DOI 10.2307/3677075; HAMER KC, 1993, J ANIM ECOL, V62, P441, DOI 10.2307/5193; HAMER KC, 1994, IBIS, V136, P271, DOI 10.1111/j.1474-919X.1994.tb01095.x; Hastings NAJ, 1975, STATISTICAL DISTRIBU; HATCH SA, 1990, ORNIS SCAND, V21, P89, DOI 10.2307/3676803; JOHNSEN I, 1994, OIKOS, V71, P273, DOI 10.2307/3546276; Krebs J.R., 1991, P105; LORENTSEN SH, 1994, POLAR BIOL, V14, P143; LORENTSEN SH, 1995, IBIS, V137, P345, DOI 10.1111/j.1474-919X.1995.tb08031.x; Marchant S., 1990, HDB AUSTR NZ ANTARCT; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; MEHLUM F, 1988, Polar Research, V6, P1, DOI 10.1111/j.1751-8369.1988.tb00576.x; Norusis M. J., 1985, SPSS X ADV STAT GUID; PRINCE PA, 1981, CONDOR, V83, P238, DOI 10.2307/1367315; PRINCE PA, 1981, ORNIS SCAND, V12, P207, DOI 10.2307/3676078; RICKLEFS RE, 1992, ANIM BEHAV, V43, P895, DOI 10.1016/0003-3472(92)90003-R; RICKLEFS RE, 1987, AUK, V104, P750; RICKLEFS RE, 1984, ORNIS SCAND, V15, P16, DOI 10.2307/3675998; RICKLEFS RE, 1994, FUNCT ECOL, V8, P159, DOI 10.2307/2389899; RICKLEFS RE, 1985, J ANIM ECOL, V54, P883, DOI 10.2307/4385; ROV N, 1994, 1991 92 NORSK POL, P9; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Stearns SC., 1992, EVOLUTION LIFE HIST; Stephens DW, 1986, FORAGING THEORY; Warham J, 1990, PETRELS THEIR ECOLOG; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11 34 54 55 0 4 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. MAY 1996 65 3 381 388 10.2307/5884 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology UM116 WOS:A1996UM11600013 2019-02-26 J Armbruster, WS; Schwaegerle, KE Armbruster, WS; Schwaegerle, KE Causes of covariation of phenotypic traits among populations JOURNAL OF EVOLUTIONARY BIOLOGY English Article among-population covariation; genetic correlation; population differentiation; quantitative genetics; selective covariance LIFE-HISTORY EVOLUTION; GENETIC CORRELATIONS; GEOGRAPHIC-VARIATION; QUANTITATIVE GENETICS; DALECHAMPIA-SCANDENS; CHARACTERS; SELECTION; HERITABILITY; MORPHOLOGY; MUTATION Morphological and life-history traits often vary among populations of a species. Traits generally do not vary independently, but show patterns of covariation that can arise from genetic and environmental influences on phenotype. Covariance of traits may arise at an among-population level when genetically influenced traits diverge among populations in a correlated manner. Genetic correlations caused by pleiotropy and/or gene linkage can cause traits to evolve together, but among-population covariance can also arise among traits that are not genetically correlated. For example, ''selective covariance'' can arise when natural selection directly causes correlated change in a suite of traits. Similarly, mutation, migration, and drift may also sometimes cause correlated genetic changes among populations. Because covariation of traits among populations can arise by several different processes, the evolution of suites of traits must be interpreted with great caution. We discuss the sources of among-population covariance and illustrate one approach to identifying the sources using data on floral traits of Dalechampia scandens (Euphorbiaceae). UNIV ALASKA,DEPT BIOL & WILDLIFE,FAIRBANKS,AK 99775 Armbruster, WS (reprint author), UNIV ALASKA,INST ARCTIC BIOL,FAIRBANKS,AK 99775, USA. Armbruster, William/B-4799-2013 Allen JA., 1877, RADICAL REV, V1, P108; ARMBRUSTER WS, 1985, EVOLUTION, V39, P733, DOI 10.1111/j.1558-5646.1985.tb00416.x; ARMBRUSTER WS, 1991, EVOLUTION, V45, P1229, DOI 10.1111/j.1558-5646.1991.tb04389.x; ARMBRUSTER WS, 1990, AM NAT, V135, P14, DOI 10.1086/285029; ARMBRUSTER WS, 1984, AM J BOT, V71, P1149, DOI 10.2307/2443391; ARMBRUSTER WS, 1988, ECOLOGY, V69, P1746, DOI 10.2307/1941153; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Arthur W., 1984, MECH MORPHOLOGICAL E; BERG RL, 1960, EVOLUTION, V14, P171, DOI 10.1111/j.1558-5646.1960.tb03076.x; BERNARDO R, 1989, CROP SCI, V29, P1371, DOI 10.2135/cropsci1989.0011183X002900060008x; CHAPIN FS, 1991, BIOSCIENCE, V41, P29, DOI 10.2307/1311538; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHEVERUD JM, 1982, EVOLUTION, V36, P499, DOI 10.1111/j.1558-5646.1982.tb05070.x; CHEVERUD JM, 1984, J THEOR BIOL, V110, P155, DOI 10.1016/S0022-5193(84)80050-8; CONNER J, 1993, EVOLUTION, V47, P704, DOI 10.1111/j.1558-5646.1993.tb02128.x; COYNE JA, 1987, GENETICS, V117, P727; DEVICENTE MC, 1993, GENETICS, V134, P585; DOBZHANSKY T, 1959, COLD SPRING HARB SYM, V24, P15, DOI 10.1101/SQB.1959.024.01.004; Dobzhansky T, 1970, GENETICS EVOLUTIONAR; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Endler JA, 1986, NATURAL SELECTION WI; Faegri K, 1979, PRINCIPLES POLLINATI; Falconer D. S., 1989, INTRO QUANTITATIVE G; FELSENSTEIN J, 1988, ANNU REV ECOL SYST, V19, P445, DOI 10.1146/annurev.es.19.110188.002305; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; GOODNIGHT CJ, 1989, AM NAT, V133, P888, DOI 10.1086/284958; GRANT V, 1975, GENETICS FLOWERING P; Grime J. P, 1979, PLANT STRATEGIES VEG; HELVERSEN D, 1975, J COMP PHYSIOL, V104, P273; HELVERSEN DV, 1975, J COMP PHYSIOL, V104, P301; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; KINGSOLVER JG, 1987, EVOLUTION, V41, P491, DOI 10.1111/j.1558-5646.1987.tb05820.x; LANDE R, 1992, EVOLUTION, V46, P381, DOI 10.1111/j.1558-5646.1992.tb02046.x; Lande R., 1976, Genetical Research, V26, P221; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; LANDE R, 1981, GENETICS, V99, P541; LANDE R, 1980, GENETICS, V94, P203; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; LYNCH M, 1986, EVOLUTION, V40, P915, DOI 10.1111/j.1558-5646.1986.tb00561.x; Mayr E., 1963, ANIMAL SPECIES EVOLU; MITCHELLOLDS T, 1995, TRENDS ECOL EVOL, V10, P324, DOI 10.1016/S0169-5347(00)89119-3; Pax F.A., 1919, PFLANZENREICH, VIV, p[147, 1]; PRICE T, 1992, TRENDS ECOL EVOL, V7, P307, DOI 10.1016/0169-5347(92)90229-5; Price T. D., 1984, POPULATION BIOL EVOL, P49; RAUP DM, 1974, SYST ZOOL, V23, P305, DOI 10.2307/2412538; RISKA B, 1989, EVOLUTION, V43, P1172, DOI 10.1111/j.1558-5646.1989.tb02567.x; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; RISKA B, 1989, GENETICS, V123, P865; SCHEINER SM, 1991, GENETICA, V84, P123, DOI 10.1007/BF00116552; SLATKIN M, 1981, EVOLUTION, V35, P859, DOI 10.1111/j.1558-5646.1981.tb04949.x; SOKAL R., 1981, BIOMETRY; Sokal R. R., 1978, Ecological genetics: the interface., P215; SOKAL RR, 1980, BIOL J LINN SOC, V14, P163, DOI 10.1111/j.1095-8312.1980.tb00104.x; SOKAL RR, 1981, BIOL J LINN SOC, V15, P201, DOI 10.1111/j.1095-8312.1981.tb00760.x; SOLTIS PS, 1986, THEOR APPL GENET, V73, P88, DOI 10.1007/BF00273724; SOLTIS PS, 1985, THESIS U KANSAS LAWR; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; Stebbins G. L. Jr, 1950, VARIATION EVOLUTION; STEBBINS GL, 1951, EVOLUTION, V5, P299, DOI 10.2307/2405676; Stebbins GL, 1974, FLOWERING PLANTS EVO; Tedin O, 1925, HEREDITAS, V6, P275; THORPE RS, 1976, BIOL REV, V51, P407; TURELLI M, 1984, THEOR POPUL BIOL, V25, P138, DOI 10.1016/0040-5809(84)90017-0; VANHOUTEN W, 1994, PLANT SYST EVOL, V190, P49, DOI 10.1007/BF00937858; WADE MJ, 1980, EVOLUTION, V36, P799; WAGNER GP, 1984, BIOSYSTEMS, V17, P51, DOI 10.1016/0303-2647(84)90015-7; Waser N.M., 1983, P277; WASER NM, 1983, POLLINATION BIOL; WHITKUS RV, 1993, 15 INT BOT C YOK, P172; Wright S., 1952, Quantitative inheritance. Papers read at a colloquium held at the Institute of Animal Genetics Edinburgh University under the auspices of the Agricultural Research Council April 4th to 6th, 1950., P5; Wright S, 1968, EVOLUTION GENETICS P, V1; ZENG ZB, 1988, EVOLUTION, V42, P363, DOI 10.1111/j.1558-5646.1988.tb04139.x 78 122 122 1 28 BIRKHAUSER VERLAG AG BASEL PO BOX 133 KLOSTERBERG 23, CH-4010 BASEL, SWITZERLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAY 1996 9 3 261 276 10.1046/j.1420-9101.1996.9030261.x 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UR570 WOS:A1996UR57000001 Bronze 2019-02-26 J Tsuji, K; Tsuji, N Tsuji, K; Tsuji, N Evolution of life history strategies in ants: Variation in queen number and mode of colony founding OIKOS English Article SOLENOPSIS-INVICTA HYMENOPTERA; SOCIAL HYMENOPTERA; REPRODUCTIVE DIVISION; PRISTOMYRMEX-PUNGENS; R-SELECTION; K-SELECTION; FIRE ANT; FORMICIDAE; POLYGYNY; INSECTS Most theoretical models for the evolution of polygyny in ants assume a stable population. Here, we discuss the evolution of life history strategies with perennial life cycles, overlapping generations, and fluctuating populations. We assume two alternative strategies, i.e., monogyny = independent founding strategy (in which the survival rate of foundress queens is low but fecundity of individual queens is high), and polygyny = dependent founding strategy (in which the initial survival rate of queens is high, but queens have low fecundity and short longevity). Adopting the intrinsic rate of natural increase (r) as the fitness measurement, we compare the two strategies under various ranges of life history parameters. Our model suggests that a higher survival rate of queens may compensate for a low fecundity of queens adopting the dependent founding strategy. Since dependent foundresses can skip over the non-sexual producing founding and ergonomic stages, they can quickly initiate sexual production and gain a higher r. This implies that dependent founding, which may result in secondary polygyny, tends to be an, strategist. This ''early reproduction effect'' has not been explicitly dealt with in previous discussions of polygyny, because they have omitted population demography. We predict that dependent founding (or polygyny) would be more common in open areas where ant populations might suffer from random density independent population fluctuation than in forests where density dependent regulations could stabilize ant populations. A recent empirical data-set from Okinawa Island actually suggested that polygyny is more common in open areas than in forests. Some other published data that enabled intraspecific comparison also supported our prediction. SASEBO COLL TECHNOL, DEPT CONTROL ENGN, SASEBO, NAGASAKI 85711, JAPAN; UNIV WURZBURG, THEODOR BOVERI INST BIOWISSENSCH, LEHRSTUHL VERHALTENSPHYSIOL & SOZIOBIOL 2, D-97074 WURZBURG, GERMANY Tsuji, Kazuki/D-6607-2014 Tsuji, Kazuki/0000-0002-2027-8582 BARTZ SH, 1982, BEHAV ECOL SOCIOBIOL, V10, P137, DOI 10.1007/BF00300174; BOURKE AFG, 1994, PHILOS T ROY SOC B, V345, P359, DOI 10.1098/rstb.1994.0115; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; BRIAN MV, 1955, EVOLUTION, V9, P280, DOI 10.2307/2405649; BUSCHINGER A, 1974, P862; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CRAIG R, 1980, AM NAT, V116, P311, DOI 10.1086/283630; DIXON AFG, 1993, J ANIM ECOL, V62, P182, DOI 10.2307/5492; Elmes Graham W., 1993, P294; FLETCHER DJC, 1980, ANN ENTOMOL SOC AM, V73, P658, DOI 10.1093/aesa/73.6.658; FUTUYMA DJ, 1986, EVOLUTIONARY BIOL; Grafen A., 1991, P5; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HEINZE J, 1993, OECOLOGIA, V96, P32, DOI 10.1007/BF00318027; HERBERS JM, 1986, BEHAV ECOL SOCIOBIOL, V19, P115, DOI 10.1007/BF00299946; HERBERS JM, 1993, QUEEN NUMBER SOCIALI, P242; HOLLDOBLER B, 1977, NATURWISSENSCHAFTEN, V64, P8, DOI 10.1007/BF00439886; Holldobler B, 1990, ANTS; ITO Y, 1980, COMP ECOLOGY; KELLER L, 1993, OIKOS, V67, P177, DOI 10.2307/3545107; KELLER L, 1989, OECOLOGIA, V80, P236, DOI 10.1007/BF00380157; KELLER L, 1988, ANIM BEHAV, V36, P159, DOI 10.1016/S0003-3472(88)80259-8; KELLER L, 1991, ETHOL ECOL EVOL, V3, P307, DOI 10.1080/08927014.1991.9525359; KELLER L, 1990, INSECTS SOC, V37, P733; Keller Laurent, 1993, P16; MAC ARTHUR ROBERT H., 1967; MACEVICZ S, 1979, AM NAT, V113, P363, DOI 10.1086/283395; Michener C. D., 1964, Insectes Sociaux Paris, V11, P317, DOI 10.1007/BF02227433; NONACS P, 1988, EVOLUTION, V42, P566, DOI 10.1111/j.1558-5646.1988.tb04161.x; Nonacs Peter, 1993, P110; Oster G. F., 1978, CASTE ECOLOGY SOCIAL; PAMILO P, 1991, AM NAT, V137, P83, DOI 10.1086/285147; PAMILO P, 1981, BEHAV ECOL SOCIOBIOL, V9, P45, DOI 10.1007/BF00299852; PAMILO P, 1991, AM NAT, V138, P412, DOI 10.1086/285224; PASSERA L, 1994, WESTV STUD, P23; PEARSON B, 1983, BEHAV ECOL SOCIOBIOL, V12, P1, DOI 10.1007/BF00296926; PEARSON B, 1981, BIOSYSTEMATICS SOCIA, P75; PEETERS C, 1991, BIOL J LINN SOC, V44, P141, DOI 10.1111/j.1095-8312.1991.tb00612.x; Peeters Christian, 1993, P234; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pianka ER, 1974, EVOLUTIONARY ECOLOGY; Rissing S.W., 1988, P179; Roff Derek A., 1992; ROSENGREN R, 1983, Acta Entomologica Fennica, V42, P65; ROSENGREN R, 1986, Mitteilungen der Schweizerischen Entomologischen Gesellschaft, V59, P63; Rosengren Rainer, 1993, P308; ROSS KG, 1991, J EVOLUTION BIOL, V4, P117, DOI 10.1046/j.1420-9101.1991.4010117.x; ROSS KG, 1985, BEHAV ECOL SOCIOBIOL, V17, P349, DOI 10.1007/BF00293212; SATOH T, 1989, INSECT SOC, V36, P277, DOI 10.1007/BF02224881; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; STILLE M, 1991, BEHAV ECOL SOCIOBIOL, V28, P91; TSUJI K, 1990, ANIM BEHAV, V39, P843, DOI 10.1016/S0003-3472(05)80948-0; TSUJI K, 1988, BEHAV ECOL SOCIOBIOL, V23, P247, DOI 10.1007/BF00302947; TSUJI N, 1990, J MED ENTOMOL, V27, P446, DOI 10.1093/jmedent/27.4.446; Ulloa-Chacon P., 1988, Actes des Colloques Insectes Sociaux, V4, P177; WARD PS, 1983, BEHAV ECOL SOCIOBIOL, V12, P285, DOI 10.1007/BF00302896; WILSON EO, 1974, ANN ENTOMOL SOC AM, V67, P781, DOI 10.1093/aesa/67.5.781; WILSON EO, 1971, INSECT SOCIETIES; Yamauchi Katsusuke, 1995, Pacific Science, V49, P55 60 32 33 2 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAY 1996 76 1 83 92 10.2307/3545750 10 Ecology Environmental Sciences & Ecology UY433 WOS:A1996UY43300009 2019-02-26 J Bridges, TS; Heppell, S Bridges, TS; Heppell, S Fitness consequences of maternal effects in Streblospio benedicti (Annelida: Polychaeta) AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Maternal Effects on Early Life History, Their Persistence, and Impact on Organismal Ecology, at the Annual Meeting of the American-Society-of-Zoologists DEC 27-30, 1993 LOS ANGELES, CA Amer Soc Zoologists EGG SIZE; CLUTCH SIZE; PARENTAL INVESTMENT; REPRODUCTIVE EFFORT; PROPAGULE SIZE; OFFSPRING SIZE; LIFE HISTORIES; CAPITELLA SP; EVOLUTION; POPULATION The degree to which a female partitions resources between fecundity and per offspring investment is a central question in life-history theory. Maternal effects may influence the nature of this tradeoff through their effect on per offspring investment and subsequent offspring fitness. The purpose of this study was to determine the effect of female age and size on brood size (number of offspring), per offspring investment, and fitness in the polychaete Streblospio benedicti, Early stage embryos were collected from brooding females of known age and size over a period of 100 days; these embryos were counted and analyzed for their C and N content. Female size had a positive effect on brood size; larger females produced larger broods. However, brood size decreased with female age (females did not increase in size after reaching sexual maturity). Brood size declined 20-46% between 60 and 160 days of age. During this same age period per offspring investment, measured in terms of C and N, increased by 25%. Offspring survivorship and size at two weeks post-release from the female were used as measures of offspring fitness, Offspring survivorship increased 28% between 60 and 160 days of age. Increased growth in offspring from older females resulted in a 23% increase in offspring size at two weeks, Including the maternal age effect in two population models for S. benedicti increased population growth rate (lambda), Population growth was increased to a greater degree when the maternal effect was modeled by enhancing offspring survival compared to when fecundity was increased by the same proportional amount. This suggests that the maternal effect may be adaptive, particularly when conditions for offspring survival and growth are poor. N CAROLINA STATE UNIV, DEPT MARINE EARTH & ATMOSPHER SCI, RALEIGH, NC 27695 USA; N CAROLINA STATE UNIV, DEPT ZOOL, RALEIGH, NC 27695 USA AKESSON B, 1982, INT J INVER REP DEV, V5, P59; ANTONOVICS J, 1986, OECOLOGIA, V69, P277, DOI 10.1007/BF00377634; BAGENAL TB, 1969, J FISH BIOL, V1, P349, DOI 10.1111/j.1095-8649.1969.tb03882.x; BARNES H, 1965, J ANIM ECOL, V34, P391, DOI 10.2307/2656; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; BELK D, 1990, J CRUSTACEAN BIOL, V10, P128, DOI 10.2307/1548675; BELL SS, 1980, MARINE BENTHIC DYNAM, P179; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; BRIDGES TS, 1993, BIOL BULL, V184, P144, DOI 10.2307/1542224; BRIDGES TS, 1994, J EXP MAR BIOL ECOL, V177, P99, DOI 10.1016/0022-0981(94)90146-5; BRIDGES TS, 1992, THESIS N CAROLINA ST; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BRODY MS, 1984, OECOLOGIA, V61, P55, DOI 10.1007/BF00379089; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; Caswell H., 1989, MATRIX POPULATION MO; CAVERS PB, 1984, AM NAT, V124, P324, DOI 10.1086/284276; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHECKLEY DM, 1980, LIMNOL OCEANOGR, V25, P430, DOI 10.4319/lo.1980.25.3.0430; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; CHU JW, 1989, INVERTEBR REPROD DEV, V15, P131, DOI 10.1080/07924259.1989.9672033; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CONGDON JD, 1983, ECOLOGY, V64, P419, DOI 10.2307/1939959; EMLEN JM, 1984, POPULATION BIOL COEV; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GALLAGER SM, 1986, AQUACULTURE, V56, P105, DOI 10.1016/0044-8486(86)90021-9; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; GRASSLE JF, 1974, J MAR RES, V32, P253; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HELM MM, 1973, J MAR BIOL ASSOC UK, V53, P673, DOI 10.1017/S0025315400058872; HORWOOD JW, 1989, J MAR BIOL ASSOC UK, V69, P81, DOI 10.1017/S0025315400049122; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; KAPLAN RH, 1989, FUNCT ECOL, V3, P597, DOI 10.2307/2389574; KASULE FK, 1991, ECOL ENTOMOL, V16, P345, DOI 10.1111/j.1365-2311.1991.tb00226.x; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KRAEUTER JN, 1981, J EXP MAR BIOL ECOL, V56, P3, DOI 10.1016/0022-0981(81)90003-4; KUZNETSOV V A, 1973, Journal of Ichthyology, V13, P669; LEVIN LA, 1991, EVOLUTION, V45, P380, DOI 10.1111/j.1558-5646.1991.tb04412.x; LEVIN LA, 1986, MAR BIOL, V92, P103, DOI 10.1007/BF00392752; LEVIN LA, 1984, BIOL BULL, V166, P494, DOI 10.2307/1541157; LEVIN LA, 1990, ECOLOGY, V71, P2191, DOI 10.2307/1938632; LEVIN LA, 1986, BIOL BULL, V171, P143, DOI 10.2307/1541913; LEVIN LA, 1987, ECOLOGY, V68, P1877, DOI 10.2307/1939879; MARSH AG, 1990, LIMNOL OCEANOGR, V35, P710, DOI 10.4319/lo.1990.35.3.0710; MARSH E, 1986, COPEIA, P18; MARSHALL LD, 1990, CAN J ZOOL, V68, P44, DOI 10.1139/z90-008; MCCANN LD, 1989, J EXP MAR BIOL ECOL, V131, P233, DOI 10.1016/0022-0981(89)90115-9; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Michaels HJ, 1988, EVOL ECOL, V2, P157, DOI 10.1007/BF02067274; MONTELEONE DM, 1990, J EXP MAR BIOL ECOL, V140, P1, DOI 10.1016/0022-0981(90)90076-O; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; ORTON RA, 1990, FUNCT ECOL, V4, P91, DOI 10.2307/2389657; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PIANKA ER, 1970, ECOLOGY, V51, P703, DOI 10.2307/1934053; QIAN PY, 1992, J EXP MAR BIOL ECOL, V156, P23, DOI 10.1016/0022-0981(92)90014-2; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roff Derek A., 1992; ROSE MR, 1981, GENETICS, V97, P172; SEMLITSCH RD, 1985, OECOLOGIA, V65, P305, DOI 10.1007/BF00378903; SIBLY R, 1988, J THEOR BIOL, V133, P13, DOI 10.1016/S0022-5193(88)80021-3; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SKADSHEIM A, 1984, OIKOS, V43, P94, DOI 10.2307/3544250; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; STRATHMANN RR, 1992, EVOLUTION, V46, P972, DOI 10.1111/j.1558-5646.1992.tb00613.x; STRONG DR, 1972, ECOLOGY, V53, P1103, DOI 10.2307/1935422; TESSIER AJ, 1991, ECOLOGY, V72, P468, DOI 10.2307/2937188; THOMAS CS, 1983, IBIS, V125, P567, DOI 10.1111/j.1474-919X.1983.tb03151.x; TRAVIS J, 1987, EVOLUTION, V41, P145, DOI 10.1111/j.1558-5646.1987.tb05777.x; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; WATZIN MC, 1986, J EXP MAR BIOL ECOL, V98, P65, DOI 10.1016/0022-0981(86)90076-6; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D 82 40 40 1 9 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 0003-1569 AM ZOOL Am. Zool. APR 1996 36 2 132 146 15 Zoology Zoology UJ518 WOS:A1996UJ51800004 2019-02-26 J Reznick, D; Callahan, H; Llauredo, R Reznick, D; Callahan, H; Llauredo, R Maternal effects on offspring quality in poeciliid fishes AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Maternal Effects on Early Life History, Their Persistence, and Impact on Organismal Ecology, at the Annual Meeting of the American-Society-of-Zoologists DEC 27-30, 1993 LOS ANGELES, CA Amer Soc Zoologists LIFE-HISTORY EVOLUTION; VIVIPARITY; GUPPIES; SIZE We evaluated the effects of maternal environment on offspring size and composition in three species of poeciliid fishes. We chose food availability as the environmental factor for study. Mature females were assigned to either high or low food for an interval of time, then randomly reassigned to high or low food, with the restriction that there be equal numbers in each of four treatments: high-high, high-low, low-high, and low-low food availability. The three species chosen for study differ in the pattern of maternal provisioning. Poecilia reticulata and Priapichthys festae mothers provide all resources necessary for development as yolk, prior to fertilization. In contrast, Heterandria formosa mothers continue to provision the young throughout development. These species also differ in whether or not they have superfetation, or the ability to carry multiple broods of young in different stages of development. P. reticulata does not have superfetation while the other two species do. We were interested in whether the pattern of maternal provisioning or superfetation influenced the maternal effect. The two lecithotrophic species responded to low food by producing larger young with greater fat reserves. H. formosa, the matrotrophic species, responded to low food by producing smaller young. We propose that the production of large young in the face of low food availability might represent adaptive plasticity; matrotrophy might represent a constraint that prevents such an adaptive response. Superfetation had no impact on this maternal effect. Reznick, D (reprint author), UNIV CALIF RIVERSIDE,DEPT BIOL,RIVERSIDE,CA 92521, USA. reznick, david/0000-0002-1144-0568 FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; GLIWICZ ZM, 1992, OECOLOGIA, V91, P463, DOI 10.1007/BF00650317; GORDON M, 1950, CARE BREEDING LAB AN; GROVE BD, 1991, J MORPHOL, V209, P265, DOI 10.1002/jmor.1052090304; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; LAURIE WA, 1990, J ANIM ECOL, V59, P529, DOI 10.2307/4879; PARICHY DM, 1992, OECOLOGIA, V91, P579, DOI 10.1007/BF00650334; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D.N., 1989, P125; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1991, EVOLUTIONARY BIOL, P780; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; SCRIMSHAW NS, 1945, BIOL BULL, V88, P233, DOI 10.2307/1538312; Scrimshaw NS, 1944, BIOL BULL-US, V87, P37, DOI 10.2307/1538127; SCRIMSHAW NS, 1944, COPEIA, P180; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; TREXLER JC, 1985, COPEIA, P999, DOI 10.2307/1445254; Turner CL, 1937, BIOL BULL-US, V72, P145, DOI 10.2307/1537249; TURNER CL, 1940, COPEIA, P88; WOURMS JP, 1981, AM ZOOL, V21, P473 22 109 111 0 32 AMER SOC ZOOLOGISTS LAWRENCE 1041 NEW HAMPSHIRE ST, LAWRENCE, KS 66044 0003-1569 AM ZOOL Am. Zool. APR 1996 36 2 147 156 10 Zoology Zoology UJ518 WOS:A1996UJ51800005 2019-02-26 J Resetarits, WJ Resetarits, WJ Oviposition site choice and life history evolution AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Maternal Effects on Early Life History, Their Persistence, and Impact on Organismal Ecology, at the Annual Meeting of the American-Society-of-Zoologists DEC 27-30, 1993 LOS ANGELES, CA Amer Soc Zoologists BATTUS-PHILENOR; HYLA-CHRYSOSCELIS; POND COMMUNITIES; RANA-SYLVATICA; PREFERENCE; PREDATION; FROGS; PERFORMANCE; COMPETITION; BUTTERFLIES Studies of life history evolution, as well as much of life history theory, have typically focused on ''hard'' components of life histories; phenotypic characteristics that can be readily observed, quantified, and ultimately, connected rather directly to fitness. Typical of these are propagule size, propagule number, and age and size at maturity. What is largely missing from the study of life history evolution is consideration of the role of behavior, principally female oviposition site choice, in the evolution of life histories. For oviparous organisms, natural selection cannot produce locally optimized ''hard'' components of life history phenotypes without a consistent environmental context (whether invariant or variable); in a variable environment, that consistent environmental context can be most effectively provided by interactive oviposition site choice. I present a model of selection on oviposition site choice in the context of the evolution of ''hard'' components of life history phenotypes, along with some experimental data illustrating oviposition site choice in response to predators. The model and data are then related to the overall question of the role of oviposition site choice in life history evolution. The conclusion is that oviposition site choice must be under equally strong selection with egg size, egg number and the other hard components of life histories in order to generate and optimize locally adapted or ecologically specialized life history phenotypes, and must therefore, play a significant role in the evolution of life histories. UNIV ILLINOIS, DEPT ECOL ETHOL & EVOLUT, CHAMPAIGN, IL 61820 USA Resetarits, WJ (reprint author), ILLINOIS NAT HIST SURVEY, CTR AQUAT ECOL, CHAMPAIGN, IL 61820 USA. ALFORD RA, 1989, ECOLOGY, V70, P206, DOI 10.2307/1938427; ARNOLD SJ, 1994, AM NAT, V143, P317, DOI 10.1086/285606; BANKS B, 1987, HOLARCTIC ECOL, V10, P14; BERNARDO J, 1996, AM ZOOL, V36; CHESSON J, 1984, ENVIRON ENTOMOL, V13, P531, DOI 10.1093/ee/13.2.531; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DUNHAM AE, 1989, PHYSIOL ZOOL, V62, P335, DOI 10.1086/physzool.62.2.30156174; DUNNETT CW, 1955, J AM STAT ASSOC, V50, P1096; FAUTH JE, 1991, ECOLOGY, V72, P827, DOI 10.2307/1940585; Feeny P., 1983, P27; FRY JD, 1996, IN PRESS AM NAT; Heyer W.R., 1975, Biotopica, V7, P100; Holomuzki JR, 1995, COPEIA, P607, DOI 10.2307/1446757; HOPEY ME, 1994, COPEIA, P1023; HOWARD RD, 1978, ECOLOGY, V59, P789, DOI 10.2307/1938783; JOHNALDER HB, 1988, AM NAT, V132, P506, DOI 10.1086/284868; KATS LB, 1992, COPEIA, P468, DOI 10.2307/1446206; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LAWLER SP, 1993, ECOLOGY, V74, P174, DOI 10.2307/1939512; LEVIN SA, 1974, P NATL ACAD SCI USA, V71, P2744, DOI 10.1073/pnas.71.7.2744; MacAuthur R. H., 1967, THEORY ISLAND BIOGEO; MAGNUSSON WE, 1991, OECOLOGIA, V86, P310, DOI 10.1007/BF00317595; MCPEEK MA, 1989, OIKOS, V56, P187, DOI 10.2307/3565335; MORIN PJ, 1983, ECOL MONOGR, V53, P119, DOI 10.2307/1942491; Papaj D.R., 1983, P77; PAPAJ DR, 1987, OECOLOGIA, V74, P24, DOI 10.1007/BF00377341; PETRANKA JW, 1991, COPEIA, P234, DOI 10.2307/1446271; PETRANKA JW, 1994, COPEIA, P691, DOI 10.2307/1447185; PETRANKA JW, 1987, ANIM BEHAV, V35, P420, DOI 10.1016/S0003-3472(87)80266-X; RAUSHER MD, 1981, ECOL MONOGR, V51, P1, DOI 10.2307/2937304; RAUSHER MD, 1978, SCIENCE, V200, P1071, DOI 10.1126/science.200.4345.1071; RAUSHER MD, 1979, ECOLOGY, V60, P503, DOI 10.2307/1936070; RAUSHER MD, 1983, ANIM BEHAV, V31, P341, DOI 10.1016/S0003-3472(83)80052-9; RAUSHER MD, 1980, EVOLUTION, V34, P342, DOI 10.1111/j.1558-5646.1980.tb04823.x; RAUSHER MD, 1993, VARIABLE PLANTS HERB, P223; Resetarits William, 1995, Bulletin of the Ecological Society of America, V76, P380; RESETARITS WJ, 1989, ECOLOGY, V70, P220, DOI 10.2307/1938428; RESETARITS WJ, 1991, ECOLOGY, V72, P778, DOI 10.2307/1940580; RICHIE SA, 1992, ENVIRON ENTOMOL, V21, P737; RICHIE SA, 1994, J AM MOSQUITO CONT A, V10, P380; Roff Derek A., 1992; Roosenburg WM, 1996, AM ZOOL, V36, P157; SEALE DB, 1982, COPEIA, P627, DOI 10.2307/1444663; SINGER MC, 1988, EVOLUTION, V42, P977, DOI 10.1111/j.1558-5646.1988.tb02516.x; SINGER MC, 1984, S R ENTOMOL SOC, V11, P81; Singer MC, 1994, ECOSCIENCE, V1, P107, DOI 10.1080/11956860.1994.11682234; SKELLY DK, 1995, ECOLOGY, V76, P150, DOI 10.2307/1940638; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH DC, 1983, ECOLOGY, V64, P501, DOI 10.2307/1939970; Stearns SC., 1992, EVOLUTION LIFE HIST; Steel R. G. D., 1980, PRINCIPLES PROCEDURE; WALDMAN B, 1982, BEHAV ECOL SOCIOBIOL, V10, P169, DOI 10.1007/BF00299681; WERNER EE, 1994, ECOLOGY, V75, P1368, DOI 10.2307/1937461; WHITTAKER RH, 1977, THEOR POPUL BIOL, V12, P117, DOI 10.1016/0040-5809(77)90039-9; Wilbur H.M, 1984, NEW ECOLOGY NOVEL AP, P114; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; WILBUR HM, 1985, ECOLOGY, V66, P1106, DOI 10.2307/1939162; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WOODWARD BD, 1983, ECOLOGY, V64, P1549, DOI 10.2307/1937509 60 172 187 3 47 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 0003-1569 AM ZOOL Am. Zool. APR 1996 36 2 205 215 11 Zoology Zoology UJ518 WOS:A1996UJ51800010 2019-02-26 J Bernardo, J Bernardo, J The particular maternal effect of propagule size, especially egg size: Patterns, models, quality of evidence and interpretations AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Maternal Effects on Early Life History, Their Persistence, and Impact on Organismal Ecology, at the Annual Meeting of the American-Society-of-Zoologists DEC 27-30, 1993 LOS ANGELES, CA Amer Soc Zoologists ETHEOSTOMA-SPECTABILE PISCES; FROG BOMBINA-ORIENTALIS; SAFE-HARBOR HYPOTHESIS; LIFE-HISTORY EVOLUTION; CLUTCH SIZE; OFFSPRING SIZE; PARENTAL CARE; REPRODUCTIVE EFFORT; WEIGHT VARIATION; BODY SIZE Propagule size is perhaps the most widely recognized and studied maternal effect in ecology, yet its evolution is not well-understood. The large body of extant optimality theory treats parental investment solely as an ecological problem, largely from the perspective of progeny. This approach has had limited success explaining the ubiquitous variation in propagule size within and among natural populations at most temporal and spatial scales. This problem aside, an unassailable gap in propagule size theory is that it pays little heed to the fact that offspring size is a joint phenotype of two individuals- the offspring and its mother. Hence, the ecology of mothers is decidedly as important in shaping the evolution of propagule size phenotypes. There are two reasons to suspect that this gap may account for the lack of success of optimality theory to explain variation in nature. The first is that optimality models of propagule size make no allowance for, nor can they explain, widespread, multivariate correlations between maternal characters and clutch parameters, namely the positive phenotypic covariances of maternal age, size, fecundity, and per-propagule investment found in many organisms. If per-propagule investment is optimized by selection based on the expectation of offspring fitness, then why should that phenotype be a function of maternal age or size when the ecological circumstances of progeny are not changing as a function of maternal age or size? The second gap in current theory is that, like all optimization theory, it is patently non-genetic in that it is assumed that the phenotypes optimized are evolutionarily accessible. Recent maternal effects theory indicates that traits subject to maternal influence behave in unanticipated ways. Specifically, there may be time lags in response to selection, and hence, selection away from the optimum phenotype. This paper explores a suite of issues pertaining to the evolution of propagule size from the broader perspective of propagule size as a maternal effect (PSME) with a goal of widening the lens through which propagule size is viewed by evolutionary ecologists. Two themes are developed. First, I suggest that, to understand egg size variance and its implications for both maternal and offspring fitness, it is necessary to consider explicitly the ecological context in which a mother is producing eggs, not just that into which offspring will enter. I argue that some of the variables that have only been incorporated in pairwise fashion (or not at all) into studies of propagule size might account for the lack of agreement about how this important life history feature evolves. Further, I suggest that failure to consider other sources of selection on maternal phenotypes, driven by a narrow adaptationist view that has historically been taken of PSMEs, has obfuscated many interesting questions surrounding their coevolution with maternal characters. Thus, the second theme is that it is necessary to consider other explanations for why propagule size varies apart from those pertaining to offspring fitness per se'. Based on a detailed review of the empirical literature, I conclude that the concept of an optimal propagule size is not only an insufficient construct to explain the evolution of propagule size, but that continued reliance on an optimization approach is likely to stifle development of more realistic and predictive theory for the evolution of this key life history trait. Novel theory should incorporate realities from physiology, development and genetics and should accommodate the dynamic nature of the selective environments in which propagule size evolves, all of which have been shown by empiricists to play a role in determining propagule size phenotypes. A key feature of this theory should be the explicit treatment of propagule size as a maternal effect. Bernardo, J (reprint author), UNIV TEXAS, DEPT ZOOL, AUSTIN, TX 78712 USA. Bernardo, Joseph/C-2403-2008 Bernardo, Joseph/0000-0002-5516-4710 Arnold Stean J., 1994, P17; ARNOLD TW, 1992, CAN J ZOOL, V70, P1904, DOI 10.1139/z92-259; BAGENAL TB, 1969, J FISH BIOL, V1, P349, DOI 10.1111/j.1095-8649.1969.tb03882.x; BARNES H, 1965, J ANIM ECOL, V34, P391, DOI 10.2307/2656; BEACHAM TD, 1985, CAN J ZOOL, V63, P847, DOI 10.1139/z85-125; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; BERNARDO J, 1994, AM NAT, V143, P14, DOI 10.1086/285594; BERNARDO J, 1991, TRENDS ECOL EVOL, V6, P1, DOI 10.1016/0169-5347(91)90137-M; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; Bernardo J, 1996, AM ZOOL, V36, P83; BERNARDO J, 1994, SYST BIOL, V43, P139; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; BERVEN KA, 1988, OECOLOGIA, V75, P67, DOI 10.1007/BF00378815; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BRADFORD DF, 1990, PHYSIOL ZOOL, V63, P1157, DOI 10.1086/physzool.63.6.30152638; BRADFORD DF, 1984, RESP METABOLISM EMBR, P87; BRIDGES TS, 1993, BIOL BULL, V184, P144, DOI 10.2307/1542224; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BRODIE ED, 1989, AM MIDL NAT, V122, P51; BRODY MS, 1984, OECOLOGIA, V61, P55, DOI 10.1007/BF00379089; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; CAVERS PB, 1984, AM NAT, V124, P324, DOI 10.1086/284276; CHAMBERS RC, 1989, FISH B-NOAA, V87, P515; Chambers RC, 1996, AM ZOOL, V36, P180; CHAMBERS RC, 1993, T AM FISH SOC, V122, P404, DOI 10.1577/1548-8659(1993)122<0404:PVIFPA>2.3.CO;2; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CHECKLEY DM, 1980, LIMNOL OCEANOGR, V25, P430, DOI 10.4319/lo.1980.25.3.0430; Collazo A, 1996, AM ZOOL, V36, P116; Congdon J.D., 1990, P109; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; CRUMP ML, 1979, COPEIA, P626; CRUMP ML, 1981, AM NAT, V117, P724, DOI 10.1086/283755; CRUMP ML, 1984, COPEIA, P302, DOI 10.2307/1445185; DANGERFIELD JM, 1990, OECOLOGIA, V82, P251, DOI 10.1007/BF00323542; Darwin C, 1859, ORIGIN SPECIES; Darwin C, 1871, DESCENT MAN SELECTIO; DUNHAM AE, 1989, PHYSIOL ZOOL, V62, P335, DOI 10.1086/physzool.62.2.30156174; EBERT D, 1993, ARCH HYDROBIOL S, V90, P1; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; ELINSON RP, 1989, LIFE SCI R, V45, P251; ELINSON RP, 1987, DEV EVOLUTIONARY PRO, P1; EMLET RB, 1989, PALEOBIOLOGY, V15, P223; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; FERGUSON GW, 1982, HERPETOLOGICA, V38, P178; FORD NB, 1989, HERPETOLOGICA, V45, P75; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; GARCIABARROS E, 1994, BIOL J LINN SOC, V51, P309, DOI 10.1006/bijl.1994.1026; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; GLIWICZ ZM, 1992, OECOLOGIA, V91, P463, DOI 10.1007/BF00650317; GORDON IJ, 1989, FUNCT ECOL, V3, P285, DOI 10.2307/2389367; GOULDEN CE, 1987, OECOLOGIA, V72, P28, DOI 10.1007/BF00385040; GREEN J, 1966, J ANIM ECOL, V35, P77, DOI 10.2307/2691; Heins D.C., 1987, P223; HOM CL, 1990, HERPETOLOGICA, V46, P304; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; HUTCHINGS JA, 1985, OIKOS, V45, P118, DOI 10.2307/3565229; IGUCHI K, 1994, COPEIA, P184; ITO Y, 1980, COMP ECOLOGY; IVERSON JB, 1993, CAN J ZOOL, V71, P2448, DOI 10.1139/z93-341; JANZEN DH, 1977, AM J BOT, V64, P347, DOI 10.2307/2441978; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; KAPLAN RH, 1979, AM NAT, V113, P671, DOI 10.1086/283425; KARLSSON B, 1984, OIKOS, V43, P376, DOI 10.2307/3544156; KARLSSON B, 1985, ECOL ENTOMOL, V10, P205, DOI 10.1111/j.1365-2311.1985.tb00549.x; KASULE FK, 1991, ECOL ENTOMOL, V16, P345, DOI 10.1111/j.1365-2311.1991.tb00226.x; KERFOOT WC, 1974, ECOLOGY, V55, P1259, DOI 10.2307/1935454; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; KRAEUTER JN, 1981, J EXP MAR BIOL ECOL, V56, P3, DOI 10.1016/0022-0981(81)90003-4; KURAMOTO M, 1978, EVOLUTION, V32, P287, DOI 10.1111/j.1558-5646.1978.tb00644.x; KUZNETSOV V A, 1973, Journal of Ichthyology, V13, P669; Lack D, 1954, NATURAL REGULATION A; LAGOMARSINO IV, 1988, COPEIA, P1086; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; LANCE V, 1983, CAN J ZOOL, V61, P1744, DOI 10.1139/z83-225; LANDE R, 1990, GENET RES, V55, P189, DOI 10.1017/S0016672300025520; LEBLANC Y, 1987, CAN J ZOOL, V65, P3044, DOI 10.1139/z87-461; LESSELLS CM, 1989, J EVOLUTION BIOL, V2, P457, DOI 10.1046/j.1420-9101.1989.2060457.x; LESSIOS HA, 1987, J EXP MAR BIOL ECOL, V114, P217; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MARSH E, 1986, COPEIA, P18; MARSH E, 1984, COPEIA, P291, DOI 10.2307/1445184; MARSHALL LD, 1990, CAN J ZOOL, V68, P44, DOI 10.1139/z90-008; MARSHALL NB, 1953, EVOLUTION, V7, P328, DOI 10.2307/2405343; MARTIN RD, 1985, NATURE, V313, P220, DOI 10.1038/313220a0; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; McEdward LR, 1996, AM ZOOL, V36, P169; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MCGINLEY MA, 1989, EVOL ECOL, V3, P150, DOI 10.1007/BF02270917; McGinley MA, 1988, EVOL ECOL, V2, P77, DOI 10.1007/BF02071590; MEATHREL CE, 1993, J ZOOL, V230, P679, DOI 10.1111/j.1469-7998.1993.tb02716.x; MIRE JB, 1994, COPEIA, P100; MOORE RA, 1987, ECOL ENTOMOL, V12, P401, DOI 10.1111/j.1365-2311.1987.tb01021.x; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; NILSSON JA, 1993, J ZOOL, V230, P469, DOI 10.1111/j.1469-7998.1993.tb02699.x; Noble R.C, 1991, PHYSICAL INFLUENCES, P17; NUSSBAUM RA, 1987, RES POPUL ECOL, V29, P27, DOI 10.1007/BF02515423; NUSSBAUM RA, 1989, AM NAT, V133, P591, DOI 10.1086/284939; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; NUSSBAUM RA, 1985, MISC PUBL MUSEUM ZOO, V169, P1; OLSEN PD, 1993, OIKOS, V66, P447, DOI 10.2307/3544939; PARICHY DM, 1992, OECOLOGIA, V91, P579, DOI 10.1007/BF00650334; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PIANKA ER, 1976, AM ZOOL, V16, P775; Pianka ER, 1974, EVOLUTIONARY ECOLOGY; PICARD JL, 1988, STAR TREK NEXT GEN; PONTIER D, 1993, OIKOS, V66, P424, DOI 10.2307/3544936; POTTI J, 1993, CAN J ZOOL, V71, P1534, DOI 10.1139/z93-217; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; RAUSHER MD, 1992, EVOLUTION, V46, P616, DOI 10.1111/j.1558-5646.1992.tb02070.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REID WV, 1990, EVOLUTION, V44, P1780, DOI 10.1111/j.1558-5646.1990.tb05248.x; Resetarits WJ, 1996, AM ZOOL, V36, P205; RESETARITS WJ, 1988, CAN J ZOOL, V66, P329, DOI 10.1139/z88-049; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D, 1996, AM ZOOL, V36, P147; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; REZNICK D, 1982, AM NAT, V120, P181, DOI 10.1086/283981; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, OECOLOGIA, V73, P401, DOI 10.1007/BF00385257; REZNICK DN, 1991, 4 ICSEB P, V2, P780; RICHARDS LJ, 1980, CAN J ZOOL, V58, P1452, DOI 10.1139/z80-199; RISKA B, 1985, GENET RES, V45, P287, DOI 10.1017/S0016672300022278; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.ecolsys.18.1.209; Roff Derek A., 1992; ROHWER FC, 1988, AUK, V105, P161; Roosenburg WM, 1996, AM ZOOL, V36, P157; ROSSITER MC, 1991, FUNCT ECOL, V5, P386, DOI 10.2307/2389810; ROWE JW, 1994, COPEIA, P1034; Salthe S.N., 1973, P229; SALTHE SN, 1969, AM MIDL NAT, V81, P467, DOI 10.2307/2423983; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SCHULTZ DL, 1991, EVOL ECOL, V5, P415, DOI 10.1007/BF02214158; SCHULTZ DL, 1986, THESIS U MICHIGAN AN; SELCER KW, 1990, HERPETOLOGICA, V46, P15; SEMLITSCH RD, 1990, ECOLOGY, V71, P1789, DOI 10.2307/1937586; SEMLITSCH RD, 1985, OECOLOGIA, V65, P305, DOI 10.1007/BF00378903; Seymour R.S, 1984, RESP METABOLISM EMBR; SEYMOUR RS, 1995, PHYSIOL ZOOL, V68, P1; SHINE R, 1989, AM NAT, V134, P311, DOI 10.1086/284982; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; SINERVO B, 1989, OECOLOGIA, V78, P411, DOI 10.1007/BF00379118; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sober E., 1984, NATURE SELECTION; SPIGHT TM, 1975, OECOLOGIA, V21, P1, DOI 10.1007/BF00345889; Stearns SC., 1992, EVOLUTION LIFE HIST; STEELE DH, 1977, AM NAT, V111, P371, DOI 10.1086/283167; STRATHMANN RR, 1995, AM ZOOL, V35, P426; STRATHMANN RR, 1984, J EXP MAR BIOL ECOL, V84, P85, DOI 10.1016/0022-0981(84)90232-6; TAKAHASHI H, 1988, SCI REP NIIGATA U D, V25, P19; Taylor B.E., 1985, Advances in Limnology, V21, P285; TEMME DH, 1986, EVOLUTION, V40, P414, DOI 10.1111/j.1558-5646.1986.tb00481.x; TESSIER AJ, 1991, ECOLOGY, V72, P468, DOI 10.2307/2937188; TESSIER AJ, 1987, LIMNOL OCEANOGR, V32, P680, DOI 10.4319/lo.1987.32.3.0680; TESSIER AJ, 1983, LIMNOL OCEANOGR, V28, P667, DOI 10.4319/lo.1983.28.4.0667; THOMAS CS, 1983, IBIS, V125, P567, DOI 10.1111/j.1474-919X.1983.tb03151.x; TROYER K, 1983, OECOLOGIA, V58, P340, DOI 10.1007/BF00385233; VANBUSKIRK J, 1994, COPEIA, P66; VANDAMME R, 1992, HERPETOLOGICA, V48, P220; VANNOORDWIJK AJ, 1981, GENETICA, V55, P221, DOI 10.1007/BF00127206; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; WERNER YL, 1989, ISRAEL J ZOOL, V35, P199; White H.B. III, 1991, P1, DOI 10.1017/CBO9780511585739.002; WIKLUND C, 1983, OIKOS, V40, P53, DOI 10.2307/3544198; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WILLIAMS TD, 1993, OIKOS, V67, P250, DOI 10.2307/3545469; WILLIAMS TD, 1993, OECOLOGIA, V96, P331, DOI 10.1007/BF00317502; WILSON DC, 1969, J FISH RES BOARD CAN, V26, P2339, DOI 10.1139/f69-227; WILSON DS, 1975, AM NAT, V109, P769, DOI 10.1086/283042; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; WOODWARD B, 1987, SOUTHWEST NAT, V32, P127, DOI 10.2307/3672018; WOODWARD BD, 1987, SOUTHWEST NAT, V32, P13, DOI 10.2307/3672004; WOOTTON RJ, 1973, J FISH BIOL, V5, P89, DOI 10.1111/j.1095-8649.1973.tb04433.x; ZONOVA A S, 1973, Journal of Ichthyology, V13, P679 184 498 511 1 94 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 0003-1569 AM ZOOL Am. Zool. APR 1996 36 2 216 236 21 Zoology Zoology UJ518 WOS:A1996UJ51800011 2019-02-26 J Thomson, DL Thomson, DL Age-specific life history tactics in organisms with determinate growth: Optimal models for non-optimal behavior? ECOLOGICAL RESEARCH English Article age; evolutionary model; life history evolution; reproductive effort; senescence REPRODUCTIVE EFFORT; CALIFORNIA GULL Among organisms with determinate growth, optimization models predict that reproductive effort should increase as individuals approach old age, but the assumptions of these models may be inappropriate because the senescence that generates the necessary selective pressure may be not itself be optimal. Population genetics models were constructed to examine whether genes for age-specific changes in reproductive effort could invade a population in which senescence was maintained at equilibrium levels by a balance between mutation and selection. In asexually reproducing organisms, it was found that strategies of increasing reproductive effort could not normally invade the population. In sexually reproducing organisms, however, recombination was found to be important and genes for age-specific changes in effort could spread in the population under most circumstances. UNIV GLASGOW, INST BIOMED & LIFE SCI, DIV ENVIRONM & EVOLUTIONARY BIOL, APPL ORNITHOL UNIT, GLASGOW G12 8QQ, LANARK, SCOTLAND AYALA FJ, 1982, POPULATION EVOLUTION; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Clutton-Brock T. H, 1991, MONOGRAPHS BEHAV ECO; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Crow J, 1986, BASIC CONCEPTS POPUL; CROW J F, 1970, P591; EWENS WJ, 1969, POPULATION GENETICS; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; GUSTAFSSON L, 1990, POPULATION BIOL PASS; HAMER KC, 1991, J ANIM ECOL, V60, P693, DOI 10.2307/5306; Hartl D. L., 1989, PRINCIPLES POPULATIO; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; NEWTON I, 1989, LIFETIME REPRODUCTIO; NUR N, 1988, ARDEA, V76, P155; NUR N, 1984, OIKOS, V43, P407, DOI 10.2307/3544163; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PUGESEK BH, 1981, SCIENCE, V212, P822, DOI 10.1126/science.212.4496.822; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Saether B.-E., 1990, Current Ornithology, V7, P251; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S 25 0 1 0 5 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0912-3814 1440-1703 ECOL RES Ecol. Res. APR 1996 11 1 61 68 10.1007/BF02347820 8 Ecology Environmental Sciences & Ecology UG321 WOS:A1996UG32100007 2019-02-26 J Chippindale, AK; Chu, TJF; Rose, MR Chippindale, AK; Chu, TJF; Rose, MR Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster EVOLUTION English Article aging; development rate; Drosophila melanogaster; growth rate; life-history evolution; starvation; stress resistance; trade-offs LIFE-HISTORY EVOLUTION; POSTPONED SENESCENCE; ENVIRONMENTAL-STRESS; FITNESS COMPONENTS; SELECTION; DESICCATION; HERITABILITY; GENERATIONS; LONGEVITY; SIZE The measurement of trade-offs may be complicated when selection exploits multiple avenues of adaptation or multiple life-cycle stages. We surveyed 10 populations of Drosophila melanogaster selected for increased resistance to starvation for 60 generations, their paired controls, and their mutual ancestors (a total 30 outbred populations) for evidence of physiological and life-history trade-offs that span life-cycle stages. The directly selected lines showed an impressive response to starvation selection, with mature adult females resisting starvation death 4-6 times longer than unselected controls or ancestors-up to a maximum of almost 20 days. Starvation-selected flies are already 80% more resistant to starvation death than their controls immediately upon eclosion, suggesting that a significant portion of their selection response was owing to preadult growth and acquisition of metabolites relevant to the stress. These same lines exhibited significantly longer development and lower viability in the larval and pupal stages. Weight and lipid measurements on one of the starvation-selected treatments (SB1-5) its control populations (CB1-5), and their ancestor populations (B-1-5) revealed three important findings. First, starvation resistance and lipid content were linearly correlated; second, larval lipid acquisition played a major role in the evolution of adult starvation resistance; finally, increased larval growth rate and lipid acquisition had a fitness cost exacted in reduced viability and slower development. This study implicates multiple life-cycle stages in the response to selection for the stress resistance of only one stage. Our starvation-selected populations illustrate a case that may be common in nature. Patterns of genetic correlation may prove misleading unless multiple pleiotropic interconnections are resolved. UNIV CALIF IRVINE, DEPT ECOL & EVOLUTIONARY BIOL, IRVINE, CA 92717 USA Bakker K., 1961, Archives Neerlandaises de Zoologie Leiden, V14, P200; BLOWS MW, 1993, EVOLUTION, V47, P1255, DOI 10.1111/j.1558-5646.1993.tb02151.x; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CHIPPINDALE AK, 1994, EVOLUTION, V48, P1880, DOI 10.1111/j.1558-5646.1994.tb02221.x; EWING ARTHUR W., 1961, ANIMAL BEHAVIOUR, V9, P93, DOI 10.1016/0003-3472(61)90055-0; Fisher R.A., 1930, GENETICAL THEORY NAT; GRAVES JL, 1992, PHYSIOL ZOOL, V65, P268, DOI 10.1086/physzool.65.2.30158253; HARSHMAN LG, 1994, EVOLUTION, V48, P758, DOI 10.1111/j.1558-5646.1994.tb01359.x; HOFFMANN AA, 1993, BIOL J LINN SOC, V48, P43, DOI 10.1006/bijl.1993.1004; HOFFMANN AA, 1989, BIOL J LINN SOC, V37, P117, DOI 10.1111/j.1095-8312.1989.tb02098.x; Hoffmann AA, 1991, EVOLUTIONARY GENETIC; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; IVES PT, 1970, EVOLUTION, V24, P507, DOI 10.1111/j.1558-5646.1970.tb01785.x; LENSKI RE, 1991, AM NAT, V138, P1315, DOI 10.1086/285289; LEROI AM, 1994, AM NAT, V143, P381, DOI 10.1086/285609; LEROI AM, 1994, EVOLUTION, V48, P1258, DOI 10.1111/j.1558-5646.1994.tb05310.x; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; NICHOLSON AJ, 1957, COLD SPRING HARB SYM, V22, P153, DOI 10.1101/SQB.1957.022.01.017; PARTRIDGE L, 1983, ANIM BEHAV, V31, P871, DOI 10.1016/S0003-3472(83)80242-5; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; ROBERTSON FW, 1957, J GENET, V55, P428, DOI DOI 10.1007/BF02984061; Roff Derek A., 1992; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1990, INSECT LIFE CYCLES G, P91; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; SPIELMAN A, 1957, AM J HYG, V65, P404, DOI 10.1093/oxfordjournals.aje.a119878; Stearns SC., 1992, EVOLUTION LIFE HIST; TANTAWY AO, 1960, AM NAT, V94, P395, DOI 10.1086/282143; WIGGLESWORTH VB, 1949, J EXP BIOL, V26, P150; WILLIAMS KL, 1977, J INSECT PHYSIOL, V23, P659, DOI 10.1016/0022-1910(77)90080-4; Wright S, 1977, EVOLUTION GENETICS P; ZWAAN BJ, 1991, HEREDITY, V66, P29, DOI 10.1038/hdy.1991.4 41 176 179 0 36 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution APR 1996 50 2 753 766 10.2307/2410848 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UJ156 WOS:A1996UJ15600025 28568920 Bronze 2019-02-26 J Stearns, SC; Kaiser, M Stearns, SC; Kaiser, M Effects on fitness components of P-element inserts in Drosophila melanogaster: Analysis of trade-offs EVOLUTION English Article aging; Drosophila; genetic engineering; life-history evolution; lifespan; trade-offs CORRELATED RESPONSES; ARTIFICIAL SELECTION; REPRODUCTION; SENESCENCE; COST; EVOLUTION We analyzed the trade-offs between fitness components detected in four experiments in which traits were manipulated by inserting small (control) and large (treatment) P-elements into the Drosophila melanogaster genome. Treatment effects and the interactions of treatment with temperature, experiment, and line were caused by the greater length and different positions of the treatment insert. In inbred flies, the treatment decreased early and total fecundity. Whether it increased the lifespan of mated females depended upon adult density. Analysis of line-by-treatment-by-temperature interactions revealed hidden trade-offs that would have been missed by other methods. They included a significant trade-off between lifespan and early fecundity. At 25 degrees C high early fecundity was associated with decreased reproductive rates and increased mortality rates 10-15 days later and persisting throughout life, but not at 29.5 degrees C. Correlations with Gompertz coefficients suggested that flies that were heavier at eclosion also aged more slowly and that flies that aged more slowly had higher fecundity late in life at 25 degrees C. The results support the view that lifespan trades off with fecundity and that late fecundity trades off with rate of aging in fruitflies. Genetic engineering is an independent method for the analysis of trade-offs that complements selection experiments. Stearns, SC (reprint author), UNIV BASEL,INST ZOOL,RHEINSPRUNG 9,CH-4051 BASEL,SWITZERLAND. Stearns, Stephen/F-4099-2012 Kaiser, Marcel/0000-0003-1785-7302; Stearns, Stephen/0000-0002-6621-4373 BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; BELLEN HJ, 1989, GENE DEV, V3, P1288, DOI 10.1101/gad.3.9.1288; COOLEY L, 1988, SCIENCE, V239, P1121, DOI 10.1126/science.2830671; Dingle H., 1982, EVOLUTION GENETICS L; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HIRSCHFIELD MF, 1974, P NATL ACAD SCI USA, V72, P2227; HUGHES KA, 1994, NATURE, V367, P64, DOI 10.1038/367064a0; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LEROI AM, 1994, EVOLUTION, V48, P1258, DOI 10.1111/j.1558-5646.1994.tb05310.x; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LEWONTIN RC, 1974, AM J HUM GENET, V26, P400; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; Mayr E., 1963, ANIMAL SPECIES EVOLU; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DN, 1986, EVOLUTION, V40, P1338, DOI 10.1111/j.1558-5646.1986.tb05757.x; ROBERTSON HM, 1988, GENETICS, V118, P461; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; *SAS I, 1985, SAS US GUID; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Schmalhausen I.I., 1949, FACTORS OF EVOLUTION; SHEPHERD JCW, 1989, P NATL ACAD SCI USA, V86, P7520, DOI 10.1073/pnas.86.19.7520; SHIKAMA N, 1994, P NATL ACAD SCI USA, V91, P4199, DOI 10.1073/pnas.91.10.4199; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1993, AM NAT, V142, P961, DOI 10.1086/285584; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1993, GENETICA, V91, P167, DOI 10.1007/BF01435996; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; Williams GC, 1966, ADAPTATION NATURAL S; Wright S, 1969, EVOLUTION GENETICS P, V2; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x 42 12 12 0 6 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution APR 1996 50 2 795 806 10.2307/2410852 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UJ156 WOS:A1996UJ15600029 28568924 Bronze 2019-02-26 J Lacey, EP Lacey, EP Parental effects in Plantago lanceolata L .1. A growth chamber experiment to examine pre- and postzygotic temperature effects EVOLUTION English Article germination; growth; life-history evolution; maternal effects; onset of reproduction; parental effects; paternal effects; Plantago lanceolata; pre- and postzygotic effects; seed weight; temperature EXPERIMENTAL ECOLOGICAL GENETICS; SEED SIZE VARIATION; RELEVANT MORPHOLOGICAL VARIABILITY; LYCHNIS-FLOS-CUCULI; ENVIRONMENTAL INDUCTION; DESMODIUM-PANICULATUM; HERITABLE CHANGES; MATERNAL INHERITANCE; COMPETITIVE ABILITY; CHLOROPLAST DNA In spite of the potential evolutionary importance of parental effects, many aspects of these effects remain inadequately explained. This paper explores both their causes and potential consequences or the evolution of life-history traits in plants. In a growth chamber experiment, I manipulated the pre- and postzygotic temperatures of both parents of controlled crosses of Plantago lanceolata. All offspring traits were affected by parental temperature. On average, low parental temperature increased seed weight, reduced germination and offspring growth rate, and accelerated onset of reproduction by 7%, 50%, 5%, and 47%, respectively, when compared to the effects of high parental temperature, Both pre- and postzygotic parental temperatures (i.e., prior to fertilization vs. during fertilization and seed set, respectively) influenced offspring traits but not always in the same direction. In all cases, however, the postzygotic effect was stronger. The prezygotic effects were more often transmitted paternally than maternally. Growth and onset of reproduction were influenced both directly by parental temperature as well as indirectly via the effects of parental temperature on seed weight and germination. Significant interactions between parental genotypes and prezygotic temperature treatment (G x E interactions) show that genotypes differ in their intergenerational responses to temperature with respect to germination and growth. The data suggest that temperature is involved in both genetically based and environmentally induced parental effects and that parental temperature may accelerate the rate of evolutionary change in flowering time in natural populations of P. lanceolata. The environmentally induced temperature effects, as mediated through G x (prezygotic) E interactions are not likely to affect the rate or direction of evolutionary change in the traits examined because postzygotic temperature effects greatly exceed prezygotic effects. Lacey, EP (reprint author), UNIV N CAROLINA,DEPT BIOL,EBERHART BLDG,GREENSBORO,NC 27412, USA. AARSSEN LW, 1990, AM J BOT, V77, P1231, DOI 10.2307/2444634; Aksel R., 1977, Genetic diversity in plants. IV. Genetics of quantitative characters., P269; ALEXANDER HM, 1985, J ECOL, V73, P271, DOI 10.2307/2259783; ANTONOVICS J, 1986, OECOLOGIA, V69, P277, DOI 10.1007/BF00377634; BEDDOWS AR, 1962, HEREDITY, V17, P501, DOI 10.1038/hdy.1962.51; Bertin R. I., 1988, Plant reproductive ecology: patterns and strategies, P30; BIERE A, 1991, J EVOLUTION BIOL, V4, P467, DOI 10.1046/j.1420-9101.1991.4030467.x; BIERE A, 1991, J EVOLUTION BIOL, V4, P447, DOI 10.1046/j.1420-9101.1991.4030447.x; COCKERHAM C. CLARK, 1963, NATL ACAD SCI NATL RES COUNC PUBL, V982, P53; CORRIVEAU JL, 1988, AM J BOT, V75, P1443, DOI 10.2307/2444695; COWLEY DE, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P762; CULLIS CA, 1977, HEREDITY, V38, P129, DOI 10.1038/hdy.1977.19; CULLIS CA, 1981, HEREDITY, V47, P87, DOI 10.1038/hdy.1981.61; DURRANT A, 1962, HEREDITY, V17, P27, DOI 10.1038/hdy.1962.2; DURRANT A, 1973, HEREDITY, V30, P368; EDWARDS KJR, 1970, HEREDITY, V25, P179, DOI 10.1038/hdy.1970.23; Elgersma A., 1989, Sexual Plant Reproduction, V2, P225; FALCONER D. S., 1965, Genetics today. Proceedings of the XI International Congress of Genetics, The Hague, the Netherlands, September, 1963., V3, P763; FALCONER DS, 1983, INTRO QUANTITATIVE G; FREEMAN DC, 1985, BOT GAZ, V146, P137, DOI 10.1086/337508; GARWOOD DL, 1970, CROP SCI, V10, P39, DOI 10.2135/cropsci1970.0011183X001000010015x; GAWEL NJ, 1987, THEOR APPL GENET, V72, P84; GIMELFARB A, 1986, GENETICS, V114, P333; GROSS KL, 1984, J ECOL, V72, P369, DOI 10.2307/2260053; GUTTERMAN Y, 1980, Israel Journal of Botany, V29, P105; GUTTERMAN Y, 1983, WEED PHYSL, V1, P1; HANSON MR, 1985, INT REV CYTOL, V94, P213, DOI 10.1016/S0074-7696(08)60398-8; JANSSEN GM, 1988, EVOLUTION, V42, P828, DOI 10.1111/j.1558-5646.1988.tb02503.x; KAPLAN RH, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P794; KIRKPATRICK M, 1992, EVOLUTION, V46, P284, DOI 10.2307/2409824; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; KOLLER D, 1962, AM J BOT, V49, P841, DOI 10.2307/2439695; LACEY EP, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P735; LANDE R, 1989, GENETICS, V122, P915; LANDE R, 1990, GENET RES, V55, P189, DOI 10.1017/S0016672300025520; LAU TC, 1993, AM J BOT, V80, P763, DOI 10.2307/2445596; MATZKE M, 1993, ANNU REV PLANT PHYS, V44, P53, DOI 10.1146/annurev.pp.44.060193.000413; MAZER SJ, 1987, EVOLUTION, V41, P355, DOI 10.1111/j.1558-5646.1987.tb05803.x; MIAO SL, 1991, ECOLOGY, V72, P1634, DOI 10.2307/1940963; MIAO SL, 1991, ECOLOGY, V72, P586, DOI 10.2307/2937198; MILLER TE, 1987, OECOLOGIA, V72, P272, DOI 10.1007/BF00379278; MILLIGAN BG, 1992, AM J BOT, V79, P1325, DOI 10.2307/2445061; MOUSSEAU TA, 1991, EVOLUTION, V45, P1053, DOI 10.1111/j.1558-5646.1991.tb04371.x; MOUSSEAU TA, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P745; Neter J., 1985, APPL LINEAR STAT MOD; PHILIPPI T, 1993, AM NAT, V142, P488, DOI 10.1086/285551; PLATENKAMP GAJ, 1993, EVOLUTION, V47, P540, DOI 10.1111/j.1558-5646.1993.tb02112.x; PONS TL, 1988, OECOLOGIA, V75, P394, DOI 10.1007/BF00376942; PRIMACK RB, 1981, EVOLUTION, V35, P1069, DOI 10.1111/j.1558-5646.1981.tb04975.x; PRIMACK RB, 1982, EVOLUTION, V36, P742, DOI 10.1111/j.1558-5646.1982.tb05440.x; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; REZNICK DN, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P780; RICHARDSON TE, 1992, EVOLUTION, V46, P1731, DOI 10.1111/j.1558-5646.1992.tb01165.x; RISKA B, 1985, GENET RES, V45, P287, DOI 10.1017/S0016672300022278; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.ecolsys.18.1.209; ROACH DA, 1986, AM NAT, V128, P47, DOI 10.1086/284538; ROBERTSON JM, 1962, ACTA CRYSTALLOGR, V15, P1, DOI 10.1107/S0365110X62000018; ROWE JS, 1964, ECOLOGY, V45, P399, DOI 10.2307/1933860; *SAS I, 1985, SAS US GUID; SAWHNEY R, 1979, CAN J BOT, V57, P59, DOI 10.1139/b79-012; SCHAAL BA, 1984, PERSPECTIVES PLANT P, P188; Scheffe H., 1959, ANAL VARIANCE; Schlichting C. D., 1986, BIOTECHNOLOGY ECOLOG, P483; SCHLUTER D, 1993, EVOLUTION, V47, P658, DOI 10.1111/j.1558-5646.1993.tb02119.x; SCHMITT J, 1992, AM NAT, V139, P451, DOI 10.1086/285338; SCHNEEBERGER RG, 1991, GENETICS, V128, P619; Searle S.R., 1992, VARIANCE COMPONENTS; SEARS BB, 1980, PLASMID, V4, P233, DOI 10.1016/0147-619X(80)90063-3; SIDDIQUE MA, 1980, J EXP BOT, V31, P313; SINERVO B, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P725; SINGH JN, 1980, THEOR APPL GENET, V56, P265, DOI 10.1007/BF00282569; STANTON ML, 1984, ECOLOGY, V65, P1105, DOI 10.2307/1938318; STEARNS F, 1960, ECOLOGY, V41, P221, DOI 10.2307/1931956; STRATTON DA, 1989, AM J BOT, V76, P1646, DOI 10.2307/2444402; SZMIDT AE, 1987, PLANT MOL BIOL, V9, P59, DOI 10.1007/BF00017987; TERAMURA AH, 1981, AM J BOT, V68, P425, DOI 10.2307/2442780; TERAMURA AH, 1979, CAN J BOT, V57, P2559, DOI 10.1139/b79-304; TERAMURA AH, 1978, THESIS DUKE U DURHAM; TILLNEYBASSETT RAE, 1978, PLASTIDS THEIR CHEM, P251; VANDAMME JMM, 1984, HEREDITY, V52, P77, DOI 10.1038/hdy.1984.8; WAGNER DB, 1987, P NATL ACAD SCI USA, V84, P2097, DOI 10.1073/pnas.84.7.2097; WINN AA, 1985, J ECOL, V73, P831, DOI 10.2307/2260150; WOLFF K, 1987, THEOR APPL GENET, V73, P903, DOI 10.1007/BF00289397; WOLFF K, 1987, HEREDITY, V58, P183, DOI 10.1038/hdy.1987.32; WULFF RD, 1992, AM J BOT, V79, P1102, DOI 10.2307/2445208; WULFF RD, 1986, J ECOL, V74, P87, DOI 10.2307/2260350; WULFF RD, 1986, J ECOL, V74, P115, DOI 10.2307/2260352; WULFF RD, 1986, J ECOL, V74, P99, DOI 10.2307/2260351; YOUNG HJ, 1990, SCIENCE, V248, P1631, DOI 10.1126/science.248.4963.1631 89 79 82 0 25 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution APR 1996 50 2 865 878 10.2307/2410858 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UJ156 WOS:A1996UJ15600035 28568933 Bronze 2019-02-26 J Oostermeijer, JGB; Brugman, ML; DeBoer, ER; DenNijs, HCM Oostermeijer, JGB; Brugman, ML; DeBoer, ER; DenNijs, HCM Temporal and spatial variation in the demography of Gentiana pneumonanthe, a rare perennial herb JOURNAL OF ECOLOGY English Article conservation; elasticity analysis; life-history evolution; management; matrix analysis; succession MODELING APPROACH; PLANT DEMOGRAPHY; SUCCESSION 1 A total of 35 transition and elasticity matrices for the rare iteroparous herb Gentiana pneumonanthe was analysed for temporal and spatial variation. The data used were collected annually from 10 sites in six different populations on up to seven occasions in the period 1987-93. 2 In general, temporal variation was higher in transition matrices than in elasticities, while between-site variation was high for both transition and elasticity matrices. 3 The relative contributions of three life-history transitions, progression (or growth, G), recruitment from seed (fecundity, F) and survival (retrogression plus stasis, L) to the finite rate of increase, lambda, were also highly variable, between years within as well as between sites. The observed variation is very large in comparison with that previously observed either between or within other iteroparous herbs from open habitats, even showing some overlap with demographic patterns normally characteristic of woody plants. 4 A G-L-F ordination shows a long, narrow band across the entire diagram from matrices with a low elasticity for L and high elasticities for G and F at one end to matrices which have an elasticity of 1.00 for L on the other. 5 Correlations between the G-, L- and F-elasticities, lambda, and the vegetation cover suggest that the band in the ordination diagram represents a successional pathway in wet heathlands from invasive to regressive populations. Elasticity matrices from regularly mown hay meadows are characteristic of stable populations, but represent senile, regressive populations after mowing has ceased. 6 Relationships between lambda and the elasticities of G, L and F show that in matrices of stable or declining populations (lambda less than or equal to 1) survival is most important. In growing populations (lambda > 1) the contribution of progression and fecundity becomes larger, 7 Given their relatively large temporal and spatial variation, elasticities are useful in nature conservation and management only if the corresponding value of lambda is taken into account. 8 Significant positive correlations between transition probabilities of different life stages were observed. This phenomenon may increase the risk of extinction by environmental stochasticity. Oostermeijer, JGB (reprint author), UNIV AMSTERDAM,INST SYSTEMAT & POPULAT BIOL,HUGO DE VRIES LAB,KRUISLAAN 318,1098 SM AMSTERDAM,NETHERLANDS. Oostermeijer, Johannes/N-8909-2013 BASTRENTA B, 1995, J ECOL, V83, P603, DOI 10.2307/2261628; BENGTSSON K, 1993, J ECOL, V81, P745, DOI 10.2307/2261672; BOEKEN B, 1995, J ECOL, V83, P569, DOI 10.2307/2261625; BULLOCK JM, 1994, J ECOL, V82, P101, DOI 10.2307/2261390; CASWELL H, 1983, AM ZOOL, V23, P35; Caswell H., 1989, MATRIX POPULATION MO; CHAPMAN SB, 1989, J APPL ECOL, V26, P1059, DOI 10.2307/2403712; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; FRANCO M, 1990, EVOL TREND PLANT, V4, P74; FRANCO M, 1994, J ECOL, V82, P958, DOI 10.2307/2261458; GLEESON SK, 1990, ECOLOGY, V71, P1144, DOI 10.2307/1937382; GRAY AJ, 1987, COLONISATION SUCCESS; KEDDY PA, 1981, J ECOL, V69, P615, DOI 10.2307/2259688; Manly B. F. J., 1991, RANDOMIZATION MONTE; MARGADANT WD, 1982, BEKNOPTE FLORA NEDER; Menges E. S., 1992, Conservation biology: the theory and practice of nature conservation, preservation, and management., P253; MENGES ES, 1990, CONSERV BIOL, V4, P52, DOI 10.1111/j.1523-1739.1990.tb00267.x; OCONNOR TG, 1993, J APPL ECOL, V30, P119, DOI 10.2307/2404276; OCONNOR TG, 1994, J APPL ECOL, V31, P155, DOI 10.2307/2404608; OKLAND RH, 1995, J ECOL, V83, P697, DOI 10.2307/2261637; OLFF H, 1994, J ECOL, V82, P69, DOI 10.2307/2261387; OOSTERMEIJER JGB, 1994, J APPL ECOL, V31, P428, DOI 10.2307/2404440; OOSTERMEIJER JGB, 1992, BOT J LINN SOC, V108, P117, DOI 10.1111/j.1095-8339.1992.tb01636.x; OOSTERMEIJER JGB, 1994, OECOLOGIA, V97, P289, DOI 10.1007/BF00317317; PICKETT STA, 1987, VEGETATIO, V69, P109, DOI 10.1007/BF00038691; RAIJMANN LL, 1994, CONSERV BIOL, V8, P1014, DOI 10.1046/j.1523-1739.1994.08041014.x; SHEA K, 1994, J ECOL, V82, P951, DOI 10.2307/2261457; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; SILVERTOWN J, IN PRESS CONSERVATIO; Silvertown Jonathan, 1993, Plant Species Biology, V8, P67, DOI 10.1111/j.1442-1984.1993.tb00058.x; SVENSSON BM, 1993, J ECOL, V81, P635, DOI 10.2307/2261662; VANDERMEIJDEN R, 1990, HEUKELS FLORA NEDERL; Weinert E, 1978, VERGLEICHENDE CHOROL, VII; WESTHOFF V, 1969, PLANTENGEMEENSCHAPPE 34 147 152 2 41 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0022-0477 J ECOL J. Ecol. APR 1996 84 2 153 166 10.2307/2261351 14 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology UH363 WOS:A1996UH36300002 2019-02-26 J Sparkes, TC Sparkes, TC Effects of predation risk on population variation in adult size in a stream dwelling isopod OECOLOGIA English Article isopod; sculpin; salamander larvae; size-dependent mortality risk; antipredator life history strategy LIFE-HISTORY EVOLUTION; SELECTIVE PREDATION; LIRCEUS-FONTINALIS; HABITAT USE; COMPETITION; AGE; PREFERENCE; ALLOCATION; MORTALITY; MATURITY I used a combination of laboratory experiments and field surveys to examine the role that population-specific predation risk may play in shaping the life history strategy of a stream-dwelling isopod Lirceus fontinalis. Two focal populations were identified that were exposed to different predator types. The first population was exposed to larvae of the streamside salamander (Ambystoma barbouri) and the second to banded sculpin (Cottus carolinae). A laboratory experiment, in which different size classes of prey were offered simultaneously to individual predators, revealed that L. fontinalis suffered greatest mortality risk at small sizes with A. barbouri. Alternatively, with C. carolinae the risk of mortality was independent of size. Life history theory predicts that L, frontinalis from populations exposed to the gaps-limited salamander larvae should be larger at maturity relative to individuals from populations exposed to C. carolinae. Field surveys on the two focal populations both within 1 year and across 4 years supported this prediction. Four other populations, two exposed to streamside salamander larvas and two to fish, provided additional support for the prediction. I concluded that L. fontinalis exhibited an adaptive response in size at maturity in response to population-specific predation risk. I then used gut content assays of the major predators to assess whether the population-specific life history strategies adopted by L. fontinalis were successful in avoiding predation. Sparkes, TC (reprint author), UNIV KENTUCKY, TH MORGAN SCH BIOL SCI, CTR ECOL EVOLUT & BEHAV, LEXINGTON, KY 40506 USA. ADAMS J, 1985, BEHAVIOUR, V92, P277; BRODIE ED, 1983, HERPETOLOGICA, V39, P67; CALEF GW, 1973, ECOLOGY, V54, P741, DOI 10.2307/1935670; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHESSON J, 1978, ECOLOGY, V59, P211, DOI 10.2307/1936364; Conover W. J., 1980, PRACTICAL NONPARAMET; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; CROWLEY PH, 1991, AM NAT, V137, P567, DOI 10.1086/285184; GALBRAIT.MG, 1967, T AM FISH SOC, V96, P1, DOI 10.1577/1548-8659(1967)96[1:SPODBR]2.0.CO;2; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Havel J.E., 1987, P263; HEER LM, 1974, THESIS U KENTUCKY; HOLOMUZKI JR, 1988, OIKOS, V52, P79, DOI 10.2307/3565985; HOLOMUZKI JR, 1990, HOLARCTIC ECOL, V13, P300; HUANG CF, 1990, ECOLOGY, V71, P1515, DOI 10.2307/1938288; HUANG CF, 1991, OECOLOGIA, V85, P530, DOI 10.1007/BF00323765; HUANG CF, 1991, FRESHWATER BIOL, V25, P451, DOI 10.1111/j.1365-2427.1991.tb01388.x; HUBRICHT L, 1949, AM MIDL NAT, V42, P334, DOI 10.2307/2422012; Kerfoot WC, 1987, PREDATION DIRECT IND; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MORIN PJ, 1983, ECOL MONOGR, V53, P119, DOI 10.2307/1942491; NEWMAN RM, 1984, ECOLOGY, V65, P1535, DOI 10.2307/1939133; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Pennak R. W., 1989, FRESHWATER INVERTEBR; PETRANKA JW, 1986, ECOLOGY, V67, P729, DOI 10.2307/1937696; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Roff Derek A., 1992; *SAS, 1988, SAS STAT US GUID REL; SHORT TM, 1992, FRESHWATER BIOL, V27, P91, DOI 10.1111/j.1365-2427.1992.tb00526.x; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; Stearns SC., 1992, EVOLUTION LIFE HIST; STENHOUSE SL, 1983, J HERPETOL, V17, P210, DOI 10.2307/1563822; STYRON CE, 1969, AM MIDL NAT, V82, P402, DOI 10.2307/2423786; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WOOSTER D, 1994, OECOLOGIA, V99, P7, DOI 10.1007/BF00317077; Zaret T. M., 1980, PREDATION FRESHWATER 43 26 27 0 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia APR 1996 106 1 85 92 10.1007/BF00334410 8 Ecology Environmental Sciences & Ecology UF579 WOS:A1996UF57900010 28307160 2019-02-26 J Day, T; Taylor, PD Day, T; Taylor, PD Evolutionarily stable versus fitness maximizing life histories under frequency-dependent selection PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article CHARACTER DISPLACEMENT; NATURAL-SELECTION; COEVOLUTION; MODELS; TRAITS; AGE There has been recent interest in using the techniques of quantitative genetics to study optimal life histories under frequency-dependent selection, but a search of the literature has revealed no clear quantitative genetics recursion that incorporates both frequency dependence and overlapping generations. This may be due in part to the historical tendency of life-history theory to ignore frequency dependence. Here we provide such a recursion, and use it to explore the general question of how frequency-dependent selection bn life-history traits can cause the evolutionarily stable strategies to differ from the point of maximum mean fitness. Day, T (reprint author), QUEENS UNIV, DEPT MATH & STAT, KINGSTON, ON K7L 3N6, CANADA. ABRAMS P, 1983, THEOR POPUL BIOL, V24, P22, DOI 10.1016/0040-5809(83)90044-8; ABRAMS PA, 1989, EVOL ECOL, V3, P215, DOI 10.1007/BF02270722; ABRAMS PA, 1993, EVOLUTION, V47, P982, DOI 10.1111/j.1558-5646.1993.tb01254.x; BROWN JS, 1987, EVOLUTION, V41, P66, DOI 10.1111/j.1558-5646.1987.tb05771.x; CHARLESWORTH B, 1993, P ROY SOC B-BIOL SCI, V251, P47, DOI 10.1098/rspb.1993.0007; Charlesworth B, 1994, EVOLUTION AGE STRUCT; Falconer D. S., 1989, INTRO QUANTITATIVE G; Haldane J. B. S, 1932, CAUSES EVOLUTION; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; Lande R., 1982, P21; LESLIE PH, 1948, BIOMETRIKA, V35, P213, DOI 10.1093/biomet/35.3-4.213; MATSUDA H, 1994, EVOLUTION, V48, P1764, DOI 10.1111/j.1558-5646.1994.tb02212.x; Roff Derek A., 1992; SLATKIN M, 1979, GENETICS, V93, P755; SLATKIN M, 1980, ECOLOGY, V61, P163, DOI 10.2307/1937166; Smith J.M., 1982, EVOLUTION THEORY GAM; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1992, EVOLUTION LIFE HISTO; TAPER ML, 1992, EVOLUTION, V46, P317, DOI 10.1111/j.1558-5646.1992.tb02040.x; TAYLOR PD, 1996, IN PRESS EVOLUTION; TAYLOR PD, 1996, UNPUB EVOLUTIONARY S; VINCENT TL, 1988, ANNU REV ECOL SYST, V19, P423; Wright S., 1942, Bull Amer Math Soc, V48, P223, DOI 10.1090/S0002-9904-1942-07641-5 29 14 14 0 6 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAR 22 1996 263 1368 333 338 10.1098/rspb.1996.0051 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology UE093 WOS:A1996UE09300014 2019-02-26 J McNamara, JM; Houston, AI McNamara, JM; Houston, AI State-dependent life histories NATURE English Review CLUTCH SIZE; REPRODUCTIVE EFFORT; PHENOTYPIC PLASTICITY; REACTION NORMS; GREAT TIT; AGE; EVOLUTION; NUMBER; STRATEGIES; SELECTION Life-history theory is concerned with strategic decisions over an organism's lifetime. Evidence is accumulating about the way in which these decisions depend on the organism's physiological state and other components such as external circumstances. Phenotypic plasticity may be interpreted as an organism's response to its state. The quality of offspring may depend on the state and behaviour of the mother. Recent theoretical advances allow these and other state-dependent effects to be modelled within the same framework. UNIV BRISTOL, SCH BIOL SCI, BRISTOL BS8 1UG, AVON, ENGLAND McNamara, JM (reprint author), UNIV BRISTOL, SCH MATH, UNIV WALK, BRISTOL BS8 1TW, AVON, ENGLAND. Altmann J., 1988, P403; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BLARER A, 1995, P R SOC LOND B, V262, P303; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Caswell H., 1989, MATRIX POPULATION MO; CHANDRA RK, 1975, SCIENCE, V190, P289, DOI 10.1126/science.1179211; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B, 1994, EVOLUTION AGE STRUCT; Clutton-Brock T.H., 1988, P325; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1985, J ANIM ECOL, V54, P831, DOI 10.2307/4381; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; ELLNER S, 1986, J THEOR BIOL, V123, P173, DOI 10.1016/S0022-5193(86)80151-5; Fisher R. A, 1958, GENETICAL THEORY NAT; FRANK LG, 1986, ANIM BEHAV, V34, P1510, DOI 10.1016/S0003-3472(86)80221-4; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HARCOURT AH, 1989, TRENDS ECOL EVOL, V4, P101, DOI 10.1016/0169-5347(89)90055-4; HEINSOHN RG, 1991, AM NAT, V137, P864, DOI 10.1086/285198; HOLEKAMP KE, 1993, ANIM BEHAV, V46, P451, DOI 10.1006/anbe.1993.1214; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOUSTON DC, 1995, IBIS, V137, P322, DOI 10.1111/j.1474-919X.1995.tb08028.x; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; LANDE R, 1990, GENET RES, V55, P189, DOI 10.1017/S0016672300025520; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LEIMAR O, IN PRESS BEHAV ECOL; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Lumey L H, 1992, Paediatr Perinat Epidemiol, V6, P240, DOI 10.1111/j.1365-3016.1992.tb00764.x; LUNN NJ, 1993, J ZOOL, V229, P55, DOI 10.1111/j.1469-7998.1993.tb02620.x; MANGEL M, 1994, BEHAV ECOL, V5, P412, DOI 10.1093/beheco/5.4.412; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; MCNAMARA JM, 1993, J THEOR BIOL, V161, P23, DOI 10.1006/jtbi.1993.1037; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; MCNAMARA JM, 1995, EVOL ECOL, V9, P185, DOI 10.1007/BF01237756; MCNAMARA JM, 1993, ACTA BIOTHEOR, V41, P165, DOI 10.1007/BF00712164; MCNAMARA JM, IN PRESS THEOR POP B; MECH LD, 1991, J MAMMAL, V72, P146, DOI 10.2307/1381989; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MOLLER AP, 1993, J ANIM ECOL, V62, P309, DOI 10.2307/5362; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PERRIN N, 1993, EVOL ECOL, V7, P576, DOI 10.1007/BF01237822; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PETTIFOR RA, 1993, J ANIM ECOL, V62, P131, DOI 10.2307/5488; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PRICE K, 1993, BEHAV ECOL, V4, P144, DOI 10.1093/beheco/4.2.144; PRINCE PA, 1981, CONDOR, V83, P238, DOI 10.2307/1367315; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; RISCH TS, 1995, ECOLOGY, V76, P1643, DOI 10.2307/1938165; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.ecolsys.18.1.209; Roff Derek A., 1992; SAETHER BE, 1993, J ANIM ECOL, V62, P482, DOI 10.2307/5197; SILK JB, 1983, AM NAT, V121, P56, DOI 10.1086/284039; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Steams S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; TANNER JE, 1994, ECOLOGY, V75, P2204, DOI 10.2307/1940877; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; ZAMENHOF S, 1971, SCIENCE, V172, P850, DOI 10.1126/science.172.3985.850 73 508 511 5 168 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0028-0836 1476-4687 NATURE Nature MAR 21 1996 380 6571 215 221 10.1038/380215a0 7 Multidisciplinary Sciences Science & Technology - Other Topics UB117 WOS:A1996UB11700042 8637568 2019-02-26 J Reznick, DN; Rodd, FH; Cardenas, M Reznick, DN; Rodd, FH; Cardenas, M Life-history evolution in guppies (Poecilia reticulata: Poeciliidae) .4. Parallelism in life-history phenotypes AMERICAN NATURALIST English Article TRINIDADIAN GUPPIES; SELECTION; PREDATION; POPULATION; PATTERNS; CONVERGENCE; FISHES; IMPACT In earlier publications, we reported an association between the life-history patterns of guppies and the types of predators with which they co-occur. We contrasted guppies from high-predation sites (Crenicichla localities) with those from low-predation sites (Rivulus localities) found on the south slope of the Northern Range Mountains of Trinidad. Guppies from high-predation localities attain maturity at an earlier age and smaller size, produce more and smaller offspring per litter, and have higher reproductive allotments than their counterparts from low-predation sites. Here we present a parallel series of analyses for guppies from a new series of localities on the north slope of the Northern Range. These fish are also found in what appear to be high- and low-predation communities, but, with one exception, the species of predators are entirely different from those on the south slope. The larger predators are derived from marine families (gobies and mullets) that have invaded freshwater rivers; the south slope fauna is derived from families typical of mainland South America. If predator-induced mortality selects for life-history evolution, then guppies from high- and low-predation sites on the north slope should have life histories similar to their counterparts on the south slope. We compare the life-history phenotypes of guppies from the north slope communities and find that the high-and low-predation contrasts are remarkably similar to those reported earlier for the south slope communities. We reinforce this comparison with multivariate analyses that use discriminant functions derived for the south slope collections to classify north slope samples. Finally, we exploit recent molecular genetic data and the geographical distribution of high- and low-predation communities to argue for the independent origin of these life-history patterns in each drainage. YORK UNIV,DEPT BIOL,N YORK,ON M3J 1P3,CANADA Reznick, DN (reprint author), UNIV CALIF RIVERSIDE,DEPT BIOL,RIVERSIDE,CA 92521, USA. reznick, david/0000-0002-1144-0568 CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CODY ML, 1978, ANNU REV ECOL SYST, V9, P265, DOI 10.1146/annurev.es.09.110178.001405; CULVER D C, 1990, Memoires de Biospeologie, V17, P13; EMERSON SB, 1990, FUNCT ECOL, V4, P47, DOI 10.2307/2389651; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; JONES R, 1992, EVOLUTION, V46, P353, DOI 10.1111/j.1558-5646.1992.tb02043.x; KANE TC, 1992, EVOLUTION, V46, P272, DOI 10.1111/j.1558-5646.1992.tb02002.x; KLECKA WR, 1980, 07019 SAG U PAP SER; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MCFARLAND W, 1979, VERTEBRATE LIFE; Meffe G.K., 1989, P13; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MILLIKEN GA, 1984, ANAL MESSY DATA; MORRIS P, 1991, BIOL J LINN SOC, V44, P307, DOI 10.1111/j.1095-8312.1991.tb00622.x; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; PHILLIP DAT, 1993, ENVIRON BIOL FISH, V37, P47, DOI 10.1007/BF00000711; RESNICK DN, 1996, INPRESS EVOLUTION; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SEGHERS BH, 1973, THESIS U BRIT COLUMB; SHAW PW, 1991, J FISH BIOL, V39, P203, DOI 10.1111/j.1095-8649.1991.tb05084.x; SOKAL R., 1981, BIOMETRY; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; WAKE DB, 1991, AM NAT, V138, P543, DOI 10.1086/285234; WEISS MR, 1991, NATURE, V354, P227, DOI 10.1038/354227a0; WOURMS JP, 1981, AM ZOOL, V21, P473; 1988, SAS STAT USERS GUIDE 40 138 139 2 51 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. MAR 1996 147 3 319 338 10.1086/285854 20 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology TV859 WOS:A1996TV85900001 2019-02-26 J Reznick, DN; Bryga, HA Reznick, DN; Bryga, HA Life-history evolution in guppies (Poecilia reticulata: Poeciliidae) .5. Genetic basis of parallelism in life histories AMERICAN NATURALIST English Article SELECTION; PATTERNS; REPRODUCTION; PREDATION; TRINIDAD; FISHES; IMPACT; SPACE We document a genetic basis for convergent life-history evolution in guppies from high- and low-predation sites on the north slope of the Northern Range Mountains of Trinidad. In previous work, we showed that guppies from high-predation sites on the south slope attained maturity at an earlier age and smaller size; produced more, smaller offspring per litter; and had higher reproductive efforts than their counterparts from low-predation localities. The south slope has predators derived from a mainland South American fauna. These predators are absent from the north slope drainages and are replaced by species derived from a marine fauna. Nevertheless, the same contrast between high- and low-predation sites appears to exist. In a companion article we demonstrate differences in the life-history phenotypes of guppies from high- versus low-predation localities on the north slope. The patterns are similar to those on the south slope for almost all dependent variables. A study of life-history phenotypes is based on wild-caught individuals, so any observed differences in life histories can be attributed to environmental effects. The virtue of such an investigation is that it is possible to efficiently survey a large number of populations from a wide geographical area. In the current study, we evaluate the life-history genotypes of guppies from two high- and two low-predation localities. We reared guppies for two generations in a common environment, then compared the life histories of individuals reared on controlled levels of food availability, This methodology allows us to evaluate more components of the life history than is possible in a study of life-history phenotypes, including age at maturity and reproductive effort, and to conclude that these differences have a genetic basis; however, it is limited in the number of populations that can be evaluated. A combination of the geographical breadth of the first study and the greater depth of this study provides a more complete picture of interpopulation variation in guppy life-history patterns. Reznick, DN (reprint author), UNIV CALIF RIVERSIDE, DEPT BIOL, RIVERSIDE, CA 92521 USA. Langerhans, R./A-7205-2009 reznick, david/0000-0002-1144-0568 CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; DUSSAULT GV, 1981, CAN J ZOOL, V59, P684, DOI 10.1139/z81-098; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; GORDON M, 1950, FISHES LABORATORY AN, P315; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Kleiber M., 1975, FIRE LIFE INTRO ANIM; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MCCLENAGHAN LR, 1985, EVOLUTION, V39, P451, DOI 10.1111/j.1558-5646.1985.tb05681.x; NORDLIE FG, 1981, J FISH BIOL, V18, P97, DOI 10.1111/j.1095-8649.1981.tb03764.x; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PHILLIP DAT, 1993, ENVIRON BIOL FISH, V37, P47, DOI 10.1007/BF00000711; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1996, IN PRESS EVOLUTION; REZNICK DN, 1980, THESIS U PENNSYLAVAN; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Roff Derek A., 1992; ROSENTHAL HL, 1952, BIOL BULL, V102, P30, DOI 10.2307/1538621; Smith M.H., 1989, P235; Stearns SC., 1992, EVOLUTION LIFE HIST; THOMAS RDK, 1993, EVOLUTION, V47, P341, DOI 10.1111/j.1558-5646.1993.tb02098.x; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; WOURMS JP, 1981, AM ZOOL, V21, P473; 1988, SAS STAT USERS GUIDE 33 113 114 0 33 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAR 1996 147 3 339 359 10.1086/285855 21 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology TV859 WOS:A1996TV85900002 2019-02-26 J Carvalho, GR; Shaw, PW; Hauser, L; Seghers, BH; Magurran, AE Carvalho, GR; Shaw, PW; Hauser, L; Seghers, BH; Magurran, AE Artificial introductions, evolutionary change and population differentiation in Trinidadian guppies (Poecilia reticulata:Poeciliidae) BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article genetic differentiation; natural selection; adaptation; genetic variability; predation; founder effect; allozyme LIFE-HISTORY EVOLUTION; COLOR PATTERNS; GENETIC DIFFERENTIATION; BEHAVIOR; REVOLUTIONS; BOTTLENECKS; DIVERGENCE; SPECIATION; SELECTION; DISTANCE The evolutionary consequences of three artificial introductions of the guppy, Poecilia reticulata, in Trinidad were examined by comparing the allozymic structure (observed heterozygosity (H-o) and mean number of alleles (N-a)) of each corresponding source (S) and transplant (T) population. In 'Haskins' (H) and 'Endler's' (E) introduction, 200 guppies (half female) were transferred to guppy-free habitats in 1957 and 1976 respectively. 'Kenny's' (K) introduction in 1981 involved the release of a single pregnant female into an isolated ornamental pond. Analysis of allozyme frequencies at 25 enzyme-coding loci revealed reductions in observed heterozygosity at some loci in all three transplant samples, and a marked decline in the mean number of alleles in Kenny's pond sample. Significant genetic differentiation occurred between (S) and (T) samples at some loci in all introductions, but was most marked in H(T) and K(T). Despite previous studies on rapid evolutionary changes in the life histories and morphology of Endler's transplant guppies, there was little support for any major effects of stochastic forces on allozymic diversity arising from the introduction. Selection arising from changes in predation pressure appeared to be the predominant factor causing the remarkably rapid adaptation of guppies to their new environments. Generic divergence in some marginal or isolated natural populations was similar to, or greater than, Kenny's pond guppies (Reynolds' genetic distance, R = 0.496), indicating that chance colonization and founder effects may have contributed to the observed geographic patterns of genetic differentiation in Trinidad. (C) 1996 The Linnean Society of London UNIV COLL SWANSEA,SCH BIOL SCI,MARINE & FISHERIES GENET LAB,SWANSEA SA2 8PP,W GLAM,WALES; UNIV OXFORD,DEPT ZOOL,ANIM BEHAV RES GRP,OXFORD OX1 3PS,ENGLAND Langerhans, R./A-7205-2009; Magurran, Anne/D-7463-2013; Hauser, Lorenz/E-4365-2010 Magurran, Anne/0000-0002-0036-2795 BAKER AJ, 1990, EVOLUTION, V44, P981, DOI 10.1111/j.1558-5646.1990.tb03819.x; BAKER AJ, 1987, EVOLUTION, V41, P525, DOI 10.1111/j.1558-5646.1987.tb05823.x; BARTON NH, 1984, ANNU REV ECOL SYST, V15, P133, DOI 10.1146/annurev.es.15.110184.001025; BOOS HEA, 1984, LIVING WORLD, P19; BRIGGS JC, 1984, SYST ZOOL, V33, P428, DOI 10.2307/2413095; CARSON HL, 1984, ANNU REV ECOL SYST, V15, P97, DOI 10.1146/annurev.es.15.110184.000525; Carvalho G. R., 1995, IMPACT SPECIES CHANG, P457; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; CARVALHO GR, 1993, J FISH BIOL, V43, P53, DOI 10.1111/j.1095-8649.1993.tb01179.x; COSS RG, 1991, ECOL PSYCHOL, V5, P171; CURIO E, 1993, ADV STUD BEHAV, V22, P135, DOI 10.1016/S0065-3454(08)60407-6; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Endler JA, 1986, NATURAL SELECTION WI; FAJEN A, 1992, EVOLUTION, V46, P1457, DOI 10.1111/j.1558-5646.1992.tb01136.x; FEVOLDEN SE, 1989, HEREDITAS, V110, P149, DOI 10.1111/j.1601-5223.1989.tb00435.x; GHARRETT AJ, 1987, CAN J FISH AQUAT SCI, V43, P787; GOLUBTSOV AS, 1993, Z ZOOL SYST EVOL, V31, P269; HARRIS H, 1976, HDB ENZYME ELECTROPH; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HINDAR K, 1991, CAN J FISH AQUAT SCI, V48, P945, DOI 10.1139/f91-111; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; Huntingford F.A., 1994, P277; KNIGHT AJ, 1987, BIOL J LINN SOC, V32, P417, DOI 10.1111/j.1095-8312.1987.tb00441.x; LEBERG PL, 1992, EVOLUTION, V46, P477, DOI 10.1111/j.1558-5646.1992.tb02053.x; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LOUIS EJ, 1987, BIOMETRICS, V43, P805, DOI 10.2307/2531534; LUYTEN PH, 1991, BEHAV ECOL SOCIOBIOL, V28, P329, DOI 10.1007/BF00164382; MAGURRAN AE, 1995, ADV STUD BEHAV, V24, P155, DOI 10.1016/S0065-3454(08)60394-0; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1987, PROC R SOC SER B-BIO, V229, P439, DOI 10.1098/rspb.1987.0004; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; MAGURRAN AE, 1993, MARINE BEHAV PHYSL, V22, P29; MARUYAMA T, 1985, GENETICS, V111, P675; Mayr E., 1963, ANIMAL SPECIES EVOLU; MCCOMMAS SA, 1990, HEREDITY, V64, P315, DOI 10.1038/hdy.1990.39; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; NEI M, 1975, EVOLUTION, V2, P1; Provine W.B., 1989, P43; RAYMOND M, IN PRESS EVOLUTION; REYNOLDS J, 1983, GENETICS, V105, P767; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Seghers B.H., 1992, P81; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SHAKLEE JB, 1990, T AM FISH SOC, V119, P2, DOI 10.1577/1548-8659(1990)119<0002:GNFPLI>2.3.CO;2; SHAW PW, 1994, J FISH BIOL, V45, P875, DOI 10.1006/jfbi.1994.1184; SHAW PW, 1991, J FISH BIOL, V39, P203, DOI 10.1111/j.1095-8649.1991.tb05084.x; SHAW PW, 1992, P ROY SOC LOND B BIO, V247, P111; SING CF, 1973, GENETICS, V75, P381; STLOUIS VL, 1988, EVOLUTION, V42, P266, DOI 10.1111/j.1558-5646.1988.tb04131.x; SWOFFORD DL, 1989, BIOSYS 1 COMPUTER PR; VUORINEN J, 1991, J FISH BIOL, V39, P193, DOI 10.1111/j.1095-8649.1991.tb05083.x; WARD RD, 1994, J FISH BIOL, V44, P213, DOI 10.1111/j.1095-8649.1994.tb01200.x; Wright S, 1978, EVOLUTION GENETICS P, V4 60 38 38 0 18 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0024-4066 BIOL J LINN SOC Biol. J. Linnean Soc. MAR 1996 57 3 219 234 10.1111/j.1095-8312.1996.tb00310.x 16 Evolutionary Biology Evolutionary Biology UH203 WOS:A1996UH20300003 Bronze 2019-02-26 J Chiappone, M; Sullivan, KM Chiappone, M; Sullivan, KM Distribution, abundance and species composition of juvenile scleractinian corals in the Florida Reef Tract BULLETIN OF MARINE SCIENCE English Article HERMATYPIC CORALS; RECRUITMENT PATTERNS; COMMUNITY STRUCTURE; CARIBBEAN REEF; KEY-LARGO; RED-SEA; SETTLEMENT; QUANTIFICATION; POPULATIONS; MORTALITY The density of juvenile scleratinian corals was quantified in shallow-water (4-18 m) sites representing three common reef types of the Florida Reef Tract: high-relief spur and groove, relict reef flat, and relict spur and groove. Reef types were chosen to encompass differences in depth, physical relief, and coral abundance. The purpose of this study was to 1) determine the density of juveniles in relation to non-juvenile corals and depth; and 2) evaluate correlations between juveniles and non-juvenile density in relation to larval dispersal strategies. Juvenile corals were identified and enumerated in random l-mz quadrat surveys and compared to density and cover of non-juveniles. Juveniles of 16 species were identified among the study sites. The number of species observed as juveniles was significantly greater in deeper (>10 m), relict spur and groove sites. Juvenile density differed significantly among sites and reef types, ranging from 1.18 to 3.74 colonies m(-2). Juvenile density was greatest in relict spur and groove sites and was weakly correlated (r = 0.581) with depth. Juveniles comprised from 20.6 to 51.5% of the total coral assemblage in study sites. The majority of juveniles in high-relief spur and groove and relict reef flat communities were Agaricia agaricites, Porites astreoides, and P. porites. The majority of juveniles in relict spur and groove sites were P. astreoides, P. porites, and Montastraea cavernosa. Non-juvenile density and cover were significantly different among the study sites. Non-juvenile density (r = 0.577) was weakly correlated with depth. Coral cover ranged from 0.4 to 13 percent throughout the study area and was greatest in high-relief spur and groove communities. Life history strategies of juveniles in high-relief spur and groove and relict reef flat communities were generally characterized by species that brood larvae and attain a small colony size. Juveniles of three dominant brooding species (A. agaricites, P astreoides, and P. porites) were significantly correlated to parental abundance across sites, suggesting that either self-seeding may occur for some species or that some recruits have been able to grow and survive. Density of juvenile A. agaricites was inversely related to depth (r = -0.326). Juveniles of three broadcasting species (M. annularis, M. cavernosa, Siderastrea siderea) were significantly correlated to parental abundance and increased in abundance with depth (r > 0.450). In contrast to some previous studies of juvenile coral assemblages in Caribbean reefs, the results suggest that parental abundance and composition may be a direct function of juvenile abundance in reef communities of the Florida Keys. Chiappone, M (reprint author), UNIV MIAMI,DEPT BIOL,NAT CONSERVANCY,FLORIDA & CARIBBEAN MARINE CONSERVAT SCI CTR,POB 249118,CORAL GABLES,FL 33124, USA. Sealey, Kathleen/0000-0003-4470-0909 BABCOCK RC, 1988, 6TH P INT COR REEF S, V2, P635; BAGGETT LS, 1985, 5TH P INT COR REEF C, V4, P379; Bak R.P.M., 1976, Netherlands J Sea Res, V10, P285, DOI 10.1016/0077-7579(76)90009-0; BAK RPM, 1976, MAR BIOL, V37, P105, DOI 10.1007/BF00389121; BAK RPM, 1979, MAR BIOL, V54, P341, DOI 10.1007/BF00395440; BIRKELAND C, 1977, 3RD P INT COR REEF S, V1, P15; Boschma H., 1929, Papers from the Tortugas Laboratory, V26, P129; CARLETON JH, 1987, B MAR SCI, V40, P85; CONNELL JH, 1973, BIOLOGY GEOLOGY CORA, V2, P205; DUSTAN P, 1987, CORAL REEFS, V6, P91, DOI 10.1007/BF00301378; DUSTAN P, 1977, ENVIRON GEOL, V2, P51, DOI 10.1007/BF02430665; Fadlallah Y.H., 1983, Coral Reefs, V2, P129, DOI 10.1007/BF00336720; GRIGG RW, 1974, ECOLOGY, V55, P387, DOI 10.2307/1935226; HARRIOTT VJ, 1987, MAR ECOL PROG SER, V37, P201, DOI 10.3354/meps037201; HUDSON JH, 1981, 4TH P INT COR REEF S, V2, P233; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; JAAP WC, 1988, P 6 INT COR REEF S, V2, P237; JAAP WC, 1984, FWSOBS8208 US FISH W; LEE TN, 1992, CONT SHELF RES, V12, P971, DOI 10.1016/0278-4343(92)90055-O; Lewis J.B., 1974, Proceedings int Coral Reef Symp, V2, P201; LOYA Y, 1972, MAR BIOL, V13, P100, DOI 10.1007/BF00366561; Marszalek DS, 1977, P 3 INT COR REEF S, P223; Pielou E. C., 1977, MATH ECOLOGY; PORTER JW, 1992, AM ZOOL, V32, P625; RICHMOND RH, 1990, MAR ECOL PROG SER, V60, P185, DOI 10.3354/meps060185; ROBBIN DM, 1981, 4TH P INT COR REEF S, V1, P575; ROBERTS HH, 1982, J SEDIMENT PETROL, V52, P145; ROGERS CS, 1984, CORAL REEFS, V3, P69, DOI 10.1007/BF00263756; ROUGHGARDEN J, 1985, ECOLOGY, V66, P54, DOI 10.2307/1941306; SAMMARCO PW, 1989, LIMNOL OCEANOGR, V34, P896, DOI 10.4319/lo.1989.34.5.0896; SHINN EA, 1989, FIELD TRIP GUIDEBOOK, V176; SOONG K, 1993, CORAL REEFS, V12, P77, DOI 10.1007/BF00302106; SOONG K, 1991, B MAR SCI, V49, P832; SZMANT AM, 1986, CORAL REEFS, V5, P43, DOI 10.1007/BF00302170; VANMOORSEL GWNM, 1988, MAR ECOL PROG SER, V50, P127, DOI 10.3354/meps050127; VANMOORSEL GWNM, 1985, MAR ECOL PROG SER, V24, P99, DOI 10.3354/meps024099; VANVEGHEL MLJ, 1994, MAR ECOL PROG SER, V109, P221, DOI 10.3354/meps109221; VAUGHAN VW, 1915, J NAT ACAD SCI, V5, P591; WHEATON JL, 1988, FLA MAR RES PUBL, V43, P1; WHITE MW, 1985, 5TH P INT COR REEF S, V6, P531; WITTENBERG M, 1992, MAR BIOL, V112, P131, DOI 10.1007/BF00349736; Zar J. H., 1984, BIOSTATISTICAL ANAL 42 54 58 1 17 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 0007-4977 B MAR SCI Bull. Mar. Sci. MAR 1996 58 2 555 569 15 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography TZ926 WOS:A1996TZ92600014 2019-02-26 J Slagsvold, T; Dale, S Slagsvold, T; Dale, S Disappearance of female Pied Flycatchers in relation to breeding stage and experimentally induced molt ECOLOGY English Article adult predation; body mass; Ficedula hypoleuca; molt; physiological stress; sexual dimorphism FICEDULA-HYPOLEUCA; CLUTCH SIZE; HATCHING ASYNCHRONY; REPRODUCTIVE EFFORT; PREDATION RISK; BODY-MASS; BIRDS; COSTS; INCUBATION; SPARROWHAWKS According to life history theory, adult mortality during the breeding season may have an important influence on the evolution of several aspects of breeding ecology in birds, yet few studies have tried to quantify such mortality. We studied disappearance of Pied Flycatchers (Ficedula hypoleuca) during four breeding seasons in a woodland area in Norway provided with nest boxes. The main cause of disappearance was probably predation by the European Sparrowhawk (Accipiter nisus). Disappearance was nonsignificantly higher in females (10% per season, n = 305) than in males (7% per season, n = 269). Female disappearance peaked during egg-laying (0.53% per day), but was also high during the nest-building (0.42% per day) and nestling (0.36% per day) stages. It was low during incubation (0.05% per day), probably because less time was spent outside the nest. Low risk of predation during incubation may help to explain why female body mass remains high during this stage of breeding but drops soon after hatching. Females with selected flight feathers experimentally removed to simulate molt suffered a much higher disappearance per season (24%, n = 109) than did control females (10%, n = 305). This may help to explain why breeding and molt usually are temporally segregated activities in birds. Variation in female body mass and size (wing length, tarsus length), age, previous breeding experience, mating date, laying date, clutch size, and mating status could not account for the variation found in female disappearance. Disappearance was lower in males than in females during the nest-building period, despite the more conspicuous plumage color of males. This may be explained by the fact that only the female builds the nest. We suggest that risk of predation is an important constraint on sexual selection of male plumage color in species in which males take part in nest building. Slagsvold, T (reprint author), UNIV OSLO,DEPT BIOL,POB 1050,N-0316 OSLO,NORWAY. ANDERSSON M, 1978, ANIM BEHAV, V26, P1207, DOI 10.1016/0003-3472(78)90110-0; BEISSINGER SR, 1991, AUK, V108, P863; Breitwisch R., 1989, Current Ornithology, V6, P1; CRESSWELL W, 1993, ANIM BEHAV, V46, P609, DOI 10.1006/anbe.1993.1231; Creutz G., 1955, Journal fuer Ornithologie, V96, P241; CURIO E, 1975, ANIM BEHAV, V23, P1, DOI 10.1016/0003-3472(75)90056-1; DALE S, 1992, BEHAV ECOL SOCIOBIOL, V30, P165, DOI 10.1007/BF00166699; DALE S, 1994, ANIM BEHAV, V47, P1197, DOI 10.1006/anbe.1994.1158; DHONDT AA, 1981, ORNIS SCAND, V12, P127, DOI 10.2307/3676039; DRENT RH, 1980, ARDEA, V68, P225; Endler J.A., 1991, P169; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; GEER TA, 1978, CONDOR, V80, P419, DOI 10.2307/1367192; GOTMARK F, 1995, BEHAV ECOL, V6, P22, DOI 10.1093/beheco/6.1.22; GOTMARK F, 1994, P ROY SOC B-BIOL SCI, V256, P83, DOI 10.1098/rspb.1994.0053; GOTMARK F, IN PRESS OIKOS; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HAFTORN S, 1985, AUK, V102, P470; HOUSTON AI, 1986, J THEOR BIOL, V119, P345, DOI 10.1016/S0022-5193(86)80146-1; Jenni L, 1994, MOULT AGEING EUROPEA; JONES G, 1986, BEHAV ECOL SOCIOBIOL, V19, P179; Karlsson L., 1986, Var Fagelvarld, V45, P131; Lifjeld JT, 1990, BEHAV ECOL, V1, P48, DOI 10.1093/beheco/1.1.48; LIFJELD JT, 1986, ANIM BEHAV, V34, P1441, DOI 10.1016/S0003-3472(86)80215-9; LIFJELD JT, 1988, ORNIS SCAND, V19, P111, DOI 10.2307/3676459; LIMA SL, 1986, ECOLOGY, V67, P377, DOI 10.2307/1938580; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDSTROM A, 1989, AUK, V106, P225; Lundberg A., 1992, PIED FLYCATCHER; MAGRATH RD, 1988, AM NAT, V131, P893, DOI 10.1086/284829; Martin T.E., 1992, Current Ornithology, V9, P163; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; Newton I., 1986, SPARROWHAWK; NORDBERG RA, 1981, AM NAT, V118, P838; NUR N., 1990, POPULATION BIOL PASS, P281; ORELL M, 1980, ORNIS SCAND, V11, P43, DOI 10.2307/3676264; PART T, 1989, J ANIM ECOL, V58, P305, DOI 10.2307/5002; PAYNE RB, 1972, AVIAN BIOL, V2, P103; PERRINS CM, 1980, ARDEA, V68, P133; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V250, P143, DOI 10.1098/rspb.1992.0142; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; ROBINSON SK, 1986, ECOLOGY, V67, P394, DOI 10.2307/1938582; ROGERS CM, 1987, ECOLOGY, V68, P1051, DOI 10.2307/1938377; SAETRE GP, 1995, J ANIM ECOL, V64, P21, DOI 10.2307/5824; *SAS I, 1989, JMP US GUID VERS 2 J; SEALY SG, 1986, J FIELD ORNITHOL, V57, P315; SELAS V, 1993, ORNIS FENNICA, V70, P144; SILVERIN B, 1981, ORNIS SCAND, V12, P133, DOI 10.2307/3676040; SLAGSVOLD T, 1989, AM NAT, V134, P239, DOI 10.1086/284978; SLAGSVOLD T, 1986, J ANIM ECOL, V55, P1115, DOI 10.2307/4437; SLAGSVOLD T, 1992, EVOLUTION, V46, P825, DOI 10.1111/j.1558-5646.1992.tb02087.x; SLAGSVOLD T, 1988, ECOLOGY, V69, P1918, DOI 10.2307/1941168; SLAGSVOLD T, 1990, ECOLOGY, V71, P1258, DOI 10.2307/1938263; SLAGSVOLD T, 1994, BEHAV ECOL SOCIOBIOL, V34, P239, DOI 10.1007/s002650050039; SLAGSVOLD T, 1988, ANIM BEHAV, V36, P433, DOI 10.1016/S0003-3472(88)80013-7; SLAGSVOLD T, 1995, IN PRESS ANIMAL BEHA, V50; SMITH HG, 1989, BEHAV ECOL SOCIOBIOL, V24, P417, DOI 10.1007/BF00293270; STENMARK G, 1988, ANIM BEHAV, V36, P1646, DOI 10.1016/S0003-3472(88)80105-2; Sternberg H., 1989, P55; STRESEMANN ERWIN, 1966, J ORNITHOL, V107, P1; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Verner J., 1969, Ornithological Monographs, VNo. 9, P1; von HAARTMAN LARS, 1954, ACTA ZOOL FENNICA, V83, P1; VONHAARTMAN L, 1988, 18 C INT ORN MOSC, P1; WALSBERG GE, 1983, AVIAN BIOL, V7, P161; WOOLFENDEN GE, 1984, FLORIDA SCRUB JAY 67 81 84 1 15 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology MAR 1996 77 2 461 471 10.2307/2265622 11 Ecology Environmental Sciences & Ecology TY198 WOS:A1996TY19800010 2019-02-26 J Young, BE Young, BE An experimental analysis of small clutch size in tropical House Wrens ECOLOGY English Article brood manipulation; clutch size; food limitation; future fecundity; nest predation; offspring quality; population model; survivorship; trade-off; Troglodytes aedon; tropics TIT PARUS-MAJOR; GREAT TIT; BROOD SIZE; TROGLODYTES-AEDON; PASSERINE BIRDS; NEST PREDATION; HATCHING ASYNCHRONY; COLLARED FLYCATCHER; MANIPULATED BROODS; JUVENILE SURVIVAL Trade-offs are central to life history theory, yet few studies have examined how geographic variation in trade-offs can lead to geographic variation in life history characters. I examined whether or not trade-offs for future fecundity or offspring survivorship could explain why tropical birds lay smaller clutches than their temperate relatives. I studied a tropical population (in Monteverde, Costa Pica) of the House Wren (Troglodytes aedon), a species that ranges in average clutch size from 6 in the temperate zone to 3.5 in the tropics. Three years of brood manipulation experiments showed weak effects of brood size on both future fecundity and offspring survivorship. Females that raised broods enlarged by two nestlings laid subsequent clutches, in the same breeding season, that were one-third of an egg smaller than those of females that did not raise enlarged first broods. Clutches in the year following brood manipulation were about a half an egg smaller for females raising enlarged broods than for females raising control or reduced broods. However, brood manipulation had no effect on male or female survivorship in any year of the study, despite the observation that both sexes increased their foraging rate to compensate for rearing larger broods. In two of three years, House Wrens were able to raise enlarged broods just as successfully as control and reduced broods, as measured by fledgling mass and survivorship of nestlings and fledglings. In one year, nestlings in enlarged broods hedged lighter and had lower fledgling survival than those in control or reduced broods. Predation of broods was unrelated to brood size, so food limitation appeared to be the mechanism causing the trade-off between brood number and offspring production. The pattern in tropical House Wrens is similar to that found in many studies of temperate passerines: in most years, brood sizes larger than the modal brood size appear to produce the most offspring. Thus, the same mechanism that controls dutch size in temperate birds may be at work in the tropics, but the level at which clutch size is controlled is lower in tropical birds, resulting in smaller clutches. A population model based on demographic parameters measured in the study population showed that the trade-off for offspring survivorship had a greater influence on fitness than the trade-off for future fecundity. Also, the clutch size strategy accruing the highest fitness depended on temporally varying conditions for reproduction. A strategy of laying 5-6 eggs had higher fitness than laying smaller clutches in years when conditions were favorable for reproduction, but clutch sizes of 3-4 (the observed clutch sizes in Monteverde) were most productive during less favorable years. Depending on the frequency of favorable years, House Wrens may be responding to a ''bad-years effect'' by lowering variance in reproductive success to maximize fitness over the long term. Alternatively, tropical birds may lay fewer eggs so that they can invest more care in each offspring, enhancing the chance that their offspring will survive and compete successfully in social contests for breeding territories. This offspring-quality hypothesis is supported by the observation that tropical House Wrens devote more time to the different stages of the reproductive cycle than do temperate House Wrens. UNIV WASHINGTON,DEPT ZOOL,SEATTLE,WA 98195 Alatalo R, 1990, POPULATION BIOL PASS, P323; ALVAREZ-LOPEZ H, 1984, Caldasia, V14, P85; ARNOLD TW, 1993, WILSON BULL, V105, P448; BALTZ ME, 1988, WILSON BULL, V100, P70; BEISSINGER SR, 1990, AM NAT, V136, P20, DOI 10.1086/285080; BEISSINGER SR, 1991, AUK, V108, P863; BOCK CE, 1992, AM NAT, V140, P815, DOI 10.1086/285442; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Caswell H., 1989, MATRIX POPULATION MO; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; DRILLING NE, 1988, AUK, V105, P480; FINKE MA, 1987, J ANIM ECOL, V56, P99, DOI 10.2307/4802; FOSTER RB, 1982, ECOLOGY TROPICAL FOR, P201; FREED LA, 1987, CONDOR, V89, P195, DOI 10.2307/1368780; FREED LA, 1987, AM NAT, V130, P507, DOI 10.1086/284728; FREED LA, 1986, BEHAV ECOL SOCIOBIOL, V19, P197; FRETWELL SD, 1969, IBIS, V111, P624, DOI 10.1111/j.1474-919X.1969.tb02581.x; GAINES SD, 1990, AM NAT, V135, P310, DOI 10.1086/285047; GARNETT MC, 1981, IBIS, V123, P31, DOI 10.1111/j.1474-919X.1981.tb00170.x; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.es.22.110191.002205; Grant B. R., 1989, EVOLUTIONARY DYNAMIC; GRAVES J, 1991, AUK, V108, P967; GROSS AO, 1948, US NATL MUS BULL, V195, P113; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HAGVAR S, 1989, FAUNA NORVEGICA C, V13, P33; HARPER RG, 1992, BEHAV ECOL, V3, P76, DOI 10.1093/beheco/3.1.76; Hesse R, 1937, ECOLOGICAL ANIMAL GE; HOCHACHKA W, 1991, J ANIM ECOL, V60, P995, DOI 10.2307/5427; Holdridge LR, 1967, LIFE ZONE ECOLOGY; JANZEN D H, 1974, Biotropica, V6, P69, DOI 10.2307/2989823; JARVINEN A, 1991, IBIS, V133, P62, DOI 10.1111/j.1474-919X.1991.tb04811.x; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; KARR JR, 1983, ECOLOGY, V64, P1481, DOI 10.2307/1937503; KENNEDY ED, 1990, CONDOR, V92, P861, DOI 10.2307/1368722; KLOMP H, 1970, ARDEA, V58, P1; KOENIG WD, 1986, CONDOR, V88, P499, DOI 10.2307/1368278; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; LANDE R, 1988, OECOLOGIA, V75, P601, DOI 10.1007/BF00776426; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Levings S. C, 1982, ECOLOGY TROPICAL FOR, P355; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LUNDBERG S, 1985, OIKOS, V45, P110, DOI 10.2307/3565228; MADER WJ, 1982, CONDOR, V84, P261, DOI 10.2307/1367368; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MOLLER AP, 1984, ORNIS SCAND, V15, P43, DOI 10.2307/3676002; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; MURPHY MT, 1989, OIKOS, V54, P3, DOI 10.2307/3565891; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; NUR N., 1990, POPULATION BIOL PASS, P281; ORELL M, 1990, POPULATION BIOL PASS, P297; Perrins C.M., 1977, P181; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; Pollock K.H., 1990, WILDLIFE MONOGR, V107, P1; REDONDO T, 1992, IBIS, V134, P180, DOI 10.1111/j.1474-919X.1992.tb08395.x; Ricklefs R.E., 1977, P193; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 1969, SMITHSONIAN CONTRIBU, V9; ROBINSON KD, 1991, AUK, V108, P277; ROBINSON SK, 1986, ECOLOGY, V67, P394, DOI 10.2307/1938582; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; SAFRIEL UN, 1975, ECOLOGY, V56, P703, DOI 10.2307/1935505; SAUER JR, 1989, J WILDLIFE MANAGE, V53, P137, DOI 10.2307/3801320; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHAUB R, 1992, AUK, V109, P585; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Skutch A. F., 1953, Condor, V55, P121, DOI 10.2307/1364829; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Skutch AF, 1985, ORNITHOLOGICAL MONOG, P575, DOI DOI 10.2307/40168306; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Smith N.G, 1982, ECOLOGY TROPICAL FOR, P331; SMITH SM, 1994, ECOLOGY, V75, P2043, DOI 10.2307/1941609; Stearns SC., 1992, EVOLUTION LIFE HIST; TINBERGEN JM, 1987, ARDEA, V75, P111; TREXLER JC, 1993, ECOLOGY, V74, P1629, DOI 10.2307/1939921; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; WALSBERG GE, 1983, AVIAN BIOL, V7, P161; WILKINSON L, 1989, SYSTAT SYSTEM STAT; WINNETTMURRAY K, 1986, THESIS U FLORIDA GAI; YOUNG BE, 1994, AUK, V111, P545; YOUNG BE, 1994, CONDOR, V96, P341, DOI 10.2307/1369319; YOUNG BE, 1993, THESIS U WASHINGTON; Zach R., 1981, P95; ZACH R, 1982, CAN J ZOOL, V60, P1417, DOI 10.1139/z82-191 95 42 43 1 23 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology MAR 1996 77 2 472 488 10.2307/2265623 17 Ecology Environmental Sciences & Ecology TY198 WOS:A1996TY19800011 2019-02-26 J Case, AL; Lacey, EP; Hopkins, RG Case, AL; Lacey, EP; Hopkins, RG Parental effects in plantago lanceolata L .2. Manipulation of grandparental temperature and parental flowering time HEREDITY English Article flowering phenology; gametophytic selection; intergenerational plasticity; life history evolution; parental temperature effects; Plantago lanceolata SEED; PERFORMANCE; INHERITANCE; CHARACTERS; SIZE In an experimental study of Plantago lanceolata L., postzygotic environmentally induced parental effects were (1) transmitted across generations, (2) genotype-specific, and (3) mediated by natural differences in flowering phenology. Individuals were cloned, hand-pollinated and allowed to mature seed at one of two temperatures. Second-generation plants were induced to seed-set at four times during the flowering season. The effects of grandparental temperature (GPT), parental flowering time (PFT) and maternal family (MFAM) on seed size, germination, leaf area and allometry, flowering time and male sterility in third generation plants were then measured. GPT significantly affected all adult traits and did so more strongly than and often independently of seed weight and germination. The data suggest that heritable GPT effects arise from gametophytic selection or genomic modification. Significant GPT x MFAM interactions were detected for seed weight, leaf area, flowering time, and male sterility. Such genotype-specific responses are necessary if parental temperature is to influence the evolutionary divergence of life history and breeding patterns in populations growing in different temperature regimes. PFT affected leaf area and percentage germination. Natural changes in photoperiod but not temperature may explain the observed PFT effects on germination. UNIV N CAROLINA,DEPT BIOL,GREENSBORO,NC 27412 ALEXANDER HM, 1985, J ECOL, V73, P271, DOI 10.2307/2259783; ANTONOVICS J, 1986, OECOLOGIA, V69, P277, DOI 10.1007/BF00377634; BIERE A, 1991, J EVOLUTION BIOL, V4, P467, DOI 10.1046/j.1420-9101.1991.4030467.x; Chailakhyan M. K, 1987, SEXUALITY PLANTS ITS; DAS OP, 1994, GENETICS, V136, P1121; DURRANT A, 1962, HEREDITY, V17, P27, DOI 10.1038/hdy.1962.2; GUTTERMAN Y, 1983, WEED PHYSL, V1, P1; LACEY EP, 1996, IN PRESS EVOLUTION; LAU TC, 1993, AM J BOT, V80, P763, DOI 10.2307/2445596; MATZKE M, 1993, ANNU REV PLANT PHYS, V44, P53, DOI 10.1146/annurev.pp.44.060193.000413; MIAO SL, 1991, ECOLOGY, V72, P1634, DOI 10.2307/1940963; MIAO SL, 1991, ECOLOGY, V72, P586, DOI 10.2307/2937198; PLATENKAMP GAJ, 1993, EVOLUTION, V47, P540, DOI 10.1111/j.1558-5646.1993.tb02112.x; PURRINGTON CB, 1993, J ECOL, V81, P807, DOI 10.2307/2261678; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.ecolsys.18.1.209; ROSS MD, 1973, HEREDITY, V30, P169, DOI 10.1038/hdy.1973.19; *SAS I, 1985, SAS US GUID; SCHMITT J, 1992, AM NAT, V139, P451, DOI 10.1086/285338; SCHNEEBERGER RG, 1991, GENETICS, V128, P619; TERAMURA AH, 1981, AM J BOT, V68, P425, DOI 10.2307/2442780; VANDAMME JMM, 1983, HEREDITY, V50, P253, DOI 10.1038/hdy.1983.28; WULFF RD, 1992, AM J BOT, V79, P1102, DOI 10.2307/2445208; YOUNG HJ, 1990, SCIENCE, V248, P1631, DOI 10.1126/science.248.4963.1631 23 38 39 0 12 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0018-067X HEREDITY Heredity MAR 1996 76 3 287 295 10.1038/hdy.1996.42 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TZ198 WOS:A1996TZ19800010 Bronze 2019-02-26 J Thorbjarnarson, JB Thorbjarnarson, JB Reproductive characteristics of the order Crocodylia HERPETOLOGICA English Article clutch size; Crocodylia; life history evolution; reproduction CROCODILIAN NESTING HABITS; LIFE-HISTORY TRAITS; OPTIMAL EGG SIZE; CLUTCH SIZE; BODY SIZE; ALLIGATOR; EVOLUTION; COVARIATION; ENVIRONMENT; INCUBATION Information on crocodilian egg and clutch characteristics is reviewed. The relationships between female size and egg mass, clutch size, and clutch mass are quantified, and the effects of nest mode, relative snout width, and family are examined. At the interspecific level, egg mass, clutch size, and clutch mass are strongly correlated with female size. However, larger species produce relatively smaller clutches and eggs. In most cases, similar relationships were found at the intraspecific level as well. Crocodylids are more variable in terms of nesting mode (hole and mound nesters) than alligatorids (all mound nesters). After correcting for differences in female length, no trade-off between clutch size and egg size was found at the interspecific level. The effects of family, snout width, and nest mode were also examined independent of female size. Clutch size and clutch mass were greater in the Alligatoridae than in the Crocodylidae and the Gavialidae. However, data on reproductive frequency suggest that crocodylids nest more frequently than alligatorids, and no significant difference in mean annual clutch mass was found between these two major phylogenetic groups. Narrow-snouted species lay significantly smaller clutches than other crocodilians. Consistent patterns of relative egg mass/clutch size variation were found within genera in the Alligatoridae. Alligator produces large clutches of small eggs. Tropical alligatorids have large relative clutch masses due to the production of relatively large eggs (Melanosuchus and Paleosuchus) or relatively large clutches (Caiman). Within the genus Crocodylus, the four species that inhabit strongly seasonal riverine or lacustrine environments are all hole nesters that invest relatively little in each reproductive bout (C. intermedius, C. palustris, and C. johnsoni) but may compensate with high reproductive frequencies. Gavialis may also follow this general pattern. Among the true crocodiles, two species have notably large clutch masses (C. niloticus and C. porosus). In terms of reproductive characteristics, C. cataphractus is the most unusual species, laying very small numbers of very large eggs. Thorbjarnarson, JB (reprint author), NEW YORK ZOOL SOC, WILDLIFE CONSERVAT SOC, BRONX, NY 10460 USA. ACKERMAN RA, 1980, AM ZOOL, V20, P575; AYARZAGUENA JS, 1983, DONANA, V10, P7; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; BRAZAITIS P, 1973, Zoologica (New York), V58, P59; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Calder W. A, 1984, SIZE FUNCTION LIFE H; CAMPBELL HW, 1972, NATURE, V238, P404, DOI 10.1038/238404a0; CHABRECK RH, 1979, HERPETOLOGICA, V35, P51; CHABRECK RH, 1967, P ANN C SE ASS GAME, V20, P105; Congdon J.D., 1982, Biology of Reptilia, V13, P233; Congdon J.D., 1990, P45; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; CONGDON JD, 1985, HERPETOLOGICA, V41, P194; COTT H. B., 1961, TRANS ZOOL SOC LONDON, V29, P211; DEITZ DC, 1980, COPEIA, P249, DOI 10.2307/1444001; Dunham A.E., 1988, Biology of Reptilia, V16, P441; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; Ferguson M.W.J., 1985, Biology of Reptilia, V14, P329; GRAHAM A, 1968, UNPUB LAKE RUDOLF CR; GREER A E, 1975, Journal of Herpetology, V9, P319, DOI 10.2307/1563198; GREER A E JR, 1971, Fauna (Rancho Mirage California), V2, P20; GREER AE, 1970, NATURE, V227, P523, DOI 10.1038/227523a0; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HUTTON JM, 1984, THESIS U ZIMBABWE HA; IVERSON J B, 1987, Florida Scientist, V50, P223; Iverson JB, 1992, HERPETOL MONOGR, V6, P25, DOI DOI 10.2307/1466960; JACOBSEN T, 1986, CROCODILES, P153; JANZEN FJ, 1993, ECOLOGY, V74, P332, DOI 10.2307/1939296; Joanen T., 1970, Proceedings a Conf SEast Ass Game Fish Commnrs, V23, P141; JOANEN T, 1980, REPRODUCTIVE BIOL DI, V1, P153; KING FW, 1989, CROCODILIAN TAUATARA; LANCE VA, 1989, AM ZOOL, V29, P999; LUTZ PL, 1984, COPEIA, P153, DOI 10.2307/1445047; MAGNUSSON WE, 1982, J HERPETOL, V16, P121, DOI 10.2307/1563804; MAGNUSSON WE, 1991, J HERPETOL, V25, P41, DOI 10.2307/1564793; MAGNUSSON WE, 1989, SPECIAL PUBLICATION, P101; MAZZOTTI FJ, 1983, THESIS PENNSYLVANIA; MONTAGUE JJ, 1984, AUST WILDLIFE RES, V11, P395; Mook CC, 1921, B AM MUS NAT HIST, V44, P123; MOOK CHARLES C., 1934, JOUR GEOL, V42, P295; OUBOTER P E, 1987, Amphibia-Reptilia, V8, P331, DOI 10.1163/156853887X00117; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PERUTZ MF, 1981, NATURE, V291, P682, DOI 10.1038/291682a0; Peters R.H., 1983, P1; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Reiss M. J, 1989, ALLOMETRY GROWTH REP; Roff Derek A., 1992; Romanoff A. L., 1949, AVIAN EGG; Romer A. S, 1956, OSTEOLOGY REPTILES; SEYMOUR RS, 1980, AM ZOOL, V20, P437; SEYMOUR RS, 1979, PALEOBIOLOGY, V5, P1; SHINE R, 1988, BIOL REPTILIA, V16, P275; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SOKAL R., 1981, BIOMETRY; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; STEEL R, 1973, HDB PALAOHERPETOLOGI, V16, P1; Taylor D., 1984, Proceedings of the Annual Conference Southeastern Association of Fish and Wildlife Agencies, V38, P222; TAYLOR D, 1991, J WILDLIFE MANAGE, V55, P682, DOI 10.2307/3809518; THORBJARNARSON JB, 1993, J HERPETOL, V27, P363, DOI 10.2307/1564821; THORBJARNARSON JB, 1994, B FLORIDA STATE MUS, P907; THORN RS, 1988, SINGAPORE ECON REV, V33, P1; WEBB GJW, 1983, AUST WILDLIFE RES, V10, P383, DOI 10.1071/WR9830383; WEBB GJW, 1978, AUST J ZOOL, V26, P1; WEBB GJW, 1989, AM ZOOL, V29, P953; WEBB GJW, 1983, AUST WILDLIFE RES, V10, P607; WHITAKER R, 1984, Journal of the Bombay Natural History Society, V81, P297; WHITEHEAD PJ, 1987, THESIS U ADELAIDE AD; Wilbur H.M., 1988, Biology of Reptilia, V16, P387; Wilkinson P. M., 1984, NESTING ECOLOGY AM A; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 72 59 69 0 30 HERPETOLOGISTS LEAGUE EMPORIA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST, EMPORIA, KS 66801-5087 USA 0018-0831 1938-5099 HERPETOLOGICA Herpetologica MAR 1996 52 1 8 24 17 Zoology Zoology VG888 WOS:A1996VG88800002 2019-02-26 J Kalezic, ML; Cvetkovic, D; Djorovic, A; Dzukic, G Kalezic, ML; Cvetkovic, D; Djorovic, A; Dzukic, G Alternative life-history pathways: Paedomorphosis and adult fitness in European newts (Triturus vulgaris and T-alpestris) JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH English Article Adult fitness; paedomorphosis; Triturus alpestris; Triturus vulgaris SALAMANDER AMBYSTOMA-TALPOIDEUM; SMOOTH NEWT; PEDOMORPHOSIS; GROWTH; AGE; REPRODUCTION; POPULATION; CRISTATUS; AMPHIBIA; SIZE Paedomorphs and metamorphs of the smooth newt (Triturus vulgaris) and alpine newt (Triturus alpestris) were compared with respect to body size, age structure, age at sexual maturity, survivorship, and female and male fecundity. Paedomorphs were significantly smaller than metamorphs, except for the alpine newt males. Non-significant differences between morphs in both species in terms of the life span, age of sexual maturity, survival rates and male fecundity were found. The relationships concerning female-fecundity parameters were not so straightforward. The total number of oocytes was significantly higher in smooth-newt paedomorphs, while in the alpine newt the difference was insignificant. When ovary mass was compared, significant differences appeared only in the alpine newt, in favour of metamorphic females. Oviductal egg size was similar in both morphs of T. vulgaris. The maintenance of both life-history strategies in the species studied is discussed in the light of these findings. FAC BIOL,INST ZOOL,YU-11000 BELGRADE,YUGOSLAVIA; INST BIOL RES DR SINISA STANKOVIC,BELGRADE,YUGOSLAVIA Ivanovic, Ana/0000-0002-6247-8849 BAKER JMR, 1992, HERPETOL J, V2, P90; BELL G, 1977, ECOL MONOGR, V47, P279, DOI 10.2307/1942518; Breuil Michel, 1992, Bulletin de la Societe Herpetologique de France, V61, P11; CASTANET J, 1974, ZOOL SCR, V3, P137, DOI 10.1111/j.1463-6409.1974.tb00811.x; DJOROVIC A, 1996, IN PRESS SPIXIANA; Duellman W. E., 1986, BIOL AMPHIBIA; Dzukic G., 1990, BRIT HERPETOL SOC B, V34, P16; FRANCILLON H, 1979, ACTA ZOOL-STOCKHOLM, V60, P223; FRANCILLONVIEILLOT H, 1990, J HERPETOL, V24, P13, DOI 10.2307/1564284; GELLER S, 1983, STATISTIQUE; Gould S. J, 1977, ONTOGENY PHYLOGENY; HAGSTROM T, 1979, Holarctic Ecology, V2, P108; HARRIS RN, 1990, EVOLUTION, V44, P1588, DOI 10.1111/j.1558-5646.1990.tb03848.x; HARRIS RN, 1987, ECOLOGY, V68, P705, DOI 10.2307/1938476; HARRIS RN, 1989, COPEIA, V1, P35; HEALY WR, 1974, COPEIA, V2, P221; HEALY WR, 1973, COPEIA, V3, P641; Kalezic M. L., 1992, Alytes (Paris), V10, P63; Kalezic M. L., 1989, ARH BIOL NAUKA BEOGR, V41, P67; KALEZIC ML, 1994, HERPETOL J, V4, P151; Kalezic ML, 1985, ARH BIOL NAUKA, V37, P43; Krebs C. J., 1989, ECOLOGICAL METHODOLO; Miaud C., 1991, TISSUS DURS AGE INDI, P363; MOSEGAARD H, 1988, CAN J FISH AQUAT SCI, V45, P1514, DOI 10.1139/f88-180; Radovanovic M., 1951, British Journal of Herpetology, V1, P93; ROFF DA, 1994, EVOLUTION, V48, P1650, DOI 10.1111/j.1558-5646.1994.tb02202.x; *SAS I, 1989, SAS STAT US GUID VER; Schabetsberger Robert, 1994, Alytes (Paris), V12, P41; SCOTT DE, 1993, AM MIDL NAT, V129, P397, DOI 10.2307/2426520; SEMLITSCH RD, 1990, EVOLUTION, V44, P1604, DOI 10.1111/j.1558-5646.1990.tb03849.x; SEMLITSCH RD, 1990, ECOLOGY, V71, P1789, DOI 10.2307/1937586; SEMLITSCH RD, 1985, OECOLOGIA, V65, P305, DOI 10.1007/BF00378903; SEMLITSCH RD, 1989, EVOLUTION, V43, P105, DOI 10.1111/j.1558-5646.1989.tb04210.x; SEMLITSCH RD, 1987, ECOLOGY, V68, P1003, DOI 10.2307/1938371; SHAFFER HB, 1984, EVOLUTION, V38, P1207, DOI 10.1111/j.1558-5646.1984.tb05644.x; SMIRINA EM, 1985, ZOOL ZH, V64, P311; TUCIC N, 1985, ZOOL ANZ, V215, P102; VERRELL PA, 1986, J ZOOL, V210, P101; VERRELL PA, 1986, J ZOOL, V210, P89; WHITEMAN HH, 1994, Q REV BIOL, V69, P205, DOI 10.1086/418540 40 31 32 0 3 BLACKWELL WISSENSCHAFTS-VERLAG GMBH BERLIN KURFURSTENDAMM 57, D-10707 BERLIN, GERMANY 0947-5745 J ZOOL SYST EVOL RES J. Zool. Syst. Evol. Res. MAR 1996 34 1 1 7 7 Evolutionary Biology; Zoology Evolutionary Biology; Zoology UT698 WOS:A1996UT69800001 2019-02-26 J Ruzicka, JJ Ruzicka, JJ Comparison of the two alternative early life-history strategies of the Antarctic fishes Gobionotothen gibberifrons and Lepidonotothen larseni MARINE ECOLOGY PROGRESS SERIES English Article Gobionotothen gibberifrons; Notothenia gibberifrons; Lepidonotothen larseni; Nototheniops larseni; larvae; otoliths; hatch period; growth OTOLITH MICROSTRUCTURE; NOTOTHENIOPS-NUDIFRONS; BRANSFIELD STRAIT; COLD WATER; GROWTH; AGE; REPRODUCTION; LARVAE; INVERTEBRATES; PATTERNS Two major early life-history strategies of notothenioid fishes in the lower Antarctic are identified based upon the length of pelagic development: species that complete pelagic development within 1 summer season ('summer larvae') and species with extended pelagic development that continues over winter months ('winter larvae'). These 2 life-history strategies were compared using otolith techniques to reveal growth histories, hatching periods, and development rates of larval Gobionotothen gibberifrons (summer larvae) and Lepidonotothen larseni (winter larvae) from the Antarctic Peninsula (summer 1986/87) and South Georgia (summers 1987/88 and 1988/89). Back-calculated growth over the first 40 d after hatching was modeled exponentially and instantaneous growth rates (r) were calculated. Both species grew at similar rates with respect to length (r = 0.01) and with respect to weight (r = 0.02 to 0.03). The hatch period of both species was delayed off the Antarctic Peninsula (late-November to mid-December) compared to South Georgia (early to mid-November), as is the onset of the productive season at higher latitudes. Summer larvae have no growth advantage but do develop more quickly than winter larvae, offering the ability to reduce the time spent in a vulnerable life-history stage. As currently hypothesized, winter larvae may take advantage of an extended period for growth, using pelagic resources unavailable to summer larvae, or recruiting to the demersal environment when competition from summer recruits is lowest. Ruzicka, JJ (reprint author), UNIV HAWAII, SCH OCEAN & EARTH SCI & TECHNOL, DEPT OCEANOG, 1000 POPE RD, HONOLULU, HI 96822 USA. ARNAUD PM, 1977, ADAPTATIONS ANTARCTI, P135; BALBONTIN F., 1986, SER CIENT INACH, V35, P125; CAMPANA SE, 1990, CAN J FISH AQUAT SCI, V47, P2219, DOI 10.1139/f90-246; CAMPANA SE, 1989, CAN J ZOOL, V67, P1401, DOI 10.1139/z89-199; CLARKE A, 1988, COMP BIOCHEM PHYS B, V90, P461, DOI 10.1016/0305-0491(88)90285-4; CLARKE A, 1979, MAR BIOL, V55, P111, DOI 10.1007/BF00397306; CLARKE A, 1983, OCEANOGR MAR BIOL, V21, P341; EASTMAN JT, 1991, AM ZOOL, V31, P93; Eastman JT, 1993, ANTARCTIC FISH BIOL; Efremenko V.N., 1983, Cybium, V7, P1; EFREMENKO VN, 1979, J ICHTHYOLOGY, V19, P95; El-Sayed S.Z., 1985, KEY ENV ANTARCTICA, P135; Everson I., 1984, P491; FLEGLERBALON C, 1989, PERSP VERT, V6, P71; HOLLANDER M, 1973, NONPARAMETRIC STATIS; HOUDE ED, 1987, AM FISH SOC S, V2, P17; HOURIGAN TF, 1989, MAR BIOL, V100, P277, DOI 10.1007/BF00391969; HUNTLEY M, 1991, DEEP-SEA RES, V38, P911, DOI 10.1016/0198-0149(91)90090-3; JENKINS GP, 1990, MAR ECOL PROG SER, V63, P93, DOI 10.3354/meps063093; JONES C, 1986, FISH B-NOAA, V84, P91; KELLERMANN A, 1990, MAR BIOL, V106, P159, DOI 10.1007/BF01314796; KELLERMANN A, 1991, POLAR BIOL, V11, P117; KELLERMANN A, 1989, Archiv fuer Fischereiwissenschaft, V39, P81; Kellermann A., 1988, P147; KELLERMANN A, 1986, BER POLARFORSCH, V31; KELLERMANN A, 1989, BIOMASS SCI SER, V10, P45; Kock K, 1992, ANTARCTIC FISH FISHE; KOCK KH, 1991, ANTARCT SCI, V3, P125; KOCK KH, 1985, KEY ENV ANTARCTICA, P173; LOEB VJ, 1991, DEEP-SEA RES, V38, P1251, DOI 10.1016/0198-0149(91)90105-O; MARSHALL NB, 1953, EVOLUTION, V7, P328, DOI 10.2307/2405343; MAY HMA, 1992, MAR ECOL PROG SER, V79, P203; Moore D. S., 1989, INTRO PRACTICE STAT; NISHIMURA A, 1988, MAR BIOL, V97, P459, DOI 10.1007/BF00391041; North A.W., 1987, P381; NORTH A W, 1989, Cybium, V13, P357; North A.W., 1990, P299; North A. W., 1988, SCI COMM CONS ANT MA, P105; NORTH AW, 1990, THESIS MARINE ENV RE; OLSON RR, 1987, LIMNOL OCEANOGR, V32, P686, DOI 10.4319/lo.1987.32.3.0686; PEARSE JS, 1986, B MAR SCI, V39, P477; PEARSE JS, 1991, AM ZOOL, V31, P65; PEARSE JS, 1985, ANTARCT J US, V30, P138; PENNEY RW, 1985, CAN J FISH AQUAT SCI, V42, P1452, DOI 10.1139/f85-183; PICKEN GB, 1980, BIOL J LINN SOC, V14, P67, DOI 10.1111/j.1095-8312.1980.tb00098.x; RADTKE RL, 1990, FISH B-NOAA, V88, P557; RADTKE RL, 1984, POLAR BIOL, V3, P203, DOI 10.1007/BF00292624; RADTKE RL, 1989, MAR ECOL PROG SER, V57, P103, DOI 10.3354/meps057103; RICKER WE, 1973, J FISH RES BOARD CAN, V30, P409, DOI 10.1139/f73-072; RUZICKA JJ, 1995, POLAR BIOL, V15, P587; SECOR DH, 1989, RAP PROCES, V191, P431; SINQUE C, 1990, ARQ BIOL TECNOL, V33, P81; SINQUE C, 1988, ARQ BIOL TECNOL, V34, P515; Snedecor G. W., 1980, STAT METHODS; Sokal R.R., 1981, BIOMETRY PRINCIPLES; THOMAS RM, 1983, S AFRICAN J MARINE S, V1, P133; THORROLD SR, 1989, CAN J FISH AQUAT SCI, V46, P165; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; White M.G., 1991, P87; WHITE MG, 1977, ADAPTATIONS ANTARCTI, P197; WILSON KH, 1982, CAN J FISH AQUAT SCI, V39, P1335, DOI 10.1139/f82-179; Worner F.G., 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P196 62 9 9 0 9 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. MAR 1996 133 1-3 29 41 10.3354/meps133029 13 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography UG429 WOS:A1996UG42900003 Bronze 2019-02-26 J Frank, SA Frank, SA Models of parasite virulence QUARTERLY REVIEW OF BIOLOGY English Review GROUP SELECTION; VERTICAL TRANSMISSION; INCLUSIVE FITNESS; IMMUNE-SYSTEM; EVOLUTION; HOST; POPULATIONS; DISPERSAL; ORIGIN; COEVOLUTION Several evolutionary processes influence virulence, the amount of damage a parasite causes to its host. For example, parasites are favored to exploit their hosts prudently to prolong infection and avoid killing the host. Parasites also need to use some host resources to reproduce and transmit infections to new hosts. Thus parasites face a tradeoff between prudent exploitation and rapid reproduction-a life history tradeoff between longevity and fecundity. Other tradeoffs among components of parasite fitness also influence virulence. For example, competition among parasite genotypes favors rapid growth to achieve greater relative success within the host. Rapid growth may, however, lower the total productivity of the local group by over exploiting the host, which is a potentially renewable food supply. This is a problem of kin selection and group selection. I summarize models of parasite virulence with the theoretical tools of life history analysis, kin selection, and epidemiology. I then apply the theory to recent empirical studies and models of virulence. These applications, to nematodes, to the extreme virulence of hospital epidemics, and to bacterial meningitis, show the power of simple life history theory to highlight interesting questions and to provide a rich array of hypotheses. These examples also show the kinds of conceptual mistakes that commonly arise when only a few components of parasite fitness are analysed in isolation. The last part of the article connects standard models of parasite virulence to diverse topics, such as the virulence of bacterial plasmids, the evolution of genomes, and the processes that influenced conflict and cooperation among the earliest replicators near the origin of life. Frank, SA (reprint author), UNIV CALIF IRVINE, DEPT ECOL & EVOLUTIONARY BIOL, IRVINE, CA 92717 USA. Frank, Steven/0000-0001-7348-7794 NIGMS NIH HHS [GM42403] ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; ANDERSON RM, 1991, J ANIM ECOL, V60, P1, DOI 10.2307/5443; ANDERSON RM, 1981, PHILOS T R SOC B, V291, P451, DOI 10.1098/rstb.1981.0005; Anderson RM, 1991, INFECT DIS HUMANS DY; ANDERSSON M, 1984, ANNU REV ECOL SYST, V15, P165, DOI 10.1146/annurev.es.15.110184.001121; [Anonymous], 1993, TRENDS MICROBIOL; ANTIA R, 1994, AM NAT, V144, P457, DOI 10.1086/285686; AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; BIRGE EA, 1994, BACT BACTERIOPHAGE G; BONHOEFFER S, 1994, P ROY SOC B-BIOL SCI, V258, P133, DOI 10.1098/rspb.1994.0153; BONHOEFFER S, 1994, P NATL ACAD SCI USA, V91, P8062, DOI 10.1073/pnas.91.17.8062; BREMERMANN HJ, 1983, J THEOR BIOL, V100, P411, DOI 10.1016/0022-5193(83)90438-1; BREMERMANN HJ, 1989, J MATH BIOL, V27, P179, DOI 10.1007/BF00276102; BRESCH C, 1980, J THEOR BIOL, V85, P399, DOI 10.1016/0022-5193(80)90314-8; BULL JJ, 1991, J THEOR BIOL, V149, P63, DOI 10.1016/S0022-5193(05)80072-4; BULL JJ, 1991, EVOLUTION, V45, P875, DOI 10.1111/j.1558-5646.1991.tb04356.x; BULL JJ, 1994, EVOLUTION, V48, P1423, DOI 10.1111/j.1558-5646.1994.tb02185.x; CHARLESWORTH B, 1986, GENET RES, V48, P111, DOI 10.1017/S0016672300024836; CHARLESWORTH B, 1994, NATURE, V371, P215, DOI 10.1038/371215a0; CHARLESWORTH D, 1995, GENETICS, V140, P415; DAVIS B, 1990, MICROBIOLOGY; Dietz K., 1976, MATH MODELS MED, P1; Dietz K., 1975, EPIDEMIOLOGY, P104; DOOLITTLE WF, 1984, NATURE, V307, P501, DOI 10.1038/307501b0; EIGEN M, 1971, NATURWISSENSCHAFTEN, V58, P465, DOI 10.1007/BF00623322; Eigen M, 1979, HYPERCYCLE PRINCIPLE; Eigen Manfred, 1992, STEPS LIFE PERSPECTI; Ewald P.W., 1989, P21; Ewald P. W, 1994, EVOLUTION INFECT DIS; EWALD PW, 1987, ANN NY ACAD SCI, V503, P295, DOI 10.1111/j.1749-6632.1987.tb40616.x; EWALD PW, 1983, ANNU REV ECOL SYST, V14, P465, DOI 10.1146/annurev.es.14.110183.002341; FENNER F, 1956, J Hyg (Lond), V54, P284; FINE PEM, 1975, ANN NY ACAD SCI, V266, P173, DOI 10.1111/j.1749-6632.1975.tb35099.x; Fisher R. A, 1958, GENETICAL THEORY NAT; FRANK SA, 1986, J THEOR BIOL, V122, P303, DOI 10.1016/S0022-5193(86)80122-9; FRANK SA, 1992, P ROY SOC B-BIOL SCI, V250, P195, DOI 10.1098/rspb.1992.0149; FRANK SA, 1994, J THEOR BIOL, V170, P393, DOI 10.1006/jtbi.1994.1200; FRANK SA, 1995, J THEOR BIOL, V176, P403, DOI 10.1006/jtbi.1995.0208; FRANK SA, 1995, NATURE, V377, P520, DOI 10.1038/377520a0; FRANK SA, 1994, P ROY SOC B-BIOL SCI, V258, P153, DOI 10.1098/rspb.1994.0156; Garnett G. P., 1994, P51; Grafen A., 1984, BEHAV ECOLOGY EVOLUT, P62; Hamilton W.D., 1972, Annual Rev Ecol Syst, V3, P193; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hamilton WD, 1975, BIOSOCIAL ANTHR, P135; HARDIN G, 1968, SCIENCE, V162, P1243; HARDIN G, 1993, LIVING LIMITS; HARDY K, 1986, BACT PLASMIDS; HERRE EA, 1993, SCIENCE, V259, P1442, DOI 10.1126/science.259.5100.1442; Hoekstra R F, 1987, Experientia Suppl, V55, P59; Holt RD, 1996, EVOL ECOL, V10, P1, DOI 10.1007/BF01239342; HURST GDD, 1992, TRENDS ECOL EVOL, V7, P373, DOI 10.1016/0169-5347(92)90007-X; HURST LD, 1992, P ROY SOC B-BIOL SCI, V247, P189, DOI 10.1098/rspb.1992.0027; JANZEN DH, 1979, ANNU REV ECOL SYST, V10, P13, DOI 10.1146/annurev.es.10.110179.000305; KLECKNER N, 1990, GENETICS, V124, P449; KNOLLE H, 1989, J THEOR BIOL, V136, P199, DOI 10.1016/S0022-5193(89)80226-7; LENSKI RE, 1994, J THEOR BIOL, V169, P253, DOI 10.1006/jtbi.1994.1146; Levin B. R., 1983, COEVOLUTION, P99; LEVIN BR, 1990, PARASITOLOGY, V100, pS103, DOI 10.1017/S0031182000073054; LEVIN BR, IN PRESS MATH BIOSCI; Levin Bruce R., 1994, Trends in Microbiology, V2, P76, DOI 10.1016/0966-842X(94)90538-X; LEVIN S, 1981, AM NAT, V117, P308, DOI 10.1086/283708; Levin S.A., 1983, COEVOLUTION, P21; LEWIN B, 1977, GENE EXPRESSION, V3; Lewontin R. C., 1970, ANNU REV ECOL SYST, V1, P1, DOI DOI 10.1146/ANNUREV.ES.01.110170.000245; LIPSITCH M, 1995, EVOLUTION, V49, P743, DOI 10.1111/j.1558-5646.1995.tb02310.x; LIPSITCH M, 1995, P ROY SOC B-BIOL SCI, V260, P321, DOI 10.1098/rspb.1995.0099; LIPSITCH M, 1995, J THEOR BIOL, V174, P427, DOI 10.1006/jtbi.1995.0109; LIPSITCH M, IN PRESS EVOLUTION; MAY RM, 1994, J THEOR BIOL, V170, P95, DOI 10.1006/jtbi.1994.1171; MAY RM, 1986, PROC R SOC SER B-BIO, V228, P241, DOI 10.1098/rspb.1986.0054; MAY RM, 1990, PARASITOLOGY, V100, pS89, DOI 10.1017/S0031182000073042; MIEDEMA F, 1990, IMMUNOL TODAY, V11, P293, DOI 10.1016/0167-5699(90)90116-Q; MONTGOMERY EA, 1991, GENETICS, V129, P1085; MOTRO U, 1982, THEOR POPUL BIOL, V21, P394, DOI 10.1016/0040-5809(82)90026-0; NOWAK MA, 1994, P ROY SOC B-BIOL SCI, V255, P81, DOI 10.1098/rspb.1994.0012; NOWAK MA, 1991, SCIENCE, V254, P963, DOI 10.1126/science.1683006; QUELLER DC, 1992, AM NAT, V139, P540, DOI 10.1086/285343; RICK CM, 1984, APPL GENETICS, V4, P215; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SASAKI A, 1991, THEOR POPUL BIOL, V39, P201, DOI 10.1016/0040-5809(91)90036-F; Smith J. M., 1995, MAJOR TRANSITIONS EV; Smith J.M., 1982, EVOLUTION THEORY GAM; SMITH JM, 1979, NATURE, V280, P445, DOI 10.1038/280445a0; SMITH JM, 1993, J THEOR BIOL, V164, P437, DOI 10.1006/jtbi.1993.1165; SMITH JM, 1988, EVOLUTIONARY PROGR, P219; Stearns SC., 1992, EVOLUTION LIFE HIST; SZATHMARY E, 1987, J THEOR BIOL, V128, P463, DOI 10.1016/S0022-5193(87)80191-1; SZATHMARY E, 1989, TRENDS ECOL EVOL, V4, P200, DOI 10.1016/0169-5347(89)90073-6; Szathmary E., 1989, Oxford Surveys in Evolutionary Biology, V6, P169; TAYLOR PD, 1988, J THEOR BIOL, V130, P363, DOI 10.1016/S0022-5193(88)80035-3; TAYLOR PD, IN PRESS J THEORETIC; vanBaalen M, 1995, AM NAT, V146, P881, DOI 10.1086/285830; WADE MJ, 1978, Q REV BIOL, V53, P101, DOI 10.1086/410450; WERREN JH, 1988, TRENDS ECOL EVOL, V3, P297, DOI 10.1016/0169-5347(88)90105-X; WIEBES JT, 1979, ANNU REV ECOL SYST, V10, P1, DOI 10.1146/annurev.es.10.110179.000245; WILSON DS, 1980, NATURAL SELECTION PO; Wright S, 1969, EVOLUTION GENETICS P, V2; YAMAMURA N, 1993, THEOR POPUL BIOL, V44, P95, DOI 10.1006/tpbi.1993.1020; YORKE JA, 1979, AM J EPIDEMIOL, V109, P103, DOI 10.1093/oxfordjournals.aje.a112666; YOUNG RJ, 1994, GENETICS, V137, P581 104 871 877 10 270 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0033-5770 1539-7718 Q REV BIOL Q. Rev. Biol. MAR 1996 71 1 37 78 10.1086/419267 42 Biology Life Sciences & Biomedicine - Other Topics UE275 WOS:A1996UE27500002 8919665 2019-02-26 J Gems, D; Riddle, DL Gems, D; Riddle, DL Longevity in Caenorhabditis elegans reduced by mating but not gamete production NATURE English Article FERTILIZATION-DEFECTIVE MUTANTS; FEMALE DROSOPHILA-MELANOGASTER; LIFE-SPAN; WILD-TYPE; SPERM; EVOLUTION; MALES; GENE THEORIES Of life-history evolution propose that trade-offs occur between fitness components, including longevity and maximal reproduction(1-3). In Drosophila, female lifespan is shortened by increased egg production(4), receipt of male accessory fluid(5) and courting(6), Male lifespan is also reduced by courting and/or mating(7). Here we show that in the nematode Caenorhabditis elegans, mating with males reduces the lifespan of hermaphrodites by a mechanism independent of egg production or receipt of sperm, Conversely, males appear unaffected by mating, Thus, in C. elegans there is no apparent trade-off between longevity and increased egg or sperm production, but there is a substantial cost to hermaphrodites associated with copulation. UNIV MISSOURI,DIV BIOL SCI,COLUMBIA,MO 65211 Gems, D (reprint author), UNIV MISSOURI,PROGRAM MOLEC BIOL,COLUMBIA,MO 65211, USA. Gems, David/0000-0002-6653-4676 ARGON Y, 1980, GENETICS, V96, P413; BRENNER S, 1974, GENETICS, V77, P71; CHAPMAN T, 1992, J INSECT PHYSIOL, V38, P223, DOI 10.1016/0022-1910(92)90070-T; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; CHEN PS, 1988, CELL, V54, P291, DOI 10.1016/0092-8674(88)90192-4; FRIEDMAN DB, 1988, GENETICS, V118, P75; HARSHMAN LG, 1994, EVOLUTION, V48, P758, DOI 10.1111/j.1558-5646.1994.tb01359.x; HODGKIN J, 1983, GENETICS, V103, P43; KALB JM, 1993, P NATL ACAD SCI USA, V90, P8093, DOI 10.1073/pnas.90.17.8093; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; Kimble J, 1988, NEMATODE CAENORHABDI, P191; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KLASS MR, 1977, MECH AGEING DEV, V6, P413, DOI 10.1016/0047-6374(77)90043-4; LHEMAULT SW, 1988, GENETICS, V120, P435; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; SCHEDL T, 1988, GENETICS, V119, P43; SCOTT D, 1987, ANIM BEHAV, V35, P142, DOI 10.1016/S0003-3472(87)80219-1; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; WARD S, 1978, GENETICS, V88, P285; WARD S, 1981, J CELL BIOL, V91, P26, DOI 10.1083/jcb.91.1.26; WILKINSON L, 1989, SYSTAT SYSTEMS STATI; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x 24 134 140 1 25 MACMILLAN MAGAZINES LTD LONDON 4 LITTLE ESSEX STREET, LONDON, ENGLAND WC2R 3LF 0028-0836 NATURE Nature FEB 22 1996 379 6567 723 725 10.1038/379723a0 3 Multidisciplinary Sciences Science & Technology - Other Topics TW567 WOS:A1996TW56700051 8602217 2019-02-26 J Lasker, HR; Brazeau, DA; Calderon, J; Coffroth, MA; Coma, R; Kim, K Lasker, HR; Brazeau, DA; Calderon, J; Coffroth, MA; Coma, R; Kim, K In situ rates of fertilization among broadcast spawning gorgonian corals BIOLOGICAL BULLETIN English Article URCHIN STRONGYLOCENTROTUS-FRANCISCANUS; MARINE-INVERTEBRATES; MASS MORTALITY; SPERM DILUTION; SUCCESS; SETTLEMENT; ECOLOGY; CONSEQUENCES; EVOLUTION; HISTORY Fertilization rates among marine benthic taxa have implicitly been assumed to be uniformly high in most analyses of life history evolution, but in situ fertilization rates during natural spawning events are rarely measured. Fertilization rates of the Caribbean gorgonians Plexaura kuna and Pseudoplexaura porosa were measured at a site in the San Bias Islands, Panama, by collecting eggs downstream of colonies during synchronous spawning events during the summer months in the years 1988-1994. Eggs collected by divers were incubated, and the proportion of eggs that developed was determined. Proportions of eggs developing suggest fertilization rates that vary from 0% to 100%. Monthly means ranged from 0% to 60.4%. Failure of gametes to develop can be attributed to sperm limitation, as eggs collected during spawning had higher fertilization rates if incubated with an excess of sperm. Plexaura kuna fertilization rates were highest during the July spawning events. Fertilization of Plexaura kuna eggs was usually lower during the first two nights of the 4-6 night spawning event. The proportion of eggs being fertilized when collected from a given place and time was highly variable, with one peak in the frequency distribution at or below 20% fertilization, and a second group of samples with greater fertilization rates. High variance in fertilization rates is evident at all levels of analysis: between replicate samples, times within nights, and among nights and months. This variance can be attributed to a combination of the effects of heterogeneity in the water column as gametes are diluted, spawning behavior of the gorgonians, and the current regime. Fertilization rates are often low and may represent a limiting step in recruitment during some years. Low fertilization rates may also be an important component of the life history evolution of these species. Lasker, HR (reprint author), SUNY BUFFALO,DEPT BIOL SCI,BUFFALO,NY 14260, USA. Coma, Rafel/J-8987-2012 Coma, Rafel/0000-0001-6107-225X; Lasker, Howard/0000-0002-5280-0742 BABCOCK R, 1992, INVERTEBR REPROD DEV, V22, P213, DOI 10.1080/07924259.1992.9672274; BABCOCK RC, 1992, AUST J MAR FRESH RES, V43, P525; BABCOCK RC, 1994, BIOL BULL-US, V186, P17, DOI 10.2307/1542033; BENZIE JAH, 1994, BIOL BULL, V186, P153, DOI 10.2307/1542049; BENZIE JAH, 1994, BIOL BULL-US, V186, P139, DOI 10.2307/1542048; BRAZEAU DA, 1992, MAR BIOL, V114, P157; BRAZEAU DA, 1989, BIOL BULL, V176, P1, DOI 10.2307/1541882; COFFROTH MA, 1992, MAR BIOL, V114, P317, DOI 10.1007/BF00349534; CONNELL JH, 1961, ECOLOGY, V42, P710, DOI 10.2307/1933500; CONNELL JH, 1985, J EXP MAR BIOL ECOL, V93, P11, DOI 10.1016/0022-0981(85)90146-7; DENNY MW, 1989, AM NAT, V134, P859, DOI 10.1086/285018; DENNY MW, 1988, BIOL MECHANISMS WAVE; GAINES S, 1985, P NATL ACAD SCI USA, V82, P3707, DOI 10.1073/pnas.82.11.3707; GAINES S, 1985, OECOLOGIA, V67, P267, DOI 10.1007/BF00384297; GROSBERG RK, 1992, TRENDS ECOL EVOL, V7, P130, DOI 10.1016/0169-5347(92)90148-5; Lasker HR, 1996, B MAR SCI, V58, P277; LASKER HR, 1984, MAR ECOL PROG SER, V19, P261, DOI 10.3354/meps019261; LASKER HR, 1990, ECOLOGY, V71, P1578, DOI 10.2307/1938293; LASKER HR, 1993, P 7 INT COR REEF S, V1, P476; LASKER HR, 1985, 5TH P INT COR REEF C, V4, P331; LESSIOS HA, 1984, SCIENCE, V226, P335, DOI 10.1126/science.226.4672.335; LESSIOS HA, 1988, ANNU REV ECOL SYST, V19, P371, DOI 10.1146/annurev.es.19.110188.002103; Levitan D.R., 1988, P181; Levitan Don R., 1995, P123; LEVITAN DR, 1992, ECOLOGY, V73, P248, DOI 10.2307/1938736; LEVITAN DR, 1995, TRENDS ECOL EVOL, V10, P228, DOI 10.1016/S0169-5347(00)89071-0; LEVITAN DR, 1991, BIOL BULL, V181, P261, DOI 10.2307/1542097; LEVITAN DR, 1991, BIOL BULL, V181, P371, DOI 10.2307/1542357; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; LYUND PO, 1994, ECOLOGY, V75, P2168; MOORE PA, 1994, J CHEM ECOL, V20, P255, DOI 10.1007/BF02064435; MOORE PA, 1992, BIOL BULL, V183, P138, DOI 10.2307/1542414; Niklas K. J, 1994, PLANT ALLOMETRY SCAL; OLIVER J, 1992, BIOL BULL, V183, P409, DOI 10.2307/1542017; PENNINGTON JT, 1985, BIOL BULL-US, V169, P417, DOI 10.2307/1541492; PETERSEN CW, 1991, BIOL BULL, V181, P232, DOI 10.2307/1542094; PETERSEN CW, 1992, ECOLOGY, V73, P391, DOI 10.2307/1940747; Roughgarden J., 1989, P270; ROUGHGARDEN J, 1988, SCIENCE, V241, P1460, DOI 10.1126/science.11538249; SEWELL MA, 1992, B MAR SCI, V51, P161; SILANDER JA, 1985, POPULATION BIOL EVOL, P107; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; STRATHMANN RR, 1978, EVOLUTION, V32, P894, DOI 10.1111/j.1558-5646.1978.tb04642.x; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; THORSON GUNNAR, 1946, MEDDEL KOMM DANMARKS FISKERI OG HAVUNDERSOGELSER SER PLANKTON, V4, P1; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; YOUNG CM, 1990, OPHELIA, V32, P1; YOUNG CM, 1992, MAR BIOL, V113, P603, DOI 10.1007/BF00349704; YUND PO, 1990, J EXP ZOOL, V253, P102, DOI 10.1002/jez.1402530114 49 65 68 0 10 MARINE BIOL LAB WOODS HOLE BIOLOGICAL BULL MBL STREET, WOODS HOLE, MA 02543 0006-3185 BIOL BULL Biol. Bull. FEB 1996 190 1 45 55 10.2307/1542674 11 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology TY804 WOS:A1996TY80400006 2019-02-26 J Cunnington, DC; Brooks, RJ Cunnington, DC; Brooks, RJ Bet-hedging theory and eigenelasticity: A comparison of the life histories of loggerhead sea turtles (Caretta caretta) and snapping turtles (Chelydra serpentina) CANADIAN JOURNAL OF ZOOLOGY English Article POPULATION; CONSERVATION The life table for snapping turtles (Chelydra serpentina) generated from a 16-year study in Algonquin Park, Ontario, suggests that the population is declining. We use a stage-based matrix model based on this life table to simulate population management options. In addition we analyze the demographic sensitivities of the Algonquin Park population life table and a life table recently published for a population of snapping turtles at the E.S. George Reserve in Michigan. The results are compared with a similar study of loggerhead sea turtles (Caretta caretta). We use these inter- and intra-specific comparisons to test bet-hedging life-history theory. Bet-hedging theory predicts that the long lives and low annual reproductive effort of turtles reduces the effect of low, stochastic juvenile survival on an individual's reproductive success. We test this prediction using proportional sensitivity of the intrinsic rate of increase to variation in life-table parameters (eigenelasticity) to compare the two populations of snapping turtles with each other and with loggerhead sea turtles. Annual adult survival is shown to be the variable most predictive of sensitivity to variation in first-year survival. UNIV GUELPH, DEPT ZOOL, GUELPH, ON N1G 2W1, CANADA BOBYN ML, 1994, CAN J ZOOL, V72, P28, DOI 10.1139/z94-005; BROOKS RJ, 1991, CAN J ZOOL, V69, P1314, DOI 10.1139/z91-185; BROOKS RJ, 1988, MANAGEMENT AMPHIBIAN, P173; BROWN GP, 1994, J HERPETOL, V28, P405, DOI 10.2307/1564950; Caswell H., 1989, MATRIX POPULATION MO; Congdon J.D., 1982, Biology of Reptilia, V13, P233; Congdon J.D., 1990, P45; CONGDON JD, 1993, CONSERV BIOL, V7, P826, DOI 10.1046/j.1523-1739.1993.740826.x; CONGDON JD, 1994, AM ZOOL, V34, P397; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; FRAZER NB, 1992, CONSERV BIOL, V6, P179, DOI 10.1046/j.1523-1739.1992.620179.x; GALBRAIGH DA, 1993, CONSERVATION MANAGEM; GALBRAITH DA, 1987, CAN J ZOOL, V65, P1581, DOI 10.1139/z87-247; GALBRAITH DA, 1989, COPEIA, P896, DOI 10.2307/1445975; GROOMBIRDGE B, 1982, AMPHIBIA REPTILIA 1; KLIMA E. F., 1982, BIOL CONSERVATION SE, P481; MROSOVSKY N, 1983, CONSERVING SEA TURTL; OBBARD ME, 1981, CAN FIELD NAT, V95, P350; PARK E, 1971, WORLD OTTER JP LIPPI; PASSMORE HL, 1996, IN PRESS CONSERVATIO; PRITCHARD PCH, 1980, AM ZOOL, V20, P609; Roff Derek A., 1992; SMITH BT, 1976, LECTURE NOTES COMPUT, V6; STEARMS SC, 1976, Z REV BIOL, V51, P3; Wilbur H.M., 1988, Biology of Reptilia, V16, P387 25 50 50 1 24 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. FEB 1996 74 2 291 296 10.1139/z96-036 6 Zoology Zoology UB985 WOS:A1996UB98500012 2019-02-26 J Galatowitsch, SM; vanderValk, AG Galatowitsch, SM; vanderValk, AG The vegetation of restored and natural prairie wetlands ECOLOGICAL APPLICATIONS English Article colonization; dispersal; Iowa; life history strategies; plant communities; prairie potholes; revegetation; seed banks; species richness; succession; wetland restoration; zonation SEED BANKS; GLACIAL MARSHES; IMPACT; PLANTS Thousands of wetland restorations have been done in the glaciated midcontinent of the United States. Wetlands in this region revegetate by natural recolonization after hydrology is restored. The floristic composition of the vegetation and seed banks of 10 restored wetlands in northern Iowa were compared to those of 10 adjacent natural wetlands to test the hypothesis that communities rapidly develop through natural recolonization. Restoration programs in the prairie pothole region assume that the efficient-community hypothesis is true: all plant species that can become established and survive under the environmental conditions found at a site will eventually be found growing there and/or will be found in its seed bank. Three years after restoration, natural wetlands had a mean of 46 species compared to 27 species for restored wetlands. Some guilds of species have significantly fewer (e.g., sedge meadow) or more (e.g., submersed aquatics) species in restored than natural wetlands. The distribution and abundance of most species at different elevations were significantly different in natural and restored wetlands. The seed banks of restored wetlands contained fewer species and fewer seeds than those of natural wetlands. There were, however, some similarities between the vegetation of restored and natural wetlands. Emergent species richness in restored wetlands was generally similar to that in natural wetlands, although there were fewer shallow emergent species in restored wetlands. The seed banks of restored wetlands, however, were not similar to those of natural wetlands in composition, mean species richness, or mean total seed density. Submersed aquatic, wet prairie, and sedge meadow species were not present in the seed banks of restored wetlands. These patterns of recolonization seem related to dispersal ability, indicating the efficient-community hypothesis cannot be completely accepted as a basis for restorations in the prairie pothole region. IOWA STATE UNIV SCI & TECHNOL,DEPT BOT,AMES,IA 50011 COWARDIAN LM, 1979, US FISH WOLDIFE OFF, V31; DELPHEY PJ, 1993, WETLANDS, V13, P200, DOI 10.1007/BF03160881; DEVLAMING V, 1968, AM J BOT, V55, P20, DOI 10.2307/2440487; Fortin Marie-Josee, 1993, P342; GALATOWITSCH SM, 1995, RESTORATION OF TEMPERATE WETLANDS, P129; GALATOWITSCH SM, 1993, THESIS IOWA STATE U; Gill D., 1974, Journal Biogeogr, V1, P63, DOI 10.2307/3038069; Godwin H, 1923, J ECOL, V11, P160, DOI 10.2307/2255860; GREAT PLAINS FLORA ASSOCIATION [GPFA], 1986, FLORA GREAT PLAINS; HOLLANDER M, 1973, NONPARAMETRIC STATIS; LAGRANGE T G, 1989, Prairie Naturalist, V21, P39; MADSEN C, 1986, J SOIL WATER CONSERV, V41, P159; MADSEN CR, 1988, INCREASING OUR WETLA, P92; MANLEY BFJ, 1991, RANDOMIZATION MONTE; Mueller-Dombois D, 1974, AIMS METHODS VEGETAT; Pederson RL, 1983, THESIS IOWA STATE U; POWERS KD, 1978, J WILDLIFE MANAGE, V42, P598, DOI 10.2307/3800823; SEWELL RW, 1991, 18TH P ANN C WETL RE, P108; Stewart R. E., 1971, RES PUBLICATION, V92; VANDERVALK AG, 1976, CAN J BOT, V54, P1832, DOI 10.1139/b76-197; VANDERVALK AG, 1986, AQUAT BOT, V24, P13, DOI 10.1016/0304-3770(86)90113-0; VANDERVALK AG, 1978, ECOLOGY, V59, P322, DOI 10.2307/1936377; VANDERVALK AG, 1981, ECOLOGY, V62, P688, DOI 10.2307/1937737; VANDERVALK AG, 1979, AQUAT BOT, V6, P29, DOI 10.1016/0304-3770(79)90049-4; WIENHOLD CE, 1989, CAN J BOT, V67, P1878, DOI 10.1139/b89-238; WOLEK J, 1983, EKOL POL-POL J ECOL, V31, P173; 1992, RESTORATION AQUATIC 27 172 178 4 82 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 1051-0761 ECOL APPL Ecol. Appl. FEB 1996 6 1 102 112 10.2307/2269557 11 Ecology; Environmental Sciences Environmental Sciences & Ecology TU567 WOS:A1996TU56700021 2019-02-26 J MitchellOlds, T MitchellOlds, T Genetic constraints on life-history evolution: Quantitative-trait loci influencing growth and flowering in Arabidopsis thaliana EVOLUTION English Article Arabidopsis thaliana; flowering time; gigantea; life-history trade-offs; quantitative-trait locus (QTL); QTL mapping; recombinant inbred lines; resource allocation POPULATIONS; COMPONENTS; SELECTION; VERNALIZATION; CHARACTERS; MARKERS; MUTANTS; NUMBER; PLANT; RFLP We have mapped genes causing life-history trade-offs, and they behave as predicted by ecological theory. Energetic and quantitative-genetic models suggest a trade-off between age and size at first reproduction. Natural selection favored plants that flower early and attain large size at first reproduction. Response to selection was opposed by a genetic trade-off between these two components of fitness. Two quantitative-trait loci (QTLs) influencing flowering time were mapped in a recombinant inbred population of Arabinopsis. These QTLs also influenced size at first reproduction, but did not affect growth rate (resource acquisition). Substitutions of small chromosomal segments, which may represent allelic differences at flowering time loci, caused genetic trade-offs between life-history components. One QTL explained 22% of the genetic variation in flowering time. It is within a few centiMorgans (cM) of the gigantea (GI) locus, and may be allelic with GI. Sixteen percent of the genetic variation was explained by another QTL, FDR1, near 18 cM on chromosome II, which does not correspond to any previously identified flowering time locus. These life-history genes regulate patterns of resource allocation and life-history trade-offs in this population. BOYCE THOMPSON INST PLANT RES,ITHACA,NY 14853; CORNELL UNIV,ITHACA,NY 14853 MitchellOlds, T (reprint author), UNIV MONTANA,DIV BIOL SCI,MISSOULA,MT 59812, USA. Mitchell-Olds, Thomas/K-8121-2012 Mitchell-Olds, Thomas/0000-0003-3439-9921 ARAKI T, 1993, PLANT J, V3, P231, DOI 10.1046/j.1365-313X.1993.t01-15-00999.x; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.genet.23.1.337; BURR B, 1992, TRENDS GENET, V2, P55; DENG XW, 1994, PLANT CELL, V6, P613; DORN LA, 1991, EVOLUTION, V45, P371, DOI 10.1111/j.1558-5646.1991.tb04411.x; Fisher R. A, 1958, GENETICAL THEORY NAT; GALEN C, 1993, EVOLUTION, V47, P1073, DOI 10.1111/j.1558-5646.1993.tb02136.x; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; GLARKE JH, 1994, MOL GEN GENET, V242, P81; HALEY CS, 1992, HEREDITY, V69, P315, DOI 10.1038/hdy.1992.131; HALLIDAY KJ, 1994, PLANT PHYSIOL, V104, P1311, DOI 10.1104/pp.104.4.1311; HOLLOCHER H, 1992, GENETICS, V130, P355; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; KARLSSON BH, 1993, AM J BOT, V80, P646, DOI 10.2307/2445435; KELLY CA, 1993, EVOLUTION, V47, P88, DOI 10.1111/j.1558-5646.1993.tb01201.x; Kimura M, 1983, NEUTRAL THEORY MOL E; KING D, 1982, THEOR POPUL BIOL, V21, P194, DOI 10.1016/0040-5809(82)90013-2; KOORNNEEF M, 1991, MOL GEN GENET, V229, P57, DOI 10.1007/BF00264213; KOWALSKI SP, 1994, MOL GEN GENET, V245, P548; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1981, GENETICS, V99, P541; LANDER ES, 1989, GENETICS, V121, P185; LEE I, 1993, MOL GEN GENET, V237, P171; LEE I, 1994, PLANT CELL, V6, P75, DOI 10.1105/tpc.6.1.75; LISTER C, 1993, PLANT J, V4, P745, DOI 10.1046/j.1365-313X.1993.04040745.x; MARTINEZZAPATER JM, 1990, PLANT PHYSIOL, V92, P770, DOI 10.1104/pp.92.3.770; MEEKSWAGNER DR, 1991, PLANT J, V3, P877; MITCHELLOLDS T, 1990, GENETICS, V124, P407; MITCHELLOLDS T, 1995, TRENDS ECOL EVOL, V10, P324, DOI 10.1016/S0169-5347(00)89119-3; MITCHELLOLDS T, 1992, TRENDS ECOL EVOL, V7, P397, DOI 10.1016/0169-5347(92)90017-6; MITCHELLOLDS T, 1986, AM NAT, V127, P379, DOI 10.1086/284490; MITCHELLOLDS T, IN PRESS EVOLUTION, V50; ORR HA, 1992, AM NAT, V140, P725, DOI 10.1086/285437; PATERSON AH, 1991, GENETICS, V127, P181; PIPER LR, 1988, 2ND P INT C QUANT GE, P270; PLATENKAMP GAJ, 1992, EVOLUTION, V46, P341, DOI 10.1111/j.1558-5646.1992.tb02042.x; PUTTERILL J, 1995, CELL, V80, P847, DOI 10.1016/0092-8674(95)90288-0; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; SCHWAEGERLE KE, 1991, EVOLUTION, V45, P169, DOI 10.1111/j.1558-5646.1991.tb05275.x; SHAW RG, 1991, EVOLUTION, V45, P1287, DOI 10.1111/j.1558-5646.1991.tb04394.x; SOKAL R., 1981, BIOMETRY; Stearns SC., 1992, EVOLUTION LIFE HIST; STRATTON DA, 1992, EVOLUTION, V46, P107, DOI 10.1111/j.1558-5646.1992.tb01988.x; TANKSLEY SD, 1993, ANNU REV GENET, V27, P205, DOI 10.1146/annurev.ge.27.120193.001225; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WESTER L, 1994, PLANT J, V5, P261, DOI 10.1046/j.1365-313X.1994.05020261.x; WHITLOCK MC, 1993, EVOLUTION, V47, P1758, DOI 10.1111/j.1558-5646.1993.tb01267.x; WRIGHT S, 1980, EVOLUTION, V34, P825, DOI 10.1111/j.1558-5646.1980.tb04022.x 48 131 131 0 25 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution FEB 1996 50 1 140 145 10.1111/j.1558-5646.1996.tb04480.x 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TX891 WOS:A1996TX89100014 28568847 Bronze 2019-02-26 J Taylor, EB; Foote, CJ; Wood, CC Taylor, EB; Foote, CJ; Wood, CC Molecular genetic evidence for parallel life-history evolution within a Pacific salmon (sockeye salmon and kokanee, Oncorhynchus nerka) EVOLUTION English Article evolutionary genetics; life-history evolution; minisatellite DNA; mitochondrial DNA; Oncorhynchus nerka; sockeye salmon; zoogeography WHITEFISH COREGONUS-CLUPEAFORMIS; QUEEN-CHARLOTTE-ISLANDS; MITOCHONDRIAL-DNA; SYMPATRIC POPULATIONS; CHARACTER DISPLACEMENT; REPRODUCTIVE ISOLATION; ELECTROPHORETIC DATA; BRITISH-COLUMBIA; NORTH-AMERICA; SMELT OSMERUS The Pacific salmon Oncorhynchus nerka typically occurs as a sea-run form (sockeye salmon) or may reside permanently in lakes (kokanee) thoughout its native North Pacific. We tested whether such geographically extensive ecotypic variation resulted from parallel evolutionary divergence thoughout the North Pacific or whether the two forms are monophyletic groups by examining allelic variation between sockeye salmon and kokanee at two minisatellite DNA repeat loci and in mitochondrial DNA (mtDNA) Bgl II restriction sites. Our examination of over 750 fish from 24 populations, ranging from Kamchatka to the Columbia River, identified two major genetic groups of North Pacific O. nerka: a ''northwestern'' group consisting of fish from Kamchatka, western Alaska, and northwestern British Columbia, and a ''southern'' group consisting of sockeye salmon and kokanee populations from the Fraser and Columbia River systems. Maximum-likelihood analysis accompanied by bootstrapping provided strong support for these two genetic groups of O. nerka; the populations did not cluster by migratory form, but genetic affinities were organized more strongly by geographic proximity. The two major genetic groups resolved in our study probably stem from historical isolation and dispersal of O. nerka from two major Wisconsinan glacial refugia in the North Pacific. There were significant minisatellite DNA allele frequency differences between sockeye salmon and kokanee populations from different parts of the same watershed, between populations spawning in different tributaries of the same lake, and also between sympatric populations spawning in the same stream at the same time. MtDNA Bgl II restriction site variation was significant between sockeye salmon and kokanee spawning in different parts of the same major watershed but not between forms spawning in closer degrees of reproductive sympatry. Patterns of genetic affinity and allele sharing suggested that kokanee have arisen from sea-run sockeye salmon several times independently in the North Pacific. We conclude that sockeye salmon and kokanee are para- and polyphyletic, respectively, and that the present geographic distribution of the ecotypes results from parallel evolutionary origins of kokanee from sockeye (divergences between them) thoughout the North Pacific. FISHERIES & OCEANS CANADA, BIOL SCI BRANCH, PACIFIC BIOL STN, NANAIMO, BC V9R 5K6, CANADA; UNIV WASHINGTON, SCH FISHERIES, SEATTLE, WA 98195 USA AVISE JC, 1987, ANNU REV ECOL SYST, V18, P489, DOI 10.1146/annurev.es.18.110187.002421; BEHNKE RJ, 1972, J FISH RES BOARD CAN, V29, P639, DOI 10.1139/f72-112; BENTZEN P, 1993, J FISH BIOL, V43, P313, DOI 10.1006/jfbi.1993.1130; BERNATCHEZ L, 1990, EVOLUTION, V44, P1263, DOI 10.1111/j.1558-5646.1990.tb05230.x; BICKHAM JW, 1995, J HERED, V86, P140, DOI 10.1093/oxfordjournals.jhered.a111544; BRANNON EL, 1992, GENETIC ANAL ONCORHY; BRONSTEIN I, 1989, NATURE, V338, P599, DOI 10.1038/338599a0; BUSH GL, 1994, TRENDS ECOL EVOL, V9, P285, DOI 10.1016/0169-5347(94)90031-0; CAVALLISFORZA LL, 1967, EVOLUTION, V21, P550, DOI 10.1111/j.1558-5646.1967.tb03411.x; CROSS TF, 1992, J FISH BIOL, V40, P25, DOI 10.1111/j.1095-8649.1992.tb02550.x; DEGNAN SM, 1993, MOL ECOL, V2, P219, DOI 10.1111/j.1365-294X.1993.tb00011.x; FEINBERG AP, 1983, ANAL BIOCHEM, V132, P6, DOI 10.1016/0003-2697(83)90418-9; FELSENSTEIN J, 1981, EVOLUTION, V35, P1229, DOI 10.1111/j.1558-5646.1981.tb04991.x; FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x; FELSENSTEIN J, 1991, PHYLIP PHYLOGENY INF; FITCH WM, 1967, SCIENCE, V155, P279, DOI 10.1126/science.155.3760.279; FOOTE CJ, 1989, CAN J FISH AQUAT SCI, V46, P149, DOI 10.1139/f89-020; FOOTE CJ, 1992, CAN J FISH AQUAT SCI, V49, P99, DOI 10.1139/f92-012; FOOTE CJ, 1988, BEHAVIOUR, V106, P43, DOI 10.1163/156853988X00089; FOOTE CJ, 1992, CAN J FISH AQUAT SCI, V49, P760, DOI 10.1139/f92-085; GALBRAITH DA, 1991, ELECTROPHORESIS, V12, P210, DOI 10.1002/elps.1150120218; GEORGES M, 1988, CYTOGENET CELL GENET, V47, P127, DOI 10.1159/000132529; HANSON AJ, 1967, J FISH RES BOARD CAN, V24, P1955, DOI 10.1139/f67-160; HARRISON RG, 1989, TRENDS ECOL EVOL, V4, P6, DOI 10.1016/0169-5347(89)90006-2; HINDAR K, 1991, HEREDITY, V66, P83, DOI 10.1038/hdy.1991.11; HINDAR K, 1986, BIOL J LINN SOC, V27, P269, DOI 10.1111/j.1095-8312.1986.tb01737.x; HOLTKE HJ, 1992, BIOTECHNIQUES, V12, P104; JARMAN AP, 1989, TRENDS GENET, V5, P367, DOI 10.1016/0168-9525(89)90171-6; JEFFREYS AJ, 1985, NATURE, V316, P76, DOI 10.1038/316076a0; Kaeriyama Masahide, 1992, Scientific Reports of the Hokkaido Salmon Hatchery, V46, P157; KARL SA, 1992, SCIENCE, V256, P100, DOI 10.1126/science.1348870; KIM JY, 1988, EVOLUTION, V42, P596, DOI 10.1111/j.1558-5646.1988.tb04163.x; LESSA EP, 1990, SYST ZOOL, V39, P242, DOI 10.2307/2992184; LESSIOS HA, 1992, MAR BIOL, V112, P517, DOI 10.1007/BF00356299; Lindsey C.C., 1986, P639; LOSOS JB, 1992, SYST BIOL, V41, P403, DOI 10.2307/2992583; McCart P., 1970, THESIS U BRIT COLUMB; McDowall RM, 1987, AM FISH SOC S, V1, P1; MCELROY D, 1992, J HERED, V83, P157, DOI 10.1093/oxfordjournals.jhered.a111180; McPhail J.D., 1986, P615; MEYER A, 1994, GENETICS AND EVOLUTION OF AQUATIC ORGANISMS, P219; NAKAMURA Y, 1987, SCIENCE, V235, P1616, DOI 10.1126/science.3029872; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; NELSON JS, 1968, J FISH RES BOARD CAN, V25, P409, DOI 10.1139/f68-032; OKAZAKI T, 1984, JPN J ICHTHYOL, V31, P297; OREILLY P, 1993, EVOLUTION, V47, P678, DOI 10.1111/j.1558-5646.1993.tb02122.x; PIMENTEL RA, 1979, MORPHOMETRICS MULTIV; Pojar J., 1980, BOT SOC AM MISC SER, V158, P1; PRODOHL PA, 1992, HEREDITAS, V117, P45, DOI 10.1111/j.1601-5223.1992.tb00006.x; REYNOLDS J, 1983, GENETICS, V105, P767; RICE WR, 1984, EVOLUTION, V38, P1251, DOI 10.1111/j.1558-5646.1984.tb05647.x; RICE WR, 1993, EVOLUTION, V47, P1637, DOI 10.1111/j.1558-5646.1993.tb01257.x; Ricker W. E., 1940, Transactions of the Royal Society of Canada (3), V34, P121; ROFF DA, 1989, MOL BIOL EVOL, V6, P539; ROGERS JS, 1986, SYST ZOOL, V35, P297, DOI 10.2307/2413383; ROGERS JS, 1972, STUDIES GENETICS U T, V7213, P145; ROHLF FJ, 1970, SYST ZOOL, V19, P58, DOI 10.2307/2412027; ROHLF FJ, 1990, NTSYS NUMERICAL TAXO; ROY MS, 1994, MOL BIOL EVOL, V11, P553; SAITOU N, 1987, MOL BIOL EVOL, V4, P406; SCHAFFER HE, 1981, ANAL BIOCHEM, V115, P113, DOI 10.1016/0003-2697(81)90533-9; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; SCHLUTER D, 1993, TRENDS ECOL EVOL, V8, P197, DOI 10.1016/0169-5347(93)90098-A; SCOTT D, 1984, J ROY SOC NEW ZEAL, V14, P245, DOI 10.1080/03036758.1984.10426302; Sneath P. H. A., 1973, NUMERICAL TAXONOMY P; STAHL G, 1987, POPULATION GENETICS, P121; Swofford David L., 1990, P411; SWOFFORD DL, 1981, J HERED, V72, P281, DOI 10.1093/oxfordjournals.jhered.a109497; TAGGART JB, 1990, J FISH BIOL, V37, P991, DOI 10.1111/j.1095-8649.1990.tb03603.x; TAGGART JB, 1992, J FISH BIOL, V40, P963, DOI 10.1111/j.1095-8649.1992.tb02641.x; TAGGART JB, 1990, ANIM GENET, V21, P377, DOI 10.1111/j.1365-2052.1990.tb01982.x; TAYLOR EB, 1995, J HERED, V86, P354, DOI 10.1093/oxfordjournals.jhered.a111603; TAYLOR EB, 1993, MOL ECOL, V2, P345, DOI 10.1111/j.1365-294X.1993.tb00028.x; TAYLOR EB, 1991, J FISH BIOL, V38, P407, DOI 10.1111/j.1095-8649.1991.tb03130.x; TAYLOR EB, 1993, EVOLUTION, V47, P813, DOI 10.1111/j.1558-5646.1993.tb01236.x; TAYLOR EB, 1994, CAN J FISH AQUAT SCI, V51, P1430, DOI 10.1139/f94-143; Utter F., 1980, SALMONID ECOSYSTEMS, P285; VARNAVSKAYA NV, 1992, CAN J ZOOL, V70, P2115, DOI 10.1139/z92-284; VERSPOOR E, 1989, CAN J ZOOL, V67, P1453, DOI 10.1139/z89-206; WARNER BG, 1982, SCIENCE, V218, P675, DOI 10.1126/science.218.4573.675; WAYNE RK, 1991, EVOLUTION, V45, P1849, DOI 10.1111/j.1558-5646.1991.tb02692.x; Wilder D. G., 1947, Canadian Journal of Research Ottawa, V25D, P175; WOOD CC, 1990, CAN J FISH AQUAT SCI, V47, P2250, DOI 10.1139/f90-250; WOOD CC, 1994, CAN J FISH AQUAT SCI, V51, P114, DOI 10.1139/f94-299; WOOD CC, EVOLUTION, V50; WRIGHT JM, 1993, BIOCH MOL BIOL FISHE, V2, P59 86 139 140 0 28 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 1996 50 1 401 416 10.1111/j.1558-5646.1996.tb04502.x 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TX891 WOS:A1996TX89100036 28568856 Bronze 2019-02-26 J Martin, D; Cha, JH; Bhaud, M Martin, D; Cha, JH; Bhaud, M Consequences of oocyte form modifications in Eupolymnia nebulosa (Annelida; Polychaeta) INVERTEBRATE REPRODUCTION & DEVELOPMENT English Article gamete form; life-cycle strategy; spawning mechanism; speciation; Eupolymnia nebulosa; northwestern Mediterranean; English Channel REPRODUCTIVE ENERGETICS; TEREBELLIDAE; MONTAGU The changes in form of intracoelomic oocytes during their developmental stages and the change from mature to the external fertilized (i.e., egg) phases during the spawning process were analyzed in Eupolymnia nebulosa with reference to the life-history strategy of the species. Accurate description of the real form of both oocytes and eggs was the objective of the study. All developmental stages of oocytes floating freely in the coelom (solitary oocytes) showed a flattened form. Increase in oocyte thickness was not reflected in a proportional increase in diameter. Therefore, by simply measuring diameters, a significant component of oocyte growth would not have been recorded. Different relationships between diameter and thickness of oocytes for the Mediterranean (slope=0.436, intercept=-4.507) and English Channel (slope=0.321, intercept=-2.199) populations of E. nebulosa have been observed. The implications of this difference for the speciation problem of the ''cosmopolitan'' E. nebulosa are discussed. The development of flattened oocytes into spherical newly spawned eggs has also been noted. Although no direct demonstration has been made, our results provide strong supporting evidence for the operation of a size-dependent selection mechanism during the spawning process. This mechanism can be directly linked with the life-cycle strategy of the Mediterranean E. nebulosa populations, while the implications of its existence in the English Channel populations remain unclear. The results demonstrate the importance of considering the real form of gametes when dealing with the study of life-history strategies (viz. oocyte growth linked to different environmental or endogenous control mechanisms or to different spawning mechanisms). UNIV PARIS 06, CNRS URA 117, LAB ARAGO, OBSER OCEANOL, F-66650 BANYULS SUR MER, FRANCE; KOREAN OCEAN RES & DEV INST, DIV BIOL OCEANOG, SEOUL, SOUTH KOREA Martin, D (reprint author), CSIC, CTR ESTUDIS AVANCATS BLANES, CAMI SANTA BARBARA S-N, E-17300 BLANES, SPAIN. Martin, Daniel/G-5232-2010 Martin, Daniel/0000-0001-6350-7384 BHAUD M, 1988, ZOOL SCR, V17, P347, DOI 10.1111/j.1463-6409.1988.tb00111.x; BHAUD M, 1991, OPHELIA S, V5, P296; Clark R.B., 1973, Oceanography mar Biol, V11, P175; Clark R.B., 1977, P477; DUCHENE JC, 1992, ANN I OCEANOGR PARIS, V68, P15; DUCHENE JC, 1992, OLSEN INT S, P231; GREMARE A, 1986, J EXP MAR BIOL ECOL, V96, P287, DOI 10.1016/0022-0981(86)90208-X; GREMARE A, 1988, THESIS U PARIS 6; HERMAN GT, 1979, COMPUT VISION GRAPH, V9, P1, DOI 10.1016/0146-664X(79)90079-0; Herpin R., 1925, B SOC SCI NAT OUEST, V5, P1; HOWIE DID, 1984, FORTSCHR ZOOL, V29, P248; LANG F, 1986, THESIS U RENNES 1; LENAERS G, 1992, J MOL EVOL, V35, P429; MCHUGH D, 1993, BIOL BULL, V185, P153, DOI 10.2307/1541996; Olive P. J. W., 1980, ADV INVERTEBRATE REP, P37; OLIVE PJW, 1975, J MAR BIOL ASSOC UK, V55, P313, DOI 10.1017/S0025315400015964; OLIVE PJW, 1985, MAR BIOL, V88, P235, DOI 10.1007/BF00392586; OLIVE PJW, 1975, GEN COMP ENDOCR, V30, P397; PORCHET M, 1979, GEN COMP ENDOCR, V30, P378; SCOTT JW, 1911, BIOL BULL, V25, P252; SMITH RI, 1989, INVERTEBR REPROD DEV, V15, P7, DOI 10.1080/07924259.1989.9672015; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stephenson W., 1950, Report Dove Marine Laboratory Cullercoats Ser 3, V11, P21 23 5 5 0 1 INT SCIENCE SERVICES/BALABAN PUBLISHERS REHOVOT PO BOX 2039, REHOVOT 76120, ISRAEL 0792-4259 INVERTEBR REPROD DEV Invertebr. Reprod. Dev. FEB 1996 29 1 27 36 10.1080/07924259.1996.9672492 10 Reproductive Biology; Zoology Reproductive Biology; Zoology UQ574 WOS:A1996UQ57400004 2019-02-26 J Marrow, P; McNamara, JM; Houston, AI; Stevenson, IR; CluttonBrock, TH Marrow, P; McNamara, JM; Houston, AI; Stevenson, IR; CluttonBrock, TH State-dependent life history evolution in soay sheep: Dynamic modelling of reproductive scheduling PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article OPTIMAL CLUTCH SIZE; REACTION NORMS; POPULATION; BIRDS; ENVIRONMENTS; MORTALITY; SELECTION; UNGULATE; MAMMALS; CYCLES Adaptive decisions concerning the scheduling of reproduction in an animal's lifetime, including age at maturity and clutch or litter size, should depend on an animal's body condition or state. In this state-dependent case, we are concerned with the optimization of sequences of actions and so dynamic optimization techniques are appropriate. Here we show how stochastic dynamic programming can be used to study the reproductive strategies and population dynamics of natural populations, assuming optimal decisions. As examples we describe models based upon field data from an island population of Soay sheep on St. Kilda. This population shows persistent instability, with cycles culminating in high mortality every three or four years. We explore different assumptions about the extent to which Soay ewes use information about the population cycle in making adaptive decisions. We compare the observed distributions of strategies and population dynamics with model predictions; the results indicate that Soay ewes make optimal reproductive decisions given that they have no information about the population cycle. This study represents the first use of a dynamic optimization life history model of realistic complexity in the study of a field population. The techniques we use are potentially applicable to many other populations, and we discuss their extension to other species and other life history questions. UNIV BRISTOL, SCH MATH, BRISTOL BS8 1TW, AVON, ENGLAND; UNIV BRISTOL, SCH BIOL SCI, BRISTOL BS8 1UG, AVON, ENGLAND Marrow, P (reprint author), UNIV CAMBRIDGE, DEPT ZOOL, LARGE ANIM RES GRP, DOWNING ST, CAMBRIDGE CB2 3EJ, ENGLAND. Marrow, Paul/0000-0001-9335-6433 BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; BOYD J. MORTON, 1964, PROC ZOOL SOC LONDON, V142, P129; BOYD J. MORTON, 1953, ST KILDA SCOTTISH NAT, V65, P25; CAMPBELL RN, 1974, ISLAND SURVIVORS, P8; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Clutton-Brock T.H., 1988, P325; CLUTTONBROCK J, 1987, NATURAL HIST DOMESTI; CLUTTONBROCK TH, 1992, J ANIM ECOL, V61, P381, DOI 10.2307/5330; CLUTTONBROCK TH, 1991, J ANIM ECOL, V60, P593, DOI 10.2307/5300; CLUTTONBROCK TH, 1996, IN PRESS J ANIM ECOL; CLUTTONBROCK TH, 1996, UNPUB AM NAT; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; Cox D. R., 1970, ANAL BINARY DATA; DHONDT AA, 1990, NATURE, V348, P723, DOI 10.1038/348723a0; FINKE OM, 1988, REPRODUCTIVE SUCCESS, P24; Fitzpatrick J.W., 1988, P305; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.es.22.110191.002205; GRENFELL BT, 1992, NATURE, V355, P823, DOI 10.1038/355823a0; GRUBB P, 1974, ISLAND SURVIVORS ECO, P242; GUINNESS FE, 1978, J ANIM ECOL, V47, P817, DOI 10.2307/3673; GULLAND FMD, 1993, P ROY SOC B-BIOL SCI, V254, P7, DOI 10.1098/rspb.1993.0119; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HOUSTON AI, 1992, OIKOS, V63, P513, DOI 10.2307/3544979; HOUSTON AI, 1987, J THEOR BIOL, V129, P57, DOI 10.1016/S0022-5193(87)80203-5; Houston AI, 1988, EVOL ECOL, V2, P51, DOI 10.1007/BF02071588; Jewell P.A., 1974, P224; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; LACK D, 1948, J ANIM ECOL, V17, P45, DOI 10.2307/1608; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lessells C.M., 1991, P32; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LIOU LW, 1993, AM NAT, V141, P507, DOI 10.1086/285488; Mangel M., 1988, DYNAMIC MODELLING BE; McCleery R.H., 1988, P136; MCCULLAGH P, 1989, GENERALIZED LINEAR M; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; Milner C., 1974, ISLAND SURVIVORS ECO; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; NEWTON I, 1988, REPROD SUCCESS, P201; Owens-Smith RN, 1988, MEGAHERBIVORES INFLU; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; PRICE T, 1989, AM NAT, V134, P950, DOI 10.1086/285023; REIMERS E, 1968, J WILDLIFE MANAGE, V32, P957, DOI 10.2307/3799574; REISS MJ, 1989, ALLOMETRY GROWTH FOR; Roff Derek A., 1992; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHLUTER D, 1993, EVOLUTION, V47, P658, DOI 10.1111/j.1558-5646.1993.tb02119.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HIST; STEVENSON IR, 1994, THESIS U CAMBRIDGE; TINBERGEN JM, 1990, BEHAVIOUR, V114, P161, DOI 10.1163/156853990X00103; van Noordwijk A.J., 1988, P119; 1993, GENSTAT 5 RELEASE 3 63 36 36 0 10 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. JAN 29 1996 351 1335 17 32 10.1098/rstb.1996.0002 16 Biology Life Sciences & Biomedicine - Other Topics TV164 WOS:A1996TV16400002 8745420 2019-02-26 S Poulin, R Baker, JR; Muller, R; Rollinson, D Poulin, R The evolution of life history strategies in parasitic animals ADVANCES IN PARASITOLOGY, VOL 37 Advances in Parasitology English Review FRESH-WATER FISHES; SEASONAL OCCURRENCE; BOTHRIOCEPHALUS-ACHEILOGNATHI; ZOOPARASITIC NEMATODES; REPRODUCTIVE SUCCESS; HYMENOLEPIS-NANA; EGG-PRODUCTION; FECUNDITY; SIZE; MONOGENEA Poulin, R (reprint author), UNIV OTAGO, DEPT ZOOL, POB 56, DUNEDIN, NEW ZEALAND. Poulin, Robert/C-3117-2008 Poulin, Robert/0000-0003-1390-1206 ADAMSON ML, 1986, CAN J ZOOL, V64, P1375, DOI 10.1139/z86-206; AHMAD RA, 1986, INT J PARASITOL, V16, P541, DOI 10.1016/0020-7519(86)90090-1; AMIN O M, 1980, Systematic Parasitology, V2, P9, DOI 10.1007/BF00015091; AMIN OM, 1975, J PARASITOL, V61, P307, DOI 10.2307/3279011; ANDERSON RC, 1984, CAN J ZOOL, V62, P317, DOI 10.1139/z84-050; BAUER G, 1994, J ANIM ECOL, V63, P933, DOI 10.2307/5270; BEAMISH RJ, 1987, CAN J FISH AQUAT SCI, V44, P1779, DOI 10.1139/f87-219; BERRIE A. D., 1960, JOUR HELMINTHOL, V34, P205; BISSET SA, 1994, NEW ZEAL J ZOOL, V21, P9, DOI 10.1080/03014223.1994.9517972; BLACKBURN TM, 1991, AUK, V108, P209; Brooks DR, 1991, PHYLOGENY ECOLOGY BE; BROOKS DR, 1993, PARASCRIPT PARASITES; BUCHMANN K, 1990, FOLIA PARASIT, V37, P59; BUCHMANN K, 1988, PARASITOL RES, V75, P162, DOI 10.1007/BF00932717; BURT A, 1987, NATURE, V330, P118, DOI 10.1038/330118a0; CALOW P, 1983, PARASITOLOGY, V86, P197, DOI 10.1017/S0031182000050897; Chubb J.C., 1977, Advances in Parasitology, V15, P133, DOI 10.1016/S0065-308X(08)60528-X; Chubb J.C., 1980, Advances in Parasitology, V18, P1, DOI 10.1016/S0065-308X(08)60398-X; Chubb J.C., 1979, Advances in Parasitology, V17, P141, DOI 10.1016/S0065-308X(08)60551-5; CHUBB JC, 1982, ADV PARASIT, V20, P1, DOI 10.1016/S0065-308X(08)60539-4; CLARKE A, 1979, MAR BIOL, V55, P111, DOI 10.1007/BF00397306; COLWELL DA, 1973, J PARASITOL, V59, P216, DOI 10.2307/3278613; CONLEY DC, 1993, CAN J ZOOL, V71, P972, DOI 10.1139/z93-128; COYNE MJ, 1992, INT J PARASITOL, V22, P315, DOI 10.1016/S0020-7519(05)80009-8; DIXON KE, 1964, HELMINTHOLOGIA, V38, P203; DOBSON AP, 1986, PARASITOLOGY, V92, P675, DOI 10.1017/S0031182000065537; ESCH GW, 1975, AM MIDL NAT, V93, P339, DOI 10.2307/2424167; EVANS NA, 1982, INT J PARASITOL, V12, P363, DOI 10.1016/0020-7519(82)90040-6; EVANS NA, 1982, PARASITOLOGY, V85, P295, DOI 10.1017/S003118200005527X; Godfray H.C.J., 1987, Oxford Surveys in Evolutionary Biology, V4, P117; GOTTO R. V., 1962, ANN AND MAG NAT HIST, V5, P97; HANKEN J, 1993, ANNU REV ECOL SYST, V24, P501, DOI 10.1146/annurev.es.24.110193.002441; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1991, PHILOS T ROY SOC B, V332, P31, DOI 10.1098/rstb.1991.0030; HERRE EA, 1993, SCIENCE, V259, P1442, DOI 10.1126/science.259.5100.1442; HOAGLAND KE, 1978, EXP PARASITOL, V44, P36, DOI 10.1016/0014-4894(78)90078-4; HONZAKOVA E, 1975, Folia Parasitologica (Ceske Budejovice), V22, P37; ISHII AI, 1987, PARASITOL RES, V73, P159, DOI 10.1007/BF00536473; ITO A, 1986, INT J PARASITOL, V16, P81, DOI 10.1016/0020-7519(86)90069-X; IWUALA M O E, 1977, Folia Parasitologica (Ceske Budejovice), V24, P162; JENNINGS JB, 1975, OECOLOGIA, V21, P109, DOI 10.1007/BF00345553; JEWSBURY JM, 1968, EXP PARASITOL, V22, P50, DOI 10.1016/0014-4894(68)90078-7; JOHNSTON CE, 1987, CAN J ZOOL, V65, P415, DOI 10.1139/z87-062; JONES JT, 1989, INT J PARASITOL, V19, P769, DOI 10.1016/0020-7519(89)90065-9; KEARN GC, 1985, INT J PARASITOL, V15, P187, DOI 10.1016/0020-7519(85)90086-4; KEARN GC, 1986, ADV PARASIT, V25, P175; KEYMER A, 1983, INT J PARASITOL, V13, P561, DOI 10.1016/S0020-7519(83)80028-9; KHAMBOONRUANG C, 1971, J PARASITOL, V57, P289, DOI 10.2307/3278028; KINSELLA JM, 1971, J PARASITOL, V57, P62, DOI 10.2307/3277753; KIRCHNER TB, 1980, ECOLOGY, V61, P232, DOI 10.2307/1935179; KRUPP IM, 1961, J PARASITOL, V47, P957, DOI 10.2307/3275030; LEBEDEV BI, 1982, FOLIA PARASIT, V29, P97; LOKER ES, 1983, PARASITOLOGY, V87, P343, DOI 10.1017/S0031182000052689; MACKENZIE DI, 1980, J PARASITOL, V66, P145, DOI 10.2307/3280606; MCCAIG MLO, 1963, EXP PARASITOL, V13, P273, DOI 10.1016/0014-4894(63)90080-8; MCENROE WD, 1981, FOLIA PARASIT, V28, P381; MICHEL JF, 1978, INT J PARASITOL, V8, P437, DOI 10.1016/0020-7519(78)90060-7; MICHEL JF, 1971, J PARASITOL, V57, P1185, DOI 10.2307/3277964; MOORE J, 1987, EVOLUTION, V41, P882, DOI 10.1111/j.1558-5646.1987.tb05861.x; MOORE J, 1981, EVOLUTION, V35, P723, DOI 10.1111/j.1558-5646.1981.tb04932.x; MOSSINGER J, 1986, Z PARASITENKD, V72, P121, DOI 10.1007/BF00927743; NATH D, 1970, Z PARASITENK, V34, P343; NEUSER V, 1974, Z PARASITENKD, V44, P19, DOI 10.1007/BF00328829; NOBLE GA, 1967, J PARASITOL, V53, P645, DOI 10.2307/3276734; NOVAK M, 1986, INT J PARASITOL, V16, P13, DOI 10.1016/0020-7519(86)90059-7; OGILVIE BM, 1968, J PARASITOL, V54, P1073, DOI 10.2307/3276966; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; POULIN R, 1995, PARASITOL TODAY, V11, P342, DOI 10.1016/0169-4758(95)80187-1; POULIN R, 1995, BIOL J LINN SOC, V54, P231; POULIN R, 1995, EVOLUTION, V49, P325, DOI 10.1111/j.1558-5646.1995.tb02245.x; POULIN R, 1995, FUNCT ECOL, V9, P364, DOI 10.2307/2389998; POULIN R, 1996, IN PRESS CANADIAN J; PRICE PW, 1977, EVOLUTION, V31, P405, DOI 10.1111/j.1558-5646.1977.tb01021.x; PRICE PW, 1974, EVOLUTION, V28, P76, DOI 10.1111/j.1558-5646.1974.tb00728.x; Price PW, 1980, EVOLUTIONARY BIOL PA; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; QUINNELL RJ, 1988, J HELMINTHOL, V62, P158, DOI 10.1017/S0022149X00011421; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; READ AF, 1995, PARASITOLOGY, V111, P359, DOI 10.1017/S0031182000081919; READ AF, 1995, ECOLOGY SYMBIOSIS NE; Read Andrew F., 1994, Trends in Microbiology, V2, P73, DOI 10.1016/0966-842X(94)90537-1; READ CP, 1951, J PARASITOL, V37, P174, DOI 10.2307/3273449; RIGGS MR, 1987, J PARASITOL, V73, P893, DOI 10.2307/3282507; RIGGS MR, 1987, J PARASITOL, V73, P877, DOI 10.2307/3282506; Roff Derek A., 1992; ROHDE K, 1991, INT J PARASITOL, V21, P113, DOI 10.1016/0020-7519(91)90128-T; ROHDE K, 1993, ECOLOGY MARINE PARAS; RONDELAUD D, 1987, Z PARASITENKD, V74, P155; SHOSTAK AW, 1986, AM MIDL NAT, V115, P225, DOI 10.2307/2425858; SHOSTAK AW, 1987, CAN J ZOOL, V65, P2878, DOI 10.1139/z87-437; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SINNIAH B, 1991, J HELMINTHOL, V65, P141, DOI 10.1017/S0022149X00010609; SKORPING A, 1991, OIKOS, V60, P365, DOI 10.2307/3545079; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; SUKHDEO MVK, 1991, INT J PARASITOL, V21, P855, DOI 10.1016/0020-7519(91)90154-Y; SZALAI AJ, 1989, PARASITOLOGY, V98, P489, DOI 10.1017/S0031182000061588; TEDLA S, 1970, Crustaceana (Leiden), V19, P1, DOI 10.1163/156854070X00581; THONEY DA, 1988, J PARASITOL, V74, P999, DOI 10.2307/3282222; TRUESDALE FM, 1977, CRUSTACEANA, V32, P216, DOI 10.1163/156854077X00665; VANDAMME PA, 1993, J FISH BIOL, V42, P395, DOI 10.1006/jfbi.1993.1042; VLASSOFF A, 1994, NEW ZEAL J ZOOL, V21, P1; WAKELIN D, 1984, IMMUNITY PARASITES A; WENNER EL, 1979, CRUSTACEANA, V37, P293, DOI 10.1163/156854079X01176; WHARTON DA, 1986, FUNCTIONAL BIOL NEMA; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOTTEN R, 1974, J HELMINTHOL, V48, P269, DOI 10.1017/S0022149X00022951; YOSHIKAWA H, 1989, PARASITOL RES, V75, P649, DOI 10.1007/BF00930964 109 76 82 0 21 ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD LONDON 24-28 OVAL ROAD, LONDON NW1 7DX, ENGLAND 0065-308X 0-12-031737-0 ADV PARASIT Adv.Parasitol. 1996 37 107 134 10.1016/S0065-308X(08)60220-1 28 Parasitology Parasitology BF36Y WOS:A1996BF36Y00003 8881599 2019-02-26 J Hartwig, WC Hartwig, WC Perinatal life history traits in New World monkeys AMERICAN JOURNAL OF PRIMATOLOGY English Review Platyrrhini; ontogeny; neonate; growth and development SAGUINUS-OEDIPUS-OEDIPUS; URINARY ESTROGEN EXCRETION; GOLDEN LION TAMARINS; SQUIRREL-MONKEYS; SAIMIRI-SCIUREUS; CALLITHRIX-JACCHUS; CALLIMICO-GOELDII; COTTON-TOP; COMMON MARMOSET; MATERNAL INVESTMENT Gestation length, neonatal and maternal body weight, and neonatal and adult brain weight data were collected for New World monkeys in an attempt to establish typical patterns of perinatal life history. This study attempts to illuminate the most accurate values from the available data, which suggest that gestation length and prenatal growth rate are broadly conserved in relation to maternal size in New World monkeys. Exceptions to the patterns evident in the data point to derivations in life history strategies. In particular, this study suggests that the extended gestation length of callitrichines is a function of minimum viable neonate size and not exclusively energy minimization associated with simultaneous lactation. Cebus is shown to undergo more postnatal brain growth relative to other New World monkeys, but not as much as previously believed. Alouatta is shown to be relatively small brained at birth as well as in adulthood. Saimiri is shown to present the most,unusual package of perinatal life history traits, in which precocial neonates are gestated for a relatively long time and at a slightly faster growth rate than is typical for New World monkeys. (C) 1996 Wiley-Liss, Inc. Hartwig, WC (reprint author), UNIV CALIF BERKELEY, DEPT ANTHROPOL, BERKELEY, CA 94720 USA. ALLMAN J, 1993, P NATL ACAD SCI USA, V90, P118, DOI 10.1073/pnas.90.1.118; ARDITO G, 1976, J HUM EVOL, V5, P213, DOI 10.1016/0047-2484(76)90023-3; BAKER AJ, 1992, AM J PRIMATOL, V26, P1, DOI 10.1002/ajp.1350260104; BAUCHOT R, 1981, MAMMALIA, V45, P251, DOI 10.1515/mamm.1981.45.2.251; BAUCHOT R, 1969, Mammalia, V33, P225, DOI 10.1515/mamm.1969.33.2.225; Beck B.B., 1982, International Zoo Yearbook, V22, P106, DOI 10.1111/j.1748-1090.1982.tb02016.x; BEISCHER DE, 1964, ANAT REC, V148, P615, DOI 10.1002/ar.1091480414; BOINSKI S, 1989, ANIM BEHAV, V37, P415, DOI 10.1016/0003-3472(89)90089-4; BOINSKI S, 1987, BEHAV ECOL SOCIOBIOL, V21, P393, DOI 10.1007/BF00299934; BOWDEN D, 1967, FOLIA PRIMATOL, V5, P1, DOI 10.1159/000161936; BRAND HM, 1981, J REPROD FERTIL, V62, P467; BRAND HM, 1983, INT J PRIMATOL, V4, P275, DOI 10.1007/BF02735550; BRIZZEE KR, 1986, COMP PRIMATE BIOL, V3, P363; CARROLL JB, 1990, J REPROD FERTIL, V89, P149; CHAMBERS PL, J ZOOLOGY LONDON A, V207, P545; Charnov Eric L., 1993, P1; Chartin J., 1960, Mammalia Paris, V24, P153; CHASE JE, 1969, AM J PHYS ANTHROPOL, V30, P111, DOI 10.1002/ajpa.1330300111; CHRISTEN A, 1974, Z TIERPSYCHOL, V14, P5; CICMANEC JC, 1977, LAB ANIM SCI, V27, P512; COIMBRA-FILHO A F, 1979, Revista Brasileira de Biologia, V39, P83; Coimbra-Filho Adelmar F., 1993, Dodo, V29, P66; CORNER BD, 1992, AM J PHYS ANTHROPOL, V87, P67, DOI 10.1002/ajpa.1330870107; CROCKETT CM, 1982, AM J PRIMATOL, V3, P291, DOI 10.1002/ajp.1350030127; DIETZ JM, 1994, AM J PRIMATOL, V34, P115, DOI 10.1002/ajp.1350340204; Dixson A. F., 1980, NONHUMAN PRIMATE MOD, P61; DIXSON AF, 1983, REPROD NEW WORLD PRI, P29; DUKELOW WR, 1983, REPROD NEW WORLD PRI, P181; EISENBER.JF, 1973, J MAMMAL, V54, P954; EISENBERG JF, 1981, MAMMALIAN RAD; EISENBERG JF, 1977, BIOL CONSERVATION CA, P13; ELIAS MF, 1977, DEV PSYCHOBIOL, V10, P519, DOI 10.1002/dev.420100605; ELLIOTT MW, 1976, LAB ANIM SCI, V26, P1037; EPPLE G, 1970, FOLIA PRIMATOL, V13, P48, DOI 10.1159/000155308; EPPLE G, 1983, REPRODUCTION NEW WOR, P115; FEDIGAN LM, 1995, AM J PRIMATOL, V37, P9, DOI 10.1002/ajp.1350370103; FLEAGLE JG, 1975, GROWTH, V39, P35; FORD S M, 1980, Primates, V21, P31, DOI 10.1007/BF02383822; FORD SM, 1992, AM J PHYS ANTHROPOL, V88, P415, DOI 10.1002/ajpa.1330880403; FRAGASZY DM, 1990, FOLIA PRIMATOL, V54, P119, DOI 10.1159/000156435; FRENCH JA, 1983, FOLIA PRIMATOL, V40, P276, DOI 10.1159/000156110; Garber Paul A., 1993, P273; GENGOZIAN N, 1977, BIOL CONSERVATION CA, P207; Gensch W., 1965, International Zoo Yearbook, V5, P110, DOI 10.1111/j.1748-1090.1965.tb01591.x; GLANDER KE, 1980, AM J PHYS ANTHROPOL, V53, P25, DOI 10.1002/ajpa.1330530106; Goss C. M., 1968, P171; HALL RD, 1979, LAB ANIM SCI, V29, P345; HAMPTON SH, 1977, BIOL CONSERVATION CA, P193; HARTWIG WC, 1995, AM J PHYS ANTHROPOL, V97, P435, DOI 10.1002/ajpa.1330970409; HARTWIG WC, 1993, THESIS U CALIFORNIA; Harvey P.H., 1987, P181; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; HAYES K C, 1972, P122; Hearn J.P., 1983, P181; Hearn J.P., 1980, PROGRESS IN REPRODUCTIVE BIOLOGY, V7, P262; HEARN JP, 1977, BIOL CONSERVATION CA, P163; HEGER W, 1988, NONHUMAN PRIMATES DE, P53; HEISTERMANN M, 1995, AM J PRIMATOL, V35, P117, DOI 10.1002/ajp.1350350204; HEMMER B, 1971, P 3 INT C PRIM, V2, P99; Hershkovitz P, 1977, LIVING NEW WORLD MON, V1; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hopf S., 1967, Primates, V8, P323, DOI 10.1007/BF01792017; Hrdlicka A, 1925, AM J PHYS ANTHROPOL, V8, P201, DOI 10.1002/ajpa.1330080207; HUNTER J, 1979, FOLIA PRIMATOL, V31, P165, DOI 10.1159/000155881; JANSON CH, 1992, AM J PHYS ANTHROPOL, V88, P483, DOI 10.1002/ajpa.1330880405; Janson Charles H., 1993, P57; JAQUISH CE, 1995, AM J PRIMATOL, V36, P259, DOI 10.1002/ajp.1350360402; JAROSZ SJ, 1977, BIOL REPROD, V16, P97, DOI 10.1095/biolreprod16.1.97; JUNGERS WL, 1980, AM J PHYS ANTHROPOL, V53, P471, DOI 10.1002/ajpa.1330530403; JURKE MH, 1994, AM J PRIMATOL, V34, P319, DOI 10.1002/ajp.1350340404; KAACK B, 1979, GROWTH, V43, P116; KAPLAN J, 1974, DEV PSYCHOBIOL, V7, P7, DOI 10.1002/dev.420070103; KAPLAN JN, 1977, LAB ANIM SCI, V27, P557; KERBER WT, 1977, LAB ANIM SCI, V27, P700; KLEIMAN DG, 1977, BIOL CONSERVATION CA, P181; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; LEIGH SR, 1994, ZOO BIOL, V13, P21, DOI 10.1002/zoo.1430130105; LEIGH SR, 1994, EVOLUTIONARY ANTHR, V3, P106; Leutenegger W., 1982, P85; LEUTENEGGER W, 1970, FOLIA PRIMATOL, V12, P224, DOI 10.1159/000155292; Leutenegger W., 1980, International Journal of Primatology, V1, P95, DOI 10.1007/BF02692260; LEUTENEGGER W, 1973, FOLIA PRIMATOL, V20, P280, DOI 10.1159/000155580; Long J. O., 1968, P193; LORENZ R, 1967, FOLIA PRIMATOL, V6, P1, DOI 10.1159/000155064; MALAGA CA, 1991, J MED PRIMATOL, V20, P370; MANOCHA SL, 1979, EXPERIENTIA, V35, P96, DOI 10.1007/BF01917901; MARTIN RD, 1985, NATURE, V313, P220, DOI 10.1038/313220a0; MARTIN RD, 1992, J HUM EVOL, V22, P367, DOI 10.1016/0047-2484(92)90066-I; MARTIN RD, 1988, S ZOOL SOC LOND, V60, P39; Martin RD, 1990, PRIMATE ORIGINS EVOL; MISSLER M, 1992, J MED PRIMATOL, V21, P285; Mitchell S.J., 1975, Laboratory Animals, V9, P49, DOI 10.1258/002367775780994817; MOORE HDM, 1985, AM J ANAT, V172, P265, DOI 10.1002/aja.1001720402; NAGLE CA, 1983, REPROD NEW WORLD PRI, P39, DOI DOI 10.1007/978-94-009-7322-0_2; OERKE AK, 1995, AM J PRIMATOL, V36, P1, DOI 10.1002/ajp.1350360102; Pereira M. E., 1993, JUVENILE PRIMATES LI; PEREIRA ME, 1991, PHYSIOL BEHAV, V49, P47, DOI 10.1016/0031-9384(91)90228-G; PEREIRA ME, 1991, BEHAV ECOL SOCIOBIOL, V28, P141; PERES CA, 1994, J HUM EVOL, V26, P245, DOI 10.1006/jhev.1994.1014; PERES CA, 1993, FOLIA PRIMATOL, V61, P97, DOI 10.1159/000156735; Phillips I.R., 1976, Advances in Anatomy Embryology and Cell Biology, V52, P1; PLOOG D, 1967, PSYCHOL FORSCH, V31, P1, DOI 10.1007/BF00422383; PUCCIARELLI HM, 1990, AM J PHYS ANTHROPOL, V81, P535, DOI 10.1002/ajpa.1330810409; RABB GB, 1959, J MAMMAL, V41, P401; RASMUSSEN KM, 1980, LAB ANIM SCI, V30, P99; RIDLEY M, 1995, AM J PHYS ANTHROPOL, V97, P197, DOI 10.1002/ajpa.1330970209; Roff Derek A., 1992; ROSENBERGER AL, 1984, FOLIA PRIMATOL, V42, P149, DOI 10.1159/000156159; ROSENBERGER AL, 1992, AM J PHYS ANTHROPOL, V88, P525, DOI 10.1002/ajpa.1330880408; ROSENBERGER AL, 1979, THESIS U NEW YORK NE; ROSS C, 1991, INT J PRIMATOL, V12, P481, DOI 10.1007/BF02547635; ROTHE H, 1974, Zeitschrift fuer Saeugetierkunde, V39, P135; ROTHE H, 1973, FOLIA PRIMATOL, V19, P257, DOI 10.1159/000155543; ROTHE H, 1977, BIOL CONSERVATION CA, P193; RUSSO AR, 1980, GROWTH, V44, P271; SACHER GA, 1974, AM NAT, V108, P593, DOI 10.1086/282938; SCHMIDT U, 1968, Z VERGL PHYSIOL, V60, P176, DOI 10.1007/BF00878450; SHOEMAKER AH, 1980, INT ZOO YB, V22, P124; SMITH CA, 1987, ANAT EMBRYOL, V175, P399, DOI 10.1007/BF00309853; Snowdon C.T., 1988, P223; Soini P., 1988, P79; Stearns SC., 1992, EVOLUTION LIFE HIST; Stephan H., 1986, COMP PRIMATE BIOL, V4, P1; STEVENSON MF, 1976, J HUM EVOL, V5, P365, DOI 10.1016/0047-2484(76)90041-5; STOLZENBERG SJ, 1979, J MED PRIMATOL, V8, P29; STRIER KB, 1986, PRIMATOLOGIA BRASIL, V2, P163; SUSSMAN RW, 1984, AM J PHYS ANTHROPOL, V64, P419, DOI 10.1002/ajpa.1330640407; TARDIF SD, 1994, AM J PRIMATOL, V34, P133, DOI 10.1002/ajp.1350340205; Tardif Suzette D., 1993, P220; Ulmer F. A., 1961, Journal of Mammalogy, V42, P253, DOI 10.2307/1376839; WATTS ES, 1990, FOLIA PRIMATOL, V54, P217, DOI 10.1159/000156446; WILEN R, 1978, Primates, V19, P769, DOI 10.1007/BF02373644; Williams L., 1967, International Zoo Yearbook, V7, P86, DOI 10.1111/j.1748-1090.1967.tb00329.x; WILSON CG, 1977, BIOL CONSERVATION CA, P191; WOLFE L G, 1972, P145; WOLFE LG, 1975, LAB ANIM SCI, V25, P802; ZIEGLER TE, 1990, J REPROD FERTIL, V90, P563; ZIEGLER TE, 1990, AM J PRIMATOL, V22, P191, DOI 10.1002/ajp.1350220305; ZIEGLER TE, 1987, AM J PRIMATOL, V12, P127, DOI 10.1002/ajp.1350120202; ZIEGLER TE, 1990, J REPROD FERTIL, V89, P163; ZIEGLER TE, 1989, FOLIA PRIMATOL, V52, P206, DOI 10.1159/000156400 141 49 51 0 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0275-2565 1098-2345 AM J PRIMATOL Am. J. Primatol. 1996 40 2 99 130 10.1002/(SICI)1098-2345(1996)40:2<99::AID-AJP1>3.0.CO;2-V 32 Zoology Zoology VQ821 WOS:A1996VQ82100001 2019-02-26 J Benton, TG; Grant, A Benton, TG; Grant, A How to keep fit in the real world: Elasticity analyses and selection pressures on life histories ln a variable environment AMERICAN NATURALIST English Article POPULATION-DYNAMICS; FLUCTUATING ENVIRONMENT; EVOLUTION; DEMOGRAPHY; EXTINCTION; BIENNIALS; FITNESS; SIZE Most life-history theory assumes the environment is invariant. For the first time, analytical and numerical techniques were employed to investigate the impact of environmental variability on selection pressures (elasticities = proportional sensitivities) on a range of life histories. We find that the impact of variability is influenced significantly by the amount of variability an organism experiences (more variability affects selection pressures more), the correlations between variations among the vital rates (negative correlations are more likely to relax selection on fecundities and increase it on survival rates), and the life history in question (shorter life histories are more affected). In addition, the impact of a variable environment on the elasticities of life histories is sensitive to the sampling distribution used to generate the variability, and it is particularly sensitive to extreme values, such as those caused by occasional catastrophic events. The elasticities of life histories in highly variable environments may bear little relationship to those in a constant environment. In detailed optimality or evolutionarily stable strategy (ESS) modeling, variability in vital rates as small as a standard deviation being 10%-15% of the mean may appreciably alter the conclusions. Thus, it may be very important to consider the possible impact of environmental stochasticity and not to assume that it has no effect. UNIV E ANGLIA,SCH ENVIRONM SCI,NORWICH NR4 7TJ,NORFOLK,ENGLAND Grant, Alastair/L-7301-2018; Benton, Tim/C-6493-2009 Grant, Alastair/0000-0002-1147-2375; Benton, Tim/0000-0002-7448-1973 ABERG P, 1992, ECOLOGY, V73, P1488, DOI 10.2307/1940692; BENTON TG, 1992, ANIM BEHAV, V43, P125, DOI 10.1016/S0003-3472(05)80078-8; BENTON TG, IN PRESS EVOLUTIONAR; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COE WR, 1953, J MAR RES, V15, P212; Cushing D. H., 1975, MARINE ECOLOGY FISHE; DEJONG TJ, 1988, J ECOL, V76, P366; DOLMAN PM, 1995, IBIS, V137, pS538; Fisher R.A., 1930, GENETICAL THEORY NAT; FOX GA, 1993, EVOL ECOL, V7, P1, DOI 10.1007/BF01237731; GOTELLI NJ, 1991, ECOLOGY, V72, P457, DOI 10.2307/2937187; KALISZ S, 1991, ECOLOGY, V72, P575, DOI 10.2307/2937197; KLINKHAMER PGL, 1983, ECOL MODEL, V20, P223; Laevastu T, 1988, FISHING STOCK FLUCTU; LANDE R, 1988, P NATL ACAD SCI USA, V85, P7418, DOI 10.1073/pnas.85.19.7418; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LEVINTON JS, 1984, P NATL ACAD SCI-BIOL, V81, P5478, DOI 10.1073/pnas.81.17.5478; LOOSANOFF VL, 1964, BIOL BULL, V126, P423, DOI 10.2307/1539311; MAC ARTHUR ROBERT H., 1967; MAY RM, 1974, SCIENCE, V186, P645, DOI 10.1126/science.186.4164.645; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MIDDLETON DAJ, 1993, J APPL ECOL, V30, P1, DOI 10.2307/2404265; MOLONEY KA, 1988, ECOLOGY, V69, P1588, DOI 10.2307/1941656; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; MURRAY BG, 1994, OIKOS, V69, P520, DOI 10.2307/3545865; Norton HTJ, 1928, P LOND MATH SOC, V28, P1; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; ORZACK SH, 1985, AM NAT, V125, P550, DOI 10.1086/284362; Orzack Steven Hecht, 1993, Lecture Notes in Biomathematics, V98, P63; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SEBENS KP, 1985, J EXP MAR BIOL ECOL, V87, P55, DOI 10.1016/0022-0981(85)90192-3; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SIBLY RM, 1993, J THEOR BIOL, V160, P533, DOI 10.1006/jtbi.1993.1034; Stearns SC., 1992, EVOLUTION LIFE HIST; TAYLOR F, 1979, AM NAT, V113, P511, DOI 10.1086/283410; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P141, DOI 10.1016/0040-5809(82)90010-7; TULJAPURKAR SD, 1990, LECTURE NOTES BIOMAT, V85; WETHEY DS, 1985, ECOLOGY, V66, P445, DOI 10.2307/1940393; WIENER P, 1994, J THEOR BIOL, V166, P75, DOI 10.1006/jtbi.1994.1006 45 118 120 0 29 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. JAN 1996 147 1 115 139 10.1086/285843 25 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology TP423 WOS:A1996TP42300009 2019-02-26 J Jansen, WA Jansen, WA Plasticity in maturity and fecundity of yellow perch, Percaflavescens (Mitchill): Comparisons of stunted and normal-growing populations ANNALES ZOOLOGICI FENNICI English Article; Proceedings Paper 2nd International Percid Fish Symposium (PERCID II) AUG 21-25, 1995 VAASA, FINLAND Finnish Game & Fisheries Res Inst FLUVIATILIS L; GROWTH; LAKE; FLAVESCENS; EGG; DIFFERENTIATION; NORWAY; ROACH; FISH; SIZE Maturity, fecundity, and egg size of a stunted (mean length at age 5: 13.5 cm) and normal-growing (21.8 cm) population of yellow perch (Perca flavescens Mitchill) were studied in central Alberta, Canada. Stunted perch matured at a younger age and at a much smaller size than normal perch. Minimum size at initial maturation in stunted females was the smallest recorded in the literature for either perch (Perca) species. Relative fecundity, the slope of the fecundity-weight regression, and the gonado-somatic index were significantly higher in stunted perch. Mean dry weight of eggs, percentage connective tissue, gonad energy content, and gonad weight specific fecundity were similar for perch from both populations. Reproductive parameters of stunted perch are discussed in the context of life-history theory. UNIV ALBERTA,DEPT ZOOL,EDMONTON,AB T6G 2E9,CANADA ALM G, 1946, MEDD STATENS UNDERSO, V25, P1; ALM GUNNAR, 1952, REPT INST FRESHWATER RES DROTTNINGHOLM, V33, P17; ALM GUNNAR, 1959, REPT INST FRESHWATER RES DROTTNINGHOLM, V40, P5; BAGENAL T B, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P186; Bagenal T.B., 1978, P75; BOISCLAIR D, 1989, CAN J FISH AQUAT SCI, V46, P457, DOI 10.1139/f89-062; BRAZO DC, 1975, T AM FISH SOC, V104, P726, DOI 10.1577/1548-8659(1975)104<726:AGAFOY>2.0.CO;2; CRAIG JF, 1980, J ANIM ECOL, V49, P291, DOI 10.2307/4290; CRAIG JF, 1974, FRESHWATER BIOL, V4, P417, DOI 10.1111/j.1365-2427.1974.tb00106.x; CRAIG JF, 1982, REP FRESHWAT BIOL AS, V50, P49; Deelder C. L., 1951, Hydrobiologia, V3, P357, DOI 10.1007/BF00045560; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; HARTMANN J, 1975, ARCH HYDROBIOL, V76, P269; HASLER AD, 1945, ECOLOGY, V26, P90, DOI 10.2307/1931918; HEALEY MC, 1975, J FISH RES BOARD CAN, V32, P427, DOI 10.1139/f75-053; HEALEY MC, 1978, J FISH RES BOARD CAN, V35, P945, DOI 10.1139/f78-155; HEALY ANN, 1954, SCI PROC ROY DUBLIN SOC, V26, P397; HEATH D, 1987, T AM FISH SOC, V116, P98, DOI 10.1577/1548-8659(1987)116<98:TOGDIG>2.0.CO;2; HERMAN E, 1959, PUBL WISC CONS DEP, V228, P1; Holcik J., 1969, PRACE LAB RYBARSTVA, V2, P269; JAMET JL, 1994, INT REV GES HYDROBIO, V79, P305, DOI 10.1002/iroh.19940790216; JANSEN W, 1991, VERH INT VEREIN LIMN, V24, P2356; JELLYMAN DJ, 1980, NEW ZEAL J MAR FRESH, V14, P391, DOI 10.1080/00288330.1980.9515881; JOBES F, 1952, US FISH WILDL SERV F, V70, P205; Kennedy W. A., 1949, Bulletin Fisheries Research Board of Canada, V81, P1; LABEELUND JH, 1990, CAN J ZOOL, V68, P1983, DOI 10.1139/z90-279; LANG B, 1983, SCHWEIZ Z HYDROL, V45, P480, DOI 10.1007/BF02538135; LAPPALAINEN A, 1988, ENVIRON BIOL FISH, V21, P231, DOI 10.1007/BF00004866; LASKAR K, 1945, ARCH HYDROBIOL, V15, P1009; Le Cren E. D., 1947, JOUR ANIMAL ECOL, V16, P188; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LIND EA, 1974, ICHTHYOL FENN BOREAL, V3, P116; LINLOKKEN A, 1991, HYDROBIOLOGIA, V220, P179, DOI 10.1007/BF00006574; Makanova N. P., 1984, Journal of Ichthyology, V24, P163; MAKAROVA N, 1986, J ICHTHYOLOGY, V26, P157; MALISON JA, 1986, CAN J FISH AQUAT SCI, V43, P26, DOI 10.1139/f86-004; MANCE C, 1988, THESIS U ALBERTA EDM; MANN RHK, 1978, FRESHWATER BIOL, V8, P229, DOI 10.1111/j.1365-2427.1978.tb01444.x; MANSUETI ALICE JANE, 1964, CHESAPEAKE SCI, V5, P46, DOI 10.2307/1350790; Mitchell P, 1990, ATLAS ALBERTA LAKES; MUNCY ROBERT J., 1962, CHEASAPEAKE SCI, V3, P143, DOI 10.2307/1350992; NYBERG P, 1979, REP I FRESHWATER RES, V58, P139; PAPAGEORGIOU NK, 1977, FRESHWATER BIOL, V7, P559, DOI 10.1111/j.1365-2427.1977.tb01707.x; PERSSON L, 1990, J FISH BIOL, V37, P899, DOI 10.1111/j.1095-8649.1990.tb03593.x; PREPAS EE, 1988, HYDROBIOLOGIA, V159, P269, DOI 10.1007/BF00008240; RASK M, 1983, HYDROBIOLOGIA, V101, P139, DOI 10.1007/BF00008666; RIDGWAY LL, 1994, CAN J ZOOL, V72, P1576, DOI 10.1139/z94-209; ROPER K, 1936, Z FISCH, V34, P567; SANDSTROM O, 1995, J FISH BIOL, V47, P652, DOI 10.1111/j.1095-8649.1995.tb01932.x; *SAS I, 1984, SAS US GUID; SCHNEIDER J, 1984, 1915 MICH DEP NAT RE, P1; SHAFI M, 1971, J FISH BIOL, V3, P39, DOI 10.1111/j.1095-8649.1971.tb05904.x; SHERI AN, 1969, CAN J ZOOLOG, V47, P55, DOI 10.1139/z69-012; Sokal R.R., 1981, BIOMETRY PRINCIPLES; Stearns S.C., 1984, P13; STEHLIK J, 1968, VESTNIK CESKOSLOVENS, V33, P88; SZTRAMKO L, 1977, T AM FISH SOC, V106, P578, DOI 10.1577/1548-8659(1977)106<578:AVITFO>2.0.CO;2; Tesch F. W., 1955, Zeitschrift fuer Fischerei, V4, P321; Thorpe J., 1977, FAO FISHERIES SYNOPS, V113; THORPE JE, 1977, J FISH RES BOARD CAN, V34, P1504, DOI 10.1139/f77-215; Trautman M. B, 1981, FISHES OHIO; TREASURER JW, 1981, J FISH BIOL, V18, P359, DOI 10.1111/j.1095-8649.1981.tb03778.x; TREASURER JW, 1981, J FISH BIOL, V18, P729, DOI 10.1111/j.1095-8649.1981.tb03814.x; TREASURER JW, 1983, ENVIRON BIOL FISH, V8, P3, DOI 10.1007/BF00004941; TSAI C-F, 1971, Chesapeake Science, V12, P270, DOI 10.2307/1350914; Van Valen L., 1976, EVOL THEORY, V1, P179; VILJANEN M, 1982, ANN ZOOL FENN, V19, P39; VOGEL DA, 1987, LIMNOLOGICAL FISHERI, P61; WARE DM, 1982, CAN J FISH AQUAT SCI, V39, P3, DOI 10.1139/f82-002; WELLS L, 1983, US FISH WILDL SERV T, P109; WOODHEAD AD, 1979, S ZOOL SOC LOND, V44, P179; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133 72 17 19 1 14 FINNISH ZOOLOGICAL BOTANICAL PUBLISHING BOARD HELSINKI UNIV HELSINKI P O BOX 17 (P. RAUTATIEKATU 13), FIN-00014 HELSINKI, FINLAND 0003-455X ANN ZOOL FENN Ann. Zool. Fenn. 1996 33 3-4 403 415 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology WB445 WOS:A1996WB44500015 2019-02-26 J Bruton, MN Bruton, MN Alternative life-history strategies of catfishes AQUATIC LIVING RESOURCES English Article; Proceedings Paper International Workshop on the Biological Bases for Aquaculture of SILuriformes (BASIL) MAY 24-27, 1994 MONTPELLIER, FRANCE GAMET, CEMAGREF, CIRAD, ORSTOM catfish; morphology; ecology; behaviour; physiology; breeding guild; life-history; adaptations LAKE-MALAWI; FISHES; AFRICA; YOUNG Siluriformes, as well as Characiformes and Cypriniformes, are a diverse and widespread group of Ostariophysan fishes, but Siluriformes have a probable ancestral benthic feeding habit. They have a unique suite of morphological, physiological, ecological and behavioural traits that equip them to succeed in freshwaters but only to a limited extent in the sea. They are typically, non-aggressive stalking predators that hunt at night or in turbid water using primarily nonvisual sense organs, although there are many exceptions. The modification of the Weberian apparatus for sound production has probably resulted in some loss of buoyancy control. Catfishes are represented in all the different breeding guild categories and exhibit diverse and sometimes bizarre breeding methods. Catfishes tend towards the altricial end of the altricial-precocial life-history continuum. Only two families (Ariidae and Plotosidae) have successfully colonised the sea; physiological constraints and strong competition from Elasmobranchii and Actinopterygii fishes are probable reasons, and it is notable that the two families that have succeeded have precocial life histories that are more suited to highly competitive environments. JLB SMITH INST ICHTHYOL,ZA-6140 GRAHAMSTOWN,SOUTH AFRICA BALON EK, 1981, AM ZOOL, V21, P573; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; BREDER CM, 1966, MODES REPRODUCTION F; BRUTON M N, 1979, Transactions of the Zoological Society of London, V35, P1; Bruton M.N., 1979, TRANSACTIONS OF THE ZOOLOGICAL SOCIETY OF LONDON, V35, P47; BRUTON MN, 1989, PERSP VERT, V6, P503; Burgess WE, 1989, ATLAS FRESHWATER MAR; FINLEY L, 1988, AQUAR DIG INT, V47, P12; FLEGLERBALON C, 1989, PERSP VERT, V6, P71; JOCKEL S, 1988, AQUARIUM DIGEST INT, V47, P41; KOHDA M, 1995, ENVIRON BIOL FISH, V42, P1, DOI 10.1007/BF00002344; LOISELLE PV, 1988, AQUAR DIG INT, V47, P18; MCKAYE KR, 1986, OECOLOGIA, V69, P367, DOI 10.1007/BF00377058; MCKAYE KR, 1985, OECOLOGIA, V66, P358, DOI 10.1007/BF00378298; Mol JHA, 1993, FRESHWATER ECOSYSTEM, P167; Nelson J, 1994, FISHES WORLD; PAXTON JR, 1994, ENCY FISHES; RAMNARINE I, 1990, LIVING WORLD J TRINI, P46; RIMMER MA, 1983, P LINN SOC N S W, V107, P41; Sakurai J., 1985, AQUARIUM FISHES WORL; SCHEHR D, 1988, AQUAR DIG INT, V47, P35; TEUGELS GG, 1996, AQUAT LIVING RESOUR, P9; TINLEY RL, 1993, J FISH BIOL, V43, P183; TRAJANO E, 1991, ENVIRON BIOL FISH, V30, P407, DOI 10.1007/BF02027984 24 26 28 0 8 GAUTHIER-VILLARS PARIS 120 BLVD SAINT-GERMAIN, 75280 PARIS, FRANCE 0990-7440 AQUAT LIVING RESOUR Aquat. Living Resour. 1996 9 SI 35 41 10.1051/alr:1996040 7 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology XJ355 WOS:A1996XJ35500003 2019-02-26 J Hecht, T Hecht, T An alternative life history approach to the nutrition and feeding of Siluroidei larvae and early juveniles AQUATIC LIVING RESOURCES English Review International Workshop on the Biological Bases for Aquaculture of SILuriformes (BASIL) MAY 24-27, 1994 MONTPELLIER, FRANCE GAMET, CEMAGREF, CIRAD, ORSTOM Siluroidei; nutrition; feeding CLARIAS-GARIEPINUS BURCHELL; DIETARY-PROTEIN LEVEL; CHANNEL CATFISH; HETEROBRANCHUS-LONGIFILIS; HETEROPNEUSTES-FOSSILIS; AFRICAN CATFISH; GROWTH-RATE; CLARIIDAE; PISCES; REQUIREMENTS Successful commercial production of most cultured fish species has been facilitated by the intensification of larval rearing techniques. Siluroidei species are no exception and early attempts at larval rearing in ponds were soon superseded by intensive hatchery production, at least for those species that are farmed on a commercial scale. The review focuses on alternative life history strategies and how these may provide clues to the early nutrition and feeding of siluroid fishes, as well as on the development and efficacy of practical feeds and feed application. The paper highlights several commonalities in terms of the nutritional and feeding requirements of the larvae of the various species cultured on a commercial and subsistence basis. The requirement for live feed for some species appears to be of short duration and all species can be successfully weaned onto dry feed at a relatively early stage, This is considered to be one of the reasons why the intensification of larval rearing of Siluroidei fishes has, in general been highly successful. The review also comments on the live food/dry food debate and clearly reveals that our knowledge of Siluroidei larval nutrition and feeding is sorely lacking for many species, in comparison to other groups of fish. this emphasises the need for a concerted fundamental research effort. Hecht, T (reprint author), RHODES UNIV, DEPT ICHTHYOL & FISHERIES SCI, POB 94, ZA-6140 GRAHAMSTOWN, SOUTH AFRICA. AKAND AM, 1989, AQUACULTURE, V77, P175, DOI 10.1016/0044-8486(89)90200-7; ANDERSON M J, 1991, Aquaculture and Fisheries Management, V22, P435, DOI 10.1111/j.1365-2109.1991.tb00756.x; APPELBAUM S, 1988, J APPL ICHTHYOL, V4, P105, DOI 10.1111/j.1439-0426.1988.tb00549.x; APPELBAUM S, 1978, BAMIDGEH, V30, P85; APPELBAUM S, 1976, ARCH FISCHEREIWISS, V29, P85; APPELBAUM S, 1976, ARCH FISCHEREIWISS, V28, P31; BAIRAGE SK, 1988, BANGLADESH J FISH, V11, P41; Balon E.K., 1984, P35; BALON EK, 1984, T AM FISH SOC, V113, P178, DOI 10.1577/1548-8659(1984)113<178:ROSDEI>2.0.CO;2; BRUTON M N, 1979, Transactions of the Zoological Society of London, V35, P1; BRUTON MN, 1989, PERSP VERT, V6, P503; BRYANT PL, 1981, AQUACULTURE, V23, P275, DOI 10.1016/0044-8486(81)90021-1; CHUAPOEHUK W, 1987, AQUACULTURE, V63, P215, DOI 10.1016/0044-8486(87)90073-1; CONCEICAO L, 1993, AQUAC FISH MANAG, V64, P431; COWEY CB, 1972, ADV MAR BIOL, V10, P383, DOI 10.1016/S0065-2881(08)60419-8; COWEY CB, 1985, NUTR FEEDING FISH; DABROWSKI K, 1984, REPROD NUTR DEV, V24, P807, DOI 10.1051/rnd:19840701; Dabrowski K., 1991, Aquaculture Magazine, V17, P49; DABROWSKI K, 1978, AQUACULTURE, V13, P257, DOI 10.1016/0044-8486(78)90007-8; DABROWSKI K, 1977, HYDROBIOLOGIA, V54, P129, DOI 10.1007/BF00034986; DABROWSKI K, 1988, AQUACULTURE, V69, P317, DOI 10.1016/0044-8486(88)90339-0; DIAMOND J, 1991, NEWS PHYSIOL SCI, V6, P92; FAGBENRO OA, 1992, ISR J AQUACULT-BAMID, V44, P87; FAGBERO OA, 1992, J APPL ICHTHYOL, V8, P155; FERMIN AC, 1991, ISR J AQUACULT-BAMID, V43, P87; FOWLER LG, 1971, PROG FISH CULT, V33, P67, DOI 10.1577/1548-8640(1971)33[67:TASD]2.0.CO;2; Halver J. E., 1953, T AM FISH SOC, V83, P254; HALVER JE, 1957, J NUTR, V62, P225; HALVER JE, 1957, J NUTR, V62, P245; Halver JE, 1989, FISH NUTR; Halver JE., 1972, FISH NUTR; HASTINGS W, 1969, PROGR FISH CULT, V3, P187; Haylor G. S., 1993, Aquaculture and Fisheries Management, V24, P473, DOI 10.1111/j.1365-2109.1993.tb00622.x; HAYLOR G S, 1991, Aquaculture and Fisheries Management, V22, P405, DOI 10.1111/j.1365-2109.1991.tb00754.x; HECHT T, 1982, S AFR J WILDL RES, V12, P101; HECHT T, 1981, AQUACULTURE, V24, P301, DOI 10.1016/0044-8486(81)90064-8; HECHT T, 1985, S AFR J SCI, V81, P620; HECHT T, 1987, AQUACULTURE, V63, P195, DOI 10.1016/0044-8486(87)90071-8; HECHT T, 1991, S AFR J WILDL RES, V21, P123; HECHT T, 1988, J ZOOL, V214, P21, DOI 10.1111/j.1469-7998.1988.tb04984.x; HECHT T, 1988, 153 S AFR NAT SC; Hecht Thomas, 1993, Journal of the World Aquaculture Society, V24, P246, DOI 10.1111/j.1749-7345.1993.tb00014.x; HILGE V, 1986, INF FISCHWIRTSCH, V33, P172; HOGENDOORN H, 1980, AQUACULTURE, V21, P233, DOI 10.1016/0044-8486(80)90133-7; HOGENDOORN H, 1983, AQUACULTURE, V34, P265, DOI 10.1016/0044-8486(83)90208-9; HORVATH L, 1979, EIFAC WORKSH MASS RE, P85; HUBLOU WF, 1963, PROGRESSIVE FISH CUL, V25, P175; Jancarik A, 1964, Z FISCH, V12, P601; KRUGER EJ, 1984, WATER SA, V10, P97; LAUFF M, 1984, AQUACULTURE, V37, P35; Lee D. J., 1972, FISH NUTRITION, P145; LEGENDRE M, 1992, J FISH BIOL, V40, P59, DOI 10.1111/j.1095-8649.1992.tb02554.x; LOVELL RT, 1977, SO COOPERATIVE SERIE, V218, P50; LOVELL RT, 1989, FISH NUTRITION, P550; LOVELL RT, 1984, SO COOP SER B, V296, P12; LOVELL RT, 1984, SO COOP SER B, V296, P50; MERTZ ET, 1972, FISH NUTRITION, P106; MOLLAH M F A, 1982, Indian Journal of Fisheries, V29, P1; MOLLAH M.F.A., 1990, INDIAN J FISH, V37, P243; National Research Council, 1977, NUTR REQ WARMW FISH; NOSE T, 1979, S FINF NUTR FISH FEE, V1, P284; OSTROWSKI AC, 1989, AQUACULTURE, V80, P285, DOI 10.1016/0044-8486(89)90176-2; PAGE JW, 1973, J NUTR, V103, P1339; Phillips A. M, 1972, FISH NUTR, P2; PHILLIPS AM, 1956, PROGR FISH CULT, V18, P113; POLLING L, 1988, WATER SA, V14, P19; PRINSLOO JF, 1988, WATER SA S AFR, V3, P163; Rahman MA, 1982, BANGLADESH J FISH, V2-5, P65; REDDY SR, 1979, AQUACULTURE, V18, P35, DOI 10.1016/0044-8486(79)90098-X; ROBINSON E H, 1989, Journal of the World Aquaculture Society, V20, P256, DOI 10.1111/j.1749-7345.1989.tb01012.x; ROBINSON E H, 1989, Reviews in Aquatic Sciences, V1, P365; ROBINSON EH, 1984, SO COOP SER B, V296, P21; Ronyai A., 1990, Aquacultura Hungarica, V6, P193; SANTANA S, 1986, ACUICULTURA B TEC, V40; SANTHA CR, 1991, PROG FISH CULT, V53, P135, DOI 10.1577/1548-8640(1991)053<0135:GRAFAC>2.3.CO;2; SARGENT J, 1989, FISH NUTR, P154; Segner Helmut, 1993, Journal of the World Aquaculture Society, V24, P121, DOI 10.1111/j.1749-7345.1993.tb00001.x; SEIDEL CR, 1980, B JPN SOC SCI FISH, V46, P237; Shang YC, 1981, AQUACULTURE EC BASIC; Shcherbina M. A., 1988, Journal of Ichthyology, V28, P63; Steffens W, 1989, PRINCIPLES FISH NUTR; STROBAND HWJ, 1981, CELL TISSUE RES, V215, P387; TANAKA M, 1971, Japanese Journal of Ichthyology, V18, P164; TOLEDO J, 1986, ACUICULT B TEC, V39; TOLEDO J, 1989, REV LATINOAM ACUICUL, V36, P6; Tucker C. S., 1990, CHANNEL CATFISH FARM; UYS W, 1985, AQUACULTURE, V47, P173, DOI 10.1016/0044-8486(85)90063-8; UYS W, 1984, THESIS RHODES U GRAH; UYS W, 1989, THESIS RHODES U GRAH; VANDAMME P, 1990, SECOND ASIAN FISHERIES FORUM, P303; VANDAMME P, 1989, AQUACULTURE BIOTECHN, P701; VANDAMME P, 1989, AQUACULTURE EUROPE 8, P255; Verreth J., 1993, Journal of the World Aquaculture Society, V24, P135, DOI 10.1111/j.1749-7345.1993.tb00002.x; VERRETH J, 1989, AQUACULTURE, V83, P81, DOI 10.1016/0044-8486(89)90062-8; VERRETH J, 1987, AQUACULTURE, V63, P269, DOI 10.1016/0044-8486(87)90078-0; VERRETH J, 1987, AQUACULTURE, V63, P251, DOI 10.1016/0044-8486(87)90077-9; Verreth Johan A. J., 1992, Journal of the World Aquaculture Society, V23, P286, DOI 10.1111/j.1749-7345.1992.tb00792.x; Viveen W. J. A. R., 1985, PRACTICAL MANUAL CUL; Wilson R. P., 1989, FISH NUTR, P112; WILSON RP, 1991, HDB NUTR REQUIREMENT, P35; WINFREE RA, 1984, PROG FISH CULT, V46, P79, DOI 10.1577/1548-8640(1984)46<79:SDFCC>2.0.CO;2; WINFREE RA, 1984, AQUACULTURE, V41, P311, DOI 10.1016/0044-8486(84)90199-6 102 12 12 0 3 EDP SCIENCES S A LES ULIS CEDEX A 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE 0990-7440 AQUAT LIVING RESOUR Aquat. Living Resour. 1996 9 SI 121 133 10.1051/alr:1996047 13 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology XJ355 WOS:A1996XJ35500010 2019-02-26 J Stadler, B; Mackauer, M Stadler, B; Mackauer, M Influence of plant quality on interactions between the aphid parasitoid Ephedrus californicus Baker (Hymenoptera: Aphidiidae) and its host, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) CANADIAN ENTOMOLOGIST English Article 3 TROPHIC LEVELS; REPRODUCTIVE INVESTMENT; NUTRITIONAL ECOLOGY; PEA APHID; INSECT; WASP; SIZE; VIRGINOPARAE; BRASSICAE; ERVI We determined variations in selected life-history parameters in a tritrophic system that consisted of a plant (broad bean, Vicia faba L.), an aphid (pea aphid, Acyrthosiphon pisum), and an aphid parasitoid (Ephedrus californicus). We manipulated plant and aphid quality by growing bean plants in a high- and a low-quality nutrient solution for three generations. Pea aphids adapted to reduced nutrient availability by differentially allocating resources to somatic and gonadal growth across generations. On low-quality plants, time from birth to adult increased and dry mass decreased. The number of sclerotized embryos was correlated with adult dry mass. By contrast, in E. californicus, variations in dry mass, rate of development, and number of ovarial eggs did not suggest transgenerational adaptations to resource quality as measured by aphid size. The number of mature eggs was dependent on female age. Development time varied with parasitoid sex and was independent of aphid stage at the time of death. In the low-quality treatment, males survived on average longer than females eclosing from the same kinds of hosts. Aphids and their parasitoids have evolved flexible life-history strategies in response to variations in plant quality. Pea aphids adapted to qualitatively variable resources by optimizing the balance between somatic and gonadal investment across successive generations. But E. californicus responded to low host quality at the level of the individual, rather than across generations; the trade-off pattern was influenced by the host's growth potential after parasitization. SIMON FRASER UNIV,DEPT BIOL SCI,BURNABY,BC V5A 1S6,CANADA; UNIV BAYREUTH,DEPT ANIM ECOL 1,D-95440 BAYREUTH,GERMANY BAI B, 1990, ECOL ENTOMOL, V15, P9, DOI 10.1111/j.1365-2311.1990.tb00778.x; BLOEM KA, 1990, ENTOMOL EXP APPL, V54, P141, DOI 10.1111/j.1570-7458.1990.tb01323.x; Boethel D. J., 1986, INTERACTIONS PLANT R; BROUGH CN, 1989, ENTOMOL EXP APPL, V52, P215, DOI 10.1111/j.1570-7458.1989.tb01270.x; CAMPBELL BC, 1979, SCIENCE, V205, P700, DOI 10.1126/science.205.4407.700; CHOW FJ, 1986, ENTOMOL EXP APPL, V41, P243, DOI 10.1111/j.1570-7458.1986.tb00535.x; COHEN MB, 1987, CAN ENTOMOL, V119, P231, DOI 10.4039/Ent119231-3; DIXON AFG, 1987, APHIDS THEIR BIOL A, V2, P269; FOX LR, 1990, OECOLOGIA, V83, P414, DOI 10.1007/BF00317569; GANGE AC, 1989, OECOLOGIA, V81, P38, DOI 10.1007/BF00377007; GOMEZ JM, 1994, ECOLOGY, V75, P1023, DOI 10.2307/1939426; HENKELMAN DH, 1979, THESIS S FRASER U BU; Hoagland D. R, 1950, CALIF AES C, V347, P1, DOI DOI 10.1007/S12374-010-9112-0; KAROWE DN, 1992, ENTOMOL EXP APPL, V62, P241, DOI 10.1111/j.1570-7458.1992.tb00664.x; KOUAME KL, 1992, CAN ENTOMOL, V124, P87, DOI 10.4039/Ent12487-1; KOUAME KL, 1991, OECOLOGIA, V88, P197, DOI 10.1007/BF00320811; LEATHER SR, 1987, J APPL ENTOMOL, V104, P87; MACKAUER M, 1967, CAN ENTOMOL, V99, P1051, DOI 10.4039/Ent991051-10; MACKAUER M, 1984, CAN ENTOMOL, V116, P1605, DOI 10.4039/Ent1161605-12; MACKAUER M, 1990, CRITICAL ISSUES IN BIOLOGICAL CONTROL, P41; NORUSIS MJ, 1986, SPSS PC PLUS USERS G; Price P.W., 1986, P11; PRICE PW, 1980, ANNU REV ECOL SYST, V11, P41, DOI 10.1146/annurev.es.11.110180.000353; SCHOENLY K, 1991, AM NAT, V137, P597, DOI 10.1086/285185; SEQUEIRA R, 1993, CAN ENTOMOL, V125, P423, DOI 10.4039/Ent125423-3; SEQUEIRA R, 1992, EVOL ECOL, V6, P34, DOI 10.1007/BF02285332; SEQUEIRA R, 1992, ECOLOGY, V73, P183, DOI 10.2307/1938730; SERVICE P, 1984, ECOL ENTOMOL, V9, P321, DOI 10.1111/j.1365-2311.1984.tb00855.x; SOKAL R., 1981, BIOMETRY; STADLER B, 1994, J ANIM ECOL, V63, P419, DOI 10.2307/5559; STADLER B, 1992, OECOLOGIA, V91, P273, DOI 10.1007/BF00317796; TSCHARNTKE T, 1992, ECOLOGY, V73, P1689, DOI 10.2307/1940020; VANEMDEN HF, 1969, ENTOMOL EXP APPL, V12, P351; VINSON SB, 1980, Q REV BIOL, V55, P143, DOI 10.1086/411731; VOLKL W, 1992, J ANIM ECOL, V61, P273, DOI 10.2307/5320; WALTERS KFA, 1983, OECOLOGIA, V58, P70, DOI 10.1007/BF00384544; WALTERS KFA, 1988, ECOL ENTOMOL, V13, P337, DOI 10.1111/j.1365-2311.1988.tb00364.x; WARD SA, 1983, J ANIM ECOL, V52, P305, DOI 10.2307/4602; WARD SA, 1982, J ANIM ECOL, V51, P589; WELLINGS PW, 1980, J ANIM ECOL, V49, P975, DOI 10.2307/4239; WELLINGS PW, 1983, ENTOMOL EXP APPL, V34, P227, DOI 10.1111/j.1570-7458.1983.tb03326.x; WHITHAM TG, 1991, PLANT ANIMAL INTERAC, P227; 1985, SAS USERS GUIDE BASI 43 31 32 1 9 ENTOMOL SOC CANADA OTTAWA 393 WINSTON AVE, OTTAWA ON K2A 1Y8, CANADA 0008-347X CAN ENTOMOL Can. Entomol. JAN-FEB 1996 128 1 27 39 10.4039/Ent12827-1 13 Entomology Entomology UB352 WOS:A1996UB35200003 2019-02-26 J Minns, CK; Randall, RG; Moore, JE; Cairns, VW Minns, CK; Randall, RG; Moore, JE; Cairns, VW A model simulating the impact of habitat supply limits on northern pike, Esox lucius, in Hamilton harbour, Lake Ontario CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article; Proceedings Paper Workshop on the Science and Management for Habitat Conservation and Restoration Strategies (HabCARES) in the Great Lakes NOV, 1994 KEMPENFELT, CANADA LIFE-HISTORY STRATEGIES; FISH POPULATIONS; GROWTH; SIZE; TEMPERATURE; RIVERS; REPRODUCTION; PERSPECTIVE; EXTINCTION; MORTALITY The effects of life-stage habitat supply limits on fish populations are examined using a simple model of northern pike (Esox lucius). The model has submodels for spawning, fry, and juveniles + adults (1+). The modelling approach assumes the habitat supply for life stages can be estimated and the key population processes in each life stage are controlled by a saturation function of habitat supply. Only one life stage can limit the population at a time. Baseline simulations show that fry and juvenile-adult habitat supplies are more limiting than spawning habitat, contrary to conventional wisdom. Paradoxically, spawning habitat may be rarer in absolute terms but other life stages need more of the total lake ecosystem area to be suitable for the population to succeed. Simulations based on a simple depth-based model of suitable habitat show how lake depth and hypsographic shape can affect population size and structure. Population sizes generated with various habitat supply scenarios overlap the reported range of values. The application to Hamilton Harbour shows how a dynamic model with habitat supply limitations can guide restoration efforts. Habitat management and conservation assessments must consider the dynamic population responses to varying life-stage habitat supplies. Minns, CK (reprint author), BAYFIELD INST, GREAT LAKES LAB FISHERIES & AQUAT SCI, POB 5050, 867 LAKESHORE RD, BURLINGTON, ON L7R 4A6, CANADA. *BBN SOFTW PROD CO, 1986, RSI VERS 12 1 IBM PE; BEDDINGTON JR, 1993, PHILOS T R SOC LON B, V343, P87; BEVERTON RJH, 1957, FISH INVEST LOND 2, V19; BOVEE KD, 1982, 12 US FISH WILDL SER; BREGAZZI PR, 1980, J FISH BIOL, V17, P91, DOI 10.1111/j.1095-8649.1980.tb02745.x; CAMPBELL RR, 1993, CAN FIELD NAT, V107, P395; CHESLAK E F, 1990, Rivers, V1, P264; CHRISTIE GC, 1988, CAN J FISH AQUAT SCI, V45, P301, DOI 10.1139/f88-036; CROSSMAN EJ, 1987, MISC PUBL ROYAL ONTA; CUSHING DH, 1994, J PLANKTON RES, V16, P291, DOI 10.1093/plankt/16.3.291; DEANGELIS DL, 1975, ECOLOGY, V56, P881, DOI 10.2307/1936298; FAGO DM, 1977, WID DEP NAT RESOUR T, V96; FORTIN R, 1982, CAN J ZOOL, V60, P227, DOI 10.1139/z82-031; FRANKLIN DONALD R., 1963, TRANS AMER FISH SOC, V92, P91, DOI 10.1577/1548-8659(1963)92[91:ELHOTN]2.0.CO;2; FRETWELL S D, 1969, Acta Biotheoretica, V19, P16, DOI 10.1007/BF01601953; FRISK T, 1988, Finnish Fisheries Research, V9, P467; FROST WE, 1967, J ANIM ECOL, V36, P651, DOI 10.2307/2820; GILES N, 1986, J FISH BIOL, V29, P107, DOI 10.1111/j.1095-8649.1986.tb04930.x; GRIMM MP, 1981, FISH MANAGE, V12, P61; HANNAH L, 1994, AMBIO, V23, P246; HOLMES JA, 1984, 1257 FISH AQUAT SCI; INSKIP PD, 1982, FWSOBS821017 US FISH; KOLASA J, 1988, OIKOS, V53, P235, DOI 10.2307/3566068; KOLASA J, 1989, ECOLOGY, V70, P36, DOI 10.2307/1938410; KOZLOWSKI J, 1985, EKISTICS, V311, P146; Kozlowski J., 1986, THRESHOLD APPROACH U; MAGNUSON JJ, 1979, AM ZOOL, V19, P331; MANN RHK, 1976, J FISH BIOL, V8, P179, DOI 10.1111/j.1095-8649.1976.tb03930.x; MANN RHK, 1980, J ANIM ECOL, V49, P899, DOI 10.2307/4234; McCARRAHER D. BRUCE, 1957, PROG FISH CULTURIST, V19-2, P185, DOI 10.1577/1548-8659(1957)19[185:TNPONP]2.0.CO;2; MINNS CK, 1992, CLIMATIC CHANGE, V22, P327, DOI 10.1007/BF00142432; MINNS CK, 1995, CAN J FISH AQUAT SCI, V52, P1499, DOI 10.1139/f95-144; MINNS CK, 1990, P NAT C GIS 1990S 5, P1020; MINNS CK, 1993, PLANNING SUSTAINABLE, P246; Moore J. E., 1993, PLANNING SUSTAINABLE, P236; OGAWA H, 1979, ENVIRON MANAGE, V3, P321, DOI 10.1007/BF01867439; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; PULLIAM HR, 1991, AM NAT, V137, pS50, DOI 10.1086/285139; RAAT AJP, 1988, FAO FISH SYNOPSIS, V30; RANDALL RG, 1995, CAN J FISH AQUAT SCI, V52, P631, DOI 10.1139/f95-063; Ricker W. E., 1975, B FISH RES BOARD CAN, V191; Ricker W. E., 1958, B FISH RES BOARD CAN, V119; SCHAAF WE, 1987, ESTUARIES, V10, P267, DOI 10.2307/1351854; SCHAAF WE, 1993, ESTUARIES, V16, P697, DOI 10.2307/1352428; SCOTT JM, 1993, WILDLIFE MONOGR, P1; SHUTER BJ, 1990, T AM FISH SOC, V119, P314, DOI 10.1577/1548-8659(1990)119<0314:CPVATZ>2.3.CO;2; SHUTER BJ, 1990, AM FISH SOC S, V8, P145; Souchon Y., 1983, P21; Soule ME, 1987, VIABLE POPULATIONS C; Taylor R.J., 1984, PREDATION; TERRELL JW, 1982, FWSOBS8210A US FISH; THOMAS CD, 1994, CONSERV BIOL, V8, P373, DOI 10.1046/j.1523-1739.1994.08020373.x; TILMAN D, 1994, NATURE, V371, P65, DOI 10.1038/371065a0; TYLER JA, 1994, REV FISH BIOL FISHER, V4, P91, DOI 10.1007/BF00043262; USFWS, 1981, STAND DEV HAB SUIT I; VANWINKLE W, 1993, T AM FISH SOC, V122, P459, DOI 10.1577/1548-8659(1993)122<0459:LLHTES>2.3.CO;2; WALTERS CJ, 1993, T AM FISH SOC, V122, P34, DOI 10.1577/1548-8659(1993)122<0034:DDGACA>2.3.CO;2; WARE DM, 1975, J FISH RES BOARD CAN, V32, P2503, DOI 10.1139/f75-288; WILLIAMSON SC, 1993, REGUL RIVER, V8, P15, DOI 10.1002/rrr.3450080106; Willis D.W., 1989, North American Journal of Fisheries Management, V9, P203, DOI 10.1577/1548-8675(1989)009<0203:PSLWEF>2.3.CO;2; WRIGHT RM, 1990, J FISH BIOL, V36, P215, DOI 10.1111/j.1095-8649.1990.tb05597.x 61 42 46 1 13 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. 1996 53 1 20 34 10.1139/f95-258 15 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology VK062 WOS:A1996VK06200004 2019-02-26 J Morris, DW Morris, DW State-dependent life history and senescence of white-footed mice ECOSCIENCE English Article; Proceedings Paper Symposium on Life History Strategies, at the Meeting of the Canadian-Society-of-Zoologists MAY, 1994 UNIV MANITOBA, WINNIPEG, CANADA Canadian Soc Zoologists UNIV MANITOBA body size; evolution; life history; litter size; Peromyscus; senescence CLUTCH SIZE; HABITAT SELECTION; PEROMYSCUS; FITNESS; REPRODUCTION; DISPERSAL; EVOLUTION; PATTERNS; MAMMALS The application of a state-dependent approach to life-history evolution is assessed by determining the state variables, and their interactions, that influence litter-size distributions produced by a free-living population of white-footed mice. State-dependent theory explains why the most productive litter size is nor as frequent in the population as expected by the number of recruits. Yet female age, size, and body condition interact with reproductive season in ways that defy a simple state-dependent approach to the life history of this species. Maternal age and reproductive season are confounded by the inability of young females to reproduce in spring. The biased production of small litter-size classes by large-bodied females in autumn appears to be a senescent effect resulting from old, large females in poor condition relative to young, small ones. Senescence implicates long-term cumulative reproductive costs in this, and perhaps other, populations of small mammals. LAKEHEAD UNIV,FAC FORESTRY,THUNDER BAY,ON P7B 5E1,CANADA Morris, DW (reprint author), LAKEHEAD UNIV,DEPT BIOL,CTR NO STUDIES,THUNDER BAY,ON P7B 5E1,CANADA. APARICIO JM, 1993, OIKOS, V68, P186, DOI 10.2307/3545327; Boyce M. S., 1988, EVOLUTION LIFE HIST, P3; Charlesworth B., 1980, EVOLUTION AGE STRUCT; DRICKAMER LC, 1973, J MAMMAL, V54, P523, DOI 10.2307/1379147; EISENBERG JF, 1981, MAMMALIAN RAD; FLEMING TH, 1978, EVOLUTION, V32, P45, DOI 10.1111/j.1558-5646.1978.tb01097.x; GOUNDIE TR, 1986, J MAMMAL, V67, P53, DOI 10.2307/1381001; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1991, EVOLUTION REPRODUCTI, P15; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; Layne J. N., 1968, P148; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; Millar JS, 1994, ECOSCIENCE, V1, P317, DOI 10.1080/11956860.1994.11682257; MORRIS DW, 1992, EVOL ECOL, V6, P1, DOI 10.1007/BF02285330; Morris DW, 1996, J ANIM ECOL, V65, P43, DOI 10.2307/5698; MORRIS DW, 1986, EVOLUTION, V40, P169, DOI 10.1111/j.1558-5646.1986.tb05728.x; MORRIS DW, 1991, AM NAT, V138, P702, DOI 10.1086/285244; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; MORRIS DW, 1989, EVOL ECOL, V3, P80, DOI 10.1007/BF02147934; MORRIS DW, 1985, OIKOS, V45, P290, DOI 10.2307/3565719; MORRIS DW, 1992, EVOLUTION, V46, P1848, DOI 10.1111/j.1558-5646.1992.tb01173.x; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; MYERS P, 1983, J MAMMAL, V64, P1, DOI 10.2307/1380746; NORUSIS M, 1992, SPSS PC PLUS ADV STA; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; RINTAMAA DL, 1976, J MAMMAL, V57, P593, DOI 10.2307/1379313; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WOLFF J O, 1986, Virginia Journal of Science, V37, P208; WOLFF JO, 1988, ANIM BEHAV, V36, P456, DOI 10.1016/S0003-3472(88)80016-2 33 27 28 0 5 UNIVERSITE LAVAL ST FOY PAVILLON ALEXANDRE-VACHON, UNIV LAVAL, ST FOY PQ G1K 7P4, CANADA 1195-6860 ECOSCIENCE Ecoscience 1996 3 1 1 6 6 Ecology Environmental Sciences & Ecology TY987 WOS:A1996TY98700002 2019-02-26 J Korpimaki, E; Rita, H Korpimaki, E; Rita, H Effects of brood size manipulations on offspring and parental survival in the European kestrel under fluctuating food conditions ECOSCIENCE English Article intra-individual and inter-individual trade-offs; reproductive effort; clutch size; vole cycle; raptor LIFE-HISTORY EVOLUTION; TITS PARUS-CAERULEUS; LONG-EARED OWLS; CLUTCH-SIZE; FALCO-TINNUNCULUS; TENGMALMS OWL; GREAT TIT; REPRODUCTIVE EFFORT; NATURAL-SELECTION; SOUTH SCOTLAND The hypothesis of reproductive costs suggests an intra-individual trade-off between current parental effort and future adult survival, whereas intergenerational trade-offs Link current parental effort with the number and size of offspring which thus affects offspring reproductive value. The consequences of brood size manipulations for offspring and parental survival were studied in European kestrels (Falco tinnunculus) living in western Finland where the abundance of their main food (voles) fluctuates in 3-year population cycles. In 12 cases in 1986 (a year of decreasing vole abundance), 8 cases in 1987 (a low year) and 20 cases in 1988 (an increase year), one 2-4 day-old chick was transferred between reduced and enlarged nests. In control nests, one chick was exchanged for a chick from another brood. The number of fledglings was not affected by brood size manipulation but was mainly determined by the study year (vole abundance). parents did not raise all young in enlarged broods even in the year of increasing vole supply, and in the low vole year, nestling survival of reduced broods tended to be better than that of control and enlarged broods. The brood treatment significantly altered body condition (as estimated by the body mass, wing length and tarsus length) of fledglings, but did not affect body mass of parents. Female parents were significantly lighter in a poor vole year than in other years. The subsequent breeding success of both sexes and future survival of males were unaffected by the manipulation, whereas future survival of females tended to be slightly decreased by brood enlargements and weakly improved by brood reductions. In Finnish kestrels breeding in an environment with unpredictable within- and between-year variation in food abundance, intra-individual trade-off apparently was less important in determining clutch size than in Dutch kestrels breeding in an environment with a more stable food abundance. Instead, the intergenerational trade-off through the reduced survival of offspring from enlarged broods apparently limited clutch size. UNIV HELSINKI, DEPT FOREST RESOURCE MANAGEMENT, FIN-00170 HELSINKI, FINLAND Korpimaki, E (reprint author), UNIV TURKU, DEPT BIOL, ECOL ZOOL LAB, FIN-20014 TURKU, FINLAND. ANDERSSON M, 1978, AM NAT, V112, P762, DOI 10.1086/283317; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; CAVE A J, 1968, Netherlands Journal of Zoology, V18, P313; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; COHEN J., 1977, STAT POWER ANAL BEHA; Collett D, 1991, MODELLING BINARY DAT; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; DIJKSTRA C, 1982, IBIS, V124, P210, DOI 10.1111/j.1474-919X.1982.tb03766.x; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DIJKSTRA C, 1988, ARDEA, V76, P127; DRENT RH, 1980, ARDEA, V68, P225; GARD NW, 1992, CAN J ZOOL, V70, P2421, DOI 10.1139/z92-325; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.es.22.110191.002205; GRAVES J, 1991, AUK, V108, P967; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HAKKARAINEN H, 1993, BEHAV ECOL SOCIOBIOL, V33, P247, DOI 10.1007/BF02027121; HANSKI I, 1993, NATURE, V364, P232, DOI 10.1038/364232a0; HANSSON L, 1988, TRENDS ECOL EVOL, V3, P195, DOI 10.1016/0169-5347(88)90006-7; HANSSON L, 1985, OECOLOGIA, V67, P394, DOI 10.1007/BF00384946; HANSSON L, 1973, OIKOS, V24, P477, DOI 10.2307/3543827; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; KORPIMAKI E, 1987, OECOLOGIA, V74, P277, DOI 10.1007/BF00379371; KORPIMAKI E, 1991, ECOLOGY, V72, P814, DOI 10.2307/1940584; KORPIMAKI E, 1986, Ornis Fennica, V63, P84; KORPIMAKI E, 1988, J ANIM ECOL, V57, P1027, DOI 10.2307/5109; KORPIMAKI E, 1985, Ornis Fennica, V62, P130; KORPIMAKI E, 1988, J ANIM ECOL, V57, P433, DOI 10.2307/4915; KORPIMAKI E, 1984, ANN ZOOL FENN, V21, P287; KORPIMAKI E, 1988, OECOLOGIA, V77, P278, DOI 10.1007/BF00379199; Korpimaki E, 1981, ACTA U OUL A, V118, P1, DOI DOI 10.1897/IEAM_2009-053.1; LACK D, 1948, EVOLUTION, V2, P95, DOI 10.1111/j.1558-5646.1948.tb02734.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LINDEN M, 1990, THESIS U UPPSALA UPP; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MARTINS TLF, 1993, BEHAV ECOL, V4, P213, DOI 10.1093/beheco/4.3.213; MOLLER AP, 1989, OIKOS, V56, P421, DOI 10.2307/3565628; MYLLYMAKI A, 1971, Annales Zoologici Fennici, V8, P177; NOER H, 1983, ORNIS SCAND, V14, P104, DOI 10.2307/3676013; NORRDAHL K, 1993, OIKOS, V67, P149, DOI 10.2307/3545105; NORRDAHL K, 1990, THESIS U HELSINKI HE; PALOKANGAS P, 1992, ANIM BEHAV, V43, P659, DOI 10.1016/0003-3472(92)90087-P; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Partridge L., 1989, P421; PERRINS C, 1964, NATURE, V201, P1147, DOI 10.1038/2011147b0; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PETTIFOR RA, 1993, J ANIM ECOL, V62, P131, DOI 10.2307/5488; PETTIFOR RA, 1993, J ANIM ECOL, V62, P145, DOI 10.2307/5489; POIANI A, 1993, EVOL ECOL, V7, P329, DOI 10.1007/BF01237866; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; SALONEN V, 1988, ORNIS FENNICA, V65, P13; *SAS I INC, 1990, SAS STAT US GUID REL; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; SPEAKMAN JR, 1988, SCI PROG, V72, P227; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; TOLONEN P, 1994, BEHAV ECOL SOCIOBIOL, V35, P355; Tolonen P, 1996, ECOSCIENCE, V3, P165, DOI 10.1080/11956860.1996.11682327; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; VILLAGE A, 1985, J ZOOL, V206, P175; VILLAGE A, 1986, J ZOOL, V208, P367; Village A., 1990, THE KESTREL; WALLIN K, 1983, OECOLOGIA, V60, P302, DOI 10.1007/BF00376842; WIEBE KL, 1994, J ANIM ECOL, V63, P551, DOI 10.2307/5221; WIEBE KL, 1994, ECOLOGY, V75, P813, DOI 10.2307/1941737; WILKINSON L, 1989, SYSTAT SYSTEM STAT; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 75 30 32 5 24 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 1195-6860 2376-7626 ECOSCIENCE Ecoscience 1996 3 3 264 273 10.1080/11956860.1996.11682341 10 Ecology Environmental Sciences & Ecology VJ708 WOS:A1996VJ70800004 2019-02-26 J DeMeester, L DeMeester, L Local genetic differentiation and adaptation in freshwater zooplankton populations: Patterns and processes ECOSCIENCE English Review local adaptation; evolution; genetic polymorphism; habitat selection; zooplankton; cyclic parthenogenesis ROTIFER BRACHIONUS-PLICATILIS; DAPHNIA-MAGNA CLONES; LIFE-HISTORY EVOLUTION; NATURAL-POPULATIONS; INTERSPECIFIC HYBRIDIZATION; ENZYME VARIABILITY; PHOTOTACTIC BEHAVIOR; CYCLICAL PARTHENOGEN; SEXUAL REPRODUCTION; ECOLOGICAL GENETICS Literature on local genetic differentiation in freshwater zooplankton populations is reviewed The island-like nature of limnetic habitats creates opportunities for local genetic differentiation and adaptation to develop. There is a wealth of data available on genetic differentiation among populations of zooplankton with respect to allozyme markers. Data from well-designed studies on ecologically relevant, quantitative traits are less abundant and indicate a different pattern from that obtained using electrophoretic markers. It is argued that whereas the analysis of (quasi) neutral markers emphasizes the importance of long-lasting founder effects and genetic drift, the pattern of local genetic differentiation of ecologically relevant traits may often reflect local adaptation. In reviewing the data, the importance of temporal and spatial habitat selection in maintaining genetic polymorphism for ecologically relevant traits is emphasized, without denying the importance of stochasticity. Most available data are on Daphnia, but studies on other organisms in general confirm the patterns observed in this genus. A hypothetical scheme of the processes leading to local genetic differentiation and adaptation in zooplankton is discussed, with an indication of the data necessary to fill certain gaps in our knowledge. Attention is drawn to the frequent opportunities for local adaptation in cyclically parthenogenetic organisms (e.g., Daphnia, monogonont rotifers) and the processes leading to local adaptation in cyclically parthenogenetic, obligately parthenogenetic and obligately sexual species are compared. DeMeester, L (reprint author), CATHOLIC UNIV LEUVEN,LAB ECOL & AQUACULTURE,NAAMESESTR 59,B-3000 LOUVAIN,BELGIUM. De Meester, Luc/F-3832-2015 De Meester, Luc/0000-0001-5433-6843 ADLER FR, 1990, TRENDS ECOL EVOL, V5, P407, DOI 10.1016/0169-5347(90)90025-9; AYRE DJ, 1985, EVOLUTION, V39, P1250, DOI 10.1111/j.1558-5646.1985.tb05691.x; BACHIORRI A, 1991, VERH INT VER LIMNOL, V24, P2813; BAIRD DJ, 1991, ECOTOX ENVIRON SAFE, V21, P257, DOI 10.1016/0147-6513(91)90064-V; BELL G, 1981, MASTERPIECE NATURE; BERG DJ, 1994, LIMNOL OCEANOGR, V39, P1503, DOI 10.4319/lo.1994.39.7.1503; BOILEAU MG, 1992, J EVOLUTION BIOL, V5, P25, DOI 10.1046/j.1420-9101.1992.5010025.x; BROWN AF, 1991, BIOL BULL, V181, P123, DOI 10.2307/1542494; BURTON RS, 1987, EVOLUTION, V41, P504, DOI 10.1111/j.1558-5646.1987.tb05821.x; Carvalho GR, 1988, FUNCT ECOL, V2, P453, DOI 10.2307/2389388; CARVALHO GR, 1994, GENETICS AND EVOLUTION OF AQUATIC ORGANISMS, P291; CARVALHO GR, 1989, FRESHWATER BIOL, V22, P459, DOI 10.1111/j.1365-2427.1989.tb01118.x; CARVALHO GR, 1987, J ANIM ECOL, V56, P453, DOI 10.2307/5060; CARVALHO GR, 1987, J ANIM ECOL, V56, P469, DOI 10.2307/5061; CARVALHO GR, 1983, FRESHWATER BIOL, V13, P37, DOI 10.1111/j.1365-2427.1983.tb00655.x; CREASE TJ, 1990, MOL BIOL EVOL, V7, P444; DAVISON J, 1969, J GEN PHYSIOL, V53, P565; de Meester L., 1991, Biologisch Jaarboek, V58, P84; DEMEESTER L, 1991, HYDROBIOLOGIA, V225, P217, DOI 10.1007/BF00028400; deMeester L, 1996, EVOLUTION, V50, P1293, DOI 10.1111/j.1558-5646.1996.tb02369.x; DEMEESTER L, 1993, LIMNOL OCEANOGR, V38, P1193; DEMEESTER L, 1993, FRESHWATER BIOL, V30, P219; DEMEESTER L, 1993, FRESHWATER BIOL, V30, P227; DEMEESTER L, 1995, HYDROBIOLOGIA, V307, P167, DOI 10.1007/BF00032009; DEMEESTER L, 1994, OECOLOGIA, V97, P333, DOI 10.1007/BF00317323; DEMEESTER L, 1993, OECOLOGIA, V96, P80, DOI 10.1007/BF00318033; DEMEESTER L, 1994, BELG J ZOOL, V124, P3; DEMEESTER L, 1993, ECOLOGY, V74, P1467; DEMEESTER L, 1995, NATURE, V378, P483; DEMEESTER L, 1996, IN PRESS MARINE FRES; DEMELO R, 1994, CAN J FISH AQUAT SCI, V51, P873; EBERT D, 1993, HEREDITY, V70, P335, DOI 10.1038/hdy.1993.48; EBERT D, 1994, SCIENCE, V265, P1084, DOI 10.1126/science.265.5175.1084; Endler JA, 1986, NATURAL SELECTION WI; ENGLE DL, 1985, FRESHWATER BIOL, V15, P631, DOI 10.1111/j.1365-2427.1985.tb00233.x; Falconer D. S., 1989, INTRO QUANTITATIVE G; FERRARI DC, 1982, CAN J ZOOL, V60, P2143, DOI 10.1139/z82-274; FRYER G, 1985, J NAT HIST, V19, P97, DOI 10.1080/00222938500770051; FU Y, 1991, J EXP MAR BIOL ECOL, V151, P29, DOI 10.1016/0022-0981(91)90013-M; FU Y, 1991, J EXP MAR BIOL ECOL, V151, P43, DOI 10.1016/0022-0981(91)90014-N; GOMEZ A, 1995, J EVOLUTION BIOL, V8, P601, DOI 10.1046/j.1420-9101.1995.8050601.x; Hairston N.G. Jr, 1987, P281; HAIRSTON NG, 1990, ECOLOGY, V71, P2218, DOI 10.2307/1938634; HAIRSTON NG, 1988, NATURE, V336, P239, DOI 10.1038/336239a0; HAIRSTON NG, 1984, AM NAT, V123, P733, DOI 10.1086/284236; HAIRSTON NG, 1984, OECOLOGIA, V61, P42, DOI 10.1007/BF00379086; HAIRSTON NG, 1990, EVOLUTION, V44, P1796, DOI 10.1111/j.1558-5646.1990.tb05250.x; HAIRSTON NG, 1987, OECOLOGIA, V71, P339, DOI 10.1007/BF00378705; HANN BJ, 1982, GENETICS, V102, P101; HANN BJ, 1986, CAN J ZOOL, V64, P2246, DOI 10.1139/z86-338; Hartl D. L., 1989, PRINCIPLES POPULATIO; HEBERT PDN, 1985, EVOLUTION, V39, P216, DOI 10.1111/j.1558-5646.1985.tb04097.x; HEBERT PDN, 1976, HEREDITY, V36, P331, DOI 10.1038/hdy.1976.40; HEBERT PDN, 1974, GENETICS, V77, P323; HEBERT PDN, 1980, SCIENCE, V207, P1363, DOI 10.1126/science.207.4437.1363; HEBERT PDN, 1974, GENETICS, V77, P335; HEBERT PDN, 1987, HYDROBIOLOGIA, V145, P183, DOI 10.1007/BF02530279; HEBERT PDN, 1974, EVOLUTION, V28, P546, DOI 10.1111/j.1558-5646.1974.tb00788.x; HEBERT PDN, 1983, HEREDITY, V51, P353, DOI 10.1038/hdy.1983.40; HEBERT PDN, 1982, ANN ZOOL FENN, V19, P349; HEBERT PDN, 1972, GENET RES, V19, P173, DOI 10.1017/S0016672300014403; HEBERT PDN, 1974, HEREDITY, V33, P327, DOI 10.1038/hdy.1974.99; HEBERT PDN, 1982, AM NAT, V119, P427, DOI 10.1086/283921; HEBERT PDN, 1980, HEREDITY, V45, P313, DOI 10.1038/hdy.1980.74; HEBERT PDN, 1987, DAPHNIA, P439; HOBAEK A, 1990, ECOLOGY, V71, P2255, DOI 10.2307/1938637; HUGHES RN, 1989, FUNCTIONAL BIOL CLON; INNES DJ, 1991, CAN J ZOOL, V69, P995, DOI 10.1139/z91-144; INNES DJ, 1989, J HERED, V80, P6, DOI 10.1093/oxfordjournals.jhered.a110791; JACOBS J, 1990, J EVOLUTION BIOL, V3, P257, DOI 10.1046/j.1420-9101.1990.3030257.x; KING CE, 1972, ECOLOGY, V53, P408, DOI 10.2307/1934226; KING CE, 1995, LIMNOL OCEANOGR, V40, P226, DOI 10.4319/lo.1995.40.2.0226; KING CE, 1995, HYDROBIOLOGIA, V307, P15, DOI 10.1007/BF00031993; KING CE, 1977, HEREDITY, V39, P357, DOI 10.1038/hdy.1977.76; King CE, 1980, EVOLUTION ECOLOGY ZO, P315; King CE, 1977, ARCH HYDROBIOL ERGEB, V8, P187; KLEIVEN OT, 1992, OIKOS, V65, P197, DOI 10.2307/3545010; KORPELAINEN H, 1984, HEREDITAS, V101, P209, DOI 10.1111/j.1601-5223.1984.tb00917.x; KORPELAINEN H, 1986, Z ZOOL SYST EVOL, V24, P291; KORPELAINEN H, 1986, HEREDITAS, V105, P29, DOI 10.1111/j.1601-5223.1986.tb00637.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDON MS, 1983, LIMNOL OCEANOGR, V28, P731, DOI 10.4319/lo.1983.28.4.0731; LARSSON P, 1993, ARCH HYDROBIOL, V129, P129, DOI 10.1127/archiv-hydrobiol/129/1993/129; LEIBOLD M, 1991, OECOLOGIA, V86, P342, DOI 10.1007/BF00317599; LEIBOLD MA, 1994, EVOLUTION, V48, P1324, DOI 10.1111/j.1558-5646.1994.tb05316.x; LYNCH M, 1987, AM NAT, V129, P283, DOI 10.1086/284635; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; LYNCH M, 1983, AM NAT, V122, P745, DOI 10.1086/284169; LYNCH M, 1983, EXP GERONTOL, V18, P147, DOI 10.1016/0531-5565(83)90008-6; LYNCH M, 1987, GENETICS, V115, P657; LYNCH M, 1984, EVOLUTION, V38, P186, DOI 10.1111/j.1558-5646.1984.tb00271.x; LYNCH M, 1983, EVOLUTION, V37, P358, DOI 10.1111/j.1558-5646.1983.tb05545.x; LYNCH M, 1994, AM NAT, V144, P242, DOI 10.1086/285673; Lynch Michael, 1994, P86; Lynch Michael, 1994, P109; MELLORS WK, 1975, ECOLOGY, V56, P974, DOI 10.2307/1936308; MITCHELL SE, 1995, J ANIM ECOL, V64, P777, DOI 10.2307/5856; MORT MA, 1986, EVOLUTION, V40, P756, DOI 10.1111/j.1558-5646.1986.tb00535.x; MORT MA, 1985, HEREDITY, V55, P27, DOI 10.1038/hdy.1985.68; MORT MA, 1991, TRENDS ECOL EVOL, V6, P41, DOI 10.1016/0169-5347(91)90120-M; MULLER J, 1995, HYDROBIOLOGIA, V307, P25, DOI 10.1007/BF00031994; Muller Jakob, 1993, Advances in Limnology, V39, P167; PACE ML, 1984, OECOLOGIA, V63, P43, DOI 10.1007/BF00379783; PAJUNEN VI, 1986, ANN ZOOL FENN, V23, P131; PAREJKO K, 1991, EVOLUTION, V45, P1665, DOI 10.1111/j.1558-5646.1991.tb02671.x; PIJANOWSKA J, 1994, PROC INT ASSOC THEOR, V25, P2366; Pijanowska Joanna, 1993, Advances in Limnology, V39, P89; PREPAS E, 1978, LIMNOL OCEANOGR, V23, P970, DOI 10.4319/lo.1978.23.5.0970; PROCTOR VW, 1964, ECOLOGY, V45, P656, DOI 10.2307/1936124; PROCTOR VW, 1965, ECOLOGY, V46, P728, DOI 10.2307/1935013; RINGELBERG J, 1991, J PLANKTON RES, V13, P17, DOI 10.1093/plankt/13.1.17; ROSSI V, 1990, OIKOS, V57, P388, DOI 10.2307/3565969; RUVINSKY AO, 1986, THEOR APPL GENET, V72, P811, DOI 10.1007/BF00266550; RUVINSKY AO, 1986, HEREDITY, V57, P15, DOI 10.1038/hdy.1986.81; SCHMITT J, 1990, EVOLUTION, V44, P2022, DOI 10.1111/j.1558-5646.1990.tb04308.x; SCHWENK K, 1993, MOL BIOL EVOL, V10, P1289; SCHWENK K, 1995, EXPERIENTIA, V51, P465, DOI 10.1007/BF02143199; Segers H, 1995, HYDROBIOLOGIA, V313, P121, DOI 10.1007/BF00025939; Shields W., 1988, EVOLUTION SEX, P253; SLATKIN M, 1985, ANNU REV ECOL SYST, V16, P393, DOI 10.1146/annurev.ecolsys.16.1.393; SNELL TW, 1983, EVOLUTION, V37, P1294, DOI 10.1111/j.1558-5646.1983.tb00245.x; SNELL TW, 1979, ECOLOGY, V60, P494, DOI 10.2307/1936069; SNELL TW, 1989, HYDROBIOLOGIA, V186, P299, DOI 10.1007/BF00048925; SPAAK P, 1995, ECOLOGY, V76, P553, DOI 10.2307/1941213; Spaak P., 1993, Advances in Limnology, V39, P157; Spaak P, 1996, HEREDITY, V76, P539, DOI 10.1038/hdy.1996.77; SPAAK P, 1994, THESIS U UTRECHT UTR; SPITZE K, 1993, GENETICS, V135, P367; STIBOR H, 1995, THESIS U KIEL KIEL; TALLING JF, 1951, NATURALIST, P157; TAYLOR DJ, 1992, LIMNOL OCEANOGR, V37, P658, DOI 10.4319/lo.1992.37.3.0658; TAYLOR DJ, 1993, CAN J FISH AQUAT SCI, V50, P2137, DOI 10.1139/f93-239; TAYLOR DJ, 1993, P NATL ACAD SCI USA, V90, P7079, DOI 10.1073/pnas.90.15.7079; TEMPLETON AR, 1982, EVOLUTION GENETICS L, P269; TESSIER AJ, 1991, ECOLOGY, V72, P468, DOI 10.2307/2937188; TESSIER AJ, 1992, LIMNOL OCEANOGR, V37, P1; Via Sara, 1994, P58; VRIJENHOEK RC, 1993, J HERED, V84, P388, DOI 10.1093/oxfordjournals.jhered.a111359; VRIJENHOEK RC, 1979, AM ZOOL, V19, P787; WADE MJ, 1990, EVOLUTION, V44, P2004, DOI 10.1111/j.1558-5646.1990.tb04306.x; Weider LJ, 1985, OECOLOGIA, V65, P487, DOI 10.1007/BF00379661; WEIDER LJ, 1987, ECOLOGY, V68, P188, DOI 10.2307/1938819; WEIDER LJ, 1992, LIMNOL OCEANOGR, V37, P1327, DOI 10.4319/lo.1992.37.6.1327; WEIDER LJ, 1984, LIMNOL OCEANOGR, V29, P225, DOI 10.4319/lo.1984.29.2.0225; WEIDER LJ, 1991, J GREAT LAKES RES, V17, P141, DOI 10.1016/S0380-1330(91)71349-X; WEIDER LJ, 1985, J PLANKTON RES, V7, P101, DOI 10.1093/plankt/7.1.101; WEIDER LJ, 1987, HEREDITY, V58, P391, DOI 10.1038/hdy.1987.67; WEIDER LJ, 1994, MOL ECOL, V3, P497, DOI 10.1111/j.1365-294X.1994.tb00128.x; WEIDER LJ, 1989, HEREDITY, V62, P1, DOI 10.1038/hdy.1989.1; WILSON CC, 1993, LIMNOL OCEANOGR, V38, P1304, DOI 10.4319/lo.1993.38.6.1304; WILSON CC, 1992, ECOLOGY, V73, P1462, DOI 10.2307/1940690; WILSON DS, 1994, AM NAT, V144, P692, DOI 10.1086/285702; WILSON DS, 1989, SPECIATION ITS CONSE, P366; WOLF HG, 1986, OECOLOGIA, V68, P507, DOI 10.1007/BF00378763; WOLF HG, 1987, HYDROBIOLOGIA, V145, P213, DOI 10.1007/BF02530282; WOLF HG, 1988, VERH INT VEREIN LIMN, V23, P2056; WOLF HG, 1985, VERHANDLUNGEN INT VE, V22, P3058; WOOD THELMA R., 1933, INTERNAT REV GES HYDROBIOL U HYDROGRAPH, V29, P437, DOI 10.1002/iroh.19330290505; Wright S, 1978, EVOLUTION GENETICS P, V4; YOUNG JPW, 1979, GENETICS, V92, P971; YOUNG JPW, 1979, GENETICS, V92, P953; ZHAO Y, 1989, HYDROBIOLOGIA, V185, P175, DOI 10.1007/BF00036605 162 157 163 2 32 UNIVERSITE LAVAL ST FOY PAVILLON ALEXANDRE-VACHON, UNIV LAVAL, ST FOY PQ G1K 7P4, CANADA 1195-6860 ECOSCIENCE Ecoscience 1996 3 4 385 399 10.1080/11956860.1996.11682356 15 Ecology Environmental Sciences & Ecology WD616 WOS:A1996WD61600003 2019-02-26 J Heinze, J; Stahl, M; Holldobler, B Heinze, J; Stahl, M; Holldobler, B Ecophysiology of hibernation in boreal Leptothorax ants (Hymenoptera: Formicidae) ECOSCIENCE English Article hibernation; cold resistance; Formicidae; Leptothorax URSUS-AMERICANUS; QUEEN NUMBER; FOOD-HABITS; BLACK BEAR; LONGISPINOSUS; ECOLOGY; SIZE; COLD We examined the ecophysiology of hibernation in boreal Leptothorax (sensu stricto), the ant genus which ranges farthest north in Eurasia and North America. In laboratory experiments, overwintering workers and queens of L. cf. canadensis from Quebec and New England survived -15 degrees C without increased mortality, and one fifth of all individuals were alive even after 48 hours at -25 degrees C. Mortality rates were significantly higher in solitarily overwintering ants than in ants hibernating in the winter clusters of their colonies. This is probably due to an increased starvation risk in isolation. Dissections showed that the crop was empty in all workers surviving solitary hibernation for 110 days, but only in approximately 2/3 of the workers hibernating in groups. Food exchange by trophallaxis was observed in overwintering groups. Though ants are generally considered to be inactive in winter, workers and queens of L. cf. canadensis exhibited basically the same behavioral repertoire as in other seasons, with the exception of foraging and egg laying. Especially later in winter, the percentage of individuals immobile in the hibernation cluster increased. The results of our study are discussed in respect to the life history strategies of Leptothorax (sensu stricto) and the frequent occurrence of multiply-queened societies in subarctic and boreal habitats. Heinze, J (reprint author), THEODOR BOVERI INST,LS VERHALTENSPHYSIOL & SOZIOBIOL,AM HUBLAND,D-97074 WURZBURG,GERMANY. ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; ARNOLDI KV, 1968, ZOOLOGICHESKI ZH, V47, P115; BERMAN DI, 1982, ZOOL ZH, V61, P1509; BERMAN DI, 1980, GORNYE TRUNDRY KHREB, P110; Bernard F., 1968, FOURMIS HYMENOPTERA; BOILEAU F, 1994, CAN FIELD NAT, V108, P162; BOLTON B, 1986, J NAT HIST, V20, P267, DOI 10.1080/00222938600770211; BOURKE AFG, 1994, PHILOS T ROY SOC B, V345, P359, DOI 10.1098/rstb.1994.0115; BROWN W. L., 1955, ENT NEWS, V66, P43; BUSCHINGER A, 1974, INSECT SOC, V21, P381, DOI 10.1007/BF02331567; BUSCHINGER A, 1973, EFFECTS TEMPERATURE, P229; BUSCHINGER A, 1974, SOZIALPOLYMORPHISMUS, P882; CUSHMAN JH, 1993, OECOLOGIA, V95, P30, DOI 10.1007/BF00649503; Danks H.V., 1991, P231; Duman J.G., 1991, P94; Eidmann H, 1943, Z MORPHOL OKOL TIERE, V39, P217; ERPENBECK A, 1983, Z ANGEW ENTOMOL, V96, P271; Francoeur A., 1983, NORDICANA, P177; Heinrich B., 1993, HOT BLOODED INSECTS; HEINZE J, 1991, Psyche (Cambridge), V98, P227, DOI 10.1155/1991/21921; HEINZE J, 1993, OECOLOGIA, V96, P32, DOI 10.1007/BF00318027; HEINZE J, 1989, BIOCHEM SYST ECOL, V17, P595, DOI 10.1016/0305-1978(89)90105-1; HEINZE J, 1989, INSECT SOC, V36, P139, DOI 10.1007/BF02225909; HEINZE J, 1993, ARCTIC, V46, P354; HEINZE J, 1988, Psyche (Cambridge), V95, P309, DOI 10.1155/1988/60604; Heinze Jurgen, 1994, Memorabilia Zoologica, V48, P99; HERBERS JM, 1986, J KANSAS ENTOMOL SOC, V59, P675; HERBERS JM, 1986, BEHAV ECOL SOCIOBIOL, V19, P115, DOI 10.1007/BF00299946; HOLCROFT AC, 1991, CAN FIELD NAT, V105, P335; HOLGERSEN H, 1942, TROMSO MUSEUMS ARSHE, V63, P3; HOLLDOBLER B, 1977, NATURWISSENSCHAFTEN, V64, P8, DOI 10.1007/BF00439886; Holldobler B, 1990, ANTS; KASPARI M, 1995, AM NAT, V145, P610, DOI 10.1086/285758; KELLER L, 1994, TRENDS ECOL EVOL, V9, P98, DOI 10.1016/0169-5347(94)90204-6; Keller L., 1993, QUEEN NUMBER SOCIALI; KONDOH M, 1977, P 8 INT C IUSSI WAG, P68; Lee R.E. Jr, 1991, P17; LEE RE, 1985, PHYSIOL ENTOMOL, V10, P309, DOI 10.1111/j.1365-3032.1985.tb00052.x; LEIRIKH AN, 1989, IZVESTIYA AKAD NAUK, V5, P752; Marchand P.J., 1987, LIFE COLD; MATTSON DJ, 1991, CAN J ZOOL, V69, P2430, DOI 10.1139/z91-341; NIELSEN MG, 1987, ENTOMOL NEWS, V98, P74; OHYAMA Y, 1972, J INSECT PHYSIOL, V18, P267, DOI 10.1016/0022-1910(72)90127-8; SALT R. W., 1963, CANADIAN ENTOMOL, V95, P1190; SALT R. W., 1953, CANADIAN ENT, V85, P261; SALT R. W., 1956, CANADIAN JOUR ZOOL, V34, P1, DOI 10.1139/z56-001; SALT RW, 1966, CAN J ZOOLOG, V44, P117, DOI 10.1139/z66-009; SALT RW, 1958, J INSECT PHYSIOL, V2, P178, DOI 10.1016/0022-1910(58)90003-9; SOMME L, 1982, COMP BIOCHEM PHYS A, V73, P519, DOI 10.1016/0300-9629(82)90260-2; SUNDSTROM L, 1995, BEHAV ECOL, V6, P132, DOI 10.1093/beheco/6.2.132; TINAUT A, 1992, NATURWISSENSCHAFTEN, V79, P84, DOI 10.1007/BF01131809; VONNAZMER G, 1914, ENTOMOLOGISCHE Z, V7, P274 52 12 14 0 8 UNIVERSITE LAVAL ST FOY PAVILLON ALEXANDRE-VACHON, UNIV LAVAL, ST FOY PQ G1K 7P4, CANADA 1195-6860 ECOSCIENCE Ecoscience 1996 3 4 429 435 10.1080/11956860.1996.11682360 7 Ecology Environmental Sciences & Ecology WD616 WOS:A1996WD61600007 2019-02-26 J Convey, P Convey, P Overwintering strategies of terrestrial invertebrates in Antarctica - The significance of flexibility in extremely seasonal environments EUROPEAN JOURNAL OF ENTOMOLOGY English Article; Proceedings Paper 2nd European Workshop of Invertebrate Ecophysiology SEP 10-15, 1995 CESKE BUDEJOVICE, CZECH REPUBLIC Czech Acad Sci, Inst Entomol, Univ S Bohemia, Fac Biol Sci Antarctica; invertebrate; life history flexibility; diapause; quiescence COLLEMBOLAN CRYPTOPYGUS-ANTARCTICUS; NEMATODE PANAGROLAIMUS-DAVIDI; MITE ALASKOZETES-ANTARCTICUS; DRONNING-MAUD-LAND; SOUTH-GEORGIA; COLD-TOLERANCE; MARION ISLAND; HYDROMEDION-SPARSUTUM; RESPIRATORY METABOLISM; PERIMYLOPS-ANTARCTICUS Antarctic terrestrial communities are characterised by their geographical isolation and the survival of extreme environmental stresses. Of particular significance to life history strategies of organisms in continental and maritime. Antarctic zones is the pronounced seasonality, with short (1-4 month) cold summers and long (8-11 month) winters. Activity and growth are largely limited to the summer period, although maintenance costs, undetectable in the short-term, may become significant over winter. Sub-Antarctic invertebrate communities experience a less rigorous regime, as climatic extremes are ameliorated by their oceanic environment, with positive mean temperatures occurring over 6-12 months. Here, year-round activity and growth of invertebrates are common. This paper considers our limited knowledge of the life histories of sub-Antarctic and Antarctic terrestrial invertebrates, to identify features correlated with seasonal and/or climatic cues. There is little evidence for diapause, although seasonal patterns of variation in cold tolerance and cryoprotectant production in direct response to desiccation and decreasing temperatures have been reported. A rapid response to feeding and growth opportunity is shown by maritime. Antarctic species, irrespective of season, although moulting does not occur over winter. Associated reduction of feeding, along with arrested growth and reproductive activity due to the low thermal energy budget over winter are probably sufficient to explain the peaks of moulting and reproduction often observed at the end of winter. Generally there is a high level of flexibility in the observed species life histories, with varying developmental duration and much overlap of generations being the norm, particularly in maritime and continental Antarctica. A formal diapause may be a disadvantage in maritime and continental Antarctic zones, as it would be erroneously triggered by severe conditions during summer. In contrast, the development of specific overwintering strategies including diapause may be unnecessary or even irrelevant in much of the sub-Antarctic, where seasonality is greatly reduced and the risk of severe of stressful environmental conditions during winter is negligible. Convey, P (reprint author), BRITISH ANTARCTIC SURVEY, NAT ENVIRONM RES COUNCIL, HIGH CROSS, MADINGLEY RD, CAMBRIDGE CB3 0ET, ENGLAND. BALE JS, 1993, FUNCT ECOL, V7, P751; BAUST JG, 1982, COMP BIOCHEM PHYS A, V73, P563, DOI 10.1016/0300-9629(82)90263-8; BAUST JG, 1985, J INSECT PHYSIOL, V31, P755, DOI 10.1016/0022-1910(85)90067-8; BAUST JG, 1983, OIKOS, V40, P120, DOI 10.2307/3544206; BAUST JG, 1980, CRYO-LETT, V1, P360; BAUST JG, 1979, PHYSIOL ENTOMOL, V4, P1, DOI 10.1111/j.1365-3032.1979.tb00171.x; BLOCK W, 1990, PHILOS T ROY SOC B, V326, P613, DOI 10.1098/rstb.1990.0035; BLOCK W, 1984, BIOL J LINN SOC, V23, P33, DOI 10.1111/j.1095-8312.1984.tb00804.x; BLOCK W, 1983, POLAR BIOL, V2, P109, DOI 10.1007/BF00303176; Block W., 1984, P163; BLOCK W, 1982, OIKOS, V38, P157, DOI 10.2307/3544015; BLOCK W, 1980, BIOL J LINN SOC, V14, P29, DOI 10.1111/j.1095-8312.1980.tb00095.x; BLOCK W, 1977, J EXP BIOL, V68, P69; BLOCK W, 1982, BR ANTARCT SURV B, V55, P33; Block W, 1985, BR ANTARCT SURV B, V68, P115; BOOTH RG, 1986, PEDOBIOLOGIA, V29, P209; BURN AJ, 1984, OECOLOGIA, V64, P223, DOI 10.1007/BF00376874; BURN AJ, 1984, ECOL ENTOMOL, V9, P11, DOI 10.1111/j.1365-2311.1984.tb00693.x; BURN AJ, 1981, OIKOS, V36, P59, DOI 10.2307/3544379; BURN AJ, 1982, COMITE NATL FRANCAIS, V51, P209; Cannon R.J.C., 1985, BR ANTARCT SURV B, V67, P1; CANNON RJC, 1986, J INSECT PHYSIOL, V32, P523, DOI 10.1016/0022-1910(86)90067-3; CANNON RJC, 1988, BIOL REV, V63, P23, DOI 10.1111/j.1469-185X.1988.tb00468.x; CANNON RJC, 1985, CRYO-LETT, V6, P73; CHAUVIN G, 1982, COM NATN FR RECH ANT, V51, P101; Chown S. L., 1992, South African Journal of Antarctic Research, V22, P51; CHOWN SL, 1990, S AFR J SCI, V86, P386; CHOWN SL, 1992, POLAR BIOL, V12, P527, DOI 10.1007/BF00238192; CHOWN SL, 1989, COLEOPTS BULL, V43, P165; CHOWN SL, 1989, OECOLOGIA, V80, P93, DOI 10.1007/BF00789937; CONVEY P, 1994, ECOGRAPHY, V17, P97, DOI 10.1111/j.1600-0587.1994.tb00081.x; Convey P, 1996, EUR J ENTOMOL, V93, P1; CONVEY P, 1994, ACTA OECOL, V15, P43; CONVEY P, 1992, EXP APPL ACAROL, V15, P219, DOI 10.1007/BF01246564; Convey Peter, 1994, Acta Zoologica Fennica, V195, P18; CORBET PS, 1964, CAN ENTOMOL, V96, P264, DOI 10.4039/Ent96264-1; CRAFFORD J E, 1984, South African Journal of Antarctic Research, V14, P18; CRAFFORD JE, 1987, J ENTOMOL SOC S AFR, V50, P259; CRAFFORD JE, 1993, POLAR BIOL, V13, P411, DOI 10.1007/BF01681983; CRAFFORD JE, 1986, POLAR BIOL, V6, P191, DOI 10.1007/BF00443395; CRAFFORD JE, 1986, S AFR J ANTARCT RES, V16, P41; Danks H.V., 1991, P231; Danks H.V., 1990, P444; Danks H.V., 1987, INSECT DORMANCY ECOL; DANKS HV, 1992, CAN ENTOMOL, V124, P167, DOI 10.4039/Ent124167-1; DAVEY MC, 1992, ANTARCT SCI, V4, P383; DAVIES L, 1987, ECOL ENTOMOL, V12, P149, DOI 10.1111/j.1365-2311.1987.tb00994.x; ERNSTING G, 1995, OECOLOGIA, V103, P34, DOI 10.1007/BF00328422; FRECKMAN DW, 1991, ANTARCT J US, V26, P233; GREENSLADE P, 1990, Papers and Proceedings of the Royal Society of Tasmania, V124, P35; GRESSITT J L, 1970, Pacific Insects Monograph, V23, P1; Hadley N. F., 1994, WATER RELATIONS TERR; HARRISON RA, 1970, PAC INSECTS MONOGR, V2, P285; HARRISSON PM, 1988, CRYOLETT, V9, P433; Heilbronn T.D., 1984, BRIT ANTARCTIC SURVE, V64, P21; HOLDGATE MW, 1977, PHILOS T R SOC B, V279, P5, DOI 10.1098/rstb.1977.0068; HORWATH KL, 1983, J INSECT PHYSIOL, V29, P907, DOI 10.1016/0022-1910(83)90054-9; Janetschek H., 1970, P871; JANETSCHEK H, 1967, Antarctic Research Series, V10, P205; JANETSCHEK HEINZ, 1967, ANTARCTIC RES SER, V10, P295; Jeannel R., 1940, Memoires Museum Histoire Nat Paris NS, V14, P63; KENNEDY AD, 1995, FUNCT ECOL, V9, P340, DOI 10.2307/2390583; KENNEDY AD, 1993, ARCTIC ALPINE RES, V25, P308, DOI 10.2307/1551914; Leather SR, 1993, ECOLOGY INSECT OVERW; LEE RE, 1981, COMP BIOCHEM PHYS A, V70, P579; Lewis Smith R.I., 1984, ANTARCT ECOL, V1, P61; Lewis Smith R.I., 1975, STRUCTURE FUNCTION T, P399; LISTER A, 1984, THESIS U YORK; Longton RE, 1988, BIOL POLAR BRYOPHYTE; MANSINGH A, 1971, CAN ENTOMOL, V103, P983, DOI 10.4039/Ent103983-7; MARSHALL DJ, 1995, POLAR BIOL, V15, P41; MELICK DR, 1994, BRYOLOGIST, V97, P13, DOI 10.2307/3243343; MEYERARNDT S, 1984, POLAR BIOL, V3, P73, DOI 10.1007/BF00258150; NEWTON IP, 1996, S AFR J ANTARCT RES, V24, P103; NICOLAI V, 1984, POLAR BIOL, V3, P39, DOI 10.1007/BF00265566; OLIVER D R, 1968, Annales Zoologici Fennici, V5, P111; PICKUP J, 1990, FUNCT ECOL, V4, P257, DOI 10.2307/2389345; PICKUP J, 1991, OIKOS, V61, P379, DOI 10.2307/3545245; PICKUP J, 1990, POLAR BIOL, V10, P307; POWERS LE, 1995, POLAR BIOL, V15, P325; PRYOR MADISON E., 1962, PACIFIC INSECTS, V4, P681; PUGH PJA, 1993, J NAT HIST, V27, P323, DOI 10.1080/00222939300770171; RAMLOV H, 1992, CRYOBIOLOGY, V29, P125, DOI 10.1016/0011-2240(92)90012-Q; REMMERT H, 1986, 3RD P EUR C ENT, P5; RICHARD KJ, 1994, POLAR BIOL, V14, P371; RING RA, 1990, POLAR BIOL, V10, P581, DOI 10.1007/BF00239369; Schuster R., 1991, ACARI REPROD DEV LIF; SHIMADA K, 1991, POLAR BIOL, V11, P311; SMITH AP, 1982, ACTA PSYCHOL, V51, P257, DOI 10.1016/0001-6918(82)90038-5; SMITH HG, 1983, REV ECOL BIOL SOL, V20, P269; SMITH R.I.L., 1988, METHODS BRYOLOGY, P275; SMITH RIL, 1972, BRIT ANTARCTIC SURVE, V68, P1; SOMME L, 1989, POLAR BIOL, V10, P141; SOMME L, 1989, POLAR BIOL, V10, P135; SOMME L, 1982, OIKOS, V38, P168, DOI 10.2307/3544016; SOMME L, 1995, POLAR BIOL, V15, P221; SOMME L, 1986, POLAR BIOL, V6, P179, DOI 10.1007/BF00274881; SOMME L, 1989, BIOL REV, V64, P367, DOI 10.1111/j.1469-185X.1989.tb00681.x; SOMMEL L, 1995, INVERTEBRATES HOT CO; SUGG P, 1983, ECOL ENTOMOL, V8, P105, DOI 10.1111/j.1365-2311.1983.tb00487.x; Tauber MJ, 1986, SEASONAL ADAPTATIONS; TREHEN P, 1982, REV ECOL BIOL SOL, V19, P105; TREHEN P, 1978, B SOC ZOOL FR, V103, P411; TREHEN P, 1982, CNFRA, V51, P149; VANNIER G, 1987, CRYO-LETT, V8, P47; VERNON P, 1987, COM NATN FR RECH ANT, V58, P151; Vernon P., 1986, B SOC ECOPHYSIOL, V11, P95; Walton D.W.H., 1984, P1; Walton D.W.H., 1982, BRIT ANTARCTIC SURVE, V55, P111; WEST CW, 1984, THESIS U LONDON; WESTERLING D, 1982, EUR J CLIN PHARMACOL, V23, P59, DOI 10.1007/BF01061378; WESTH P, 1992, POLAR BIOL, V12, P693; WHARTON DA, 1995, J EXP BIOL, V198, P1381; WHARTON DA, 1995, BIOL REV, V70, P161, DOI 10.1111/j.1469-185X.1995.tb01442.x; WHARTON DA, 1991, J EXP BIOL, V155, P629; WORLAND R, 1993, POLAR BIOL, V13, P105; WORLAND R, 1992, POLAR BIOL, V11, P607; YOUNG SR, 1980, J INSECT PHYSIOL, V26, P189, DOI 10.1016/0022-1910(80)90080-3; YOUNG SR, 1979, ASPECTS ENV PHYSL AN; ZACHARIASSEN KE, 1982, COMP BIOCHEM PHYS A, V73, P557, DOI 10.1016/0300-9629(82)90262-6; ZACHARIASSEN KE, 1985, PHYSIOL REV, V65, P799 121 69 75 0 10 CZECH ACAD SCI, INST ENTOMOLOGY CESKE BUDEJOVICE BRANISOVSKA 31, CESKE BUDEJOVICE 370 05, CZECH REPUBLIC 1210-5759 1802-8829 EUR J ENTOMOL Eur. J. Entomol. 1996 93 3 489 505 17 Entomology Entomology VN627 WOS:A1996VN62700020 2019-02-26 J Silvertown, J Silvertown, J Are sub-alpine firs evolving towards semelparity? EVOLUTIONARY ECOLOGY English Article Abies; semelparity; life history evolution; wave regeneration LIFE-HISTORY; FORESTS; WAVE; REGENERATION; POPULATION; EVOLUTION; TREE In sub-alpine forests of Northeast America and Japan pure stands of trees in the genus Abies exhibit wave regeneration. Opportunities for recruitment in such forests are confined to a window in time and space that coincides with the death of an even-aged cohort of adult trees. I suggest that the coincidence of this recruitment window with the death of adults at a predictable age should select for convergence between age at first reproduction and age at death. Ultimately this would lead to the evolution of semelparity. The available evidence supports this hypothesis for wave-regenerated Abies populations in Japan. A field test of the hypothesis is also suggested. Silvertown, J (reprint author), OPEN UNIV,DEPT BIOL,MILTON KEYNES MK7 6AA,BUCKS,ENGLAND. Charnov Eric L., 1993, P1; FOSTER RB, 1977, NATURE, V268, P624, DOI 10.1038/268624b0; Grime J. P, 1979, PLANT STRATEGIES VEG; KOHYAMA T, 1984, OECOLOGIA, V62, P156, DOI 10.1007/BF00379008; KOHYAMA T, 1981, BOT MAG TOKYO, V94, P55, DOI 10.1007/BF02490203; KOHYAMA T, 1982, BOT MAG TOKYO, V95, P167, DOI 10.1007/BF02488583; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; MARCHAND PJ, 1984, CAN J FOREST RES, V14, P51, DOI 10.1139/x84-011; MARKS PL, 1974, ECOL MONOGR, V44, P73, DOI 10.2307/1942319; SATO K, 1993, ECOLOGY, V74, P1538, DOI 10.2307/1940081; SATO T, 1994, ECOL RES, V9, P77, DOI 10.1007/BF02347244; SCHAFFER WM, 1979, ECOLOGY, V60, P1051, DOI 10.2307/1936872; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; SILVERTOWN J, 1989, EVOL TREND PLANT, V3, P87; SILVERTOWN JW, 1983, AM NAT, V121, P448, DOI 10.1086/284074; SPRUGEL DG, 1976, J ECOL, V64, P889, DOI 10.2307/2258815; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 19 9 9 1 8 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. JAN 1996 10 1 77 80 10.1007/BF01239348 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TT492 WOS:A1996TT49200007 2019-02-26 J Blarer, A; Doebeli, M Blarer, A; Doebeli, M Heuristic optimization of the general life history problem: A novel approach EVOLUTIONARY ECOLOGY English Article heuristic optimization; resource allocation; reproductive effort; maturation; lifespan; simulated annealing ENERGY ALLOCATION; DYNAMIC-MODELS; EVOLUTION; ALGORITHM; SENESCENCE; MORTALITY; FITNESS The general life history problem concerns the optimal allocation of resources to growth, survival and reproduction. We analysed this problem for a perennial model organism that decides once each year to switch from growth to reproduction. As a fitness measure we used the Malthusian parameter r, which we calculated from the Euler-Lotka equation. Trade-offs were incorporated by assuming that fecundity is size dependent, so that increased fecundity could only be gained by devoting more time to growth and less time to reproduction. To calculate numerically the optimal r for different growth dynamics and mortality regimes, we used a simplified version of the simulated annealing method. The major differences among optimal life histories resulted from different accumulation patterns of intrinsic mortalities resulting from reproductive costs. If these mortalities were accumulated throughout life, i.e. if they were senescent, a bang-bang strategy was optimal, in which there was a single switch from growth to reproduction: after the age at maturity all resources were allocated to reproduction. If reproductive costs did not carry over from year to year, i.e. if they were not senescent, the optimal resource allocation resulted in a graded switch strategy and growth became indeterminate. Our numerical approach brings two major advantages for solving optimization problems in life history theory. First, its implementation is very simple, even for complex models that are analytically intractable. Such intractability emerged in our model when we introduced reproductive costs representing an intrinsic mortality. Second, it is not a backward algorithm. This means that lifespan does not have to be fixed at the begining of the computation. Instead, lifespan itself is a trait that can evolve. We suggest that heuristic algorithms are good tools for solving complex optimality problems in life history theory, in particular questions concerning the evolution of lifespan and senescence. Blarer, A (reprint author), UNIV BASEL, INST ZOOL, RHEINSPRUNG 9, CH-4051 BASEL, SWITZERLAND. Doebeli, Michael/D-5391-2012 ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ABRAMS PA, 1991, EVOL ECOL, V5, P343, DOI 10.1007/BF02214152; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Caswell H., 1989, P285; CHARLESWORTH B, 1990, NATURE, V346, P313, DOI 10.1038/346313a0; Charlesworth B., 1980, EVOLUTION AGE STRUCT; DUECK G, 1993, J COMPUT PHYS, V104, P86, DOI 10.1006/jcph.1993.1010; DUECK G, 1990, J COMPUT PHYS, V90, P161, DOI 10.1016/0021-9991(90)90201-B; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Helsgaun K, 2000, EUR J OPER RES, V126, P106, DOI 10.1016/S0377-2217(99)00284-2; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; JONES JS, 1990, NATURE, V348, P288, DOI 10.1038/348288d0; KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; Mangel M, 1988, DYNAMIC MODELING BEH; MCNAMARA JM, 1993, J THEOR BIOL, V161, P23, DOI 10.1006/jtbi.1993.1037; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Press W. H., 1988, NUMERICAL RECIPES C; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff Derek A., 1992; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHAFFER WM, 1982, AM NAT, V120, P787, DOI 10.1086/284030; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HIST; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 30 8 9 1 3 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JAN 1996 10 1 81 96 10.1007/BF01239349 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TT492 WOS:A1996TT49200008 2019-02-26 B Smith, MS; West, J; Thiele, K Morton, SR; Mulvaney, DJ Smith, MS; West, J; Thiele, K Biogeographic patterns in inland Australia: The role of isolation and uncertainty EXPLORING CENTRAL AUSTRALIA: SOCIETY, THE ENVIRONMENT AND THE 1894 HORN EXPEDITION English Proceedings Paper Symposium on Exploring Central Australia - Society, the Environment and the 1894 Horn Expedition SEP 25-27, 1994 ARALUEN CTR, ALICE SPRINGS, AUSTRALIA No Territory Govt, Austr, Magellan ARALUEN CTR A century ago, the members of the Horn Expedition developed the first opinions about the biogeographic relationships of the arid-zone biota of Australia, From the start, there was debate about the degree to which this biota had an endogenous origin, or was little differentiated from the regions surrounding arid Australia, In general, those working on the flora supported an exogenous origin; those examining the fauna favoured endogenous evolution. This debate still exists in the literature today. We discuss how the understanding of spatial and temporal variability - in terms of isolation and uncertainty - has changed since the time of the Expedition, Expedition members had only a hazy appreciation of the importance of spatial patchiness varying over time, incarcerating some species in refugia where selection can trigger divergence, then releasing them again to intermingle across the landscape. Species with different life history strategies, especially in terms of dispersal characteristics, respond differentially to these variations. These differences can help to resolve the debate about the origin of the biota. We hypothesize that selection for isolation and the effects of reticulate evolution could be widespread in the arid zone, causing problems for our interpretations of biogeographic patterns. We discuss how these problems could be examined. Finally, we reflect on what may be learned from the way in which these concepts have changed since the Expedition, both for science and for society in the future. CSIRO,DIV WILDLIFE & ECOL,ALICE SPRINGS,NT 0871,AUSTRALIA Stafford Smith, Mark/G-1680-2010 Stafford Smith, Mark/0000-0002-1333-3651 0 2 2 0 1 SURREY BEATTY & SONS CHIPPING NORTON NSW 43 RICKARD ROAD, CHIPPING NORTON NSW 2170, AUSTRALIA 0-949324-67-1 1996 368 378 11 Anthropology; History Anthropology; History BJ09G WOS:A1996BJ09G00026 2019-02-26 B Sinclair, ARE Floyd, RB; Sheppard, AW; DeBarro, PJ Sinclair, ARE Mammal populations: Fluctuation, regulation, life history theory and their implications for conservation FRONTIERS OF POPULATION ECOLOGY English Proceedings Paper Frontiers of Population Ecology Conference to Celebrate the Centenary of the Birth of the Population Ecologist A J Nicholson (1895-1969) APR, 1995 CANBERRA, AUSTRALIA body size; population variability; intrinsic rate of increase; density dependence; viable population size Mammal populations exhibit a range of variability inversely related to body size when considered over absolute time. However, there is no relationship between population variability and body size over the length of a generation, so all species show the same intrinsic degree of variability Small species are not subject to more severe extrinsic perturbations than larger species. Therefore, the variability seen in small species is due to their high intrinsic rates of increase (r(m)) which allows them to recover faster from extrinsic perturbations. At the same time, the magnitude of decrease in a population must also be determined intrinsically, since the populations (in this analysis) were stationary in the longterm. Thus, in a given environment, both large and small species experience the same negative environmental effects, and the degree to which the species are buffered from these effects is inversely related to r(m) and positively related to body size. This implies that species are not simply passive responders to a stochastic environment, but are adapted to tolerate decline, or resist it, as a function of r(m), as predicted by life history theory. Since this tolerance or resistance to decline is a measure of density dependence in the population, it follows that small species must have high overcompensating density dependence while large species have weaker stabilising density dependence. This conclusion, which is in agreement with empirical studies, provides a generalisation on both the prevalence and intensity of density dependence in mammal populations. Thus, the evidence supports the hypothesis that population fluctuations are explained more by strong, overcompensating density dependence than by weak density dependence and high extrinsic stochasticity The intrinsic (density dependent) response to fluctuations appears to occur earlier in life (through fecundity and early juvenile mortality) in larger species, later (through juvenile and adult mortality) in smaller species. This trend may explain the inverse relationship of the strength of density dependence with body size seen above, because mortality responds faster to environmental change than does reproduction. Behaviour, particularly, social organisation and dispersal, is part of the specific intrinsic response or adaptation to perturbation, and contributes to the overcompensating density dependence in small species. A strong overcompensating behavioural response leads to population cycles or chaotic fluctuations (which appear cyclic) and their frequency is inversely related to body size. Causes of mortality involving food shortage affect all species but especially large ones. Predation causing regulation appears more frequently in small species, and because it produces delayed effects, it contributes to population cycles. The role of disease remains obscure. Since the strength of density dependence is inversely related to body size, it is the larger species which ore the most prone to extinction when at low density. Thus, large species must be conserved at relatively higher population size, In contrast, smaller species should be conserved by allowing dispersal between subpopulations. Sinclair, ARE (reprint author), UNIV BRITISH COLUMBIA,DEPT ZOOL,6270 UNIV BLVD,VANCOUVER,BC V6T 1Z4,CANADA. Sheppard, Andy/C-1045-2009 0 83 89 0 16 C S I R O EAST MELBOURNE PO BOX 89 (EAST ALBERT ST), EAST MELBOURNE 3002, AUSTRALIA 0-643-05781-1 1996 127 154 28 Ecology Environmental Sciences & Ecology BH90D WOS:A1996BH90D00011 2019-02-26 J Chisholm, JS Chisholm, JS The evolutionary ecology of attachment organization HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article; Proceedings Paper Symposium on Childhood in Life-History Perspective - Developing Views, at the Annual Meeting of the Society-for-Cross-Cultural-Research FEB 16-20, 1994 SANTA FE, NM Soc Cross Cultural Res life history theory; attachment theory; individual differences; reproductive strategies; environment of evolutionary adaptedness INFANT-MOTHER ATTACHMENT; REPRODUCTIVE STRATEGIES; CHILDHOOD EXPERIENCE; NATURAL-SELECTION; ECONOMIC HARDSHIP; BEHAVIOR; HISTORY; TEMPERAMENT; SECURITY; YOUNG Life history theory's principle of allocation suggests that because immature organisms cannot expend reproductive effort, the major trade-off facing juveniles will be the one between survival, on one hand, and growth and development, on the other. As a consequence, infants and children might be expected to possess psychobiological mechanisms for optimizing this trade-off. The main argument of this paper is that the attachment process serves this function and that individual differences in attachment organization (secure, insecure, and possibly others) may represent facultative adaptations to conditions of risk and uncertainty that were probably recurrent in the environment of human. evolutionary adaptedness. Chisholm, JS (reprint author), UNIV WESTERN AUSTRALIA, DEPT ANAT & HUMAN BIOL, NEDLANDS, WA 6907, AUSTRALIA. AINSWORTH M, 1969, INFANCY UGANDA INFAN; AINSWORTH M. D. S, 1971, ORIGINS HUMAN SOCIAL, P17; Ainsworth MD, 1978, PATTERNS ATTACHMENT; AINSWORTH MDS, 1979, AM PSYCHOL, V34, P932, DOI 10.1037/0003-066X.34.10.932; Ainsworth MDS, 1979, ADV STUD BEHAV, P1; ALEXANDER R, 1979, SEXUAL SELECTION REP, P413; ANDREWS MW, 1991, CHILD DEV, V62, P686, DOI 10.2307/1131170; APTER D, 1983, J CLIN ENDOCR METAB, V57, P82, DOI 10.1210/jcem-57-1-82; BARKOW J, 1992, APAPTED MIN EVOLUTIO; BATES JE, 1985, MONOGR SOC RES CHILD, V50, P167, DOI 10.2307/3333832; BATESON P, 1994, TRENDS ECOL EVOL, V9, P399, DOI 10.1016/0169-5347(94)90066-3; Bateson P., 1982, P133; BATESON P, 1990, ANIM BEHAV, V40, P514, DOI 10.1016/S0003-3472(05)80532-9; Bateson P. P. G., 1976, GROWING POINTS ETHOL, P401; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J., 1994, DEV LIFE HDB CLIN, P373; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; BLAFFERHRDY S, 1977, AM SCI, V65, P40; Blurton J. N., 1993, JUVENILE PRIMATES LI, P309; BOGIN B, 1994, ACTA PAEDIATR, V83, P29, DOI 10.1111/j.1651-2227.1994.tb13418.x; Bogin B., 1995, BIOL ANTHR STATE SCI, P49; BONNER JT, 1965, SIZE CYCLE; BORGERHOFF MM, 1992, EVOLUTIONARY ECOLOGY, P339; Boswell J., 1988, KINDNESS STRANGERS; Bowlby J, 1973, ATTACHMENT LOSS, V2; Bowlby J., 1980, ATTACHMENT AND LOSS, V3; Bowlby J., 1969, ATTACHMENT LOSS, V1; Bowlby J., 1965, CHILD CARE GROWTH LO; Boyd R., 1985, CULTURE EVOLUTIONARY; Brazelton TB, 1974, EFFECT INFANT ITS CA, P49; Brenner M. H., 1973, MENTAL ILLNESS EC; BRETHERTON I, 1985, MONOGR SOC RES CHILD, V50, P3, DOI 10.2307/3333824; BRETHERTON I, 1974, ORIGINS FEAR, P131; BRETHERTON I, 1985, MONOGRAPHS SOC RES C, V50; Campos J., 1983, HDB CHILD PSYCHOL, VII, P783; CARO TM, 1986, ANIM BEHAV, V34, P1483, DOI 10.1016/S0003-3472(86)80219-6; CASSIDY J, 1994, CHILD DEV, V65, P971, DOI 10.2307/1131298; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; CHISHOLM J, 1995, PERSPECTIVES HUMAN B, V1, P19; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1995, ROMANTIC PASSION UNI; COHN JF, 1983, CHILD DEV, V54, P185, DOI 10.2307/1129876; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CONGER RD, 1984, CHILD DEV, V55, P2234, DOI 10.1111/j.1467-8624.1984.tb03918.x; CROCKENBERG SB, 1981, CHILD DEV, V52, P857, DOI 10.2307/1129087; DEROUSSEAU CJ, 1990, MG PRIMATOL, V14, P1; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; DROTAR D, 1991, AM J ORTHOPSYCHIAT, V61, P23, DOI 10.1037/h0079231; DUNCAN GJ, 1994, CHILD DEV, V65, P296, DOI 10.2307/1131385; DUNN J, 1976, GROWING POINTS ETHOL, P481; Edgerton R. B., 1992, SICK SOC CHALLENGING; Egeland B, 1987, CHILD ABUSE NEGLECT, P255; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; EMLEN S, 1985, LATEST BEST ESSAYS E, P163; ERICKSON MF, 1985, MONOGR SOC RES CHILD, V50, P147, DOI 10.2307/3333831; Eveleth P. B., 1990, WORLDWIDE VARIATION; Fagen R., 1982, Perspectives in Ethology, V5, P365; Fagen Robert, 1993, P182; Foley R.A., 1992, P131; FOX R, 1989, SEARCH SOC QUEST BIO; FREEDMAN DG, 1993, J SOC EVOL SYST, V16, P297, DOI 10.1016/1061-7361(93)90037-R; Freud S., 1940, OUTLINE PSYCHOANALYS; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARDNER W, 1993, ADOLESCENT RISK TAKI, P66; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GOLDSMITH HH, 1994, CURR DIR PSYCHOL SCI, V3, P53, DOI 10.1111/1467-8721.ep10769948; GOMENDIO M, 1991, ANIM BEHAV, V42, P993, DOI 10.1016/S0003-3472(05)80152-6; GOTTLIEB G, 1991, DEV PSYCHOL, V27, P4, DOI 10.1037/0012-1649.27.1.4; GOULD SJ, 1991, J SOC ISSUES, V47, P43, DOI 10.1111/j.1540-4560.1991.tb01822.x; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.1111/j.1467-8624.1995.tb00875.x; Grafen A., 1984, BEHAV ECOLOGY EVOLUT, P62; GUNNAR MR, 1989, DEV PSYCHOL, V25, P355, DOI 10.1037/0012-1649.25.3.355; Hall B. K., 1992, EVOLUTIONARY DEV BIO; HARLOW HF, 1958, AM PSYCHOL, V13, P673, DOI 10.1037/h0047884; Harpending HC, 1990, DIS POPULATIONS TRAN, P251; Hausfater Glenn, 1984, INFANTICIDE COMP EVO; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HERMANGIDDENS ME, 1988, AM J DIS CHILD, V142, P431, DOI 10.1001/archpedi.1988.02150040085025; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hinde R., 1987, INDIVIDUALS RELATION; Hinde R., 1983, HDB CHILD PSYCHOL, P27; Hinde R. A., 1982, PLACE ATTACHMENT HUM, P60; Hinde RA, 1961, CURRENT PROBLEMS ANI, P175; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; HRDY SB, 1979, ETHOL SOCIOBIOL, V1, P13, DOI 10.1016/0162-3095(79)90004-9; ISABELLA RA, 1991, CHILD DEV, V62, P373, DOI 10.1111/j.1467-8624.1991.tb01538.x; Janson Charles H., 1993, P57; JOHNSTON TD, 1982, ADV STUD BEHAV, V12, P65, DOI 10.1016/S0065-3454(08)60046-7; JONES B, 1972, MED J AUSTRALIA, V2, P533; KAGAN J, 1982, PSYCHOL RES HUMAN IN; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kleiman D.G., 1981, P347; Lamb M., 1985, INFANT MOTHER ATTACH; LAWRANCE EC, 1991, J POLIT ECON, V99, P54, DOI 10.1086/261740; LEMPERS JD, 1989, CHILD DEV, V60, P25, DOI 10.2307/1131068; LEVINE NE, 1987, POPUL DEV REV, V13, P281, DOI 10.2307/1973194; Levins R., 1968, EVOLUTION CHANGING E; LIESEN LT, 1995, POLIT LIFE SCI, V14, P145; LORENZ K., 1935, Journal fur Ornithologie, V83, P137, DOI 10.1007/BF01905355; Lott D. F., 1991, INTRASPECIFIC VARIAT; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; MAIN M, 1985, MONOGR SOC RES CHILD, V50, P66, DOI 10.2307/3333827; MAIN M, 1990, HUM DEV, V33, P48, DOI 10.1159/000276502; Main M., 1991, ATTACHMENT LIFE CYCL, P127; Main M., 1981, BEHAV DEV BIELEFELD, P651; MAITAL S, 1977, ESSAYS LABOR MARKET, P179; MARRIS P, 1991, ATTACHMENT LIFE CYCL, P77; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.2307/1131096; Miller GA, 1960, PLANS STRUCTURE BEHA; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MONCKBERG F, 1992, HUMAN GROWTH BASIC C, P117; Nesse R. M., 1995, WHY WE GET SICK NEW; ORAND A, 1974, SOC FORCES, V53, P53, DOI 10.2307/2576837; ORZACK SH, 1994, AM NAT, V143, P361, DOI 10.1086/285608; OYAMA S, 1985, ONTOGENY INFORMATION; OYAMA S, 1994, PSYCHOL ANTHR, P185; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; PEACOCK NR, 1990, MG PRIMATOL, V14, P195; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PROMISLOW D, 1991, ACTA OECOL, V12, P94; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Radke-Yarrow M., 1991, ATTACHMENT LIFE CYCL, P115; RICKS MH, 1985, MONOGR SOC RES CHILD, V50, P211, DOI 10.2307/3333834; Roff Derek A., 1992; ROGERS AR, 1994, AM ECON REV, V84, P460; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; ROSENBLUM LA, 1994, BIOL PSYCHIAT, V35, P221, DOI 10.1016/0006-3223(94)91252-1; ROSENBLUM LA, 1994, ACTA PAEDIATR, V83, P57, DOI 10.1111/j.1651-2227.1994.tb13266.x; Rubenstein D.I., 1982, P91; Rubenstein Daniel I., 1993, P38; Ruddick Sara., 1989, MATERNAL THINKING PO; SAMPSON RJ, 1994, CHILD DEV, V65, P523, DOI 10.2307/1131400; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Scheper- Hughes N., 1992, DEATH WEEPING VIOLEN; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Shaver P. R., 1993, ADV PERSONAL RELATIO, P29; SMITH EA, 1992, EVOLUTIONARY ECOLOGY, P25; SMITH EFS, 1991, ANIM BEHAV, V41, P513, DOI 10.1016/S0003-3472(05)80854-1; SMUTS B, 1995, HUM NATURE-INT BIOS, V6, P1, DOI 10.1007/BF02734133; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Spitz RA, 1945, PSYCHOANAL STUD CHIL, V1, P53; Sroufe L. A., 1988, CLIN IMPLICATIONS AT, P18; SROUFE LA, 1977, CHILD DEV, V48, P1184, DOI 10.2307/1128475; STAMPS JA, 1991, AM ZOOL, V31, P338; STEARNS SC, 1982, EVOL DEV, P237; Stearns SC., 1992, EVOLUTION LIFE HIST; Suomi S. J., 1991, NEUROBIOLOGY LEARNIN, P195; SURBEY MK, 1990, MG PRIMATOL, V13, P11; TAUBER AI, 1994, J ROY SOC MED, V87, P27; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; TRICKETT PK, 1993, PSYCHOL SCI, V4, P81, DOI 10.1111/j.1467-9280.1993.tb00465.x; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V14, P249; TRONICK EZ, 1987, AM ANTHROPOL, V89, P96, DOI 10.1525/aa.1987.89.1.02a00050; VALENZUELA M, 1990, CHILD DEV, V61, P1984, DOI 10.1111/j.1467-8624.1990.tb03580.x; VANSCHAIK CP, 1990, BEHAVIOUR, V115, P30, DOI 10.1163/156853990X00284; VAUGHN BE, 1990, CHILD DEV, V61, P1965, DOI 10.1111/j.1467-8624.1990.tb03578.x; VILA B, 1994, CRIMINOLOGY, V32, P311, DOI 10.1111/j.1745-9125.1994.tb01157.x; VITZTHUM V, 1994, IN PRESS HUMAN BIOL; WACHS TD, 1993, INFANT BEHAV DEV, V16, P391, DOI 10.1016/0163-6383(93)80044-9; WATERS E, 1985, MONOGR SOC RES CHILD, V50, P41, DOI 10.2307/3333826; WELLENS R, 1992, AM J HUM BIOL, V4, P783, DOI 10.1002/ajhb.1310040610; WILEY A, 1994, 93 ANN M AM ANTHR AS; WILEY AS, 1992, MED ANTHROPOL Q, V6, P216, DOI 10.1525/maq.1992.6.3.02a00030; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; Williams GC, 1966, ADAPTATION NATURAL S; Wolkind S, 1985, CHILD ADOLESCENT PSY, P34; WORTHMAN C, 1994, HUM GROWTH DEV MOD R; WORTHMAN C, 1993, ANN M AM ASS ADV SCI; WYATT G, 1990, KINSEY I SERIES, V3, P182; YARROW LJ, 1967, EXCEPT INFANT, V1, P227 176 135 142 1 16 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1996 7 1 1 37 37 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences TW817 WOS:A1996TW81700001 24203250 2019-02-26 J Loumbourdis, N; KyriakopoulouSklavounou, P Loumbourdis, N; KyriakopoulouSklavounou, P Follicle growth during hibernation in the frog Rana ridibunda in northern Greece ISRAEL JOURNAL OF ZOOLOGY English Article ANNUAL OVARIAN CYCLE; LIFE-HISTORY EVOLUTION; TEMPERATE ZONE ANURAN; TOAD BUFO-BUFO; FAT-BODY; CYANOPHLYCTIS; REPRODUCTION; KINETICS; VIRIDIS; OVIDUCT The seasonal ovarian dynamics from September to June in natural populations of the frog Rana ridibunda in Northern Greece have been studied. A continuous change in the percentage and diameter size of the ovarian follicles during the hibernating season was found. Early vitellogenic follicles reached their maximum percentage in April-May and were lowest in February. A small increase of their percentage during December and January compared to the three previous months indicated continuous growth of the ovarian follicles during hibernation. Advanced vitellogenic follicles reached their maximum percentage in September and were lowest in March. Postvitellogenic follicles appeared from September onwards and their percentage increased continuously until February, except for a small decrease in December and a stable level during January. A negative correlation between body length and percentage of postvitellogenic follicles was found in March. Loumbourdis, N (reprint author), UNIV THESSALONIKI,DEPT ZOOL,BOX 134,GR-54006 THESSALONIKI,GREECE. ANASTASIADIS AI, 1976, ELEMENTS ADVANCED MA; BERGER I, 1980, FOLIA BIOL KRAKOSW, V28, P3; BERVEN AK, 1988, COPEIA, V3, P605; CHINTIROGLOU C, 1992, HELGOLANDER MEERESUN, V46, P53, DOI 10.1007/BF02366212; DELGADO MJ, 1990, PHYSIOL ZOOL, V63, P373, DOI 10.1086/physzool.63.2.30158502; Duellman W. E., 1994, BIOL AMPHIBIANS; Guarino Fabio Maria, 1993, Animal Biology, V2, P25; JORGENSEN CB, 1975, GEN COMP ENDOCR, V25, P264, DOI 10.1016/0016-6480(75)90116-1; JORGENSEN CB, 1974, GEN COMP ENDOCR, V23, P170, DOI 10.1016/0016-6480(74)90126-9; JORGENSEN CB, 1984, ACTA ZOOL-STOCKHOLM, V65, P239, DOI 10.1111/j.1463-6395.1984.tb01045.x; JORGENSEN CB, 1986, OIKOS, V46, P379, DOI 10.2307/3565838; JORGENSEN CB, 1981, J ZOOL, V195, P449; JORGENSEN CB, 1984, OIKOS, V43, P309, DOI 10.2307/3544148; JORGENSEN CB, 1973, GEN COMP ENDOCR, V21, P152, DOI 10.1016/0016-6480(73)90166-4; JORGENSEN CB, 1982, J EXP ZOOL, V224, P437, DOI 10.1002/jez.1402240317; JORGENSEN CB, 1979, BIOL SKR, V22, P1; KYRIAKOPOULOU-SKLAVOUNOU P, 1990, Amphibia-Reptilia, V11, P23, DOI 10.1163/156853890X00285; KYRIAKOPOULOUSK.P, 1983, THESIS U THESSALONIK; KYRIAKOPOULOUSKLAVOUNOU P, 1990, J HERPETOL, V24, P185, DOI 10.2307/1564226; Lofts B., 1974, P107; LOUMBOURDIS NS, 1991, COMP BIOCHEM PHYS A, V99, P577, DOI 10.1016/0300-9629(91)90133-W; PANCHARATNA K, 1992, J MORPHOL, V214, P123, DOI 10.1002/jmor.1052140202; PANCHARATNA M, 1985, J MORPHOL, V186, P135, DOI 10.1002/jmor.1051860202; RASTOGI RK, 1983, J ZOOL, V200, P233; SILVERIN B, 1992, Amphibia-Reptilia, V13, P177, DOI 10.1163/156853892X00364; Sofianidou T.S., 1984, Amphibia-Reptilia, V4, P125; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TEKAIA F, 1985, LOGISTAT ANAL STAT D; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956 30 6 6 0 1 LASER PAGES PUBL LTD JERUSALEM PO BOX 50257, JERUSALEM 91502, ISRAEL 0021-2210 ISRAEL J ZOOL Isr. J. Zool. 1996 42 3 275 285 11 Zoology Zoology VR801 WOS:A1996VR80100006 2019-02-26 J Morris, DW Morris, DW State-dependent life histories, Mountford's hypothesis, and the evolution of brood size JOURNAL OF ANIMAL ECOLOGY English Article body size; brood size; habitat; individual optimization; life history; littersize; Peromyscus WHITE-FOOTED MICE; CLUTCH-SIZE; PARENTAL INVESTMENT; HABITAT SELECTION; LITTER SIZE; GREAT TITS; REPRODUCTION; PEROMYSCUS; DISPERSAL; SURVIVAL 1. Mountford's cliff-edge hypothesis states that asymmetrically low survivorship in large broods can account for the common observation that mean brood size is less than the most productive size. A graphical model demonstrates how state-dependent life histories can explain Mountford's hypothesis. The model is based on the optimal allocation of parental resources to reproduction. It assumes that the optimum brood size depends upon the state of each phenotype in the population. 2. Variability among individuals will cause some to produce either smaller or larger broods than their optimum. Juvenile survival is expected to decline with increases in brood size beyond the parental optimum. Juvenile survival from large broods produced by low-quality parents will be exceptionally low, thereby generating Mountford's cliff-edge effect. 3. I tested the model with field data on the success of litters produced by small and large females of the white-footed mouse. The data, in this initial test of state-dependent life history theory, were consistent with the state-dependent explanation. Small females that produced large litters had significantly lower recruitment from those litters than did larger females that produced litters of the same size. 4. Interactions among litter size, juvenile survival, maternal body size and the timing of reproduction document that detailed natural history will be an essential feature in future tests of state-dependent theories. LAKEHEAD UNIV, FAC FORESTRY, THUNDER BAY, ON P7B 5E1, CANADA Morris, DW (reprint author), LAKEHEAD UNIV, DEPT BIOL, CTR NO STUDIES, THUNDER BAY, ON P7B 5E1, CANADA. Morris, Douglas/0000-0003-4515-9261 APARICIO JM, 1993, OIKOS, V68, P186, DOI 10.2307/3545327; BOUTIN S, 1988, J ANIM ECOL, V57, P455, DOI 10.2307/4917; Boyce M. S., 1988, EVOLUTION LIFE HIST, P3; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Calder W. A, 1984, SIZE FUNCTION LIFE H; COLEMAN RM, 1991, TRENDS ECOL EVOL, V6, P404, DOI 10.1016/0169-5347(91)90163-R; DAWKINS R, 1976, NATURE, V262, P131, DOI 10.1038/262131a0; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DRICKAMER LC, 1973, J MAMMAL, V54, P523, DOI 10.2307/1379147; EISENBERG JF, 1981, MAMMALIAN RAD; FLEMING TH, 1978, EVOLUTION, V32, P45, DOI 10.1111/j.1558-5646.1978.tb01097.x; GOUNDIE TR, 1986, J MAMMAL, V67, P53, DOI 10.2307/1381001; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; KLOMP H, 1970, ARDEA, V58, P1; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; Layne J. N., 1968, P148; Lessells C.M., 1991, P32; LIOU LW, 1993, AM NAT, V141, P507, DOI 10.1086/285488; MCLOSKEY RT, 1975, ECOLOGY, V56, P467, DOI 10.2307/1934978; MCLOSKEY RT, 1975, J MAMMAL, V56, P950, DOI 10.2307/1379675; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MOLLER AP, 1991, ECOLOGY, V72, P1336, DOI 10.2307/1941106; MORRIS DW, 1992, EVOL ECOL, V6, P1, DOI 10.1007/BF02285330; MORRIS DW, 1986, EVOLUTION, V40, P169, DOI 10.1111/j.1558-5646.1986.tb05728.x; MORRIS DW, 1991, AM NAT, V138, P702, DOI 10.1086/285244; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; MORRIS DW, 1989, EVOL ECOL, V3, P80, DOI 10.1007/BF02147934; MORRIS DW, 1985, OIKOS, V45, P290, DOI 10.2307/3565719; MORRIS DW, 1992, EVOLUTION, V46, P1848, DOI 10.1111/j.1558-5646.1992.tb01173.x; MORRIS DW, IN PRESS ECOSCIENCE; MORRIS DW, IN PRESS OIKOS; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; MYERS P, 1983, J MAMMAL, V64, P1, DOI 10.2307/1380746; NORUSIS M, 1992, SPSS PC PLUS ADV STA; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; Peters R.H., 1983, P1; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; RINTAMAA DL, 1976, J MAMMAL, V57, P593, DOI 10.2307/1379313; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; WOLFF J O, 1986, Virginia Journal of Science, V37, P208; WOLFF JO, 1988, ANIM BEHAV, V36, P456, DOI 10.1016/S0003-3472(88)80016-2; WOLFF JO, 1992, NATURE, V359, P409, DOI 10.1038/359409a0 44 25 26 0 9 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 1996 65 1 43 51 10.2307/5698 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology TR130 WOS:A1996TR13000004 2019-02-26 J McCleery, RH; Clobert, J; Julliard, R; Perrins, CM McCleery, RH; Clobert, J; Julliard, R; Perrins, CM Nest predation and delayed cost of reproduction in the great tit JOURNAL OF ANIMAL ECOLOGY English Article age-specific mortality; ageing; cost of reproduction; nest predation; life history; great tit LIFE-HISTORY EVOLUTION; INTERSPECIFIC COMPETITION; SITE SELECTION; BREEDING BLUE; SURVIVAL RATE; PARUS-MAJOR; CLUTCH SIZE; BIRDS; AGE; POPULATION 1. During a study on the great tit at Wytham Wood, Oxfordshire, nest predation by weasels was as high as 50% in some years prior to 1976. In 1976, nest-boxes were made virtually predator proof. 2. The change in nest-box type increased local recruitment rate and total population size of great and blue tits. We examined here the consequences of reduced nest predation on the survival rate of the great tit late in life. 3. Prior to 1976 (during the nest predation period), survival rate after the age of 5 years showed no decline and no relationship to the number of successful breeding attempts in either sex. 4. After 1976 (predator-proof period), both sexes showed increased mortality rates after the age of 5. However, only female survival was related to the number of successful breeding attempts, with a negative correlation. 5. This enhanced mortality late in life is likely to result from an increased cost of reproduction due to the combined effects of increased competition (higher adult density) and increased investment in reproduction (more young to raise because of reduced nest predation). These results fit predictions from life history theory, where increased effort early in life is predicted to trade with survival late in life. EDWARD GREY INST FIELD ORNITHOL,DEPT ZOOL,OXFORD,ENGLAND ANDERSON DR, 1994, ECOLOGY, V75, P1780, DOI 10.2307/1939637; BULMER MG, 1984, J THEOR BIOL, V106, P529, DOI 10.1016/0022-5193(84)90005-5; Burnham K P, 1987, MONOGRAPH, V5; BURNHAM KP, 1993, BIOMETRICS, V49, P1194, DOI 10.2307/2532261; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CLOBERT J, 1987, ARDEA, V75, P133; CLOBERT J, 1988, J ANIM ECOL, V57, P287, DOI 10.2307/4779; CLOBERT J, 1993, STUDY BIRD POPULATIO, P281; CLOBERT J, 1995, IN PRESS J APPLIED S; CLOBERT J, 1991, BIRD POPULATION STUD, P75; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; CURIO E, 1987, ARDEA, V75, P35; Dhondt A. A., 1971, Gerfaut, V61, P125; DHONDT AA, 1989, IBIS, V131, P268, DOI 10.1111/j.1474-919X.1989.tb02770.x; DHONDT AA, 1985, AUK, V102, P870; DHONDT AA, 1989, WILSON BULL, V101, P198; DHONDT AA, 1977, NATURE, V268, P521, DOI 10.1038/268521a0; DUNN E, 1977, J ANIM ECOL, V46, P633, DOI 10.2307/3835; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; JOHNSON DH, 1986, 13TH P INT BIOM C, P1; KEYFITZ N, 1985, APPLIED MATH DEMOGRA; LACK D, 1954, NATURAL REGULATION A; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEBRETON JD, 1993, TRENDS ECOL EVOL, V8, P91, DOI 10.1016/0169-5347(93)90058-W; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LI PJ, 1991, AUK, V108, P405; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LOERY G, 1987, ECOLOGY, V68, P1038, DOI 10.2307/1938375; Lynch M., 1980, EVOLUTION ECOLOGY ZO, P367; Martin T.E., 1992, Current Ornithology, V9, P163; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McCleery R.H., 1990, NATO ASI Series Series G Ecological Sciences, V24, P423; McCleery R. H., 1991, BIRD POPULATION STUD, P129; MCCULLAGH P, 1983, GENERALIZED LINEAR M; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MINOT EO, 1981, J ANIM ECOL, V50, P375, DOI 10.2307/4061; MINOT EO, 1986, J ANIM ECOL, V55, P331, DOI 10.2307/4712; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; NICHOLS JD, 1992, BIOSCIENCE, V42, P94, DOI 10.2307/1311650; NILSSON SG, 1986, AUK, V103, P432; NILSSON SG, 1984, ORNIS SCAND, V15, P167, DOI 10.2307/3675958; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Perrins C.M., 1977, P181; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1988, REPRODUCTIVE SUCCESS, P136; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Pollock K.H., 1990, WILDLIFE MONOGR, V107, P1; Pradel R., 1990, Ring International Ornithological Bulletin, V13, P193; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; TINBERGEN JM, 1985, ARDEA, V73, P38; WEBBER MI, 1975, THESIS OXFORD; YDENBERG RC, 1984, BEHAV ECOL SOCIOBIOL, V15, P103, DOI 10.1007/BF00299376 59 54 56 0 12 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. JAN 1996 65 1 96 104 10.2307/5703 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology TR130 WOS:A1996TR13000009 2019-02-26 J Thomas, DL; McClintock, JB Thomas, DL; McClintock, JB Aspects of the population dynamics and physiological ecology of the gastropod Physella cubensis (Pulmonata: Physidae) living in a warm-temperate stream and ephemeral pond habitat MALACOLOGIA English Article Physella cubensis; population dynamics; physiological ecology; temperature; food quality FRESH-WATER SNAIL; LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; LYMNAEA-ELODES; GROWTH-RATES; STRATEGIES; FECUNDITY; SELECTION; LEVEL; SIZE Population density, size frequency, and reproduction of the pulmonate gastropod Physella cubensis living in a central Alabama stream and ephemeral pond habitat were assessed over a three-year period from January 1989 through December 1991. These parameters covaried seasonally and from year to year with fluctuating environmental temperature and precipitation. Population dynamics of ephemeral pond snails were also affected by episodic drying events. Physella cubensis is able to survive habitat desiccation in ephemeral pond habitats by burrowing into the hypopheric zone of the sediments. This behavior is displayed only by juvenile snails (1-5 mm shell length). Overwintering in the sediments is restricted to young adult snails (5-8 mm shell length). Food quality and particularly temperature were found to influence growth and survivorship. Optimum temperature for growth and survivorship was 25 degrees C (vs. 15 degrees C and 35 degrees C). Snails raised at 15 degrees C and 25 degrees C exhibited a dramatic shift in the timing of first oviposition (60 vs. 18 days, respectively), but did not differ significantly in body size at first reproduction. Snails raised at 35 degrees C appeared thermally stressed and failed to oviposit. Food quality influenced reproductive output, with only snails fed medium- and high-quality diets producing eggs. Both field and laboratory studies indicate that P. cubensis living in a warm-temperate climate exemplify an opportunistic life history strategy in which such traits as rapid juvenile growth and attainment of maturity, shortened lifespan, high fecundity, and constant reproduction over the duration of the adult lifespan are favored. Thomas, DL (reprint author), UNIV ALABAMA,DEPT BIOL,UAB STN,BIRMINGHAM,AL 35294, USA. BEAMES CG, 1967, P OKLAHOMA ACADEMY S, P12; BEDDINGFIELD SD, 1993, MAR BIOL, V115, P669, DOI 10.1007/BF00349375; BEDDINY E A M, 1977, Bulletin of the Faculty of Science Assiut University, V6, P35; BLANDENIER P, 1989, REV SUISSE ZOOL, V96, P325, DOI 10.5962/bhl.part.117767; BOVBJERG RV, 1968, PHYSIOL ZOOL, V41, P412, DOI 10.1086/physzool.41.4.30155476; BRACKENBURY TD, 1991, J MOLLUS STUD, V57, P461, DOI 10.1093/mollus/57.4.461; BROWN KM, 1989, J N AM BENTHOL SOC, V8, P222, DOI 10.2307/1467325; BROWN KM, 1982, ECOLOGY, V63, P412, DOI 10.2307/1938959; BROWN KM, 1985, EVOLUTION, V39, P387, DOI 10.1111/j.1558-5646.1985.tb05675.x; BROWN KM, 1985, MALACOLOGIA, V26, P191; BROWN KM, 1979, HYDROBIOLOGIA, V65, P165, DOI 10.1007/BF00017422; BROWN KM, 1979, EVOLUTION, V33, P417, DOI 10.1111/j.1558-5646.1979.tb04695.x; BROWN KM, 1983, AM NAT, V121, P871, DOI 10.1086/284109; BROWNE RA, 1978, OECOLOGIA, V37, P23, DOI 10.1007/BF00349988; BROWNE RA, 1978, ECOLOGY, V59, P742, DOI 10.2307/1938778; CALOW P, 1978, MALACOLOGIA, V17, P351; CASWELL H, 1983, AM ZOOL, V23, P35; CLAMPITT P T, 1973, Malacologia, V12, P379; CLAMPITT P T, 1970, Malacologia, V10, P113; CRIDLAND CC, 1957, J TROPICAL MED HYGIE, V57, P287; CROWL TA, 1990, OECOLOGIA, V84, P238, DOI 10.1007/BF00318278; CROWL TA, 1990, OIKOS, V59, P359, DOI 10.2307/3545147; DEWITT RM, 1955, ECOLOGY, V36, P40, DOI 10.2307/1931429; DEWITT ROBERT M., 1954, TRANS AMER MICROSC SOC, V73, P124, DOI 10.2307/3223750; DIAMOND JM, 1982, J FRESHWATER ECOL, V1, P577, DOI 10.1080/02705060.1982.9664079; DUNCAN CJ, 1959, J ANIM ECOL, V28, P97, DOI 10.2307/2017; ECKBLAD J W, 1973, Hydrobiologia, V41, P199, DOI 10.1007/BF00016446; EISENBER.RM, 1966, ECOLOGY, V47, P889, DOI 10.2307/1935637; EISENBERG RM, 1970, ECOLOGY, V51, P680, DOI 10.2307/1934048; GIESEL JT, 1976, ANNU REV ECOL SYST, V7, P57, DOI 10.1146/annurev.es.07.110176.000421; GRAY S, 1987, THESIS FLORIDA STATE; HERNANDEZ S, 1981, Revista de Salud Animal, V3, P69; HORNBACH DJ, 1980, OECOLOGIA, V44, P164, DOI 10.1007/BF00572674; HUNTER RD, 1975, ECOLOGY, V56, P50, DOI 10.2307/1935299; KRKAC N, 1982, MALACOLOGIA, V22, P167; LAM PKS, 1990, J MOLLUS STUD, V56, P17, DOI 10.1093/mollus/56.1.17; LODGE DM, 1985, FRESHWATER BIOL, V15, P695, DOI 10.1111/j.1365-2427.1985.tb00243.x; LODGE DM, 1986, FRESHWATER BIOL, V16, P831, DOI 10.1111/j.1365-2427.1986.tb01020.x; MCGRAW BM, 1970, MALACOLOGIA, V10, P399; MCMAHON RF, 1980, AM MIDL NAT, V103, P218, DOI 10.2307/2424620; MCMAHON RF, 1975, ECOLOGY, V56, P1167, DOI 10.2307/1936156; MCNEIL CW, 1963, ECOLOGY, V44, P187, DOI 10.2307/1933202; PATERSON CG, 1969, CAN J ZOOLOG, V47, P589, DOI 10.1139/z69-102; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; QUIAN PY, 1991, J EXPT MARINE BIOL E, V148, P11; ROLLO CD, 1988, ECOLOGY, V69, P146, DOI 10.2307/1943169; ROSS MJ, 1980, AM MIDL NAT, V103, P209, DOI 10.2307/2424619; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SOKAL R., 1981, BIOMETRY; SPIGHT TM, 1976, ECOLOGY, V57, P1162, DOI 10.2307/1935042; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; THOMAS DL, 1990, INVERTEBR REPROD DEV, V17, P65, DOI 10.1080/07924259.1990.9672089; VANDERSCHALIE H, 1973, R373021 USEPA; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WYNGAARD GA, 1991, FRESHWATER BIOL, V25, P219, DOI 10.1111/j.1365-2427.1991.tb00487.x; Zar J. H, 1974, BIOSTATISTICAL ANAL 56 8 8 0 10 INST MALACOL ANN ARBOR 2415 SOUTH CIRCLE DR, ANN ARBOR, MI 48103 0076-2997 MALACOLOGIA Malacologia 1996 37 2 333 348 16 Zoology Zoology TZ757 WOS:A1996TZ75700002 2019-02-26 J Juanes, F; Hare, JA; Miskiewicz, AG Juanes, F; Hare, JA; Miskiewicz, AG Comparing early life history strategies of Pomatomus saltatrix: A global approach MARINE AND FRESHWATER RESEARCH English Article; Proceedings Paper International Larval Fish Conference 1995 SYDNEY, AUSTRALIA Amer Fisheries Soc, Early Life Hist Sect, Austr Soc Fish Biol THE-YEAR BLUEFISH; CAPE SOUTH COAST; NEW-YORK BIGHT; JUVENILE BLUEFISH; UNITED-STATES; THERAGRA-CHALCOGRAMMA; WESTERN AUSTRALIA; WALLEYE POLLOCK; LEEUWIN CURRENT; ATLANTIC COAST Pomatomus saltatrix (Pisces: Pomatomidae) is a highly migratory, continental-shelf species with a worldwide subtropical distribution including the eastern coast of North America, the Gulf of Mexico, Mediterranean Sea, Black Sea, north-western Africa, the eastern coast of South America, the south-eastern coast of South Africa, and the south-eastern and south-western coasts of Australia. This paper summarizes available life history information from the different regions where P. saltatrix occurs, with a focus on the early life history. The basic physical oceanography of these regions is also reviewed to elucidate patterns in larval transport. Comparison of these populations suggests that there are commonalties: adults migrate to spawning grounds; eggs and larvae are typically advected along-shore to juvenile nursery habitats; juveniles recruit to inshore habitats at a similar size, and there they grow rapidly and are mainly piscivorous, feeding primarily on atherinids and engraulids. There are also a number of life history traits that are quite variable among populations: the number of annual reproductive peaks, the number of juvenile cohorts, adult growth patterns and reproductive parameters. Comparison of these life history patterns leads to several non-exclusive hypotheses as to the adaptive significance of variations in life history traits. The goal is to identify areas where more research is needed to assess the degree to which populations of a global species are adapted to their local environment. NOAA, NATL MARINE FISHERIES SERV, BEAUFORT LAB, BEAUFORT, NC 28516 USA; AWT ENSIGHT, W RYDE, NSW 2114, AUSTRALIA Juanes, F (reprint author), UNIV MASSACHUSETTS, DEPT FORESTRY & WILDLIFE MANAGEMENT, AMHERST, MA 01003 USA. ARIAS AM, 1990, ESTADOS JVUENILES IC; ATKINSON LP, 1985, OCEANOGRAPHY SE US C; ATWOOD NE, 1869, P BOSTON SOC NATURAL, P402; AYRES WO, 1852, P BOSTON SOC NATURAL, P289; AYVAZIAN SG, 1995, MAR BIOL, V122, P527, DOI 10.1007/BF00350675; BADANDANGON A, 1982, CONSEIL INT EXPLORAT, V180, P78; Bade T.M., 1977, THESIS U QUEENSLAND; BAIRD SF, 1873, ANN REP US COMM FISH, P235; Baker RR, 1978, EVOLUTIONARY ECOLOGY; BARGER L E, 1978, Northeast Gulf Science, V2, P145; BARGER LE, 1990, FISH B-NOAA, V88, P805; BECKLEY LE, 1996, MARINE FRESHWATER RE, V47; BENNETT BA, 1989, S AFR J ZOOL, V24, P163; BENNETT BA, 1989, S AFR J MARINE SCI, V8, P43, DOI 10.2989/02577618909504550; BENNETT BA, 1989, ESTUAR COAST SHELF S, V28, P293, DOI 10.1016/0272-7714(89)90019-X; BLABER SJM, 1980, J FISH BIOL, V17, P143, DOI 10.1111/j.1095-8649.1980.tb02749.x; Borcea I., 1929, Ann Sci Univ Jassy, V15, P656; BORCEA I., 1933, ANN SCI UNIV JASSY, V17, P503; Borcea I., 1936, Compte Rendu Acad Sci Roumanie Bucuresti, V1, P222; BOWKER DW, 1995, J FISH BIOL, V46, P469, DOI 10.1111/j.1095-8649.1995.tb05988.x; BRIGGS JC, 1960, COPEIA, V3, P171; BUCKEL JA, 1995, J FISH BIOL, V47, P696, DOI 10.1111/j.1095-8649.1995.tb01935.x; Buckel JA, 1996, T AM FISH SOC, V125, P591, DOI 10.1577/1548-8659(1996)125<0591:GEROPY>2.3.CO;2; Bumpus D. F, 1973, PROGR OCEANOGR, V6, P111, DOI DOI 10.1016/0079-6611(73)90006-2; CARLSON HR, 1995, FISH B-NOAA, V93, P386; Cervigon F., 1966, PECES MARINOS VENEZU; CHAMPAGNAT C, 1983, PECHE BIOL DYNAMIQUE; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; CHEW F, 1962, LIMNOL OCEANOGR, V7, P252, DOI 10.4319/lo.1962.7.2.0252; CHIARELLA LA, 1990, T AM FISH SOC, V119, P455, DOI 10.1577/1548-8659(1990)119<0455:SSAFGO>2.3.CO;2; COETZEE PS, 1981, S AFR J WILDL RES, V11, P14; COLLINS MR, 1987, B MAR SCI, V41, P822; Conand C., 1976, Bulletin Inst fond Mr noire (Sci nat), V38, P898; Conand C., 1975, Bulletin Inst fond Mr noire (Sci nat), V37, P395; CONAND F, 1973, Bulletin de l'Institut Fondamental d'Afrique Noire Serie A Sciences Naturelles, V35, P951; CREASER EP, 1994, FISH B-NOAA, V92, P494; CURY P, 1989, CAN J FISH AQUAT SCI, V46, P670, DOI 10.1139/f89-086; CZAPLA TC, 1991, 7 ELMR NOAANOS STAT; Day J. W., 1989, ESTUARINE ECOLOGY; DESYLVA DP, 1962, U DEAWARE MARINE LAB, V5; DEUEL DG, 1966, T AM FISH SOC, V95, P264, DOI 10.1577/1548-8659(1966)95[264:DOEAEL]2.0.CO;2; DINNEL SP, 1986, CONT SHELF RES, V6, P765, DOI 10.1016/0278-4343(86)90036-1; DITTY JG, 1995, B MAR SCI, V56, P592; EPIFANIO CE, 1989, MAR ECOL PROG SER, V54, P35, DOI 10.3354/meps054035; ERZINI K, 1994, J APPL ICHTHYOL, V10, P17, DOI 10.1111/j.1439-0426.1994.tb00140.x; FIEDLER P C, 1986, California Cooperative Oceanic Fisheries Investigations Reports, V27, P144; FINUCANE J H, 1980, Northeast Gulf Science, V4, P57; FISHER A, 1972, J GEOPHYS RES, V77, P3248, DOI 10.1029/JC077i018p03248; FONT J, 1990, MAR GEOL, V95, P165, DOI 10.1016/0025-3227(90)90114-Y; FORD WL, 1952, J MAR RES, V11, P281; FOWLER HW, 1954, B I CIENCIAS NATURAL, V6, P43; FRIEDLAND KD, 1988, T AM FISH SOC, V117, P474, DOI 10.1577/1548-8659(1988)117<0474:IVIDAC>2.3.CO;2; GOBERNA E, 1987, PUBLICACIONES COMISI, V3, P93; Goodbred CO, 1996, MAR FRESHWATER RES, V47, P347, DOI 10.1071/MF9960347; Gordina AD, 1996, MAR FRESHWATER RES, V47, P315, DOI 10.1071/MF9960315; GRANT GEORGE C., 1962, CHESAPEAKE SCI, V3, P45, DOI 10.2307/1350413; Haedrich R.L., 1983, P183; Haimovici M, 1996, MAR FRESHWATER RES, V47, P357, DOI 10.1071/MF9960357; Haimovici Manuel, 1992, Revista Brasileira de Biologia, V52, P503; HALLIWELL GR, 1979, J GEOPHYS RES-OCEANS, V84, P7707, DOI 10.1029/JC084iC12p07707; HAMER PE, 1959, THESIS RUTGERS U NEW; HAMILTON LJ, 1992, AUST J MAR FRESH RES, V43, P793; HAMILTON P, 1992, J GEOPHYS RES-OCEANS, V97, P2185, DOI 10.1029/91JC01496; HANSEN JE, 1988, PUBLICACIONES COMISI, V4, P67; Harden Jones F, 1968, FISH MIGRATION; HARE JA, 1993, MAR ECOL PROG SER, V98, P1, DOI 10.3354/meps098001; HARE JA, 1995, CAN J FISH AQUAT SCI, V52, P1909, DOI 10.1139/f95-783; HARE JA, 1994, MAR BIOL, V118, P541, DOI 10.1007/BF00347500; HARE JA, 1996, IN PRESS LIMNOLOGY O; HOLLIDAY MC, 1986, MARINE RECREATIONAL; Ivanov L., 1985, STUD REV GEN FISH CO, V60, P1; JEFFERTS K, 1986, N PAC WORKSH STOCK A, P34; Juanes F, 1995, MAR ECOL PROG SER, V128, P287, DOI 10.3354/meps128287; JUANES F, 1994, CAN J FISH AQUAT SCI, V51, P1752, DOI 10.1139/f94-176; JUANES F, 1993, T AM FISH SOC, V122, P348, DOI 10.1577/1548-8659(1993)122<0348:PBABOA>2.3.CO;2; JUANES F, 1994, J FISH BIOL, V45, P41, DOI 10.1111/j.1095-8649.1994.tb01083.x; JUANES F, 1994, MAR ECOL PROG SER, V114, P59, DOI 10.3354/meps114059; KEDIDI MS, 1975, CONTRIBUTION ETUDE M; KENDALL AW, 1981, FISH B-NOAA, V79, P705; KENDALL AW, 1992, FISH B-NOAA, V90, P129; KENDALL AW, 1979, FISH B-NOAA, V77, P213; Kocatas A., 1993, STUDIES REV GEN FISH, V64, P87; KOLAROV P, 1964, B I PISCICULTURE PEC, V4, P207; Krug L C, 1989, ATLANTICA, V11, P47; KRUG LC, 1991, ATLANTICA, V13, P119; Ktari M. H, 1977, Bulletin Inst natn scient tech Oceanogr Peche Salammbo, V4, P307; Lassiter R. R., 1962, THESIS N CAROLINA ST; LEGALL J, 1934, REV TRAV I PECHES, V7, P27; LEGECKIS R, 1982, DEEP-SEA RES, V29, P375, DOI 10.1016/0198-0149(82)90101-7; Leis JM, 1996, MAR FRESHWATER RES, V47, P401, DOI 10.1071/MF9960401; Lenanton RC, 1996, MAR FRESHWATER RES, V47, P337, DOI 10.1071/MF9960337; LENANTON RCJ, 1987, ESTUARIES, V10, P28, DOI 10.2307/1352022; LENANTON RCJ, 1977, FISHERIES RES B W AU, V19, P1; LUND WA, 1970, T AM FISH SOC, V99, P719, DOI 10.1577/1548-8659(1970)99<719:MAMOTB>2.0.CO;2; LUND WILLIAM ALBERT, 1961, BOL INST OCEANOGR, V1, P73; LUTJEHARMS JRE, 1981, S AFR J SCI, V77, P231; MALCHOFF MH, 1993, THESIS BARD COLLEGE; MARAIS JFK, 1984, S AFR J ZOOL, V19, P210; MARKS RE, 1993, FISH B-NOAA, V91, P97; MCBRIDE RS, 1995, T AM FISH SOC, V124, P898, DOI 10.1577/1548-8659(1995)124<0898:CVIASG>2.3.CO;2; MCBRIDE RS, 1991, MAR ECOL PROG SER, V78, P205, DOI 10.3354/meps078205; MCBRIDE RS, 1993, FISH B-NOAA, V91, P389; MCBRIDE RS, 1989, THESIS STATE U NEW Y; McDERMOTT J. J., 1983, SANDY BEACHES ECOSYS, P529; Miskiewicz AG, 1996, MAR FRESHWATER RES, V47, P331, DOI 10.1071/MF9960331; Mittelstaedt E., 1982, RAPP P V REUN CONS I, V180, P50; MORTON RM, 1993, AUST J MAR FRESH RES, V44, P811; Muelbert JH, 1996, MAR FRESHWATER RES, V47, P311, DOI 10.1071/MF9960311; MULHEARN PJ, 1987, J PHYS OCEANOGR, V17, P1148, DOI 10.1175/1520-0485(1987)017<1148:TTFASU>2.0.CO;2; MULHEARN PJ, 1988, J GEOPHYS RES-OCEANS, V93, P13925, DOI 10.1029/JC093iC11p13925; Naughton S. P., 1984, NMFSSEFC150 NOAA, VNMFS-SEFC-150; NELSON DM, 1992, 10 ELMR NOAA NOS STR; NILSSON C S, 1980, Progress in Oceanography, V9, P133, DOI 10.1016/0079-6611(80)90008-7; NINNI E, 1932, ATT SOC IT SCI NAT M, V71, P210; NION H, 1991, ATLANTICA, V13, P201; NORCROSS JJ, 1974, T AM FISH SOC, V103, P477, DOI 10.1577/1548-8659(1974)103<477:DOYBPS>2.0.CO;2; NYMAN RM, 1988, FISH B-NOAA, V86, P237; OKUTANI T, 1983, CEPHALOPOD LIFE CYCL, V1, P201; OLIVER JD, 1989, EL824 TR US ARM CORP; OLSON DB, 1988, DEEP-SEA RES, V35, P1971, DOI 10.1016/0198-0149(88)90120-3; OVEN LS, 1957, P KARADAG BIOL STAT, V14, P155; Parrish R.H., 1981, Biological Oceanography, V1, P175; PEARCE AF, 1991, J GEOPHYS RES-OCEANS, V96, P16739, DOI 10.1029/91JC01712; PERIER MR, 1995, THESIS U NACIONAL PL; PIETRAFESA LJ, 1989, 892 NOAA NAT UND, P89; Pollock B. R, 1984, P ROYAL SOC QUEENSLA, V95, P23; Porumb I. I., 1968, Rapp P-v Rein Commn int Explor scient Mer Mediterr, V19, P303; PORUMB II, 1959, CONTRIBUTION CONNAIS, P511; PORUMB II, 1971, I ROMAN CERCETARI MA, V2, P75; POTTERN GB, 1989, EL824 TR US ARM CORP; POWLES H, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P207; PROVOST C, 1992, J GEOPHYS RES-OCEANS, V97, P17841, DOI 10.1029/92JC01693; REGO AA, 1982, CIEN IA CULTURA SAO, V35, P1329; RICHARDS SW, 1976, T AM FISH SOC, V105, P523, DOI 10.1577/1548-8659(1976)105<523:AGAFOB>2.0.CO;2; ROFF DA, 1991, NETH J SEA RES, V27, P197, DOI 10.1016/0077-7579(91)90024-U; Roff Derek A., 1992; SABATES A, 1990, MAR ECOL PROG SER, V59, P75, DOI 10.3354/meps059075; SABATES A, 1993, J FISH BIOL, V42, P109; SALAT J, 1992, J GEOPHYS RES-OCEANS, V97, P7277, DOI 10.1029/92JC00588; SALEKHOVA LP, 1959, P SEV BIOL STAT 10, P182; SAMBA A, 1991, PECHERIES OUEST AFRI, P307; SANTOS RS, 1995, ESTUAR COAST SHELF S, V41, P579, DOI 10.1016/0272-7714(95)90028-4; SCHUMANN EH, 1987, T ROY SOC S AFR, V46, P215, DOI 10.1080/00359198709520125; Schumann EH, 1988, COASTAL OCEAN STUDIE, P101; SHAW RF, 1985, T AM FISH SOC, V114, P452, DOI 10.1577/1548-8659(1985)114<452:TOLGMB>2.0.CO;2; SHIMA M, 1989, THESIS STATE U NEW Y; SMALE M J, 1986, Journal of Zoology Series B, V1, P357; SMALE MJ, 1983, S AFR J ZOOL, V18, P337; SMALE MJ, 1984, S AFR J ZOOL, V19, P170; SMITH W, 1994, B MAR SCI, V54, P8; Sorokin Yu.I., 1983, P253; SPARTA A, 1963, B PESCA PISCICOLTURA, V17, P5; STOBUTZKI IC, 1994, J EXP MAR BIOL ECOL, V175, P275, DOI 10.1016/0022-0981(94)90031-0; Stommel H., 1965, GULF STREAM; TERCEIRO M, 1993, FISH B-NOAA, V91, P534; THOMSON J. M., 1959, AUSTRALIAN JOUR MARINE AND FRESHWATER RES, V10, P365; THOMSON JM, 1957, W AUSTR MARINE RES L, V7, P1; THOMSON JM, 1957, W AUSTR MARINE RES L, V8; TOLMAZIN D, 1985, PROG OCEANOGR, V15, P217, DOI 10.1016/0079-6611(85)90038-2; Tortonese E., 1954, Rapp Comm Int Mer Medit, V12, P113; TORTONESE E, 1984, FISHES NE ATLANTIC M, V2, P812; TURGAN G, 1959, INT COMMISSION SCI E, V15, P409; van der Elst RP, 1976, 44 OC RES I; VUKOVICH FM, 1979, J GEOPHYS RES-OCEANS, V84, P7749, DOI 10.1029/JC084iC12p07749; WALLACE JH, 1984, S AFR J ZOOL, V19, P164; WANG DP, 1988, J MAR RES, V46, P321, DOI 10.1357/002224088785113586; WARLEN SM, 1994, FISH B-NOAA, V92, P420; Wilk S.J., 1977, 11 NAT MAR FISH SERV, V11; WILLIAMS CD, 1990, 7 ELMR NOAA NOS STRA; WISEMAN WJ, 1994, ESTUARIES, V17, P732, DOI 10.2307/1352743; ZAITSEV Yu. P., 1964, NAUK ZAP ODES KOYI BIOL STA AKAD NAUK UKR SSR, V5, P100; Zeller BM, 1996, MAR FRESHWATER RES, V47, P323, DOI 10.1071/MF9960323; 1993, NOAA TECHNICAL MEMOR; 1988, NMFSFNEC63 US DEP CO; 1981, ECOLOGY FISH BOTANY 175 60 62 0 10 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 1323-1650 1448-6059 MAR FRESHWATER RES Mar. Freshw. Res. 1996 47 2 365 379 10.1071/MF9960365 15 Fisheries; Limnology; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography VD749 WOS:A1996VD74900035 2019-02-26 J Verity, PG; Smetacek, V Verity, PG; Smetacek, V Organism life cycles, predation, and the structure of marine pelagic ecosystems MARINE ECOLOGY PROGRESS SERIES English Review morphology; life history; plankton; pelagic; top-down; trophic cascade; predation; ecosystem structure; bottom-up DIEL VERTICAL MIGRATION; ZOOPLANKTON-PHYTOPLANKTON INTERACTIONS; TROPHIC INTERACTIONS; COMMUNITY STRUCTURE; NARRAGANSETT BAY; BOTTOM-UP; TOP-DOWN; HERBIVOROUS ZOOPLANKTON; PLANKTIVOROUS FISH; CALANOID COPEPODS This paper explores the notion that the theoretical basis for contemporary research concerning the structure and function of marine pelagic ecosystems is self-limiting. While some findings such as the microbial food web have extended our knowledge of the biological components of the upper water column and their relationships to fluxes of materials and energy, they have not advanced our understanding of why specific pelagic forms occur in time and space, and why only some attain dominant status and contribute the bulk of biogenic fluxes emanating from the mixed layer. It is argued here that a major impediment to improved conceptual models is the historic focus on resource-driven or 'bottom-up' factors as being the dominant variables structuring planktonic ecosystems. Evidence is presented that predation or 'top-down' trophic effects may be equally important in specifying the occurrence of particular taxa, the biomass within adjacent trophic levels, and the morphology of dominant herbivores and carnivores. It is suggested that key species, because of unique combinations of life history strategies, metabolic demands, and physiological performance, may exert a dominant role in the extent to which predatory interactions cascade through pelagic food webs. There is considerable evidence of evolution of predation avoidance strategies among phytoplankton and zooplankton. It is proposed that future research might profitably be directed toward the question of how the pelagic environment selects for life histories and morphologies of organisms under conditions when resource availability and predation are both significant structural buttresses. Methodological approaches should include detailed studies of dominant key taxa from different environments, with the goal of identifying the critical aspects of life history, behavior, or morphology which account for their success. ALFRED WEGENER INST POLAR & MARINE RES, D-27570 BREMERHAVEN, GERMANY Verity, PG (reprint author), SKIDAWAY INST OCEANOG, 10 OCEAN SCI CIRCLE, SAVANNAH, GA 31411 USA. ABRAHAMS MV, 1993, ECOLOGY, V74, P258, DOI 10.2307/1939521; AEBISCHER NJ, 1990, NATURE, V347, P753, DOI 10.1038/347753a0; AKSNES DL, 1993, ECOL MODEL, V67, P233, DOI 10.1016/0304-3800(93)90007-F; ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; ARENOVSKI AL, 1994, WHOI9422 MASS I TECH; BAIRD D, 1989, ECOL MONOGR, V59, P329, DOI 10.2307/1943071; BANSE K, 1990, BROCK SPR S, P556; BANSE K, 1994, OCEANOGRAPHY, V7, P13, DOI DOI 10.5670/OCEANOG.1994.10; BARKER GLA, 1994, SARSIA, V79, P301, DOI 10.1080/00364827.1994.10413562; BATHMANN U, 1994, BER POLARFORSCH, V135, P235; BAUMANN MEM, 1994, J MARINE SYST, V5, P5, DOI 10.1016/0924-7963(94)90013-2; BAUMOL WJ, 1984, AM ECON, V28, P5; BERGE GRIM, 1962, SARSIA, V6, P27; BOLLENS SM, 1994, J PLANKTON RES, V16, P555, DOI 10.1093/plankt/16.5.555; BOLLENS SM, 1989, J PLANKTON RES, V11, P1047, DOI 10.1093/plankt/11.5.1047; BOND WJ, 1993, ECOL STU AN, V99, P237; Bone Q., 1978, FISH PHYSIOL, P361; BRATBAK G, 1993, MAR ECOL PROG SER, V93, P39, DOI 10.3354/meps093039; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; BROWN CW, 1994, J GEOPHYS RES-OCEANS, V99, P7467, DOI 10.1029/93JC02156; BUCKLIN A, 1995, MAR BIOL, V121, P655, DOI 10.1007/BF00349301; Buhler H., 1930, Zeitschrift fuer Morphologie und Oekologie der Tiere Berlin, V19, P59, DOI 10.1007/BF00412290; BUNDY MH, 1993, MAR ECOL PROG SER, V102, P1, DOI 10.3354/meps102001; BURCKLE LH, 1987, MICROPALEONTOLOGY, V33, P82, DOI 10.2307/1485529; BUSKEY EJ, 1986, J EXP MAR BIOL ECOL, V103, P65, DOI 10.1016/0022-0981(86)90132-2; BUTLER NM, 1989, OECOLOGIA, V78, P368, DOI 10.1007/BF00379111; CARIOU V, 1994, J PLANKTON RES, V16, P457, DOI 10.1093/plankt/16.5.457; CARMICHAEL WW, 1986, ADV BOT RES, V12, P47, DOI 10.1016/S0065-2296(08)60193-7; CARPENTER SR, 1987, ECOLOGY, V68, P1863, DOI 10.2307/1939878; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; CONFER JL, 1975, LIMNOL OCEANOGR, V20, P571, DOI 10.4319/lo.1975.20.4.0571; COUGHLIN DJ, 1990, ENVIRON BIOL FISH, V29, P35, DOI 10.1007/BF00000566; COWLES TJ, 1988, MAR BIOL, V100, P41, DOI 10.1007/BF00392953; Cushing D. H., 1975, MARINE ECOLOGY FISHE; DAWKINS R, 1987, BLIND WATCHMAKER; DEASON EE, 1982, J PLANKTON RES, V4, P203, DOI 10.1093/plankt/4.2.203; DEASON EE, 1982, J PLANKTON RES, V4, P219, DOI 10.1093/plankt/4.2.219; DENMAN KL, 1984, OCEANOGR MAR BIOL, V22, P125; DODSON S, 1988, LIMNOL OCEANOGR, V33, P1431, DOI 10.4319/lo.1988.33.6_part_2.1431; DODSON SI, 1989, OECOLOGIA, V78, P361, DOI 10.1007/BF00379110; DOLAN JR, 1991, MAR ECOL PROG SER, V77, P147, DOI 10.3354/meps077147; DRENNER RW, 1978, J FISH RES BOARD CAN, V35, P1370, DOI 10.1139/f78-215; Driedzic W. R, 1978, FISH PHYSIOL, V7, P503; DWYER RL, 1983, AM NAT, V121, P305, DOI 10.1086/284063; EHRLICH PR, 1964, EVOLUTION, V18, P586, DOI 10.2307/2406212; EMILIANI C, 1993, NATURE, V366, P217, DOI 10.1038/366217a0; FAULKNER DJ, 1984, NAT PROD REP, V1, P251, DOI 10.1039/np9840100251; FROST BW, 1991, LIMNOL OCEANOGR, V36, P1616, DOI 10.4319/lo.1991.36.8.1616; FULTON RS, 1987, J PLANKTON RES, V9, P837, DOI 10.1093/plankt/9.5.837; GAMBLE JC, 1977, B MAR SCI, V27, P146; GIFFORD DJ, 1981, LIMNOL OCEANOGR, V26, P1057, DOI 10.4319/lo.1981.26.6.1057; GILL CW, 1985, MAR ECOL PROG SER, V21, P221, DOI 10.3354/meps021221; GLIWICZ MZ, 1986, NATURE, V320, P746, DOI 10.1038/320746a0; GREENE CH, 1985, ECOLOGY, V66, P1408, DOI 10.2307/1938003; GREENE CH, 1985, J PLANKTON RES, V7, P35, DOI 10.1093/plankt/7.1.35; GREVE W, 1980, ESTUARINE PERSPECTIV, P405; Hairston N.G. Jr, 1987, P281; HAIRSTON NG, 1960, AM NAT, V94, P421, DOI 10.1086/282146; HAIRSTON NG, 1993, AM NAT, V142, P379, DOI 10.1086/285546; HAMBRIGHT KD, 1991, ARCH HYDROBIOL, V121, P389; HANSEN B, 1994, J PLANKTON RES, V16, P487, DOI 10.1093/plankt/16.5.487; HANSEN FC, 1993, MAR ECOL PROG SER, V102, P51, DOI 10.3354/meps102051; HARDY AC, 1956, OPEN SEA ITS NATUR 1; HARGRAVE BT, 1970, J FISH RES BOARD CAN, V27, P1395, DOI 10.1139/f70-165; HAURY L R, 1980, Journal of Plankton Research, V2, P187, DOI 10.1093/plankt/2.3.187; Havel J.E., 1987, P263; HAYS GC, 1994, LIMNOL OCEANOGR, V39, P1621, DOI 10.4319/lo.1994.39.7.1621; HERTZ PE, 1988, AM ZOOL, V28, P927; HESSEN DO, 1993, ARCH HYDROBIOL, V127, P129; HOBSON ES, 1976, FISH B-NOAA, V74, P567; HORN MH, 1972, FISH B-NOAA, V70, P1295; HORSTED SJ, 1988, MAR ECOL PROG SER, V48, P217, DOI 10.3354/meps048217; HRBACEK J, 1962, ROZPRAVY CESKOSLOVEN, V72, P1; HUNTER MD, 1992, ECOLOGY, V73, P724; HUNTLEY M, 1986, MAR ECOL PROG SER, V28, P105, DOI 10.3354/meps028105; HUNTLEY M, 1984, AM NAT, V124, P455, DOI 10.1086/284288; HUNTLEY ME, 1994, MAR ECOL PROG SER, V107, P23, DOI 10.3354/meps107023; HUNTLEY ME, 1992, AM NAT, V140, P201, DOI 10.1086/285410; HUNTLEY ME, 1978, J FISH RES BOARD CAN, V35, P257, DOI 10.1139/f78-042; IKEDA T, 1982, J EXP MAR BIOL ECOL, V62, P143, DOI 10.1016/0022-0981(82)90088-0; JUNGMANN D, 1991, INT REV GES HYDROBIO, V76, P47, DOI 10.1002/iroh.19910760106; JURGENS K, 1994, MAR ECOL PROG SER, V112, P169, DOI 10.3354/meps112169; JURGENS K, 1994, MARINE MICROBIAL FOOD WEBS, 1994, VOL 8, NO 1 AND 2, P295; KASHKIN N. I., 1963, OKEANOLOGIYA, V3, P697; Kerfoot WC, 1987, PREDATION DIRECT IND; KIDEYS AE, 1994, J MARINE SYST, V5, P171, DOI 10.1016/0924-7963(94)90030-2; KILS U, 1990, EOS, V71, P94; KIORBOE T, 1993, ADV MAR BIOL, V29, P1, DOI 10.1016/S0065-2881(08)60129-7; KIORBOE T, 1991, B PLANKTON SOC JAPAN, V229; Kitchell J.F., 1987, P132; KLEPPEL GS, 1993, MAR ECOL PROG SER, V99, P183, DOI 10.3354/meps099183; KNOX GA, 1994, BIOL SO OCEAN; KONCHINA YV, 1991, 1991 INT S BENG TROP, P74; KORNMANN P, 1955, HELGOLANDER WISS MEE, V5, P218; KOSLOW JA, 1983, CAN J FISH AQUAT SCI, V40, P1912, DOI 10.1139/f83-222; KUHLMANN HW, 1985, SCIENCE, V227, P1347, DOI 10.1126/science.227.4692.1347; LAMPERT W, 1994, LIMNOL OCEANOGR, V39, P1543, DOI 10.4319/lo.1994.39.7.1543; Lampert W., 1987, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V45, P143; LANDRY MR, 1978, INT REV GES HYDROBIO, V63, P77, DOI 10.1002/iroh.19780630106; LANDRY MR, 1977, HELGOLAND WISS MEER, V30, P8, DOI 10.1007/BF02207821; LEDFORDHOFFMAN PA, 1986, GEOCHIM COSMOCHIM AC, V50, P2099, DOI 10.1016/0016-7037(86)90263-2; LEHMAN JT, 1988, LIMNOL OCEANOGR, V33, P931, DOI 10.4319/lo.1988.33.4_part_2.0931; LENZ J, 1993, DEEP-SEA RES PT II, V40, P559, DOI 10.1016/0967-0645(93)90032-I; Lenz J., 1992, ARCH HYDROBIOL S, V37, P265; LEWIS WM, 1986, AM NAT, V127, P184, DOI 10.1086/284477; LINDAHL O, 1983, MAR ECOL PROG SER, V10, P119, DOI 10.3354/meps010119; LISS PS, 1994, J MARINE SYST, V5, P41, DOI 10.1016/0924-7963(94)90015-9; LONGHURST AR, 1991, LIMNOL OCEANOGR, V36, P1507, DOI 10.4319/lo.1991.36.8.1507; LONGHURST AR, 1989, PROG OCEANOGR, V22, P47, DOI 10.1016/0079-6611(89)90010-4; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; MACHACEK J, 1993, LIMNOL OCEANOGR, V38, P1544, DOI 10.4319/lo.1993.38.7.1544; MACKENZIE BR, 1991, MAR ECOL PROG SER, V73, P149, DOI 10.3354/meps073149; MALEJ A, 1993, MAR ECOL PROG SER, V96, P33, DOI 10.3354/meps096033; MARGALEF R, 1978, OCEANOL ACTA, V1, P493; MARSCHALL HP, 1988, POLAR BIOL, V9, P129, DOI 10.1007/BF00442041; MCCAULEY E, 1979, LIMNOL OCEANOGR, V24, P243, DOI 10.4319/lo.1979.24.2.0243; MCCOMAS SR, 1982, CAN J FISH AQUAT SCI, V39, P815, DOI 10.1139/f82-111; MCLAREN BE, 1994, SCIENCE, V266, P1555, DOI 10.1126/science.266.5190.1555; MCQUEEN DJ, 1986, CAN J FISH AQUAT SCI, V43, P1571, DOI 10.1139/f86-195; MCQUEEN DJ, 1989, ECOL MONOGR, V59, P289, DOI 10.2307/1942603; MEDLIN LK, 1994, PHYCOLOGIA, V33, P199, DOI 10.2216/i0031-8884-33-3-199.1; MENGE BA, 1994, ECOL MONOGR, V64, P249, DOI 10.2307/2937163; MOLLER H, 1979, MEERESFORSCHUNG, V27, P1; Mullin M. M., 1969, Oceanography and Marine Biology, V7, P293; NIELSEN TG, 1991, LIMNOL OCEANOGR, V36, P1091, DOI 10.4319/lo.1991.36.6.1091; OHMAN MD, 1983, SCIENCE, V220, P1404, DOI 10.1126/science.220.4604.1404; OHMAN MD, 1990, ECOL MONOGR, V60, P257, DOI 10.2307/1943058; PAFFENHOFER GA, 1990, J PLANKTON RES, V12, P933, DOI 10.1093/plankt/12.5.933; PAFFENHOFER GA, 1988, B MAR SCI, V43, P430; PERSSON L, 1992, AM NAT, V140, P59, DOI 10.1086/285403; PIERCE RW, 1992, REV AQUAT SCI, V6, P139; PILSON MEQ, 1985, ESTUARIES, V8, P2, DOI 10.2307/1352116; PIMM SL, 1992, NATURE, V360, P298, DOI 10.1038/360298a0; POMEROY LR, 1974, BIOSCIENCE, V24, P542; POULET SA, 1994, MAR ECOL PROG SER, V111, P79, DOI 10.3354/meps111079; Powell T.M., 1989, P157; POWER ME, 1992, ECOLOGY, V73, P733, DOI 10.2307/1940153; PURCELL JE, 1994, LIMNOL OCEANOGR, V39, P263, DOI 10.4319/lo.1994.39.2.0263; PUTT M, 1990, DEEP-SEA RES, V37, P1713, DOI 10.1016/0198-0149(90)90073-5; RAMCHARAN CW, 1992, CAN J FISH AQUAT SCI, V49, P159, DOI 10.1139/f92-019; RIEMANN B, 1990, MAR ECOL-PROG SER, V65, P169; ROFF JC, 1988, J MAR BIOL ASSOC UK, V68, P143, DOI 10.1017/S0025315400050153; ROTH JC, 1968, LIMNOL OCEANOGR, V13, P242, DOI 10.4319/lo.1968.13.2.0242; ROUSSEAU V, 1994, J MARINE SYST, V5, P23, DOI 10.1016/0924-7963(94)90014-0; RUDSTAM LG, 1994, ANA, V10, P105; RUNGE JA, 1987, MAR BIOL, V94, P329, DOI 10.1007/BF00428238; SANDERS RW, 1991, J PROTOZOOL, V38, P76, DOI 10.1111/j.1550-7408.1991.tb04805.x; SCHELSKE CL, 1994, CAN J FISH AQUAT SCI, V51, P2147; SCHULTZ JC, 1988, ECOLOGY, V69, P896, DOI 10.2307/1941239; SIERACKI ME, 1993, DEEP-SEA RES PT II, V40, P213, DOI 10.1016/0967-0645(93)90014-E; SIGNOR PW, 1994, PALEOBIOLOGY, V20, P297; Sih A., 1987, P203; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; Singarajah K. V., 1969, Journal of Experimental Marine Biology and Ecology, V3, P171, DOI 10.1016/0022-0981(69)90015-X; Smetacek V., 1990, P103; SMETACEK V, 1985, ESTUARIES, V8, P145, DOI 10.2307/1351864; Smith F.E., 1969, EUTROPHICATION CAUSE, P631; Smith S.L., 1990, P527; SMITH WO, 1991, NATURE, V352, P514, DOI 10.1038/352514a0; Steele J.H., 1974, STRUCTURE MARINE ECO; STEELE JH, 1991, J THEOR BIOL, V153, P425, DOI 10.1016/S0022-5193(05)80579-X; STEELE JH, 1991, BIOSCIENCE, V41, P470, DOI 10.2307/1311804; STEFELS J, 1993, MAR ECOL PROG SER, V97, P11, DOI 10.3354/meps097011; STEINBERG DK, 1994, LIMNOL OCEANOGR, V39, P1606, DOI 10.4319/lo.1994.39.7.1606; Stemberger R.S., 1987, P227; STOECKER DK, 1989, MAR ECOL PROG SER, V50, P241, DOI 10.3354/meps050241; STOECKER DK, 1985, MAR ECOL PROG SER, V25, P159, DOI 10.3354/meps025159; STRICKLER JR, 1975, SWIMMING FLYING NATU, V2, P599; Strong D. R., 1984, INSECTS PLANTS; STRONG DR, 1992, ECOLOGY, V73, P747, DOI 10.2307/1940154; TANIGUCHI A, 1988, Marine Microbial Food Webs, V3, P21; TOLLRIAN R, 1993, J PLANKTON RES, V15, P1309, DOI 10.1093/plankt/15.11.1309; TRAGER G, 1994, MAR BIOL, V120, P251, DOI 10.1007/BF00349685; TREGUER P, 1995, SCIENCE, V268, P375, DOI 10.1126/science.268.5209.375; TURNER JT, 1991, REV AQUAT SCI, V5, P101; Valiela I., 1984, MARINE ECOLOGICAL PR; VANALSTYNE KL, 1986, MAR ECOL PROG SER, V34, P187, DOI 10.3354/meps034187; VERITY PG, 1982, MAR BIOL, V72, P79, DOI 10.1007/BF00393951; VERITY PG, 1991, J PROTOZOOL, V38, P69, DOI 10.1111/j.1550-7408.1991.tb04804.x; VERITY PG, 1986, ARCH PROTISTENKD, V131, P71, DOI 10.1016/S0003-9365(86)80064-1; VERITY PG, 1993, DEEP-SEA RES PT I, V40, P1793, DOI 10.1016/0967-0637(93)90033-Y; VERITY PG, 1988, J PLANKTON RES, V10, P749, DOI 10.1093/plankt/10.4.749; VERITY PG, 1987, 127 CHES RES CONS PU, P35; VERMEIJ GJ, 1994, ANNU REV ECOL SYST, V25, P219, DOI 10.1146/annurev.es.25.110194.001251; VINYARD GL, 1982, CAN J FISH AQUAT SCI, V39, P208, DOI 10.1139/f82-025; WALSH JJ, 1977, SEA, V6, P923; WASSMANN P, 1994, J MARINE SYST, V5, P81, DOI 10.1016/0924-7963(94)90018-3; WERNER EE, 1988, ECOLOGY, V69, P1352, DOI 10.2307/1941633; WHITE HH, 1979, J EXP MAR BIOL ECOL, V36, P217, DOI 10.1016/0022-0981(79)90117-5; Yen J., 1992, Advances in Limnology, V36, P123; Zaret T. M., 1980, PREDATION FRESHWATER; ZARET TM, 1976, LIMNOL OCEANOGR, V21, P804, DOI 10.4319/lo.1976.21.6.0804; 1989, MAR ECOL-PROG SER, V55, P197; 1994, CMICES 1994L REP WOR, P10 194 421 432 5 185 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. JAN 1996 130 1-3 277 293 10.3354/meps130277 17 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography TW295 WOS:A1996TW29500025 Bronze 2019-02-26 S Purvis, A; Harvey, PH Miller, PJ Purvis, A; Harvey, PH Miniature mammals: Life-history strategies and macroevolution MINIATURE VERTEBRATES: THE IMPLICATIONS OF SMALL BODY SIZE SYMPOSIA OF THE ZOOLOGICAL SOCIETY OF LONDON English Proceedings Paper Symposium on Miniature Vertebrates - the Implications of Small Body Size NOV 11-12, 1994 ZOOL SOC LONDON, LONDON, ENGLAND Zool Soc London ZOOL SOC LONDON Most mammal species are smaller than 60 g. The smallest species are mainly shrews, myomorph rodents, and insectivorous bats. A bias in data availability has led most previous work on patterns of mammal life-history evolution to focus on unusually large species. We review the major findings of such comparative studies, beginning with allometries of key variables and moving on to patterns of correlations among residuals. Every date, weight, and rate scales tightly with adult size across mammal species: small mammals tend to live faster and die younger than large species. This fast-slow continuum is also apparent when body size is factored out. We discuss two very different optimality models, one aiming to understand the driving forces behind life-history variation, the other trying to explain the macroevolutionary pattern of body size among species. Our comparative analysis finds that, among small mammals, most of the variation in life histories is independent of body size, but that correlations among residuals are broadly similar to those in mammals as a whole: the slow-fast continuum is still present. The size independence of the variation shows that quite radical life-history changes are possible without any change in body size being necessary: mammals are not tightly constrained by allometry. Interestingly, mammals that are smaller than their relatives have relatively small litters of large offspring. Our findings lend at best qualified support to the models we discuss. Purvis, A (reprint author), UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED,DEPT BIOL,SILWOOD PK,ASCOT SL5 7PY,BERKS,ENGLAND. Purvis, Andy/A-7529-2008 Purvis, Andy/0000-0002-8609-6204 0 7 7 0 5 OXFORD UNIVERSITY PRESS OXFORD WALTON ST, OXFORD, ENGLAND OX2 6DP 0084-5612 0-19-857787-7 SYM ZOOL S 1996 69 159 174 16 Zoology Zoology BH07N WOS:A1996BH07N00009 2019-02-26 J Reznick, D Reznick, D Life history evolution in guppies: A model system for the empirical study of adaptation NETHERLANDS JOURNAL OF ZOOLOGY English Article Poecilia reticulata; evolution; adaptation; natural selection; life history predation POECILIA-RETICULATA; COLOR PATTERNS; PREDATION; POPULATIONS; SELECTION; BEHAVIOR I have used a diversity of observations and experiments to evaluate whether or not guppy life histories represent an adaptation to predator-induced mortality rates. I have primarily worked on natural populations of guppies from Trinidad, but have also considered populations from Tobago and Venezuela. My first step was to compare the life histories of guppies from high and low predation environments. I found that guppies from high predation elements matured moro quickly, reproduced more often, and devoted more of their consumed resources to reproduction. They also produced more and smaller offspring in each litter. All of these differences had a genetic basis and many conform to theoretical predictions For how thr life history should evolve in response to differences in mortality patterns. I also found that these same patterns were obtained in a new series of localities that had a completely different suite of predators, but had the same contrast between high and low predation communities. I employed mark-recapture techniques to demonstrate that guppies from high predation localities also have significantly higher mortality rates than their counterparts from low predation localities. Such differences in mortality rate provide a potential mechanism for the evolution of these life history patterns. Finally, I have introduced guppies from high predation communities into low predation communities from which they had previously been excluded by waterfalls. These introduced populations evolved in the predicted fashion (delayed maturity, reduced resource allocation to reproduction). Some variables changed significantly in as little as four years, or approximately six generations. While each observation by itself represents an incomplete argument for adaptation, together they make a very strong case for predation and mortality playing a significant role in selecting for interpopulation differences in life histories. Reznick, D (reprint author), UNIV CALIF RIVERSIDE, DEPT BIOL, RIVERSIDE, CA 92521 USA. Langerhans, R./A-7205-2009 CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; Charlesworth B, 1994, EVOLUTION AGE STRUCT; Darwin C, 1859, ORIGIN SPECIES; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; Grant B. R., 1989, EVOLUTIONARY DYNAMIC; Grant P. R., 1986, ECOLOGY EVOLUTION DA; HALDANE JBS, 1949, EVOLUTION, V3, P51, DOI 10.2307/2405451; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; INGERICH PD, 1983, SCIENCE, V222, P129; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; PETERS RH, 1976, AM NAT, V110, P1, DOI 10.1086/283045; Provine WB, 1971, ORIGINS THEORETICAL; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1996, IN PRESS EVOLUTION; REZNICK DN, 1996, IN PRESS EVOLUTIONAR; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1974, OECOLOGIA, V14, P93, DOI 10.1007/BF00344900; SEGHERS BH, 1973, THESIS U BRIT COLUMB; Stearns SC., 1992, EVOLUTION LIFE HIST; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 39 26 27 0 25 BRILL ACADEMIC PUBLISHERS LEIDEN PLANTIJNSTRAAT 2, P O BOX 9000, 2300 PA LEIDEN, NETHERLANDS 0028-2960 NETH J ZOOL Neth. J. Zool. 1996 46 3-4 172 190 19 Zoology Zoology VY828 WOS:A1996VY82800002 2019-02-26 S McQuaid, CD Ansell, AD; Gibson, RN; Barnes, M McQuaid, CD Biology of the gastropod family Littorinidae .1. Evolutionary aspects OCEANOGRAPHY AND MARINE BIOLOGY, VOL 34: AN ANNUAL REVIEW Oceanography and Marine Biology English Review SAXATILIS OLIVI PROSOBRANCHIA; SNAIL LITTORARIA-PALLESCENS; CONSTRICTA LAMARCK PROSOBRANCHIA; POLYMORPHIC MANGROVE SNAIL; SHELL COLOR POLYMORPHISM; ARCANA HANNAFORD-ELLIS; LACUNA-VINCTA MONTAGU; PAPUA-NEW-GUINEA; 2 MARINE SNAILS; INTERTIDAL SNAIL Gastropods of the family Littorinidae are abundant and ecologically important animals in shallow marine systems throughout the world. Ecological studies on this family have focused on geographical areas where the taxonomy is clear at species level. In some areas, notably the North Atlantic, this happy state does not exist and there has been extensive taxonomic confusion. As a result, considerable effort has gone into the study of the evolutionary biology of the littorinids over the last 20 years. Many of these studies have been aimed at understanding the taxonomic status of species. I have not addressed these. Others have used the group as a tool to consider evolutionary questions. These concern the maintenance of poly morphism in shell colour or shape, and especially the application of life history theory to mode of larval development and the influence of development type on dispersal and population heterozygosity. Overall the littorinids conform poorly or not at all to theoretical predictions. Colour polymorphisms seem to be maintained by selective forces based on predation (although the ecological literature suggests predation is not important at the population level) and heat uptake. The control of variation in shell shape is more difficult to explain and is influenced by the type of development. Direct developing species lack a planktonic larva, which is assumed to result in low gene flow. In examples of these species, shape appears to be largely genetically determined. For species with highly dispersive larvae, phenotypic responses to local factors, including growth rates, are important. But this generalization is not clear-cut, the evidence is conflicting and important counter-examples exist. The most direct evidence comes from breeding experiments. These are rare and, in at least two cases, provide examples that do not conform to this pattern. Dispersal and gene flow are expected to correlate with mode of larval development. In fact, we have little direct information on events between spawning and settlement and again this link is not clear. Direct developing species have been shown to raft or drift over long distances as adults. Species with long-lived planktonic larvae are expected to be highly dispersive, but correlations between settlement and adult density can be interpreted as indicating limited dispersal. A number of other observations on actual dispersal and geographic range of littorinids with different larval types do nor fit the theory. Direct developing species can show striking examples of founder effects. Despite this, there are only imperfect correlations between larval type and both within- and among-population genetic heterozygosity, implying that gene flow is not tightly bound to larval type. This may be partly explained by the lack of correlation between larval type and dispersal. We may also be misled by assuming that juvenile recruitment is not. genotype dependent. But most important is the fact that, while development mode is fixed for any species, heterozygosity is influenced by many factors. The absence of a clear correlation suggests that larval type and/or dispersal is only one of many factors that influence heterozygosity and does not have an overriding effect. There is a poor fit between predicted and actual reproductive strategies used by littorinids. One of the most useful ideas to emerge recently is the need to recognize phylogenetic constraints on mode of reproduction (and many other facets of biology for that matter). Evolutionary explanations can supersede a welter of imperfect and superfluous ecological explanations for the use of different strategies by different species. We require adaptive explanations only when a species shows a derived condition different from the primitive condition for the taxon to which it belongs. Thus ecological explanations are appropriate only in comparisons between species of similar ancestry or between populations of the same species exhibiting morphological or genetic differences. McQuaid, CD (reprint author), RHODES UNIV, DEPT ZOOL & ENTOMOL, ZA-6140 GRAHAMSTOWN, SOUTH AFRICA. ALERSTAM T, 1992, OIKOS, V65, P179, DOI 10.2307/3545008; ANDERSON D. T., 1961, PROC LINN SOC N S WALES, V86, P203; APPLETON RD, 1988, P NATL ACAD SCI USA, V85, P4387, DOI 10.1073/pnas.85.12.4387; ASH VB, 1989, ZOOL J LINN SOC-LOND, V96, P167, DOI 10.1111/j.1096-3642.1989.tb01825.x; ATKINSON WD, 1983, BIOL J LINN SOC, V20, P137, DOI 10.1111/j.1095-8312.1983.tb00358.x; ATKINSON WD, 1984, J ANIM ECOL, V53, P93, DOI 10.2307/4344; BACKELJAU T, 1992, 3RD P INT S LITT BIO, P9; BANDEL K, 1982, VELIGER, V25, P1; BEARDMORE JA, 1978, MARINE ORGANISMS GEN, P123; BEAUMONT AR, 1991, J CONSEIL, V47, P333; BERGER E, 1977, BIOL BULL, V153, P255, DOI 10.2307/1540433; BERGER EM, 1973, BIOL BULL-US, V145, P83, DOI 10.2307/1540349; BERGERARD J, 1981, B SOC ZOOL FR, V106, P277; BERRY AJ, 1961, J ANIM ECOL, V30, P27, DOI 10.2307/2111; BERRY AJ, 1980, J MOLLUS STUD, V46, P55; BOULDING EG, 1993, J EXP MAR BIOL ECOL, V169, P139, DOI 10.1016/0022-0981(93)90191-P; BOULDING EG, 1993, EVOLUTION, V47, P576, DOI 10.1111/j.1558-5646.1993.tb02114.x; BOULDING EG, 1993, VELIGER, V36, P43; BRANDWOOD A, 1985, J ZOOL, V206, P551; BURTON RS, 1983, MAR BIOL LETT, V4, P193; BYERS BA, 1990, BIOL J LINN SOC, V40, P3, DOI 10.1111/j.1095-8312.1990.tb00530.x; CALOW P, 1983, MOLLUSCA, V6, P649; CAUGANT D, 1980, VELIGER, V23, P107; Chia F.-S., 1970, Mar. Pollut. Bull., V1, P78, DOI 10.1016/0025-326X(70)90145-1; CLARKE B, 1970, NATURE, V228, P159, DOI 10.1038/228159a0; CLARKE B, 1978, PULMONATES A, V2, P219; CLARKE BC, 1979, PROC R SOC SER B-BIO, V205, P453, DOI 10.1098/rspb.1979.0079; COLE TJ, 1975, NATURE, V257, P794, DOI 10.1038/257794a0; COMFORT A, 1951, BIOL REV, V26, P285, DOI 10.1111/j.1469-185X.1951.tb01358.x; COOK LM, 1986, BIOL J LINN SOC, V29, P295, DOI 10.1111/j.1095-8312.1986.tb00281.x; COOK LM, 1990, HEREDITY, V65, P423, DOI 10.1038/hdy.1990.113; COOK LM, 1983, BIOL J LINN SOC, V20, P167, DOI 10.1111/j.1095-8312.1983.tb00360.x; COOK LM, 1986, BIOL J LINN SOC, V29, P101, DOI 10.1111/j.1095-8312.1986.tb01825.x; COOK LM, 1985, J ZOOL, V206, P297; COOK LM, 1993, J MOLLUS STUD, V59, P29, DOI 10.1093/mollus/59.1.29; COOK LM, 1992, 3RD P INT S LITT BIO, P247; CREESE RG, 1976, J EXP MAR BIOL ECOL, V23, P211, DOI 10.1016/0022-0981(76)90021-6; CRISP DJ, 1978, P NATO ADV STUD RES, P257; CROSSLAND S, 1993, MAR ECOL PROG SER, V96, P301, DOI 10.3354/meps096301; CURREY JD, 1982, J ANIM ECOL, V51, P47, DOI 10.2307/4309; DUDLEY R, 1980, NAUTILUS, V94, P108; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ETTER RJ, 1988, EVOLUTION, V42, P660, DOI 10.1111/j.1558-5646.1988.tb02485.x; FALLERFRITSCH RJ, 1977, BIOL BENTHIC ORGANIS, P225; FEVOLDEN SE, 1987, MAR ECOL PROG SER, V39, P129, DOI 10.3354/meps039129; Fish J.D., 1985, P143; FOLTZ DW, 1993, AM MALACOL BULL, V10, P55; FRETTER V, 1977, J MOLLUS STUD, V43, P255; Fretter V, 1994, BRIT PROSOBRANCH MOL; GAINES MS, 1974, MAR BIOL, V27, P327, DOI 10.1007/BF00394368; GALLARDO CS, 1985, HELGOLANDER MEERESUN, V39, P165, DOI 10.1007/BF01997448; GRAHAME J, 1989, J MAR BIOL ASSOC UK, V69, P837, DOI 10.1017/S0025315400032203; GRAHAME J, 1973, J ANIM ECOL, V42, P391, DOI 10.2307/3293; GRAHAME J, 1977, MAR BIOL, V40, P217, DOI 10.1007/BF00390877; GRAHAME J, 1986, J ZOOL, V208, P229; GRAHAME J, 1982, INT J INVER REP DEV, V5, P91; GRAHAME J, 1992, J MAR BIOL ASSOC UK, V72, P499, DOI 10.1017/S0025315400037851; GRAHAME J, 1992, 3RD P INT S LITT BIO, P99; GRASSLE JF, 1978, MARINE ORGANISMS, P347; HAMILTON PV, 1978, MAR BIOL, V46, P49, DOI 10.1007/BF00393820; Hannaford Ellis C.J., 1983, Journal of Molluscan Studies, V49, P98; Hannaford Ellis C.J., 1984, Journal of Conchology, V31, P343; HART A, 1982, OECOLOGIA, V52, P37, DOI 10.1007/BF00349009; HELLER J, 1975, ZOOL J LINN SOC-LOND, V56, P153, DOI 10.1111/j.1096-3642.1975.tb00814.x; HELMUTH B, 1994, MAR BIOL, V120, P421, DOI 10.1007/BF00680216; HIGHSMITH RC, 1985, MAR ECOL PROG SER, V25, P169, DOI 10.3354/meps025169; HUGHES JM, 1986, EVOLUTION, V40, P68, DOI 10.1111/j.1558-5646.1986.tb05718.x; HUGHES R N, 1971, Journal of Experimental Marine Biology and Ecology, V6, P167, DOI 10.1016/0022-0981(71)90016-5; HUGHES RN, 1979, ZOOL J LINN SOC-LOND, V65, P119, DOI 10.1111/j.1096-3642.1979.tb01085.x; HUGHES RN, 1981, J ANIM ECOL, V50, P251, DOI 10.2307/4043; HUGHES RN, 1980, OECOLOGIA, V47, P130, DOI 10.1007/BF00541788; HUNTE W, 1988, MAR ECOL PROG SER, V45, P109, DOI 10.3354/meps045109; HUXHAM M, 1993, J EXP MAR BIOL ECOL, V168, P223, DOI 10.1016/0022-0981(93)90262-M; HYLLEBERG J, 1977, J MOLLUS STUD, V43, P192; INO T, 1949, J MAR RES, V8, P1; JABLONSKI D, 1986, B MAR SCI, V39, P565; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; JANSON K, 1984, BIOL J LINN SOC, V22, P289, DOI 10.1111/j.1095-8312.1984.tb01680.x; JANSON K, 1983, MAR BIOL, V74, P49, DOI 10.1007/BF00394274; JANSON K, 1987, HEREDITY, V58, P31, DOI 10.1038/hdy.1987.5; JANSON K, 1983, OECOLOGIA, V59, P58, DOI 10.1007/BF00388072; JANSON K, 1985, BIOL J LINN SOC, V24, P51, DOI 10.1111/j.1095-8312.1985.tb00159.x; JANSON K, 1985, OPHELIA, V24, P125, DOI 10.1080/00785236.1985.10426625; JANSON K, 1982, J MOLLUS STUD, V48, P167; JANSON K, 1985, B MAR SCI, V37, P871; JANSON K, 1982, MAR BIOL, V69, P73, DOI 10.1007/BF00396963; JANSON K, 1985, J CONCHOL, V32, P9; JANSON K, 1987, BIOL J LINN SOC, V30, P245, DOI 10.1111/j.1095-8312.1987.tb00299.x; JOHANNESSON B, 1990, HYDROBIOLOGIA, V193, P71, DOI 10.1007/BF00028067; JOHANNESSON B, 1986, J EXP MAR BIOL ECOL, V102, P183, DOI 10.1016/0022-0981(86)90175-9; JOHANNESSON K, 1990, HYDROBIOLOGIA, V193, P89, DOI 10.1007/BF00028068; JOHANNESSON K, 1990, DEV HYDROB, V56, P99, DOI 10.1007/BF00028069; JOHANNESSON K, 1992, BIOL J LINN SOC, V47, P285, DOI 10.1111/j.1095-8312.1992.tb00671.x; JOHANNESSON K, 1993, EVOLUTION, V47, P1770, DOI 10.1111/j.1558-5646.1993.tb01268.x; JOHANNESSON K, 1988, MAR BIOL, V99, P507, DOI 10.1007/BF00392558; JOHANNESSON K, 1989, GENET RES, V54, P7, DOI 10.1017/S0016672300028317; JOHANNESSON K, 1992, 3RD P INT S LITT BIO, P1; JOHNSON CR, 1986, J EXP MAR BIOL ECOL, V97, P231, DOI 10.1016/0022-0981(86)90244-3; JOHNSON MS, 1991, HEREDITY, V67, P205, DOI 10.1038/hdy.1991.81; JONES JS, 1977, ANNU REV ECOL SYST, V8, P109, DOI 10.1146/annurev.es.08.110177.000545; KALABUSHKIN BA, 1976, ZH OBSHCH BIOL, V37, P369; KARTAVTSEV YP, 1981, GENETIKA+, V17, P1029; KEMP P, 1984, P NATL ACAD SCI-BIOL, V81, P811, DOI 10.1073/pnas.81.3.811; KILBURN R N, 1972, Annals of the Natal Museum, V21, P391; KIMURA M, 1968, NATURE, V217, P624, DOI 10.1038/217624a0; KNIGHT AJ, 1991, J MOLLUS STUD, V57, P81, DOI 10.1093/mollus/57.1.81; KNIGHT AJ, 1987, BIOL J LINN SOC, V32, P417, DOI 10.1111/j.1095-8312.1987.tb00441.x; LANGANCRANFORD KM, 1995, J EXP MAR BIOL ECOL, V186, P17, DOI 10.1016/0022-0981(94)00147-6; LAVIE B, 1986, SCI TOTAL ENVIRON, V57, P91, DOI 10.1016/0048-9697(86)90013-6; LAVIE B, 1987, ENVIRON MANAGE, V11, P345, DOI 10.1007/BF01867162; LEIGHTON D, 1963, ECOLOGY, V44, P227, DOI 10.2307/1932170; LESSIOS HA, 1992, MAR BIOL, V112, P517, DOI 10.1007/BF00356299; LEVINTON JS, 1978, MARINE ORGANISMS GEN, P229; Lewontin R., 1974, GENETIC BASIS EVOLUT; LIU LL, 1991, MAR BIOL, V111, P71, DOI 10.1007/BF01986348; LOWELL RB, 1994, J ZOOL, V234, P149, DOI 10.1111/j.1469-7998.1994.tb06062.x; MAC ARTHUR ROBERT H., 1967; MALLET AL, 1985, MAR BIOL, V87, P165, DOI 10.1007/BF00539424; MARTEL A, 1991, J EXP MAR BIOL ECOL, V150, P131, DOI 10.1016/0022-0981(91)90111-9; MARTEL A, 1991, MAR ECOL PROG SER, V72, P247, DOI 10.3354/meps072247; MARTEL A, 1993, MAR ECOL PROG SER, V99, P215, DOI 10.3354/meps099215; MASTRO E, 1982, VELIGER, V24, P239; McQuaid C.D., 1992, P85; McQuaid C. D., 1988, BEHAV ADAPTATION INT, P213; MCQUAID CD, 1985, J EXP MAR BIOL ECOL, V89, P97, DOI 10.1016/0022-0981(85)90120-0; MCQUAID CD, 1981, J EXP MAR BIOL ECOL, V54, P77, DOI 10.1016/0022-0981(81)90104-0; McQuaid CD, 1996, OCEANOGR MAR BIOL, V34, P263; MEEKAN MG, 1993, MAR ECOL PROG SER, V93, P217, DOI 10.3354/meps093217; MERCURIO KS, 1985, ECOLOGY, V66, P1417, DOI 10.2307/1938004; MILEIKOVSKY SA, 1975, MAR BIOL, V30, P129, DOI 10.1007/BF00391587; MILEIKOVSKY SA, 1971, MAR BIOL, V10, P193, DOI 10.1007/BF00352809; MILKMAN R, 1978, MARINE ORGANISMS GEN, P3; MOYSE J, 1982, J CONCHOL, V31, P7; NAYLOR R, 1982, J CONCHOL, V31, P17; NEI M, 1975, EVOLUTION, V29, P1, DOI 10.1111/j.1558-5646.1975.tb00807.x; NEI M, 1975, P NATL ACAD SCI USA, V72, P2758, DOI 10.1073/pnas.72.7.2758; NEI M, 1976, P NATL ACAD SCI USA, V73, P4164, DOI 10.1073/pnas.73.11.4164; NEWKIRK GF, 1975, MAR BIOL, V30, P227, DOI 10.1007/BF00390745; NEWKIRK GF, 1979, CAN J GENET CYTOL, V21, P505, DOI 10.1139/g79-055; NOY R, 1987, J EXP MAR BIOL ECOL, V109, P109, DOI 10.1016/0022-0981(87)90010-4; O-FOIGHIL D, 1989, Marine Biology (Berlin), V103, P349, DOI 10.1007/BF00397269; OCKELMANN KW, 1981, OPHELIA, V20, P1; OHTA T, 1974, NATURE, V252, P351, DOI 10.1038/252351a0; Olive P. J. W., 1985, PHYSL ADAPTATIONS MA, P267; PALMER AR, 1990, HYDROBIOLOGIA, V193, P155, DOI 10.1007/BF00028074; PALMER AR, 1985, EVOLUTION, V39, P699, DOI 10.1111/j.1558-5646.1985.tb00407.x; PALMER AR, 1984, MALACOLOGIA, V25, P477; PALMER AR, 1981, OECOLOGIA, V48, P308, DOI 10.1007/BF00346487; PETERSON CH, 1992, MAR ECOL PROG SER, V90, P257, DOI 10.3354/meps090257; PETRAITIS PS, 1982, J EXP MAR BIOL ECOL, V59, P207, DOI 10.1016/0022-0981(82)90116-2; Pettitt C., 1975, Journal Conch Lond, V28, P343; PICKEN GB, 1979, MALACOLOGIA, V19, P109; PILKINGTON MC, 1971, AUST J MAR FRESH RES, V22, P79; RAFFAELLI D, 1990, HYDROBIOLOGIA, V193, P271, DOI 10.1007/BF00028083; RAFFAELLI D, 1982, J MOLLUS STUD, V48, P342, DOI 10.1093/oxfordjournals.mollus.a065656; RAFFAELLI D, 1979, ZOOL J LINN SOC-LOND, V65, P219, DOI 10.1111/j.1096-3642.1979.tb01092.x; REID D G, 1988, Records of the Australian Museum, V40, P91; Reid D. G., 1986, LITTORINID MOLLUSCS; REID DG, 1990, B MAR SCI, V47, P35; REID DG, 1993, J MOLLUS STUD, V59, P51, DOI 10.1093/mollus/59.1.51; REID DG, 1990, HYDROBIOLOGIA, V193, P1, DOI 10.1007/BF00028062; REID DG, 1989, PHILOS T R SOC B, V324, P1, DOI 10.1098/rstb.1989.0040; REID DG, 1987, BIOL J LINN SOC, V30, P1, DOI 10.1111/j.1095-8312.1987.tb00284.x; REID DG, 1991, P 10 INT MALACOLOGIC, P515; REIMCHEN TE, 1981, J CONCHOL, V30, P341; REIMCHEN TE, 1979, CAN J ZOOL, V57, P1070, DOI 10.1139/z79-135; REIMCHEN TE, 1989, BIOL J LINN SOC, V36, P97, DOI 10.1111/j.1095-8312.1989.tb00485.x; REIMCHEN TE, 1982, CAN J ZOOL, V60, P687, DOI 10.1139/z82-098; ROBERTSON AI, 1982, J EXP MAR BIOL ECOL, V63, P151, DOI 10.1016/0022-0981(82)90029-6; ROSE RJ, 1981, EQUINE VET J, V13, P7, DOI 10.1111/j.2042-3306.1981.tb03439.x; ROSEWATER J, 1982, Proceedings of the Biological Society of Washington, V95, P67; ROSEWATER J, 1970, Indo-Pacific Mollusca, V2, P417; Sacchi C. F., 1966, Atti della Societa Italiana di Scienze Naturali, V105, P351; SACCHI C F, 1979, Natura (Milan), V70, P7; SCHELTEMA RS, 1971, BIOL BULL-US, V140, P284, DOI 10.2307/1540075; SCHELTEMA RS, 1978, MARINE ORGANISMS GEN, P303; SCHELTEMA RS, 1989, P 23 EUR MAR BIOL S, P183; SEELEY RH, 1986, P NATL ACAD SCI USA, V83, P6897, DOI 10.1073/pnas.83.18.6897; Sergievsky S.O., 1992, P235; SIMPSON R D, 1985, Journal of the Malacological Society of Australia, V7, P17; SIMPSON RD, 1977, MAR BIOL, V44, P125, DOI 10.1007/BF00386953; SINGH SM, 1984, MALACOLOGIA, V25, P569; SLATKIN M, 1987, SCIENCE, V236, P787, DOI 10.1126/science.3576198; Smith D.A.S., 1976, Journal moll Stud, V42, P114; SMITH DAS, 1973, J MAR BIOL ASSOC UK, V53, P493, DOI 10.1017/S0025315400058720; SMITH JE, 1981, J MAR BIOL ASSOC UK, V61, P215, DOI 10.1017/S0025315400046026; SMITH JE, 1955, J ANIM ECOL, V24, P35, DOI 10.2307/1878; SMITH SM, 1982, MALACOLOGIA, V22, P535; SNYDER TP, 1973, MAR BIOL, V22, P177, DOI 10.1007/BF00391781; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; SPIGHT TM, 1976, ECOLOGY, V57, P1162, DOI 10.2307/1935042; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; STRUHSAKER JW, 1968, EVOLUTION, V22, P459, DOI 10.1111/j.1558-5646.1968.tb03986.x; SUNDBERG P, 1988, BIOL J LINN SOC, V35, P169, DOI 10.1111/j.1095-8312.1988.tb00464.x; SUNDELL K, 1985, J EXP MAR BIOL ECOL, V92, P115, DOI 10.1016/0022-0981(85)90091-7; TALBOT MMB, 1990, OCEANOGR MAR BIOL, V28, P155; TATARENKOV A, 1994, BIOL J LINN SOC, V53, P105, DOI 10.1006/bijl.1994.1063; TATARENKOV AN, 1995, VELIGER, V38, P85; TATARENKOV AN, 1992, 3RD P INT S LITT BIO, P25; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TRUSSELL GC, 1993, MAR ECOL PROG SER, V100, P135, DOI 10.3354/meps100135; UNDERWOOD AJ, 1976, J EXP MAR BIOL ECOL, V23, P229, DOI 10.1016/0022-0981(76)90022-8; UNDERWOOD AJ, 1983, J EXP MAR BIOL ECOL, V66, P169, DOI 10.1016/0022-0981(83)90038-2; Van Valen L., 1965, AM NAT, V99, P377, DOI DOI 10.1086/282379; VANMARION P, 1981, J MOLLUS STUD, V47, P99, DOI 10.1093/oxfordjournals.mollus.a065562; VERMEIJ GJ, 1982, NATURE, V299, P349, DOI 10.1038/299349a0; VERMEIJ GJ, 1982, EVOLUTION, V36, P561, DOI 10.1111/j.1558-5646.1982.tb05077.x; VERMEIJ GJ, 1972, AM NAT, V106, P89, DOI 10.1086/282754; VERMEIJ GJ, 1973, MAR BIOL, V20, P319, DOI 10.1007/BF00354275; Vermeij GJ, 1978, BIOGEOGRAPHY ADAPTAT; VUILLEUMIER F, 1972, EXPERIENTIA, V28, P1241, DOI 10.1007/BF01946197; WARD RD, 1990, HYDROBIOLOGIA, V193, P53, DOI 10.1007/BF00028066; WARD RD, 1985, J MOLLUS STUD, V51, P86, DOI 10.1093/oxfordjournals.mollus.a065888; WARD RD, 1980, BIOL J LINN SOC, V14, P417, DOI 10.1111/j.1095-8312.1980.tb00116.x; WARD RD, 1986, HEREDITY, V57, P233, DOI 10.1038/hdy.1986.113; WARWICK T, 1982, J MOLLUS STUD, V48, P368, DOI 10.1093/oxfordjournals.mollus.a065661; WILKINS NP, 1980, VELIGER, V22, P355; WILKINS NP, 1978, MARINE ORGANISMS GEN, P141; WILSON AC, 1977, ANNU REV BIOCHEM, V46, P573, DOI 10.1146/annurev.bi.46.070177.003041; WIUM-ANDERSEN G, 1970, Ophelia, V8, P267; Woodward B. B., 1909, Proceedings of the Malacological Society of London, V8; YAMADA SB, 1989, MAR BIOL, V103, P403, DOI 10.1007/BF00397275; YAMAMDA SB, 1987, MAR BIOL, V96, P529; ZASLAVSKAYA NI, 1992, J MOLLUS STUD, V58, P377, DOI 10.1093/mollus/58.4.377; ZOUROS E, 1984, MALACOLOGIA, V25, P583 228 38 38 0 25 U C L PRESS LTD LONDON UNIV COLL LONDON, GOWER STREET, LONDON WC1E 6BT, ENGLAND 0078-3218 1-85728-581-6 OCEANOGR MAR BIOL Oceanogr. Mar. Biol. 1996 34 233 262 30 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography BG58Y WOS:A1996BG58Y00005 2019-02-26 J George, SB George, SB Echinoderm egg and larval quality as a function of adult nutritional state OCEANOLOGICA ACTA English Article; Proceedings Paper Colloquium on Biotic and Abiotic Interactions Regulating Life Cycle of Marine Invertebrates SEP 19-23, 1994 VILLEFRANCHE-SUR-MER, FRANCE ARBACIA-LIXULA ECHINODERMATA; MARINE BENTHIC INVERTEBRATES; LIFE-HISTORY THEORY; COD GADUS-MORHUA; REPRODUCTIVE STRATEGIES; LECITHOTROPHIC DEVELOPMENT; COMPARATIVE MORPHOMETRICS; POPULATION DIFFERENCES; LEPTASTERIAS-HEXACTIS; SCLERASTERIAS-MOLLIS Differences in egg and larval quality for some sea urchins and seastars were investigated in the field acid in the laboratory. In the field, sea urchins and seastars found at sites with an abundant supply of food were larger, and they produced large numbers of large, high quality eggs. For some female seastars, nutritional history determined the response to variation in food supply in the laboratory. While an increase in food ration did not affect the size of eggs produced by females from the favorable site, an increase in food ration led to an increase in egg size for those from the less favorable site. For all the echinoderms examined, egg numbers decreased when conditions became unfavorable. Larvae from females living in favorable environments grew and developed faster, and larval survival was high. A large percentage of sea urchin larvae from females living in favorable environments metamorphosed compared to those living in less favorable environments. Juvenile size did not vary as a function of past nutritional state in sea urchins but it did in seastars. Large numbers of high quality juveniles were produced by seastars from the favorable site. The differences in egg and larval quality observed in field studies might be due to differences in the abundance of preferred algae (food for some sea urchins) and molluscan species (food for some seastars) at the different sites. In laboratory studies, the responses to food availability were also influenced by the nutritional and gametogenic states of the females at the time of collection and by the duration of the experiments. HARBOR BRANCH OCEANOG INST INC, FT PIERCE, FL 34946 USA ANDREW NL, 1986, J EXP MAR BIOL ECOL, V97, P63, DOI 10.1016/0022-0981(86)90068-7; BAYNE BL, 1978, J MAR BIOL ASSOC UK, V58, P825, DOI 10.1017/S0025315400056794; BAYNE BL, 1975, J MAR BIOL ASSOC UK, V55, P675, DOI 10.1017/S0025315400017343; BERGIN F, 1987, C INT PAR LIV OURS C, P37; BERNARDO J, 1991, TRENDS ECOL EVOL, V6, P1, DOI 10.1016/0169-5347(91)90137-M; BERTHON JF, 1987, THESIS U P M CURIE P; Chiu S.T., 1988, P193; CRAIK JCA, 1987, J MAR BIOL ASSOC UK, V67, P169, DOI 10.1017/S0025315400026436; Crisp D.J., 1984, P103; de Ridder C., 1982, P57; Dehn P.F., 1980, P361; Dehn P.F., 1982, Echinoderms, P457; ECKELBARGER KJ, 1994, P BIOL SOC WASH, V107, P193; Emlet R.B., 1987, Echinoderm Studies, V2, P55; FENAUX L, 1994, LIMNOL OCEANOGR, V39, P84, DOI 10.4319/lo.1994.39.1.0084; GEORGE SB, 1994, ECHINODERMS THROUGH TIME, P297; GEORGE SB, 1990, J EXP MAR BIOL ECOL, V141, P107, DOI 10.1016/0022-0981(90)90217-Z; GEORGE SB, 1994, MAR ECOL PROG SER, V109, P95, DOI 10.3354/meps109095; GEORGE SB, 1994, J EXP MAR BIOL ECOL, V175, P121, DOI 10.1016/0022-0981(94)90179-1; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; GEORGE SB, 1991, INVERTEBR REPROD DEV, V20, P237, DOI 10.1080/07924259.1991.9672204; GEORGE SB, 1990, THESIS U PARIS; GUGLIELMI G, 1969, THESIS FS NICE FRANC; HART MW, 1994, BIOL BULL, V186, P291, DOI 10.2307/1542275; HIRCHE HJ, 1993, MAR BIOL, V117, P615, DOI 10.1007/BF00349773; HOLLAND DL, 1978, BIOCH BIOPHYSICAL PE, P85; HORWOOD JW, 1989, J MAR BIOL ASSOC UK, V69, P81, DOI 10.1017/S0025315400049122; JACKSON GA, 1981, AM NAT, V118, P16, DOI 10.1086/283797; Jangoux M., 1982, P117; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; Kawamura K., 1973, Scientific Rep Hokkaido Fish Exp Stn, VNo. 16, P1; KEATS DW, 1984, J EXP MAR BIOL ECOL, V80, P77, DOI 10.1016/0022-0981(84)90095-9; Kempf M., 1962, REC TRAV STA MAR END, V25, P47; KJESBU OS, 1992, J FISH BIOL, V41, P581, DOI 10.1111/j.1095-8649.1992.tb02685.x; LAWRENCE J M, 1973, Journal of Experimental Marine Biology and Ecology, V11, P263, DOI 10.1016/0022-0981(73)90026-9; LAWRENCE J M, 1979, Florida Scientist, V42, P9; Lawrence J.M., 1975, Oceanography mar Biol, V13, P213; LONNING SUNNIVA, 1963, SARSIA, V11, P25; LOWE EF, 1976, J EXP MAR BIOL ECOL, V21, P223, DOI 10.1016/0022-0981(76)90117-9; LUCAS MI, 1987, J MAR BIOL ASSOC UK, V67, P27, DOI 10.1017/S0025315400026345; Maggiore F., 1987, C INT PAR LIV OURS C, P65; MARECI TH, 1991, METHOD ASSESSING ENE; MCCLINTOCK JB, 1986, COMP BIOCHEM PHYS A, V85, P341, DOI 10.1016/0300-9629(86)90259-8; MCEDWARD LR, 1986, J EXP MAR BIOL ECOL, V96, P267, DOI 10.1016/0022-0981(86)90207-8; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; MCEDWARD LR, 1986, J EXP MAR BIOL ECOL, V96, P251, DOI 10.1016/0022-0981(86)90206-6; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; MCEDWARD LR, 1991, J EXP MAR BIOL ECOL, V147, P95, DOI 10.1016/0022-0981(91)90039-Y; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MCGINLEY MA, 1989, EVOL ECOL, V3, P150, DOI 10.1007/BF02270917; McGinley MA, 1988, EVOL ECOL, V2, P77, DOI 10.1007/BF02071590; MENGE BA, 1972, ECOLOGY, V53, P635, DOI 10.2307/1934777; MENGE BA, 1974, ECOLOGY, V55, P84, DOI 10.2307/1934620; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; MONTGOMERY WL, 1980, ENVIRON BIOL FISH, V5, P143, DOI 10.1007/BF02391621; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; MORRIS DW, 1992, EVOLUTION, V46, P1848, DOI 10.1111/j.1558-5646.1992.tb01173.x; NISSLING A, 1994, MAR ECOL PROG SER, V110, P67, DOI 10.3354/meps110067; Pearse John S., 1991, P513; Roff Derek A., 1992; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SCHEIBLING RE, 1982, MAR BIOL, V70, P51, DOI 10.1007/BF00397296; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1992, Q REV BIOL; STRATHMANN RR, 1992, EVOLUTION, V46, P972, DOI 10.1111/j.1558-5646.1992.tb00613.x; Thompson R.J., 1984, Advances in Invertebrate Reproduction, V3, P425; THOMPSON RJ, 1983, OECOLOGIA, V56, P50, DOI 10.1007/BF00378216; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TRAER K, 1980, ECHINODERMS PRESENT, P341; TURNER RL, 1976, J EXP MAR BIOL ECOL, V24, P49, DOI 10.1016/0022-0981(76)90042-3; TURNER RL, 1979, REPROD ECOLOGY MARIN, P25; VADAS RL, 1977, ECOL MONOGR, V47, P337, DOI 10.2307/1942173; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; XU RA, 1990, COMP BIOCHEM PHYS A, V96, P33, DOI 10.1016/0300-9629(90)90037-S; XU RA, 1990, J EXP MAR BIOL ECOL, V136, P23, DOI 10.1016/0022-0981(90)90098-W 81 50 51 1 21 GAUTHIER-VILLARS/EDITIONS ELSEVIER PARIS 23 RUE LINOIS, 75015 PARIS, FRANCE 0399-1784 OCEANOL ACTA Oceanol. Acta 1996 19 3-4 297 308 12 Oceanography Oceanography VB830 WOS:A1996VB83000020 2019-02-26 J Hadfield, MG; Strathmann, MF Hadfield, MG; Strathmann, MF Variability, flexibility and plasticity in life histories of marine invertebrates OCEANOLOGICA ACTA English Article; Proceedings Paper Colloquium on Biotic and Abiotic Interactions Regulating Life Cycle of Marine Invertebrates SEP 19-23, 1994 VILLEFRANCHE-SUR-MER, FRANCE FOOD-LIMITED GROWTH; DELAYED METAMORPHOSIS; LARVAL DEVELOPMENT; CAPITELLA-SP; EGG SIZE; LECITHOTROPHIC DEVELOPMENT; BENTHIC INVERTEBRATES; STREBLOSPIO-BENEDICTI; CREPIDULA-FORNICATA; APLYSIA-JULIANA Nearly all aspects of the life histories of individual marine-invertebrate species are characterized by ranges of;sizes, seasonal variation, and functional flexibility and phenotypic plasticity in response to varying environmental conditions; that is, they are highly polytypic. Four major areas of polytypy are considered: (1) breeding seasons and cycles vary greatly in time and duration with latitude and from year to year; (2) egg and larval sizes, while showing both genetic and stochastic variability in all species, are often also flexible responses to adult and larval nutrition; (3) modes of development are variable within a number of single species, often reflecting egg-size differences between populations, or even as a result of hatching age of siblings from a single egg mass; and (4) duration of the pelagic larval phase, both before and after the onset of metamorphic competence. Planktotrophic larvae show plastic responses to phytoplankton abundance in their morphologies, and most larvae are flexible in their age at metamorphosis because this complex process requires a more-or-less specialized substratum to induce it for most invertebrate species. New data are presented that provide additional examples of broad flexibility of sibling lecithotrophic larvae to hatch and settle at greatly differing ages. Larvae of the patelloidean gastropod Lottia pelta settled from 8 to 28 days after fertilization, and those of the fissurelloidean Diodora aspera hatched over a three week period from 7 to 30 days post-fertilization; larval settlement had a similarly broad range. Even the planktotrophic-lecithotrophic dichotomy breaks down as increasing numbers of species are found to produce larvae that can metamorphose without feeding (i.e. lecithotrophy), or feed and greatly extend their larval durations (planktotrophy) in the absence of suitable settlement substrata. Invertebrate groups with rigidly canalized life histories are noted to be components of the fouling community, and it is conjectured that an evolutionary history on floating substrata canalized their life histories toward high inbreeding tolerance, often selfing, and brief pelagic larval durations. We note that most life-history theory has considered extremes and major modes in invertebrate development, and suffers from lack of-attention to the abundance of polytypic life-history traits as evolutionary survival mechanisms at the species level. We conclude that response flexibility and plasticity increase both survivorship and fecundity of individuals, while life-history variability increases the likelihood of recruitment across populations and persistence over geological time. More data are needed on the ranges of scalar characters and flexible responses in marine-invertebrate life histories to rigorously evaluate their contributions to evolutionary success. FRIDAY HARBOR LABS,FRIDAY HARBOR,WA 98250 Hadfield, MG (reprint author), UNIV HAWAII,KEWALO MARINE LAB,41 AHUI ST,HONOLULU,HI 96813, USA. ANGER K, 1981, Journal of Crustacean Biology, V1, P518, DOI 10.2307/1548128; BARNES H, 1965, J ANIM ECOL, V34, P391, DOI 10.2307/2656; BAYNE B. L., 1965, OPHELIA, V2, P1; BELL JB, 1993, THESIS U HAWAII; Berrill N.J., 1975, P241; BHAUD M, 1989, B SOC GEOL FR, V5, P551; BHAUD MR, 1993, OCEANOL ACTA, V16, P191; BHAUD MR, 1991, B MAR SCI, V48, P420; BIRKELAND C, 1971, BIOL BULL-US, V141, P99, DOI 10.2307/1539994; BOIDRONMETAIRON IF, 1988, J EXP MAR BIOL ECOL, V119, P31, DOI 10.1016/0022-0981(88)90150-5; CAMERON RA, 1974, BIOL BULL-US, V146, P335, DOI 10.2307/1540409; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; EMLET RB, 1986, J EXP MAR BIOL ECOL, V95, P183, DOI 10.1016/0022-0981(86)90202-9; FENAUX L, 1994, LIMNOL OCEANOGR, V39, P84, DOI 10.4319/lo.1994.39.1.0084; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; GIBSON GD, 1989, BIOL BULL, V176, P103, DOI 10.2307/1541577; GLESE AC, 1987, REPROD MARINE INVERT, V9, pCH4; GRASSLE JP, 1976, SCIENCE, V192, P567, DOI 10.1126/science.1257794; GROSBERG RK, 1986, NATURE, V322, P456, DOI 10.1038/322456a0; Hadfield M.G., 1990, Advances in Invertebrate Reproduction, V5, P247; HADFIELD MG, 1990, J MOLLUS STUD, V56, P239, DOI 10.1093/mollus/56.2.239; HADFIELD MG, 1995, PROGRAMME NATL DETER, V22, P2; HANSEN TA, 1980, SCIENCE, V199, P885; HARMS J, 1992, J EXP MAR BIOL ECOL, V156, P151, DOI 10.1016/0022-0981(92)90242-3; HART MW, 1994, BIOL BULL, V186, P291, DOI 10.2307/1542275; HARVEY AW, 1993, MAR BIOL, V117, P575, DOI 10.1007/BF00349768; HESLINGA GA, 1981, MALACOLOGIA, V20, P349; HICKMAN CS, 1988, MALACOLOGICAL REV S, V4, P17; HIGHSMITH RC, 1986, B MAR SCI, V39, P347; HOAGLAND KE, 1988, BIOL BULL, V174, P109, DOI 10.2307/1541778; JABLONSKI D, 1986, B MAR SCI, V39, P565; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; JACKSON GA, 1981, AM NAT, V118, P16, DOI 10.1086/283797; KEMPF SC, 1985, BIOL BULL-US, V169, P119, DOI 10.2307/1541392; KEMPF SC, 1981, MAR ECOL PROG SER, V6, P61, DOI 10.3354/meps006061; KOHN AJ, 1994, LIFE HIST BIOGEOGRAP; KUBOTA H, 1981, ADV INVERTEBRATE REP, P69; LEVIN LA, 1991, EVOLUTION, V45, P380, DOI 10.1111/j.1558-5646.1991.tb04412.x; LEVIN LA, 1984, BIOL BULL, V166, P494, DOI 10.2307/1541157; LEVIN LA, 1990, ECOLOGY, V71, P2191, DOI 10.2307/1938632; LEVIN LA, 1987, ECOLOGY, V68, P1877, DOI 10.2307/1939879; LUCAS MI, 1979, MAR BIOL, V55, P221, DOI 10.1007/BF00396822; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; MCEDWARD LR, 1991, J EXP MAR BIOL ECOL, V147, P95, DOI 10.1016/0022-0981(91)90039-Y; MILLER SE, 1990, SCIENCE, V248, P356, DOI 10.1126/science.248.4953.356; MORRIS R. H., 1980, INTERTIDAL INVERTEBR; PAULAY G, 1985, J EXP MAR BIOL ECOL, V93, P1, DOI 10.1016/0022-0981(85)90145-5; PECHENIK JA, 1984, BIOL BULL, V166, P537, DOI 10.2307/1541160; PECHENIK JA, 1980, J EXP MAR BIOL ECOL, V44, P1, DOI 10.1016/0022-0981(80)90098-2; PECHENIK JA, 1991, J EXP MAR BIOL ECOL, V151, P17, DOI 10.1016/0022-0981(91)90012-L; PECHENIK JA, 1990, J EXP MAR BIOL ECOL, V136, P47, DOI 10.1016/0022-0981(90)90099-X; PECHENIK JA, 1990, OPHELIA, V32, P63, DOI 10.1080/00785236.1990.10422025; PECHENIK JA, 1984, J EXP MAR BIOL ECOL, V74, P241, DOI 10.1016/0022-0981(84)90128-X; POTSWALD HE, 1968, BIOL BULL, V135, P208, DOI 10.2307/1539628; Powell A. W. B., 1942, Bulletin Auckland Institute and Museum, V2, P1; QIAN PY, 1992, J EXP MAR BIOL ECOL, V157, P159, DOI 10.1016/0022-0981(92)90160-C; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; QIAN PY, 1993, J EXP MAR BIOL ECOL, V166, P93, DOI 10.1016/0022-0981(93)90080-8; Reed Christopher G., 1991, P85; Richmond R.H., 1990, GLOBAL ECOLOGICAL CO, P127; SARVER DJ, 1979, MAR BIOL, V54, P353, DOI 10.1007/BF00395441; SCHELTEMA RS, 1971, 4TH EUR MAR BIOL S, P7; Schelterna R.S., 1974, Thalassia Jugosl, V10, P297; Schroeder P.C., 1975, P1; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; STRATHMANN MF, 1987, REPROD DEV MARINE IN; STRATHMANN R, 1974, AM NAT, V108, P29, DOI 10.1086/282883; STRATHMANN RR, 1992, EVOLUTION, V46, P972, DOI 10.1111/j.1558-5646.1992.tb00613.x; STRATHMANN RR, 1993, BIOL BULL, V185, P232, DOI 10.2307/1542003; STRATHMANN RR, 1977, AM NAT, V111, P373, DOI 10.1086/283168; SWITZERDUNLAP MF, 1977, REPROD ECOLOGY MARIN, P199; THOMPSON TE, 1958, PHILOS T ROY SOC B, V242, P1, DOI 10.1098/rstb.1958.0012; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Thorson G., 1961, OCEANOGRAPHY AM ASS, V67, P455; THORSON GUNNAR, 1946, MEDDEL KOMM DANMARKS FISKERI OG HAVUNDERSOGELSER SER PLANKTON, V4, P1; TOONEN RJ, 1994, NATURE, V370, P511, DOI 10.1038/370511a0; TURNER RL, 1979, REPROD ECOLOGY MARIN, P25; UNDERWOOD AJ, 1972, MAR BIOL, V17, P341, DOI 10.1007/BF00366745; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; WEST HH, 1984, VELIGER, V26, P199; WILLIAMS LG, 1980, MALACOLOGIA, V20, P99; WILSON DP, 1968, J MAR BIOL ASSOC UK, V48, P367, DOI 10.1017/S002531540003455X; WILSON DP, 1970, J MAR BIOL ASSOC UK, V50, P1, DOI 10.1017/S0025315400000576; WILSON DP, 1970, J MAR BIOL ASSOC UK, V50, P33, DOI 10.1017/S0025315400000588 84 110 111 3 42 GAUTHIER-VILLARS PARIS S P E S-JOURNAL DEPT, 120 BD ST GERMAIN, F-75006 PARIS, FRANCE 0399-1784 OCEANOL ACTA Oceanol. Acta 1996 19 3-4 323 334 12 Oceanography Oceanography VB830 WOS:A1996VB83000023 2019-02-26 B Marsula, R; Wissel, C; Enright, N; Lamont, B Pfadenhauer, J Marsula, R; Wissel, C; Enright, N; Lamont, B Impact of fire on the population dynamics of sclerophyll shrubs. A comparison of contrasting reproductive strategies of Banksia species by a simulation model. VERHANDLUNGEN DER GESELLSCHAFT FUR OKOLOGIE, VOL 26 German Proceedings Paper 25th Annual Meeting of the Gesellschaft-fur-Okologie SEP 11-16, 1995 DRESDEN, GERMANY Gesell Okol life history strategies; serotiny; Banksia; fire management; selection pressure; model In a fire prone environment the ability to store seeds in the plant canopy (serotiny) and resprouting after the fire from the root stocks are important attributes. Population dynamics was modelled for two species with contrasting life history strategies Banksia hookeriana, a nonsprouter and (Banksia attenuata, a resprouter) in sclerophyll vegetation in Australia. The model simulated the impact of varying fire regimes on reproductive rates. II takes the seed production, seed storage and seedling recruitment pattern into account as well as different weather conditions. This enables the identification of different fire regimes for population maintainance and variables under the greatest selection pressure. The key attribute for the resprouter was the probability of fire survival and for the nonsprouter the time to the onset of seed production ii fires are frequent. The model is a tool for identifying suitable management procedures and defining conditions under which plant attributes like serotiny are adaptive. UFZ Helmholtz Ctr Environm Res, Sekt Okosyst Anal, D-04318 Leipzig, Germany Marsula, R (reprint author), UFZ Helmholtz Ctr Environm Res, Sekt Okosyst Anal, D-04318 Leipzig, Germany. 0 0 0 1 5 GUSTAV FISCHER VERLAG STUTTGART 70 WOLLGRASWEG 49, W-7000 STUTTGART 70, GERMANY 3-437-25058-2 1996 463 469 7 Ecology; Forestry Environmental Sciences & Ecology; Forestry BL36D WOS:000075264500061 2019-02-26 B Blom, CWPM; vandeSteeg, HM; Voesenek, LACJ Warner, BG; McBean, EA Blom, CWPM; vandeSteeg, HM; Voesenek, LACJ Adaptive mechanisms of plants occurring in wetland gradients WETLANDS: ENVIRONMENTAL GRADIENTS, BOUNDARIES, AND BUFFERS English Proceedings Paper International Symposium on Wetlands - Environmental Gradients, Boundaries, and Buffers APR 22-23, 1994 WATERLOO, CANADA Univ Waterloo, Wetlands Res Ctr, Univ Waterloo, Fac Engn Environm Studies & Sci In river floodplains, vegetation zonation is strongly influenced by water-level fluctuations. Depending on elevation level and flood intensity, a natural as well as a human-influenced environmental gradient can be observed. The natural vegetation consists of softwood and hardwood forests. Grazed marsh and grassland are the characteristic communities of agriculturally used floodplains. Individual plants occurring in floodplains must develop adaptive mechanisms in order to survive transient floods. These mechanisms are discussed at the level of life history strategies and at the physiological level in relation to the position of the species in the floodplain gradient. Species from the higher sites favor rapid germination after seed release while species from lower sites postpone germination or survive in the vegetative stage as a response to flooding. Flood-tolerant species are able to form aerenchymatous roots and survive submergence by their ability to accelerate shoot extension which restores leaf-air contact. Phytohormones, especially ethylene, play an important role in the adaptive responses to flooding. The study of adaptive mechanisms of species occurring along the floodplain gradient will result in a better understanding of flooding-related processes acting at the community level. Blom, CWPM (reprint author), CATHOLIC UNIV NIJMEGEN,DEPT ECOL,TOERNOOIVELD,NL-6525 ED NIJMEGEN,NETHERLANDS. Voesenek, Laurentius/B-9661-2011 0 12 14 0 6 LEWIS PUBLISHERS INC BOCA RATON 2000 CORPORATE BLVD NW, BOCA RATON, FL 33431 1-56670-147-3 1996 91 112 22 Environmental Sciences; Geography Environmental Sciences & Ecology; Geography BG92L WOS:A1996BG92L00007 2019-02-26 S Kaplan, H Steegmann, AT Kaplan, H A theory of fertility and parental investment in traditional and modern human societies YEARBOOK OF PHYSICAL ANTHROPOLOGY, YEARBOOK SERIES VOL 39: SUPPLEMENT 23 TO THE AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY Yearbook of Physical Anthropology English Review fertility; parental investment; life history theory; human capital; hunter-gatherers; demographic transition KESTREL FALCO-TINNUNCULUS; LIFE-HISTORY TRAITS; REPRODUCTIVE SUCCESS; POSTPARTUM AMENORRHEA; OPTIMAL ALLOCATION; OVARIAN-FUNCTION; ECONOMIC-THEORY; ACHE FORAGERS; CLUTCH-SIZE; GROWTH This paper has two interrelated goals. The first is to offer a general theory of fertility and parental investment across a broad spectrum of human societies. The second is to provide a perspective that unifies traditionally separate domains of anthropology. The basic foundation for the analysis is Life history theory and evolutionary biological models of optimal fertility regulation. This tradition is combined with human capital theory in economics to produce a more general theory of investments in embodied capital within and between generations. This synthesis results in a series of optimality models to examine the decision processes underlying fertility and parental investment upon which natural selection is expected to act. Those models are then applied to the hunting and gathering lifeway. This analysis focuses both on problems that all hunting and gathering peoples face and on the production of variable responses in relation to variable ecologies. Next, this consideration of optimal parental investment and fertility behavior in hunter-gatherers is united with existing models of the proximate determinants of human fertility. The analysis of proximate mechanisms is based on the idea that natural selection acts on the final phenotypic outcome of a coordinated system of physiological, psychological and cultural processes. The important conditions affecting parental investment and fertility in modern socioeconomic contexts are then discussed. An explanation of modern fertility and parental investment behavior in terms of the interaction of those conditions with the physiological and psychological mechanisms that evolved during our hunting and gathering history is proposed. The proposal is that skills-based competitive labor markets increase the value of parental investment in children and motivate better-educated, higher income parents to invest more per child than their less-educated, lower-earning counterparts. It is also suggested that the deviation from fitness maximization associated with low modern fertility is due to excess expenditures on both parental and offspring consumption, indicating that our evolved psychology is responding to cues in the modern environment that are not directly related to the fitness impacts of consumption. (C) 1996 Wiley-Liss, Inc. Kaplan, H (reprint author), UNIV NEW MEXICO, DEPT ANTHROPOL, ALBUQUERQUE, NM 87131 USA. Kaplan, Hillard/0000-0002-7398-7358 Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; BARKOW J, 1989, DARWIN SEX STATUS; BARKOW JH, 1980, ETHOL SOCIOBIOL, V1, P163, DOI 10.1016/0162-3095(80)90006-0; BARNETT WS, 1985, HIGH SCOPE EARLY CHI, V2; Becker G, 1975, HUMAN CAPITAL; Becker G. S, 1991, TREATISE FAMILY; BECKER GS, 1986, J LABOR ECON, V4, pS1, DOI 10.1086/298118; BECKER GS, 1990, J POLIT ECON, V98, pS12, DOI 10.1086/261723; BECKER GS, 1976, J POLIT ECON, V84, pS143, DOI 10.1086/260536; BECKER GS, 1988, Q J ECON, V103, P1, DOI 10.2307/1882640; Becker GS, 1973, EC FAMILY MARRIAGE C, P81; BENPORATH Y, 1967, J POLIT ECON, V75, P352, DOI 10.1086/259291; Betzig Laura L., 1986, DESPOTISM DIFFERENTI; Blake J, 1989, FAMILY SIZE ACHIEVEM; Blurton Jones N. G., 1994, KEY ISSUES HUNTER GA, P189; BOCK J, 1995, THESIS U NEW MEXICO; Bongaarts J., 1983, FERTILITY BIOL BEHAV; BOONE JL, 1986, AM ANTHROPOL, V88, P859; BORGERHOFF MM, 1987, AM ANTHROPOL, V89, P617, DOI DOI 10.1525/AA.1987.89.3.02A00050); Borgerhoff Mulder M., 1992, EVOLUTIONARY ECOLOGY, P339; Boyd R., 1985, CULTURE EVOLUTIONARY; BURLEY N, 1979, AM NAT, V114, P835, DOI 10.1086/283532; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; CHAING AC, 1981, FUNDAMENTAL METHODS; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Charnov Eric L., 1993, P1; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Coale A. J., 1986, DECLINE FERTILITY EU, P31; COALE AJ, 1986, DECLINE FERTILITY EU, P1; *CONS LONG STUD, 1983, TWIG BENT LASTING EF; Cromer A., 1993, UNCOMMON SENSE HERET; CRONK L, 1991, AM ANTHROPOL, V93, P345, DOI 10.1525/aa.1991.93.2.02a00040; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Denison Edward F., 1985, TRENDS AM GROWTH 192; DETRAY DN, 1973, J POLITICAL EC, V82, pS70; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Dixit A., 1990, OPTIMIZATION EC THEO; DOWNEY DB, 1995, AM SOCIOL REV, V60, P746, DOI 10.2307/2096320; Draper P, 1975, ANTHR WOMEN, P77; Draper P., 1976, KALAHARI HUNTER GATH, P199; Draper P, 1987, PARENTING LIFE SPAN, P207; ELLISON P, 1995, HUMAN REPROD DICISIO; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; ELLISON PT, 1989, AM J PHYS ANTHROPOL, V78, P519, DOI 10.1002/ajpa.1330780407; Feistner A.T.C., 1989, P21; FLINN M, 1986, ETHOL SOCIOBIOL, V9, P1; Foley R., 1989, COMP SOCIOECOLOGY BE, P195; Grafen A., 1991, P5; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HANRY L, 1961, EUGENICS Q, V8, P81; HANSON LA, 1982, IMMUNOL TODAY, V3, P168, DOI 10.1016/0167-5699(82)90108-6; HARPENDING JC, 1990, HLTH DIS TRADITIONAL, P241; Hart B., 1995, MEANINGFUL DIFFERENC; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; Hernstein R, 1994, BELL CURVE INTELLIGE; HILL J, 1984, ETHOL SOCIOBIOL, V5, P77, DOI 10.1016/0162-3095(84)90011-6; HILL K, 1982, J HUM EVOL, V11, P521, DOI 10.1016/S0047-2484(82)80107-3; Hill K., 1996, ACHE LIFE HIST ECOLO; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HOFF-GINSBERG E, 1995, HDB PARENTING, V2; HOOD J, 1992, CAVEAT EMPTOR HEAD S, V187; HOWIE PW, 1990, BRIT MED J, V300, P11, DOI 10.1136/bmj.300.6716.11; HRDY SB, 1993, HUM NATURE-INT BIOS, V4, P1, DOI 10.1007/BF02734088; HUFFMAN SL, 1978, POP STUD-J DEMOG, V32, P251, DOI 10.2307/2173560; HUGHES AL, 1986, SOC BIOL, V33, P109; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; HURTADO AM, 1990, J ANTHROPOL RES, V46, P293, DOI 10.1086/jar.46.3.3630428; INTRILIGATOR MD, 1970, MATH OPTIMIZATION EC; IRONS W, 1993, BEHAV BRAIN SCI, V16, P295, DOI 10.1017/S0140525X00030089; IRONS W, 1990, ETHOL SOCIOBIOL, V11, P361, DOI 10.1016/0162-3095(90)90016-Y; IRONS W, 1983, SOCIAL BEHAVIOR FEMA, P169; IRONS W, 1995, CULTURAL REPROD SUCC; Irons W., 1979, EVOLUTIONARY BIOL HU, P257; JONES NB, 1986, ETHOL SOCIOBIOL, V7, P91, DOI 10.1016/0162-3095(86)90002-6; JONES NB, 1987, ETHOL SOCIOBIOL, V8, P183; JONES NB, 1994, J ANTHROPOL RES, V50, P217, DOI 10.1086/jar.50.3.3630178; JONES NGB, 1989, COMP SOCIOEOLOGY BEH; JONES RE, 1994, ANN NY ACAD SCI, V709, P227, DOI 10.1111/j.1749-6632.1994.tb30410.x; KAPLAN H, 1993, BEHAV BRAIN SCI, V16, P297, DOI 10.1017/S0140525X00030090; KAPLAN H, 1985, CURR ANTHROPOL, V26, P131, DOI 10.1086/203235; KAPLAN H, 1985, CURR ANTHROPOL, V26, P223, DOI 10.1086/203251; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; KAPLAN H, 1996, UNPUB EVOLUTION HUMA; KAPLAN H, 1996, UNPUB COMPETITIVE LA; KAPLAN H, 1994, THEORY HUMAN PARENTA; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; KELLY R. L., 1995, FORAGING SPECTRUM DI; KNOEDEL J, 1986, DECLINE FERTILITY EU, P337; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lack D, 1954, NATURAL REGULATION A; LAM D, 1993, J POLIT ECON, V101, P710, DOI 10.1086/261894; LAM D, 1986, AM ECON REV, V76, P1103; LANCASTER JB, 1968, MATH ECONOMICS; LANCASTER JB, IN PRESS EVOLUTION F; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; LANCASTER JB, 1991, PRIMATOLOGY TODAY; LANTZ P, 1992, POP STUD-J DEMOG, V46, P121, DOI 10.1080/0032472031000146046; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; LEE RB, 1979, KUNG SAN MED WOMEN W, P236; LESLIE PW, 1989, AM J PHYS ANTHROPOL, V79, P103, DOI 10.1002/ajpa.1330790111; Lessells C.M., 1991, P32; Lesthaeghe Ron, 1986, DECLINE FERTILITY EU, P261; LEWIS PR, 1991, FERTIL STERIL, V55, P529; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LINDERT PH, 1986, J POLIT ECON, V94, P1127, DOI 10.1086/261427; Livi-Bacci M, 1986, DECLINE FERTILITY EU, P182; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; LOW BS, 1990, AM ANTHROPOL, V92, P457, DOI 10.1525/aa.1990.92.2.02a00130; LUNN PG, 1984, AM J CLIN NUTR, V39, P227; McGinley MA, 1988, EVOL ECOL, V2, P77, DOI 10.1007/BF02071590; McGrew W.C., 1992, P229; MEALEY L, 1990, ETHOL SOCIOBIOL, V11, P83, DOI 10.1016/0162-3095(90)90030-A; Mincer J, 1974, SCH EXPERIENCE EARNI, V2; MULDER MB, 1988, COMP SOCIOECOLOGY MA, P405; Oftedal O. T., 1984, S ZOOL SOC LOND, V51, P33; Palloni A, 1994, Bull Pan Am Health Organ, V28, P93; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; PRENTICE AM, 1987, S ZOOLOGICAL SOC LON, V57, P275; RETHERFORD RD, 1993, UNPUB DEMOGRAPHIC TR; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Roff Derek A., 1992; ROGERS AR, 1994, AM ECON REV, V84, P460; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; ROGERS AR, 1992, UNPUB ALLOCATION PAR; SCHWEINHART LJ, 1993, MONOGRAPHYS HIGH SCO, V10; SHEARD NF, 1988, NUTR REV, V46, P1; SHORT RV, 1984, SCI AM, V250, P35, DOI 10.1038/scientificamerican0484-35; Sibly R, 1978, HUMAN BEHAVIOUR ADAP, P135; SILK JB, 1978, FOLIA PRIMATOL, V29, P129, DOI 10.1159/000155835; SIMMS S, 1984, THESIS U UTAH; SIMONS JL, 1974, EFFECTS INCOME FERTI; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HIST; TELEKI G, 1973, PREDATORY BEHAVIOR W; TOMES N, 1978, THESIS U CHICAGO DEP; Tooby J., 1987, P183; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; TURKE PW, 1985, ETHOL SOCIOBIOL, V6, P79, DOI 10.1016/0162-3095(85)90001-9; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; Van de Walle Francine, 1986, DECLINE FERTILITY EU, P201; Varian Hal R, 1992, MICROECONOMIC ANAL; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; Vitzthum Virginia J., 1994, Yearbook of Physical Anthropology, V37, P307; VOLAND E, 1990, BEHAV ECOL SOCIOBIOL, V26, P65; WHITEHEAD RG, 1981, LANCET, V2, P161; Willis R.J., 1987, HDB LABOR ECONOMICS, P525; WILLIS RJ, 1973, J POLIT ECON, V81, pS14, DOI 10.1086/260152; Wood J. W., 1994, DYNAMICS HUMAN REPRO; WORTHMAN CM, 1993, J BIOSOC SCI, V25, P425; ZIGLER E, 1994, AM PSYCHOL, V49, P127, DOI 10.1037/0003-066X.49.2.127 157 209 210 4 59 WILEY-LISS, INC NEW YORK 605 THIRD AVE, NEW YORK, NY 10158-0012 USA 0096-848X YEARB PHYS ANTHROPOL Yearb. Phys. Anthropol. 1996 39 91 135 45 Anthropology Anthropology BH33Q WOS:A1996BH33Q00004 2019-02-26 J Stevenson, IR; Bancroft, DR Stevenson, IR; Bancroft, DR Fluctuating trade-offs favour precocial maturity in male Soay sheep PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article LIFE-HISTORY EVOLUTION; BIGHORN SHEEP; MEDROXYPROGESTERONE ACETATE; SEXUAL-BEHAVIOR; REPRODUCTION; TESTOSTERONE; MORTALITY; COSTS; STRATEGIES; MAMMALS Although trade-offs between reproductive effort and survival are commonly proposed, empirical studies that quantify the true costs and benefits of breeding activity are rare. This information is crucial, however, for examining the adaptive value of important life history traits such as age at maturity. Here we estimate both the survival cost, and genetic benefits, of precocial male maturity in a highly polygynous naturally limited population of Soay sheep. While we demonstrate that early reproduction does indeed carry a survival cost, we find that young males also achieve unexpectedly high reproductive success and that precocial mating is favoured due to the fluctuating demographic structure of the population. UNIV CAMBRIDGE, DEPT GENET, CAMBRIDGE CB2 3EH, ENGLAND; UNIV CAMBRIDGE, DEPT ZOOL, LARGE ANIM RES GRP, CAMBRIDGE CB2 3EJ, ENGLAND BAILEY RC, 1992, OIKOS, V65, P349, DOI 10.2307/3545031; BANCROFT DR, 1995, HEREDITY, V74, P326, DOI 10.1038/hdy.1995.47; BANCROFT DR, 1993, THESIS U CAMBRIDGE; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BLOOD DA, 1970, J WILDLIFE MANAGE, V34, P451, DOI 10.2307/3799032; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BUECHNER HK, 1966, COMP BIOL REPRODUCTI, V15, P69; BURT WH, 1976, FIELD GUIDE MAMMALS; Carrick R., 1962, CSIRO Wildlife Research, V7, P161; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1992, J ANIM ECOL, V61, P381, DOI 10.2307/5330; CLUTTONBROCK TH, 1991, J ANIM ECOL, V60, P593, DOI 10.2307/5300; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CORBETT GB, 1991, HDB BRIT MAMMALS; CORKER CS, 1978, J STEROID BIOCHEM, V9, P373, DOI 10.1016/0022-4731(78)90634-9; DUNBAR RIM, 1990, ANIM BEHAV, V40, P653, DOI 10.1016/S0003-3472(05)80695-5; ERICSSON RJ, 1965, ENDOCRINOLOGY, V77, P203, DOI 10.1210/endo-77-1-203; ESTES RD, 1992, BAHAVIOR GUIDE AFRIC; FESTABIANCHET M, 1989, J WILDLIFE MANAGE, V53, P259, DOI 10.2307/3801344; Geist V., 1971, MOUNTAIN SHEEP STUDY; Geists V., 1964, Journal of Mammalogy, V45, P551, DOI 10.2307/1377327; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GRENFELL BT, 1992, NATURE, V355, P823, DOI 10.1038/355823a0; Grubb P, 1973, J Reprod Fertil Suppl, V19, P491; Grubb P., 1974, P195; GRUBB P, 1974, ISLAND SURVIVORS ECO, P131; GRUBB P, 1974, ISLAND SURVIVORS ECO, P242; GRUBB P, 1974, BEHAVIOUR UNGULATES, V1, P457; GULLAND FMD, 1992, PARASITOLOGY, V105, P493, DOI 10.1017/S0031182000074679; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HEDMAN M, 1988, INT J ANDROL, V11, P265, DOI 10.1111/j.1365-2605.1988.tb01000.x; HOGG JT, 1984, SCIENCE, V225, P526, DOI 10.1126/science.6539948; HOGG JT, 1987, ETHOLOGY, V75, P119; HOUSTON DB, 1989, J MAMMAL, V70, P412, DOI 10.2307/1381530; JARMAN MV, 1979, IMPALA SOCIAL BEHAVI; JOCHLE W, 1965, J REPROD FERTIL, V10, P287; JONSSON KI, 1994, TRENDS ECOL EVOL, V9, P304, DOI 10.1016/0169-5347(94)90042-6; Keen R. E., 1992, COMPUTER SIMULATION; KELLAS LM, 1954, P ZOOL SOC LOND, V124, P751; Kingdon J., 1979, E AFRICAN MAMMALS, VIII; KOJOLA I, 1991, J MAMMAL, V72, P208, DOI 10.2307/1382001; KOMERS PE, 1994, ETHOL ECOL EVOL, V6, P313, DOI 10.1080/08927014.1994.9522984; KOMERS PE, 1994, ETHOL ECOL EVOL, V6, P481, DOI 10.1080/08927014.1994.9522973; Law R, 1979, POPULATION DYNAMICS, P81; LAWS R. M., 1966, EAST AFR WILDLIFE J, V4, P1; Laws R.M., 1966, COMP BIOL REPRODUCTI, V15, P117; LEADERWILLIAMS N, 1988, REINDEER S GEORGIA; LEWONTIN RC, 1965, GENETICS COLONIZING, P79; LINCOLN GA, 1972, HORM BEHAV, V3, P375, DOI 10.1016/0018-506X(72)90027-X; MCCULLAGH P, 1983, GENERALIZED LINEAR M; Milner C., 1974, ISLAND SURVIVORS ECO; MIQUELLE DG, 1990, BEHAV ECOL SOCIOBIOL, V27, P145, DOI 10.1007/BF00168458; MUIR PD, 1982, PROC NEW ZEAL SOC AN, V42, P145; NELSON ME, 1986, J WILDLIFE MANAGE, V50, P691, DOI 10.2307/3800983; OWENSMITH RN, 1974, BEHAVIORAL ECOLOGY W; OZOGA JJ, 1985, J WILDL MGMT, V49, P365; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PERRY JS, 1953, PHILOS T ROY SOC B, V237, P93, DOI 10.1098/rstb.1953.0001; PRITHAM GH, 1968, METABOLISM, P459; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROBINETTE W L, 1971, East African Wildlife Journal, V9, P83; Roff Derek A., 1992; Schaller George B., 1977, MOUNTAIN MONARCHS WI; Schenkel R, 1969, ECOLOGY BEHAVIOUR BL; SHACKLETON DM, 1991, APPL ANIM BEHAV SCI, V29, P173, DOI 10.1016/0168-1591(91)90245-S; SINCLAIR A R E, 1974, East African Wildlife Journal, V12, P185; SOKAL R., 1981, BIOMETRY; SOWLS LK, 1966, COMP BIOL REPRODUCTI, V15, P155; SPINAGE CA, 1982, TERRITORIAL ANTELOPE; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; STEVENSON IR, 1994, THESIS U CAMBRIDGE; TKADLEC E, 1995, OIKOS, V73, P231, DOI 10.2307/3545913; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VALDEZ R, 1991, APPL ANIM BEHAV SCI, V29, P165, DOI 10.1016/0168-1591(91)90244-R; VECCHIO TJ, 1976, ADV STEROID BIOCHEM, V5, P1; Walther F. R, 1983, GAZELLES THEIR RELAT; ZUMPE D, 1988, PHYSIOL BEHAV, V42, P343, DOI 10.1016/0031-9384(88)90275-2 84 71 71 0 13 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. DEC 22 1995 262 1365 267 275 10.1098/rspb.1995.0205 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology TQ738 WOS:A1995TQ73800003 8587885 2019-02-26 J Blarer, A; Doebeli, M; Stearns, SC Blarer, A; Doebeli, M; Stearns, SC Diagnosing senescence: Inferring evolutionary causes from phenotypic patterns can be misleading PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article DROSOPHILA-MELANOGASTER; LIFE-HISTORY; OPTIMIZATION; SELECTION; ALGORITHM Based on the predictions of two theories for the evolution of senescence, the 'antagonistic pleiotropy' and the 'mutation accumulation' theory, an age-specific increase in mortality and a decrease in fecundity are widely used criteria to diagnose senescence in natural and laboratory populations. In this study we question the reliability of these criteria. Using a simple model we show that similar phenotypic patterns result from optimal life histories without senescence. With a tradeoff between reproduction and period survival, optimal life histories produce patterns of increasing mortality and decreasing fecundity as organisms age, even if the tradeoff does not deteriorate with age, so that we are not forced to invoke genetic effects such as antagonistic pleiotropy or accumulation of deleterious mutations to explain such patterns. Furthermore, if optimal life history theory is applied to senescent organisms, phenotypic patterns can result that are usually not associated with senescence. We conclude that the reliability of a diagnosis of senescence based on phenotypic patterns and the comprehension of the phenomenon senescence depends critically on understanding to what extent tradeoffs are determined by the effects of segregating genes. Blarer, A (reprint author), UNIV BASEL, INST ZOOL, RHEINSPRUNG 9, CH-4051 BASEL, SWITZERLAND. Stearns, Stephen/F-4099-2012; Doebeli, Michael/D-5391-2012 Stearns, Stephen/0000-0002-6621-4373 AUSTAD SN, 1992, AM J PRIMATOL, V28, P251, DOI 10.1002/ajp.1350280403; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; Bellman R. E, 1957, DYNAMIC PROGRAMMING; BLARER A, 1995, IN PRESS EVOL ECOL; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CHIPPINDALE AK, 1994, EVOLUTION, V48, P1880, DOI 10.1111/j.1558-5646.1994.tb02221.x; Comfort A., 1979, BIOL SENESCENCE; DUECK G, 1993, J COMPUT PHYS, V104, P86, DOI 10.1006/jcph.1993.1010; DUECK G, 1990, J COMPUT PHYS, V90, P161, DOI 10.1016/0021-9991(90)90201-B; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; HIRSCH HR, 1980, J THEOR BIOL, V86, P149, DOI 10.1016/0022-5193(80)90072-7; HOEKSTRA RF, 1993, NETH J ZOOL, V43, P352; JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681; KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PARTRIDGE L, 1994, GENETICS EVOLUTION A, P109; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; Prothero J., 1987, Basic Life Sciences, V42, P49; Roff Derek A., 1992; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, EVOLUTION, V38, P516, DOI 10.1111/j.1558-5646.1984.tb00317.x; ROSE MR, 1981, GENETICS, V97, P187; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x 31 18 18 2 10 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. DEC 22 1995 262 1365 305 312 10.1098/rspb.1995.0210 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology TQ738 WOS:A1995TQ73800008 8587888 2019-02-26 J Crnokrak, P; Roff, DA Crnokrak, P; Roff, DA Fitness differences associated with calling behaviour in the two wing morphs of male sand crickets, Gryllus firmus ANIMAL BEHAVIOUR English Article LIFE-HISTORY EVOLUTION; FIELD CRICKETS; MATING SUCCESS; DIMORPHIC CRICKET; SEXUAL SELECTION; ATLANTIC SALMON; POLYMORPHISM; INSECTS; ORTHOPTERA; STRATEGIES Alternate morphologies exist in a wide range of species. A commonly encountered dimorphism in insects is wing dimorphism, in which one morph is winged (macropterous=LW) and flight-capable while the other has reduced wings (micropterous=SW) and cannot fly. Gryllus firmus is a wing-dimorphic cricket found in the southeastern U.S.A. Although trade-offs associated with wing dimorphism are well established in female crickets, no such trade-offs have been demonstrated in male crickets. Differences between morphs in male G. firmus in the likelihood of attracting a female were tested in the laboratory using a simple T-maze where females chose between an LW male and an SW male. Time spent calling for each male was recorded on the sixth day of adult life. SW males were more likely to attract a female and spent more time calling than LW males. A logistic regression of female choice against the absolute proportional difference in calling time between males revealed that, as the difference in calling time between males increased, the likelihood of a female choosing the longer-calling male also increased. Therefore it is concluded that there is a trade-off between macroptery and the likelihood of attracting a female, and that it may be a primary factor in the maintenance of wing dimorphism in male G. firmus. (C) 1995 The Association for the Study of Animal Behaviour Crnokrak, P (reprint author), MCGILL UNIV, DEPT BIOL, 1205 DR PENFIELD AVE, MONTREAL, PQ H3A 1B1, CANADA. ALEXANDE.RD, 1968, Q REV BIOL, V43, P1, DOI 10.1086/405628; BAILEY WJ, 1993, J EXP BIOL, V178, P21; BRANTLEY RK, 1993, BRAIN BEHAV EVOLUT, V42, P336, DOI 10.1159/000114170; BROWN L, 1986, AM NAT, V127, P565, DOI 10.1086/284504; BUTLIN RK, 1985, ANIM BEHAV, V33, P1281, DOI 10.1016/S0003-3472(85)80188-3; CADE WH, 1992, ANIM BEHAV, V43, P49, DOI 10.1016/S0003-3472(05)80070-3; CADE WH, 1984, CAN J ZOOL, V62, P226, DOI 10.1139/z84-037; CADE WH, 1984, BEHAVIOUR, V88, P61, DOI 10.1163/156853984X00489; CADE WH, 1981, SCIENCE, V212, P563, DOI 10.1126/science.212.4494.563; COOK D, 1987, AUST J ZOOL, V35, P123, DOI 10.1071/ZO9870123; CRESPI BJ, 1988, BEHAV ECOL SOCIOBIOL, V23, P93, DOI 10.1007/BF00299892; CRESPI BJ, 1988, AM MIDL NAT, V119, P83, DOI 10.2307/2426056; DENNO RF, 1989, ECOL ENTOMOL, V14, P31, DOI 10.1111/j.1365-2311.1989.tb00751.x; DENNO RF, 1991, AM NAT, V138, P1513, DOI 10.1086/285298; DOHERTY J, 1985, Q REV BIOL, V60, P457, DOI 10.1086/414566; DOMINEY WJ, 1980, NATURE, V284, P546, DOI 10.1038/284546a0; Eberhard W.G., 1979, P231; EBERHARD WG, 1991, EVOLUTION, V45, P18, DOI 10.1111/j.1558-5646.1991.tb05262.x; EBERHARD WG, 1982, AM NAT, V119, P420, DOI 10.1086/283920; EBERHARD WG, 1980, SCI AM, V242, P166, DOI 10.1038/scientificamerican0380-166; FRENCH BW, 1987, BEHAV ECOL SOCIOBIOL, V21, P157, DOI 10.1007/BF00303205; FUJISAKI K, 1992, RES POPUL ECOL, V34, P173, DOI 10.1007/BF02513529; GOLDSMITH SK, 1987, BEHAV ECOL SOCIOBIOL, V20, P111, DOI 10.1007/BF00572632; GOLDSMITH SK, 1993, J INSECT BEHAV, V6, P351, DOI 10.1007/BF01048116; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; GROSS MR, 1982, Z TIERPSYCHOL, V60, P1; HARRISON RG, 1980, ANNU REV ECOL SYST, V11, P95, DOI 10.1146/annurev.es.11.110180.000523; HARRISON RG, 1985, EVOLUTION, V39, P244, DOI 10.1111/j.1558-5646.1985.tb05664.x; HAZEL WN, 1990, P ROY SOC B-BIOL SCI, V242, P181, DOI 10.1098/rspb.1990.0122; HEDRICK AV, 1986, BEHAV ECOL SOCIOBIOL, V19, P73, DOI 10.1007/BF00303845; HEDRICK AV, 1988, AM NAT, V132, P267, DOI 10.1086/284849; HOLTMEIER CL, 1993, AM MIDL NAT, V129, P223, DOI 10.2307/2426502; HUTCHINGS JA, 1987, CAN J ZOOL, V65, P766, DOI 10.1139/z87-120; HUTCHINGS JA, 1988, OECOLOGIA, V75, P169, DOI 10.1007/BF00378593; KAITALA A, 1993, ANN ZOOL FENN, V30, P163; MAEKAWA K, 1986, ENVIRON BIOL FISH, V15, P119, DOI 10.1007/BF00005427; MOLE S, 1993, OECOLOGIA, V93, P121, DOI 10.1007/BF00321201; NOVOTNY V, IN PRESS ENTOMOL EXP; PRICE DK, 1993, HEREDITY, V71, P405, DOI 10.1038/hdy.1993.155; RADWAN J, 1993, BEHAV ECOL SOCIOBIOL, V33, P201, DOI 10.1007/BF00216601; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; ROFF DA, 1991, AM ZOOL, V31, P243; ROFF DA, 1994, HEREDITY, V72, P36, DOI 10.1038/hdy.1994.4; ROFF DA, 1989, J EVOLUTION BIOL, V2, P109, DOI 10.1046/j.1420-9101.1989.2020109.x; ROFF DA, 1984, OECOLOGIA, V63, P30, DOI 10.1007/BF00379781; ROFF DA, 1993, EVOLUTION, V47, P1572, DOI 10.1111/j.1558-5646.1993.tb02176.x; ROFF DA, 1990, HEREDITY, V65, P163, DOI 10.1038/hdy.1990.84; ROFF DA, 1986, HEREDITY, V57, P221, DOI 10.1038/hdy.1986.112; Roff Derek A., 1992; *SAS I, 1988, SAS STAT US GUID 603; SOKAL R., 1981, BIOMETRY; SOUROUKIS K, 1992, CAN J ZOOL, V70, P950, DOI 10.1139/z92-135; SOUROUKIS K, 1993, BEHAVIOUR, V126, P45, DOI 10.1163/156853993X00335; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TANAKA S, 1993, J INSECT PHYSIOL, V39, P493, DOI 10.1016/0022-1910(93)90081-2; TUCKERMAN JF, 1993, BEHAV ECOL, V4, P106, DOI 10.1093/beheco/4.2.106; UTIDA S, 1972, J STORED PROD RES, V8, P111, DOI 10.1016/0022-474X(72)90028-8; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WATANABE M, 1990, J ETHOL, V8, P129, DOI 10.1007/BF02350283; WEBB KL, 1992, ANIM BEHAV, V44, P823, DOI 10.1016/S0003-3472(05)80578-0; ZERA AJ, 1994, J INSECT PHYSIOL, V40, P1037, DOI 10.1016/0022-1910(94)90056-6; ZUK M, 1987, ANIM BEHAV, V35, P1240, DOI 10.1016/S0003-3472(87)80182-3 65 77 77 0 29 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. DEC 1995 50 6 1475 1481 10.1016/0003-3472(95)80004-2 7 Behavioral Sciences; Zoology Behavioral Sciences; Zoology TK737 WOS:A1995TK73700005 2019-02-26 J VANTIENDEREN, PH VANTIENDEREN, PH LIFE-CYCLE TRADE-OFFS IN MATRIX POPULATION-MODELS ECOLOGY English Article DEMOGRAPHY; KILLER WHALES; LIFE HISTORY; MATRIX PROJECTIONS; POPULATION GROWTH RATE; SELECTION DIFFERENTIAL; SELECTION RESPONSE FINDING CONFIDENCE-LIMITS; GROWTH RATES; DEMOGRAPHY; SELECTION; ACQUISITION; PARAMETERS; ALLOCATION; ELASTICITY; CHARACTERS; RESOURCES Matrix projections allow identification of those phases in the life cycle with a high potential impact on the population growth rate. This impact is assessed by the sensitivity or elasticity of the matrix elements that are computed from life cycle data such as age-dependent survival or fecundity. Covariation among life cycle components, e.g., due to trade-offs, is a main subject of life history theory. Sensitivities or elasticities of matrix elements do not take this covariation into account. Integrated sensitivities and elasticities measure the net effect of a matrix element, combining its direct effect and indirect effects through correlation with other matrix elements. These measures are related to the selection differentials and expected selection responses from quantitative genetics. The use of these measures is illustrated with data on disease resistance in a perennial weed Plantago lanceolata, and the demography of killer whale pods. VANTIENDEREN, PH (reprint author), NETHERLANDS INST ECOL,POB 40,6666 ZG HETEREN,NETHERLANDS. van Tienderen, Peter/I-6018-2012 van Tienderen, Peter/0000-0002-7225-0856 ALVAREZBUYLLA ER, 1991, TRENDS ECOL EVOL, V6, P221, DOI 10.1016/0169-5347(91)90026-T; ALVAREZBUYLLA ER, 1994, ECOLOGY, V75, P255, DOI 10.2307/1939401; ALVAREZBUYLLA ER, 1993, OIKOS, V68, P273, DOI 10.2307/3544840; Bigg M. A., 1990, REP INT WHALING COMM, P383; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; CASWELL H, 1983, AM ZOOL, V23, P35; CASWELL H, 1985, POPULATION BIOL EVOL, P187; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; DENOOIJ MP, 1988, OECOLOGIA, V75, P535, DOI 10.1007/BF00776417; Falconer D.S., 1981, INTRO QUANTITATIVE G; KALISZ S, 1992, ECOLOGY, V73, P1082, DOI 10.2307/1940182; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 1982, P21; LINDERS EGA, 1994, THESIS U UTRECHT UTR; Olesiuk P.F., 1990, Reports of the International Whaling Commission Special Issue, P209; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; SHAW RG, 1987, EVOLUTION, V41, P812, DOI 10.1111/j.1558-5646.1987.tb05855.x; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Stearns SC., 1992, EVOLUTION LIFE HIST; TEMPLETON AR, 1980, THEOR POPUL BIOL, V18, P279, DOI 10.1016/0040-5809(80)90053-2; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANGROENENDAEL JM, 1988, TRENDS ECOL EVOL, V10, P264; VANTIENDEREN PH, 1994, J EVOLUTION BIOL, V7, P1, DOI 10.1046/j.1420-9101.1994.7010001.x; VANTIENDEREN PH, 1989, EVOL TREND PLANT, V3, P91 30 81 82 0 32 ECOLOGICAL SOC AMER TEMPE ARIZONA STATE UNIV CENTER ENVIRONMENTAL STUDIES, TEMPE, AZ 85287 0012-9658 ECOLOGY Ecology DEC 1995 76 8 2482 2489 10.2307/2265822 8 Ecology Environmental Sciences & Ecology TJ312 WOS:A1995TJ31200011 2019-02-26 J Fielding, DJ; Brusven, MA Fielding, DJ; Brusven, MA Ecological correlates between rangeland grasshopper (Orthoptera: Acrididae) and plant communities of southern Idaho ENVIRONMENTAL ENTOMOLOGY English Article life-history theory; disturbance; community structure; niche breadth; canonical correspondence analysis CANONICAL CORRESPONDENCE-ANALYSIS; MELANOPLUS-SANGUINIPES; STRATEGIES; ABUNDANCE; SUCCESSION; DIVERSITY; PATTERNS; HABITAT Grasshopper and plant community relationships in southern Idaho were examined within a life-history context. Plant species composition (by weight) and density and species composition of grasshoppers were estimated at 52 sites in south-central Idaho, representing a range of plant communities from native sagebrush-bunchgrass to exotic annual grasslands. The plant community at each site was evaluated using the Crime triangular model of plant life-history strategies, which consists of 3 axes representing adaptations to competition, stress, and disturbance. Four attributes were measured for the 20 most common grasshopper species: mean density, habitat breadth, average instar in June, and diet breadth. Grasshopper density, habitat breadth, and diet breadth were correlated positively with site scores on the disturbance axis of the Crime life history model and were correlated negatively with site scores on the competition and stress axes. Results suggest that characterization of grasshopper and plant community life-history strategies provides useful insights for understanding the dynamics of grasshopper assemblages from different habitats. UNIV IDAHO, DEPT PLANT SOIL & ENTOMOL SCI, MOSCOW, ID 83844 USA ANDERSON NORMAN L., 1964, ANN ENTOMOL SOC AMER, V57, P736; BAILEY RG, 1978, DESCRIPTION ECOREGIO; BANFILL J C, 1973, Melanderia, V12, P1; BONHAM CD, 1991, J VEG SCI, V2, P339, DOI 10.2307/3235925; BROWN JH, 1984, AM NAT, V124, P255, DOI 10.1086/284267; BROWN VK, 1985, OIKOS, V44, P17, DOI 10.2307/3544037; BROWN VK, 1983, OECOLOGIA, V56, P220, DOI 10.1007/BF00379693; BROWN VK, 1986, J ECOL, V74, P963, DOI 10.2307/2260227; BRUSVEN MA, 1960, 3 ND AGR EXP STN RES; CAPINERA JL, 1989, ENVIRON ENTOMOL, V18, P8, DOI 10.1093/ee/18.1.8; COOK CW, 1952, U RANGE MANAGE, V5, P331; FIELDING DJ, 1990, ENVIRON ENTOMOL, V19, P1786, DOI 10.1093/ee/19.6.1786; FIELDING DJ, 1992, J ECON ENTOMOL, V85, P783, DOI 10.1093/jee/85.3.783; FIELDING DJ, 1993, ENVIRON ENTOMOL, V22, P71, DOI 10.1093/ee/22.1.71; FRANCIS RC, 1979, J ENVIRON MANAGE, V8, P55; GRIME JP, 1984, NEW PHYTOL, V98, P15, DOI 10.1111/j.1469-8137.1984.tb06096.x; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; HARRIS GA, 1967, ECOL MONOGR, V37, P89, DOI 10.2307/2937337; HARRIS GA, 1970, ECOLOGY, V51, P529; HILL MO, 1973, ECOLOGY, V54, P427, DOI 10.2307/1934352; HILL MO, 1980, VEGETATIO, V42, P47, DOI 10.1007/BF00048870; HIRONAKA M, 1983, U IDAHO FOREST B, V35; Hull A. C., 1947, JOUR FOREST, V45, P555; Joern A., 1990, P415; JOERN A, 1979, Transactions of the American Entomological Society (Philadelphia), V105, P253; JOERN A, 1979, OECOLOGIA BERL, V33, P325; KEMP WP, 1994, CAN ENTOMOL, V126, P1075, DOI 10.4039/Ent1261075-4; KEMP WP, 1992, ENVIRON ENTOMOL, V21, P461, DOI 10.1093/ee/21.3.461; KLEMMEDSON JO, 1964, BOT REV, V30, P226, DOI 10.1007/BF02858603; KOLASA J, 1988, OIKOS, V53, P235, DOI 10.2307/3566068; Mack R. N, 1989, BIOL INVASIONS GLOBA, P155; MACK RN, 1981, AGRO-ECOSYSTEMS, V7, P145, DOI 10.1016/0304-3746(81)90027-5; MCANELLY ML, 1986, BIOL BULL, V170, P368, DOI 10.2307/1541848; MELGOZA G, 1991, J RANGE MANAGE, V44, P27, DOI 10.2307/4002633; MULKERN GB, 1959, J ECON ENTOMOL, V52, P342, DOI 10.1093/jee/52.2.342; MURRAY RB, 1978, INT199 US FOR SERV R; NERNEY NJ, 1969, J ECON ENTOMOL, V62, P329, DOI 10.1093/jee/62.2.329; PFADT RE, 1982, ENVIRON ENTOMOL, V11, P690, DOI 10.1093/ee/11.3.690; PIERSON FB, 1991, J RANGE MANAGE, V44, P491, DOI 10.2307/4002751; REYNOLDS T D, 1981, Northwest Science, V55, P225; Shannon C. E., 1949, MATH THEORY COMMUNIC; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; SUGIHARA G, 1980, AM NAT, V116, P770, DOI 10.1086/283669; TER BRAAK CJF, 1987, VEGETATIO, V69, P69, DOI 10.1007/BF00038688; TERBRAAK CJF, 1986, ECOLOGY, V67, P1167; TERBRAAK CJF, LWA8802 TNO I APPL C; Tisdale E. W., 1981, FOREST WILDLIFE RANG, V33; WHISENANT SG, 1990, USDA INTERM, V276, P4; Wright H. A, 1982, FIRE ECOLOGY; YANG Y, 1994, FUNCT ECOL, V8, P36, DOI 10.2307/2390109; YANG YL, 1994, PHYSIOL ENTOMOL, V19, P75, DOI 10.1111/j.1365-3032.1994.tb01077.x; Zar J. H., 1984, BIOSTATISTICAL ANAL; 1976, NATIONAL RANGE HDB; SAS STAT USERS GUIDE, P87 55 17 23 2 9 ENTOMOLOGICAL SOC AMER LANHAM 10001 DEREKWOOD LANE, STE 100, LANHAM, MD 20706-4876 USA 0046-225X ENVIRON ENTOMOL Environ. Entomol. DEC 1995 24 6 1432 1441 10.1093/ee/24.6.1432 10 Entomology Entomology TL696 WOS:A1995TL69600008 2019-02-26 J Jokela, J; Lively, CM Jokela, J; Lively, CM Parasites, sex, and early reproduction in a mixed population of freshwater snails EVOLUTION English Article castrating trematodes; life-history evolution; parthenogenesis; Potamopyrgus; Red Queen hypothesis; sexual reproduction LIFE HISTORIES UNIV TURKU,DEPT BIOL,ECOL ZOOL LAB,SF-20500 TURKU,FINLAND Jokela, J (reprint author), INDIANA UNIV,DEPT BIOL,BLOOMINGTON,IN 47405, USA. Group, JJ/G-2466-2011; Lively, Curtis/A-8057-2011; Jokela, Jukka/F-8626-2010 Jokela, Jukka/0000-0002-1731-727X BELL G, 1982, MASTERPIECE NATURE; DYBDAHL MF, 1995, J EVOLUTIONARY BIOL, V3, P385; FOX JA, 1996, IN PRESS GENETIC STR; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; HAMILTON WD, 1980, OIKOS, V35, P282, DOI 10.2307/3544435; HAMILTON WD, 1990, P NATL ACAD SCI USA, V87, P3566, DOI 10.1073/pnas.87.9.3566; HOWARD RS, 1994, NATURE, V367, P554, DOI 10.1038/367554a0; JAENIKE J, 1978, Evolutionary Theory, V3, P191; JOKELA J, 1995, OECOLOGIA, V103, P509, DOI 10.1007/BF00328690; LAFFERTY KD, 1993, OIKOS, V68, P3, DOI 10.2307/3545303; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEVIN DA, 1975, AM NAT, V109, P437, DOI 10.1086/283012; LIVELY CM, 1987, NATURE, V328, P519, DOI 10.1038/328519a0; LIVELY CM, 1992, EVOLUTION, V46, P907, DOI 10.1111/j.1558-5646.1992.tb00608.x; MacArthur C. P., 1976, NZ J ZOOL, V3, P35; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; SCHRAG SJ, 1994, AM NAT, V143, P636, DOI 10.1086/285624; WINTERBOURN M J, 1974, Mauri Ora, V2, P17; WINTERBOURN M J, 1970, Proceedings of the Malacological Society of London, V39, P139 20 88 91 2 30 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution DEC 1995 49 6 1268 1271 10.2307/2410451 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TR695 WOS:A1995TR69500024 28568513 Bronze 2019-02-26 J Hillstrom, L Hillstrom, L Body mass reduction during reproduction in the Pied Flycatcher Ficedula hypoleuca: Physiological stress or adaptation for lowered costs of locomotion? FUNCTIONAL ECOLOGY English Article body mass change; costs of reproduction; mass adjustment; supplementary food CLUTCH SIZE; BREEDING BIRDS; BROOD SIZE; PARENTAL SURVIVAL; WEIGHT; MANIPULATION; STRATEGIES; ALBICOLLIS; PREDATION; SUCCESS 1. An important parameter in life-history theory is reproductive effort, i.e. the proportional amount of resources allocated to reproduction, and its effects on individual animals within a population, including the risk of predation, survival and fecundity in subsequent breeding attempts. Generally, it is believed that reproduction drains energy that otherwise could have been used for survival or subsequent reproduction. There has been a controversy about whether the mass loss in birds represents such an energetic drain in energy store or whether it is an adaptation to lower the flight costs of adults during nestling rearing. 2. Here I present an experiment that aimed to test these two hypotheses, i.e. 'the cost of reproduction hypothesis' and the 'mass adjustment hypothesis', by adding extra food in some territories during incubation and nestling rearing, while others were held as controls. 3. There was no effect of food addition on either final body mass (late nestling) or body mass change (from incubation to late nestling) for females of different treatments. However, in males there was a tendency for a lower final body mass in control broods, compared with males with supplementary food, and also for a larger body mass change of males in control broods compared with males with supplementary food in 1 of the 2 years. 4. There was a positive correlation between number of fledged young and body mass change for females, and a negative correlation existed between fledging success and final body mass for females. Thus, a large number of fledged young led to a greater body mass change and to a lower final body mass for females. However, there were no such correlations in males. 5. Hence this study provides some support for the 'cost of reproduction hypothesis', but also gives support for the 'mass adjustment hypothesis'. A certain amount of decline in body mass during breeding may be of adaptive value, but below some threshold limit, which can vary depending on environmental conditions, a somatic cost probably arises that may reduce future survival and/or fecundity. Thus, the two hypotheses for explaining body mass reduction in birds may not be mutually exclusive. Also, a third alternative 'benefit-cost hypothesis' is proposed, which predicts that parents should decrease their body mass to a level that optimizes parental investment and maximizes life-time reproductive success. UNIV UPPSALA, DEPT ZOOL, S-75236 UPPSALA, SWEDEN Alatalo R.V., 1985, P59; ALATALO RV, 1982, ANIM BEHAV, V30, P585, DOI 10.1016/S0003-3472(82)80072-9; ANDERSSON M, 1978, AM NAT, V112, P762, DOI 10.1086/283317; ASKENMO C, 1977, Ornis Scandinavica, V8, P1, DOI 10.2307/3675982; BJORKLUND M, 1986, ANIM BEHAV, V34, P1436, DOI 10.1016/S0003-3472(86)80214-7; Bryant DM, 1988, FUNCT ECOL, V2, P23, DOI 10.2307/2389456; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COULSON JC, 1985, IBIS, V127, P450, DOI 10.1111/j.1474-919X.1985.tb04841.x; COULSON JC, 1983, ARDEA, V71, P235; Davies NB, 1992, DUNNOCK BEHAVIOUR SO; DERRICKSON EM, 1992, FUNCT ECOL, V6, P57, DOI 10.2307/2389771; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; Dhont A, 1971, P ADV STUDY I DYNAMI, P532; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DOW H, 1983, J ANIM ECOL, V52, P681, DOI 10.2307/4447; DRENT RH, 1980, ARDEA, V68, P225; DRUMMOND H, 1989, ANIM BEHAV, V37, P806, DOI 10.1016/0003-3472(89)90065-1; Ekman JB, 1990, BEHAV ECOL, V1, P62, DOI 10.1093/beheco/1.1.62; ENOKSSON B, 1983, J ANIM ECOL, V52, P927, DOI 10.2307/4464; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; GIBBONS DW, 1987, J ANIM ECOL, V56, P403, DOI 10.2307/5056; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HOGSTEDT G, 1981, AM NAT, V118, P568, DOI 10.1086/283850; HUSSELL DJT, 1972, ECOL MONOGR, V42, P317, DOI 10.2307/1942213; JOHNSON LS, 1993, ANIM BEHAV, V46, P1111, DOI 10.1006/anbe.1993.1301; JONES G, 1987, ARDEA, V75, P145; JONES G, 1988, ORNIS SCAND, V19, P145, DOI 10.2307/3676464; KOZLOWSKI J, 1989, EVOLUTION, V43, P1369, DOI 10.1111/j.1558-5646.1989.tb02588.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lack D, 1954, NATURAL REGULATION A; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LIFJELD JT, 1986, ANIM BEHAV, V34, P1441, DOI 10.1016/S0003-3472(86)80215-9; LIMA SL, 1986, ECOLOGY, V67, P377, DOI 10.2307/1938580; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lundberg A., 1992, PIED FLYCATCHER; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MARTINS TLF, 1993, BEHAV ECOL, V4, P213, DOI 10.1093/beheco/4.3.213; MARTINS TLF, 1993, BEHAV ECOL SOCIOBIOL, V32, P61; MASMAN D, 1989, J EVOLUTIONARY BIOL, V42, P433; MCCAUSE RA, 1960, COMPOSITION FOODS; MOCK DW, 1987, ANIM BEHAV, V35, P150, DOI 10.1016/S0003-3472(87)80220-8; MORENO J, 1989, BIOL J LINN SOC, V37, P297, DOI 10.1111/j.1095-8312.1989.tb01907.x; MORENO J, 1989, CONDOR, V91, P178, DOI 10.2307/1368160; Murphy E.C., 1986, Current Ornithology, V4, P141; NORBERG RA, 1981, AM NAT, V118, P838, DOI 10.1086/283874; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; NUR N, 1988, ARDEA, V76, P155; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; Nur N., 1987, P457; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; NUR N, 1990, POPULATION BIOL PASS; OLSSON K, 1995, ETHOLOGY, V101, P160; ORELL M, 1988, OECOLOGIA, V77, P423, DOI 10.1007/BF00378054; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1980, 17 P INT ORN C, P159; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; RICKLEFS R, 1974, PUBLICATIONS NUTTAL, V15; RICKLEFS RE, 1984, ORNIS SCAND, V15, P155, DOI 10.2307/3675956; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; ROYAMA T, 1966, IBIS, V108, P313, DOI 10.1111/j.1474-919X.1966.tb07348.x; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; Stearns SC., 1992, EVOLUTION LIFE HIST; TINBERGEN JM, 1987, ARDEA, V75, P111; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINKEL W, 1976, Journal fuer Ornithologie, V117, P419, DOI 10.1007/BF01647170; WOLF L, 1990, ANIM BEHAV, V39, P125, DOI 10.1016/S0003-3472(05)80732-8; 1985, SAS USERS GUIDE STAT 79 46 48 0 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. DEC 1995 9 6 807 817 10.2307/2389978 11 Ecology Environmental Sciences & Ecology TU963 WOS:A1995TU96300002 2019-02-26 J BURGER, J; GARBER, SD BURGER, J; GARBER, SD RISK ASSESSMENT, LIFE-HISTORY STRATEGIES, AND TURTLES - COULD DECLINES BE PREVENTED OR PREDICTED JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH English Article LOGGERHEAD SEA TURTLES; CONSERVATION; TRANSLOCATION; AMPHIBIANS; REPTILES The process of ecological risk assessment should involve the ability to predict adverse outcomes of particular environmental contaminants or human intrusions. Ecological risk assessment generally focuses on populations, communities, and ecosystems, rather than on individual health. We explore the importance of life history strategies of aquatic turtles to their risk from environmental contaminants and other human activities using three examples: the wood turtle Clemmys insculpta, a freshwater species; the diamondback terrapin Malaclemys terrapin, a littoral species; and marine turtles as a group. These turtles are partly herbivorous and are at low or intermediate levels on the food chain, yet are particularly vulnerable due to their life history strategies of being long-lived with relatively low survival of young. They suffer a variety of natural mortality factors that include predation, starvation, and disease, as well as inundation and destruction of nesting beaches and their eggs by storms. Yet they also face a number of anthropogenic hazards, including toxic chemicals and floatables (plastics); capture for food, other products, and pets; incidental mortality in fishing gear; disturbance while nesting or moving on land; injuries or death by collision with boats; and increased predator exposure because of humans. The three turtle species (or groups of species) examined have experienced these natural and anthropogenic pressures differentially, with resultant differences in the rates of population declines. Because they are lower on the food chain than other obligate carnivores, they are less vulnerable to toxics, and to date, toxics seem a relatively inconsequential environmental risk to turtles. RUTGERS STATE UNIV, ENVIRONM & OCCUPAT HLTH SCI INST, PISCATAWAY, NJ 08855 USA BURGER, J (reprint author), RUTGERS STATE UNIV, DEPT BIOL SCI, PISCATAWAY, NJ 08855 USA. NIEHS NIH HHS [ESO 5022] [Anonymous], 1993, ISSUES RISK ASSESSME; BARNTHOUSE LW, 1992, ENVIRON SCI TECHNOL, V26, P230, DOI 10.1021/es00026a608; BASCIETTO J, 1990, ENVIRON SCI TECHNOL, V24, P10, DOI 10.1021/es00071a001; BULLIS HR, 1978, FLORIDA MAR RES PUBL, V33, P46; BURGER J, 1994, J TOXICOL ENV HEALTH, V42, P367, DOI 10.1080/15287399409531888; BURGER J, 1992, ARCH ENVIRON CON TOX, V23, P484; BURGER J, 1976, COPEIA, P742; BURGER J, 1975, COPEIA, P113; BURGER J, 1977, AM MIDL NAT, V97, P444, DOI 10.2307/2425108; BURGER J, 1976, Herpetologica, V32, P412; BURGER J, 1994, REV ENV TOXICOL, V5, P206; Burger J., 1990, BLACK SKIMMER SOCIAL; Burger J, 1989, PLASTRON PAPERS, V19, P35; Burger J., 1994, OIL SPILL ARTHUR KIL, P115; BUTLER GC, 1978, PRINCIPLES ECOTOXICO; Carr A, 1952, HDB TURTLES TURTLES; Carson R., 1962, SILENT SPRING; COLBORN T, 1992, CHEM INDUCED ALTERAT; CONGDON JD, 1993, CONSERV BIOL, V7, P826, DOI 10.1046/j.1523-1739.1993.740826.x; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; DODD CK, 1991, HERPETOLOGICA, V47, P336; Dodd Jr C, 1982, BRIMLEYANA, V7, P39; ERNST C. H., 1991, VIRGINIAS ENDANGERED, P455; ERNST C.H., 1972, TURTLES US; FOGARTY MJ, 1992, ENVIRON SCI TECHNOL, V26, P441; FOX GA, 1992, ADV MOD ENV, V21, P147; FRAZER NB, 1983, HERPETOLOGICA, V39, P436; FRY DM, 1981, SCIENCE, V213, P922, DOI 10.1126/science.7256288; Garber S.W., 1990, Conservationist (Albany), V44, P44; GARBER SD, 1985, 9TH P ANN C COAST SO, P311; GARBER SD, 1994, RESTORE N WOODS; GARBER SD, 1995, ECOL APPL, V4, P651; GARBER SD, 1990, FOCUS AM GEOGRAPHICA, V40, P33; GARBER SD, 1989, 13TH P INT HERP S IN, P151; Garber SW, 1988, PLASTRON PAPERS, V17, P18; GOCHFELD M, 1993, ENVIRON MONIT ASSESS, V28, P161, DOI 10.1007/BF00547034; GRAHAM RL, 1991, ECOL APPL, V1, P196, DOI 10.2307/1941812; GREIGSMITH PW, 1992, ENVIRON TOXICOL CHEM, V11, P1673, DOI 10.1897/1552-8618(1992)11[1673:AEPOER]2.0.CO;2; Harding J.H., 1979, Herp, V15, P9; HENWOOD TA, 1987, FISH B-NOAA, V85, P813; HICKEY JJ, 1969, PEREGRINE FALCON POP; HILDEBRAND SAMUEL F., 1932, ZOOLOGICA [NEW YORK], V9, P551; HIRTH HF, 1971, FAO FISH S, V85; HURD LE, 1979, ESTUARIES, V2, P28, DOI 10.2307/1352036; LANDIS WG, 1993, ASTM STP, V1179; LANGFORD RR, 1949, BIOL BULL, V2, P19; LINCER JL, 1975, J APPL ECOL, V12, P781, DOI 10.2307/2402090; LOVICH J E, 1991, Herpetological Review, V22, P81; LOVICH JE, 1990, OIKOS, V59, P12; LUTZ PL, 1989, 1ST P INT S KEMPS RI, P52; O'NEILL R V, 1982, Environmental Toxicology and Chemistry, V1, P167, DOI 10.1897/1552-8618(1982)1[167:ERAANM]2.0.CO;2; OKKERMAN PC, 1991, ECOTOX ENVIRON SAFE, V21, P182, DOI 10.1016/0147-6513(91)90020-P; OLIVER JA, 1955, NATURAL HIST N AM AM; Peakall DB, 1975, ENV DYNAMICS PESTICI, P343; PLOTKIN PT, 1989, 1ST P INT S KEMPS RI, P579; REINERT HK, 1991, HERPETOLOGICA, V47, P357; Seigel R.A., 1980, Transactions of the Kansas Academy of Science, V83, P239, DOI 10.2307/3628414; Seigel Richard A., 1995, Chelonian Conservation and Biology, V1, P240; STONE WB, 1980, NEW YORK FISH GAME J, V27, P39; SUTER GW, 1990, ENVIRON MANAGE, V14, P9, DOI 10.1007/BF02394015; Suter II G. W., 1993, ECOLOGICAL RISK ASSE; Witzell W., 1983, FAO FISH SYNOP, V137, P78; 1994, LIVE FRESHWATER TURT; 1983, RISK ASSESSMETN FEDE; 1986, ECOLOGICAL KNOWLEDGE; 1990, DECLINE SEA TURTLES 66 14 14 4 37 TAYLOR & FRANCIS INC PHILADELPHIA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA 0098-4108 J TOXICOL ENV HEALTH J. Toxicol. Environ. Health DEC 1995 46 4 483 500 10.1080/15287399509532050 18 Environmental Sciences; Public, Environmental & Occupational Health; Toxicology Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology TK076 WOS:A1995TK07600006 8523473 2019-02-26 J Bell, DT; Rokich, DP; McChesney, CJ; Plummer, JA Bell, DT; Rokich, DP; McChesney, CJ; Plummer, JA Effects of temperature, light and gibberellic acid on the germination of seeds of 43 species native to Western Australia JOURNAL OF VEGETATION SCIENCE English Article Acacia; Eucalyptus; legume; provenance; seed dormancy FOREST; STIMULATION Species native to the southwest of Western Australia, representing a range of plant families, life-history strategies, fire-response syndromes, seed-store types and seed weights, were tested for viability using tetrazolium chloride and for germination under combinations of constant temperatures of 15 degrees C or 23 degrees C, constantly dark or 12 h diurnal white-light conditions, and with, or without, addition of gibberellic acid (GA(3), 50 mg/l). Species previously known to require a heat-shock treatment to overcome dormancy due to an impervious testa were pre-treated prior to imposition of temperature, light and GA(3) conditions. The test environmental conditions related to differences between winter and autumn temperatures and surface and buried seed germination positions of post-fire habitats. The viability of the selection of native Western Australian species ranged from 0 to 100 %, averaging 71 %. For all taxa, no combination of temperature, light and gibberellic acid treatment induced all viable seeds to germinate. The greatest percentage germination achieved in any combination of treatments averaged 71 % of all viable seeds for all species. Larger seeds (> 10 mg seed weight) tended to have greater viability percentages, but no overall patterns of viability or germinability were attributable to seed storage syndrome, strategy of fire recovery response or life-form type. Germination of most of the dominant tree representatives (Eucalyptus calophylla, E. diversicolor, E. erythrocorys, E. gomphocephala, and E. patens) was indifferent to the trial conditions of temperature, light and GA(3). However, Eucalyptus marginata showed reduced germination in the light, which was overcome with GA(3). GA(3) also overcame the inhibition resulting from exposure to light in some understorey species (e.g. Allocasuarina campestris, Regelia ciliata, Xanthorrhoea gracilis and X. preissii). Germination of many hard-seeded, understorey shrub and herbaceous perennial species, especially those with small (< 10 mg) seeds (e.g. Bossiaea ornata, B. aquifolium and Acacia drummondii ssp. candolleana) was greater at the lower trial temperature and in the dark. Some large (> 10 mg) seeded, understorey species (e.g. Acacia extensa, Kennedia coccinea, K. prostrata, Hovea trisperma and Hardenbergia comptoniana) germinated in high percentages in both temperatures, but maximum germination percentages still tended to be at 15 degrees C. Large-seeded species were less sensitive to exposure to light compared to the smaller seeded species. The largest seeded species tested, Paraserianthes lophantha, germinated best in the warmer incubation temperature and in the light. The ecological significance of the tests would be that species which have seed dormancy mechanisms capable of delaying germination until the cool temperature, winter rainy period of this mediterranean-type climate would be more likely to survive than if germination followed summer rain showers or the first, intermittent rains of autumn. Burial of seeds becomes more important if germination occurs when rains first begin as this period has less available soil moisture and temperatures are high. Also survival of seedlings could be enhanced if germination of seed was restricted to the positions protected from high light, higher temperatures and lower soil moisture by the presence of a forest canopy. Therefore, seeds which have an ability to sense the presence of a previous fire in the habitat, conditions in light environment and appropriate temperature level have an adaptive advantage to time emergence to situations of time and space where survival is maximized. Variation in viability and germination percentages were apparent in some cases where more than one seed collection of available for testing, indicating that further aspects, such as seed age, maturity at collection, storage conditions and depth of seed dormancy, remain to be considered. UNIV WESTERN AUSTRALIA,FAC AGR,NEDLANDS,WA 6009,AUSTRALIA Bell, DT (reprint author), UNIV WESTERN AUSTRALIA,FAC SCI,DEPT BOT,NEDLANDS,WA 6009,AUSTRALIA. Plummer, Julie/B-9565-2011 BACHELARD EP, 1967, AUST J BOT, V15, P393, DOI 10.1071/BT9670393; BAINBRIDGE R, 1966, LIGHT ECOLOGICAL FAC; Bell D. T., 1994, Plant-animal interactions in Mediterranean-type ecosystems., P63; BELL DT, 1987, AUST J BOT, V35, P593, DOI 10.1071/BT9870593; BELL DT, 1994, AUST J BOT, V42, P501, DOI 10.1071/BT9940501; BELL DT, 1993, BOT REV, V59, P24, DOI 10.1007/BF02856612; BELL DT, 1992, SEED SCI TECHNOL, V20, P47; BELL DT, 1993, AUST J BOT, V41, P321, DOI 10.1071/BT9930321; Bell DT, 1984, KWONGAN PLANT LIFE S, P178; BELL DT, 1989, JARRAH FOREST COMPLE, P203; BELLAIRS SM, 1990, AUST J BOT, V38, P451, DOI 10.1071/BT9900451; BEWLEY JD, 1985, SEEDS PHYSL DEV GERM; BROWN NAC, 1994, PLANT GROWTH REGUL, V15, P93, DOI 10.1007/BF00024681; DIXON KW, 1995, OECOLOGIA, V101, P185, DOI 10.1007/BF00317282; EVANS GC, 1966, LIGHT ECOLOGICAL FAC, P53; Floyd A. G., 1976, Australian Forestry, V39, P210; Green J. W., 1985, CENSUS VASCULAR PLAN; HALMER P, 1975, NATURE, V258, P716, DOI 10.1038/258716a0; HARPER J. L., 1970, Annual review of ecology and systematics., V1, P327, DOI 10.1146/annurev.es.01.110170.001551; Jones R. L., 1977, The physiology and biochemistry of seed dormancy and germination., P77; Kachigan S.K., 1986, STATISTICAL ANAL INT; KEELEY JE, 1985, J ECOL, V73, P445, DOI 10.2307/2260486; KEELEY JE, 1991, BOT REV, V57, P81, DOI 10.1007/BF02858766; KOCH JM, 1980, AUST FOREST RES, V10, P113; LAKON G, 1949, PLANT PHYSIOL, V24, P389, DOI 10.1104/pp.24.3.389; LAMONT BB, 1991, BOT REV, V57, P277, DOI 10.1007/BF02858770; MARSHALL DL, 1986, AM J BOT, V73, P457, DOI 10.2307/2444249; MCCHESNEY CJ, 1995, RESTOR ECOL, V3, P105, DOI 10.1111/j.1526-100X.1995.tb00083.x; MENEY KA, 1994, J VEG SCI, V5, P5, DOI 10.2307/3235632; PIERCE SM, 1994, VEGETATIO, V110, P25; PLUMMER JA, 1995, AUST J BOT, V43, P93, DOI 10.1071/BT9950093; Pons T. L., 1992, SEEDS ECOLOGY REGENE, P259; PORTLOCK CC, 1990, J APPL ECOL, V27, P319, DOI 10.2307/2403588; STONEMAN GL, 1994, AUST J ECOL, V19, P96, DOI 10.1111/j.1442-9993.1994.tb01548.x; THANOS CA, 1988, PLANT CELL ENVIRON, V11, P841, DOI 10.1111/j.1365-3040.1988.tb01910.x; THOMAS TH, 1992, PLANT GROWTH REGUL, V11, P239, DOI 10.1007/BF00024562; TRIPATHI RS, 1990, OIKOS, V57, P289, DOI 10.2307/3565956; WILLIAMS ER, 1992, SEED SCI TECHNOL, V20, P321; WILLIS AJ, 1991, AUST J BOT, V39, P219, DOI 10.1071/BT9910219; ZOHAR Y, 1975, AUST J BOT, V23, P391, DOI 10.1071/BT9750391 40 103 112 7 80 OPULUS PRESS UPPSALA AB KNIVSTA APELSINVAGEN 47, S 741 00 KNIVSTA, SWEDEN 1100-9233 J VEG SCI J. Veg. Sci. DEC 1995 6 6 797 806 10.2307/3236393 10 Plant Sciences; Ecology; Forestry Plant Sciences; Environmental Sciences & Ecology; Forestry TV493 WOS:A1995TV49300004 2019-02-26 J Ghersa, CM; Holt, JS Ghersa, CM; Holt, JS Using phenology prediction in weed management: A review WEED RESEARCH English Review HALEPENSE L PERS; OATS AVENA-FATUA; JOHNSONGRASS SORGHUM-HALEPENSE; TEMPERATURE-DEPENDENT MODEL; VELVETLEAF ABUTILON-THEOPHRASTI; COMPETITION POPULATION ECOLOGY; SEEDLING EMERGENCE MODEL; WHEAT TRITICUM-AESTIVUM; SOYBEAN GLYCINE-MAX; RELATIVE LEAF-AREA The success of weed management based on ecological principles and weed biology will depend on a better understanding of the effect of environment on life history strategies, growth, and competition of weeds and crops, and particularly upon the ability to predict weed and crop phenology. This paper reviews the importance of phenotypic plasticity to weed and crop competition and other biological interactions. We also discuss the utility of phenological predictions in weed management and review current weed phenology models that are based on thermal time. By understanding the variables that drive plant phenotypic responses, new approaches and more long-term solutions for weed problems can be developed. UNIV CALIF RIVERSIDE,DEPT BOT & PLANT SCI,RIVERSIDE,CA 92521 Ghersa, CM (reprint author), UNIV BUENOS AIRES,FAC AGRON,DEPT ECOL,AVE SAN MARTIN 4453,RA-1417 BUENOS AIRES,DF,ARGENTINA. ALM D M, 1988, Biotronics, V17, P29; ALM DM, 1991, PREDICTING CROP PHEN, P191; Altieri M. A., 1988, Weed management in agroecosystems: ecological approaches., P331; Arnold R. L. Benech, 1994, SEED DEV GERMINATION, P545; ARNOLD RLB, 1990, WEED RES, V30, P81, DOI 10.1111/j.1365-3180.1990.tb01690.x; ARNOLD RLB, 1990, WEED RES, V30, P91, DOI 10.1111/j.1365-3180.1990.tb01691.x; AULD BA, 1987, AGR SYST, V25, P219, DOI 10.1016/0308-521X(87)90021-7; AUSTIN MP, 1982, J ECOL, V70, P559, DOI 10.2307/2259923; BALLARE CL, 1988, ANN APPL BIOL, V112, P337, DOI 10.1111/j.1744-7348.1988.tb02070.x; BALLARE CL, 1992, PHOTOCHEM PHOTOBIOL, V56, P777, DOI 10.1111/j.1751-1097.1992.tb02234.x; BALLARE CL, 1987, AGR ECOSYST ENVIRON, V19, P177, DOI 10.1016/0167-8809(87)90017-X; Baskin J. M., 1989, ECOLOGY SOIL SEED BA, P53; BAXENDALE FP, 1984, ENVIRON ENTOMOL, V13, P1572, DOI 10.1093/ee/13.6.1572; BAXENDALE FP, 1984, ENVIRON ENTOMOL, V13, P1566, DOI 10.1093/ee/13.6.1566; BEWICK TA, 1988, J AM SOC HORTIC SCI, V113, P839; Bewley J. D., 1982, PHYSL BIOCH SEEDS RE, V2; BIERHUIZEN J F, 1973, Acta Horticulturae (Wageningen), V27, P269; BIERHUIZEN J F, 1974, Scientia Horticulturae (Amsterdam), V2, P213, DOI 10.1016/0304-4238(74)90029-6; BLEASDALE J. K. A., 1960, Biology of Weeds, Symp. Brit. ecol. Soc., P133; BLOM CWPM, 1988, ACTA BOT NEERL, V37, P421, DOI 10.1111/j.1438-8677.1988.tb02151.x; BRIDGES DC, 1989, WEED SCI, V37, P471; CAVERS PB, 1989, ECOLOGY SOIL SEED BA, P107; CHARLESEDWARDS DA, 1986, MODELLING PLANT GROW; Cook R., 1980, Demography and evolution in plant populations., P107; COUSENS R, 1992, ANN APPL BIOL, V120, P339, DOI 10.1111/j.1744-7348.1992.tb03430.x; COUSENS RD, 1992, J AGR SCI, V118, P149, DOI 10.1017/S0021859600068726; COUSENS RD, 1991, WEED RES, V31, P203, DOI 10.1111/j.1365-3180.1991.tb01759.x; CROMARTIE WJ, 1981, CRC HDB PEST MANAGEM, P223; CUDNEY DW, 1989, WEED SCI, V37, P521; DAGOBERTO E, 1982, INTA PERGAMINO CARPE, V4; DAGOBERTO E, 1981, INTA PERGAMINO CARPE, V3; DEVRIES FWTP, 1991, CLIMATIC RISK IN CROP PRODUCTION : MODELS AND MANAGEMENT FOR THE SEMIARID TROPICS AND SUBTROPICS, P123; DOYLE CJ, 1991, CROP PROT, V10, P432, DOI 10.1016/S0261-2194(91)80130-8; DUNAN CM, 1991, WEED SCI, V39, P558; Egley GH, 1985, WEED PHYSL, P27; FORCELLA F, 1993, AGRON J, V85, P929, DOI 10.2134/agronj1993.00021962008500040026x; FORCELLA F, 1992, WEED RES, V32, P29, DOI 10.1111/j.1365-3180.1992.tb01859.x; FORCELLA F, 1993, ECOL APPL, V3, P74, DOI 10.2307/1941793; GHERSA CM, 1991, WEED TECHNOL, V5, P279; GHERSA CM, 1990, WEED RES, V30, P153, DOI 10.1111/j.1365-3180.1990.tb01699.x; GHERSA CM, 1992, FUNCT ECOL, V6, P460, DOI 10.2307/2389284; GHERSA CM, 1994, WEED TECHNOL, V8, P37; GHERSA CM, 1993, BIOSCIENCE, V44, P85; Gliessman S. R., 1988, Weed management in agroecosystems: ecological approaches., P237; Grace J. B., 1990, Perspectives on plant competition., P51; GRAF B, 1990, AGR SYST, V32, P367, DOI 10.1016/0308-521X(90)90100-5; GUTTERMAN Y, 1985, WEED PHYSL, V1, P1; Harper J.L., 1977, POPULATION BIOL PLAN; HARVEY SJ, 1993, WEED SCI, V41, P309; HAUN JR, 1973, AGRON J, V65, P116, DOI 10.2134/agronj1973.00021962006500010035x; HEYDECKER W, 1973, 19TH P EAST SCH AGR; HOGES T, 1991, PREDICTING CROP PHEN, P133; HOGES T, 1991, PREDICTING CROP PHEN, P101; HOLT JS, 1991, WEED SCI, V39, P575; HORAK MJ, 1991, WEED TECHNOL, V5, P805; JANSSEN JGM, 1974, OECOLOGIA, V14, P197, DOI 10.1007/BF01039793; Joenje W, 1987, BRIT CROP PROTECTION, V3, P971; Karssen C. M., 1982, The physiology and biochemistry of seed development, dormancy and germination, P243; KIGEL J, 1985, WEED PHYSL, V1, P65; KROPFF MJ, 1988, WEED RES, V28, P465, DOI 10.1111/j.1365-3180.1988.tb00829.x; KROPFF MJ, 1992, WEED SCI, V40, P296; KROPFF MJ, 1991, WEED RES, V31, P97, DOI 10.1111/j.1365-3180.1991.tb01748.x; MCCARTY MK, 1985, WEED SCI, V33, P664; MCGIFFEN ME, 1992, WEED SCI, V40, P86; MCGIFFEN ME, 1990, INT BENCHMARK SITES, P11; MILTHORPE FL, 1974, INTRO CROP PHYSL; NAVAS ML, 1991, WEED RES, V31, P171, DOI 10.1111/j.1365-3180.1991.tb01756.x; NORRIS RF, 1992, WEED TECHNOL, V6, P220; ORWICK PL, 1978, WEED SCI, V26, P691; PATTERSON DT, 1992, WEED TECHNOL, V6, P68; Patterson DT, 1985, WEED PHYSL, P101; PAWLAK JA, 1990, WEED TECHNOL, V4, P31; PAWLAK JA, 1988, P SO WEED SCI SOC, V41, P287; PIKE DR, 1990, WEED SCI, V38, P522; Radosevich S. R., 1990, Perspectives on plant competition., P341; RADOSEVICH SR, 1984, WEED ECOLOGY IMPLICA; RISSER PG, 1986, ECOLOGICAL THEORY IN, P321; RITCHIE JT, 1991, CLIMATIC RISK IN CROP PRODUCTION : MODELS AND MANAGEMENT FOR THE SEMIARID TROPICS AND SUBTROPICS, P97; ROONEY JM, 1989, ANN BOT-LONDON, V64, P469, DOI 10.1093/oxfordjournals.aob.a087866; ROSS MA, 1972, J ECOL, V60, P77, DOI 10.2307/2258041; ROUSH ML, 1989, WEED SCI, V37, P268; ROUSH ML, 1985, J APPL ECOL, V22, P895, DOI 10.2307/2403238; RUSSELLE MP, 1984, CROP SCI, V24, P28, DOI 10.2135/cropsci1984.0011183X002400010007x; SATORRE EH, 1985, WEED RES, V25, P103, DOI 10.1111/j.1365-3180.1985.tb00624.x; SATTIN M, 1992, WEED TECHNOL, V6, P213; Simpson GM, 1990, SEED DORMANCY GRASSE; SORIANO A, 1971, WEED RES, V11, P196, DOI 10.1111/j.1365-3180.1971.tb00997.x; Spitters C. J. T., 1989, SIMULATION MONOGRAPH, V32, P182; Spitters C.J.T., 1983, ASPECTS APPL BIOL, V4, P467; TAMM E, 1933, ARCH PFLANZENBAU, V10, P297; TEETES GL, 1981, CRC HDB PEST MANAGEM, P209; TINGEY WM, 1981, CRC HDB PEST MANAGEM, P175; TINGLE FC, 1988, FLA ENTOMOL, V71, P364, DOI 10.2307/3495445; TIVY J, 1990, AGR ECOLOGY, P1; VANESSO ML, 1993, WEED SCI, V41, P107; VITTA JI, 1991, WEED RES, V31, P73, DOI 10.1111/j.1365-3180.1991.tb01745.x; WEAVER SE, 1988, CAN J PLANT SCI, V68, P877, DOI 10.4141/cjps88-105; WILKERSON GG, 1990, AGRON J, V82, P1003, DOI 10.2134/agronj1990.00021962008200050033x; WILSON BJ, 1990, WEED RES, V30, P201, DOI 10.1111/j.1365-3180.1990.tb01704.x; WILSON RG, 1988, BIOL WEED SEEDS SOIL, P25; Wit C. T. de, 1987, Quarterly Journal of International Agriculture, V26, P311; Worner S. P., 1983, Proceedings, New Zealand Weed and Pest Control Conference., P250; ZALOM F, 1982, DEGREE DAYS RELATION; ZIMDAHL RL, 1980, WEED CROP COMPETITIO 104 58 63 6 26 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0043-1737 WEED RES Weed Res. DEC 1995 35 6 461 470 10.1111/j.1365-3180.1995.tb01643.x 10 Agronomy; Plant Sciences Agriculture; Plant Sciences TR751 WOS:A1995TR75100004 2019-02-26 J DEMEESTER, L; WEIDER, LJ; TOLLRIAN, R DEMEESTER, L; WEIDER, LJ; TOLLRIAN, R ALTERNATIVE ANTIPREDATOR DEFENSES AND GENETIC-POLYMORPHISM IN A PELAGIC PREDATOR-PREY SYSTEM NATURE English Article DIEL VERTICAL MIGRATION; PHOTOTACTIC BEHAVIOR; DAPHNIA-MAGNA; ZOOPLANKTON; GENOTYPES; PERSISTENCE; POPULATION; MECHANISM; COPEPODS; HABITAT DIEL vertical migration (DVM) of zooplankton is generally considered to be a predator-avoidance strategy: zooplankton migrate to greater depths during the day to reduce their chance of being detected by visual predators (fish)(1). Both phenotypic plasticity and interpopulational genetic variability in DVM patterns exist in zooplankton(2,3). We used large indoor mesocosms ('plankton towers'(4)) to study intrapopulational genetic variation for day depth in a Daphnia hyalina x galeata hybrid population. Clones differing in body size also differed in vertical distribution, with the largest clone residing at the greatest depth during the day. A selection experiment in the presence of fish indicates that alternative antipredator strategies, which involve a complex association between habitat-selection traits and life-history strategies, might be an important factor underlying intrapopulational genetic polymorphism in zooplankton, through a balancing of fitness effects in the presence of visual predators. MAX PLANCK INST LIMNOL,OKOPHYSIOL ABT,D-24302 PLON,GERMANY; STATE UNIV GHENT,ANIM ECOL LAB,B-9000 GHENT,BELGIUM De Meester, Luc/F-3832-2015 De Meester, Luc/0000-0001-5433-6843 De Meester L., 1993, Advances in Limnology, V39, P137; DEMEESTER L, 1991, HYDROBIOLOGIA, V225, P217, DOI 10.1007/BF00028400; DEMEESTER L, 1994, OECOLOGIA, V97, P333, DOI 10.1007/BF00317323; DEMEESTER L, 1993, ECOLOGY, V74, P1467; Ebert Dieter, 1993, Archiv fuer Hydrobiologie Supplementband, V90, P453; Endler JA, 1986, NATURAL SELECTION WI; GUISANDE C, 1991, OECOLOGIA, V87, P357, DOI 10.1007/BF00634591; HEBERT PDN, 1989, METHODOLOGIE ALLOZYM; HEDRICK PW, 1986, ANNU REV ECOL SYST, V17, P535; HUNTLEY M, 1982, MAR BIOL, V71, P23, DOI 10.1007/BF00396989; Kerfoot WC, 1987, PREDATION DIRECT IND; LAMPERT W, 1989, FUNCT ECOL, V3, P21, DOI 10.2307/2389671; LAMPERT W, 1992, ARCH HYDROBIOL, V126, P53; LAMPERT W, 1993, LIMNOOKOLOGIE; LEIBOLD M, 1991, OECOLOGIA, V86, P342, DOI 10.1007/BF00317599; LEIBOLD MA, 1994, EVOLUTION, V48, P1324, DOI 10.1111/j.1558-5646.1994.tb05316.x; Loose Carsten J., 1993, Advances in Limnology, V39, P29; NEILL WE, 1992, NATURE, V356, P54, DOI 10.1038/356054a0; NEILL WE, 1990, NATURE, V345, P524, DOI 10.1038/345524a0; PALOHEIMO JE, 1974, LIMNOL OCEANOGR, V19, P692, DOI 10.4319/lo.1974.19.4.0692; PIJANOWSKA J, 1993, OECOLOGIA, V96, P40, DOI 10.1007/BF00318028; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; RINGELBERG J, 1991, J PLANKTON RES, V13, P83, DOI 10.1093/plankt/13.1.83; SO JWH, 1986, B MATH BIOL, V48, P469, DOI 10.1007/BF02462318; SO JWH, 1990, J AUST MATH SOC B, V31, P347, DOI 10.1017/S033427000000669X; STICH HB, 1981, NATURE, V293, P396, DOI 10.1038/293396a0; TESSIER AJ, 1989, OIKOS, V56, P269, DOI 10.2307/3565347; WEIDER LJ, 1984, LIMNOL OCEANOGR, V29, P225, DOI 10.4319/lo.1984.29.2.0225; ZARET TM, 1976, LIMNOL OCEANOGR, V21, P804, DOI 10.4319/lo.1976.21.6.0804 29 117 118 5 39 MACMILLAN MAGAZINES LTD LONDON 4 LITTLE ESSEX STREET, LONDON, ENGLAND WC2R 3LF 0028-0836 NATURE Nature NOV 30 1995 378 6556 483 485 3 Multidisciplinary Sciences Science & Technology - Other Topics TH054 WOS:A1995TH05400068 2019-02-26 J Ransome, RD Ransome, RD Earlier breeding shortens life in female greater horseshoe bats PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES English Article AFFECTS SEX-RATIO; HAMSTERS MESOCRICETUS; POPULATION-CHANGES; PLECOTUS-AURITUS; RED DEER; SURVIVAL; GROWTH; FOOD; AGE; LONGEVITY Life history theory predicts that an individual may gain in fitness by postponing reproduction if, by doing so, future reproductive capacity or longevity is enhanced. To test this theory I studied the survival and fecundity of earlier (start age 2 years) and later (start age 3 years or later) breeding female bats. Mature females produce one young annually, may miss breeding in some years and can still breed at age 29 years. Earlier breeders (EB) have similar mean skeletal size and birth date to later breeders (LB), but they have higher fat reserves late in their first winter and in their second autumn, when follicular development starts, and are probably superior foragers. EB averaged 5.6 and LB 8.1 years at death. Higher mortality in the former group was associated with parturition later in July during early breeding attempts. Lifetime reproductive success (LRS) Of both groups was highly variable and strongly correlated with lifespan, which explained 99 and 96 % of observed variation respectively. Differences in mean lifespan had no significant effect upon the mean LRS of EB and LB (4.4 and 5.1 births per female respectively). Although earlier breeding reduces lifespan, because it starts a year earlier and breeding rates are higher in EB than in LB (96 % cf. 85 % per year), overall there appear to be equal fitness benefits. During rapid population recovery after a climate-induced crash, earlier breeding was enhanced and may be advantageous until the population stabilizes. Hence studies testing life history theory should take account of population trends and climate. These seem to be crucially interconnected via food availability, the growth of individuals, and fat storage. Ransome, RD (reprint author), UNIV BRISTOL,SCH BIOL,WOODLAND RD,BRISTOL BS8 1UG,AVON,ENGLAND. ALBON SD, 1983, J ZOOL, V200, P295; ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; Bacon P.J., 1989, P363; BARCLAY RMR, 1995, IN PRESS S ZOOL SOC, V68; BERGLUND A, 1986, OIKOS, V46, P349, DOI 10.2307/3565833; BOYD IL, 1989, J APPL ECOL, V26, P101, DOI 10.2307/2403654; CAUBERE B, 1984, REV ECOL-TERRE VIE, V39, P351; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clutton-Brock T.H., 1988, P325; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COULSON JC, 1976, J ANIM ECOL, V45, P205, DOI 10.2307/3775; CURIO E, 1988, AM NAT, V131, P825, DOI 10.1086/284824; DAVIS WH, 1966, J MAMMAL, V47, P383, DOI 10.2307/1377679; DRENT RH, 1980, ARDEA, V68, P225; FRISCH RE, 1980, FED PROC, V39, P2395; FRISCH RE, 1974, SCIENCE, V185, P949, DOI 10.1126/science.185.4155.949; FRISCH RE, 1988, SCI AM, V258, P70; Grafen A., 1988, REPROD SUCCESS, P454; GROSS MR, 1985, AM ZOOL, V25, P807; HARRISONMATTHEW.L, 1937, T ZOOL SOC LONDON, V23, P224; HUCK UW, 1987, BIOL REPROD, V37, P612, DOI 10.1095/biolreprod37.3.612; HUCK UW, 1986, BIOL REPROD, V35, P592, DOI 10.1095/biolreprod35.3.592; HUMPHREY SR, 1976, SPECIAL PUBLICATION, V4, P1; JONES G, 1995, IN PRESS S ZOOL SOC, V68; KEEN R, 1980, J MAMMAL, V61, P1, DOI 10.2307/1379951; KWIECINSKI GG, 1987, AM J ANAT, V178, P410, DOI 10.1002/aja.1001780410; LEBOEUF BJ, 1988, REPRODUCTIVE SUCCESS, P342; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Mills J.A., 1989, P387; MILLS JA, 1973, J ANIM ECOL, V42, P147, DOI 10.2307/3409; NEWTON I, 1985, J ANIM ECOL, V51, P111; NEWTON I, 1989, LIFETIME REPRODUCTIO; OH YK, 1985, J REPROD FERTIL, V73, P121; OLLASON JC, 1978, J ANIM ECOL, V47, P961, DOI 10.2307/3681; Owen M., 1989, P349; PIANKA ER, 1976, AM ZOOL, V16, P775; Ransome R., 1990, NATURAL HIST HIBERNA; Ransome R.D., 1991, P88; RANSOME RD, 1968, J ZOOL, V154, P77; RANSOME RD, 1989, BIOL J LINN SOC, V38, P71, DOI 10.1111/j.1095-8312.1989.tb01564.x; RANSOME RD, 1994, ZOOL J LINN SOC-LOND, V112, P337, DOI 10.1006/zjls.1994.1046; RANSOME RD, 1973, PERIOD BIOL, V75, P169; RANSOME RD, 1971, J ZOOL, V164, P357; RYDELL J, 1989, OECOLOGIA, V80, P562, DOI 10.1007/BF00380082; Sadleir R. M. F. S., 1969, ECOLOGY REPRODUCTION; Saint Girons H., 1969, Mammalia, V33, P357, DOI 10.1515/mamm.1969.33.3.357; Saurola P., 1989, P327; SPEAKMAN JR, 1986, J ZOOL, V210, P515; STUDIER EH, 1994, J MAMMAL, V75, P71, DOI 10.2307/1382237; STUDIER EH, 1992, COMP BIOCHEM PHYS A, V103, P579, DOI 10.1016/0300-9629(92)90293-Y; THOMPSON MJA, 1987, J ZOOL, V211, P209, DOI 10.1111/j.1469-7998.1987.tb01529.x; Wimsatt WA, 1944, AM J ANAT, V74, P129, DOI 10.1002/aja.1000740202; Wooller R.D., 1989, P405; WOOLLER RD, 1977, IBIS, V119, P339, DOI 10.1111/j.1474-919X.1977.tb08252.x 54 44 45 1 22 ROYAL SOC LONDON LONDON 6 CARLTON HOUSE TERRACE, LONDON, ENGLAND SW1Y 5AG 0962-8436 PHILOS T ROY SOC B Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. NOV 29 1995 350 1332 153 161 10.1098/rstb.1995.0149 9 Biology Life Sciences & Biomedicine - Other Topics TL075 WOS:A1995TL07500005 2019-02-26 J Tran, BMD; Credland, PF Tran, BMD; Credland, PF Consequences of inbreeding for the cowpea seed beetle, Callosobruchus maculatus (F)(Coleoptera: Bruchidae) BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article inbreeding; Callosobruchus maculatus; Coleoptera Bruchidae; stored products pests; life history evolution; phenotypic variation; fitness components; selection QUANTITATIVE GENETIC-ANALYSIS; EVOLUTIONARY DEMOGRAPHY; F COLEOPTERA; BEAN WEEVIL; CHINENSIS; PERFORMANCE; LARVAE Inbreeding is said to reduce vigour and fitness. It may also determine how a population responds to selection. Local populations of Callosobruchus maculatus, the cowpea seed beetle, are established annually from small numbers of founders and the species has been distributed to many parts of the world where isolated populations may have been founded by very small numbers of individuals. After more than 20 generations of inbreeding, inbred lines have been shown to diverge from a common ancestral stock in similar directions with respect of some variables such as developmental speed, but haphazardly in respect of other parameters such as male weight. The respective roles of drift and of selection as effective evolutionary forces in inbred lines are discussed in the light of these results. It is argued that some intraspecific differences in C. maculatus may be explained as a product of periodic inbreeding, but that the process does not impair the ability to adapt to local conditions so contributing to the status of the species as a pest of international importance. UNIV LONDON ROYAL HOLLOWAY & BEDFORD NEW COLL, SCH BIOL SCI, DIV BIOL, EGHAM TW20 0EX, SURREY, ENGLAND Begon M., 1990, ECOLOGY INDIVIDUALS; BELLOWS TS, 1982, J ANIM ECOL, V51, P597, DOI 10.2307/3986; BUENO JAL, 1993, HEREDITY, V70, P60, DOI 10.1038/hdy.1993.8; CREDLAND PF, 1987, J STORED PROD RES, V23, P91, DOI 10.1016/0022-474X(87)90022-1; CREDLAND PF, 1986, J STORED PROD RES, V22, P49, DOI 10.1016/0022-474X(86)90047-0; CREDLAND PF, 1986, ECOL ENTOMOL, V11, P41, DOI 10.1111/j.1365-2311.1986.tb00278.x; CREDLAND PF, 1990, SERIES ENTOM, V46, P271; Falconer D. S., 1989, INTRO QUANTITATIVE G; FOX CW, 1993, EVOLUTION, V47, P166, DOI 10.1111/j.1558-5646.1993.tb01207.x; LENGA A, 1991, THESIS U TOURS; MESSINA FJ, 1993, HEREDITY, V71, P623, DOI 10.1038/hdy.1993.187; MESSINA FJ, 1989, J INSECT BEHAV, V2, P727, DOI 10.1007/BF01049397; MESSINA FJ, 1991, ENVIRON ENTOMOL, V20, P1438, DOI 10.1093/ee/20.5.1438; MITCHELL R, 1990, SERIES ENTOM, V46, P317; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; MOLLER H, 1989, FUNCT ECOL, V3, P683, DOI 10.2307/2389500; MONGE JP, 1989, ENTOMOL EXP APPL, V53, P95, DOI 10.1111/j.1570-7458.1989.tb01292.x; OFNY TL, 1995, J STORED PRODUCTS RE, V31, P71; SIBLY RM, 1992, GENES ECOLOGY, P87; Southgate B.J., 1978, P219; TANAKA Y, 1993, HEREDITY, V70, P318, DOI 10.1038/hdy.1993.46; TANAKA Y, 1990, RES POPUL ECOL, V32, P329, DOI 10.1007/BF02512567; THANTHIANGA C, 1987, ENTOMOL EXP APPL, V44, P15, DOI 10.1111/j.1570-7458.1987.tb02233.x; TOQUENAGA Y, 1991, RES POPUL ECOL, V33, P199, DOI 10.1007/BF02513549; WEST R, 1991, COMPUTING PSYCHOL ST; Zar J. H., 1984, BIOSTATISTICAL ANAL 26 36 37 0 14 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0024-4066 BIOL J LINN SOC Biol. J. Linnean Soc. NOV 1995 56 3 483 503 10.1111/j.1095-8312.1995.tb01106.x 21 Evolutionary Biology Evolutionary Biology TN580 WOS:A1995TN58000004 2019-02-26 J BENTON, TG; GRANT, A; CLUTTONBROCK, TH BENTON, TG; GRANT, A; CLUTTONBROCK, TH DOES ENVIRONMENTAL STOCHASTICITY MATTER - ANALYSIS OF RED DEER LIFE-HISTORIES ON RUM EVOLUTIONARY ECOLOGY English Article STOCHASTIC DEMOGRAPHY; FITNESS; LIFE-HISTORY; RED DEER; SELECTION PRESSURES; COST OF REPRODUCTION VARIABLE ENVIRONMENTS; POPULATION-DYNAMICS; EVOLUTION; FITNESS; DEMOGRAPHY; GROWTH Most life-history theory assumes that short-term variation in an organism's environment does not affect the survivorships and fecundities of the organisms. This assumption is rarely met. Here we investigate the population and evolutionary biology of red deer, Cervus elephas, to see if relaxation of this assumption is likely to make significant differences to the predicted evolutionary biology of this species. To do this we used 21 years of data from a population of deer on Rum, Western Isles, Scotland. Population growth rates in a stochastic environment were estimated using Tuljapurkar's small noise approximation, confirmed by bootstrap simulation. Numerical differentiation was used to see if the selection pressures (i.e, sensitivities of population growth rate to changes in the vital rates) differ between the stochastic and deterministic cases. The data also allow the costs of reproduction to be estimated. These costs, incorporated as trade-offs into the sensitivity analysis, allow investigation of evolutionary benefits of different life-history tactics. Environmentally induced stochastic variation in the red deer vital rates causes a slight reduction (similar or equal to 1%) in the predicted population growth rate and has little impact on the estimated selection pressures on the deer's life-history. We thus conclude that, even though density-independent stochastic effects on the population are marked, the deer's fitness is not markedly affected by these and they are adapted to the average conditions they experience. However, the selected life-history is sensitive to the trade-offs between current fecundity, survivorship and future fecundity and it is likely that the environmental variance will affect these trade-offs and, thus, affect the life-history favoured by selection. We also show that the current average life-history is non-optimal and suggest this is a result of selection pressures exerted by culling and predation, now much reduced. As the use of stochastic or deterministic methods provide similar estimates in this case, the use of the latter is justified. Thus, r (the annual per capita rate of population growth) is an appropriate measure of fitness in a population with stochastic numerical fluctuations. In a population of constant size lifetime reproductive success is the obvious measure of fitness to use. UNIV E ANGLIA,SCH ENVIRONM SCI,NORWICH NR4 7TJ,NORFOLK,ENGLAND; UNIV CAMBRIDGE,DEPT ZOOL,LARGE ANIM RES GRP,CAMBRIDGE CB2 3EJ,ENGLAND Benton, Tim/C-6493-2009; Grant, Alastair/L-7301-2018 Benton, Tim/0000-0002-7448-1973; Grant, Alastair/0000-0002-1147-2375 ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; Albon SD, 1988, ECOLOGICAL CHANGE UP, P93; Albon Stephen D., 1992, P15; BENTON TG, IN PRESS AM NAT; BROWN D, 1993, J ANIM ECOL, V62, P490, DOI 10.2307/5198; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clutton-Brock TH, 1989, RED DEER HIGHLANDS; CLUTTONBROCK TH, 1988, REPRODUCTIVE SUCCESS; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; Diggle PJ, 1990, TIME SERIES BIOSTATI; FOX GA, 1993, EVOL ECOL, V7, P1, DOI 10.1007/BF01237731; GISKE J, 1993, EVOL ECOL, V7, P223; KAZWECKI TJ, 1993, EVOL ECOL, V7, P155; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; ORZACK SH, 1985, AM NAT, V125, P550, DOI 10.1086/284362; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Ripley BD, 1987, STOCHASTIC SIMULATIO; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; SIBLY RM, 1993, J THEOR BIOL, V160, P533, DOI 10.1006/jtbi.1993.1034; SLADE NA, 1984, THEOR POPUL BIOL, V26, P361, DOI 10.1016/0040-5809(84)90039-X; TALJAPURKAR SD, 1990, LECTURE NOTES BIOMAT, V85; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P141, DOI 10.1016/0040-5809(82)90010-7; TULJAPURKAR SD, 1980, THEOR POPUL BIOL, V18, P314, DOI 10.1016/0040-5809(80)90057-X; VANSICKLE J, 1990, THEOR POPUL BIOL, V37, P424, DOI 10.1016/0040-5809(90)90046-X 32 80 81 0 24 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. NOV 1995 9 6 559 574 10.1007/BF01237655 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TE130 WOS:A1995TE13000001 2019-02-26 J AZIZ, S; KHAN, MG AZIZ, S; KHAN, MG ROLE OF DISTURBANCE ON THE SEED BANK AND DEMOGRAPHY OF LEUCUS-URTICIFOLIA (LABIATAE) POPULATIONS IN A MARITIME SUBTROPICAL DESERT OF PAKISTAN INTERNATIONAL JOURNAL OF PLANT SCIENCES English Article RESOURCE-ALLOCATION; REPRODUCTIVE STRATEGIES; RUMEX-CRISPUS; LIFE-HISTORY; GROWTH; PLANT; PATTERNS; SOLIDAGO; BIOLOGY Life history strategies of the Leucus urticifolia populations growing in disturbed and undisturbed habitats were studied. Seed banks of both populations were persistent, with greater numbers and more species diversity in undisturbed populations. The undisturbed population showed a 65% allocation to reproduction at maturity as compared with 4% biomass allocation to reproduction in disturbed population. Populations of L. urticifolia in an undisturbed subtropical desert community of Karachi, Pakistan, have larger and more persistent seed banks, larger plant size, and higher reproductive allocations as compared with a disturbed community. UNIV KARACHI,DEPT BOT,KARACHI 75270,PAKISTAN Khan, Muhammad Ajmal/I-6429-2015 ABRAHAMSON WG, 1979, AM J BOT, V66, P71, DOI 10.2307/2442627; ABRAHAMSON WG, 1973, AM NAT, V107, P651, DOI 10.1086/282864; ABRAHAMSON WG, 1977, B TORREY BOT CLUB, V104, P160, DOI 10.2307/2484362; ABRAHAMSON WG, 1975, ECOLOGY, V56, P721, DOI 10.2307/1935508; AZIZ S, 1994, BANGLADESH J BOTANY, V23, P139; AZIZ S, 1994, THESIS U KARACHI PAK; BASTRENTA B, 1991, J ECOL, V79, P275, DOI 10.2307/2260712; CARMAN JG, 1985, OECOLOGIA, V66, P332, DOI 10.1007/BF00378294; CARTICA RJ, 1982, B TORREY BOT CLUB, V109, P299, DOI 10.2307/2995976; CHABOT BF, 1978, NEW PHYTOL, V80, P87, DOI 10.1111/j.1469-8137.1978.tb02267.x; CHAUDHRY II, 1961, VEGETATIO, V74, P229; Fenner M, 1985, SEED ECOLOGY; GAINES MS, 1974, AM NAT, V108, P889, DOI 10.1086/282967; Harper J.L., 1977, POPULATION BIOL PLAN; HARPER JL, 1967, J ECOL, V55, P247, DOI 10.2307/2257876; HICKMAN JC, 1975, J ECOL, V27, P689; HUME L, 1983, CAN J BOT, V61, P1276, DOI 10.1139/b83-135; JEFFERIES RL, 1983, CAN J BOT, V61, P762, DOI 10.1139/b83-085; KEDDY PA, 1989, J ECOL, V69, P615; Kemp P, 1989, ECOLOGY SOIL SEED BA, P257; Khan M., 1990, MARVEL SEEDS, P87; KHAN MA, 1993, PAKISTAN J BOT, V25, P73; KHAN MA, 1986, VEGETATIO, V66, P17, DOI 10.1007/BF00044079; KLEMOW KM, 1983, J ECOL, V71, P691, DOI 10.2307/2259586; LEE JM, 1983, J ECOL, V71, P927; MAUN MA, 1971, CAN J BOTANY, V49, P1123, DOI 10.1139/b71-162; NAULT A, 1988, B TORREY BOT CLUB, V115, P45, DOI 10.2307/2996565; PAINTER EL, 1989, AM J BOT, V76, P1368, DOI 10.2307/2444561; REGHR DDL, 1979, J ECOL, V67, P923; WATKINSON AR, 1978, J ECOL, V66, P15, DOI 10.2307/2259178; WU KK, 1979, OECOLOGIA, V39, P337, DOI 10.1007/BF00345444; ZAMAN AU, 1992, BANGLADESH J BOTANY, V21, P1 32 6 7 0 3 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 1058-5893 INT J PLANT SCI Int. J. Plant Sci. NOV 1995 156 6 834 840 10.1086/297307 7 Plant Sciences Plant Sciences TH819 WOS:A1995TH81900010 2019-02-26 J Hansen, TF; Price, DK Hansen, TF; Price, DK Good genes and old age: Do old mates provide superior genes? JOURNAL OF EVOLUTIONARY BIOLOGY English Review mate choice; sexual selection; age; age-structured selection; fitness MALE FIELD CRICKETS; FISHERS FUNDAMENTAL THEOREM; DROSOPHILA-MELANOGASTER; SEXUAL SELECTION; LIFE-HISTORY; FEMALE CHOICE; MUTATION-RATE; REPRODUCTIVE SUCCESS; LABORATORY EVOLUTION; GRYLLUS-BIMACULATUS It has been suggested that female preference for older mates in species without parental care has evolved in response to an alleged higher genetic quality of older individuals. This is based on the widespread assumption that viability selection produces older individuals that are genetically superior to younger individuals. In contrast, we propose that the oldest individuals rarely are genetically superior. Quantitative genetic models of life history evolution indicate that young to intermediately aged individuals are likely to possess the highest breeding values of fitness. This conclusion is based on four arguments: 1) Viability selection on older individuals may decrease or at least not substantially increase breeding values of fitness, because there may exist negative genetic correlations between late-age and early-age life history parameters, 2) Fertility selection is likely to raise the fitness of gametes produced by young individuals more than those produced by old individuals, because the covariance between fertility and fitness often decreases with age, 3) The history of selection on their parents makes younger individuals more fit than older individuals, 4) Germ-line mutations, which are generally deleterious, significantly decrease the breeding value of fitness of an individual throughout its lifespan, especially in males. Therefore, females that mate with the oldest males in a population are doing so for reasons other than to obtain offspring of high genetic quality. UNIV OREGON, DEPT BIOL, EUGENE, OR 97403 USA Hansen, TF (reprint author), UNIV OSLO, DEPT BIOL, DIV ZOOL, POB 1050, N-0316 OSLO, NORWAY. Hansen, Thomas/B-9021-2009 ABRAHAMSON S, 1981, MEASUREMENT RISKS, P477; ABUGOV R, 1988, J THEOR BIOL, V132, P437, DOI 10.1016/S0022-5193(88)80083-3; ABUGOV R, 1986, J THEOR BIOL, V122, P311, DOI 10.1016/S0022-5193(86)80123-0; ALATALO RV, 1986, AM NAT, V127, P819, DOI 10.1086/284527; ALCOCK J, 1984, ANIMAL BEHAVIOR EVOL; ANDERSSON M, 1986, EVOLUTION, V40, P804, DOI 10.1111/j.1558-5646.1986.tb00540.x; Andersson MB, 1994, SEXUAL SELECTION; BELL G, 1985, EXPERIENTIA, V41, P1235, DOI 10.1007/BF01952066; BUCHHOLZ R, 1991, AUK, V108, P153; BURLEY N, 1979, ANIM BEHAV, V27, P686, DOI 10.1016/0003-3472(79)90005-8; Caswell H., 1989, MATRIX POPULATION MO; CHANG BHJ, 1994, P NATL ACAD SCI USA, V91, P827, DOI 10.1073/pnas.91.2.827; CHARLESWORTH B, 1988, J THEOR BIOL, V130, P191, DOI 10.1016/S0022-5193(88)80094-8; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CLARK AG, 1987, AM NAT, V129, P933; Clutton-Brock T.H., 1988, P325; CLUTTONBROCK TH, 1988, CONTRASTING BREEDING; COTE IM, 1993, ANIM BEHAV, V46, P203, DOI 10.1006/anbe.1993.1179; CROW JF, 1993, ENVIRON MOL MUTAGEN, V21, P122, DOI 10.1002/em.2850210205; CROW JF, 1964, AM NAT, V98, P21, DOI 10.1086/282298; DAVISON GWH, 1981, BIOL J LINN SOC, V15, P91, DOI 10.1111/j.1095-8312.1981.tb00751.x; Falconer DS, 1989, QUANTITATIVE GENETIC; Fisher R. A, 1958, GENETICAL THEORY NAT; FRANK SA, 1992, TRENDS ECOL EVOL, V7, P92, DOI 10.1016/0169-5347(92)90248-A; GRANT BR, 1987, BIOL J LINN SOC, V32, P247, DOI 10.1111/j.1095-8312.1987.tb00432.x; HALDANE JBS, 1947, ANN EUGENIC, V13, P262; Halliday T.R., 1983, P3; HALLIDAY TR, 1978, BEHAVIORAL ECOLOGY; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HAMILTON WD, 1980, OIKOS, V35, P282, DOI 10.2307/3544435; HEISLER IL, 1984, EVOLUTION, V38, P1283, DOI 10.1111/j.1558-5646.1984.tb05650.x; HEISLER L, 1987, SEXUAL SELECTION TES, P96; HOULE D, 1994, GENETICS, V138, P773; HOULE D, 1992, NATURE, V359, P58, DOI 10.1038/359058a0; HOULE D, 1992, GENETICS, V130, P195; HOULE D, 1994, J EVOLUTION BIOL, V371, P358; HOWARD RD, 1994, EVOLUTION, V48, P1286, DOI 10.1111/j.1558-5646.1994.tb05313.x; HUGHES DM, 1988, EVOLUTION, V42, P1309, DOI 10.1111/j.1558-5646.1988.tb04190.x; JARVI T, 1982, AM NAT, V120, P689, DOI 10.1086/284021; KIRKPATRICK M, 1987, ANNU REV ECOL SYST, V18, P43, DOI 10.1146/annurev.es.18.110187.000355; KODRICBROWN A, 1984, AM NAT, V124, P309, DOI 10.1086/284275; KOMERS PE, 1989, ANIM BEHAV, V37, P645, DOI 10.1016/0003-3472(89)90043-2; KONDRASHOV AS, 1988, NATURE, V336, P435, DOI 10.1038/336435a0; LADLE RJ, 1992, TRENDS ECOL EVOL, V7, P405, DOI 10.1016/0169-5347(92)90021-3; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; LEBOEUF BJ, 1988, REPRODUCTIVE SUCCESS; LEROI AM, 1994, EVOLUTION, V48, P1258, DOI 10.1111/j.1558-5646.1994.tb05310.x; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; Manning J. T., 1987, J WORLD PHEASANT ASS, V12, P44; MANNING JT, 1985, J THEOR BIOL, V116, P349, DOI 10.1016/S0022-5193(85)80273-3; MANNING JT, 1989, J EVOLUTION BIOL, V2, P379, DOI 10.1046/j.1420-9101.1989.2050379.x; Maynard Smith J, 1978, EVOLUTION SEX; MCDONALD DB, 1993, BEHAV ECOL, V4, P297, DOI 10.1093/beheco/4.4.297; Medawar P. B., 1946, MODERN Q, V1, P30; Miyata T., 1990, POPULATION BIOL GENE, P341; MODELL B, 1990, HUM GENET, V86, P198; MOLLER AP, 1992, AM NAT, V139, P1089, DOI 10.1086/285374; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; MUKAI T, 1972, GENETICS, V72, P335; NEWTON I, 1989, LIFETIME REPRODUCTIO; PARTRIDGE L, 1980, NATURE, V283, P290, DOI 10.1038/283290a0; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PETRIE M, 1993, J EVOLUTION BIOL, V6, P443, DOI 10.1046/j.1420-9101.1993.6030443.x; Pomiankowski A.N., 1988, Oxford Surveys in Evolutionary Biology, V5, P136; POOLE JH, 1989, ANIM BEHAV, V37, P842, DOI 10.1016/0003-3472(89)90068-7; PRICE DK, 1994, AM NAT, V144, P908, DOI 10.1086/285718; PRICE GR, 1972, ANN HUM GENET, V36, P129, DOI 10.1111/j.1469-1809.1972.tb00764.x; PRICE GR, 1972, ANN HUM GENET, V35, P485, DOI 10.1111/j.1469-1809.1957.tb01874.x; PRICE GR, 1970, NATURE, V227, P520, DOI 10.1038/227520a0; PRICE TD, 1984, EVOLUTION, V38, P327, DOI 10.1111/j.1558-5646.1984.tb00291.x; RICE WR, 1988, EVOLUTION, V42, P817, DOI 10.1111/j.1558-5646.1988.tb02500.x; ROFF DA, 1991, EVOLUTION LIFE HIST; ROPER C, 1993, EVOLUTION, V47, P445, DOI 10.1111/j.1558-5646.1993.tb02105.x; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; RUSSELL LB, 1992, MUTAT RES, V296, P107, DOI 10.1016/0165-1110(92)90035-8; SCHEINER SM, 1989, EVOL ECOL, V3, P51, DOI 10.1007/BF02147931; SERVICE PM, 1993, GENETICA, V91, P111, DOI 10.1007/BF01435992; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1993, EVOLUTION, V47, P387, DOI 10.1111/j.1558-5646.1993.tb02101.x; SHIMMIN LC, 1993, NATURE, V362, P745, DOI 10.1038/362745a0; SIMMONS LW, 1988, ANIM BEHAV, V36, P372, DOI 10.1016/S0003-3472(88)80008-3; SIMMONS LW, 1992, ANIM BEHAV, V44, P1145, DOI 10.1016/S0003-3472(05)80326-4; SPITZE K, 1995, EXPERIENTIA, V51, P454, DOI 10.1007/BF02143198; Stearns SC., 1992, EVOLUTION LIFE HIST; STENSETH NC, 1984, EVOLUTION, V38, P870, DOI 10.1111/j.1558-5646.1984.tb00358.x; STIDEL O, 1991, BIOACOUSTICS, V3, P1; TANAKA Y, 1993, HEREDITY, V70, P318, DOI 10.1038/hdy.1993.46; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TUCIC N, 1988, HEREDITY, V60, P55, DOI 10.1038/hdy.1988.9; Van Valen L., 1973, EVOL THEORY, V1, P1, DOI DOI 10.1017/CBO9781139173179; VANDENBERGHE EP, 1989, ANIM BEHAV, V38, P875, DOI 10.1016/S0003-3472(89)80119-8; WEATHERHEAD PJ, 1984, AM NAT, V123, P873, DOI 10.1086/284247; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; Williams GC, 1975, SEX EVOLUTION; WOODRUFF RC, 1992, J EVOLUTION BIOL, V5, P457, DOI 10.1046/j.1420-9101.1992.5030457.x; YASUKAWA K, 1981, ECOLOGY, V62, P922, DOI 10.2307/1936990; ZUK M, 1987, ANIM BEHAV, V35, P1240, DOI 10.1016/S0003-3472(87)80182-3; ZUK M, 1988, EVOLUTION, V42, P969, DOI 10.1111/j.1558-5646.1988.tb02515.x 103 147 150 2 35 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. NOV 1995 8 6 759 778 10.1046/j.1420-9101.1995.8060759.x 20 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TK243 WOS:A1995TK24300006 2019-02-26 J Menges, ES; Kohfeldt, N Menges, ES; Kohfeldt, N Life history strategies of Florida scrub plants in relation to fire BULLETIN OF THE TORREY BOTANICAL CLUB English Article life history strategy; fire; Florida scrub; rosemary scrub; scrubby flatwoods; resprouter; seeder; post-fire abundance patterns; post-fire recovery guild; shrubs; shrublands; open space LAKE WALES RIDGE; SEED BANK DYNAMICS; CERATIOLA-ERICOIDES; WESTERN-AUSTRALIA; CHAPARRAL SHRUBS; REGENERATION; COMMUNITIES; GERMINATION; SOIL; RECRUITMENT To characterize life history strategies of Florida scrub plants in relation to fire, we classified 98 species into guilds based on recovery mechanisms and post-fire abundance patterns. Two types of scrub were analyzed: xeric, infrequently-burned rosemary scrub and more productive, more-frequently burned scrubby flatwoods. Based on recovery mechanisms, most (92%) species are in four guilds: resprouters (mainly woody shrubs), resprouters and seeders (small-statured shrubs, palms, and herbaceous perennials), obligate seeders (mainly herbs), and resprouters and clonal spreaders. The last category contains most of the dominant shrubs of scrubby flatwoods. Two pine species each comprised a unique guild based on recovery mechanisms. Most species of scrubby flatwoods (59%) and rosemary scrub (53%) had no significant trend in post-fire abundance. About twice as many scrubby flatwoods species increased as decreased in frequency with time since fire; increasers included ground lichens and two of the three dominant oaks. Similar numbers of species increased and decreased in rosemary scrub. Most increasers were ground lichens and most decreasers were herbaceous perennials. In scrubby flatwoods, most plants with vegetative recovery modes tended to increase in frequency with time since fire, mixed recovery mode plants usually had no trend, and obligate seeders decreased. In rosemary scrub, mixed recovery modes were associated with decreasing post-fire trends, while seeders tended to increase in post-fire abundance. Infrequently-burned rosemary scrub provides opportunities for seedling recovery from fire, evident in both in its dominant species and in the many endemic and open-space specialist herbs. In contrast, recovery from fire by resprouting and clonal growth is common in the more-frequently burned scrubby flatwoods, promoting rapid post-fire recovery and long-term competitive superiority in this more productive habitat. To promote life history and species diversity, fire management in Florida scrub should avoid overly regular fire regimes, fire suppression or too-frequent burning. Modal intervals will differ between scrubby flatwoods (520 years) and rosemary scrub(15-40 years). When to reburn rosemary scrub may depend on the specific responses of its many endemic plant species to fire. Menges, ES (reprint author), ARCHBOLD BIOL STN, POB 2057, LAKE PLACID, FL 33862 USA. ABRAHAMSON W G, 1984, Florida Scientist, V47, P209; ABRAHAMSON WG, 1984, AM J BOT, V71, P9, DOI 10.2307/2443618; ABRAHAMSON WG, 1984, AM J BOT, V71, P35, DOI 10.2307/2443621; CARTER LJ, 1989, SOIL SURVEY HIGHLAND; Christensen N. L., 1985, The ecology of natural disturbance and patch dynamics, P85; CHRISTMAN S P, 1990, Florida Scientist, V53, P52; DELANGE JH, 1993, S AFR J BOT, V59, P188; ENRIGHT NJ, 1992, ACTA OECOL, V13, P727; FITZPATRICK JW, ORNITHOLOGICAL MONOG; GIBSON DJ, 1994, J VEG SCI, V5, P337, DOI 10.2307/3235857; Gill A. M., 1975, Australian Forestry, V38, P4; GIVENS KT, 1984, B TORREY BOT CLUB, V111, P8, DOI 10.2307/2996205; HANSEN A, 1991, ANN BOT-LONDON, V67, P497, DOI 10.1093/oxfordjournals.aob.a088190; HARTNETT DC, 1989, AM J BOT, V76, P361, DOI 10.2307/2444605; HAWKES CV, 1995, AM MIDL NAT, V133, P138, DOI 10.2307/2426355; HAWKES CV, 1996, IN PRESS B TORREY BO, V123; Johnson A. F., 1990, FLORIDA SCI, V2, P138; JOHNSON AF, 1982, AM MIDL NAT, V108, P170, DOI 10.2307/2425306; JOHNSON AF, 1986, AM MIDL NAT, V116, P423, DOI 10.2307/2425751; KALISZ PJ, 1984, ECOLOGY, V65, P1743, DOI 10.2307/1937769; Keeley J. E, 1981, P C FIR REG EC PROP, P231; KEELEY JE, 1978, AM MIDL NAT, V99, P142, DOI 10.2307/2424939; KEELEY JE, 1977, ECOLOGY, V58, P820, DOI 10.2307/1936217; KEELEY JE, 1992, ECOLOGY, V73, P1194, DOI 10.2307/1940669; KEELEY JE, 1991, BOT REV, V57, P81, DOI 10.1007/BF02858766; KEELEY JE, 1987, ECOLOGY, V68, P434, DOI 10.2307/1939275; KEELEY JE, 1991, USDA SOUTHE, V69, P11; KEITH DA, 1994, J VEG SCI, V5, P347, DOI 10.2307/3235858; KELLY VR, 1990, AM MIDL NAT, V124, P114, DOI 10.2307/2426084; KRUGER FS, 1987, 1977 S ENV CONS FIR, P391; LAESSLE AM, 1942, BIO SCI SER, V4; LAMONT BB, 1991, BOT REV, V57, P277, DOI 10.1007/BF02858770; MALANSON GP, 1985, ECOL MODEL, V27, P271, DOI 10.1016/0304-3800(85)90007-9; MALANSON GP, 1982, OECOLOGIA, V53, P355, DOI 10.1007/BF00389013; Matlack G. R., 1992, Biological Conservation, V63, P1; MATLACK GR, 1993, AM J BOT, V80, P119, DOI 10.2307/2445029; MENGES ES, 1993, J VEG SCI, V4, P375, DOI 10.2307/3235596; MENGES ES, 1992, B TORREY BOT CLUB, V119, P308, DOI 10.2307/2996762; MENGES ES, 1996, IN PRESS AM J BOT, V93; Menges ES, 1991, FLORIDA SCI, V54, P69; MENGES ES, 1992, ARCHBOLD BIOL STATIO; MORENO JM, 1991, ECOLOGY, V72, P1993, DOI 10.2307/1941554; Myers R.L., 1990, P150; NOBLE IR, 1980, VEGETATIO, V43, P5, DOI 10.1007/BF00121013; OSTERTAG R, 1994, J VEG SCI, V5, P303, DOI 10.2307/3235853; PATE JS, 1991, AUST J BOT, V39, P505, DOI 10.1071/BT9910505; PIERCE SM, 1991, J ECOL, V79, P731, DOI 10.2307/2260664; Schmalzer Paul A., 1992, Castanea, V57, P158; Schmalzer Paul A., 1992, Castanea, V57, P220; SPECHT R. L., 1958, AUSTRALIAN JOUR BOT, V6, P59, DOI 10.1071/BT9580059; Trabaud L, 1987, ROLE FIRE ECOLOGICAL, P65; WITKOWSKI ETF, 1991, AUST J BOT, V39, P385, DOI 10.1071/BT9910385; WUNDERLIN RP, 1982, GUIDE VASCULAR PLANT 53 126 136 4 66 TORREY BOTANICAL SOC LAWRENCE 810 E 10TH ST, LAWRENCE, KS 66044 USA 0040-9618 B TORREY BOT CLUB Bull. Torrey Bot. Club OCT-DEC 1995 122 4 282 297 10.2307/2996320 16 Plant Sciences Plant Sciences TP081 WOS:A1995TP08100003 2019-02-26 J Shirose, LJ; Brooks, RJ Shirose, LJ; Brooks, RJ Age structure, mortality, and longevity in syntopic populations of three species of ranid frogs in central Ontario CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article LIFE-HISTORY EVOLUTION; COLEOPTERA; GROWTH; SIZE Syntopic populations of bullfrogs (Rana catesbeiana), green frogs (Rana clamitans) and mink frogs (Rana septentrionalis) were monitored between May and October in each of 1985 through 1987 and 1991 through 1993 in Algonquin Provincial Park, Ontario, Canada. We assessed the descriptive and predictive utility of a dichotomous system for classification of anuran life histories by testing the hypothesis that large body size and large clutch size are associated with a survivorship curve in which mortality is highest for very small individuals. Ages of individuals were estimated from size-frequency and recapture data. Survivorship and longevity were estimated from standing age distributions smoothed with the log-polynomial method. Survivorship was also estimated by comparing the number of animals in an age-class in a given year with the number in the next age-class in the next year. Age distributions were unstable in all three species. The strengths and weaknesses of both methods of estimation of survivorship are discussed. Shirose, LJ (reprint author), UNIV GUELPH,DEPT ZOOL,GUELPH,ON N1G 2W1,CANADA. Andrews R.M., 1982, Biology of Reptilia, V13, P273; BAKER RH, 1942, TEX GAME FISH OYSTER, V23; BANNIKOV AG, 1950, T AKAD NAUK SSSR, V70, P101; BANNIKOV AG, 1948, T AKAD NAUK SSSR, V61, P131; BERRILL M, 1992, DECLINES CANADIAN AM, P32; BISHOP CA, 1990, DECLINING AMPHIBIAN; BLAIR WF, 1953, COPEIA, P208; BRIGGS J L, 1970, Herpetologica, V26, P283; BRUNEAU M, 1980, CAN J ZOOL, V58, P175, DOI 10.1139/z80-019; BURY RB, 1984, US FISH WILDL SERV R, V155; Caughley G, 1977, ANAL VERTEBRATE POPU; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COLLINS JP, 1975, THESIS U MICHIGAN; CRUMP M. L, 1982, HERPETOLOGICAL COMMU, P21; CULLEY DD, 1981, 25TH P C SE ASS GAM, V7, P20; Durham L., 1963, Journal of Wildlife Management, V27, P107, DOI 10.2307/3797785; EBERHARDT LL, 1969, WILDLIFE MANAGEMENT, P457; GIBBS EL, 1971, BIOSCIENCE, V21, P1027, DOI 10.2307/1296057; GILHEN J, 1984, AMPHIBIANS REPTILES; GREEN NB, 1957, DISSERT ABSTR, V17, P23692; GREENSLADE PJ, 1972, EVOLUTION, V26, P130, DOI 10.1111/j.1558-5646.1972.tb00180.x; GREENSLADE PJ, 1972, EVOLUTION, V26, P203, DOI 10.1111/j.1558-5646.1972.tb00188.x; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; HARDING JP, 1949, J MAR BIOL ASSOC UK, V28, P141, DOI 10.1017/S0025315400055259; HEDEEN SE, 1972, COPEIA, P169; HICKEY F., 1960, NEW ZEALAND JOUR AGRIC RES, V3, P332; Hickey F., 1963, NZ AGR, V15, P1; Jameson D. L., 1956, Copeia, P25; Jameson D. L., 1956, Copeia, P55; JAMESON DAVID L., 1955, AMER MIDLAND NAT, V54, P342, DOI 10.2307/2422572; Low B.S., 1976, P149; MARTOF BERNARD, 1956, AMER MIDLAND NAT, V56, P224, DOI 10.2307/2422457; MERTZ DB, 1975, PHYSIOL ZOOL, V48, P1; MITCHELL J C, 1986, Virginia Journal of Science, V37, P262; OBBARD ME, 1977, THESIS U GUELPH GULE; OBBARD ME, 1983, THESIS U GUELPH GUEL; Pearl R, 1928, RATE LIVING; Pianka ER, 1974, EVOLUTIONARY ECOLOGY; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SHIROSE JL, 1990, THESIS U GUELPH GUEL; SHIROSE LJ, 1993, CAN J ZOOL, V71, P2363, DOI 10.1139/z93-332; SHIROSE LJ, 1995, HERPETOLOGICAL CONSE; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STORER TI, 1922, CALIF FISH GAME, V8, P219; TREANOR RR, 1972, 724 CAL DEP FISH GAM; TREANOR RR, 1975, 751 CAL DEP FISH GAM; TURNER FB, 1962, Q REV BIOL, V37, P303, DOI 10.1086/403692; TURNER FREDERICK B., 1960, ECOL MONOGR, V30, P251, DOI 10.2307/1943562; VOGT RC, 1981, NATURAL HIST AMPHIBI; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; Willis Y. L., 1956, Copeia, P30; Wright A. H., 1949, HDB FROGS TOADS US C 54 12 13 3 13 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. OCT 1995 73 10 1878 1886 10.1139/z95-220 9 Zoology Zoology TK793 WOS:A1995TK79300011 2019-02-26 J TATAR, M; CAREY, JR TATAR, M; CAREY, JR NUTRITION MEDIATES REPRODUCTIVE TRADE-OFFS WITH AGE-SPECIFIC MORTALITY IN THE BEETLE CALLOSOBRUCHUS-MACULATUS ECOLOGY English Article AGE-SPECIFIC MORTALITY; CALLOSOBRUCHUS MACULATUS; COSTS OF REPRODUCTION; NUTRITION; SENESCENCE; TRADE-OFFS LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; BRUCHID BEETLE; SELECTION; COSTS; FOOD; LONGEVITY; ACQUISITION; ALLOCATION; RESOURCES Trade-offs between mortality and reproduction play a central role in theories of life history and of senescence. Yet the fundamental question of how reproduction affects mortality is unresolved. We simultaneously manipulated both egg production and adult food availability in the beetle Callosobruchus maculatus and measured their effects on age-specific mortality. We show that there are two distinct mortality trade-offs of egg production. An early trade-off is observed at ages <18 d and is conditional on current adult nutrition; it is potentially related to energy exhaustion. The late trade-off is observed after 20 d of age, is progressive, and occurs despite the availability of current adult diet; it is potentially related to senescence. The expression of both mortality trade-offs depends on the interaction of early reproduction and nutritional state at the time of reproduction. Food availability at the time of high egg production completely mitigates the early mortality trade-off and lowers the late mortality trade-off by approximate to 12%. Most mechanistic explanations for the tradeoff between egg production and survival have assumed that eggs compete for the allocation of nutrients that are necessary for survival. However, experiments typically alter only egg production or nutrition, and cannot distinguish between nutrient allocation and alternative mechanisms where some direct, permanent somatic insult results from reproduction. By manipulating both egg production and nutrient availability, we distinguish between these alternatives and unambiguously demonstrate that nutrient allocation can be a mechanism for mortality trade-offs. UNIV CALIF DAVIS, ECOL GRAD GRP, DAVIS, CA 95616 USA; UNIV CALIF DAVIS, DEPT ENTOMOL, DAVIS, CA 95616 USA AUSTAD SN, 1989, EXP GERONTOL, V24, P83, DOI 10.1016/0531-5565(89)90037-5; Barnard CJ, 1990, PARASITISM HOST BEHA; BELL G, 1986, Oxford Surveys in Evolutionary Biology, P83; BOGGS CL, 1993, ECOLOGY, V74, P433, DOI 10.2307/1939305; BROOKS A, 1994, SCIENCE, V263, P668, DOI 10.1126/science.8303273; BROWNE RA, 1982, ECOLOGY, V63, P43, DOI 10.2307/1937029; BURPEE DM, 1993, EVOL ECOL, V7, P240, DOI 10.1007/BF01237742; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CAREY JR, 1986, ENTOMOL EXP APPL, V42, P159, DOI 10.1111/j.1570-7458.1986.tb01017.x; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; Dixon W. J., 1990, BMDP STATISTICAL SOF; Elandt-Johnson R. C., 1980, SURVIVAL MODELS DATA; ERNSTING G, 1991, FUNCT ECOL, V5, P299, DOI 10.2307/2389268; Finch C. E., 1990, LONGEVITY SENESCENCE; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; FOX CW, 1993, FUNCT ECOL, V7, P203, DOI 10.2307/2389888; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; HARMAN D, 1981, P NATL ACAD SCI-BIOL, V78, P7124, DOI 10.1073/pnas.78.11.7124; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408; HUGHES KA, 1994, NATURE, V367, P64, DOI 10.1038/367064a0; JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681; KAITALA A, 1991, FUNCT ECOL, V5, P12, DOI 10.2307/2389551; KALBFLEISCH JD, 1980, STATISTICAL ANAL FAI; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Leroi B, 1981, ECOLOGY BRUCHIDS ATT, V19, P101; MOLLER H, 1989, FUNCT ECOL, V3, P683, DOI 10.2307/2389500; NELSON W, 1981, APPLIED LIFE DATA AN; ORR WC, 1994, SCIENCE, V263, P1128, DOI 10.1126/science.8108730; Partridge L, 1987, FUNCT ECOL, V1, P317, DOI 10.2307/2389786; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROBERTSON JR, 1981, ECOLOGY, V62, P1585, DOI 10.2307/1941514; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SACHER GA, 1977, HDB BIOL AGING, P582; SANTOS PD, 1987, FUNCTIONAL ECOLOGY, V1, P213; SAPOLSKY RM, 1986, ENDOCR REV, V7, P284, DOI 10.1210/edrv-7-3-284; SMITH JM, 1958, J EXP BIOL, V35, P832; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; TATAR M, 1994, EVOLUTION, V48, P1371, DOI 10.1111/j.1558-5646.1994.tb05320.x; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; TATAR M, 1994, THESIS U CALIFORNIA; TUCIC N, 1990, GENETICA, V80, P221, DOI 10.1007/BF00137329; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; VAUPEL JW, 1993, SCIENCE, V260, P1666, DOI 10.1126/science.8503016; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 60 104 106 4 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 1995 76 7 2066 2073 10.2307/1941681 8 Ecology Environmental Sciences & Ecology RX362 WOS:A1995RX36200007 2019-02-26 J NORTON, SF; LUCZKOVICH, JJ; MOTTA, PJ NORTON, SF; LUCZKOVICH, JJ; MOTTA, PJ THE ROLE OF ECOMORPHOLOGICAL STUDIES IN THE COMPARATIVE BIOLOGY OF FISHES ENVIRONMENTAL BIOLOGY OF FISHES English Article PERFORMANCE; FUNCTIONAL MORPHOLOGY; ECOPHYSIOLOGY; BEHAVIORAL ECOLOGY; EVOLUTIONARY ECOLOGY; FITNESS; ONTOGENY; REALIZED NICHE; FUNDAMENTAL NICHE; PHENOTYPIC PLASTICITY; HYPOTHESIS TESTING STICKLEBACK GASTEROSTEUS-ACULEATUS; COTTUS-BAIRDI SCORPAENIFORMES; SUNFISH LEPOMIS-GIBBOSUS; LIFE-HISTORY EVOLUTION; INDIAN ANOLIS LIZARDS; LATERAL-LINE SYSTEM; THREESPINE STICKLEBACK; FUNCTIONAL-ANALYSIS; NATURAL-SELECTION; CICHLID FISHES The goal of an ecomorphological study is to understand the interactions between the morphology of organisms and their ecology. Both the morphology and the ecology presented by an organism are directly or indirectly under the influence of the environmental conditions that the organism experiences and its heritable composition. The development and interpretation of the central element of ecomorphological studies, the comparison between patterns of variation of morphological and ecological characters, depends heavily on the mechanistic framework provided by functional morphological and biomechanical studies. The cause-and-effect hypotheses derived from this comparison can be tested with performance trials. Ecomorphology forms an integral part of comparative biology, along with ecophysiology, behavioral ecology, and evolutionary ecology. Current issues in ecomorphological research that are addressed in this volume include application of a more functional approach to the choice of characters, integration of morphological, behavioral, and physiological information to address adaptation, and the expansion of spatial and temporal (ontogenetic and evolutionary) scales of ecomorphological questions. Future directions for ecomorphology include broadening the knowledge base, further integration of information from other disciplines, examination of the role of environmental and genetic factors in producing and maintaining ecological and morphological diversity, and application of ecomorphological insights to questions of community structure. E CAROLINA UNIV, INST COASTAL & MARINE RESOURCES, GREENVILLE, NC 27834 USA; UNIV S FLORIDA, DEPT BIOL, TAMPA, FL 33620 USA NORTON, SF (reprint author), E CAROLINA UNIV, DEPT BIOL, GREENVILLE, NC 27834 USA. ARNOLD SJ, 1983, AM ZOOL, V23, P347; BAKER JA, 1995, ENVIRON BIOL FISH, V44, P225, DOI 10.1007/BF00005918; BALON EK, 1986, ENVIRON BIOL FISH, V15, P243; BALON EK, 1986, ENVIRON BIOL FISH, V16, P11, DOI 10.1007/BF00005156; BALON EK, 1985, DEV ENV BIOL FISH, V5; BAREL CDN, 1983, NETH J ZOOL, V33, P357; BASOLO AL, 1990, SCIENCE, V250, P808, DOI 10.1126/science.250.4982.808; BAUMGARTNER JV, 1992, CAN J ZOOL, V70, P1140, DOI 10.1139/z92-160; Bell M. F., 1994, EVOLUTIONARY BIOL TH; BELL MA, 1985, COPEIA, P437; BELLWOOD DR, 1990, ENVIRON BIOL FISH, V28, P189, DOI 10.1007/BF00751035; BLAXTER JHS, 1987, BIOL REV, V62, P471, DOI 10.1111/j.1469-185X.1987.tb01638.x; BLOCK BA, 1993, SCIENCE, V260, P210, DOI 10.1126/science.8469974; BLOCK BA, 1991, AM ZOOL, V31, P726; BOCK WJ, 1980, AM ZOOL, V20, P217; BOCK WJ, 1965, EVOLUTION, V19, P269, DOI 10.2307/2406439; BOCK WJ, 1990, NETH J ZOOL, V40, P254, DOI 10.1163/156854289X00291; BOEHLERT GW, 1979, REV CAN BIOL EXPTL, V38, P265; BOEHLERT GW, 1978, SCIENCE, V202, P309, DOI 10.1126/science.694534; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; Brooks DR, 1991, PHYLOGENY ECOLOGY BE; Casinos A., 1978, Gegenbaurs Morphologisches Jahrbuch, V124, P434; CECH JJ, 1995, ENVIRON BIOL FISH, V44, P157, DOI 10.1007/BF00005913; CHAPMAN LJ, 1995, ENVIRON BIOL FISH, V44, P183, DOI 10.1007/BF00005915; CLEMENTS FE, 1916, PUBLICATION CARNEGIE, V242; Connor E.F., 1984, P316; CONOVER DO, 1981, SCIENCE, V213, P577, DOI 10.1126/science.213.4507.577; COOMBS S, 1988, NEUROBIOLOGY EVOLUTI, P553; COUGHLIN DJ, 1991, CAN J FISH AQUAT SCI, V48, P1896, DOI 10.1139/f91-225; CRAWFORD SS, 1994, ENVIRON BIOL FISH, V41, P369, DOI 10.1007/BF00023823; CROWDER LB, 1986, DEV ENV BIOL FISH, V7, P147; DAVIS WP, 1973, HELGOLAND WISS MEER, V24, P292, DOI 10.1007/BF01609520; DENTON EJ, 1993, PHILOS T ROY SOC B, V341, P113, DOI 10.1098/rstb.1993.0096; DESILVA SS, 1980, NETH J ZOOL, V30, P54; DOUGLAS ME, 1992, OIKOS, V65, P213, DOI 10.2307/3545012; DROST MR, 1987, CAN J FISH AQUAT SCI, V44, P304, DOI 10.1139/f87-039; DROST MR, 1988, NETH J ZOOL, V38, P23; DRUCKER EG, 1991, J MORPHOL, V210, P267, DOI 10.1002/jmor.1052100306; EBELING AW, 1974, DEEP-SEA RES, V21, P959, DOI 10.1016/0011-7471(74)90028-X; Echelle A. A., 1984, EVOLUTION FISH SPECI; EHLINGER TJ, 1988, P NATL ACAD SCI USA, V85, P1878, DOI 10.1073/pnas.85.6.1878; EMERY AR, 1973, B MAR SCI, V23, P649; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; FEDER ME, 1987, NEW DIRECTIONS ECOLO; FELLEY JD, 1984, COPEIA, P442, DOI 10.2307/1445202; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FOSTER SA, 1995, ENVIRON BIOL FISH, V44, P213, DOI 10.1007/BF00005917; GALIS F, 1990, NATO ADV SCI I G-ECO, V20, P281; Garland Theodore Jr., 1994, P240; GATZ A J JR, 1979, Tulane Studies in Zoology and Botany, V21, P91; GATZ AJ, 1979, ECOLOGY, V60, P711, DOI 10.2307/1936608; Gilpin M.E., 1984, ECOLOGICAL COMMUNITI, P297; GLADFELTER WB, 1978, REV BIOL TROP, V26, P65; Gleason HA, 1926, B TORREY BOT CLUB, V53, P7, DOI [10.2307/2479933, DOI 10.2307/2479933]; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; GROSSMAN GD, 1982, AM NAT, V120, P423, DOI 10.1086/284004; HERRING PJ, 1982, OCEANOGR MAR BIOL, V20, P415; HOBSON ES, 1981, FISH B-NOAA, V79, P1; HOOGERHOUD RJC, 1983, NETH J ZOOL, V33, P283; HORI M, 1993, SCIENCE, V260, P216, DOI 10.1126/science.260.5105.216; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HUETER RE, 1991, J EXP ZOOL S, V5, P130; Huey R.B., 1986, P82; JACKSON DA, 1992, AM NAT, V139, P930, DOI 10.1086/285367; JANSSEN J, 1987, BRAIN BEHAV EVOLUT, V30, P210, DOI 10.1159/000118647; JAYNE BC, 1989, J EXP ZOOL, V252, P126, DOI 10.1002/jez.1402520204; JONES WR, 1992, COPEIA, P485; KALMIJN AJ, 1989, NEUROBIOLOGY EVOLUTI, P187; KEAST A, 1966, J FISH RES BOARD CAN, V23, P1845, DOI 10.1139/f66-175; KORNFIELD I, 1982, EVOLUTION, V36, P658, DOI 10.1111/j.1558-5646.1982.tb05433.x; KOTRSCHAL K, 1995, ENVIRON BIOL FISH, V44, P143, DOI 10.1007/BF00005912; KOTRSCHAL K, 1993, ZOOL JAHRB ALLG ZOOL, V97, P47; Kotrschal K., 1983, Thalassia Jugoslavica, V19, P217; KREBS JR, 1978, BEHAVIOURAL ECOLOGY; KRYZHANOVSKY SG, 1949, T I MORPH ZHIV SEVER, V1, P5; Lammens E. H. R. R., 1991, CYPRINID FISHES SYST, P353; Lasker R., 1981, MARINE FISH LARVAE M; LAUDER GV, 1983, SCIENCE, V219, P1235, DOI 10.1126/science.6828853; LAUDER GV, 1993, TRENDS ECOL EVOL, V8, P294, DOI 10.1016/0169-5347(93)90258-Q; LAUDER GV, 1982, J THEOR BIOL, V97, P57, DOI 10.1016/0022-5193(82)90276-4; LAUR DR, 1983, ENVIRON BIOL FISH, V8, P217, DOI 10.1007/BF00001087; LAVIN PA, 1985, CAN J ZOOL, V63, P2632, DOI 10.1139/z85-393; LAVIN PA, 1986, CAN J FISH AQUAT SCI, V43, P2455, DOI 10.1139/f86-305; LEVINE JS, 1979, SENS PROCESS, V3, P95; Liem FF, 1984, EVOLUTION FISH SPECI, P203; Liem Karel F., 1993, P422; LIEM KF, 1991, ACTA MORPHOL NEERL S, V27, P119; LONG JH, 1995, ENVIRON BIOL FISH, V44, P199, DOI 10.1007/BF00005916; LOSOS JB, 1990, ECOL MONOGR, V60, P369, DOI 10.2307/1943062; LOSOS JB, 1990, EVOLUTION, V44, P1189, DOI 10.1111/j.1558-5646.1990.tb05225.x; Losos Jonathan B., 1994, P60; LUCZKOVICH JJ, 1995, ENVIRON BIOL FISH, V44, P79, DOI 10.1007/BF00005908; LUCZKOVICH JJ, 1993, MAR BIOL, V116, P381, DOI 10.1007/BF00350054; MALMQUIST HJ, 1992, J ANIM ECOL, V61, P21, DOI 10.2307/5505; MARTIN KLM, 1995, ENVIRON BIOL FISH, V44, P165, DOI 10.1007/BF00005914; MASRIERA J, 1991, J EXP MAR BIOL ECOL, V152, P91, DOI 10.1016/0022-0981(91)90137-L; McFarland W.N., 1991, P16; MCLELLAN T, 1977, DEEP-SEA RES, V24, P1019, DOI 10.1016/0146-6291(77)90572-0; MENSINGER AF, 1995, ENVIRON BIOL FISH, V44, P133, DOI 10.1007/BF00005911; MEYER A, 1987, EVOLUTION, V41, P1357, DOI 10.1111/j.1558-5646.1987.tb02473.x; MITTELBACH GG, 1992, OECOLOGIA, V90, P8, DOI 10.1007/BF00317802; MOLLER AP, 1992, NATURE, V357, P238, DOI 10.1038/357238a0; MOODY RC, 1983, ENVIRON BIOL FISH, V8, P61, DOI 10.1007/BF00004947; MOTTA PJ, 1995, ENVIRON BIOL FISH, V44, P11, DOI 10.1007/BF00005904; MOTTA PJ, 1989, ENVIRON BIOL FISH, V25, P158; MOTTA PJ, 1988, ENVIRON BIOL FISH, V22, P39, DOI 10.1007/BF00000543; MOTTA PJ, 1995, ENVIRON BIOL FISH, V44, P37, DOI 10.1007/BF00005906; MOTTA PJ, 1992, NETH J ZOOL, V42, P400; MOYLE PB, 1984, J ZOOL, V202, P195, DOI 10.1111/j.1469-7998.1984.tb05951.x; NAGELKERKE LAJ, 1994, ENVIRON BIOL FISH, V39, P1, DOI 10.1007/BF00004751; NICOLETTO PF, 1991, BEHAV ECOL SOCIOBIOL, V28, P365, DOI 10.1007/BF00164386; Nitecki MH, 1990, EVOLUTIONARY INNOVAT; NORTON SF, 1995, ENVIRON BIOL FISH, V44, P61, DOI 10.1007/BF00005907; NORTON SF, 1991, ECOLOGY, V72, P1807, DOI 10.2307/1940980; NORTON SF, 1988, SCIENCE, V241, P92, DOI 10.1126/science.241.4861.92; NORTON SF, 1993, J EXP BIOL, V176, P11; OSSE JWM, 1990, NETH J ZOOL, V40, P362, DOI 10.1163/156854289X00354; PAGEL MD, 1988, Q REV BIOL, V63, P413, DOI 10.1086/416027; Partridge J.C., 1989, Progress in Underwater Science, V14, P17; PURCELL SW, 1993, ENVIRON BIOL FISH, V37, P139, DOI 10.1007/BF00000589; RAHEL FJ, 1984, AM NAT, V124, P583, DOI 10.1086/284297; REEVE HK, 1993, Q REV BIOL, V68, P1, DOI 10.1086/417909; Reilly Stephen M., 1994, P339; REIMCHEN TE, 1992, EVOLUTION, V46, P1224, DOI 10.1111/j.1558-5646.1992.tb00631.x; REIMCHEN TE, 1985, CAN J ZOOL, V63, P2944, DOI 10.1139/z85-441; REIST JD, 1980, CAN J ZOOL, V58, P1245, DOI 10.1139/z80-174; REIST JD, 1980, CAN J ZOOL, V58, P1253, DOI 10.1139/z80-175; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROBERTS TR, 1974, J ZOOL, V173, P303; ROBINSON BW, 1994, AM NAT, V144, P596, DOI 10.1086/285696; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; SAGE RD, 1975, P NATL ACAD SCI USA, V72, P4669, DOI 10.1073/pnas.72.11.4669; SALE P F, 1978, Environmental Biology of Fishes, V3, P85, DOI 10.1007/BF00006310; SANDERSON SL, 1991, SCIENCE, V251, P1346, DOI 10.1126/science.251.4999.1346; SANDERSON SL, 1990, OECOLOGIA, V84, P272, DOI 10.1007/BF00318284; SANDLUND OT, 1992, OIKOS, V64, P305, DOI 10.2307/3545056; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; SCHLUTER D, 1994, SCIENCE, V266, P798, DOI 10.1126/science.266.5186.798; SCHLUTER D, 1995, ECOLOGY, V76, P82, DOI 10.2307/1940633; SCHMITT RJ, 1984, OECOLOGIA, V63, P6, DOI 10.1007/BF00379778; SIBBING FA, 1994, NETH J AGR SCI, V42, P77; SIBBING FA, 1982, J MORPHOL, V172, P223, DOI 10.1002/jmor.1051720208; SIBBING FA, 1988, ENVIRON BIOL FISH, V22, P161, DOI 10.1007/BF00005379; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMIRNOV SA, 1995, ENVIRON BIOL FISH, V44, P23, DOI 10.1007/BF00005905; STONER AW, 1984, COPEIA, P174, DOI 10.2307/1445050; STURMBAUER C, 1992, ENVIRON BIOL FISH, V35, P283, DOI 10.1007/BF00001895; SWAIN DP, 1992, EVOLUTION, V46, P987, DOI 10.1111/j.1558-5646.1992.tb00614.x; SWAIN DP, 1992, EVOLUTION, V46, P998, DOI 10.1111/j.1558-5646.1992.tb00615.x; TURNER BJ, 1983, ENVIRON BIOL FISH, V9, P159, DOI 10.1007/BF00690860; TURNER BJ, 1980, EVOLUTION, V34, P259, DOI 10.1111/j.1558-5646.1980.tb04814.x; VANDERMEER HJ, 1995, ENVIRON BIOL FISH, V44, P115, DOI 10.1007/BF00005910; Verigina I. A., 1991, Journal of Ichthyology, V31, P8; Wainright P.C., 1993, P472; WAINWRIGHT PC, 1991, FUNCT ECOL, V5, P40, DOI 10.2307/2389554; WAINWRIGHT PC, 1988, ECOLOGY, V69, P635, DOI 10.2307/1941012; WAINWRIGHT PC, 1986, ZOOL J LINN SOC-LOND, V88, P217, DOI 10.1111/j.1096-3642.1986.tb01189.x; WAINWRIGHT PC, 1995, ENVIRON BIOL FISH, V44, P97, DOI 10.1007/BF00005909; WAINWRIGHT PC, 1994, ECOLOGICAL MORPHOLOG; WATSON DJ, 1984, J FISH BIOL, V25, P371, DOI 10.1111/j.1095-8649.1984.tb04885.x; WEBB JF, 1989, BRAIN BEHAV EVOLUT, V33, P34, DOI 10.1159/000115896; WEBB PW, 1984, AM ZOOL, V24, P107; WEBB PW, 1986, CAN J FISH AQUAT SCI, V43, P763, DOI 10.1139/f86-094; WERNER EE, 1979, ECOLOGY, V60, P256, DOI 10.2307/1937653; WERNER EE, 1977, AM NAT, V111, P553, DOI 10.1086/283184; WESTNEAT MW, 1995, ENVIRON BIOL FISH, V44, P263, DOI 10.1007/BF00005920; WESTNEAT MW, 1990, J MORPHOL, V205, P269, DOI 10.1002/jmor.1052050304; WHITEAR M, 1994, J ZOOL, V232, P295, DOI 10.1111/j.1469-7998.1994.tb01574.x; WIEHS D, 1983, FISH BIOMECHANICS, P339; WIKRAMANAYAKE ED, 1990, ECOLOGY, V71, P1756, DOI 10.2307/1937583; WIMBERGER PH, 1991, EVOLUTION, V45, P1545, DOI 10.1111/j.1558-5646.1991.tb02662.x; WINEMILLER KO, 1991, ECOL MONOGR, V61, P343, DOI 10.2307/2937046; WINEMILLER KO, 1995, ENVIRON BIOL FISH, V44, P235, DOI 10.1007/BF00005919; WITTE F, 1990, NETH J ZOOL, V40, P278; WU EH, 1994, J MORPHOL, V222, P175, DOI 10.1002/jmor.1052220205; YANT PR, 1984, AM NAT, V124, P573, DOI 10.1086/284296; ZIHLER F, 1982, NETH J ZOOL, V32, P544 179 77 82 1 36 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes OCT 1995 44 1-3 287 304 10.1007/BF00005921 18 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology TA167 WOS:A1995TA16700020 2019-02-26 J PURVIS, A; HARVEY, PH PURVIS, A; HARVEY, PH MAMMAL LIFE-HISTORY EVOLUTION - A COMPARATIVE TEST OF CHARNOVS MODEL JOURNAL OF ZOOLOGY English Review GROUND-SQUIRRELS; POPULATION-STRUCTURE; AGE-DETERMINATION; NATIONAL-PARK; DALL SHEEP; BODY SIZE; DEMOGRAPHY; DYNAMICS; REPRODUCTION; MORTALITY We present a comparative test of Charnov's recent theoretical model of mammalian life-history evolution. Phylogenetic analysis of life-table data from 64 species, ranging across nine orders, supports all of Charnov's assumptions and most of his predictions. The allometries of time from independence to maturity (alpha), annual fecundity, and adult and juvenile mortality rates are in agreement with previous work and with the theory, as are the signs of the relationships among these traits when body size is controlled for. As predicted, the non-dimensional products of alpha and each of the other three traits are independent of adult body size, as is survivorship to maturity. However, we find that the ratio of weaning weight to adult weight (delta) is correlated with adult weight, in contradiction with the theory, and we do not find the predicted relationships between delta and the three non-dimensional products. The discrepancies could be because we have equated independence with weaning, or because the model assumes determinate growth: they could arise if large mammals have relatively longer periods of post-weaning care, or continue to grow after starting to reproduce. There is some evidence that delta is influenced by the nature of mortality around independence (density-dependent or density-independent), and we suggest this as a possible area for further work. In general, the areas of agreement between Charnov's theory and the data are more impressive than the differences, indicating that it could be a major breakthrough in understanding the evolution of life histories in placental mammals. PURVIS, A (reprint author), UNIV OXFORD, DEPT ZOOL, S PARKS RD, OXFORD OX1 3PS, ENGLAND. Purvis, Andy/A-7529-2008 Purvis, Andy/0000-0002-8609-6204 ARMITAGE KB, 1974, ECOLOGY, V55, P1233, DOI 10.2307/1935452; BARKALOW FS, 1970, J WILDLIFE MANAGE, V34, P489, DOI 10.2307/3798852; BERRIGAN D, 1993, EVOL ECOL, V7, P270, DOI 10.1007/BF01237744; BIJUDUVAL C, 1991, J MOL EVOL, V33, P92, DOI 10.1007/BF02100200; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; BOBEK B, 1973, Acta Theriologica, V18, P403; BOER AH, 1988, J WILDLIFE MANAGE, V52, P21, DOI 10.2307/3801051; BRONSON MT, 1979, ECOLOGY, V60, P272, DOI 10.2307/1937655; BULMER M, 1991, P NATL ACAD SCI USA, V88, P5974, DOI 10.1073/pnas.88.14.5974; BUTLER PM, 1988, PHYLOGENY CLASSIFICA, V2, P117; CARROLL RC, 1989, VERTEBRATE PALEONTOL; CASEY GA, 1975, CAN J ZOOL, V53, P223, DOI 10.1139/z75-027; CAUGHLEY G, 1970, Mammalia, V34, P194, DOI 10.1515/mamm.1970.34.2.194; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; Caughley G, 1977, ANAL VERTEBRATE POPU; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; Charnov Eric L., 1993, P1; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Corbet G. B., 1991, HDB BRIT MAMMALS; Corbet G. B., 1991, WORLD LIST MAMMALIAN; CORBET GB, 1983, ACTA ZOOL FENN, V174, P11; COWAN DP, 1985, J ZOOL, V207, P607; CROWE DM, 1975, J MAMMAL, V56, P177, DOI 10.2307/1379615; DAMUTH J, 1993, NATURE, V365, P748, DOI 10.1038/365748a0; DAVIS D W, 1971, Canadian Field-Naturalist, V85, P303; DAVIS WH, 1966, J MAMMAL, V47, P383, DOI 10.2307/1377679; Dittus WPJ, 1975, SOCIOECOLOGY PSYCHOL, P125; EISENBERG JF, 1981, MAMMALIAN RAD; ELLIS LS, 1979, J MAMMAL, V60, P331, DOI 10.2307/1379804; FALK JW, 1987, CAN J ZOOL, V65, P568, DOI 10.1139/z87-088; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GARROTT RA, 1990, J WILDLIFE MANAGE, V54, P603, DOI 10.2307/3809357; GEORGIADIS NJ, 1990, EVOLUTION, V44, P2135, DOI 10.1111/j.1558-5646.1990.tb04317.x; GITTLEMAN JL, 1992, ANNU REV ECOL SYST, V23, P383; GOEHRING HH, 1972, J MAMMAL, V53, P201, DOI 10.2307/1378850; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Hafner D.J., 1984, P3; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1991, NATURE, V350, P23, DOI 10.1038/350023a0; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HIGHT ME, 1974, SYST ZOOL, V23, P12, DOI 10.2307/2412236; Hill J. E., 1987, B BRIT MUS NAT HIST, V52, P225; HINDELL MA, 1991, J ANIM ECOL, V60, P119, DOI 10.2307/5449; HOEFS M, 1983, CAN J ZOOL, V61, P1346, DOI 10.1139/z83-181; Howard W. E., 1949, Contributions from the Laboratory of Vertebrate Biology of the University of Michigan, VNo. 43, P1; HOYLE JA, 1986, CAN FIELD NAT, V100, P537; JANIS CM, 1988, TRENDS ECOL EVOL, V3, P291, DOI 10.1016/0169-5347(88)90104-8; JARVIS JUM, 1973, J ZOOL, V171, P1; JEZIERSKI W, 1977, ACTA THERIOL, V22, P337, DOI 10.4098/AT.arch.77-31; KEIENBURG W, 1990, GRZIMEKS ENCY MAMMAL; KEMP GA, 1970, ECOLOGY, V51, P763, DOI 10.2307/1933969; Kovacs G, 1983, ACTA ZOOL FENN, V174, P69; Krebs C. J., 1989, ECOLOGICAL METHODOLO; LANDER RH, 1981, FISH RES, V1, P55, DOI 10.1016/0165-7836(81)90007-2; LAWS R. M., 1966, EAST AFR WILDLIFE J, V4, P1; LAWS R M, 1968, East African Wildlife Journal, V6, P19; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; LI WH, 1990, P NATL ACAD SCI USA, V87, P6703, DOI 10.1073/pnas.87.17.6703; LINDSTEDT SL, 1981, Q REV BIOL, V56, P1, DOI 10.1086/412080; LODAL J, 1985, ACTA ZOOL FENN, V173, P279; LORD REXFORD D., 1961, JOUR WILDLIFE MANAGEMENT, V25, P33, DOI 10.2307/3796988; LOWE VPW, 1969, J ANIM ECOL, V38, P425, DOI 10.2307/2782; LUO J, 1990, J MAMMAL, V71, P364, DOI 10.2307/1381947; Macpherson A. H., 1969, Canadian Wildlife Service Report Series, VNo. 8, P1; MANSFIELD AW, 1977, CAN DEPT ENV FISHERI, V704, P1; MARTIN P, 1984, ANIM BEHAV, V32, P1257, DOI 10.1016/S0003-3472(84)80245-6; MEDIN DE, 1979, WILDLIFE MONOGR, P5; MERTENS H, 1985, REV ECOL-TERRE VIE, V40, P33; MESSICK JP, 1961, WILDLIFE MONOGR, V8, P1; MESSIER F, 1988, ARCTIC, V41, P279; MILLAR JS, 1977, EVOLUTION, V31, P370, DOI 10.1111/j.1558-5646.1977.tb01019.x; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; MILLAR JS, 1902, CAN J ZOOL, V50, P229; NADLER CF, 1984, Z SAUGETIERKD, V49, P78; NELSON BB, 1982, Z SAUGETIERKD, V47, P296; NOVACEK MJ, 1992, NATURE, V356, P121, DOI 10.1038/356121a0; Nowak R. M, 1991, WALKERS MAMMALS WORL; PAGEL M, 1993, J THEOR BIOL, V164, P191, DOI 10.1006/jtbi.1993.1148; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; PARKER GR, 1986, ARCTIC, V39, P145; Peters R.H., 1983, P1; PIELOWSKI Z, 1984, ACTA THERIOL, V29, P17, DOI 10.4098/AT.arch.84-2; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PUCEK Z, 1969, ENERGY FLOW SMALL MA; PURVIS A, 1991, COMP ANAL INDEPENDEN; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Reiss M. J, 1989, ALLOMETRY GROWTH REP; RODGERS WA, 1984, MAMMALIA, V48, P327, DOI 10.1515/mamm.1984.48.3.327; Roff Derek A., 1992; ROLLEY RE, 1985, J WILDLIFE MANAGE, V49, P283, DOI 10.2307/3801517; ROSE GB, 1977, J WILDLIFE MANAGE, V41, P511, DOI 10.2307/3800524; Sarich V.M., 1985, NATO ASI (Advanced Science Institutes) Series Series A Life Sciences, V92, P423; SCHMIDTNIELSEN K, 1983, SCALING WHY ANIMAL S; SHERMAN PW, 1984, ECOLOGY, V65, P1617, DOI 10.2307/1939140; SIMMONS NM, 1984, J WILDLIFE MANAGE, V48, P156, DOI 10.2307/3808463; Skoczen S., 1966, Acta Theriologica, V11, P523; SKOUDLIN J, 1981, Vestnik Ceskoslovenske Spolecnosti Zoologicke, V45, P307; SLADE NA, 1974, ECOLOGY, V55, P989, DOI 10.2307/1940350; SMITH AT, 1974, ECOLOGY, V55, P1112, DOI 10.2307/1940361; SMITH TG, 1975, 5 REUN CONS PERM INT, V169, P281; Snyder D. P., 1956, Miscellaneous Publications Museum of Zoology University of Michigan, V95, P1; SPINAGE CA, 1970, J ANIM ECOL, V39, P51, DOI 10.2307/2889; SPINAGE CA, 1972, ECOLOGY, V53, P645, DOI 10.2307/1934778; Stearns SC., 1992, EVOLUTION LIFE HIST; STEPHENSON AB, 1977, CAN J ZOOL, V55, P1578; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; TELEKI G, 1976, J HUM EVOL, V5, P559, DOI 10.1016/0047-2484(76)90004-X; THOMPSON MJA, 1987, J ZOOL, V211, P209, DOI 10.1111/j.1469-7998.1987.tb01529.x; TRYON CA, 1973, J MAMMAL, V54, P145, DOI 10.2307/1378877; VRBA ES, 1985, S AFR J SCI, V81, P263; Wandeler A.I., 1976, Revue Suisse de Zoologie, V83, P956; WARNER RE, 1985, J WILDLIFE MANAGE, V49, P340, DOI 10.2307/3801527; Wayne R.K., 1989, P465; WAYNE RK, 1991, MOL BIOL EVOL, V8, P297; WEBER D, 1989, Z JAGDWISS, V35, P86, DOI 10.1007/BF02242094; WEI F, 1989, Acta Theriologica Sinica, V9, P81; WIGAL RA, 1983, Z SAUGETIERKD, V48, P226; WILLNER GR, 1983, Z SAUGETIERKD, V48, P19; Wozencraft W.C., 1989, P569; YANG Q, 1990, Acta Theriologica Sinica, V10, P255; YODZIS P, 1986, J WILDLIFE MANAGE, V50, P602, DOI 10.2307/3800970 125 86 88 0 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. OCT 1995 237 2 259 283 10.1111/j.1469-7998.1995.tb02762.x 25 Zoology Zoology TD674 WOS:A1995TD67400007 2019-02-26 J JONSSON, KI; TUOMI, J; JAREMO, J JONSSON, KI; TUOMI, J; JAREMO, J REPRODUCTIVE EFFORT TACTICS - BALANCING PREBREEDING AND POSTBREEDING COSTS OF REPRODUCTION OIKOS English Article LIFE-HISTORY EVOLUTION; NATURAL-SELECTION; RESOURCE-ALLOCATION; CLUTCH-SIZE; CONSTRAINTS; AGE; CONSEQUENCES; PEROMYSCUS; INVESTMENT; MORTALITY Costs of reproduction are most frequently evaluated in terms of postbreeding survival and fecundity costs. Such demographic costs are expected to follow as the female drains her somatic resources into reproduction. However, some reproductive tactics may lead to costs of reproduction that are expressed in terms of prebreeding survival. We propose an optimality model where total absolute effort may originate from two different components. The first component measures the amount of resources that the female accumulates for reproduction during the prebreeding period. The second component represents the amount of resources drained from somatic demands relative to non-reproductive individuals. While our model allows both components to imply pre- and postbreeding survival costs, we mainly focus on the case where accumulation effort implies costs on prebreeding survival and somatic effort implies costs on postbreeding survival. Effective fecundity is assumed to be a function of both components. We consider accumulation and somatic effort as alternative options of an orsanism's reproductive effort tactic, and solve for optimal tactics by maximizing fitness over a single breeding season, assuming a constant total investment in reproduction. The present analysis suggests that the evolution of accumulation effort requires that marginal prebreeding costs due to accumulated resources remain low relative to marginal postbreeding costs implied by somatic effort. When the total investment in reproduction increases, optimal somatic effort increases relative to optimal accumulation effort. Our analysis demonstrates that natural selection may well favour different effort tactics satisfying the energy demands of reproduction, some of which may involve optimization of the balance between pre- and postbreeding costs of reproduction. For organisms relying on tactics implying prebreeding costs, empirical studies monitoring postbreeding survival only may not reveal the major costs of reproduction. JONSSON, KI (reprint author), LUND UNIV, DEPT THEORET ECOL, ECOL BLDG, S-22362 LUND, SWEDEN. Jonsson, Ingemar/K-6047-2013 ALERSTAM T, 1984, OIKOS, V43, P253, DOI 10.2307/3544778; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BOGGS CL, 1992, FUNCT ECOL, V6, P508, DOI 10.2307/2390047; Caswell H., 1989, MATRIX POPULATION MO; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHARLESWORTH B, 1993, P ROY SOC B-BIOL SCI, V251, P47, DOI 10.1098/rspb.1993.0007; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1989, HEREDITY, V62, P113, DOI 10.1038/hdy.1989.15; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Chiang A. C., 1984, FUNDAMENTAL METHODS; DICK JM, 1991, FUNCT ECOL, V5, P422, DOI 10.2307/2389814; DRENT RH, 1980, ARDEA, V68, P225; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GLAZIER DS, 1990, FUNCT ECOL, V4, P223, DOI 10.2307/2389341; HAUKIOJA E, 1978, OECOLOGIA, V35, P253, DOI 10.1007/BF00345134; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HORVITZ CC, 1988, ECOLOGY, V69, P1741, DOI 10.2307/1941152; Intriligator Michael D, 1971, MATH OPTIMIZATION EC; JAREMO J, 1993, THESIS LUND U; JONSSON KI, 1994, TRENDS ECOL EVOL, V9, P304, DOI 10.1016/0169-5347(94)90042-6; JORMALAINEN V, 1989, OPHELIA, V30, P213, DOI 10.1080/00785326.1989.10430845; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; KENAGY GJ, 1990, J ANIM ECOL, V59, P73, DOI 10.2307/5159; LAMBERT Y, 1990, CAN J FISH AQUAT SCI, V47, P318, DOI 10.1139/f90-033; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 1982, P21; LLOYD DG, 1992, THEOR POPUL BIOL, V41, P90, DOI 10.1016/0040-5809(92)90051-T; MAINGUY SK, 1985, CAN J ZOOL, V63, P1765, DOI 10.1139/z85-265; MASMAN D, 1989, J EVOLUTION BIOL, V2, P435, DOI 10.1046/j.1420-9101.1989.2060435.x; Millar J.S., 1987, Symposia of the Zoological Society of London, P231; MILLAR JS, 1975, CAN J ZOOL, V53, P967, DOI 10.1139/z75-112; NIEWIAROWSKI PH, 1994, EVOLUTION, V48, P137, DOI 10.1111/j.1558-5646.1994.tb01300.x; OBESO JR, 1993, FUNCT ECOL, V7, P150, DOI 10.2307/2389881; PFISTER CA, 1992, ECOLOGY, V73, P1586, DOI 10.2307/1940012; PRICE T, 1989, AM NAT, V134, P950, DOI 10.1086/285023; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Roff Derek A., 1992; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; THOMAS DP, 1989, HAEMOSTASIS, V19, P353; TUOMI J, 1983, AM ZOOL, V23, P25; TUOMI J, 1988, OIKOS, V52, P250, DOI 10.2307/3565198; WARD SA, 1983, J ANIM ECOL, V52, P305, DOI 10.2307/4602; WATSON MA, 1984, AM NAT, V123, P411, DOI 10.1086/284212; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S 54 22 23 0 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos OCT 1995 74 1 35 44 10.2307/3545672 10 Ecology Environmental Sciences & Ecology TJ359 WOS:A1995TJ35900004 2019-02-26 J MARTIN, K MARTIN, K PATTERNS AND MECHANISMS FOR AGE-DEPENDENT REPRODUCTION AND SURVIVAL IN BIRDS AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Reproductive Aging in Avian Species, at the 21st International Ornithology Congress AUG, 1994 VIENNA, AUSTRIA EUROPEAN BLACKBIRDS; WILLOW PTARMIGAN; CALIFORNIA GULL; CLUTCH-SIZE; SUCCESS; EXPERIENCE; FECUNDITY; POPULATION; SENESCENCE; GOOSE The majority of bird species exhibit age-dependent survival and reproduction. In almost all cases, first time breeders or young individuals perform at a lower and slower rate than older individuals. This review highlights the importance of age-dependent effects and urges further study of the proximate and ultimate mechanisms involved. Age effects show substantive variation across life history stage, breeding season, year, cohort, habitat types and environmental conditions both within and across taxons. In some populations or years, age effects disappear. Despite the variable patterns, age effects show amazing persistence in a variety of extreme ecological and environmental conditions. Experimental manipulations of food, predation pressure and breeding experience do not usually remove age effects. Age-dependent effects may be maintained or accumulate through the breeding season and profoundly influence fitness, or they may be washed out or reversed by events later in the breeding season. Recently, we have amassed substantive information about the patterns of variation in age-dependent reproduction and survival among individuals, but we have made little progress toward understanding the proximate mechanisms responsible for this variation. Proximate and ultimate processes are inextricably linked, and thus the study of age-dependence is highly relevant to the further development of life history theory. Studies of age-dependent performance have general relevance to population management and conservation issues as age sub-structuring may contribute substantially to annual or inter-populational variation in reproductive success. UNIV BRITISH COLUMBIA,DEPT FOREST SCI,VANCOUVER,BC V6T 1Z4,CANADA MARTIN, K (reprint author), CANADIAN WILDLIFE SERV,5421 ROBERTSON RD,RR1,DELTA,BC V4K 3N2,CANADA. AINLEY DG, 1978, CONDOR, V80, P138, DOI 10.2307/1367913; BRAUN CE, 1993, BIRDS N AM; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COOCH EG, 1989, J ANIM ECOL, V58, P711, DOI 10.2307/4858; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; DESROCHERS A, 1992, ANIM BEHAV, V43, P885, DOI 10.1016/S0003-3472(06)80002-3; DESROCHERS A, 1992, ECOLOGY, V73, P1128, DOI 10.2307/1940186; DESROCHERS A, 1993, AUK, V110, P255; DESROCHERS A, 1996, PARTNERSHIPS BIRDS E; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; EWALD PW, 1982, J ANIM ECOL, V51, P429, DOI 10.2307/3975; FORSLUND P, 1992, J ANIM ECOL, V61, P195, DOI 10.2307/5522; GILCHRIST HG, 1994, J ORNITHOL, V135, P382; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HANNON SJ, 1996, IN PRESS PARTNERSHIP; HOCHACHKA WM, 1994, J F ORNITHOL, V135, P383; HOLMES DJ, 1995, IN PRESS J GERONTOL; KREBS JR, 1991, BEHAVIOURAL ECOLOGY; Lack D, 1968, ECOLOGICAL ADAPTATIO; LESSELLS CM, 1989, AUK, V106, P375; MARTIN K, 1991, CAN J ZOOL, V69, P1834, DOI 10.1139/z91-253; MARTIN K, 1987, ANIM BEHAV, V35, P369, DOI 10.1016/S0003-3472(87)80260-9; Martin K., 1994, J ORNITHOL, V135, P381; Martin Kathy, 1993, P33; NEWTON I, 1988, REPROD SUCCESS, P201; NEWTON I, 1989, LIFETIME REPRODUCTIO; NOL E, 1987, J ANIM ECOL, V56, P301, DOI 10.2307/4816; NUR N, 1984, OIKOS, V43, P407, DOI 10.2307/3544163; OTTINGER MA, 1995, AM ZOOL, V35, P299; PART T, 1994, J ORNITHOL, V135, P384; PERRINS CM, 1974, IBIS, V116, P220, DOI 10.1111/j.1474-919X.1974.tb00242.x; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PUGESEK BH, 1981, SCIENCE, V212, P822, DOI 10.1126/science.212.4496.822; REID WV, 1988, ECOLOGY, V69, P1454, DOI 10.2307/1941642; ROBERTSON GJ, 1994, J AVIAN BIOL, V25, P149, DOI 10.2307/3677034; ROCKWELL RF, 1993, J ANIM ECOL, V62, P323, DOI 10.2307/5363; ROCKWELL RF, 1985, CONDOR, V87, P142, DOI 10.2307/1367145; Saether B.-E., 1990, Current Ornithology, V7, P251; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; SULLIVAN KA, 1988, ECOLOGY, V69, P118, DOI 10.2307/1943166; WHEELWRIGHT NT, 1994, J ANIM ECOL, V63, P686, DOI 10.2307/5234; WIEBE KL, 1994, J ORNITHOL, V135, P385; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 43 146 148 1 33 AMER SOC ZOOLOGISTS LAWRENCE 1041 NEW HAMPSHIRE ST, LAWRENCE, KS 66044 0003-1569 AM ZOOL Am. Zool. SEP 1995 35 4 340 348 9 Zoology Zoology TC815 WOS:A1995TC81500006 2019-02-26 J VALICENTE, FH; ONEIL, RJ VALICENTE, FH; ONEIL, RJ EFFECTS OF HOST PLANTS AND FEEDING REGIMES ON SELECTED LIFE-HISTORY CHARACTERISTICS OF PODISUS-MACULIVENTRIS (SAY) (HETEROPTERA, PENTATOMIDAE) BIOLOGICAL CONTROL English Article INSECT PLANT INTERACTIONS; LIFE HISTORY STRATEGIES; PODISUS MACULIVENTRIS; LEPTINOTARSA DECEMLINEATA; SOLANUM TUBEROSUM; LYCOPERSICON ESCULENTUM COLORADO POTATO BEETLE; LEPTINOTARSA-DECEMLINEATA; CHRYSOMELIDAE; COLEOPTERA; HEMIPTERA; FECUNDITY; SURVIVAL; PREDATION; RATES Effects of two different plants, potato, Solanum tuberosum L., and tomato, Lycopersicon esculentum Mill., and feeding regimes on selected life history characteristics of the predator Podisus maculiventris (Say) were investigated. Prey were third instar Colorado potato beetle, Leptinotarsa decemlineata (Say). Without access to prey, survivorship was initially higher for P. maculiventris provided either potato or tomato plants than for predators provided only water. However, no major difference in survivorship was detected after the 35th day of life. Predators provided only plants lived up to 50 days, and predators provided only water lived up to 60 days. Predators provided either plants or water lost weight initially but then maintained a low weight throughout the remainder of their lives. In contrast, P. maculiventris having no access to plants or water lost weight continually until death. When feeding on relatively few L. decemlineata, P. maculiventris maintained longevity but decreased reproduction. As the time between feedings of prey to predators increased, P. maculiventris laid fewer eggs, had lower body weights, and laid eggs later in life than those predators feeding on prey more frequently. These results support the concept of a trade-off between longevity and reproduction when P. maculiventris feeds on relatively few prey. This trade-off is not affected by the host plant upon which prey were reared. A tradeoff between longevity and reproduction is consistent with previous studies with P. maculiventris and may help to explain how this predator and others like it can maintain populations in fields where prey are not readily available. (C) 1995 Academic Press, Inc. PURDUE UNIV,DEPT ENTOMOL,W LAFAYETTE,IN 47907 BAKER A M, 1985, Journal of Agricultural Entomology, V2, P378; Begon M., 1990, ECOLOGY INDIVIDUALS; BIEVER KD, 1992, ENVIRON ENTOMOL, V21, P1212, DOI 10.1093/ee/21.5.1212; Boiteau G., 1988, Bulletin of the Entomological Society of Canada, V20, P9; CLAUSEN CP, 1978, USDA HDB, V480; COHEN AC, 1990, ANN ENTOMOL SOC AM, V83, P1215, DOI 10.1093/aesa/83.6.1215; DIETZ LL, 1980, NC AGR EXP STN TECH, V238; DRUMMOND FA, 1984, ENVIRON ENTOMOL, V13, P1283, DOI 10.1093/ee/13.5.1283; EVANS EW, 1982, ANN ENTOMOL SOC AM, V75, P418, DOI 10.1093/aesa/75.4.418; GALLOPIN GC, 1972, CAN ENTOMOL, V104, P231, DOI 10.4039/Ent104231-2; HARRISON GD, 1988, J CHEM ECOL, V14, P777, DOI 10.1007/BF01018772; HOUGHGOLDSTEIN JA, 1993, CROP PROT, V12, P324, DOI 10.1016/0261-2194(93)90074-S; JAMES RL, 1984, THESIS U RHODE ISLAN; JANSSON RK, 1989, ENVIRON ENTOMOL, V18, P291, DOI 10.1093/ee/18.2.291; KENNEDY GG, 1985, J ECON ENTOMOL, V78, P547, DOI 10.1093/jee/78.3.547; LAMBDIN PL, 1986, J ENTOMOL SCI, V21, P263, DOI 10.18474/0749-8004-21.3.263; LANDIS B. J., 1937, OHIO JOUR SCI, V37, P252; LATHEEF MA, 1972, CAN ENTOMOL, V104, P1271, DOI 10.4039/Ent1041271-8; LEGASPI JC, 1994, ENVIRON ENTOMOL, V23, P1254, DOI 10.1093/ee/23.5.1254; LEGASPI JC, 1994, ENVIRON ENTOMOL, V23, P374, DOI 10.1093/ee/23.2.374; LEGASPI JC, 1993, ENVIRON ENTOMOL, V22, P192; LEGASPI JC, 1995, IN PRESS THOMAS SAY; MATSURA T, 1983, OECOLOGIA, V56, P306, DOI 10.1007/BF00379704; MCPHERSON JE, 1980, GREAT LAKES ENTOMOL, V13, P18; MCPHERSON RM, 1982, ENVIRON ENTOMOL, V11, P685, DOI 10.1093/ee/11.3.685; MORRIS R. F., 1963, CANADIAN ENTOMOL, V95, P1009; MUKERJI MK, 1969, CAN ENTOMOL, V101, P449, DOI 10.4039/Ent101449-5; MUKERJI MK, 1969, CAN ENTOMOL, V101, P387, DOI 10.4039/Ent101387-4; MUKERJL M. K., 1965, PHYTOPROTECTION, V46, P40; MURDOCH WW, 1966, AM NAT, V100, P5, DOI 10.1086/282396; ONEIL RJ, 1988, CAN ENTOMOL, V120, P161, DOI 10.4039/Ent120161-2; ONEIL RJ, 1990, CAN ENTOMOL, V122, P285, DOI 10.4039/Ent122285-3; ORR DB, 1986, OECOLOGIA, V70, P242, DOI 10.1007/BF00379247; RUBERSON JR, 1986, ENVIRON ENTOMOL, V15, P894, DOI 10.1093/ee/15.4.894; SWEET MH, 1979, ANN ENTOMOL SOC AM, V72, P575, DOI 10.1093/aesa/72.5.575; TOKO M, 1994, EXP APPL ACAROL, V18, P221, DOI 10.1007/BF00114169; VALICENTE FH, 1991, THESIS PURDUE U W LA; WARREN L O, 1971, Journal of the Georgia Entomological Society, V6, P109; WHEELER AG, 1977, CAN ENTOMOL, V109, P423, DOI 10.4039/Ent109423-3; Whitcomb W.H., 1964, ARK AGR EXP STN B, V690; WIEDENMANN RN, 1992, ENVIRON ENTOMOL, V21, P1; WIEDENMANN RN, 1990, CAN ENTOMOL, V122, P271, DOI 10.4039/Ent122271-3; WIEDENMANN RN, 1995, IN PRESS T SAY PUB E; WISE DH, 1979, OECOLOGIA, V41, P289, DOI 10.1007/BF00377433; 1989, USERS GUIDE STATISTI 45 32 35 0 5 ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS SAN DIEGO 525B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 1049-9644 BIOL CONTROL Biol. Control SEP 1995 5 3 449 461 10.1006/bcon.1995.1054 13 Biotechnology & Applied Microbiology; Entomology Biotechnology & Applied Microbiology; Entomology RT254 WOS:A1995RT25400017 2019-02-26 J DRAYE, X; LINTS, FA DRAYE, X; LINTS, FA GEOGRAPHIC VARIATIONS OF LIFE-HISTORY STRATEGIES IN DROSOPHILA-MELANOGASTER .2. ANALYSIS OF LABORATORY-ADAPTED POPULATIONS EXPERIMENTAL GERONTOLOGY English Article DROSOPHILA MELANOGASTER; LIFE HISTORY STRATEGIES; AGING; WILD-CAUGHT POPULATIONS GENETIC COVARIATION; SELECTION; SPAN; REPRODUCTION; SENESCENCE; COMPONENTS; FITNESS; MALES; AGE Life history traits-hatchability, longevity, and egg production-of five wild-caught populations of Drosophila melanogaster were measured after these populations had been reared in constant laboratory conditions during a 4-year period. The results were analyzed together with those that had been obtained with the same populations just after capture. They are probably the first convincing results that reveal the existence of genetic variability for some life history traits measured in the laboratory. Besides, no significant phenotypic correlations, either positive or negative, between early and late components of fitness were found. Finally, the five populations showed different patterns of genetic correlation between early and late fitness traits, One of the populations showed a negative correlation, another showed a positive correlation, while the remaining three populations showed no correlation at all, This was equally observed at the within- and between-population levels. That result suggests that both the antagonistic pleiotropy hypothesis proposed by Williams and the concordant pleiotropy hypothesis suggested by Lints are not of general validity. UNIV CATHOLIQUE LOUVAIN,UNITE GENET,B-1348 LOUVAIN,BELGIUM Draye, Xavier/0000-0002-3637-3330 BARET P, 1993, GERONTOLOGY, V39, P252; CLARK A G, 1987, American Naturalist, V129, P932, DOI 10.1086/284686; Cox DR, 1984, ANAL SURVIVAL DATA; DAVID J, 1974, Archives de Zoologie Experimentale et Generale, V115, P263; DOBZHANSKY T, 1964, HEREDITY, V19, P597, DOI 10.1038/hdy.1964.73; DRAYE X, 1994, EXP GERONTOL, V29, P205, DOI 10.1016/0531-5565(94)90052-3; ENGSTROM G, 1992, THEOR APPL GENET, V85, P26, DOI 10.1007/BF00223841; Falconer D. S., 1989, INTRO QUANTITATIVE G; FRIEDMAN DB, 1987, GENETICS, V118, P75; FUKUI HH, 1995, GERONTOLOGY, V41, P65; GOWEN JW, 1946, AM NAT, V80, P149, DOI 10.1086/281373; JOHNSON TE, 1993, GENETICA, V91, P65, DOI 10.1007/BF01435988; KALBFLEISCH JD, 1980, STATISTICAL ANAL FAI; LEBOURG E, 1984, EXP GERONTOL, V19, P205, DOI 10.1016/0531-5565(84)90040-8; LEBOURG E, 1989, GERONTOLOGY, V35, P253; LEBOURG E, 1988, EXP GERONTOL, V23, P491, DOI 10.1016/0531-5565(88)90061-7; LINTS FA, 1983, GERONTOLOGY, V29, P336; LINTS FA, 1989, EXP GERONTOL, V24, P265, DOI 10.1016/0531-5565(89)90017-X; LINTS FA, 1989, GERONTOLOGY, V35, P36, DOI 10.1159/000212998; LINTS FA, 1988, DROSOPHILA MODEL ORG, P99; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; Pearl R, 1927, AM NAT, V61, P289, DOI 10.1086/280154; ROPER C, 1993, EVOLUTION, V47, P445, DOI 10.1111/j.1558-5646.1993.tb02105.x; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P173; SCHEINER SM, 1989, EVOL ECOL, V3, P51, DOI 10.1007/BF02147931; Searle SR, 1971, LINEAR MODELS; SERVICE PM, 1993, GENETICA, V91, P111, DOI 10.1007/BF01435992; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SMITH JM, 1959, J GENET, V56, P1; Snedecor G.W., 1967, STATISTICAL METHODS; TUCIC N, 1988, HEREDITY, V60, P55, DOI 10.1038/hdy.1988.9; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x 37 3 3 0 3 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0531-5565 EXP GERONTOL Exp. Gerontol. SEP-OCT 1995 30 5 517 532 10.1016/0531-5565(95)00006-3 16 Geriatrics & Gerontology Geriatrics & Gerontology RW753 WOS:A1995RW75300007 8557099 2019-02-26 J PONS, JM; MIGOT, P PONS, JM; MIGOT, P LIFE-HISTORY STRATEGY OF THE HERRING GULL - CHANGES IN SURVIVAL AND FECUNDITY IN A POPULATION SUBJECTED TO VARIOUS FEEDING CONDITIONS JOURNAL OF ANIMAL ECOLOGY English Article CAPTURE-RECAPTURE; FECUNDITY PARAMETERS; LARIDAE; LARUS ARGENTATUS; REFUSE TIP; SURVIVAL RATES LARUS-ARGENTATUS; REPRODUCTIVE EFFORT; NATURAL-SELECTION; BREEDING SUCCESS; CALIFORNIA GULLS; EGG-SIZE; RECRUITMENT; HYPOTHESES; NUMBERS; COLONY 1. The present study compares breeding parameters and adult survival rate in a herring gull colony before and after the closing of a large refuse tip where breeders used to find most of their food. During the first study period (1983-88) food of human origin was abundant and virtually always available. During the second period (1989-90) such food was scarce. 2. The annual adult survival rate was time-dependent. It varied from 0.826 (SE = 0.031) in 1987-88 to 0.975 (SE = 0.022) in 1985-86. The average survival rate calculated for 1983-90 was 0.881 (SE = 0.014). There was no significant difference in adult survival between males and females. The closure of the refuse tip was not followed by a significant decrease in adult survival rate. 3. After the refuse tip was closed, mean clutch size and mean production of young per breeding pair decreased by 6.7% and 49.1%, respectively. Mean adult body weight decreased by 4.6% for males and by 4.7% for females. 4. The proportion of non-breeders among former breeders and the proportion of 3- and 4-year-old individuals among ringed birds did not change after closure of the tip. 5. The results are discussed in terms of the life-history theory, which predicts that in long-lived species a decrease in food supply should affect fecundity before affecting adult survival. PONS, JM (reprint author), MUSEUM NATL HIST NAT,CTR RECH BIOL POPULAT OISEAUX,MAMMIFERES & OISEAUX LAB,55 RUE BUFFON,F-75005 PARIS,FRANCE. AEBISCHER NJ, 1992, BIRD STUDY, V39, P43, DOI 10.1080/00063659209477098; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Birkhead T.R., 1985, P145; Burnham K.P., 1987, AM FISHERIES SOC MON, V5, P437; CHABRZYK G, 1976, J ANIM ECOL, V45, P187, DOI 10.2307/3774; CLOBERT J, 1987, ARDEA, V75, P133; CLUTTONBROCK TH, 1991, J ANIM ECOL, V60, P593, DOI 10.2307/5300; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; COULSON JC, 1983, ARDEA, V71, P235; COULSON JC, 1984, IBIS, V126, P525, DOI 10.1111/j.1474-919X.1984.tb02078.x; COULSON JC, 1986, BIRD STUDY, V33, P51, DOI 10.1080/00063658609476892; CROXALL JP, 1991, BIRD POPULATION STUD, P272; DAVIS JWF, 1975, IBIS, V117, P460, DOI 10.1111/j.1474-919X.1975.tb04239.x; DAVIS JWF, 1973, THESIS U OXFORD; DRENT RH, 1980, ARDEA, V68, P225; FORDHAM RA, 1970, J ANIM ECOL, V39, P14; Furness R.W., 1992, Seabird Group Newsletter, V63, P2; FURNESS RW, 1992, ARDEA, V80, P105; FURNESS RW, 1987, SEABIRD ECOLOGY; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; HARRIS M. P., 1964, IBIS, V106, P432, DOI 10.1111/j.1474-919X.1964.tb03725.x; HARRIS MP, 1970, BIRD STUDY, V17, P325, DOI 10.1080/00063657009476275; HEMERY G, 1986, CR ACAD SCI III-VIE, V303, P353; HOUSTON DC, 1983, J ZOOL, V200, P509; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; KADLEC JA, 1976, BIRD BANDING, V47, P8, DOI 10.2307/4512186; KLOMP NI, 1992, J APPL ECOL, V29, P341, DOI 10.2307/2404503; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LINARD JC, 1991, UNPUB FONCTIONNEMENT; Lloyd C., 1991, STATUS SEABIRDS BRIT; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MIGOT P, 1986, Alauda, V54, P268; MIGOT P, 1992, ARDEA, V80, P161; MIGOT P, 1987, THESIS U PARIS 6 PAR; MILLS JA, 1979, IBIS, V121, P53, DOI 10.1111/j.1474-919X.1979.tb05014.x; MONAGHAN P, 1986, EVOLUTION, V40, P1096, DOI 10.1111/j.1558-5646.1986.tb00577.x; MONAGHAN P, 1989, J ANIM ECOL, V58, P261, DOI 10.2307/4999; Mougin J.-L., 1991, Oiseau et la Revue Francaise d'Ornithologie, V61, P131; NOORDHUIS R, 1992, Ardea, V80, P115; NORSTROM RJ, 1986, ARDEA, V74, P1; NUR N., 1990, POPULATION BIOL PASS, P281; PATTON SR, 1988, WILSON BULL, V100, P431; Pianka ER, 1983, EVOLUTIONARY ECOLOGY; POLLOCK KH, 1984, BIOMETRICS, V40, P329, DOI 10.2307/2531386; PONS JM, 1994, ETHOL ECOL EVOL, V6, P1, DOI 10.1080/08927014.1994.9523003; PONS JM, 1992, ARDEA, V80, P143; PONS JM, 1992, THESIS U PARIS 11 OR; Pradel R., 1990, Ring International Ornithological Bulletin, V13, P193; Pradel R., 1993, P29; PRADEL R, 1988, UNPUB NOUVELLES APPR; PUGESEK BH, 1990, ECOLOGY, V71, P811, DOI 10.2307/1940332; SEBER GAF, 1965, BIOMETRIKA, V52, P249; SIBLY RM, 1983, J ANIM ECOL, V52, P35, DOI 10.2307/4586; SIBLY RM, 1983, J ANIM ECOL, V52, P51, DOI 10.2307/4587; SPAANS AL, 1971, ARDEA, V59, P73; SPAANS AL, 1987, STUDIES AVIAN BIOL, V10, P57; SPAANS M J, 1975, Limosa, V48, P1; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler D.W., 1988, Oxford Surveys in Evolutionary Biology, V5, P185; WINKLER DW, 1985, EVOLUTION, V39, P667, DOI 10.1111/j.1558-5646.1985.tb00403.x 61 87 93 3 38 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. SEP 1995 64 5 592 599 10.2307/5802 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology RY351 WOS:A1995RY35100005 2019-02-26 J MATHIES, T; ANDREWS, RM MATHIES, T; ANDREWS, RM THERMAL AND REPRODUCTIVE-BIOLOGY OF HIGH AND LOW ELEVATION POPULATIONS OF THE LIZARD SCELOPORUS-SCALARIS - IMPLICATIONS FOR THE EVOLUTION OF VIVIPARITY OECOLOGIA English Article EGG RETENTION; VIVIPARITY; SCELOPORUS SCALARIS; THERMOREGULATION; LIFE HISTORY EVOLUTION PHYSIOLOGICAL ECOLOGY; WATER RELATIONS; LIFE-HISTORIES; UNDULATUS EGGS; REPTILIAN EGGS; SPRINT SPEED; TEMPERATURE; INCUBATION; RETENTION; SIZE Viviparity in squamate reptiles is presumed to evolve in cold climates by selection for increasingly longer periods of egg retention. Longer periods of egg retention may require modifications to other reproductive features associated with the evolution of viviparity, including a reduction in eggshell thickness and clutch size. Field studies on the thermal and reproductive biology of high (HE) and low (LE) elevation populations of the oviparous lizard, Sceloporus scalaris, support these expectations. Both day and night-time temperatures at the HE site were considerably cooler than at the LE site, and the activity period was 2 h shorter at the HE than at the LE site. The median body temperature of active HE females was 2 degrees C lower than that of LE females. HE females initiated reproduction earlier in the spring than LE females, apparently in order to compensate for relatively low temperatures during gestation. HE females retained eggs for about 20 days longer than LE females, which was reflected by differences in the degree of embryonic development at the time of oviposition (stages 35.5-37.0 versus stages 31.0-33.5, respectively). These results support the hypotheses that evolution of viviparity is a gradual process, and is favored in cold climates. Females in the HE population exhibited other traits consistent with presumed intermediate stages in the evolution of viviparity; mean eggshell thickness of HE eggs (19.3 mu m) was significantly thinner than that of LE eggs (26.6 mu m) and the size-adjusted clutch sizes of HE females (9.4) were smaller than those of LE females (11.2). MATHIES, T (reprint author), VIRGINIA POLYTECH INST & STATE UNIV,DEPT BIOL,BLACKSBURG,VA 24061, USA. Andrews@vt.edu, Robin/0000-0001-6974-3732 ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; ANDREWS RM, 1994, PHYSIOL ZOOL, V67, P1006, DOI 10.1086/physzool.67.4.30163876; BALLARD KP, 1981, REG STUD, V15, P213, DOI 10.1080/09595238100185221; Ballinger R.E., 1983, P241; BEUCHAT CA, 1988, J THERM BIOL, V13, P135, DOI 10.1016/0306-4565(88)90024-1; BOCK CE, 1990, J HERPETOL, V24, P445, DOI 10.2307/1565072; BRANA F, 1991, HERPETOLOGICA, V47, P218; Brana F., 1986, REV ESP HERPETOL, V1, P273; CHRISTIAN KA, 1986, COPEIA, P1012; Cowles Raymond Bridgman, 1944, BULL AMER MUS NAT HIST, V83, P261; DELACRUZ FRM, 1988, J HERPETOL, V22, P1, DOI 10.2307/1564351; DEMARCO V, 1992, FUNCT ECOL, V6, P436, DOI 10.2307/2389281; DEMARCO V, 1993, J HERPETOL, V27, P453, DOI 10.2307/1564836; Dixon J. R., 1965, Herpetologica, V21, P72; DUFAURE JP, 1961, ARCH ANAT MICROSC MO, V50, P309; GOLDBERG S R, 1971, Herpetologica, V27, P123; Greer A. E., 1989, BIOL EVOLUTION AUSTR; GUILETTE LJ, 1992, J MORPHOL, V212, P1; GUILLETTE LJ, 1982, HERPETOLOGICA, V38, P94; GUILLETTE LJ, 1980, HERPETOLOGICA, V36, P201; GUILLETTE LJ, 1993, BIOSCIENCE, V43, P742, DOI 10.2307/1312318; HERTZ PE, 1992, OECOLOGIA, V90, P127, DOI 10.1007/BF00317818; HERTZ PE, 1993, AM NAT, V142, P798; HUELIN B, 1988, CR HEBD ACAD SCI, V306, P63; HUEY RB, 1982, BIOL REPTILIA PHYS C, V12, P24; JAMES C, 1988, OECOLOGIA, V75, P307, DOI 10.1007/BF00378615; JONES SM, 1987, OIKOS, V48, P325, DOI 10.2307/3565521; Kearney T. H., 1960, ARIZONA FLORA; LICHT P, 1984, MARSHALLS PHYSL REPR, P206; LOWE CH, 1955, SCIENCE, V122, P73, DOI 10.1126/science.122.3158.73; MATHIES TC, 1994, THESIS VIRGINIA POLY; MUTH A, 1980, ECOLOGY, V61, P1335, DOI 10.2307/1939042; NEWLIN M E, 1976, Herpetologica, V32, P171; ORTEGA A, 1986, J HERPETOL, V20, P111, DOI 10.2307/1564140; Packard G.C., 1988, Biology of Reptilia, V16, P523; PACKARD GC, 1977, BIOL REV, V52, P71, DOI 10.1111/j.1469-185X.1977.tb01346.x; Packard M.J., 1991, P53, DOI 10.1017/CBO9780511585739.006; PACKARD MJ, 1982, HERPETOLOGICA, V38, P136; Pough F.H., 1982, Biology of Reptilia, V12, P17; ROSE B, 1981, ECOLOGY, V62, P706, DOI 10.2307/1937739; ROSE BR, 1992, NESTING ECOLOGY SCEL, P268; SEXTON OJ, 1974, PHYSIOL ZOOL, V47, P91, DOI 10.1086/physzool.47.2.30155626; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHINE R, 1983, OECOLOGIA, V57, P397, DOI 10.1007/BF00377186; SHINE R, 1983, HERPETOLOGICA, V39, P1; SHINE R, 1988, J THEOR BIOL, V132, P43, DOI 10.1016/S0022-5193(88)80189-9; Shine R., 1985, Biology of Reptilia, V15, P605; SHINE R, 1990, EVOLUTION, V46, P828; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SINERVO B, 1991, J EXP BIOL, V155, P323; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SITES JW, 1992, B AM MUS NAT HIST, V213, P1; SMITH GR, 1993, CAN J ZOOL, V71, P2152, DOI 10.1139/z93-302; SMITH H M, 1974, Great Basin Naturalist, V34, P97; SMITH H M, 1990, Bulletin of the Maryland Herpetological Society, V26, P64; STEBBINS RC, 1966, FIELD GUIDE W REPTIL; THOMAS R A, 1976, Southwestern Naturalist, V20, P523, DOI 10.2307/3669869; Tinkle D.W, 1977, Miscellaneous Publs Mus Zool Univ Michigan, VNo. 154, P1; Tinkle D. W., 1967, Miscellaneous Publications Museum of Zoology University of Michigan, VNo. 132, P1; VANDAMME R, 1989, J HERPETOL, V23, P459; VIAL JL, 1985, HERPETOLOGICA, V41, P51; Vleck D., 1991, P245, DOI 10.1017/CBO9780511585739.016; 1985, SAS USERS GUIDE STAT 63 84 85 5 23 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia SEP 1995 104 1 101 111 10.1007/BF00365568 11 Ecology Environmental Sciences & Ecology RZ359 WOS:A1995RZ35900014 28306919 2019-02-26 J JOKELA, J; MUTIKAINEN, P JOKELA, J; MUTIKAINEN, P PHENOTYPIC PLASTICITY AND PRIORITY RULES FOR ENERGY ALLOCATION IN A FRESH-WATER CLAM - A FIELD EXPERIMENT OECOLOGIA English Article UNIONIDAE; GROWTH; REPRODUCTION; SURVIVAL; TRADE-OFF LIFE-HISTORY EVOLUTION; CHLAMYS-ISLANDICA MULLER,O.F.; DAPHNIA-MAGNA STRAUS; ANODONTA-PISCINALIS; ICELAND SCALLOP; REPRODUCTIVE EFFORT; PHYSIOLOGICAL ECOLOGY; GROWTH; 70-DEGREES-N; RESOURCES We studied resource allocation among maintenance, reproduction and growth in the freshwater clam Anodonta piscinalis. Recent theoretical and empirical studies imply that organisms with indeterminate growth may have priority rules for energy allocation. That being so, the traits involved should potentially be capable of considerable phenotypic modulation, as a mechanism to adjust allocation. We tested this hypothesis using a 1-year reciprocal transplant experiment at six sites. Experimental clams were caged at higher than natural densities in order to detect any phenotypic modulation of the traits and discover the putative priority rules in energy allocation. We recorded the survival and shell growth of clams during the experiment, and the reproductive output, somatic mass and fat content of clams at the end of the experiment. Shell growth, somatic mass, and the reproductive output of females varied more among transplant sites than among the populations of origin, suggesting a high capacity for phenotypic modulation. However, the reproductive investment, somatic mass and shell growth were also affected by origin; clams from productive habitats invested more in reproduction and were heavier. In comparison to undisturbed clams, the reproductive output of the experimental clams was similar and their fat content was higher, whereas their shell growth was considerably slower and their somatic mass lower. These results suggests that when resources are limiting (due to high density) reproductive allocation overrides allocation to somatic growth. The highest mortality during the experiment coincided with the period of reproductive stress in the spring. Additionally, the proportion of reproducing females was lower in those transplant groups where the survival rate was lowest, suggesting that maintenance allocation overrides allocation to reproduction when available resources are scarce. The results of this field experiment support theoretical predictions and results of previous laboratory experiments that suggest that there are priority rules for energy allocation in organisms with indeterminate growth. UNIV TURKU,DEPT BIOL,ECOL ZOOL LAB,SF-20500 TURKU,FINLAND; KONNEVESI RES STN,SF-44300 KONNEVESI,FINLAND Group, JJ/G-2466-2011; Jokela, Jukka/F-8626-2010 Jokela, Jukka/0000-0002-1731-727X Arey LB, 1932, J MORPHOL, V53, P201, DOI 10.1002/jmor.1050530108; BAYNE BL, 1983, OECOLOGIA, V59, P18, DOI 10.1007/BF00388067; BRADLEY MC, 1991, BIOL J LINN SOC, V44, P325, DOI 10.1111/j.1095-8312.1991.tb00623.x; BRADLEY MC, 1991, OECOLOGIA, V86, P414, DOI 10.1007/BF00317610; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; CASTILHO F, 1989, CAN J ZOOL, V67, P1659, DOI 10.1139/z89-238; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; DAY RW, 1989, ECOL MONOGR, V59, P433, DOI 10.2307/1943075; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; GIESEL JT, 1976, ANNU REV ECOL SYST, V7, P57, DOI 10.1146/annurev.es.07.110176.000421; GLAZIER DS, 1992, OECOLOGIA, V90, P540, DOI 10.1007/BF01875448; GURNEY WSC, 1990, ECOLOGY, V71, P716, DOI 10.2307/1940325; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; HAUKIOJA E, 1978, OECOLOGIA, V35, P253, DOI 10.1007/BF00345134; HAUKIOJA E, 1978, ANN ZOOL FENN, V15, P60; HINCH SG, 1985, CAN J FISH AQUAT SCI, V43, P548; HOSMER DW, 1989, APPLIED LOGISTIC REG; JOKELA J, 1993, FUNCT ECOL, V7, P332, DOI 10.2307/2390213; JOKELA J, 1993, ANIM BEHAV, V46, P618, DOI 10.1006/anbe.1993.1234; JOKELA J, 1991, ARCH HYDROBIOL, V120, P345; KOZLOWSKI J, 1989, EVOLUTION, V43, P1369, DOI 10.1111/j.1558-5646.1989.tb02588.x; Levins R., 1968, EVOLUTION CHANGING E; MACDONALD BA, 1985, MAR ECOL PROG SER, V25, P295, DOI 10.3354/meps025295; MCCAULEY E, 1990, ECOLOGY, V71, P703, DOI 10.2307/1940324; MCCAULEY E, 1990, FUNCT ECOL, V4, P505, DOI 10.2307/2389318; MCCULLAGH P, 1983, GENERALIZED LINEAR M; NEGUS CL, 1966, J ANIM ECOL, V35, P513, DOI 10.2307/2489; NORUSIS MJ, 1990, SPSS ADV STATISTICS; Okland J., 1963, Nytt Magasin for Zoologi, V11, P19; Pekkarinen Marketta, 1991, Bivalve Studies in Finland, V1, P10; PERRIN N, 1992, AM NAT, V139, P1344, DOI 10.1086/285390; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; PETERSON CH, 1982, ECOL MONOGR, V52, P437, DOI 10.2307/2937354; PETERSON CH, 1986, BIOL BULL, V171, P597, DOI 10.2307/1541626; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1989, BIOSCIENCE, V37, P436; TASKINEN J, 1991, SYST PARASITOL, V19, P81, DOI 10.1007/BF00009906; TASKINEN J, 1992, BIOL RES REP U JYVAS, V27; TREXLER JC, 1993, ECOLOGY, V74, P1629, DOI 10.2307/1939921; TUOMI J, 1983, AM ZOOL, V23, P25; VAHL O, 1978, OPHELIA, V17, P143, DOI 10.1080/00785326.1978.10425478; VAHL O, 1981, J EXP MAR BIOL ECOL, V53, P281, DOI 10.1016/0022-0981(81)90026-5; VAHL O, 1981, J EXP MAR BIOL ECOL, V53, P297, DOI 10.1016/0022-0981(81)90027-7; VAHL O, 1981, OECOLOGIA, V51, P53, DOI 10.1007/BF00344652; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILKINSON L, 1990, SYSTAT SYSTEM STATIS; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 49 54 55 3 12 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia SEP 1995 104 1 122 132 10.1007/BF00365570 11 Ecology Environmental Sciences & Ecology RZ359 WOS:A1995RZ35900016 28306921 2019-02-26 J CAREY, AD; LOPREATO, J CAREY, AD; LOPREATO, J THE EVOLUTIONARY DEMOGRAPHY OF THE FERTILITY MORTALITY QUASI-EQUILIBRIUM POPULATION AND DEVELOPMENT REVIEW English Note LIFE-HISTORY EVOLUTION; MATERNAL MORTALITY; TRANSITION; DETERMINANTS; EXPERIENCE; BANGLADESH; POPULATION; CHILDREN; PATTERNS; DEMAND A close-to-equilibrium relationship between levels of fertility and mortality has characterized most of the history of the human species. On average, women have given birth to two reproductive offspring, plus a small fraction. This quasi-equilibrium is in part the effect of neurobiological and life history characteristics that enhance reproductive success. The latter include cultural factors, age at sexual maturity, fecundity, family size, duration of the reproductive period, age-specific probabilities of survival, and epigenetic rules that guide response to changing environmental conditions. Among such rules, the authors hypothesize a ''two-child psychology.'' Its basic operative mechanisms seem to be: (1) a neurobiological capacity to respond to certain environmental stimuli useful to gauge probabilities of offspring survival, and (2) a quest for creature comforts. The greater the perceived probability of offspring survival within a population, the more intense the two-child psychology. The greater the quest for creature comforts, the keener and more widespread the two-child psychology. UNIV TEXAS,DEPT SOCIOL,AUSTIN,TX 78712 CAREY, AD (reprint author), UNIV CENT FLORIDA,DEPT SOCIOL & ANTHROPOL,ORLANDO,FL 32816, USA. ACSADI G., 1970, HIST HUMAN LIFE SPAN; ALEXANDER RD, 1990, ETHOL SOCIOBIOL, V11, P241, DOI 10.1016/0162-3095(90)90012-U; Angel J. L., 1975, POPULATION ECOLOGY S, P167; BARASH DP, 1982, SOCIOBIOLOGY BEHAVIO; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; BERENT J, 1983, COMP STUDIES ECE ANA, V26, P1; BLAKE J, 1968, POP STUD-J DEMOG, V22, P5, DOI 10.1080/00324728.1968.10405523; BOERMA JT, 1987, STUD FAMILY PLANN, V18, P213, DOI 10.2307/1966872; BONGAARTS J, 1978, POPUL DEV REV, V4, P105, DOI 10.2307/1972149; Boserup E, 1981, POPULATION TECHNOLOG; Boyce M. S., 1988, EVOLUTION LIFE HIST, P3; Braudel F, 1979, STRUCTURE EVERYDAY L; CAIN MT, 1977, POPUL DEV REV, V3, P201, DOI 10.2307/1971889; CALDWELL JC, 1976, POPUL DEV REV, V2, P321, DOI 10.2307/1971615; CHARLESWORTH B, 1990, NATURE, V346, P313, DOI 10.1038/346313a0; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHEN LC, 1974, STUD FAMILY PLANN, V5, P334, DOI 10.2307/1965185; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHURCHLAND PS, 1992, COMPUTATIONAL BRIAN; CLELAND J, 1987, POP STUD-J DEMOG, V41, P5, DOI 10.1080/0032472031000142516; COALE AJ, 1974, SCI AM, V231, P41; Crick F., 1990, Seminars in the Neurosciences, V2, P263; CRICK F, 1992, SCI AM, V267, P153, DOI 10.1038/scientificamerican0992-152; Daly M., 1984, SOCIOBIOLOGICAL ANAL, P487; Daly M., 1988, HOMICIDE; Darwin C, 1859, ORIGIN SPECIES; DAVIS K, 1963, POPUL INDEX, V29, P345; DAVIS K, 1956, ECON DEV CULT CHANGE, V4, P211, DOI 10.1086/449714; DAVIS K, 1987, REPLACEMENT FERTILIT, V12, P48; Davis K, 1949, HUMAN SOC; Dawkins R, 1976, SELFISH GENE; Dawkins R, 1982, EXTENDED PHENOTYPE G; DEMENY P, 1968, DAEDALUS SPR, P502; DEWAAL FBM, 1984, ETHOL SOCIOBIOL, V5, P239, DOI 10.1016/0162-3095(84)90004-9; DIVALE W, 1972, WORLD ARCHAEOL, V4, P24; Easterlin RA, 1985, FERTILITY REVOLUTION; Harris M., 1974, COWS PIGS WARS WITCH; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; HAUPT A, 1983, INTERCOM, V11, P1; Hausfater Glenn, 1984, INFANTICIDE COMP EVO; HINTON GE, 1992, SCI AM, V267, P145, DOI 10.1038/scientificamerican0992-144; Jackendoff R., 1987, CONSCIOUSNESS COMPUT; KENT MM, 1982, FAMILY SIZE PREFEREN; KNODEL J, 1977, POP STUD-J DEMOG, V31, P219, DOI 10.1080/00324728.1977.10410428; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lee R. D., 1983, DETERMINANTS FERTILI, P233; LEE RD, 1987, DEMOGRAPHY, V24, P443, DOI 10.2307/2061385; LESTHAEGHE R, 1980, POPUL DEV REV, V6, P527, DOI 10.2307/1972925; LOPREATO J, 1990, SOCIOL FORUM, V5, P187, DOI 10.1007/BF01112592; LOPREATO J, 1988, ETHOL SOCIOBIOL, V9, P269, DOI 10.1016/0162-3095(88)90009-X; LOPREATO J, 1989, SOCIOBIOLOGY SOCIAL, P119; LOPREATO J, 1992, ENCY SOCIOLOGY, P1995; Lopreato Joseph, 1984, HUMAN NATURE BIOCULT; LOW BS, 1992, POPUL DEV REV, V18, P1, DOI 10.2307/1971857; MacLean P.D., 1982, P291; Marler P., 1984, BIOL LEARNING; McEvedy C., 1978, ATLAS WORLD POPULATI; McKeown Thomas, 1976, MODERN RISE POPULATI; MCNICOLL G, 1980, POPUL DEV REV, V6, P441, DOI 10.2307/1972410; Pareto V., 1916, MIND SOC; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1988, EVOLUTIONARY ECOLOGY; POSNER MI, 1984, IMAGES MIND; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; SCANZONI JH, 1975, SEX ROLES LIFE STYLE; Schofield R. S., 1986, STATE POPULATION THE, P1; SCHULMAN SR, 1978, Q REV BIOL, V53, P283, DOI 10.1086/410623; Shepher J., 1983, INCEST BIOSOCIAL VIE; SMITH AT, 1988, EVOLUTION LIFE HIST, P233; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; *UN POP DIV DEP EC, 1994, UNPUB WORLD POP PROS; VANDENBERGHE PL, 1990, INT J CONT SOCIOLOGY, V27, P29; *WHO, 1988, WORLD HLTH STAT ANN; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMS GC, 1971, GROUP SELECTION; Wilson E. O., 1981, GENES MIND CULTURE; Wilson E. O., 1978, HUMAN NATURE; WILSON EO, 1975, SOCIOBIOLOGY; Wolf Arthur P, 1980, MARRIAGE ADOPTION CH; Wrigley Edward A., 1969, POPULATION HIST; Wynne-Edwards Vero C, 1962, ANIMAL DISPERSION RE; 1988, ETHOLOGY SOCIOBIOLOG, V9 86 16 17 0 5 POPULATION COUNC NEW YORK ONE DAG HAMMARSKJOLD PLAZA, NEW YORK, NY 10017 0098-7921 POPUL DEV REV Popul. Dev. Rev. SEP 1995 21 3 613 & 10.2307/2137752 0 Demography; Sociology Demography; Sociology TD515 WOS:A1995TD51500006 2019-02-26 J OWENS, IPF; BENNETT, PM OWENS, IPF; BENNETT, PM ANCIENT ECOLOGICAL DIVERSIFICATION EXPLAINS LIFE-HISTORY VARIATION AMONG LIVING BIRDS PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article EUROPEAN BIRDS; DIMENSIONLESS NUMBERS; BODY-WEIGHT; EVOLUTION; MAMMALS; TRAITS; COVARIATION Recent work suggests that life-history strategies lie along a precise line of equilibrium between mortality, fecundity and growth. However, it has proved remarkably difficult to find a convincing ecological explanation for why different organisms are at different positions along this line. This is surprising because life-history traits are generally considered to be closely connected to fitness. Here, we test four candidate variables which represent competing ecological explanations for the origin of avian life-history diversity. food type; foraging range; developmental mode; and nesting habit. First, we find that over 90% of the variation in key life-history traits occurs among lineages corresponding to the phylogenetic level of between families or above. This suggests that variation among living species is almost entirely due to events which occurred in the ancient evolutionary history of birds. Hence we use minor-axis regression models to quantify the direction and magnitude of ancient changes in 'reproductive effort'. We then test for ecological correlates of these ancient changes. Of the four ecological variables tested, only changes in nesting habit are significantly correlated with ancient changes in 'reproductive effort'. The adoption of safe nest sites among archaic birds is consistently associated with reduced 'reproductive effort'. We suggest that life-history variation among living birds is largely due to diversification in nesting habit which occurred over 40 Ma sp, between the Cretaceous and Eocene. ZOOL SOC LONDON, INST ZOOL, LONDON NW1 4RY, ENGLAND; UNIV LONDON UNIV COLL, DEPT GENET & BIOMETRY, GALTON LAB, LONDON NW1 2HE, ENGLAND Owens, Ian/F-1392-2010 Owens, Ian/0000-0001-6080-3321 ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; Bennett PM, 1986, THESIS U SUSSEX; BERRIGAN D, 1993, EVOL ECOL, V7, P270, DOI 10.1007/BF01237744; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Charnov Eric L., 1993, P1; CLUTTONBROCK TH, 1977, J ZOOL, V183, P1, DOI 10.1111/j.1469-7998.1977.tb04171.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CRACRAFT J, 1981, AUK, V98, P681; FEDUCCIA A, 1995, SCIENCE, V267, P637, DOI 10.1126/science.267.5198.637; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; Harvey P.H., 1982, P343; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1991, NATURE, V351, P619, DOI 10.1038/351619a0; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lack D, 1954, NATURAL REGULATION A; Lessells C.M., 1991, P32; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Olson S.L., 1985, Avian Biology, V8, P79; OWENS IPF, 1994, P ROY SOC B-BIOL SCI, V257, P1, DOI 10.1098/rspb.1994.0086; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PURVIS A, 1991, COMP ANAL INDEPENDEN; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; RICKLEFS RE, 1969, NATURE, V223, P922, DOI 10.1038/223922a0; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; RICKLEFS RE, 1968, P NATL ACAD SCI USA, V61, P847, DOI 10.1073/pnas.61.3.847; Roff Derek A., 1992; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; SAETHER BE, 1989, ORNIS SCAND, V20, P13, DOI 10.2307/3676702; SAETHER BE, 1994, EVOLUTION, V48, P1397, DOI 10.1111/j.1558-5646.1994.tb05324.x; SAETHER BE, 1994, AM NAT, V144, P285, DOI 10.1086/285675; Sibley C.G., 1990, PHYLOGENY CLASSIFICA; Sibley CG, 1990, DISTRIBUTION TAXONOM; SOKAL R., 1981, BIOMETRY; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; Williams GC, 1966, ADAPTATION NATURAL S 48 78 78 0 29 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. AUG 22 1995 261 1361 227 232 10.1098/rspb.1995.0141 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology RR352 WOS:A1995RR35200013 2019-02-26 J HUGHES, RN HUGHES, RN RESOURCE-ALLOCATION, DEMOGRAPHY AND THE RADIATION OF LIFE-HISTORIES IN ROUGH PERIWINKLES (GASTOPODA) HYDROBIOLOGIA English Article ALLOCATION TRADE OFFS; OVIPARITY BROODING; BODY SIZE; NICHE DIVERSIFICATION LITTORINA-SAXATILIS OLIVI; REPRODUCTION; NEGLECTA; POPULATIONS; MOLLUSCA; WINKLES; SHORES; GROWTH; SHELL; RUDIS Applicability of life-history theory to higher levels of comparison (from populations, through ecotypes to sibling species) was investigated in rough periwinkles, whose life histories have diversified since colonization of the North Atlantic by an oviparous ancestor in the upper Pliocene. Comparisons were made among populations of the ovoviviparous Littorina saxatilis, between L. saxatilis and its ecotype, L. neglecta (with an annual life history) and between the sibling species L, saxatilis and L. arcana, the latter of which retains the ancestral oviparity. Resource-allocation priority, reproductive effort and related trade offs were compared between the ecotypes and the sibling species by measuring changes in flesh mass and reproductive output in snails subjected to different degrees of food deprivation, and by measuring mortality rate of snails stressed by desiccation, high temperature and low salinity. Body size had a marked effect on all parameters, but after statistically removing this effect there remained no significant differences in allocation among ecotypes or species. Published demographical data were reviewed for correlations between habitat, mortality regime and life-history characteristics. Populations of L, saxatilis varied principally in size at birth and in adult size. Theoretical premises based on density-dependent versus density-independent mortality regimes could not explain these trends. Instead, size at birth may have reflected the mechanical, physiological or biological nature of mortality risk rather than its density dependence or independence. Adult size reflected the available sizes of crevices used for shelter and perhaps also the quality of feeding conditions. Radiation of life histories within the rough periwinkles is interpreted as a series of adaptations to a progressively wider range of habitats. The transition from oviparity to ovoviviparity allows colonization of estuaries, saltmarshes and pebble beaches too hazardous for naked egg masses. The transition from a perennial to an annual life history in barnacle ecotypes follows from allometric re-scaling of morphological and physiological parameters, enabling reproduction and brooding to occur at the small body size necessary for life within empty barnacle tests. This suite of adaptations allows exploitation of a relatively benign microhabitat that occurs almost ubiquitously on exposed rocky shores of the temperate North Atlantic. The persistence of oviparous forms, presumably in the face of competition from sympatric ovoviviparous forms, remains unexplained. HUGHES, RN (reprint author), UNIV WALES, SCH BIOL SCI, BANGOR LL57 2UW, GWYNEDD, WALES. Brody S, 1945, BIOENERGETICS GROWTH; CANNON JP, 1992, 3RD P INT S LITT BIO, P61; ELLIOTT JM, 1975, OECOLOGIA, V19, P195, DOI 10.1007/BF00345305; ELLIS CH, 1979, J CONCHOL, V30, P43; ELLIS CJH, 1983, J MOLLUS STUD, V49, P98; ERNSTING G, 1991, FUNCT ECOL, V5, P299, DOI 10.2307/2389268; Fish J.D., 1985, P143; GRAHAME J, 1990, DEV HYDROB, V56, P223, DOI 10.1007/BF00028079; GRAHAME J, 1989, J MAR BIOL ASSOC UK, V69, P837, DOI 10.1017/S0025315400032203; GRAHAME J, 1992, 3RD P INT S LITT BIO, P99; HART A, 1982, OECOLOGIA, V52, P37, DOI 10.1007/BF00349009; HOLLAND DL, 1975, MAR BIOL, V33, P235, DOI 10.1007/BF00390927; Hughes R. N, 1986, FUNCTIONAL BIOL MARI; HUGHES RN, 1980, J EXP MAR BIOL ECOL, V44, P211, DOI 10.1016/0022-0981(80)90153-7; HUGHES RN, 1981, J ANIM ECOL, V50, P251, DOI 10.2307/4043; HUGHES RN, 1980, OECOLOGIA, V47, P130, DOI 10.1007/BF00541788; JOHANNESSON B, 1990, HYDROBIOLOGIA, V193, P71, DOI 10.1007/BF00028067; JOHANNESSON K, 1990, HYDROBIOLOGIA, V193, P89, DOI 10.1007/BF00028068; MILL PJ, 1990, HYDROBIOLOGIA, V193, P21, DOI 10.1007/BF00028063; MILL PJ, 1992, 3RD P INT S LITT BIO, P305; NAYLOR R, 1982, J CONCHOL, V31, P17; PALMER AR, 1982, MALACOLOGIA, V23, P63; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; RAFFAELLI D, 1982, J MOLLUS STUD, V48, P342, DOI 10.1093/oxfordjournals.mollus.a065656; RAFFAELLI DG, 1978, J MOLLUS STUD, V44, P223; RAFFAELLI DG, 1978, J ANIM ECOL, V47, P71, DOI 10.2307/3923; RAFFAELLI DG, 1976, THESIS U WALES BANGO; REID DG, 1990, B MAR SCI, V47, P35; REID DG, 1993, J MOLLUS STUD, V59, P51, DOI 10.1093/mollus/59.1.51; ROBERTS DJ, 1980, MAR BIOL, V58, P47, DOI 10.1007/BF00386879; ROBERTS DJ, 1979, THESIS U WALES BANGO, P160; RYAN BF, 1985, MINITAB HDB; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; Stearns SC., 1992, EVOLUTION LIFE HIST; WARWICK T, 1990, HYDROBIOLOGIA, V193, P109, DOI 10.1007/BF00028070; Warwick T., 1983, J MOLLUS STUD, V48, P368 36 11 11 2 10 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia AUG 4 1995 309 1-3 1 14 10.1007/BF00014467 14 Marine & Freshwater Biology Marine & Freshwater Biology TD867 WOS:A1995TD86700002 2019-02-26 J CHARNOV, EL; DOWNHOWER, JF CHARNOV, EL; DOWNHOWER, JF A TRADE-OFF-INVARIANT LIFE-HISTORY RULE FOR OPTIMAL OFFSPRING SIZE NATURE English Article NUMBER OPTIMIZATION models have been widely and successfully used in evolutionary ecology to predict the attributes of organisms(1-6) Most such models maximize darwinian fitness (or a component of fitness) in the face of trade-offs and constraints; the numerical results usually depend on the exact form of the trade-offs/constraints. Here we report the first (to our knowledge) numerical optimum for life-history evolution which is independent of the details of the underlying trade-off, for a large array for trade-off forms. The rule is that at small litter sizes, the range in offspring size is inversely proportional to the size of the litter. Details of the offspring-survival/offspring-size trade-off(7-10) set the value of the proportionality constant, but the -1 exponent, the inverse proportionality itself, is universal. Studies of life histories have yielded many empirical examples of universality for various scaling exponents (for example, adult lifespan scales as approximate to 0.25 with adult body mass within many taxa); this is an example of the numerical value of an exponent (here -1) emerging from a life-history model as independent of all but a few general features of the underlying economic structure. OHIO STATE UNIV,DEPT ZOOL,COLUMBUS,OH 43210 CHARNOV, EL (reprint author), UNIV UTAH,DEPT BIOL,SALT LAKE CITY,UT 84112, USA. BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; BROCK TC, 1991, EVOLUTION PARENTAL C; Bulmer M.G., 1994, THEORETICAL EVOLUTIO; CHARNOV E L, 1982; CHARNOV EL, 1995, EVOL ECOL, V9, P57, DOI 10.1007/BF01237697; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Charnov Eric L., 1993, P1; GODFRAY HCJ, 1994, PARASITOIDS; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; SHINE R, 1995, OIKOS, V72, P343, DOI 10.2307/3546119; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns SC., 1992, EVOLUTION LIFE HIST; Stephens DW, 1986, FORAGING THEORY; WOOTTON RJ, 1994, J FISH BIOL, V45, P1067 16 53 54 0 13 MACMILLAN MAGAZINES LTD LONDON 4 LITTLE ESSEX STREET, LONDON, ENGLAND WC2R 3LF 0028-0836 NATURE Nature AUG 3 1995 376 6539 418 419 10.1038/376418a0 2 Multidisciplinary Sciences Science & Technology - Other Topics RM639 WOS:A1995RM63900049 7630415 2019-02-26 J LEIGH, SR LEIGH, SR SOCIOECOLOGY AND THE ONTOGENY OF SEXUAL SIZE DIMORPHISM IN ANTHROPOID PRIMATES AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article MONKEYS AND APES; GROWTH; LIFE HISTORY PHYLOGENETIC CONSTRAINTS; SOCIAL-ORGANIZATION; CANINE DIMORPHISM; BODY-WEIGHT; PATTERNS; ALLOMETRY; SELECTION; MONKEYS This study examines statistical correlations between socioecological variables (including measures of group composition, intermale competition, and habitat preference) and the ontogeny of body size sexual dimorphism in anthropoid primates. A regression-based multivariate measure of dimorphism in body weight ontogeny is derived from a sample of 37 species. Quantitative estimates of covariation between socioecological variables and this multivariate measure are evaluated. Statistically significant covariation between the ontogeny of dimorphism and socioecological variables, with the possible exception of habitat preference, is observed. Sex differences in ontogeny are lacking in species that exhibit low levels of intermale competition and are classifiable as species with monogamous/polyandrous mating systems. Among dimorphic species, two modes of dimorphic growth are apparent, which seem to be related to different kinds of group compositions. Multimale/multifemale species tend to become dimorphic through bimaturism (sex differences in duration of growth) with minimal sex differences in growth rate. Single-male/multifemale species tend to attain dimorphism through differences in rate of growth, often with limited bimaturism. Measures of intermale competition may also covary with these modes of dimorphic growth, but the relations among these variables are sometimes ambiguous. Correlations between dimorphic growth and behavioral variables may reflect alternative life history strategies in primates. Specifically, the ways in which risks faced by subadult males are distributed and the relations of these risks to growth rates seem to influence the evolution of size ontogenies. The absence of dimorphic ontogeny in some species can be tied to similar distributions of risk in each sex. In taxa that become dimorphic primarily through rate differences in growth, the lifetime distribution of risks for males may change rapidly. In contrast, males may face a pattern of uniformly changing or stable risk in species that become dimorphic through bimaturism. Finally, much variation recorded by this study remains unexplained, providing additional evidence of the need to specially examine female ontogeny before primate body size dimorphism can be satisfactorily explained. (C) 1995 Wiley-Liss, Inc. LEIGH, SR (reprint author), UNIV ILLINOIS,DEPT ANTHROPOL,109 DAVENPORT HALL,URBANA,IL 61801, USA. LEIGH, STEVEN/0000-0001-6844-7122 Andersson MB, 1994, SEXUAL SELECTION; CHAPPELL R, 1989, J THEOR BIOL, V138, P235, DOI 10.1016/S0022-5193(89)80141-9; CHEVERUD JM, 1985, EVOLUTION, V39, P1335, DOI 10.1111/j.1558-5646.1985.tb05699.x; CLUTTONBROCK TH, 1977, NATURE, V269, P797, DOI 10.1038/269797a0; CLUTTONBROCK TH, 1977, J ZOOL, V183, P1, DOI 10.1111/j.1469-7998.1977.tb04171.x; Darwin C, 1871, DESCENT MAN SELECTIO; ELY J, 1989, INT J PRIMATOL, V10, P151, DOI 10.1007/BF02735198; Eveleth P. B., 1990, WORLDWIDE VARIATION; Fedigan Linda M., 1982, PRIMATE PARADIGMS SE; GAULIN SJC, 1984, INT J PRIMATOL, V5, P515, DOI 10.1007/BF02692284; GEORGIADIS N, 1985, AFR J ECOL, V23, P75, DOI 10.1111/j.1365-2028.1985.tb00718.x; GODFREY LR, 1993, AM J PHYS ANTHR S, V16, P96; Graham C.E., 1988, P91; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1978, J ZOOL, V186, P475; Janson Charles H., 1993, P57; JARMAN P, 1983, BIOL REV, V58, P485, DOI 10.1111/j.1469-185X.1983.tb00398.x; Johnson Allen, 1989, J QUANTITATIVE ANTHR, V1, P313; KAY RF, 1988, AM J PHYS ANTHROPOL, V77, P385, DOI 10.1002/ajpa.1330770311; Kingsley S.R., 1988, P123; LEAMY L, 1987, GROWTH DEVELOP AGING, V51, P271; LEAMY L, 1988, EVOLUTION LIFE HIST, P169; LEIGH SR, 1995, AM J PRIMATOL, V36, P37, DOI 10.1002/ajp.1350360104; LEIGH SR, 1994, AM J PHYS ANTHROPOL, V94, P499, DOI 10.1002/ajpa.1330940406; LEIGH SR, 1992, J HUM EVOL, V23, P27, DOI 10.1016/0047-2484(92)90042-8; LEIGH SR, 1994, ZOO BIOL, V13, P21, DOI 10.1002/zoo.1430130105; LEIGH SR, 1992, THESIS NORTHWESTERN; Leutenegger W., 1982, International Journal of Primatology, V3, P387, DOI 10.1007/BF02693740; Leutenegger W., 1985, P33; Martin Robert D., 1994, P159; Morrison D. F., 1990, MULTIVARIATE STATIST; NETER J, 1985, APPLIED LINEAR STATI; PLAVCAN JM, 1993, AM J PHYS ANTHROPOL, V92, P201, DOI 10.1002/ajpa.1330920209; PLAVCAN JM, 1992, AM J PHYS ANTHROPOL, V87, P461, DOI 10.1002/ajpa.1330870407; PLAVCAN JM, 1990, THESIS DUKE U; Poirier Frank E., 1977, PRIMATE BIOSOCIAL DE, P1; RAGIN C, 1989, J QUANTITATIVE ANTHR, V1, P373; Ragin Charles C., 1988, COMP METHOD MOVING Q; RALLS K, 1977, AM NAT, V111, P918; RAVOSA MJ, 1993, AM J PHYS ANTHROPOL, V92, P499, DOI 10.1002/ajpa.1330920408; SHEA BT, 1985, AM J PRIMATOL, V8, P183, DOI 10.1002/ajp.1350080208; SHEA BT, 1990, PRIMATE LIFE HIST EV, P325; SHEA BT, 1986, HUM EVOL, V1, P97, DOI DOI 10.1007/BF02437489; SMUTS B, 1987, NAT HIST, V96, P36; SMUTS BB, 1987, PRIMATE SOCIETIES; STANFORD CB, 1994, AM J PHYS ANTHROPOL, V94, P213, DOI 10.1002/ajpa.1330940206; Struhsaker T.T., 1988, P340; SUSMAN RL, 1979, AM J PHYS ANTHROPOL, V51, P311, DOI 10.1002/ajpa.1330510303; TANNER JM, 1978, FETUS MAN PHYSICAL G; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TSINGALIA HM, 1984, Z TIERPSYCHOL, V64, P253; WATTS ES, 1986, HUMAN GROWTH, V2, P225; WILEY RH, 1974, Q REV BIOL, V49, P201, DOI 10.1086/408083; WILKINSON L, 1990, SYSTAT SYSTEM STATIS; WILLNER LA, 1985, HUMAN SEXUAL DIMORPH, P1 55 80 82 1 16 WILEY-LISS NEW YORK DIV JOHN WILEY & SONS INC 605 THIRD AVE, NEW YORK, NY 10158-0012 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. AUG 1995 97 4 339 356 10.1002/ajpa.1330970402 18 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology RM004 WOS:A1995RM00400001 7485432 2019-02-26 J SHIROSE, LJ; BROOKS, RJ SHIROSE, LJ; BROOKS, RJ GROWTH-RATE AND AGE AT MATURITY IN SYNTOPIC POPULATIONS OF RANA-CLAMITANS AND RANA-SEPTENTRIONALIS IN CENTRAL ONTARIO CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article LIFE-HISTORY EVOLUTION; SIZE; COLEOPTERA; SELECTION; TRAITS; FROG Populations of the green frog (Rana clamitans) and the mink frog (Rana septentrionalis) in Algonquin Provincial Park, Ontario, Canada, were studied from May 1985 through October 1987 and from May 1991 through September 1993. Parameters estimated from fitting logistic curves to growth data obtained from marked individuals were used to test for interspecies and intersexual differences in growth trajectories. Female R. septentrionalis had a significantly greater asymptotic length than males. We found no sexual size dimorphism in R. clamitans. Asymptotic size was significantly greater for R. clamitans than for R. septentrionalis. Age was estimated from a combination of extrapolation from size-frequency data and from production of size-specific growth curves from recapture data. Age-specific size and growth rate were measured to test the hypothesis that differences in growth trajectories could be predicted from differences in patterns of survivorship. Both R. septentrionalis and R. clamitans were larger at transformation, and older at maturity, than has been reported in previous studies. Although significantly larger at transformation, R. septentrionalis was significantly smaller than R. clamitans in all subsequent age-classes. The growth rate of R. clamitans was significantly greater than that of R. septentrionalis for all age-classes except 0 years post transformation. The observed differences in growth trajectories and age at maturity were consistent with predictions based on differences in the pattern of survivorship. SHIROSE, LJ (reprint author), UNIV GUELPH,DEPT ZOOL,GUELPH,ON N1G 2W1,CANADA. Andrews R.M., 1982, Biology of Reptilia, V13, P273; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BERVEN KA, 1983, AM ZOOL, V23, P85; BERVEN KA, 1983, COPEIA, P605; COOK FR, 1984, INTRO CANADIAN AMPHI; CRUMP ML, 1982, HERPETOLOGICAL COMMU, V13, P21; Ebenman B., 1988, SIZE STRUCTURED POPU, P3; FITCH HS, 1956, U KANS PUBL MUS NAT, V8, P275; GREENSLADE PJ, 1972, EVOLUTION, V26, P130, DOI 10.1111/j.1558-5646.1972.tb00180.x; GREENSLADE PJ, 1972, EVOLUTION, V26, P203, DOI 10.1111/j.1558-5646.1972.tb00188.x; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; HARDING JP, 1949, J MAR BIOL ASSOC UK, V28, P141, DOI 10.1017/S0025315400055259; HEDEEN SE, 1972, COPEIA, P169; HOWARD RD, 1978, EVOLUTION, V32, P850, DOI 10.1111/j.1558-5646.1978.tb04639.x; Kirkpatrick M., 1988, P13; Lynch M., 1988, P47; MAC ARTHUR ROBERT H., 1967; MAIORANA V C, 1976, Evolutionary Theory, V1, P157; MARTOF BERNARD, 1956, AMER MIDLAND NAT, V55, P101, DOI 10.2307/2422324; MOORE JA, 1952, AM NAT, V86, P5, DOI 10.1086/281697; PEARSON PG, 1955, ECOL MONOGR, V25, P233, DOI 10.2307/1943283; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; RAMER JD, 1983, COPEIA, P141; RYAN RA, 1953, COPEIA, P73, DOI 10.2307/1440128; SAUER JR, 1987, ANNU REV ECOL SYST, V18, P71; SEBENS KP, 1987, ANNU REV ECOL SYST, V18, P371, DOI 10.1146/annurev.ecolsys.18.1.371; SHIROSE LJ, 1993, CAN J ZOOL, V71, P2363, DOI 10.1139/z93-332; SHIROSE LJ, 1995, HERPETOLOGICAL CONSE, V1; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEWART MM, 1972, J HERPETOL, V6, P244; TURNER FREDERICK B., 1960, ECOL MONOGR, V30, P251, DOI 10.2307/1943562; WERNER EE, 1991, ECOLOGY, V72, P1709, DOI 10.2307/1940970; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WILKINSON L, 1990, SYSTAT SYSTEM STATIS; Wright A. H., 1949, HDB FROGS TOADS US C; WRIGHT AH, 1914, CARNEGIE I WASHINGTO, V197 37 8 9 0 7 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. AUG 1995 73 8 1468 1473 10.1139/z95-173 6 Zoology Zoology TE204 WOS:A1995TE20400011 2019-02-26 J TRAMONTIN, AD; SIH, A TRAMONTIN, AD; SIH, A EXPERIMENTS ON THE EFFECTS OF FOOD AND DENSITY ON VOLTINISM IN A STREAM-DWELLING WATER STRIDER (AQUARIUS-REMIGIS) FRESHWATER BIOLOGY English Article LIFE-HISTORY STRATEGIES; TIME CONSTRAINTS; GERRIS-REMIGIS; PREDATION RISK; SIZE 1. The stream water strider Aquarius remigis shows a latitudinal. pattern of variation in voltinism. In general, populations with shorter growing seasons (e.g. in eastern Canada) tend to be univoltine (animals that reach adulthood in the summer overwinter before reproducing in the following spring), whereas populations with somewhat longer growing seasons (e.g, in the north-eastern United States) tend to be bivoltine. 2. This pattern was broken at our study site in the south-eastern United States (Kentucky) where A. remigis had a long growing season, but was almost always univoltine. In summer 1993, however, adult A. remigis in central Kentucky displayed a bivoltine reproductive cycle; i.e, individuals in some pools began breeding shortly after maturing to the adult stage. 3. A field survey documented a negative relationship between local water strider density and reproductive activity in prediapause adults. A laboratory experiment manipulating food availability and density, revealed that animals held at low density with high food levels displayed greater mating activity and egg production than did their counterparts at higher density or lower food levels. 4. A laboratory experiment also showed that high water strider density resulted in a greater frequency of very short pair durations (< 10 min). 5. Although the observed effects of density and food availability on mating activity of prediapause adults seem intuitively reasonable, they differ from the patterns observed in overwintered adults. The difference in reproduction patterns might be due to differences in selective pressures on prediapause vs. post-diapause adults. UNIV KENTUCKY,TH MORGAN SCH BIOL SCI,CTR ECOL EVOLUT & BEHAV,LEXINGTON,KY 40506 ARNQVIST G, 1988, FRESHWATER BIOL, V19, P269, DOI 10.1111/j.1365-2427.1988.tb00347.x; ARNQVIST G, 1992, ANIM BEHAV, V43, P559, DOI 10.1016/0003-3472(92)90079-O; BLANCKENHORN WU, 1994, OECOLOGIA, V97, P354, DOI 10.1007/BF00317325; BLANCKENHORN WU, 1991, EVOLUTION, V45, P1520, DOI 10.1111/j.1558-5646.1991.tb02655.x; COHEN D, 1970, AM NAT, V104, P389, DOI 10.1086/282672; FAIRBAIRN DJ, 1988, EVOLUTION, V42, P1212, DOI 10.1111/j.1558-5646.1988.tb04181.x; FAIRBAIRN DJ, 1985, CAN J ZOOL, V63, P2594, DOI 10.1139/z85-388; FAIRBAIRN DJ, 1993, BEHAV ECOL, V4, P224, DOI 10.1093/beheco/4.3.224; FIRKO M, 1986, THESIS U PENNSYLVANI; Istock C.A., 1981, P113; KRUPA JJ, 1993, BEHAV ECOL SOCIOBIOL, V33, P107; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; RUBENSTEIN DI, 1989, ANIM BEHAV, V38, P631, DOI 10.1016/S0003-3472(89)80008-9; RUBENSTEIN DI, 1984, AM ZOOL, V24, P345; SIH A, 1990, AM NAT, V135, P284, DOI 10.1086/285044; SIH A, 1992, BEHAV ECOL SOCIOBIOL, V31, P51, DOI 10.1007/BF00167815; SIH A, 1995, IN PRESS BEHAVIORAL; SPENCE JR, 1989, CAN J ZOOL, V67, P2432, DOI 10.1139/z89-344; Tauber MJ, 1986, SEASONAL ADAPTATIONS; Vepsalainen K., 1978, P218; WEIGENSBERG I, 1994, ANIM BEHAV, V48, P893, DOI 10.1006/anbe.1994.1314; WILCOX RS, 1984, BEHAV ECOL SOCIOBIOL, V15, P171, DOI 10.1007/BF00292971 23 4 5 1 4 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0046-5070 FRESHWATER BIOL Freshw. Biol. AUG 1995 34 1 61 67 10.1111/j.1365-2427.1995.tb00423.x 7 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology RP654 WOS:A1995RP65400007 2019-02-26 J BIERE, A BIERE, A GENOTYPIC AND PLASTIC VARIATION IN PLANT SIZE - EFFECTS ON FECUNDITY AND ALLOCATION PATTERNS IN LYCHNIS-FLOS-CUCULI ALONG A GRADIENT OF NATURAL SOIL FERTILITY JOURNAL OF ECOLOGY English Article ALLOCATION TRADE-OFFS; FECUNDITY COMPONENTS; HADENA BICRURIS; PHENOTYPIC PLASTICITY; SIZE HIERARCHIES REPRODUCTIVE CHARACTERISTICS; SEEDLING PERFORMANCE; IMPATIENS-CAPENSIS; VIOLA-SORORIA; LANCEOLATA L; SELECTION; POPULATION; ENVIRONMENT; YIELD; VARIABILITY 1 Genotypic and plastic variation in plant size, and trade-offs among components of reproduction were studied using cloned individuals from 24 parental plants of the perennial hay-meadow species Lychnis-flos-cuculi, planted in four sites along a gradient of natural soil fertility. 2 Plant biomass, survival and fecundity differed significantly among clones and sites. Differences in survival and early components of fecundity among clones were strongly average rosette biomass attained during the first year. 3 There were significant clone-site interactions. However, a small number of clones which ranked high for plant biomass and fruit production at all sites, made a large contribution to local fruit production within a year across the entire gradient. 4 Patterns of biomass allocation and timing of first reproduction differed significantly among clones. A large part of this variation could be explained by clonal differences in average plant biomass attained during the first year. We conclude therefore that clonal variation in allocation patterns reflected differences in resource acquisition, rather than differences in partitioning strategies underlying life-history evolution. 5 Consequences of delaying first reproduction varied among sites. Precocity was favoured in the least productive site, whereas at intermediate soil fertility individuals that postponed reproduction gained a three-fold increase in fecundity at first reproduction, with no significant reduction in survival to this stage. Optimal timing of reproduction may thus vary at a small scale. 6 Genetically based trade-offs between only observed in the less productive sites. Costs of reproduction were also only apparent at such sites, supporting the idea that the expression of trade-offs and costs is most likely under low resource conditions. 7 In the more productive sites, within- and among-clone correlations between etative and generative reproduction, and among five components of fecundity were generally insignificant or positive. This available, differences in both microsite quality and resource a governed patterns of covariance. 8 Fruit predation by caterpillars of the noctuid Hadena bicruris was dependant on plant size. In the site with lowest individual fecundity, conferring a relative advantage to smaller sized individuals. UNIV GRONINGEN, DEPT PLANT BIOL, 9750 AA HAREN, NETHERLANDS BIERE, A (reprint author), NETHERLANDS INST ECOL, NIOO CTO, DEPT PLANT POPULAT BIOL, POB 40, 6666 ZG HETEREN, NETHERLANDS. Biere, Arjen/B-8079-2008 Biere, Arjen/0000-0002-9006-3448 ANTLFINGER AE, 1985, EVOLUTION, V39, P1053, DOI 10.1111/j.1558-5646.1985.tb00446.x; ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; BENJAMIN LR, 1986, ANN BOT-LONDON, V58, P757, DOI 10.1093/oxfordjournals.aob.a087239; BIERE A, 1989, ACTA BOT NEERL, V38, P203, DOI 10.1111/j.1438-8677.1989.tb02042.x; BIERE A, 1991, J EVOLUTION BIOL, V4, P467, DOI 10.1046/j.1420-9101.1991.4030467.x; BIERE A, 1991, J EVOLUTION BIOL, V4, P447, DOI 10.1046/j.1420-9101.1991.4030447.x; BRANTJES NBM, 1976, P KONINKLIJKE NEDE C, V79, P92; BRASSARD JT, 1990, CAN J BOT, V68, P1098, DOI 10.1139/b90-138; Falconer D.S., 1981, INTRO QUANTITATIVE G; Fisher R. A, 1958, GENETICAL THEORY NAT; GILLESPIE JH, 1989, GENETICS, V121, P129; GOTTLIEB LD, 1977, J ECOL, V65, P127, DOI 10.2307/2259068; GROSS KL, 1981, OECOLOGIA, V48, P209, DOI 10.1007/BF00347966; KALISZ S, 1986, EVOLUTION, V40, P479, DOI 10.1111/j.1558-5646.1986.tb00501.x; KAWANO S, 1981, BOT MAG TOKYO, V94, P285, DOI 10.1007/BF02488617; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; LEMPKE BJ, 1964, TIJDSCHRIFT ENTOMOLO, V107, P49; LEVERICH WJ, 1979, AM NAT, V113, P881, DOI 10.1086/283443; LLOYD DG, 1980, NEW PHYTOL, V86, P69, DOI 10.1111/j.1469-8137.1980.tb00780.x; MARSHALL DL, 1985, ECOLOGY, V66, P753, DOI 10.2307/1940536; MITCHELLOLDS T, 1986, EVOLUTION, V40, P107, DOI 10.1111/j.1558-5646.1986.tb05722.x; NORUSIS MJ, 1986, SPSS PCPLUS STATISTI; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; PRIMACK RB, 1978, J ECOL, V66, P835, DOI 10.2307/2259299; PRIMACK RB, 1981, EVOLUTION, V35, P1069, DOI 10.1111/j.1558-5646.1981.tb04975.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROACH DA, 1986, AM NAT, V128, P47, DOI 10.1086/284538; Roff Derek A., 1992; SCHEINER SM, 1987, OECOLOGIA, V74, P128, DOI 10.1007/BF00377356; SOKAL R., 1981, BIOMETRY; SOLBRIG OT, 1981, EVOLUTION, V35, P1080, DOI 10.1111/j.1558-5646.1981.tb04977.x; STANTON ML, 1985, OECOLOGIA, V67, P524, DOI 10.1007/BF00790024; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEWART SC, 1987, EVOLUTION, V41, P1290, DOI 10.1111/j.1558-5646.1987.tb02467.x; STOCKLIN J, 1994, J ECOL, V82, P735, DOI 10.2307/2261439; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANDERMEIJDEN E, 1979, J ECOL, V67, P131, DOI 10.2307/2259341; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WEINER J, 1984, OECOLOGIA, V61, P334, DOI 10.1007/BF00379630; WERNER PA, 1975, OECOLOGIA, V61, P334; WINN AA, 1987, ECOLOGY, V68, P1224, DOI 10.2307/1939206; WOLFE LM, 1983, CAN J BOT, V61, P3489, DOI 10.1139/b83-393; WOLFF K, 1990, THEOR APPL GENET, V79, P481, DOI 10.1007/BF00226157 45 66 70 2 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. AUG 1995 83 4 629 642 10.2307/2261631 14 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology RM974 WOS:A1995RM97400008 2019-02-26 J CLARK, JS; JI, Y CLARK, JS; JI, Y FECUNDITY AND DISPERSAL IN PLANT-POPULATIONS - IMPLICATIONS FOR STRUCTURE AND DIVERSITY AMERICAN NATURALIST English Article EASTERN NORTH-AMERICA; SHIFTING MOSAIC LANDSCAPE; LIFE-HISTORY STRATEGIES; FOREST SUCCESSION MODEL; THEORETICAL FRAMEWORK; DECIDUOUS FOREST; COMPUTER-MODEL; GAP MODEL; DYNAMICS; TREE Demographic models of tree populations assume that seed availability does not depend on the populations themselves. We develop models to assess the consequences of fecundity and dispersal for population structure and diversity. Results show that population structure and reproductive success are importantly affected by seed production and dispersal for realistic parameterization of time scales describing thinning, disturbance, maturation, and longevity. Maturation age affects mean and variance in seed rain. Populations with well-dispersed seed have a structure that is most sensitive to maturation age when disturbance is frequent, With restricted dispersal, delayed maturation means increased variability in seed rain, maximized when half of all patches support reproductive individuals. Density-dependent thinning compensates for the initial variability conferred by limited dispersal but not enough to permit the neglect of fecundity and dispersal at the disturbance frequencies and thinning rates typical in many forests, Longevity matters most when it is short and disturbance rare. To assess the effects of dispersal on reproductive success, we partition the contributions of seed-rain mean and variance. Fecundity and population structure affect both the mean and the variance in seed rain, albeit in different ways. Dispersal affects only the variance. The partitioned contribution of mean and variance are used to consider two cases: how dispersal consequences for reproductive success depend on life-history schedules and disturbance regime, and boundary growth rates of a globally dispersed population invading a resident population with restricted dispersal. In both cases, restricted dispersal has important consequences on the scales observed in many real forests. Most models of forest tree dynamics assume a globally dispersed seed pool that is disconnected from the populations that should produce that seed. This assumption leads to two opposing (offsetting?) consequences for species diversity: artificially high diversity due to continuous seed supply and artificially low diversity due to lack of sites where good competitors with restricted dispersal should be absent. CLARK, JS (reprint author), DUKE UNIV,DEPT BOT,DURHAM,NC 27708, USA. Clark, James/G-6331-2011 ABER JD, 1979, CAN J FOREST RES, V9, P10, DOI 10.1139/x79-002; ALVAREZBUYLLA ER, 1991, AM NAT, V137, P133, DOI 10.1086/285150; Baker H. G., 1974, ANNU REV ECOL SYST, V5, P1, DOI DOI 10.1146/ANNUREV.ES.05.110174.000245; BARDEN LS, 1989, ECOLOGY, V70, P558, DOI 10.2307/1940204; BONAN GB, 1990, CLIMATIC CHANGE, V16, P9, DOI 10.1007/BF00137344; BOND WJ, 1988, OECOLOGIA, V77, P515, DOI 10.1007/BF00377267; BOTKIN DB, 1972, J ECOL, V60, P849, DOI 10.2307/2258570; BUCHMAN RG, 1983, NC233 USDA FOR SERV; BUSING RT, 1987, FOREST ECOL MANAG, V20, P151, DOI 10.1016/0378-1127(87)90156-3; Caswell H, 1991, METAPOPULATION DYNAM, P193; Caswell H., 1989, MATRIX POPULATION MO; CHESSON PL, 1982, J MATH BIOL, V15, P1, DOI 10.1007/BF00275786; CLARK JS, 1991, ECOLOGY, V72, P1119, DOI 10.2307/1940610; CLARK JS, 1991, ECOLOGY, V72, P1102, DOI 10.2307/1940609; CLARK JS, 1992, THEOR POPUL BIOL, V42, P172, DOI 10.1016/0040-5809(92)90011-H; CLEBSCH EEC, 1989, ECOLOGY, V70, P728, DOI 10.2307/1940223; COMINS HN, 1985, AM NAT, V126, P706, DOI 10.1086/284448; CONDIT R, 1992, AM NAT, V140, P261, DOI 10.1086/285412; DAVIS MB, 1985, QUATERNARY RES, V23, P327, DOI 10.1016/0033-5894(85)90039-0; EBERHART KE, 1987, CAN J FOREST RES, V17, P1207, DOI 10.1139/x87-186; FOSTER DR, 1982, CAN J BOT, V61, P2459; Fowells H.A, 1965, SILVICS FOREST TREES; GERITZ SAH, 1988, THEOR POPUL BIOL, V33, P161, DOI 10.1016/0040-5809(88)90011-1; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; HARA T, 1985, ANN BOT-LONDON, V55, P667, DOI 10.1093/oxfordjournals.aob.a086945; Harper J. L., 1974, Annual Review of Ecology and Systematics, V5, P419, DOI 10.1146/annurev.es.05.110174.002223; Harper J.L., 1977, POPULATION BIOL PLAN; HASTINGS A, 1989, ECOLOGY, V70, P1261, DOI 10.2307/1938184; HASTINGS A, 1980, THEOR POPUL BIOL, V18, P363, DOI 10.1016/0040-5809(80)90059-3; HASTINGS A, 1978, J THEOR BIOL, V75, P527, DOI 10.1016/0022-5193(78)90361-2; HEINSELMAN M L, 1973, Quaternary Research (Orlando), V3, P329, DOI 10.1016/0033-5894(73)90003-3; HOULE G, 1992, J ECOL, V80, P99, DOI 10.2307/2261066; HUSTON M, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P408; HUSTON M, 1987, AM NAT, V130, P168, DOI 10.1086/284704; HUSTON MA, 1989, BIOSCIENCE, V38, P682; Johnson E. A, 1992, FIRE VEGETATION DYNA; JOHNSON EA, 1979, CAN J BOT, V57, P1374, DOI 10.1139/b79-171; KEELEY JE, 1991, BOT REV, V57, P81, DOI 10.1007/BF02858766; KOHYAMA T, 1993, J ECOL, V81, P131, DOI 10.2307/2261230; LEEMANS R, 1991, ECOL MODEL, V53, P247, DOI 10.1016/0304-3800(91)90158-W; LEEMANS R, 1987, VEGETATIO, V69, P147, DOI 10.1007/BF00038696; LEVIN SA, 1984, THEOR POPUL BIOL, V26, P165, DOI 10.1016/0040-5809(84)90028-5; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; MARKS PL, 1974, ECOL MONOGR, V44, P73, DOI 10.2307/1942319; MINNICH RA, 1983, SCIENCE, V219, P1287, DOI 10.1126/science.219.4590.1287; NIEUWENHUIS A, 1987, AUST J ECOL, V12, P373, DOI 10.1111/j.1442-9993.1987.tb00957.x; NORBERG RA, 1988, AM NAT, V131, P220, DOI 10.1086/284787; OKUBO A, 1989, ECOLOGY, V70, P329, DOI 10.2307/1937537; OVERPECK JT, 1990, NATURE, V343, P51, DOI 10.1038/343051a0; PACALA SW, 1985, AM NAT, V125, P385, DOI 10.1086/284349; PACALA SW, 1993, BIOTIC INTERACTIONS AND GLOBAL CHANGE, P57; PACALA SW, 1994, AM NAT, V143, P222, DOI 10.1086/285602; PASTOR J, 1986, BIOGEOCHEMISTRY, V2, P3, DOI 10.1007/BF02186962; PATTERSON WA, 1989, NO J APPLIED FORESTR, V6, P186; PAYETTE S, 1989, ECOLOGY, V70, P656, DOI 10.2307/1940217; PAYETTE S, 1985, NATURE, V313, P570, DOI 10.1038/313570a0; Peet R., 1981, FOREST SUCCESSION CO, P324, DOI 10. 1007/978-1-4612-5950-3; PRENTICE IC, 1990, J ECOL, V78, P340, DOI 10.2307/2261116; Runkle J. R., 1985, The ecology of natural disturbance and patch dynamics, P17; RUNKLE JR, 1982, ECOLOGY, V63, P1533, DOI 10.2307/1938878; SHMIDA A, 1984, VEGETATIO, V58, P29; Shugart H. H, 1984, THEORY FOREST DYNAMI; SHUGART HH, 1981, AM SCI, V69, P647; SHUGART HH, 1980, MATH BIOSCI, V50, P163, DOI 10.1016/0025-5564(80)90034-6; SHUGART HH, 1977, J ENVIRON MANAGE, V5, P161; SHUGART HH, 1990, TRENDS ECOL EVOL, V5, P303, DOI 10.1016/0169-5347(90)90086-S; SHUGART HH, 1981, AUST J ECOL, V6, P149, DOI 10.1111/j.1442-9993.1981.tb01286.x; SHUGART HH, 1980, J ENVIRON MANAGE, V11, P243; SMITH T, 1989, VEGETATIO, V83, P49, DOI 10.1007/BF00031680; SMITH TM, 1988, VEGETATIO, V74, P143, DOI 10.1007/BF00044739; SOLOMON AM, 1986, OECOLOGIA, V68, P567, DOI 10.1007/BF00378773; TAIT DE, 1988, CAN J FOREST RES, V18, P696, DOI 10.1139/x88-106; TILMAN D, 1994, ECOLOGY, V75, P2, DOI 10.2307/1939377; Tilman D., 1988, PLANT STRATEGIES DYN; URBAN DL, 1991, FOREST ECOL MANAG, V42, P95, DOI 10.1016/0378-1127(91)90067-6; VALENTINE HT, 1988, ANN BOT-LONDON, V62, P389, DOI 10.1093/oxfordjournals.aob.a087672; WATT AS, 1947, J ECOL, V35, P1, DOI 10.2307/2256497; WATTS WA, 1973, QUATERNARY PLANT ECO, P195; WEISHAMPEL JF, 1992, J VEG SCI, V3, P521, DOI 10.2307/3235808; YEATON RI, 1991, AM NAT, V138, P328, DOI 10.1086/285220; YODA KYOJI, 1963, J BIOL OSAKA CITY UNIV, V14, P107; ZACKRISSON O, 1977, OIKOS, V29, P22, DOI 10.2307/3543289; ZEIDE B, 1987, FOREST SCI, V33, P517 84 54 55 2 21 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. JUL 1995 146 1 72 111 10.1086/285788 40 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology RF822 WOS:A1995RF82200006 2019-02-26 J MIKKELSEN, PM; MIKKELSEN, PS; KARLEN, DJ MIKKELSEN, PM; MIKKELSEN, PS; KARLEN, DJ MOLLUSCAN BIODIVERSITY IN THE INDIAN-RIVER LAGOON, FLORIDA BULLETIN OF MARINE SCIENCE English Article; Proceedings Paper Biodiversity of the Indian River Lagoon Conference FEB 15-16, 1994 HARBOR BRANCH OCEANOG OMST, FT PIERCE, FL Indian River Lagoon, Natl Estuary Program HARBOR BRANCH OCEANOG OMST LOWER CHESAPEAKE BAY; MACROBENTHIC COMMUNITIES; COMPARATIVE ANATOMY; BIOLOGY; OPISTHOBRANCHIA; GALEOMMATIDAE; ROADS Using available collection and literature resources, the mollusks of the Indian River lagoonal system, central eastern Florida, were inventoried based largely on material collected during 1974-1982. 4,503 records from 1,150 stations documented 428 species-level taxa, including 243 resident species. The lagoon showed a substantially higher number of species than other well-studied western Atlantic estuaries, and showed strongest qualitative similarity to Tampa Bay, Florida. Intraregional analysis defined five faunal areas with unique molluscan components; 39 species were common throughout the lagoon. Inlet localities included 106 species not found elsewhere, including four of the five endemic species. Seagrass beds supported the highest number of species (177), and Bittiolum varium (Pfeiffer, 1840) (Gastropoda: Cerithiidae) was most frequently collected as well as quantitatively most abundant. Habitat, diet, life mode, and life history strategies were highly diverse. Analysis of species distributions supported the presence of a zoogeographic transition zone and established 14 new distributional records. The importance of endemic (''yoyo'' clams, one opisthobranch), commercial (Mercenaria spp.), and internationally protected species (Strombus gigas Linne, 1758) to management considerations is discussed. HARBOR BRANCH OCEANOG INST INC, FT PIERCE, FL 34946 USA; PALM BEACH CTY DEPT ENVIRONM RESOURCES MANAGEMENT, W PALM BEACH, FL 33405 USA; FLORIDA INST TECHNOL, DEPT OCEANOG & OCEAN ENGN, MELBOURNE, FL 32901 USA Abbott R. T., 1974, AM SEASHELLS; ALLEN J. FRANCES, 1954, NAUTILUS, V67, P92; ANDREWS JD, 1968, S SERIES MAR BIOL AS, V3, P847; APPELDOORN RS, 1992, QUEEN CONCH NEWSL, V2; ATURNEY WJ, 1972, MOLLUSCAN DISTRIBUTI; BIELER R, 1988, NAUTILUS, V102, P1; BLOOM SA, 1972, MAR BIOL, V13, P43; BLOOM SA, 1994, COMMUNITY ANAL SYSTE; BOESCH D F, 1976, Chesapeake Science, V17, P246, DOI 10.2307/1350512; BOESCH DF, 1973, MAR BIOL, V21, P226, DOI 10.1007/BF00355253; Boss K.J., 1982, P945; BUSBY D, 1986, 44 FLA SEA GRANT EXT; CARLTON JT, 1993, AM ZOOL, V33, P499; Carnes S.F., 1975, STERKIANA, V60, P1; CARNES SF, 1975, STERKIANA, V59, P21; CHANLEY PAUL E., 1965, CHESAPEAKE SCI, V6, P162, DOI 10.2307/1350848; CLARIDGE MF, 1982, ENTOMOL EXP APPL, V32, P213, DOI 10.1111/j.1570-7458.1982.tb03208.x; CLARK KB, 1976, B MAR SCI, V26, P474; CLARK KB, 1995, B MAR SCI, V57, P242; CLARK KB, 1987, AM MALACOL BULL, V5, P259; CLARK KB, 1990, VELIGER, V33, P339; CLARK KB, 1977, B MAR SCI, V27, P651; CORY ROBERT L., 1967, CHESAPEAKE SCI, V8, P71, DOI 10.2307/1351152; CRUZABREGO F, 1993, 59TH ANN M AM MAL UN, P14; DEFREESE DE, 1982, THESIS FLORIDA I TEC; Dragovich A., 1964, Bulletin of Marine Science of the Gulf and Caribbean, V14, P74; ECKELBARGER KJ, 1981, J MORPHOL, V170, P283, DOI 10.1002/jmor.1051700303; GILMORE R G JR, 1977, Bulletin of the Florida State Museum Biological Sciences, V22, P101; GORE RH, 1981, ESTUAR COAST SHELF S, V12, P485, DOI 10.1016/S0302-3524(81)80007-2; GRAHAM ALASTAIR, 1955, PROC MALACOL SOC LONDON, V31, P144; HAWTHORNE SD, 1983, INT REV GES HYDROBIO, V68, P193, DOI 10.1002/iroh.19830680205; HILL R, 1978, ADV APPL MECH, V18, P1; HILLMAN R, 1985, CAPSULE, V18, P5; HILLMAN R, 1977, CAPSULE NOV, P15; HILLMAN R, 1978, CAPSULE JUL, P5; HILLMAN R, 1977, CAPSULE NOV, P1; HILLMAN R, 1979, CAPSULE JUL, P4; HILLMAN R, 1983, CAPSULE, V16, P7; HILLMAN R, 1983, CAPSULE, V16, P4; HOUBRICK R S, 1984, American Malacological Bulletin, V2, P1; HOUBRICK RS, 1993, MALACOLOGIA, V35, P261; JENSEN K, 1983, NAUTILUS, V97, P1; JENSEN K. R., 1983, J MOLLUS STUD, V12A, P69; JENSEN KR, 1981, J MOLLUS STUD, V47, P190; JENSEN KR, 1982, J CONCHOL, V31, P87; JENSEN KR, 1980, THESIS FLORIDA I TEC; KANTOR YI, 1994, VELIGER, V37, P119; KEHL MJ, 1990, THESIS FLORIDA I TEC; KRAEUTER J, 1970, Chesapeake Science, V11, P159, DOI 10.2307/1351239; Lenderbig R. E., 1954, Bulletin of Marine Science of the Gulf and Caribbean, V3, P273; Lipe R., 1984, Conchologists of America Bulletin, V12, P26; MARCUS E, 1972, CHESAPEAKE SCI, V13, P300, DOI DOI 10.2307/1351113; Marcus E. du B.-R., 1977, Journal moll Stud, V4, P1; MARSH G A, 1976, Chesapeake Science, V17, P182, DOI 10.2307/1351196; McNULTY J. KNEELAND, 1961, BULL MAR SCI GULF AND CARIBBEAN, V11, P394; McNULTY J. KNEELAND, 1962, BULL MAR SCI GULF AND CARIBBEAN, V12, P204; MIKKELSEN PM, 1992, MALACOLOGIA, V34, P1; MIKKELSEN PM, 1989, MALACOLOGIA, V31, P175; MIKKELSEN PM, 1981, CAPSULE, V14, P2; MIKKELSEN PM, 1982, CAPSULE, V15, P8; MIKKELSEN PM, 1984, CAPSULE, V17, P3; MIKKELSEN PS, 1984, VELIGER, V27, P164; MIKKELSEN PS, 1981, CHECKLIST MOLLUSCA I; MOJICA R, 1991, THESIS FLORIDA I TEC; Mook D., 1983, Florida Scientist, V46, P162; MOORE HB, 1968, B MAR SCI, V18, P261; MOUNTFORD NK, 1977, CHESAPEAKE SCI, V18, P360, DOI 10.2307/1350591; OGOWER AK, 1967, B MAR SCI, V17, P175; PETUCH EJ, 1987, NEW CARIBBEAN MOLLUS, V154; PFITZENMEYER H T, 1972, Chesapeake Science, V13, pS107; REISH DJ, 1983, FLA SCI, V46, P306; RHODES A, 1992, FLA OCEANOGR, V13, P18; ROSENBERG R, 1975, Ophelia, V14, P93; ROSEWATER J, 1984, American Malacological Bulletin, V2, P35; RUMISH BJ, 1982, THESIS FLORIDA I TEC; SCARBORO G, 1980, CAPSULE, V13, P8; SHAW WILLIAM N., 1965, CHESAPEAKE SCI, V6, P33, DOI 10.2307/1350620; SIMON J L, 1974, Florida Scientist, V37, P217; SYKES JE, 1970, FISHERY B, V68, P299; Tabb D. C., 1961, Bulletin of Marine Science of the Gulf and Caribbean, V11, P552; TAYLOR JL, 1970, FISH B, V68, P191; THOMAS JR, 1974, THESIS FLORIDA I TEC; TOURTELLOTTE GH, 1983, INT REV GES HYDROBIO, V68, P59, DOI 10.1002/iroh.19830680105; Virnstein R.W., 1983, Florida Scientist, V46, P363; VIRNSTEIN RW, 1977, ECOLOGY, V58, P1199, DOI 10.2307/1935076; VOGEL R M, 1970, Veliger, V12, P388; VOSS GILBERT L., 1955, BULL MARINE SCI GULF AND CARIBBEAN, V5, P203; VOSS GL, 1969, MARINE ECOLOGY BISCA; WEISS CM, 1948, ECOLOGY, V29, P153, DOI 10.2307/1932811; WILCOX JR, 1974, ECOLOGICAL SIGNIFICA, V2, P326; YOON CK, 1993, SCIENCE, V260, P620, DOI 10.1126/science.260.5108.620; YOUNG DK, 1977, ECOLOGY MARINE BENTH, P359; 1976, BANANA RIVER SHELLIN; 1991, CAPSULE, V24, P1; 1982, MACROFAUNA BISCAYNE, pD1; 1990, CAPSULE, V23, P1 96 26 31 0 7 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 USA 0007-4977 1553-6955 B MAR SCI Bull. Mar. Sci. JUL 1995 57 1 94 127 34 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography RH265 WOS:A1995RH26500013 2019-02-26 J Gelderblom, CM; Bronner, GN; Lombard, AT; Taylor, PJ Gelderblom, CM; Bronner, GN; Lombard, AT; Taylor, PJ Patterns of distribution and current protection status of the Carnivora, Chiroptera and Insectivora in South Africa SOUTH AFRICAN JOURNAL OF ZOOLOGY English Article Geographic patterns of species richness and endemism in three mammalian orders (Chiroptera, insectivora and Carnivora) were studied in relation to the biomes and existing protected areas of greater South Africa (including Lesotho and Swaziland). Locality data for 21500 specimens representing 124 species were analysed with a geographical information system. Species richness of Chiroptera is high in the savanna biome, particularly in the north-east of the country, owing to the marginal intrusion of 14 tropical species. Endemism in Chiroptera is low, however, with only two endemic species in the fynbos and Karoo biomes. The Carnivora display less biome specificity and endemism than the Chiroptera. Whereas the north-eastern savannas have the highest species richness, the transition between the Nama-Karoo and grassland biomes is an important southern African centre of endemism for the Carnivora, particularly the smaller species. In addition to being an important centre for species richness in the Carnivora and Chiroptera, the Kruger National Park is also particularly important for Red Data Book species in both orders. The Insectivora display both high species richness and endemism. Species richness of the Insectivora is greatest in the mesic south-east of the country, whereas endemism is most pronounced in the forest and grassland biomes. Differences in biome specificity and endemism between these orders reflect not only phylogenetic divergence, but also variation in body size, vagility and life-history strategies. Most of South Africa's endemics are small mammals and many of them are listed in the Red Data Book. Distributions, life-history strategies and trends in man-induced habitat degradation were used to re-evaluate the protection status of the 124 species. We conclude that at least 11 endemic species are not adequately protected by existing publicly owned protected areas and consequently identify several areas which need to be added to the existing protected area system. UNIV CAPE TOWN,PERCY FITZPATRICK INST AFRICAN ORNITHOL,RONDEBOSCH 7700,SOUTH AFRICA; TRANSVAAL MUSEUM,DEPT MAMMALS,PRETORIA 0001,SOUTH AFRICA; DURBAN NAT SCI MUSEUM,DURBAN 4000,SOUTH AFRICA Taylor, Peter/E-8655-2011 Taylor, Peter/0000-0001-9048-7366 Balinsky BI, 1962, ANN CAPE PROVINCIAL, V2, P299; BIGALKE RC, 1972, EVOLUTION MAMMALS SO; BRONNER GN, IN PRESS J MAMM; BRONNER GN, 1992, 1992 ZOOL SOC SO AFR; COE MJ, 1989, TECHNIQUES DESERT RE, P271; Crowe T.M., 1990, P145; DUELLMAN WILLIAM E., 1965, UNIV KANSAS PUBL MUS NATUR HIST, V15, P627; GELDERBLOM CM, 1993, THESIS U CAPE TOWN; GOODMAN B, 1991, SCIENCE, V253, P36, DOI 10.1126/science.2063205; HILTONTAYLOR C, 1989, BIOTIC DIVERSITY IN SOUTHERN AFRICA : CONCEPTS AND CONSERVATION, P202; HOCKEY PAR, 1994, S AFR J SCI, V90, P105; Lombard AT, 1995, S AFR J ZOOL, V30, P63; Lynch C. D., 1994, Navorsinge van die Nasionale Museum (Bloemfontein), V10, P177; LYNCH CD, 1983, MEM NAS MUS BLOEMFON, V18, P1; LYNCH CD, 1989, MEM NAS MUS BLOEMFON, V25, P1; MEESTER J, 1976, CSIR11 S AFR NAT SCI; Meester JAJ, 1986, TRANSVAAL MUS MONOGR, V5, P1; MEESTER JURGENS, 1965, ZOOL AFRICANA, V1, P87; MOREAU RE, 1952, P ZOOL SOC LOND, V121, P869; NEL JAJ, 1975, S AFR J SCI, V71, P168; NICOLL ME, 1990, AFRICAN INSECTIVORA; PIMENTEL RA, 1986, BIOSIGMASTAT 2 MULTI; PRENDERGAST JR, 1993, NATURE, V365, P335, DOI 10.1038/365335a0; Rautenbach I. L., 1993, Koedoe, V36, P87; RAUTENBACH IL, 1986, CIMBEBASIA, V8, P130; Rautenbach IL, 1982, ECOPLAN MONOGRAPH; RAUTENBACH IL, 1978, B CARNEGIE MUS NAT H, V6, P175; Rowe-Rowe D, 1992, CARNIVORES NATAL; RUTHERFORD MC, 1986, MEM BOT SURV S AFR, V54, P1; SIEGFRIED WR, 1992, S AFR J WILDL RES, V22, P11; SIEGFRIED WR, 1994, S AFR J SCI, V90, P57; SKINNER JD, 1990, MAMMALS SO AFRICA; Smithers R. H. N., 1986, 125 S AFR NAT SCI PR; SMITHERS RHN, 1983, MAMMALS SO AFRICAN S; Stuart C. T., 1981, BONTEBOK, V1, P1; TURPIE JK, 1994, S AFR J ZOOL, V29, P19; WILSON DE, 1993, MAMMALS WORLD 37 31 33 0 7 BUREAU SCIENTIFIC PUBL PRETORIA P O BOX 1758, PRETORIA 0001, SOUTH AFRICA 0254-1858 S AFR J ZOOL South Afr. J. Zool. JUL 1995 30 3 103 114 12 Zoology Zoology TQ466 WOS:A1995TQ46600005 2019-02-26 J LAMBERTI, GA; GREGORY, SV; ASHKENAS, LR; LI, JL; STEINMAN, AD; MCINTIRE, CD LAMBERTI, GA; GREGORY, SV; ASHKENAS, LR; LI, JL; STEINMAN, AD; MCINTIRE, CD INFLUENCE OF GRAZER TYPE AND ABUNDANCE ON PLANT-HERBIVORE INTERACTIONS IN STREAMS HYDROBIOLOGIA English Article HERBIVORY; LABORATORY STREAMS; PERIPHYTON; FEEDING; MACROINVERTEBRATES LABORATORY STREAMS; CADDISFLY POPULATION; AQUATIC INSECTS; INTRASPECIFIC COMPETITION; PERIPHYTON INTERACTIONS; ECOSYSTEMS; ASSEMBLAGES; COMMUNITIES; DENSITY; ECOLOGY Grazer-periphyton interactions were investigated in 11 laboratory streams holding a range of densities of three herbivore taxa during a 32-d experiment. Effects of grazers on algae were strongest with Dicosmoecus gilvipes caddisflies, intermediate with Juga silicula snails, and weakest with Baetis spp. mayflies. Algal standing crop, export, and gross primary production declined logarithmically with increasing grazer density. Algal turnover rate, however, increased with grazer abundance. At high densities of all grazers, responses in most algal parameters converged, suggesting that high grazing pressure, regardless of taxon, will similarly affect periphyton. Growth of both Dicosmoecus caddisflies and Juga snails was density-dependent, with the highest growth rates occurring at the lowest densities. Caddisflies displayed high growth rates but low efficiency in resource use. Snails had lower growth rates but were more efficient in resource use. The coexistence of Dicosmoecus and Juga, or other competing herbivores, in natural streams may be related to these fundamental differences in life history strategies. OREGON STATE UNIV,DEPT BOT & PLANT PATHOL,CORVALLIS,OR 97331; OREGON STATE UNIV,DEPT FISHERIES & WILDLIFE,CORVALLIS,OR 97331 LAMBERTI, GA (reprint author), UNIV NOTRE DAME,DEPT BIOL SCI,NOTRE DAME,IN 46556, USA. Steinman, Alan/0000-0002-4886-4305 Allan J.D., 1983, P191; BELOVSKY GE, 1986, AM ZOOL, V26, P51; BELSKY AJ, 1986, AM NAT, V127, P870, DOI 10.1086/284531; CALOW P, 1972, OECOLOGIA, V9, P155, DOI 10.1007/BF00345880; CALOW P, 1981, INVERTEBRATE BIOL FU; DENICOLA DM, 1991, J N AM BENTHOL SOC, V10, P251; FEMINELLA JW, 1991, OECOLOGIA, V87, P247, DOI 10.1007/BF00325263; FEMINELLA JW, 1990, ECOLOGY, V71, P2083, DOI 10.2307/1938622; FURNISH JP, 1989, THESIS OREGON STATE; Gregory S.V., 1983, P157; GREGORY SV, 1980, THESIS OREGON STATE; HART DD, 1987, OECOLOGIA, V73, P41, DOI 10.1007/BF00376975; HART DD, 1991, OIKOS, V60, P329, DOI 10.2307/3545075; HARVEY BC, 1991, J N AM BENTHOL SOC, V10, P263, DOI 10.2307/1467599; HAWKINS CP, 1987, OIKOS, V49, P209, DOI 10.2307/3566028; HILL WR, 1988, LIMNOL OCEANOGR, V33, P15, DOI 10.4319/lo.1988.33.1.0015; Lambert G.A., 1984, P164; LAMBERTI G A, 1987, Journal of the North American Benthological Society, V6, P92, DOI 10.2307/1467219; LAMBERTI GA, 1983, ECOLOGY, V64, P1124, DOI 10.2307/1937823; LAMBERTI GA, 1989, ECOLOGY, V70, P1840, DOI 10.2307/1938117; LAMBERTI GA, 1987, OECOLOGIA, V73, P75, DOI 10.1007/BF00376980; LAMBERTI GA, 1979, ENVIRON ENTOMOL, V8, P561, DOI 10.1093/ee/8.3.561; LI JL, 1989, J N AM BENTHOL SOC, V8, P250, DOI 10.2307/1467329; LI JL, 1990, THESIS OREGON STATE; MAC ARTHUR ROBERT H., 1967; MARTIN ID, 1991, J N AM BENTHOL SOC, V10, P404, DOI 10.2307/1467666; McAuliffe J.R., 1983, P137; MCELRAVY EP, 1989, J N AM BENTHOL SOC, V8, P51, DOI 10.2307/1467401; MCINTIRE CD, 1973, ECOL MONOGR, V43, P399, DOI 10.2307/1942348; MCINTIRE CD, 1993, J N AMER BENTHOL SOC, V12, P318; MCNAUGHTON SJ, 1986, AM NAT, V128, P765, DOI 10.1086/284602; MULHOLLAND PJ, 1991, ECOLOGY, V72, P966, DOI 10.2307/1940597; MULHOLLAND PJ, 1983, OECOLOGIA, V58, P358, DOI 10.1007/BF00385236; PAIGE KN, 1987, AM NAT, V129, P407, DOI 10.1086/284645; PANDIAN TJ, 1986, FRESHWATER BIOL, V16, P93, DOI 10.1111/j.1365-2427.1986.tb00950.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PORTER KG, 1977, AM SCI, V65, P159; RESH VH, 1982, OIKOS, V38, P280, DOI 10.2307/3544665; RESH VH, 1983, AQUAT INSECT, V5, P193, DOI 10.1080/01650428309361145; RESH VH, 1989, CAN ENTOMOL, V121, P941, DOI 10.4039/Ent121941-11; SIEGFRIED CA, 1977, AM MIDL NAT, V98, P200, DOI 10.2307/2424724; STATZNER B, 1988, J N AM BENTHOL SOC, V7, P307, DOI 10.2307/1467296; STEINMAN A D, 1987, Journal of the North American Benthological Society, V6, P189, DOI 10.2307/1467510; STEINMAN A D, 1987, Journal of the North American Benthological Society, V6, P175, DOI 10.2307/1467509; STEINMAN AD, 1991, CAN J FISH AQUAT SCI, V48, P1951, DOI 10.1139/f91-232; STEINMAN AD, 1986, J PHYCOL, V22, P352, DOI 10.1111/j.1529-8817.1986.tb00035.x; STEINMAN AD, IN PRESS BENTHIC ALG; STRICKLAND JDH, 1968, B FISH RES BOARD CAN, V137; SUMNER WT, 1982, ARCH HYDROBIOL, V93, P135; WALLACE JB, 1980, ANNU REV ENTOMOL, V25, P103, DOI 10.1146/annurev.en.25.010180.000535; WIEGERT RG, 1971, J THEOR BIOL, V30, P69, DOI 10.1016/0022-5193(71)90037-3; Wiggins GB, 1977, LARVAE N AM CADDISFL 52 33 33 1 20 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia JUN 30 1995 306 3 179 188 10.1007/BF00017689 10 Marine & Freshwater Biology Marine & Freshwater Biology RV063 WOS:A1995RV06300001 2019-02-26 J MEDEIROSBERGEN, DE; EBERT, TA MEDEIROSBERGEN, DE; EBERT, TA GROWTH, FECUNDITY AND MORTALITY-RATES OF 2 INTERTIDAL BRITTLESTARS (ECHINODERMATA, OPHIUROIDEA) WITH CONTRASTING MODES OF DEVELOPMENT JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article BRODY-BERTALANFFY GROWTH; FITNESS; LIFE HISTORY; SURVIVAL OPTIMAL LIFE HISTORIES; REPRODUCTIVE EFFORT; EVOLUTION; AGE; NUMBERS; CYCLES; SIZE Theories of life history evolution hypothesize an inverse relationship between recruitment predictability and longevity. It also has been proposed that marine species with direct development should have more predictable recruitment than species with planktotrophic larvae; consequently, brooders should be shorter-lived than broadcasters. This hypothesis was tested in a field study at False Point, San Diego, California, using two brittlestar species with similar sizes but with contrasting modes of development. Ophionereis annulata (Le Conte) produces planktonic larvae whereas Ophioplocus esmarki Lyman is a brooder. Growth rates, over a period of 1 yr, were determined in the field using calcein, a fluorescent marker of calcification sites in skeletons. Ossicles marked with calcein were used to establish initial and final sizes that were used to estimate parameters of the Brody-Bertalanffy equation for disc diameter growth: for Ophionereis annulata, K = 0.075 . yr(-1) and S-infinity = 20.0 mm; for Ophioplocus esmarki, K = 0.069 . yr(-1) and S, = 19.4 mm. Mortality rates were estimated using growth parameters and mean disc diameter in field samples. Annual survival rate was 90% for Ophionereis annulata (the broadcaster) and 95% for Ophioplocus esmarki (the brooder), which is opposite of expectation. We conclude that brooding does not necessarily confer an advantage that is evident by shorter adult life spans and, indeed brooding may pose a liability with respect to fitness. SAN DIEGO STATE UNIV,DEPT BIOL,SAN DIEGO,CA 92182 Addessi L, 1992, THESIS SAN DIEGO STA; Austin W.C., 1980, P146; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Beverton R. J. H., 1956, RAPP CONS EXPLOR MER, V140, P67; Calow P., 1977, Advances in Ecological Research, V10, P1, DOI 10.1016/S0065-2504(08)60233-0; CALOW P, 1973, AM NAT, V197, P550; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; CASWELL H, 1980, ECOLOGY, V61, P19, DOI 10.2307/1937149; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHARNOV EL, 1991, EVOL ECOL, V5, P339, DOI 10.1007/BF02214237; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; EBERT TA, 1973, OECOLOGIA, V11, P281, DOI 10.1007/BF01882785; EBERT TA, 1975, AM ZOOL, V15, P755; EBERT TA, 1987, LENGTH BASED METHODS, V1, P35; EBERT TA, 1983, ECHINODERM STUDIES, P169; Ebert TA, 1985, OECOLOGIA, V65, P461, DOI 10.1007/BF00379658; ENGEN S, 1988, J THEOR BIOL, V130, P229, DOI 10.1016/S0022-5193(88)80098-5; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; HALBERG F, 1987, REPRODUCTION MARINE, V9, P331; HENDLER G, 1982, BIOL BULL, V163, P431, DOI 10.2307/1541454; HENDLER G, 1975, AM ZOOL, V15, P691; MEDEIROSBERGEN DE, 1992, THESIS SAN DIEGO STA; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; MUSCAT AM, 1975, THESIS SAN DIEGO STA; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; RICKER WE, 1973, J FISH RES BOARD CAN, V30, P409, DOI 10.1139/f73-072; RUMRILL SS, 1984, THESIS U CALIFORNIA; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; SMITH AB, 1980, SPEC PALAEONTOL, V25, P5; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; SUZUKI HK, 1966, STAIN TECHNOL, V41, P57, DOI 10.3109/10520296609116280; TAYLOR P, 1991, J THEOR BIOL, V148, P33, DOI 10.1016/S0022-5193(05)80464-3; WILSON CA, 1987, T AM FISH SOC, V116, P668, DOI 10.1577/1548-8659(1987)116<668:CAAFMO>2.0.CO;2; 1992, STATISTICS VERSION 5 40 22 24 0 12 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. JUN 28 1995 189 1-2 47 64 10.1016/0022-0981(95)00010-O 18 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology RH874 WOS:A1995RH87400004 2019-02-26 J YIN, TJ; QUINN, JA YIN, TJ; QUINN, JA TESTS OF A MECHANISTIC MODEL OF ONE HORMONE REGULATING BOTH SEXES IN BUCHLOE DACTYLOIDES (POACEAE) AMERICAN JOURNAL OF BOTANY English Article LIFE-HISTORY STRATEGIES; PLANTS; EXPRESSION; GRAMINEAE; BUFFALOGRASS; CHARACTERS; GROWTH; DIOECY A mechanistic model of one hormone regulating both sexes in flowering plants was tested in buffalograss (Buchloe dactyloides). This model assumes that one hormone has male and female cell receptors to inhibit one sex and induce the other independently. Three components-the normal range of hormone level in the plant and the sensitivity levels of the two receptors-interact to regulate sex expression. The study organism, buffalograss, is usually considered dioecious, but natural populations consist of varying proportions of male, female, and monoecious plants. Prior research with growth regulators had shown that only gibberellin (GA) had consistent and significant effects on sex expression in this species. To test the model assumption of a hormone with a dual function, GA and a GA inhibitor (paclobutrazol, PAC) were applied to three monoecious genotypes; in two of the genotypes the GA treatment yielded a significantly higher proportion of male inflorescences, and this transition involved both inducing male and inhibiting female. PAC treatment produced exclusively female inflorescences, illustrating the dual effects of GA. To test the predictability of the model, GA was applied to two dwarf female genotypes. These plants were transformed into neuter and near-neuter plants with normal height and vegetative growth, as predicted by our model for genotypes with a physiologically wide overlapping of male and female sterile regions. The model also predicts that male or female plants would be induced to produce inflorescences of the other sex if the hormone level could be shifted from one side of the overlapping sterile regions to the other. This was verified by applying high levels of GA to a normal female genotype that resulted in the production of male inflorescences. However, this is the only normal female that has responded to GA application by producing male inflorescences, and males lose vigor and/or die without producing female inflorescences at high levels of PAC. The model suggests that the constancy of these males and females is due to the relative location of the sensitivity levels in relation to each other and to the hormone range. We conclude that the one-hormone model can facilitate both applied and basic research. RUTGERS STATE UNIV,DEPT BIOL SCI,PISCATAWAY,NJ 08855 BAUER B, 1992, USGA GREEN SECTION R, V30, P20; CHAILAKHYAN MK, 1979, AM J BOT, V66, P717, DOI 10.2307/2442417; CHAILAKHYAN MK, 1987, SEXUALITY PLANT ITS; Darwin C, 1877, DIFFERENT FORMS FLOW; DURAND R, 1984, PHYSIOL PLANTARUM, V60, P267, DOI 10.1111/j.1399-3054.1984.tb06061.x; Frankel R, 1977, POLLINATION MECHANIS; FREEMAN DC, 1980, OECOLOGIA, V47, P222, DOI 10.1007/BF00346825; HANSON KV, 1987, CROP SCI, V27, P1257, DOI 10.2135/cropsci1987.0011183X002700060034x; Henry M. J., 1985, B PLANT GROWTH REG S, V13, P9; HITCHCOCK AS, 1951, USDA MISC PUBL, V200; HUFF DR, 1992, AM J BOT, V79, P207, DOI 10.2307/2445109; HUFF DR, 1987, CROP SCI, V27, P623, DOI 10.2135/cropsci1987.0011183X002700040002x; IRISH EE, 1989, PLANT CELL, V1, P737; KING RC, 1974, HDB GENETICS, V2; LLOYD DG, 1977, BOT REV, V43, P177, DOI 10.1007/BF02860717; MCARTHUR ED, 1982, BOT GAZ, V143, P476; Meagher T. R., 1988, Plant reproductive ecology: patterns and strategies, P125; METZGER JD, 1988, B PLANT GROWTH REGUL, V16, P13; Murray MJ, 1940, GENETICS, V25, P409; NULAND DS, 1981, G81564 U NEBRASKA CO; QUINN JA, 1991, AM J BOT, V78, P481, DOI 10.2307/2445257; QUINN JA, 1987, AM J BOT, V74, P1167, DOI 10.2307/2444153; QUINN JA, 1986, AM J BOT, V73, P874, DOI 10.2307/2444298; REEDER JR, 1971, BRITTONIA, V23, P105, DOI 10.2307/2805426; Schlessman M. A., 1988, Plant reproductive ecology: patterns and strategies, P139; WESTERGAARD M, 1958, ADV GENET, V9, P217, DOI 10.1016/S0065-2660(08)60163-7; Winer B. J., 1971, STATISTICAL PRINCIPL; WU L, 1989, California Agriculture, V43, P23; WU L, 1984, HORTSCIENCE, V19, P505; WU L, 1989, GOLF COURSE MANA APR, P42; YIN TJ, 1994, B TORREY BOT CLUB, V121, P170, DOI 10.2307/2997169; YIN TJ, 1992, B TORREY BOT CLUB, V119, P431, DOI 10.2307/2996731 32 17 19 0 6 BOTANICAL SOC AMER INC COLUMBUS OHIO STATE UNIV-DEPT BOTANY 1735 NEIL AVE, COLUMBUS, OH 43210 0002-9122 AM J BOT Am. J. Bot. JUN 1995 82 6 745 751 10.2307/2445614 7 Plant Sciences Plant Sciences RE203 WOS:A1995RE20300007 2019-02-26 J LESICA, P; SHELLY, JS LESICA, P; SHELLY, JS EFFECTS OF REPRODUCTIVE MODE ON DEMOGRAPHY AND LIFE-HISTORY IN ARABIS-FECUNDA (BRASSICACEAE) AMERICAN JOURNAL OF BOTANY English Article POPULATION-DYNAMICS; MOUNT KENYA; EVOLUTION; PLANT; SIZE; AGE; ELASTICITY; SELECTION; HABITATS; BIOLOGY Life history theory predicts that trade-offs between growth and reproduction should be dictated by a population's mortality schedule. We tested this prediction with Arabis fecunda, a short-lived perennial that occurs in many different habitats in southwest Montana. Individuals produce either or both axillary or terminal inflorescences. Axillary-flowering plants are usually iteroparous and have smaller reproductive bouts, while terminal-flowering plants have larger reproductive bouts, and tend to be semelparous. We recorded size and fecundity of A. fecunda individuals from 1989 to 1993 in three different habitats. There was great variation in demographic and life history traits among the populations. A wide range of life history strategies among populations of A. fecunda is achieved through different proportions of axillary- and terminal-flowering plants. Arabis fecunda demonstrated a lower recruitment rate, higher survivorship, slower growth, and lower annual fecundity at the low-elevation site compared to the high-elevation site. At the low-elevation site population size was more stable, and elasticity analysis of matrix projection models indicated that adult survivorship was the most important demographic parameter contributing to population growth. This association of life history characters conforms to theoretical predictions. MONTANA NAT HERITAGE PROGRAM,HELENA,MT 59620 LESICA, P (reprint author), UNIV MONTANA,DIV BIOL SCI,MISSOULA,MT 59812, USA. BELL G, 1976, AM NAT, V110, P57, DOI 10.1086/283048; BOUTIN C, 1991, J ECOL, V79, P199, DOI 10.2307/2260793; Caswell H., 1989, MATRIX POPULATION MO; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; ELLSTRAND NC, 1987, AM J BOT, V74, P123, DOI 10.2307/2444338; GRANT MC, 1978, EVOLUTION, V32, P822, DOI 10.1111/j.1558-5646.1978.tb04637.x; Grime J. P, 1979, PLANT STRATEGIES VEG; HAMILTON MB, 1994, AM J BOT, V81, P1252, DOI 10.2307/2445400; HUTCHINGS MJ, 1991, ECOLOGY, V72, P2290, DOI 10.2307/1941579; KALISZ S, 1992, ECOLOGY, V73, P1082, DOI 10.2307/1940182; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LESICA P, 1987, Natural Areas Journal, V7, P65; LESICA P, 1992, AM MIDL NAT, V128, P53, DOI 10.2307/2426412; LESICA P, 1993, UNPUB REPORT CONSERV; LOTZ LAP, 1990, J ECOL, V78, P757, DOI 10.2307/2260897; MENGES ES, 1990, CONSERV BIOL, V4, P52, DOI 10.1111/j.1523-1739.1990.tb00267.x; NEWELL SJ, 1981, J ECOL, V69, P997, DOI 10.2307/2259650; PYKE DA, 1986, ECOLOGY, V67, P240, DOI 10.2307/1938523; Richards A. J., 1986, PLANT BREEDING SYSTE; ROLLINS RC, 1984, CONTRIBUTIONS GRAY H, V214, P1; SCHAFFER WM, 1979, ECOLOGY, V60, P1051, DOI 10.2307/1936872; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; STEARNS SC, 1992, EVOLUTIN LIFE HIST; van Groenendael J. M., 1985, STUDIES PLANT DEMOGR, P51; VANDERMEER J, 1978, OECOLOGIA, V32, P79, DOI 10.1007/BF00344691; VANGROENENDAEL J, 1988, TRENDS ECOL EVOL, V3, P264, DOI 10.1016/0169-5347(88)90060-2; VANGROENENDAEL JM, 1988, J ECOL, V76, P585, DOI 10.2307/2260614; WAITE S, 1984, J ECOL, V72, P809, DOI 10.2307/2259533; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; YOUNG TP, 1984, J ECOL, V72, P637, DOI 10.2307/2260073; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 36 25 25 0 15 BOTANICAL SOC AMER INC COLUMBUS OHIO STATE UNIV-DEPT BOTANY 1735 NEIL AVE, COLUMBUS, OH 43210 0002-9122 AM J BOT Am. J. Bot. JUN 1995 82 6 752 762 10.2307/2445615 11 Plant Sciences Plant Sciences RE203 WOS:A1995RE20300008 2019-02-26 J KOIVISTO, S; KETOLA, M KOIVISTO, S; KETOLA, M EFFECTS OF COPPER ON LIFE-HISTORY TRAITS OF DAPHNIA-PULEX AND BOSMINA-LONGIROSTRIS AQUATIC TOXICOLOGY English Article CLADOCERA; COPPER TOXICITY; PREDATION; SURVIVAL; GROWTH; REPRODUCTION MAGNA STRAUS; CERIODAPHNIA-DUBIA; CHRONIC TOXICITY; FOOD CONCENTRATION; BODY-SIZE; REPRODUCTION; CADMIUM; STRESS; SENSITIVITY; GROWTH Daphnia magna, and to a lesser extent D. pulex, are commonly used in standardised laboratory toxicity tests. Neither of these species is common in lakes inhabited by fish which is explained by strong predation pressure by fish. They also exhibit different life-history strategies compared to lake-inhabiting species like Bosmina. Daphnids produce many small (relative to adult size) juveniles whereas the opposite is true for Bosmina. The large neonate size allows an earlier maturation of Bosmina compared to Daphnia. In the present study the effects of copper (10-30 ppb) on life-history traits of D. pulex and B. longirostris were compared. The only significant copper effect on D. pulex was a minor delay of maturation. On the contrary, negative impacts of the same copper concentrations were found on the survival, growth, maturation age, and fecundity of B. longirostris. The population growth rate (r) of B. longirostris decreased with increasing copper concentration. The study showed that B. longirostris was about two times more sensitive to copper stress than D. pulex. UNIV TURKU,DEPT BIOL,ECOL ZOOL LAB,SF-20500 TURKU,FINLAND KOIVISTO, S (reprint author), UNIV STOCKHOLM,DEPT SYST ECOL,S-10691 STOCKHOLM,SWEDEN. ADEMA DMM, 1978, HYDROBIOLOGIA, V59, P125, DOI 10.1007/BF00020773; BAIRD DJ, 1989, HYDROBIOLOGIA, V188, P403, DOI 10.1007/BF00027806; BAIRD DJ, 1990, FUNCT ECOL, V4, P399, DOI 10.2307/2389602; BAIRD DJ, 1991, ECOTOX ENVIRON SAFE, V21, P257, DOI 10.1016/0147-6513(91)90064-V; BAUDO R, 1987, MEM I ITAL IDROBIOL, V45, P461; BELANGER SE, 1989, ARCH ENVIRON CON TOX, V18, P601, DOI 10.1007/BF01055028; BENGTSSON J, 1986, J ANIM ECOL, V55, P641, DOI 10.2307/4745; BIESINGER KE, 1972, J FISH RES BOARD CAN, V29, P1691, DOI 10.1139/f72-269; BOYDEN CR, 1974, NATURE, V251, P311, DOI 10.1038/251311a0; BRAUNE BM, 1987, ARCH ENVIRON CON TOX, V16, P311, DOI 10.1007/BF01054948; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; CHANDINI T, 1989, ENVIRON POLLUT, V60, P29, DOI 10.1016/0269-7491(89)90218-2; COLLINS NC, 1980, ECOLOGY, V61, P650, DOI 10.2307/1937431; DEMOTT WR, 1982, LIMNOL OCEANOGR, V27, P518, DOI 10.4319/lo.1982.27.3.0518; DIXON WJ, 1983, INTRO STATISTICAL AN; ENSERINK L, 1990, AQUAT TOXICOL, V17, P15, DOI 10.1016/0166-445X(90)90009-E; FISHER NS, 1977, AM NAT, V111, P871, DOI 10.1086/283220; FORBES VE, 1992, FUNCT ECOL, V6, P376, DOI 10.2307/2389274; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GANNING B, 1971, Ophelia, V9, P51; GROULX GR, 1992, ARCH ENVIRON CON TOX, V23, P370, DOI 10.1007/BF00216247; HANEY JF, 1984, LIMNOL OCEANOGR, V30, P397; HRBACKE J, 1961, VERH INT VEREIN LIMN, V15, P192; HUTCHINGS MJ, 1991, ECOLOGY, V72, P2290, DOI 10.2307/1941579; INGERSOLL C G, 1982, Environmental Toxicology and Chemistry, V1, P321, DOI 10.1897/1552-8618(1982)1[321:EODPDG]2.0.CO;2; KETOLA M, 1989, HYDROBIOLOGIA, V179, P149, DOI 10.1007/BF00007602; KHANGAROT BS, 1989, ECOTOX ENVIRON SAFE, V18, P109, DOI 10.1016/0147-6513(89)90071-7; KOIVISTO S, 1992, HYDROBIOLOGIA, V248, P125, DOI 10.1007/BF00006080; KRANTZBERG G, 1989, HYDROBIOLOGIA, V188, P497, DOI 10.1007/BF00027817; LAMPERT W, 1993, ECOLOGY, V74, P1455, DOI 10.2307/1940074; LASENBY DC, 1992, ARCH ENVIRON CON TOX, V23, P179, DOI 10.1007/BF00212272; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEBLANC GA, 1985, ENVIRON POLLUT A, V37, P13, DOI 10.1016/0143-1471(85)90021-2; Lotka A. J., 1913, J WASH ACAD SCI, V3, P241; LYCHE A, 1989, Aqua Fennica, V19, P59; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; MEADOR JP, 1991, AQUAT TOXICOL, V19, P13, DOI 10.1016/0166-445X(91)90025-5; MEYER JS, 1986, ECOLOGY, V67, P1156, DOI 10.2307/1938671; MILLS E L, 1988, P11; MOUNT DI, 1984, ENVIRON TOXICOL CHEM, V3, P425, DOI 10.1897/1552-8618(1984)3[425:ASLCCT]2.0.CO;2; MUNZINGER A, 1992, AQUAT TOXICOL, V23, P203, DOI 10.1016/0166-445X(92)90053-P; MUNZINGER A, 1991, ECOTOX ENVIRON SAFE, V22, P24, DOI 10.1016/0147-6513(91)90043-O; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PASCOE D, 1987, ACTA BIOL HUNG, V38, P47; PONT D, 1991, FRESHWATER BIOL, V26, P149, DOI 10.1111/j.1365-2427.1991.tb01725.x; PORTER KG, 1982, LIMNOL OCEANOGR, V27, P935, DOI 10.4319/lo.1982.27.5.0935; RAINBOW PS, 1986, HYDROBIOLOGIA, V141, P273, DOI 10.1007/BF00014222; RANTA E, 1987, OIKOS, V50, P336, DOI 10.2307/3565494; SMOCK LA, 1983, FRESHWATER BIOL, V13, P313, DOI 10.1111/j.1365-2427.1983.tb00683.x; SOARES AMVM, 1992, ENVIRON TOXICOL CHEM, V11, P1477, DOI 10.1897/1552-8618(1992)11[1477:IVITPO]2.0.CO;2; STEPHENSON GL, 1991, ARCH ENVIRON CON TOX, V20, P73, DOI 10.1007/BF01065331; TAKAHASHI IT, 1987, B ENVIRON CONTAM TOX, V39, P229, DOI 10.1007/BF01689411; TESSIER AJ, 1992, LIMNOL OCEANOGR, V37, P1; URABE J, 1991, FRESHWATER BIOL, V25, P1, DOI 10.1111/j.1365-2427.1991.tb00467.x; VAN DEN BERG CMG, 1979, J FISH RES BOARD CAN, V36, P901, DOI 10.1139/f79-128; VANLEEUWEN CJ, 1985, ECOTOX ENVIRON SAFE, V9, P26, DOI 10.1016/0147-6513(85)90031-4; VONDERBRINK RH, 1993, OECOLOGIA, V95, P70, DOI 10.1007/BF00649509; WALLS M, 1989, LIMNOL OCEANOGR, V34, P390, DOI 10.4319/lo.1989.34.2.0390; WILLIAMSON P, 1980, OECOLOGIA, V44, P213, DOI 10.1007/BF00572682; WINNER RW, 1976, J FISH RES BOARD CAN, V33, P1685, DOI 10.1139/f76-215; WINNER RW, 1988, ENVIRON TOXICOL CHEM, V7, P153, DOI 10.1897/1552-8618(1988)7[153:EOTRSO]2.0.CO;2; Zaret T. M., 1980, PREDATION FRESHWATER; 1985, SAS STAT GUIDE PERSO 63 29 31 1 17 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0166-445X AQUAT TOXICOL Aquat. Toxicol. JUN 1995 32 2-3 255 269 10.1016/0166-445X(94)00094-7 15 Marine & Freshwater Biology; Toxicology Marine & Freshwater Biology; Toxicology RE408 WOS:A1995RE40800011 2019-02-26 J BARTAREAU, T BARTAREAU, T POLLINATION LIMITATION, COSTS OF CAPSULE PRODUCTION AND THE CAPSULE-TO-FLOWER RATIO IN DENDROBIUM-MONOPHYLLUM F MUELL (ORCHIDACEAE) AUSTRALIAN JOURNAL OF ECOLOGY English Article CAPSULE PRODUCTION; DENDROBIUM MONOPHYLLUM; ORCHID; POLLINATION LIMITATION; RESOURCE ALLOCATION FRUIT PRODUCTION; RESOURCE-ALLOCATION; PLANTS; SET; REPRODUCTION; EVOLUTION; FREQUENCY; PHENOLOGY; PATTERNS; DISPLAY In perennial plants, life-history theory suggests that natural selection should result in the optimization of fruit-to-flower ratios within the limits imposed by the trade-offs between resource allocation for present reproduction and future growth and reproduction. The tropical orchid Dendrobium monophyllum F. Muell., an epiphyte or lithophyte, offers no nectar rewards, is self-incompatible and has a capsule-to-flower ratio of about 1:14. The influence of pollination limitation and the costs of capsule production on capsule-to-flower ratios were assessed using experimental and field studies in which individual plants were observed for 3 years. Pollinators visited about 80% of flowers, and capsule production was significantly related to inflorescence size and pollinaria removal. About nine pollinator visits occurred per capsule. Pollinator visitation and capsule production did not vary significantly between years. The inflorescence size classes most successful in capsule production were also the most frequent in natural populations. The experimental supplementation of outcross pollen to flowers increased capsule set over controls by 45% within a year, but was limited to about 53%. A capsule-to-flower ratio of 1:2 in experimental plants significantly decreased the subsequent growth and flowering of individuals relative to controls. A capsule-to-flower ratio above 1:10 in naturally pollinated plants decreased flowering in the subsequent year. Thus, it is suggested than an increase in capsule production above 10% would not necessarily correlate with greater reproductive fitness because of the increased cost of capsule production. The capsule-to-flower ratio recorded in this study could be evolutionarily stable because of trade-offs between selection for pollinator attraction and the cost of capsule production. The production of surplus flowers appears to function in pollinator attraction and increases fitness through male function. JAMES COOK UNIV N QUEENSLAND,DEPT BOT & TROP AGR,TOWNSVILLE,QLD 4811,AUSTRALIA Ackerman J. D., 1986, Lindleyana, V1, P108; ACKERMAN JD, 1990, ECOLOGY, V71, P263, DOI 10.2307/1940265; ACKERMAN JD, 1989, SYST BOT, V14, P101, DOI 10.2307/2419054; Adams P. B., 1992, Australian Entomological Magazine, V19, P97; ADAMS P B, 1989, Orchadian, V9, P201; ADAMS PB, 1988, POLL 88 P S U MELB, P95; ADAMS PB, 1988, REPROD BIOL SPECIES, P25; ARDITTI J, 1967, BOT REV, V33, P1, DOI 10.1007/BF02858656; ARDITTI J, 1990, Lindleyana, V5, P249; Bartareau T., 1993, Orchadian, V10, P446; Bartareau T., 1994, Orchadian, V11, P106; BARTAREAU T, 1993, 2ND P AUSTR ORCH C, P85; BENZING DH, 1973, Q REV BIOL, V48, P277, DOI 10.1086/407590; BERRY PE, 1991, PLANT SYST EVOL, V174, P93, DOI 10.1007/BF00937697; CALVO RN, 1990, AM NAT, V136, P499, DOI 10.1086/285110; CALVO RN, 1993, ECOLOGY, V74, P1033, DOI 10.2307/1940473; CALVO RN, 1990, AM J BOT, V77, P736, DOI 10.2307/2444365; CALVO RN, 1990, AM J BOT, V7, P1378; Caswell H., 1986, LECTURES MATH LIFE S, V18, P171; CHARLESWORTH D, 1991, PHILOS T R SOC B, V332, P91, DOI 10.1098/rstb.1991.0036; CHARLESWORTH D, 1989, TRENDS ECOL EVOL, V4, P289, DOI 10.1016/0169-5347(89)90023-2; Christensen D.E., 1992, Lindleyana, V7, P28; Dockrill AW, 1969, AUSTR INDIGENOUS ORC; DRESSLER RL, 1981, ORCHIDS THEIR CLASSI; FIRMAGE DH, 1988, AM J BOT, V75, P1371, DOI 10.2307/2444460; HAIG D, 1988, AM NAT, V131, P757, DOI 10.1086/284817; JANZEN DH, 1977, AM NAT, V111, P365, DOI 10.1086/283166; JANZEN DH, 1980, BIOTROPICA, V12, P72, DOI 10.2307/2387776; JOHANSEN B, 1990, BOT J LINN SOC, V103, P165, DOI 10.1111/j.1095-8339.1990.tb00183.x; JONES DL, 1983, 8TH P AUSTR ORCH C, P127; LLOYD DG, 1980, NEW PHYTOL, V86, P69, DOI 10.1111/j.1469-8137.1980.tb00780.x; MONTALVO AM, 1987, BIOTROPICA, V19, P24, DOI 10.2307/2388456; MORGAN M, 1993, EVOL ECOL, V7, P219, DOI 10.1007/BF01237740; PRIMACK RB, 1988, AM NAT, V136, P638; RODRIGUEZROBLES JA, 1992, AM J BOT, V79, P1009, DOI 10.2307/2444910; SCHEMSKE DW, 1980, EVOLUTION, V34, P489, DOI 10.1111/j.1558-5646.1980.tb04838.x; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; SOKAL R., 1981, BIOMETRY; STEPHENSON AG, 1981, ANNU REV ECOL SYST, V12, P253, DOI 10.1146/annurev.es.12.110181.001345; SUTHERLAND S, 1986, EVOLUTION, V40, P117, DOI 10.1111/j.1558-5646.1986.tb05723.x; SUTHERLAND S, 1986, ECOLOGY, V67, P991, DOI 10.2307/1939822; Tracey J. G., 1982, VEGETATION HUMID TRO; UPTON WT, 1989, DENDROBIUM ORCHIDS A; WYATT R, 1982, AM J BOT, V69, P585, DOI 10.2307/2443068; ZIMMERMAN JK, 1989, AM J BOT, V76, P67, DOI 10.2307/2444775; 1990, STATISTIX MANUAL 46 12 13 0 11 BLACKWELL SCIENCE PUBL AUSTR CARLTON 54 UNIVERSITY ST, P O BOX 378, CARLTON 3053, AUSTRALIA 0307-692X AUST J ECOL Aust. J. Ecol. JUN 1995 20 2 257 265 10.1111/j.1442-9993.1995.tb00537.x 9 Ecology Environmental Sciences & Ecology RF077 WOS:A1995RF07700004 2019-02-26 J JOKELA, J; MUTIKAINEN, P JOKELA, J; MUTIKAINEN, P EFFECT OF SIZE-DEPENDENT MUSKRAT (ONDATRA-ZIBETHICA) PREDATION ON THE SPATIAL-DISTRIBUTION OF A FRESH-WATER CLAM, ANODONTA-PISCINALIS NILSSON (UNIONIDAE, BIVALVIA) CANADIAN JOURNAL OF ZOOLOGY English Article LIFE-HISTORY EVOLUTION; SELECTIVE PREDATION; DAPHNIA-PULEX; ELLIPTIO-COMPLANATA; POPULATION; GRANDIS; DENSITY; REPRODUCTION; PELECYPODA; PLASTICITY We studied the effect of central-place foraging by muskrats on the spatial distribution of freshwater clam Anodonta piscinalis. We also analysed the prey-size preference of muskrats. We collected A, piscinalis shells from four muskrat middens representing different prey populations and sampled the clam populations quantitatively. Muskrats had clear effects on the spatial distribution of the clams. At all study sites the area close to shore had no clams. The width of the empty area was correlated with the number of shells found in the muskrat midden. The density of clams decreased and their mean size increased with the distance from muskrat midden at two of the sites. Muskrats did not prey on clams smaller than 50 mm. Muskrats preferred 60- to 70-mm clams at three of the sites and 85- to 90-mm clams at the fourth. In an analysis conducted using ages, a selection gradient on the growth rate of clams was found for three of the study populations. However, spatial refuge from predation and inconsistency of selection may slow down or counterbalance the evolutionary response to predation. UNIV TURKU, DEPT BIOL, ECOL ZOOL LAB, SF-20500 TURKU, FINLAND; KONNEVESI RES STN, SF-44300 KONNEVESI, FINLAND Jokela, Jukka/F-8626-2010; Group, JJ/G-2466-2011 Jokela, Jukka/0000-0002-1731-727X AMYOT JP, 1991, J N AM BENTHOL SOC, V10, P280, DOI 10.2307/1467601; BLACK AR, 1993, LIMNOL OCEANOGR, V38, P986, DOI 10.4319/lo.1993.38.5.0986; CONVEY LE, 1989, J WILDLIFE MANAGE, V53, P654, DOI 10.2307/3809191; CUMMINS CW, 1966, SPEC PUBL PYMATUNING, V4, P2; ENGLUND V, 1994, ANN ZOOL FENN, V31, P257; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; GHENT AW, 1978, CAN J ZOOL, V56, P1654, DOI 10.1139/z78-228; GOTCEITAS V, 1989, OECOLOGIA, V80, P158, DOI 10.1007/BF00380145; HANSON JM, 1989, J ANIM ECOL, V58, P15, DOI 10.2307/4983; HANSON JM, 1988, FRESHWATER BIOL, V19, P345, DOI 10.1111/j.1365-2427.1988.tb00356.x; HANSSON L, 1988, TRENDS ECOL EVOL, V3, P195, DOI 10.1016/0169-5347(88)90006-7; HANSSON L, 1985, OECOLOGIA, V67, P394, DOI 10.1007/BF00384946; HAUKIOJA E, 1974, Annales Zoologici Fennici, V11, P127; HAUKIOJA E, 1978, OECOLOGIA, V35, P253, DOI 10.1007/BF00345134; HAUKIOJA E, 1978, ANN ZOOL FENN, V15, P60; HJALTEN J, 1991, ANN ZOOL FENN, V28, P15; HUEBNER JD, 1990, CAN J ZOOL, V68, P1931, DOI 10.1139/z90-272; LAURIE WA, 1990, J ANIM ECOL, V59, P545, DOI 10.2307/4880; LUNING J, 1992, OECOLOGIA, V92, P383, DOI 10.1007/BF00317464; MARINELLI L, 1993, CAN J ZOOL, V71, P869, DOI 10.1139/z93-113; MESSIER F, 1990, OECOLOGIA, V84, P380, DOI 10.1007/BF00329763; MURTAUGH PA, 1988, ECOL MODEL, V43, P225, DOI 10.1016/0304-3800(88)90005-1; NEVES RJ, 1989, J WILDLIFE MANAGE, V53, P934, DOI 10.2307/3809591; NORUSIS MJ, 1990, SPSS ADV STATISTICS; Orians G.H., 1979, P155; Pekkarinen Marketta, 1991, Bivalve Studies in Finland, V1, P10; PREJS A, 1990, OECOLOGIA, V83, P378, DOI 10.1007/BF00317563; RAMCHARAN CW, 1992, CAN J FISH AQUAT SCI, V49, P159, DOI 10.1139/f92-019; REICHHOLF J, 1975, Faunistisch-Oekologische Mitteilungen, V5, P1; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROBLES C, 1990, ECOLOGY, V71, P1564, DOI 10.2307/1938292; SALONEN V, 1988, ORNIS FENNICA, V65, P13; SPITZE K, 1992, AM NAT, V139, P229, DOI 10.1086/285325; STEEN H, 1990, OIKOS, V59, P115, DOI 10.2307/3545130; Stephens DW, 1986, FORAGING THEORY; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; STRAYER DL, 1993, J N AM BENTHOL SOC, V12, P247, DOI 10.2307/1467459; Van Cleave HJ, 1940, ECOLOGY, V21, P363, DOI 10.2307/1930845; WARD D, 1991, ECOLOGY, V72, P513, DOI 10.2307/2937192; Zaret T. M., 1980, PREDATION FRESHWATER 40 22 24 1 1 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. JUN 1995 73 6 1085 1094 10.1139/z95-129 10 Zoology Zoology RX214 WOS:A1995RX21400010 2019-02-26 J SEGHERS, BH; MAGURRAN, AE SEGHERS, BH; MAGURRAN, AE POPULATION DIFFERENCES IN THE SCHOOLING BEHAVIOR OF THE TRINIDAD GUPPY, POECILIA-RETICULATA - ADAPTATION OR CONSTRAINT CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article LIFE-HISTORY EVOLUTION; COLOR PATTERNS; ARTIFICIAL INTRODUCTION; N-TRINIDAD; DIFFERENTIATION; CONSEQUENCES; SELECTION; PREDATION Populations of the guppy Poecilia reticulata in Trinidad vary markedly in their tendency to school. In many cases this variation in behaviour can be attributed to variation in the predation regime: guppies that co-occur with the pike cichlid, Crenicichla alta, spend more time schooling and form larger schools than their counterparts from low-risk habitats. However, the association between schooling tendency and predation risk is not ubiquitous. In this paper we document the behaviour of guppies from populations in two Trinidad drainages. Guppies from the (Lower) Aripo River (in the Caroni drainage) display well-coordinated schooling behaviour irrespective of whether they are observed in the wild or raised under standard conditions in the laboratory. By comparison, Oropuche River guppies (from the Oropuche drainage) show only a weak schooling tendency. The contrast between the two populations is apparent even in newborn guppies. As pike cichlids are abundant at both sites it seems unlikely that reduced predation risk can account for the weaker schooling of the Oropuche River fish. The behavioural differences in the two drainages are paralleled by considerable genetic divergence and we therefore consider the possibility of phylogenetic constraints on the evolution of schooling. SEGHERS, BH (reprint author), UNIV OXFORD,DEPT ZOOL,ANIM BEHAV RES GRP,S PARKS RD,OXFORD OX1 3PS,ENGLAND. Magurran, Anne/D-7463-2013 Magurran, Anne/0000-0002-0036-2795 ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; BREDEN F, 1987, ANIM BEHAV, V35, P618, DOI 10.1016/S0003-3472(87)80297-X; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; DOUGLAS ME, 1982, J THEOR BIOL, V199, P777; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Endler JA, 1986, NATURAL SELECTION WI; FAJEN A, 1992, EVOLUTION, V46, P1457, DOI 10.1111/j.1558-5646.1992.tb01136.x; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HASKINS CP, 1951, EVOLUTION, V5, P216, DOI 10.1111/j.1558-5646.1951.tb02780.x; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; MAGURRAN AE, 1994, BEHAVIOUR, V128, P121, DOI 10.1163/156853994X00073; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1990, ANIM BEHAV, V40, P443, DOI 10.1016/S0003-3472(05)80524-X; MAGURRAN AE, 1987, PROC R SOC SER B-BIO, V229, P439, DOI 10.1098/rspb.1987.0004; MAGURRAN AE, 1990, ANN ZOOL FENN, V27, P51; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; MAGURRAN AE, 1995, IN PRESS ADV STUDY B, V24; Magurran AE, 1993, BEHAV ECOLOGY FISHES, P29; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; PITCHER TJ, 1980, FRESHWATER BIOL, V10, P539, DOI 10.1111/j.1365-2427.1980.tb01229.x; PITCHER TJ, 1993, BEHAV TELEOST FISHES, P363; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1973, THESIS U BRIT COLUMB; SHAW PW, 1991, J FISH BIOL, V39, P203, DOI 10.1111/j.1095-8649.1991.tb05084.x; SHAW PW, 1992, P ROY SOC B-BIOL SCI, V248, P111, DOI 10.1098/rspb.1992.0049; WARD RD, 1994, J FISH BIOL, V44, P213, DOI 10.1111/j.1095-8649.1994.tb01200.x 34 26 27 2 21 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. JUN 1995 73 6 1100 1105 10.1139/z95-131 6 Zoology Zoology RX214 WOS:A1995RX21400012 2019-02-26 J LEHTILA, K; SYRJANEN, K LEHTILA, K; SYRJANEN, K POSITIVE EFFECTS OF POLLINATION ON SUBSEQUENT SIZE, REPRODUCTION, AND SURVIVAL OF PRIMULA-VERIS ECOLOGY English Article COMPENSATION; COST OF REPRODUCTION; EUROPE; PERENNIAL HERB; PLANT REPRODUCTION; PLANT SURVIVAL; POLLINATION; PRIMULA VERIS LIFE-HISTORY EVOLUTION; SEED PRODUCTION; POLLEN LIMITATION; FRUIT-SET; VISCARIA-VULGARIS; PERENNIAL HERBS; COSTS; PLANTS; PATTERNS; FLOWER We conducted three experiments in which we applied additional hand pollination, flower removal, and leaf removal treatments in Various combinations to Primula veris, a perennial spring-flowering rosette species. The purpose of the study was to determine whether the seed set of Primula veris was limited by pollen availability or by other resources, and whether there were measurable costs of reproduction. Hand pollination in the beginning of experiments significantly increased current seed set in only one of the three experiments. It also increased the next-year fruiting probability in that first experiment. In the second experiment, hand pollination did not significantly affect current seed set, but we nevertheless observed enhanced leaf growth in the treatment year and the two following years, and increased flowering frequency, fruiting frequency, and survival in the two following years. In the third experiment, after hand pollination we observed a higher net photosynthetic capacity of the leaves and, again, increased leaf growth in the treatment year and a higher flowering probability in the following year. The positive effect of hand pollination was even clearer when the leaves of the plants were removed at the beginning of the experiment. However, the treatment in which all the flowers were removed had effects on subsequent performance similar to those of the hand-pollination treatment, suggesting trade-offs. Thus, we did not observe any costs associated with reproduction after supplemental hand pollination; on the contrary, hand pollination resulted in increased survival, size, and reproduction of the plants in the subsequent years. UNIV TURKU,ARCHIPELAGO RES INST,SF-20500 TURKU,FINLAND LEHTILA, K (reprint author), UNIV TURKU,DEPT BIOL,SF-20500 TURKU,FINLAND. Lehtila, Kari/0000-0002-0260-3978 AGREN J, 1992, OECOLOGIA, V92, P177, DOI 10.1007/BF00317361; AGREN J, 1988, OECOLOGIA, V76, P175, DOI 10.1007/BF00379950; AGREN J, 1994, OIKOS, V70, P35, DOI 10.2307/3545696; AYRE DJ, 1989, TRENDS ECOL EVOL, V4, P267, DOI 10.1016/0169-5347(89)90197-3; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; BIERZYCHUDEK P, 1981, AM NAT, V117, P838, DOI 10.1086/283773; CAMPBELL DR, 1993, ECOLOGY, V74, P1043, DOI 10.2307/1940474; Charlesworth D, 1987, Experientia Suppl, V55, P317; DUDASH MR, 1993, ECOLOGY, V74, P959, DOI 10.2307/1940820; FOX JF, 1992, OECOLOGIA, V90, P283, DOI 10.1007/BF00317187; FUJII JA, 1985, PLANT PHYSIOL, V78, P519, DOI 10.1104/pp.78.3.519; GORCHOV DL, 1988, AM J BOT, V75, P1275, DOI 10.2307/2444449; HAIG D, 1988, AM NAT, V131, P757, DOI 10.1086/284817; HANSEN P, 1970, PHYSIOL PLANTARUM, V23, P805, DOI 10.1111/j.1399-3054.1970.tb06477.x; HANSEN P, 1969, PHYSIOL PLANTARUM, V22, P186, DOI 10.1111/j.1399-3054.1969.tb07855.x; HERRERO M, 1992, PLANT GROWTH REGUL, V11, P27, DOI 10.1007/BF00024429; HORVITZ CC, 1988, ECOLOGY, V69, P1741, DOI 10.2307/1941152; Inc S. P. S. S., 1988, SPSS X USERS GUIDE, V3rd; INGHE O, 1988, OIKOS, V51, P203, DOI 10.2307/3565644; JENNERSTEN O, 1991, OIKOS, V61, P197, DOI 10.2307/3545337; JOHNSTON MO, 1991, ECOLOGY, V72, P1500, DOI 10.2307/1941123; KAROLY K, 1992, AM J BOT, V79, P49, DOI 10.2307/2445196; KWAK MM, 1991, OECOLOGIA, V86, P99, DOI 10.1007/BF00317395; LACEY EP, 1992, AM J BOT, V79, P1108, DOI 10.2307/2445209; Lee T. D., 1988, Plant reproductive ecology: patterns and strategies, P179; Lipsey M. W, 1990, DESIGN SENSITIVITY S; LLOYD DG, 1980, NEW PHYTOL, V86, P69, DOI 10.1111/j.1469-8137.1980.tb00780.x; LUBBERS AE, 1989, ECOLOGY, V70, P85, DOI 10.2307/1938415; Marshall C., 1990, CLONAL GROWTH PLANTS, P23; Mead R., 1988, DESIGN EXPT; MILBERG P, 1994, ECOGRAPHY, V17, P3, DOI 10.1111/j.1600-0587.1994.tb00071.x; OVASKA J, 1992, J EXP BOT, V43, P1301, DOI 10.1093/jxb/43.10.1301; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; POTVIN C, 1990, ECOLOGY, V71, P1389, DOI 10.2307/1938276; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; PYKE GH, 1991, NATURE, V350, P58, DOI 10.1038/350058a0; REEKIE EG, 1991, J ECOL, V79, P1061, DOI 10.2307/2261098; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Richards A. J., 1986, PLANT BREEDING SYSTE; RICHARDSON TE, 1991, OECOLOGIA, V87, P80, DOI 10.1007/BF00323783; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SHAPIRO SS, 1965, BIOMETRIKA, V52, P591, DOI 10.1093/biomet/52.3-4.591; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; SOKAL R., 1981, BIOMETRY; STEAD AD, 1992, PLANT GROWTH REGUL, V11, P13, DOI 10.1007/BF00024427; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEPHENSON AG, 1981, ANNU REV ECOL SYST, V12, P253, DOI 10.1146/annurev.es.12.110181.001345; SYRJANEN K, 1993, OIKOS, V67, P465, DOI 10.2307/3545358; TAMM CO, 1972, OIKOS, V23, P159, DOI 10.2307/3543401; TUOMI J, 1983, AM ZOOL, V23, P25; VAUGHTON G, 1991, J ECOL, V78, P389; WARDLAW IF, 1990, NEW PHYTOL, V116, P341, DOI 10.1111/j.1469-8137.1990.tb00524.x; WATSON MA, 1984, ANNU REV ECOL SYST, V15, P233, DOI 10.1146/annurev.es.15.110184.001313; WEDDERBURN F, 1990, NEW PHYTOL, V116, P149, DOI 10.1111/j.1469-8137.1990.tb00520.x; ZIMMERMAN JK, 1989, AM J BOT, V76, P67, DOI 10.2307/2444775; ZIMMERMAN M, 1988, J ECOL, V76, P777, DOI 10.2307/2260573; ZIMMERMAN M, 1988, AM NAT, V131, P723, DOI 10.1086/284815; 1989, SAS STAT USERS GUIDE 60 40 40 0 9 ECOLOGICAL SOC AMER TEMPE ARIZONA STATE UNIV CENTER ENVIRONMENTAL STUDIES, TEMPE, AZ 85287 0012-9658 ECOLOGY Ecology JUN 1995 76 4 1084 1098 10.2307/1940917 15 Ecology Environmental Sciences & Ecology QZ878 WOS:A1995QZ87800006 2019-02-26 J LANDMANN, A; KOLLINSKY, C LANDMANN, A; KOLLINSKY, C AGE AND PLUMAGE RELATED TERRITORY DIFFERENCES IN MALE BLACK REDSTARTS - THE (NON)-ADAPTIVE SIGNIFICANCE OF DELAYED PLUMAGE MATURATION ETHOLOGY ECOLOGY & EVOLUTION English Article LIFE HISTORY STRATEGIES; DELAYED PLUMAGE MATURATION; FEMALE MIMICRY; REDUCED INVESTMENT; STATUS SIGNALING; PHOENICURUS OCHRUROS Yearling males of European black redstarts (Phoenicuros ochruros) in their first potential breeding season are strongly dichromatic exhibiting either a female-like or a bright adult male-like plumage. In villages near Innsbruck, Austria we investigated age and plumage specific differences in territory acquisition, territory position relative to other males, territory character and quality, mating and reproductive success. Yearling black redstart males breed regularly and accounted for about 50% of territorial males. About 90% of all yearling males were found to be in the dull female-like plumage. However, our data do not support hypotheses which suggest that retaining a dull plumage during the first breeding season is adaptive. Territories of most female-like yearling males were established in suboptimal, often peripheral village zones with few neighbours, most of which were yearlings as well. In addition, regardless of time of arrival from wintering grounds these young males had lower mating success than adult males and male-like yearlings, lower brood success, and showed less ability to rear a second brood than adult males. In contrast, territories of male-like yearling males were situated significantly more often in village zones preferred by adult males and male-like yearling males settled more often near to adult males than did female-like yearling males. These results are inconsistent with predictions of breeding season communication hypotheses like the Female Mimicry Hypothesis or the Status Signaling Hypothesis, but are partly in agreement with the Reduced Investment Hypothesis. However, our observations do not support the basic assumption of this hypothesis that late spring arrival and the search for low cost territories represent an adaptive choice by yearling males. Dull yearling plumages in this species are therefore likely to be non-adaptive in the first breeding season, and might simply be the result of constraints on plumage development. LANDMANN, A (reprint author), INST ZOOL & LIMNOL,TECHNIKERSTR 25,A-6020 INNSBRUCK,AUSTRIA. 0 21 22 0 7 UNIV FIRENZE ETHOLOGY ECOLOGY & EVOLUTION FLORENCE ATTN: PROF. F. DESSI-FULGHERI VIA ROMANA 17, 50125 FLORENCE, ITALY 0394-9370 ETHOL ECOL EVOL Ethol. Ecol. Evol. JUN 1995 7 2 147 167 10.1080/08927014.1995.9522962 21 Behavioral Sciences; Zoology Behavioral Sciences; Zoology RN424 WOS:A1995RN42400004 2019-02-26 J HUGHES, KA HUGHES, KA THE EVOLUTIONARY GENETICS OF MALE LIFE-HISTORY CHARACTERS IN DROSOPHILA-MELANOGASTER EVOLUTION English Article AGING; DROSOPHILA MELANOGASTER; GENETIC CORRELATIONS; GOMPERTZ MORTALITY; GOOD GENES; HERITABILITY; LIFE HISTORY EVOLUTION; LONGEVITY; MALE MATING SUCCESS; QUANTITATIVE GENETICS; SENESCENCE; SEXUAL SELECTION QUANTITATIVE GENETICS; FITNESS COMPONENTS; SEXUAL SELECTION; HETEROGENEOUS ENVIRONMENTS; ANTAGONISTIC PLEIOTROPY; FLUCTUATING ASYMMETRY; NATURAL-POPULATIONS; MATING ACTIVITY; FEMALE CHOICE; FRUIT-FLIES Alternative models of the maintenance of genetic variability, theories of life-history evolution, and theories of sexual selection and mate choice can be tested by measuring additive and nonadditive genetic variances of components of fitness. A quantitative genetic breeding design was used to produce estimates of genetic variances for male life-history traits in Drosophila melanogaster. Additive genetic covariances and correlations between traits were also estimated. Flies from a large, outbred, laboratory population were assayed for age-specific competitive mating ability, age-specific survivorship, body mass, and fertility. Variance-component analysis then allowed the decomposition of phenotypic variation into components associated with additive genetic, nonadditive genetic, and environmental variability. A comparison of dominance and additive components of genetic variation provides little support for an important role for balancing selection in maintaining genetic variance in this suite of traits. The results provide support for the mutation-accumulation theory, but not the antagonistic-pleiotropy theory of senescence. No evidence is found for the positive genetic correlations between mating success and offspring quality or quantity chat are predicted by ''good genes'' models of sexual selection. Additive genetic coefficients of variation for life-history characters are larger than those for body weight. Finally, this set of male life-history characters exhibits a very low correspondence between estimates of genetic and phenotypic correlations. UNIV CHICAGO, COMM EVOLUTIONARY BIOL, CHICAGO, IL 60637 USA ANDERSON WW, 1979, P NATL ACAD SCI USA, V76, P1519, DOI 10.1073/pnas.76.3.1519; ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; Becker W, 1984, MANUAL QUANTITATIVE; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BRITTNACHER JG, 1981, GENETICS, V97, P719; BUNDGAARD J, 1972, GENETICS, V71, P439; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHARLESWORTH B, 1985, HEREDITY, V54, P71, DOI 10.1038/hdy.1985.10; CHARLESWORTH B, 1992, GENET RES, V60, P115, DOI 10.1017/S0016672300030809; CHARLESWORTH B, 1987, SEXUAL SELECTION TES, P21; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CHEVERUD JM, 1988, EVOLUTION, V42, P958, DOI 10.1111/j.1558-5646.1988.tb02514.x; Comstock R. E., 1952, Heterosis., P494; ENGELS WR, 1989, MOBILE DNA, P437; FERVEUR JF, 1993, GENETICS, V133, P561; Finch C. E., 1990, LONGEVITY SENESCENCE; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GILLESPIE J, 1973, THEOR POPUL BIOL, V4, P193, DOI 10.1016/0040-5809(73)90028-2; Gillespie J. H., 1991, CAUSES MOL EVOLUTION; Haldane J. B. S., 1963, Journal of Genetics, V58, P237, DOI 10.1007/BF02986143; HALDANE JBS, 1949, ANN EUGENIC, V14, P288; Halliday T.R., 1978, P180; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; HARTLEY HO, 1967, BIOMETRICS, V23, P105, DOI 10.2307/2528284; HEDRICK PW, 1976, ANNU REV ECOL SYST, V7, P1, DOI 10.1146/annurev.es.07.110176.000245; HEDRICK PW, 1986, ANNU REV ECOL SYST, V17, P535; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1994, GENETICS, V138, P773; HOULE D, 1992, NATURE, V359, P58, DOI 10.1038/359058a0; HOULE D, 1992, GENETICS, V130, P195; HUGHES KA, 1995, GENET RES, V65, P41, DOI 10.1017/S0016672300032997; HUGHES KA, 1994, NATURE, V367, P64, DOI 10.1038/367064a0; HUGHES KA, 1993, THESIS U CHICAGO CHI; KEMPTHORNE O, 1957, INTRO GENETIC STATIS; KIRKPATRICK M, 1991, NATURE, V350, P33, DOI 10.1038/350033a0; KLEIN TW, 1973, BEHAV GENET, V3, P355, DOI 10.1007/BF01070218; KONDRASHOV AS, 1992, GENETICS, V132, P603; KOSUDA K, 1983, EXPERIENTIA, V39, P100, DOI 10.1007/BF01960652; KOSUDA K, 1985, BEHAV GENET, V15, P297, DOI 10.1007/BF01065984; Lindsley D. L., 1992, GENOME DROSOPHILA ME; MARKOW TA, 1978, NATURE, V276, P821, DOI 10.1038/276821a0; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MOLLER AP, 1990, ANIM BEHAV, V40, P1185, DOI 10.1016/S0003-3472(05)80187-3; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; MUKAI T, 1974, GENETICS, V78, P1195; MUKAI T, 1985, 2ND P INT C QUANT GE, P21; MULCAHY DL, 1975, THEOR APPL GENET, V46, P277, DOI 10.1007/BF00281149; PARTRIDGE L, 1980, NATURE, V283, P290, DOI 10.1038/283290a0; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PARTRIDGE L, 1983, ANIM BEHAV, V31, P871, DOI 10.1016/S0003-3472(83)80242-5; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; PROUT T, 1971, GENETICS, V68, P127; PROUT T, 1962, GENET RES, V3, P364, DOI 10.1017/S0016672300003219; REMINGTON RD, 1970, STATISTICS APPLICATI; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; RICE WR, 1988, EVOLUTION, V42, P817, DOI 10.1111/j.1558-5646.1988.tb02500.x; ROFF DA, 1987, HEREDITY, V58, P103, DOI 10.1038/hdy.1987.15; Roff Derek A., 1992; ROPER C, 1993, EVOLUTION, V47, P445, DOI 10.1111/j.1558-5646.1993.tb02105.x; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHNELL FW, 1992, GENETICS, V131, P461; SEARLE SR, 1971, BIOMETRICS, V27, P1, DOI 10.2307/2528928; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1993, EVOLUTION, V47, P387, DOI 10.1111/j.1558-5646.1993.tb02101.x; SHARP PM, 1984, GENETICS, V106, P601; SHARP PM, 1982, GENET RES, V40, P201, DOI 10.1017/S0016672300019066; SHAW RG, 1987, EVOLUTION, V41, P812, DOI 10.1111/j.1558-5646.1987.tb05855.x; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SMITH J. MAYNARD, 1959, JOUR GENETICS, V56, P227, DOI 10.1007/BF02984746; STEPHENSON AG, 1983, POLLINATION BIOL; TATAR M, 1994, EVOLUTION, V48, P1371, DOI 10.1111/j.1558-5646.1994.tb05320.x; TAYLOR CE, 1981, AM NAT, V117, P1035, DOI 10.1086/283793; THORNHILL R, 1992, BEHAV ECOL, V3, P277, DOI 10.1093/beheco/3.3.277; TURELLI M, 1988, 2ND P INT C QUANT GE, P601; WADE MJ, 1980, ANIM BEHAV, V28, P446, DOI 10.1016/S0003-3472(80)80052-2; WALSH NE, 1992, Q REV BIOL, V67, P19, DOI 10.1086/417446; WEATHERHEAD PJ, 1979, AM NAT, V113, P201, DOI 10.1086/283379; WILKINSON GS, 1987, EVOLUTION, V41, P11, DOI 10.1111/j.1558-5646.1987.tb05767.x; WILKINSON L, 1989, SYSTAT STATISTICS VE; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WILLIS JH, 1991, EVOLUTION, V45, P441, DOI 10.1111/j.1558-5646.1991.tb04418.x; ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3 91 93 93 0 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 1995 49 3 521 537 10.2307/2410276 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity RU678 WOS:A1995RU67800013 28565078 Bronze 2019-02-26 J GOSSELIN, LA; CHIA, FS GOSSELIN, LA; CHIA, FS CHARACTERIZING TEMPERATE ROCKY SHORES FROM THE PERSPECTIVE OF AN EARLY JUVENILE SNAIL - THE MAIN THREATS TO SURVIVAL OF NEWLY-HATCHED NUCELLA-EMARGINATA MARINE BIOLOGY English Article INTERTIDAL COMMUNITY; PREDATION; ECOLOGY; SIZE; RECRUITMENT; COMPETITION; SETTLEMENT; GASTROPODS; BARNACLES; LAPILLUS Mortality factors most likely to constitute substantial selective pressures for early juvenile gastropods on temperate rocky shores were identified by examining the vulnerability of hatchlings of an intertidal snail, Nucella emarginata, to heat stress, desiccation, and predation in 1992 and 1993. The highest temperature of substrata measured at tidal heights colonized by N. emarginata in Barkley Sound, British Columbia, Canada, was 28.5 degrees C. This temperature was not lethal to hatchlings in laboratory tests. In laboratory and field desiccation experiments, all hatchlings died within 6 h of emersion. Early juveniles could not survive direct exposure to even moderate drying conditions for the duration of a low tide. Hence, intertidal microhabitats which dry up even for short periods during low tides would prove lethal. Of 45 intertidal animal species to which hatchlings were exposed in the laboratory, small decapod crustaceans were the only organisms to cause substantial hatchling mortality. Of these, Pagurus hirsutiusculus and Hemigrapsus nudus were by far the most abundant in the field, and are probably the only important predators of early juvenile N. emarginata at most sites. Total predator densities in the field were as high as 438 individuals m(-2), suggesting that predation pressure may be intense. Desiccation and predation by decapod crustaceans appear to be the most significant threats to early juvenile N. emarginata. These factors commonly occur on most temperate rocky shores and undoubtedly constitute major selective agents influencing population parameters and shaping life-history strategies and early juvenile traits of intertidal invertebrates. UNIV ALBERTA,DEPT BIOL SCI,EDMONTON,AB T6G 2E9,CANADA Gosselin, Louis/F-1284-2011 BACHELET G, 1989, 23RD P EUR MAR BIOL, P23; BARNES H, 1950, J ANIM ECOL, V19, P175, DOI 10.2307/1526; BENEDETTICECCHI L, 1992, MAR ECOL PROG SER, V90, P183, DOI 10.3354/meps090183; BERGERON P, 1986, MAR ECOL PROG SER, V28, P129, DOI 10.3354/meps028129; BERRY AJ, 1980, J MOLLUS STUD, V46, P55; BERTNESS MD, 1989, ECOLOGY, V70, P257, DOI 10.2307/1938431; BLEGVAD H, 1929, REP DANISH BIOL STAT, V35, P51; BOULDING EG, 1993, J EXP MAR BIOL ECOL, V169, P139, DOI 10.1016/0022-0981(93)90191-P; BRANCH GM, 1975, MAR BIOL, V32, P179, DOI 10.1007/BF00388510; BRAWLEY SH, 1991, J PHYCOL, V27, P179, DOI 10.1111/j.0022-3646.1991.00179.x; CONNELL JH, 1961, ECOL MONOGR, V31, P61, DOI 10.2307/1950746; CONNELL JH, 1970, ECOL MONOGR, V40, P49, DOI 10.2307/1942441; CROTHERS J H, 1985, Field Studies, V6, P291; DAVIES PS, 1969, J MAR BIOL ASSOC UK, V49, P291, DOI 10.1017/S0025315400035918; DAYTON PK, 1971, ECOL MONOGR, V41, P351, DOI 10.2307/1948498; DENLEY EJ, 1979, J EXP MAR BIOL ECOL, V36, P269, DOI 10.1016/0022-0981(79)90122-9; DITTMAN D, 1991, ECOLOGY, V72, P286, DOI 10.2307/1938922; FALLERFRITSCH RJ, 1986, ECOLOGY ROCKY COASTS, P157; FEARE CJ, 1970, OECOLOGIA, V5, P1, DOI 10.1007/BF00345973; FERNANDEZ M, 1993, MAR ECOL PROG SER, V92, P171, DOI 10.3354/meps092171; FLETCHER WJ, 1987, ECOLOGY, V68, P387, DOI 10.2307/1939270; FOSTER BA, 1971, MAR BIOL, V8, P12, DOI 10.1007/BF00349341; GARRITY SD, 1984, ECOLOGY, V65, P559, DOI 10.2307/1941418; GOSSELIN LA, 1993, J MAR BIOL ASSOC UK, V73, P963, DOI 10.1017/S0025315400034834; GOSSELIN LA, 1994, J EXP MAR BIOL ECOL, V176, P1, DOI 10.1016/0022-0981(94)90193-7; GOSSELIN LA, 1995, UNPUB EARLY POSTSETT; GOSSELIN LA, 1994, THESISU ALBERTA EDMO; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; KEESING JK, 1992, MAR ECOL PROG SER, V85, P107, DOI 10.3354/meps085107; KNUDSEN JENS W., 1964, PAC SCI, V18, P3; Kozloff E.N., 1987, MARINE INVERTEBRATES; MENGE BA, 1976, ECOL MONOGR, V46, P355, DOI 10.2307/1942563; MENGE BA, 1972, ECOL MONOGR, V42, P25, DOI 10.2307/1942229; MENGE BA, 1978, OECOLOGIA, V34, P1, DOI 10.1007/BF00346237; MENGE BA, 1979, OECOLOGIA, V41, P245, DOI 10.1007/BF00377430; MILLER KM, 1989, J EXP MAR BIOL ECOL, V134, P157, DOI 10.1016/0022-0981(89)90067-1; ORENSANZ JM, 1988, J CRUSTACEAN BIOL, V8, P187, DOI 10.2307/1548312; OSMAN RW, 1992, MAR ECOL PROG SER, V83, P35, DOI 10.3354/meps083035; PAINE R T, 1974, Oecologia (Berlin), V15, P93, DOI 10.1007/BF00345739; PAINE RT, 1976, ECOLOGY, V57, P858, DOI 10.2307/1941053; PALMER AR, 1990, VELIGER, V33, P325; PALMER AR, 1985, VELIGER, V27, P349; PETRAITIS PS, 1983, ECOLOGY, V64, P522, DOI 10.2307/1939972; PETRAITIS PS, 1987, BIOL BULL, V172, P307, DOI 10.2307/1541710; RAWLINGS TA, 1990, BIOL BULL, V179, P312, DOI 10.2307/1542323; RIVEST BR, 1983, J EXP MAR BIOL ECOL, V69, P217, DOI 10.1016/0022-0981(83)90071-0; ROBERTSON A, 1991, J MAR BIOL ASSOC UK, V71, P569, DOI 10.1017/S0025315400053157; SARVER DJ, 1979, MAR BIOL, V54, P353, DOI 10.1007/BF00395441; Southward A. J., 1956, Report Marine Biological Station Port Erin, VNo. 68, P20; SPIGHT TM, 1976, OECOLOGIA, V24, P283, DOI 10.1007/BF00381135; Thorson G., 1966, Netherlands Journal of Sea Research, V3, P267, DOI 10.1016/0077-7579(66)90015-9; Underwood A.J., 1979, Advances in Marine Biology, V16, P111, DOI 10.1016/S0065-2881(08)60293-X; VADAS RL, 1990, MAR ECOL PROG SER, V61, P263, DOI 10.3354/meps061263; Vermeij G. J., 1993, NATURAL HIST SHELLS; VERMEIJ GJ, 1972, ECOLOGY, V53, P693, DOI 10.2307/1934785; Vermeij GJ, 1978, BIOGEOGRAPHY ADAPTAT; Vermeij GJ, 1987, EVOLUTION ESCALATION; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WETHEY DS, 1985, ECOLOGY, V66, P445, DOI 10.2307/1940393; WOLCOTT TG, 1973, BIOL BULL, V145, P389, DOI 10.2307/1540048; YOUNG BL, 1991, J EXP MAR BIOL ECOL, V151, P71, DOI 10.1016/0022-0981(91)90016-P; YOUNG CM, 1984, MAR BIOL, V81, P61, DOI 10.1007/BF00397626 62 58 60 2 32 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0025-3162 MAR BIOL Mar. Biol. JUN 1995 122 4 625 635 10.1007/BF00350684 11 Marine & Freshwater Biology Marine & Freshwater Biology RJ776 WOS:A1995RJ77600012 2019-02-26 J LOEHLE, C LOEHLE, C ANOMALOUS RESPONSES OF PLANTS TO CO2 ENRICHMENT OIKOS English Article CARBON-DIOXIDE ENRICHMENT; LIFE-HISTORY STRATEGIES; ELEVATED CO2; ATMOSPHERIC CO2; NITROGEN CONCENTRATION; MINERAL-NUTRITION; HABITAT TEMPLET; SHOOT RATIOS; GROWTH; ROOT A number of unexplained responses of plants to CO2 enrichment have been observed. These anomalies can be explained on the basis of growth analysis of whole plants. Some plants may fail to respond to enrichment because they are long-lived and have conservative growth responses or come from impoverished habitats. Apparent (but not real) acclimation to CO2 enrichment might be observed if only part of the growth curve over the life of a perennial is studied. The apparent increased efficiency of nitrogen use may merely be an increase in storage of nonstructural carbohydrate. A model analysis of these effects is presented. Discrepancies among species in relative responses of different plant parts are argued to be largely a function of where the plant typically stores nonstructural carbohydrates, which itself is a function of plant growth stage. Thus, a closer consideration of plant growth strategies and growth partitioning is needed to properly interpret results of CO2 enrichment studies. LOEHLE, C (reprint author), ARGONNE NATL LAB, DIV ENVIRONM RES, ARGONNE, IL 60439 USA. AERTS R, 1993, OIKOS, V66, P144, DOI 10.2307/3545208; AGREN GI, 1994, OECOLOGIA, V98, P239, DOI 10.1007/BF00341479; BAZZAZ FA, 1993, ECOLOGY, V74, P104, DOI 10.2307/1939505; BILLINGS WD, 1984, OECOLOGIA, V65, P26, DOI 10.1007/BF00384458; BRUGGE R, 1985, J THEOR BIOL, V116, P443, DOI 10.1016/S0022-5193(85)80281-2; CALLAWAY RM, 1994, OECOLOGIA, V98, P159, DOI 10.1007/BF00341468; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; COLEMAN JS, 1993, OECOLOGIA, V93, P195, DOI 10.1007/BF00317671; COLLINS WB, 1976, HORTSCIENCE, V11, P467; FINDENEGG GR, 1990, DEV PLANT SOIL SCI, V41, P21; Gifford RM, 1986, PHLOEM TRANSPORT, P535; GRAUMLICH LJ, 1991, ECOLOGY, V72, P1, DOI 10.2307/1938895; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; HILBERT DW, 1990, ANN BOT-LONDON, V66, P91, DOI 10.1093/oxfordjournals.aob.a088005; HILBERT DW, 1991, ANN BOT-LONDON, V68, P417, DOI 10.1093/oxfordjournals.aob.a088273; Hirose T, 1987, FUNCT ECOL, V1, P195, DOI 10.2307/2389421; HUNT R, 1991, FUNCT ECOL, V5, P410, DOI 10.2307/2389813; HUNT R, 1990, ANN BOT-LONDON, V65, P643, DOI 10.1093/oxfordjournals.aob.a087982; IDSO SB, 1988, AGR ECOSYST ENVIRON, V21, P293, DOI 10.1016/0167-8809(88)90095-3; LINDROTH RL, 1993, ECOLOGY, V74, P763, DOI 10.2307/1940804; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; MELILLO JM, 1983, ANN REPORT ECOSYSTEM, P10; MOONEY HA, 1991, BIOSCIENCE, V41, P96, DOI 10.2307/1311562; MOUSSEAU M, 1989, PLANT CELL ENVIRON, V12, P927, DOI 10.1111/j.1365-3040.1989.tb01972.x; NORBY RJ, 1986, PLANT PHYSIOL, V82, P83, DOI 10.1104/pp.82.1.83; NORBY RJ, 1991, NEW PHYTOL, V117, P515, DOI 10.1111/j.1469-8137.1991.tb00956.x; NORBY RJ, 1992, NATURE, V357, P322, DOI 10.1038/357322a0; NORBY RJ, 1986, TREE PHYSIOL, V2, P223; OWENSBY CE, 1993, WATER AIR SOIL POLL, V70, P413, DOI 10.1007/BF01105012; Pate J. S., 1982, TUBEROUS CORMOUS BUL; PINTER PJ, 1993, USDA1993 US WAT CONS, P59; POORTER H, 1993, VEGETATIO, V104, P77, DOI 10.1007/BF00048146; TAYLOR DR, 1990, OIKOS, V58, P239, DOI 10.2307/3545432; TISSUE DT, 1987, ECOLOGY, V68, P401, DOI 10.2307/1939271; VANDERWERF A, 1993, PHYSIOL PLANTARUM, V89, P563; WILSON JB, 1988, ANN BOT-LONDON, V61, P433, DOI 10.1093/oxfordjournals.aob.a087575; WOODWARD FI, 1991, ANN BOT-LONDON, V67, P23, DOI 10.1093/oxfordjournals.aob.a088206; WOODWARD FI, 1992, NEW PHYTOL, V122, P239, DOI 10.1111/j.1469-8137.1992.tb04228.x 38 69 71 1 3 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0030-1299 OIKOS Oikos JUN 1995 73 2 181 187 10.2307/3545906 7 Ecology Environmental Sciences & Ecology RH162 WOS:A1995RH16200005 2019-02-26 J BOOTS, M; BEGON, M BOOTS, M; BEGON, M STRAIN DIFFERENCES IN THE INDIAN MEAL MOTH, PLODIA-INTERPUNCTELLA, IN RESPONSE TO A GRANULOSIS-VIRUS RESEARCHES ON POPULATION ECOLOGY English Article BACULOVIRUS; TRADE-OFFS; RESISTANCE; RESOURCE LIMITATION; SUBLETHAL LIFE-HISTORY EVOLUTION Three strains of the Indian Meal Moth, Plodia interpunctella, were compared in terms of their response to a granulosis virus under different environmental conditions. A significant difference in the relative susceptibilities to the virus of the three laboratory strains was established. Evidence of potential trade-offs with resistance was found in overall fecundity, pupal size and mortality at adult emergence. There was however little evidence that a reduction in resource level led to more trade-offs being apparent. No clear relationship was found between resistance to the lethal effects of the virus and susceptibility to the sublethal effects of the virus. KYOTO UNIV, FAC AGR, ENTOMOL LAB, KYOTO 606, JAPAN BOOTS, M (reprint author), UNIV LIVERPOOL, DEPT ENVIRONM & EVOLUT BIOL, POPULAT BIOL RES GRP, POB 147, LIVERPOOL L69 3BX, MERSEYSIDE, ENGLAND. Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BOOTS M, 1993, FUNCT ECOL, V7, P528, DOI 10.2307/2390128; BOOTS M, 1994, ECOL ENTOMOL, V19, P319, DOI 10.1111/j.1365-2311.1994.tb00248.x; BRIESE DT, 1983, B ENTOMOL RES, V73, P1, DOI 10.1017/S0007485300013730; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Finney D. J, 1971, PROBIT ANAL; HARVEY TL, 1965, J INVERTEBR PATHOL, V7, P92, DOI 10.1016/0022-2011(65)90160-6; LENSKI RE, 1988, EVOLUTION, V42, P425, DOI 10.1111/j.1558-5646.1988.tb04149.x; Lessells C.M., 1991, P32; LINDFIELD SM, 1990, THESIS U LIVERPOOL; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; PARTRIDGE L, 1989, MORE EXACT ECOLOGY; ROSE MR, 1984, GENETICS, V97, P173; ROSE MR, 1984, GENETICS, V97, P184; SAIT SM, 1994, J ANIM ECOL, V63, P541, DOI 10.2307/5220; SHAW RG, 1993, ECOLOGY, V74, P1638, DOI 10.2307/1939922; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SMITH IRL, 1988, VIROLOGY, V166, P240, DOI 10.1016/0042-6822(88)90165-1; SMITH RH, 1991, ADV ECOL RES, V21, P63, DOI 10.1016/S0065-2504(08)60097-5; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; Stearns SC., 1992, EVOLUTION LIFE HIST; VAIL PV, 1990, ENVIRON ENTOMOL, V19, P791, DOI 10.1093/ee/19.3.791; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WATANABE H, 1967, J INVERTEBR PATHOL, V9, P474, DOI 10.1016/0022-2011(67)90126-7; WILLIAMS RC, 1949, J AM CHEM SOC, V71, P4052, DOI 10.1021/ja01180a052; Zar J., 1984, BIOSTATISTICAL ANAL 26 6 6 0 2 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0034-5466 RES POPUL ECOL Res. Popul. Ecol. JUN 1995 37 1 37 42 10.1007/BF02515759 6 Ecology Environmental Sciences & Ecology RT028 WOS:A1995RT02800005 Bronze 2019-02-26 J GUSTAFSSON, L; QVARNSTROM, A; SHELDON, BC GUSTAFSSON, L; QVARNSTROM, A; SHELDON, BC TRADE-OFFS BETWEEN LIFE-HISTORY TRAITS AND A SECONDARY SEXUAL CHARACTER IN MALE COLLARED FLYCATCHERS NATURE English Article FICEDULA-ALBICOLLIS; COSTS; SUCCESS; BIRDS IT has often been suggested that sexual selection may have important consequences for life-history evolution and vice versa(1-5). We manipulated the parental effort of male collared flycatchers (Ficedula albicollis) by changing the number of offspring in their nests and found a trade-off between parental effort and the size of the male's forehead patch (a secondary sexual character) in the following year. We report here that, in addition to this intra-generational trade-off, we found an inter-generational trade-off: the size of the forehead patch in first-year males was negatively related to the change in brood size of the nest in which they were raised. This has consequences for reproductive success because males with large patches mate with more females and have higher lifetime reproductive success. To our knowledge, this is the first experimental demonstration that life-history traits and secondary sexual characters trade off against each other. Our results support the suggestion that the life-history consequences of sexual ornaments are important in their evolution(2-4). GUSTAFSSON, L (reprint author), UNIV UPPSALA,DEPT ZOOL,ANIM ECOL SECT,VILLAVAGEN 9,S-75236 UPPSALA,SWEDEN. Gustafsson, Lars/A-7634-2012; Sheldon, Ben/A-8056-2010 Gustafsson, Lars/0000-0001-6566-2863; Sheldon, Ben/0000-0002-5240-7828; Qvarnstrom, Anna/0000-0002-1178-4053 ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Andersson MB, 1994, SEXUAL SELECTION; CLUTTONBROCK TH, 1995, NATURE, V373, P209, DOI 10.1038/373209a0; Cramp S, 1993, HDB BIRDS EUROPE MID, VVII; GELTER HP, 1992, IBIS, V134, P62, DOI 10.1111/j.1474-919X.1992.tb07231.x; GIBBS HL, 1990, SCIENCE, V250, P1394, DOI 10.1126/science.250.4986.1394; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; Gustafsson L., 1989, P75; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HANSEN AJ, 1986, ANIM BEHAV, V34, P69, DOI 10.1016/0003-3472(86)90007-2; Hoglund J., 1993, Etologia, V3, P143; KEMPENAERS B, 1992, NATURE, V357, P494, DOI 10.1038/357494a0; Lessells C.M., 1991, P32; Moller AP, 1994, SEXUAL SELECTION BAR; NUR N, 1984, J THEOR BIOL, V110, P275, DOI 10.1016/S0022-5193(84)80059-4; PARTRIDGE L, 1987, SEXUAL SELECTION TES, P265; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V250, P143, DOI 10.1098/rspb.1992.0142; RICE WR, 1994, P NATL ACAD SCI USA, V91, P225, DOI 10.1073/pnas.91.1.225; SCHLUTER D, 1993, EVOLUTION, V47, P658, DOI 10.1111/j.1558-5646.1993.tb02119.x; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; WESTNEAT DF, 1993, BEHAV ECOL, V4, P66, DOI 10.1093/beheco/4.1.66; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 22 271 271 2 82 MACMILLAN MAGAZINES LTD LONDON 4 LITTLE ESSEX STREET, LONDON, ENGLAND WC2R 3LF 0028-0836 NATURE Nature MAY 25 1995 375 6529 311 313 10.1038/375311a0 3 Multidisciplinary Sciences Science & Technology - Other Topics RA030 WOS:A1995RA03000048 2019-02-26 J WALZ, N WALZ, N ROTIFER POPULATIONS IN PLANKTON COMMUNITIES - ENERGETICS AND LIFE-HISTORY STRATEGIES EXPERIENTIA English Review FOOD QUALITY; FOOD QUANTITY; COMPETITION TO CLADOCERANS; PREDATION; BODY SIZE; R(MAX)/K-S-STRATEGY; BOTTOM-UP CONTROL; TOP-DOWN CONTROL FRESH-WATER ZOOPLANKTON; BRACHIONUS-CALYCIFLORUS PALLAS; CRUSTACEANS DAPHNIA-HYALINA; LAKE BALATON HUNGARY; ANABAENA-FLOS-AQUAE; BLUE-GREEN-ALGAE; KERATELLA-COCHLEARIS; BODY SIZE; FOOD CONCENTRATION; ASPLANCHNA-GIRODI Rotifers play an important role in many freshwater plankton communities. The populations are controlled from 'bottom-up' depending on different food quantities and qualities. As threshold food levels for rotifers are higher than for cladocerans they are often outcompeted when food concentrations are lowered by the clearance activity of cladocerans. Rotifers also are controlled from 'top-down' by predators, especially by copepods, by instars of Chaoborus and by predatory rotifers. Mechanical interference by daphnids is considered here as a special case of 'predation'. Different defense mechanisms are discussed. At the cost of higher food concentrations (high K-s-food levels) rotifers may exhibit high maximum growth rates (r(max)) and short times for their population development. This ability increases with rotifer body size. Within this taxonomic unity, therefore, different life history strategies have developed. These strategies may be characterized by the r(mas)/K-s-model presented. WALZ, N (reprint author), INST FRESHWATER & FISH ECOL,MUGGELSEEDAMM 260,D-12587 BERLIN,GERMANY. ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; ARNDT H, 1993, HYDROBIOLOGIA, V255, P231, DOI 10.1007/BF00025844; BANSE K, 1980, ECOL MONOGR, V50, P355, DOI 10.2307/2937256; BENNETT WN, 1989, OIKOS, V55, P365, DOI 10.2307/3565596; BERGQUIST AM, 1985, LIMNOL OCEANOGR, V30, P1037, DOI 10.4319/lo.1985.30.5.1037; BERN L, 1987, FRESHWATER BIOL, V17, P151, DOI 10.1111/j.1365-2427.1987.tb01036.x; BERNINGER UG, 1993, FRESHWATER BIOL, V30, P419, DOI 10.1111/j.1365-2427.1993.tb00825.x; BOGDAN KG, 1987, OECOLOGIA, V72, P331, DOI 10.1007/BF00377560; BOGDAN KG, 1982, LIMNOL OCEANOGR, V27, P918, DOI 10.4319/lo.1982.27.5.0918; BOGDAN KG, 1984, P NATL ACAD SCI-BIOL, V81, P6427, DOI 10.1073/pnas.81.20.6427; BORAAS ME, 1983, LIMNOL OCEANOGR, V28, P546, DOI 10.4319/lo.1983.28.3.0546; BORSHEIM KY, 1987, J PLANKTON RES, V9, P367, DOI 10.1093/plankt/9.2.367; Brandl Z., 1978, VERH INT VER LIMNOL, V20, P2505; Brendelberger H., 1985, Advances in Limnology, V21, P135; BRENDELBERGER H, 1985, J PLANKTON RES, V7, P473, DOI 10.1093/plankt/7.4.473; BURNS CW, 1986, LIMNOL OCEANOGR, V31, P848, DOI 10.4319/lo.1986.31.4.0848; BURNS CW, 1986, LIMNOL OCEANOGR, V31, P859, DOI 10.4319/lo.1986.31.4.0859; BURNS CW, 1968, LIMNOL OCEANOGR, V31, P848; CALOW P, 1984, EVOLUTIONARY ECOLOGY, P81; CONDEPORCUNA JM, 1993, J PLANKTON RES, V16, P691; CONNELL J.H., 1978, SCIENCE, V109, P1304; CUKER BE, 1992, LIMNOL OCEANOGR, V37, P566, DOI 10.4319/lo.1992.37.3.0566; DEANGELIS DL, 1987, ECOL MONOGR, V57, P1, DOI 10.2307/1942636; DeMott W.R., 1985, Advances in Limnology, V21, P125; DeMott W.R., 1989, P195; DEMOTT WR, 1986, OECOLOGIA, V69, P334, DOI 10.1007/BF00377053; DEMOTT WR, 1982, LIMNOL OCEANOGR, V27, P518, DOI 10.4319/lo.1982.27.3.0518; DIEFFENBACH H, 1911, INT REV GES HYDROBIO, V3, P1; Dumont H., 1977, ARCH HYDROBIOL BEIH, V8, P98; DUNCAN A, 1989, HYDROBIOLOGIA, V186, P11, DOI 10.1007/BF00048891; DUNCAN A, 1983, LIMNOLOGY PARAKRAMA, P117; EDMONDSON WT, 1965, ECOL MONOGR, V35, P61, DOI 10.2307/1942218; EGLOFF DA, 1988, HYDROBIOLOGIA, V157, P129, DOI 10.1007/BF00006966; EJSMONT-KARABIN J, 1974, Ekologia polska, V22, P311; EMMERSON WD, 1984, AQUACULTURE, V38, P201, DOI 10.1016/0044-8486(84)90144-3; FILATOV V I, 1972, Voprosy Ikhtiologii, V12, P886; Frost B.W., 1985, Advances in Limnology, V21, P1; FULTON RS, 1987, J PLANKTON RES, V9, P837, DOI 10.1093/plankt/9.5.837; FULTON RS, 1988, OECOLOGIA, V76, P383, DOI 10.1007/BF00377033; GALINDO MD, 1993, HYDROBIOLOGIA, V255, P317, DOI 10.1007/BF00025854; GELLER W, 1981, OECOLOGIA, V49, P316, DOI 10.1007/BF00347591; Geller W., 1975, Archiv Hydrobiol, V48, P47; Gilbert J. J., 1984, AAAS SELECTED S, V85, P97; GILBERT JJ, 1993, HYDROBIOLOGIA, V255, P247, DOI 10.1007/BF00025845; GILBERT JJ, 1985, ECOLOGY, V66, P1943, DOI 10.2307/2937390; GILBERT JJ, 1990, ECOLOGY, V71, P1727, DOI 10.2307/1937581; GILBERT JJ, 1980, HYDROBIOLOGIA, V73, P87, DOI 10.1007/BF00019431; GILBERT JJ, 1977, OECOLOGIA, V28, P125, DOI 10.1007/BF00345247; GILBERT JJ, 1988, LIMNOL OCEANOGR, V33, P1286, DOI 10.4319/lo.1988.33.6.1286; GILBERT JJ, 1988, ECOLOGY, V69, P1826, DOI 10.2307/1941160; GILBERT JJ, 1978, OECOLOGIA, V37, P13, DOI 10.1007/BF00349987; GILBERT JJ, 1990, FRESHWATER BIOL, V24, P577, DOI 10.1111/j.1365-2427.1990.tb00734.x; GILBERT JJ, 1989, LIMNOL OCEANOGR, V34, P606, DOI 10.4319/lo.1989.34.3.0606; GILBERT JJ, 1981, VERH INT VER LIMNOL, V21, P1515; GLIWICZ Z M, 1969, Ekologia Polska Seria A, V17, P663; GLIWICZ ZM, 1990, NATURE, V343, P638, DOI 10.1038/343638a0; GLIWICZ ZM, 1980, ARCH HYDROBIOL, V88, P155; GLIWICZ ZM, 1989, PLANKTON ECOLOGY SUC, P253; GLIWICZ ZM, 1990, ECOLOGY, V7, P691; GOPHEN M, 1977, FRESHWATER BIOL, V7, P513, DOI 10.1111/j.1365-2427.1977.tb01702.x; Gould S. J, 1977, ONTOGENY PHYLOGENY; GOULDEN CE, 1987, OECOLOGIA, V72, P28, DOI 10.1007/BF00385040; Gude H., 1989, P337; GUERRERO R, 1978, VERH INT VERH LIMNOL, V20, P2264; GUISANDE C, 1991, J PLANKTON RES, V13, P279, DOI 10.1093/plankt/13.2.279; GUISANDE C, 1991, INT REV GES HYDROBIO, V78, P493; Guiset A, 1977, ARCH HYDROBIOL S, V8, P126; GULATI RD, 1989, HYDROBIOLOGIA, V186, P347, DOI 10.1007/BF00048931; GUMA SA, 1978, FRESHWATER BIOL, V8, P177, DOI 10.1111/j.1365-2427.1978.tb01439.x; HALL DJ, 1976, ANNU REV ECOL SYST, V7, P177, DOI 10.1146/annurev.es.07.110176.001141; HAMMER C, 1985, ARCH HYDROBIOL, V103, P61; HARDIN G, 1960, SCIENCE, V131, P1292, DOI 10.1126/science.131.3409.1292; HARTMANN U, 1987, THESIS BIOL U MUNCHE; HAVENS KE, 1993, ARCH HYDROBIOL, V127, P9; HEINBOKEL JF, 1988, J PLANKTON RES, V10, P659, DOI 10.1093/plankt/10.4.659; HERZIG A, 1983, HYDROBIOLOGIA, V104, P237, DOI 10.1007/BF00045974; HESSEN DO, 1992, AM NAT, V140, P799, DOI 10.1086/285441; HIRAYAMA K, 1989, HYDROBIOLOGIA, V186, P39, DOI 10.1007/BF00048894; HOFFGEN B, 1987, THESIS U MUNCHEN; HORN W, 1985, INT REV GES HYDROBIO, V70, P703, DOI 10.1002/iroh.19850700507; HORN W, 1985, INT REV GES HYDROBIO, V70, P603, DOI 10.1002/iroh.19850700412; Hrbacek J., 1961, VERHANDLUNGEN INT VE, V14, P192; HUBER M, 1982, THESIS U MUNCHEN; Infante A, 1978, ARCH HYDROBIOL, V82, P347; JACOBS J, 1978, OECOLOGIA, V35, P35, DOI 10.1007/BF00345540; JURGENS K, 1994, MAR MICROB FOOD WEBS, V8, P295; KARABIN A, 1978, EKOL POL-POL J ECOL, V26, P241; KING CE, 1967, ECOLOGY, V48, P111, DOI 10.2307/1933423; KIRK KL, 1990, ECOLOGY, V71, P1741, DOI 10.2307/1937582; KORSTAD J, 1989, HYDROBIOLOGIA, V186, P51, DOI 10.1007/BF00048896; KORSTAD J, 1989, HYDROBIOLOGIA, V186, P43, DOI 10.1007/BF00048895; KOSTE W, 1978, MIKROKOSMOS, P331; Koste W, 1978, ROTATORIA RADERTIERE, V2; Koste W, 1978, ROTATORIA RADERTIERE, V1; LAMPERT W, 1991, ARCH HYDROBIOL, V120, P447; Lampert W., 1985, Advances in Limnology, V21, P311; Lampert W., 1980, EVOLUTION ECOLOGY ZO, P264; LEHMAN JT, 1988, LIMNOL OCEANOGR, V33, P931, DOI 10.4319/lo.1988.33.4_part_2.0931; LUBZENS E, 1987, HYDROBIOLOGIA, V147, P245, DOI 10.1007/BF00025750; LUBZENS E, 1985, AQUACULTURE, V47, P27, DOI 10.1016/0044-8486(85)90005-5; LUBZENS E, 1989, HYDROBIOLOGIA, V186, P387, DOI 10.1007/BF00048937; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; MAC ARTHUR ROBERT H., 1967; MACISAAC HJ, 1991, FRESHWATER BIOL, V25, P189, DOI 10.1111/j.1365-2427.1991.tb00484.x; MACISAAC HJ, 1990, J PLANKTON RES, V12, P1315, DOI 10.1093/plankt/12.6.1315; MALY EJ, 1969, ECOLOGY, V50, P59, DOI 10.2307/1934663; MAY L, 1989, J PLANKTON RES, V11, P445, DOI 10.1093/plankt/11.3.445; MIKSCHI E, 1989, HYDROBIOLOGIA, V186, P209, DOI 10.1007/BF00048914; MOORE MV, 1987, FRESHWATER BIOL, V17, P223, DOI 10.1111/j.1365-2427.1987.tb01044.x; NAUMANN E, 1923, LUNDS U ARSSKR, V19, P3; NAUWERCK ARNOLD, 1963, SYMBOLAE BOT UPSALIENSIS, V17, P1; Neill W.E., 1985, Advances in Limnology, V21, P483; NEILL WE, 1984, OECOLOGIA, V61, P175, DOI 10.1007/BF00396756; NOGRADY T, 1993, ROTIFERA, V1; OOMSWILMS AL, 1993, HYDROBIOLOGIA, V255, P255, DOI 10.1007/BF00025846; ORCUTT JD, 1984, HYDROBIOLOGIA, V119, P73, DOI 10.1007/BF00016866; PACE ML, 1981, LIMNOL OCEANOGR, V26, P822, DOI 10.4319/lo.1981.26.5.0822; PACE ML, 1990, LIMNOL OCEANOGR, V35, P795, DOI 10.4319/lo.1990.35.4.0795; PIANKA ER, 1972, AM NAT, V106, P581, DOI 10.1086/282798; PIANKA ER, 1978, EVOLUTIONARY ECOLOGY; PILARSKA J, 1977, Polskie Archiwum Hydrobiologii, V24, P329; PLATZEK J, 1986, THESIS U MUNCHEN; PORTER KG, 1983, ECOLOGY, V64, P735, DOI 10.2307/1937196; PORTER KG, 1983, OECOLOGIA, V58, P156, DOI 10.1007/BF00399211; PORTER KG, 1982, LIMNOL OCEANOGR, V27, P935, DOI 10.4319/lo.1982.27.5.0935; POURRIOT R, 1970, Annales d'Hydrobiologie, V1, P155; POURRIOT R, 1973, Annales d'Hydrobiologie, V4, P103; POURRIOT R, 1965, MILIEU, V21, P5; POURRIOT R., 1977, ARCH HYDROBIOL S, V8, P243; REYNOLDS CS, 1993, HYDROBIOLOGIA, V249, P183, DOI 10.1007/BF00008853; RICHMAN S, 1983, LIMNOL OCEANOGR, V28, P948, DOI 10.4319/lo.1983.28.5.0948; ROBERTSON JR, 1981, ECOLOGY, V62, P1585, DOI 10.2307/1941514; ROMANOVSKY YE, 1985, ERGEBNISSE LIMNOLOGI, V21, P363; ROSS P E, 1981, Journal of Great Lakes Research, V7, P65; Rothhaupt Karl O., 1993, Ecological Studies, V98, P178; ROTHHAUPT KO, 1990, LIMNOL OCEANOGR, V35, P16, DOI 10.4319/lo.1990.35.1.0016; ROTHHAUPT KO, 1990, FRESHWATER BIOL, V23, P561, DOI 10.1111/j.1365-2427.1990.tb00295.x; ROTHHAUPT KO, 1990, ARCH HYDROBIOL, V118, P1; ROTHHAUPT KO, 1991, INT REV GES HYDROBIO, V76, P67, DOI 10.1002/iroh.19910760108; ROTHHAUPT KO, 1990, LIMNOL OCEANOGR, V35, P24, DOI 10.4319/lo.1990.35.1.0024; Ruttner-Kolisko A., 1972, Binnengewasser, V26, P99; SALT GW, 1978, T AM MICROSC SOC, V97, P469, DOI 10.2307/3226164; SANDERS RW, 1989, LIMNOL OCEANOGR, V34, P673, DOI 10.4319/lo.1989.34.4.0673; SANTER B, 1994, J PLANKTON RES, V16, P171, DOI 10.1093/plankt/16.2.171; SCHEDA SM, 1988, ARCH HYDROBIOL, V114, P31; SCHIEMER F, 1985, VERHANDLUNGEN INT VE, V22, P3014; SCOTT JM, 1980, J MAR BIOL ASSOC UK, V60, P681, DOI 10.1017/S0025315400040376; SEAMAN MT, 1986, HYDROBIOLOGIA, V135, P55, DOI 10.1007/BF00006458; SIERSZEN ME, 1990, OIKOS, V59, P241, DOI 10.2307/3545540; SNELL TW, 1977, EVOLUTION, V31, P882, DOI 10.1111/j.1558-5646.1977.tb01082.x; SNELL TW, 1980, OECOLOGIA, V46, P343, DOI 10.1007/BF00346262; SNELL TW, 1983, AQUACULTURE, V3, P21; Starkweather P.L., 1987, P159; STARKWEATHER PL, 1983, HYDROBIOLOGIA, V104, P373, DOI 10.1007/BF00045994; STARKWEATHER PL, 1977, OECOLOGIA, V28, P133, DOI 10.1007/BF00345248; STARKWEATHER PL, 1980, HYDROBIOLOGIA, V73, P63, DOI 10.1007/BF00019427; STARKWEATHER PL, 1979, OECOLOGIA, V44, P26, DOI 10.1007/BF00346392; STARKWEATHER PL, 1981, VERH INT VER LIMNOL, V21, P1507; Stemberger R.S., 1987, P227; STEMBERGER RS, 1984, J GREAT LAKES RES, V10, P417, DOI 10.1016/S0380-1330(84)71858-2; STEMBERGER RS, 1985, ECOLOGY, V66, P1151, DOI 10.2307/1939167; STEMBERGER RS, 1981, CAN J FISH AQUAT SCI, V38, P721, DOI 10.1139/f81-095; STEMBERGER RS, 1987, HYDROBIOLOGIA, V147, P297, DOI 10.1007/BF00025757; STEMBERGER RS, 1984, OECOLOGIA, V64, P355, DOI 10.1007/BF00379132; STENSON JAE, 1982, HYDROBIOLOGIA, V87, P57, DOI 10.1007/BF00016662; Sterner R.W., 1989, P107; STERZYNSKI W, 1979, EKOL POL-POL J ECOL, V27, P307; STICH HB, 1985, THESIS U FREIBURG; SULKIN SD, 1975, J EXP MAR BIOL ECOL, V20, P119, DOI 10.1016/0022-0981(75)90019-2; SWIFT MC, 1975, LIMNOL OCEANOGR, V20, P418, DOI 10.4319/lo.1975.20.3.0418; TAYLOR WD, 1978, MICROBIAL ECOL, V4, P207, DOI 10.1007/BF02015077; TESSIER AJ, 1983, LIMNOL OCEANOGR, V28, P667, DOI 10.4319/lo.1983.28.4.0667; THRELKELD ST, 1987, HYDROBIOLOGIA, V147, P239, DOI 10.1007/BF00025749; TOTH LG, 1985, HYDROBIOLOGIA, V122, P251, DOI 10.1007/BF00018286; TOTH LG, 1987, HYDROBIOLOGIA, V145, P323; URABE J, 1992, J PLANKTON RES, V14, P851, DOI 10.1093/plankt/14.6.851; VADSTEIN O, 1993, LIMNOL OCEANOGR, V38, P1539, DOI 10.4319/lo.1993.38.7.1539; VANDERBOSCH F, 1985, ARCH HYDROBIOL, V103, P273; VANNI MJ, 1986, LIMNOL OCEANOGR, V31, P1039, DOI 10.4319/lo.1986.31.5.1039; VARESCHI E, 1984, OECOLOGIA, V61, P83, DOI 10.1007/BF00379092; Wallace R.L., 1991, P187; WALZ N, 1987, Archiv fuer Hydrobiologie Supplement, V74, P452; WALZ N, 1983, HYDROBIOLOGIA, V107, P35, DOI 10.1007/BF00126701; WALZ N, 1983, ARCH HYDROBIOL, V98, P70; WALZ N, 1987, HYDROBIOLOGIA, V147, P209, DOI 10.1007/BF00025744; WALZ N, 1995, UNPUB ARE THERE TEMP; WALZ N, 1995, IN PRESS HYDROBIOLOG; WALZ N, 1987, VERHANDLUNGEN INT VE, V24, P2750; Walz Norbert, 1993, Ecological Studies, V98, P193; Walz Norbert, 1993, Ecological Studies, V98, P106; Walz Norbert, 1993, Ecological Studies, V98, P89; WEGLENSKA T, 1971, Ekologia polska, V19, P427; WEITHOFF G, 1995, IN PRESS HYDROBIOLOG; WICKHAM SA, 1991, FRESHWATER BIOL, V26, P77, DOI 10.1111/j.1365-2427.1991.tb00510.x; WICKHAM SA, 1993, J PLANKTON RES, V15, P317, DOI 10.1093/plankt/15.3.317; WIDIGDO B, 1987, THESIS U MUNCHEN; Wiens J.A., 1984, P397; WILLIAMSON CE, 1986, LIMNOL OCEANOGR, V31, P393, DOI 10.4319/lo.1986.31.2.0393; WILLIAMSON CE, 1983, HYDROBIOLOGIA, V104, P385, DOI 10.1007/BF00045996; YUFERA M, 1985, HYDROBIOLOGIA, V122, P181, DOI 10.1007/BF00032106; ZANKAI NP, 1984, ARCH HYDROBIOL, V99, P360; ZIMMERMANN C, 1974, Schweizerische Zeitschrift fuer Hydrologie, V36, P205, DOI 10.1007/BF02502424 202 89 92 1 20 BIRKHAUSER VERLAG AG BASEL PO BOX 133 KLOSTERBERG 23, CH-4010 BASEL, SWITZERLAND 0014-4754 EXPERIENTIA Experientia MAY 15 1995 51 5 437 453 10.1007/BF02143197 17 Multidisciplinary Sciences Science & Technology - Other Topics QZ379 WOS:A1995QZ37900003 2019-02-26 J SPITZE, K SPITZE, K QUANTITATIVE GENETICS OF ZOOPLANKTON LIFE-HISTORIES EXPERIENTIA English Article QUANTITATIVE GENETICS; LIFE HISTORY; EVOLUTION; CLADOCERA; HERITABILITY; DAPHNIA; ZOOPLANKTON BREEDING-SYSTEM VARIATION; LAKE DAPHNIA POPULATIONS; DROSOPHILA-MELANOGASTER; MORPHOLOGICAL-DIFFERENTIATION; COVARIANCE STRUCTURE; SEXUAL REPRODUCTION; NATURAL-SELECTION; PULEX; EVOLUTION; MAGNA Quantitative genetic techniques are powerful tools for use in understanding the microevolutionary process. Because of their size, lifespan, and ease of culture, many zooplankton species are ideal for quantitative genetic approaches. As model systems, studies of zooplankton life histories are becoming increasingly used for examination of the central paradigms of evolutionary theory. Two of the fundamental empirical questions that zooplankton quantitative genetics studies can answer are: 1) How much genetic variance exists in natural populations for life history traits? 2) What is the empirical evidence for trade-offs that permeate life history theory based on optimality approaches? A review of existing data on Daphnia indicates substantial genetic variance for body size, clutch size, and age at first reproduction. Average broad-sense heritabilities for these three characters across 19 populations of 6 species are 0.31, 0.31, and 0.34, respectively. Although there is some discrepancy between the two pertinent studies that were designed to decompose the total genetic variance into its additive and non-additive components, a crude average seems to suggest that approximately 60% of the total genetic variance has an additive basis. The existing data are somewhat inconsistent with respect to presence/absence of trade-offs (negative genetic correlations) among life history traits. A composite of the existing data seems to argue against the existence of strong trade-offs between offspring size and offspring number, between present and future reproduction, and between developmental rate and fecundity. However, there is some evidence for a shift toward more negative (less positive) covariances in more stressful environments (e.g., low food). Zooplankton will prove to be very useful in future study in several important areas of research, including the genetics and physiology of aging, the importance of genotype-environment interaction for life history traits, and the evolution of phenotypic plasticity. SPITZE, K (reprint author), UNIV MIAMI, DEPT BIOL, CORAL GABLES, FL 33124 USA. CARVALHO GR, 1987, J ANIM ECOL, V56, P469, DOI 10.2307/5061; CERNY M, 1993, HEREDITY, V71, P497, DOI 10.1038/hdy.1993.168; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHEVERUD JM, 1988, EVOLUTION, V42, P958, DOI 10.1111/j.1558-5646.1988.tb02514.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COWLEY DE, 1990, AM NAT, V135, P242, DOI 10.1086/285041; Darwin C, 1859, ORIGIN SPECIES; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEMEESTER L, 1994, OECOLOGIA, V97, P333, DOI 10.1007/BF00317323; DEMEESTER L, 1993, OECOLOGIA, V96, P80, DOI 10.1007/BF00318033; DENG HW, 1994, IN PRESS EVOLUTION; Dingle H., 1982, EVOLUTION GENETICS L; EBERT D, 1993, HEREDITY, V70, P335, DOI 10.1038/hdy.1993.48; EBERT D, 1993, ARCH HYDROBIOL, P453; EBERT D, 1993, HEREDITY, V70, P344, DOI 10.1038/hdy.1993.49; Endler JA, 1986, NATURAL SELECTION WI; Falconer D. S., 1960, INTRO QUANTITATIVE G; Falconer D. S., 1989, INTRO QUANTITATIVE G; Falconer D.S., 1981, INTRO QUANTITATIVE G; Fisher R. A., 1919, Transactions of the Royal Society of Edinburgh, V52; Fisher R.A., 1930, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Giesel J.T., 1982, P189; GIESEL JT, 1980, OECOLOGIA, V47, P299, DOI 10.1007/BF00398520; GIESEL JT, 1982, AM NAT, V119, P464, DOI 10.1086/283926; GRANT BR, 1985, EVOLUTION, V39, P523, DOI 10.1111/j.1558-5646.1985.tb00392.x; HEBERT PDN, 1989, EVOLUTION, V43, P1004, DOI 10.1111/j.1558-5646.1989.tb02546.x; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1992, GENETICS, V130, P195; INNES DJ, 1989, J HERED, V80, P6, DOI 10.1093/oxfordjournals.jhered.a110791; INNES DJ, 1988, EVOLUTION, V42, P1024, DOI 10.1111/j.1558-5646.1988.tb02521.x; KALISZ S, 1986, EVOLUTION, V40, P479, DOI 10.1111/j.1558-5646.1986.tb00501.x; KLEIVEN OT, 1992, OIKOS, V65, P197, DOI 10.2307/3545010; KOHN LAP, 1988, EVOLUTION, V42, P467, DOI 10.1111/j.1558-5646.1988.tb04153.x; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; LANDE R, 1980, GENETICS, V94, P203; LARSSON P, 1991, HYDROBIOLOGIA, V225, P281, DOI 10.1007/BF00028406; LOFSVOLD D, 1986, EVOLUTION, V40, P559, DOI 10.1111/j.1558-5646.1986.tb00507.x; LOFSVOLD D, 1988, EVOLUTION, V42, P54, DOI 10.1111/j.1558-5646.1988.tb04107.x; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; LYNCH M, 1989, EVOLUTION, V43, P1724, DOI 10.1111/j.1558-5646.1989.tb02622.x; LYNCH M, 1983, EXP GERONTOL, V18, P147, DOI 10.1016/0531-5565(83)90008-6; LYNCH M, 1983, EVOLUTION, V37, P358, DOI 10.1111/j.1558-5646.1983.tb05545.x; LYNCH M, 1994, AM NAT, V144, P242, DOI 10.1086/285673; LYNCH M, 1988, GENET RES, V51, P137, DOI 10.1017/S0016672300024150; LYNCH M, 1995, FUNDAMENTALS QUANTIT; LYNCH M, UNPUB POPULATION GEN; Lynch Michael, 1994, P109; MAC ARTHUR ROBERT H., 1967; MCLAREN IA, 1976, BIOL BULL, V151, P200, DOI 10.2307/1540714; MORT MA, 1986, EVOLUTION, V40, P756, DOI 10.1111/j.1558-5646.1986.tb00535.x; MORT MA, 1985, HEREDITY, V55, P27, DOI 10.1038/hdy.1985.68; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; PACE ML, 1984, OECOLOGIA, V63, P43, DOI 10.1007/BF00379783; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; REZNICK D, 1993, GENETICA, V91, P79, DOI 10.1007/BF01435989; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1983, AM ZOOL, V23, P15; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHEMSKE DW, 1989, EVOLUTION, V43, P461, DOI 10.1111/j.1558-5646.1989.tb04240.x; SHAW RG, 1991, EVOLUTION, V45, P143, DOI 10.1111/j.1558-5646.1991.tb05273.x; SPITZE K, 1993, GENETICS, V135, P367; SPITZE K, 1992, AM NAT, V139, P229, DOI 10.1086/285325; SPITZE K, 1991, EVOLUTION, V45, P1081, DOI 10.1111/j.1558-5646.1991.tb04376.x; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; TESSIER AJ, 1992, LIMNOL OCEANOGR, V37, P1; TWOMBLY S, 1993, FRESHWATER BIOL, V30, P105, DOI 10.1111/j.1365-2427.1993.tb00792.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WALSH JB, 1995, FUNDAMENTALS QUANTIT, V2; WEIDER LJ, 1985, J PLANKTON RES, V7, P101, DOI 10.1093/plankt/7.1.101; WILKINSON GS, 1990, EVOLUTION, V44, P1990, DOI 10.1111/j.1558-5646.1990.tb04305.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WYNGAARD GA, 1986, BIOL BULL, V170, P296, DOI 10.2307/1541810; YAMPOLSKY LY, 1991, HYDROBIOLOGIA, V225, P255; YAMPOLSKY LY, 1992, EVOLUTION, V46, P833, DOI 10.1111/j.1558-5646.1992.tb02089.x 83 18 18 1 18 BIRKHAUSER VERLAG AG BASEL VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND 0014-4754 EXPERIENTIA Experientia MAY 15 1995 51 5 454 464 10.1007/BF02143198 11 Multidisciplinary Sciences Science & Technology - Other Topics QZ379 WOS:A1995QZ37900004 2019-02-26 J RODD, FH; SOKOLOWSKI, MB RODD, FH; SOKOLOWSKI, MB COMPLEX ORIGINS OF VARIATION IN THE SEXUAL-BEHAVIOR OF MALE TRINIDADIAN GUPPIES, POECILIA-RETICULATA - INTERACTIONS BETWEEN SOCIAL-ENVIRONMENT, HEREDITY, BODY-SIZE AND AGE ANIMAL BEHAVIOUR English Article LIFE-HISTORY EVOLUTION; ALTERNATIVE MATING-BEHAVIOR; FEMALE CHOICE; MATE CHOICE; XIPHOPHORUS-HELLERI; COLOR PATTERNS; GEOGRAPHIC-VARIATION; NATURAL-POPULATIONS; PISCES-POECILIIDAE; LATIPINNA PISCES Field observations have shown that there are inter-population differences in the sexual behaviour of male guppies in Trinidad. The greatest differences are between guppies that co-exist with different predators. Here, the sexual behaviour of male Trinidadian guppies was studied to determine to what extent these differences in behaviour evolved in response to selection pressure by the predators, to what extent they are an environmentally induced response to aspects of guppy biology that covary with the predators and to what extent these factors interact. To do this, male offspring of guppies from different predator localities were reared in the laboratory under conditions designed to mimic natural variation in wild populations. Two aspects of young male guppies' social environment were manipulated: (1) population demography and (2) origin (predator locality) of conspecifics. Heredity (origin of the males' parents) was responsible for only a small proportion of the variation in sexual behaviour; social environment had a much greater influence. Also, inter-population variation was found in the degree to which a male's behaviour was affected by demographic conditions and in the relationship between a male's body size and his rate of courtship. Male sexual behaviour also varied with male age and with the origin of the female being courted. Various components of male sexual behaviour (e.g. courtship, mating attempts) were influenced to different degrees by the factors examined. Therefore, inter-population differences in male sexual behaviour result from complex interactions between heritable factors, social environment, male age and male size. YORK UNIV, DEPT BIOL, 4700 KEELE ST, N YORK, ON M3J 1P3, CANADA ALCOCK J, 1989, ANIMAL BEHAVIOR EVOL; ANDERSSON S, 1992, ANIM BEHAV, V43, P379, DOI 10.1016/S0003-3472(05)80098-3; BAERENDS G. P., 1955, BEHAVIOUR, V8, P249, DOI 10.1163/156853955X00238; BISAZZA A, 1991, COPEIA, P730, DOI 10.2307/1446400; BISCHOFF RJ, 1985, BEHAV ECOL SOCIOBIOL, V17, P253, DOI 10.1007/BF00300143; BOHNER J, 1990, ANIM BEHAV, V39, P369, DOI 10.1016/S0003-3472(05)80883-8; CADE WH, 1992, ANIM BEHAV, V43, P49, DOI 10.1016/S0003-3472(05)80070-3; CARO TM, 1986, ANIM BEHAV, V34, P1483, DOI 10.1016/S0003-3472(86)80219-6; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; CLARK EUGENIE, 1951, ZOOLOGICA [NEW YORK], V36, P49; CONSTANTZ GD, 1975, ECOLOGY, V56, P966, DOI 10.2307/1936307; CROW RT, 1979, CAN J ZOOL, V57, P184, DOI 10.1139/z79-016; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; Farr J.A., 1989, P91; FARR JA, 1986, ANIM BEHAV, V34, P497, DOI 10.1016/S0003-3472(86)80118-X; FARR JA, 1980, Z TIERPSYCHOL, V52, P247; FARR JA, 1974, ANIM BEHAV, V22, P582, DOI 10.1016/S0003-3472(74)80003-5; FARR JA, 1983, EVOLUTION, V37, P1193, DOI 10.1111/j.1558-5646.1983.tb00235.x; FARR JA, 1980, BEHAVIOUR, V74, P38, DOI 10.1163/156853980X00311; FARR JA, 1980, ANIM BEHAV, V28, P1195, DOI 10.1016/S0003-3472(80)80108-4; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; FARR JA, 1976, EVOLUTION, V30, P707, DOI 10.1111/j.1558-5646.1976.tb00951.x; Fisher R. A, 1958, GENETICAL THEORY NAT; GROOTHUIS T, 1992, ANIM BEHAV, V43, P1, DOI 10.1016/S0003-3472(05)80067-3; HANNES RP, 1984, Z TIERPSYCHOL, V66, P70; HANNES RP, 1984, Z TIERPSYCHOL, V65, P53; HANNES RP, 1983, HORM BEHAV, V17, P292, DOI 10.1016/0018-506X(83)90028-4; HASKINS CP, 1949, EVOLUTION, V3, P160, DOI 10.1111/j.1558-5646.1949.tb00015.x; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HILDEMANN WH, 1954, J EXP ZOOL, V126, P1, DOI 10.1002/jez.1401260102; HOUDE AE, 1988, ANIM BEHAV, V36, P510, DOI 10.1016/S0003-3472(88)80022-8; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HOUDE AE, 1988, ANIM BEHAV, V36, P888, DOI 10.1016/S0003-3472(88)80171-4; HUBBELL SP, 1987, AM NAT, V130, P91, DOI 10.1086/284700; HUGHES AL, 1985, BEHAV ECOL SOCIOBIOL, V17, P271, DOI 10.1007/BF00300146; HUNTINGFORD FA, 1984, STUDY ANIMAL BEHAVIO; JOHNSTON TD, 1982, ADV STUD BEHAV, V12, P65, DOI 10.1016/S0065-3454(08)60046-7; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; KREBS JR, 1987, INTRO BEHAVIOURAL EC; Levins R., 1968, EVOLUTION CHANGING E; Liley N. R., 1966, Behaviour Suppl, V13, P1; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; Lott D. F., 1991, INTRASPECIFIC VARIAT; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; LUYTEN PH, 1991, BEHAV ECOL SOCIOBIOL, V28, P329, DOI 10.1007/BF00164382; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1991, P ROY SOC B-BIOL SCI, V246, P31, DOI 10.1098/rspb.1991.0121; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; MCLAIN DK, 1992, BEHAV ECOL SOCIOBIOL, V30, P347; MOODIE GEE, 1972, HEREDITY, V28, P155, DOI 10.1038/hdy.1972.21; MOSIMANN JE, 1979, EVOLUTION, V33, P444, DOI 10.1111/j.1558-5646.1979.tb04697.x; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; NOLDUS LPJJ, 1991, BEHAV RES METH INSTR, V23, P415, DOI 10.3758/BF03203406; PETRIE M, 1992, ANIM BEHAV, V43, P173, DOI 10.1016/S0003-3472(05)80087-9; RAND AS, 1981, Z TIERPSYCHOL, V57, P209; REYNOLDS JD, 1993, ANIM BEHAV, V45, P145, DOI 10.1006/anbe.1993.1013; REYNOLDS JD, 1992, P ROY SOC B-BIOL SCI, V250, P57, DOI 10.1098/rspb.1992.0130; REYNOLDS JD, 1993, AM NAT, V141, P914, DOI 10.1086/285516; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; RODD FH, 1994, THESIS YORK U TORONT; Ryan M. J, 1985, TUNGARA FROG STUDY S; RYAN MJ, 1987, SCIENCE, V236, P595, DOI 10.1126/science.236.4801.595; RYAN MJ, 1989, BEHAV ECOL SOCIOBIOL, V24, P341, DOI 10.1007/BF00293262; *SAS I, 1989, SAS STAT US GUID VER; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1973, THESIS U BRIT COLUMB; SEMLER DE, 1971, J ZOOL, V165, P291; SHELLY TE, 1992, BEHAV ECOL SOCIOBIOL, V30, P277, DOI 10.1007/BF00166713; SOKAL R., 1981, BIOMETRY; STONER G, 1988, BEHAV ECOL SOCIOBIOL, V22, P285, DOI 10.1007/BF00299844; STRONG DR, 1973, ECOLOGY, V54, P1383; SULTAN SE, 1987, EVOL BIOL, V21, P127; TOOKER CP, 1980, ANIM BEHAV, V28, P973, DOI 10.1016/S0003-3472(80)80086-8; TRAVERS SE, 1991, ECOLOGY, V72, P2123, DOI 10.2307/1941564; TRAVIS J, 1989, ANIM BEHAV, V38, P1001, DOI 10.1016/S0003-3472(89)80139-3; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; WAHLSTEN D, 1979, THEORETICAL ADV BEHA, P425; WOODHEAD AD, 1985, J FISH BIOL, V27, P593, DOI 10.1111/j.1095-8649.1985.tb03204.x; Zar J., 1984, BIOSTATISTICAL ANAL; ZIMMERER EJ, 1989, EVOLUTION, V43, P1298, DOI 10.1111/j.1558-5646.1989.tb02576.x 91 68 68 1 60 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. MAY 1995 49 5 1139 1159 21 Behavioral Sciences; Zoology Behavioral Sciences; Zoology QZ999 WOS:A1995QZ99900001 2019-02-26 J SIBLY, RM SIBLY, RM LIFE-HISTORY EVOLUTION IN SPATIALLY HETEROGENEOUS ENVIRONMENTS, WITH AND WITHOUT PHENOTYPIC PLASTICITY EVOLUTIONARY ECOLOGY English Article LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; SPATIAL HETEROGENEITY; OPTIMAL REACTION NORM; FITNESS SET REACTION NORMS; HABITAT SELECTION; SINKS The formulation of Kawecki and Steams (1993) adapted for sexual populations is used to characterize life-history evolution in spatially heterogeneous environments comprising a number of distinct habitats. Three types of evolutionary outcome/optimal strategy are distinguished, appertaining to populations with phenotypic plasticity, populations without it (here called aplastic) and to populations that are reproductively isolated. In general plastic and isolated optima differ, but do not differ if none of the habitats provide source or sink populations. Plastic, aplastic and isolated optima are calculated and compared in three numerical examples representing trade-offs involving reproductive effort, egg size and defence. Locating the aplastic optimum involves numerical construction of a fitness landscape showing how allelic fitness depends on aplastic strategy and on the relative frequencies of the habitats. In all three examples the aplastic optimum lies between or almost between the plastic optima. In two cases the aplastic optimum switches abruptly between the plastic optima as the relative frequencies of the habitats change, and in the third case the switch is gradual. The abruptness or otherwise of the switch depends on the position and structure of the valleys in the fitness landscape and this in turn depends on how sharply the fitness peaks are differentiated. SIBLY, RM (reprint author), UNIV READING, DEPT PURE & APPL ZOOL, POB 228, READING RG6 2AJ, BERKS, ENGLAND. Sibly, Richard/0000-0001-6828-3543 Barton N., 1990, P115; Charlesworth B, 1994, EVOLUTION AGE STRUCT; DEJONG G, 1990, J EVOLUTION BIOL, V3, P447, DOI 10.1046/j.1420-9101.1990.3050447.x; DEMEEUS T, 1993, EVOL ECOL, V7, P175, DOI 10.1007/BF01239387; Endler JA., 1977, GEOGRAPHIC VARIATION; Hartl D. L., 1989, PRINCIPLES POPULATIO; HOLT RD, 1985, THEOR POPUL BIOL, V28, P181, DOI 10.1016/0040-5809(85)90027-9; HOLT RD, 1992, EVOL ECOL, V6, P433, DOI 10.1007/BF02270702; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LEVENE H, 1953, AM NAT, V87, P331, DOI 10.1086/281792; LEVINS R, 1963, AM NAT, V97, P75, DOI 10.1086/282258; LEVINS R, 1962, AM NAT, V96, P361, DOI 10.1086/282245; Levins R., 1968, EVOLUTION CHANGING E; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; PULLIAM HR, 1991, AM NAT, V137, pS50, DOI 10.1086/285139; Ricklefs R. E., 1990, ECOLOGY; Roff Derek A., 1992; SIBLY R, 1987, J THEOR BIOL, V125, P177, DOI 10.1016/S0022-5193(87)80039-5; Sibly R., 1985, P75; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SIBLY RM, 1993, J THEOR BIOL, V160, P533, DOI 10.1006/jtbi.1993.1034; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; SIBLY RM, 1987, GENES ECOLOGY; Smith J. M., 1989, EVOLUTIONARY GENETIC; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HIST; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x 31 17 17 0 7 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. MAY 1995 9 3 242 257 10.1007/BF01237771 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity QW385 WOS:A1995QW38500004 2019-02-26 J MILLER, MJ MILLER, MJ SPECIES ASSEMBLAGES OF LEPTOCEPHALI IN THE SARGASSO SEA AND FLORIDA CURRENT MARINE ECOLOGY PROGRESS SERIES English Article LEPTOCEPHALI; ANGUILLIFORMES; DISTRIBUTION; SPECIES ASSEMBLAGES; SARGASSO SEA; FLORIDA CURRENT; FRONTS; BAHAMAS; LIFE HISTORY; SPAWNING; LARVAL TRANSPORT NORTH-ATLANTIC; GULF-STREAM; ANGUILLA-ROSTRATA; WATER MASSES; AMERICAN EEL; CIRCULATION; VARIABILITY; BAHAMAS; LARVAE; TRANSPORT Regional assemblages of leptocephali of 5 families of shelf eels (Chlopsidae, Congridae, Moringuidae, Muraenidae and Ophichthidae) from the Sargasso Sea and Florida Current were compared with hydrographic features and adult distributions. There were 2 major patterns in the distributions of the >37 species of leptocephali that were collected. First, more species and greater abundances were found at or south of fronts in the Subtropical Convergence Zone (STCZ) of the Sargasso Sea, with the most diverse assemblages at stations closest to fronts in the west, Second, the smallest leptocephali of all species were located close to the Bahama Banks, in the Florida Current and in stations close to southerly fronts in the western STCZ. The most distinct discontinuities in numbers of species occurred at fronts at the boundary between southern Sargasso Sea surface water and mixed convergence zone water. Impoverished assemblages were found north of these fronts and in the eastern STCZ. Species richness was highest in the Florida Current and at the westernmost frontal station in the STCZ. Anticyclonic circulation northeast of the northern Bahamas may facilitate entrainment of leptocephali from the Bahamas and Florida Current into fronts in the STCZ, which appear to transport leptocephali eastward. The circulation patterns of the region are hypothesized to influence both the regional assemblage structure and the diversity of life history strategies that may be used by eels inhabiting the region. UNIV MAINE, DEPT ZOOL, ORONO, ME 04469 USA AMOS AF, 1971, DEEP-SEA RES, V18, P145, DOI 10.1016/0011-7471(71)90106-9; BLACHE J, 1977, FAUNE TROPICALE, V10, P1; BOETIUS J, 1985, DANA-J FISH MAR RES, V4, P129; BOHLKE EB, 1989, MEM SEARS F MAR RES, V1, P723; Bohlke JE, 1968, FISHES BAHAMAS ADJAC; BOHM E, 1988, THESIS U RHODE ISLAN; BONING CW, 1991, J PHYS OCEANOGR, V21, P1271, DOI 10.1175/1520-0485(1991)021<1271:STVITW>2.0.CO;2; CASTLE P H J, 1974, New Zealand Journal of Marine and Freshwater Research, V8, P95; CASTLE PHJ, 1979, B MAR SCI, V29, P1; Castle PHJ, 1984, AM SOC ICHTHYOLOGIST, V1, P62; CASTONGUAY M, 1987, CAN J ZOOL, V65, P875, DOI 10.1139/z87-139; CASTONGUAY M, 1987, J PLANKTON RES, V9, P195, DOI 10.1093/plankt/9.1.195; COHEN DM, 1970, NATURE, V227, P189, DOI 10.1038/227189a0; CORNILLON P, 1986, J GEOPHYS RES-OCEANS, V91, P6583, DOI 10.1029/JC091iC05p06583; COSTIN JM, 1968, J GEOPHYS RES, V73, P3341, DOI 10.1029/JB073i010p03341; ERIKSEN CC, 1991, J GEOPHYS RES-OCEANS, V96, P8569, DOI 10.1029/90JC02531; FERRARIS CJ, 1985, COPEIA, P518; FIADEIRO ME, 1983, J PHYS OCEANOGR, V13, P1158, DOI 10.1175/1520-0485(1983)013<1158:CAHFIT>2.0.CO;2; FIELD JG, 1982, MAR ECOL PROG SER, V8, P37, DOI 10.3354/meps008037; FISHELSON L, 1992, COPEIA, P197; GUNN JT, 1982, J MAR RES, V40, P1; HALLIWELL GR, 1991, J GEOPHYS RES-OCEANS, V96, P8553, DOI 10.1029/91JC00100; HALLIWELL GR, 1989, J MAR RES, V47, P757; HULET WH, 1989, MEM SEARS F MAR RES, V1, P657; INGHAM MC, 1975, FISH B-NOAA, V73, P626; KAJIHARA T, 1988, NIPPON SUISAN GAKK, V54, P941; KIMURA S, 1994, MAR BIOL, V119, P185, DOI 10.1007/BF00349555; KLECKNER RC, 1988, J MAR RES, V46, P647, DOI 10.1357/002224088785113469; KLECKNER RC, 1985, DANA-J FISH MAR RES, V4, P67; KLECKNER RC, 1983, ENVIRON BIOL FISH, V9, P289, DOI 10.1007/BF00692377; LAI DY, 1977, J PHYS OCEANOGR, V7, P670, DOI 10.1175/1520-0485(1977)007<0670:DAMOGS>2.0.CO;2; LEAMAN KD, 1987, J PHYS OCEANOGR, V17, P565, DOI 10.1175/1520-0485(1987)017<0565:SAVOTF>2.0.CO;2; LEAMAN KD, 1987, J PHYS OCEANOGR, V17, P1724, DOI 10.1175/1520-0485(1987)017<1724:TMOTFC>2.0.CO;2; LEE TN, 1990, J PHYS OCEANOGR, V20, P446, DOI 10.1175/1520-0485(1990)020<0446:WBCSAV>2.0.CO;2; LEIBY MM, 1989, MEM SEARS FOUND MAR, V1, P764; MCCLEAVE JD, 1987, B MAR SCI, V41, P789; MCCLEAVE JD, 1994, ENVIRON BIOL FISH, V39, P339, DOI 10.1007/BF00004803; MCCLEAVE JD, 1993, J FISH BIOL, V43, P243, DOI 10.1111/j.1095-8649.1993.tb01191.x; MCELROY DM, 1992, J HERED, V43, P157; MCWILLIAMS JC, 1983, J MAR RES, V41, P427, DOI 10.1357/002224083788519704; MIED RP, 1986, J PHYS OCEANOGR, V16, P1751, DOI 10.1175/1520-0485(1986)016<1751:IIWIAS>2.0.CO;2; MILLER MJ, 1994, J MAR RES, V52, P743, DOI 10.1357/0022240943076948; MILLER MJ, 1993, THESIS U MAINE ORONO; MOYER JT, 1982, JPN J ICHTHYOL, V28, P466; NIILER PP, 1973, J MAR RES, V31, P144; OLSON DB, 1985, J MAR RES, V43, P113, DOI 10.1357/002224085788437325; OLSON DB, 1984, J PHYS OCEANOGR, V14, P1470, DOI 10.1175/1520-0485(1984)014<1470:TMCEOT>2.0.CO;2; POLLARD RT, 1992, J PHYS OCEANOGR, V22, P609, DOI 10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2; PRATT LJ, 1991, DEEP-SEA RES, V38, P591; RICHARDSON WS, 1967, DEEP-SEA RES, V14, P361, DOI 10.1016/0011-7471(67)90078-2; ROFF DA, 1989, MOL BIOL EVOL, V6, P539; ROSENFELD LK, 1989, J GEOPHYS RES-OCEANS, V94, P4867, DOI 10.1029/JC094iC04p04867; Schmidt J, 1931, NATURE, V128, P602, DOI 10.1038/128602a0; Schmidt J., 1922, Philosophical Transactions of the Royal Society London B, V211, P179; SCHMITZ WJ, 1993, B MAR SCI, V53, P1048; SCHOTH M, 1982, HELGOLANDER MEERESUN, V35, P309, DOI 10.1007/BF02006139; SCHOTH M, 1984, MEERESFORSCHUNG, V30, P188; SCHOTT FA, 1988, J PHYS OCEANOGR, V18, P1209, DOI 10.1175/1520-0485(1988)018<1209:VOSATO>2.0.CO;2; Sinclair M., 1988, MARINE POPULATIONS E; SMITH DG, 1979, NOAA424 NAT MAR FISH; SMITH DG, 1989, MEM SEARS FDN MAR RE, V1, P657; SMITH DG, 1989, MEM SEARS FDTN MAR 9, V1, P723; SMITH DG, 1989, MEMOIR SEARS FDN M 9, V1, P460; STOMMEL H, 1978, J MAR RES, V36, P449; TESCH FW, 1990, INT REV GES HYDROBIO, V75, P845, DOI 10.1002/iroh.19900750629; TESCH FW, 1982, HELGOLANDER MEERESUN, V35, P263, DOI 10.1007/BF02006135; THRESHER RE, 1984, REPRODUCTION REEF FI; TSUKAMOTO K, 1992, NATURE, V356, P789, DOI 10.1038/356789a0; VUKOVICH FM, 1978, J GEOPHYS RES-OCEANS, V83, P1929, DOI 10.1029/JC083iC04p01929; WEGNER G, 1982, HELGOLANDER MEERESUN, V35, P385, DOI 10.1007/BF02006145; WELLER RA, 1991, J GEOPHYS RES-OCEANS, V96, P8611, DOI 10.1029/90JC02646; WELLER RA, 1991, J GEOPHYS RES-OCEANS, V96, P8501, DOI 10.1029/90JC01868; WENNEKENS M. P., 1959, BULL MARINE SCI GULF AND CARIBBEAN, V9, P1; WIEBE PH, 1985, MAR BIOL, V87, P313, DOI 10.1007/BF00397811; WIPPELHAUSER GS, 1985, DANA-J FISH MAR RES, V4, P93; Worthington LV, 1976, J HOPKINS OCEANOGRAP, V6 76 40 40 0 6 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. MAY 1995 121 1-3 11 26 10.3354/meps121011 16 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography RE330 WOS:A1995RE33000002 Bronze 2019-02-26 J STADLER, B STADLER, B ADAPTIVE ALLOCATION OF RESOURCES AND LIFE-HISTORY TRADE-OFFS IN APHIDS RELATIVE TO PLANT-QUALITY OECOLOGIA English Article APHIDS; COST OF REPRODUCTION; EMBRYO RESORPTION; PHENOTYPIC PLASTICITY; UROLEUCON REPRODUCTIVE INVESTMENT; COSTS; GROWTH; MODEL; SIZE The need to allocate a limited amount of energy between different life-history traits is a fundamental assumption in life-history theory. However, it has often turned out to be extremely difficult to measure the competing processes that contribute to costs or benefits for individual organisms. The present investigation begins by analysing how an aphid clonal lineage adapts its reproductive investment to moderate changes in host plant quality (e.g. during the life cycle of its host). Using Centaurea jacea and Uroleucon jaceae as a model plantaphid system, I show that reproductive investment can be far more complex than indicated by dry or wet mass of the gonads alone. The number of embryos of a particular size class or developmental state present in the reproductive system of an aphid is highly flexible and is influenced by the quality of the host plant. Next, the effects of a particular reproductive investment on survival during periods of food deprivation are analysed for aphids originating from host-plants of different qualities. When food stress is severe the ability to rapidly resorb and reallocate resources committed to offspring is important for survival. However, this ability is limited. I argue that, in periods of food stress, young, unsclerotized embryos might serve as a kind of energy buffer similar to a fat body and are therefore not relevant to cost-benefit calculations. However, embryos that are beginning to sclerotize within the ovarioles are not available for resorption and resource reallocation. They compete for nutrients with their mother and contribute to costs. Therefore, it is suggested that the reproductive investment of an aphid should not be equated with reproductive costs in a general way. The dynamics of adaptive resource allocation and resorption are a key feature of an aphid's life history, and the implications for life-history theory are discussed. STADLER, B (reprint author), UNIV BAYREUTH,BAYREUTH INST TENESTRIAL ECOSYST RES,D-95440 BAYREUTH,GERMANY. BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BLISS M, 1971, ANN ENTOMOL SOC AM, V64, P1407, DOI 10.1093/aesa/64.6.1407; BROUGH CN, 1990, INT J INSECT MORPHOL, V19, P155, DOI 10.1016/0020-7322(90)90001-6; BUNING J, 1985, J MORPHOL, V186, P209, DOI 10.1002/jmor.1051860206; BURPEE DM, 1993, EVOL ECOL, V7, P240, DOI 10.1007/BF01237742; DIXON AFG, 1993, FUNCT ECOL, V7, P267, DOI 10.2307/2390204; DIXON AFG, 1987, APHIDS THEIR BIOL A, V2, P269; ELKASSABY YA, 1992, CAN J BOT, V70, P1429, DOI 10.1139/b92-179; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; JENNINGS MJ, 1992, ENVIRON BIOL FISH, V35, P257, DOI 10.1007/BF00001892; JOHNSON B, 1958, AUST J SCI, V21, P143; KINDLMANN P, 1989, FUNCT ECOL, V3, P531, DOI 10.2307/2389567; KOBAYASHI M, 1993, J INSECT PHYSIOL, V39, P549, DOI 10.1016/0022-1910(93)90036-Q; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; MCCAULEY E, 1990, ECOLOGY, V71, P703, DOI 10.2307/1940324; NORUSIS MJ, 1990, SPSS PC PLUS IBM PC; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Ponsen M.B., 1992, Wageningen Agricultural University Papers, V91, P1; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROITBERG BD, 1989, EVOL ECOL, V3, P183, DOI 10.1007/BF02270920; SCHULTZ ET, 1989, EVOLUTION, V43, P1497, DOI 10.1111/j.1558-5646.1989.tb02599.x; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SOKAL RR, 1986, BIOMETRY; STADLER B, 1994, J ANIM ECOL, V63, P419, DOI 10.2307/5559; STADLER B, 1992, OECOLOGIA, V91, P273, DOI 10.1007/BF00317796; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; SYRJANEN K, 1993, OIKOS, V67, P465, DOI 10.2307/3545358; WALTERS KFA, 1983, OECOLOGIA, V58, P70, DOI 10.1007/BF00384544; WARD SA, 1983, J ANIM ECOL, V52, P305, DOI 10.2307/4602; WARD SA, 1983, J ANIM ECOL, V52, P451, DOI 10.2307/4565; WARD SA, 1982, J ANIM ECOL, V51, P859, DOI 10.2307/4010; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 34 24 26 0 2 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia MAY 1995 102 2 246 254 10.1007/BF00333257 9 Ecology Environmental Sciences & Ecology QY664 WOS:A1995QY66400015 28306880 2019-02-26 J DGEBUADZE, YY DGEBUADZE, YY THE LAND INLAND-WATER ECOTONES AND FISH POPULATION OF LAKE VALLEY (WEST MONGOLIA) HYDROBIOLOGIA English Article; Proceedings Paper Mid-term Meeting of Fish-and-Land-Inland-Water-Ecotones on the Importance of Aquatic-Terrestrial Ecotones for Freshwater Fish AUG 31-SEP 02, 1992 LUNZ AM SEE, AUSTRIA Fish & Land Inland Water Ecotones CLOSED BASIN; DESERT WATERS; MONGOLIA; FISH; LIFE HISTORY STRATEGIES; OREOLEUCISCUS HUMILIS New data on fish populations of a closed desert watershed of Mongolia were obtained in 1990 and 1991. For this region periodic droughts, with the accompanying disappearance of lakes and some parts of rivers, are typical. Two forms of a Cyprinid species Oreoleuciscus humilis (dwarf Altai osman) occur in this region during wet periods which usually last for 10-30 years. The dwarf form, is characterized by a maximum SL of 200 mm and early maturation (SL = 70 mm, four years of age). It inhabits small desert rivers in dry periods which last for 3-5 years and both rivers and the riparian zone of lakes during wet periods. The larger lake form occurs only in lakes during the wet periods. It can attain a maximum size of 450 mm and matures in six years, SL = 200 mm. These two forms of O. humilis differ in feeding habits, rates of growth, and morphology. The dwarf form feeds mainly on insect larvae and on plants. The lake form consumes the same food items until it reaches 180 mm SL and then becomes piscivorous. Populations of O. humilis in lakes are restored after a dry period, originating anew from river populations of the dwarf form. Currently there is a transition from a dry period to a wet one. Orog-Nur (one of the lakes of Lake Valley) has been filling with water since 1990. In July 1991 the depth of this lake reached 0.5-1.0 m and fish were found in the lake. The large individuals of dwarf form which came to the lake from the Tuyn-Gol River became cannibals, and their growth rate increased rapidly. The homogeneous environment and low food supply in the restored lakes are suggested to be the main causes of these phenomena. DGEBUADZE, YY (reprint author), RUSSIAN ACAD SCI,AN SEVERTZOV INST EVOLUTIONARY ANIM MORPHOL & ECO,LENINSKY 33,MOSCOW 117071,RUSSIA. ANDREEV VL, AUTOMATICAL INVESTIG, P172; BASANZHAV G, 1985, EKOLOGIA HOZYAJSTVEN; BASANZHAV G, 1983, RYBY MNR, P102; BOGUTSKAYA NG, 1988, J ICHTHYOL-USSR, V28, P367; BORISOVETS EE, 1985, ZOOL ZH, V64, P1199; DASHDORZH A, 1969, Vestnik Ceskoslovenske Spolecnosti Zoologicke, V33, P289; DULMA A, 1974, THESIS IRKUTSK; KOZLOV PK, 1905, MONGOLII GRANITZ TIB; KUZNETZOV NT, 1959, GIDROGRAPHIYA REK MN; Mayr E, 1953, METHODS PRINCIPLES S; Murzaev E.M., 1952, MONGOLSKAYA NARODNAY; NAIMAN RJ, 1976, J FISH BIOL, V9, P125, DOI 10.1111/j.1095-8649.1976.tb04668.x; NICHOLS JT, 1930, COPEIA, V1, P16; PENCZAK T, 1984, J FISH BIOL, V25, P723, DOI 10.1111/j.1095-8649.1984.tb04918.x; POTANIN GN, 1893, TUNGUTSK TIBETSKAYA, V1, P568; SKRESLET S, 1973, Astarte, V6, P43; SVETOVIDOVA AA, 1965, J ICHTHYOL-USSR, V5, P245; TZERENSODNOM Z, 1970, MONGOL ORNY NUUR; VASILEVA KD, 1985, J ICHTHYOL-USSR, V25, P196; VOSTOKOVA EA, 1985, BIOGEOGRAPHICHESKIE, P54 20 9 13 0 5 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia APR 28 1995 303 1-3 235 245 10.1007/BF00034061 11 Marine & Freshwater Biology Marine & Freshwater Biology RC895 WOS:A1995RC89500023 2019-02-26 J WANZENBOCK, J; KERESZTESSY, K WANZENBOCK, J; KERESZTESSY, K ZONATION OF A LENTIC ECOTONE AND ITS CORRESPONDENCE TO LIFE-HISTORY STRATEGIES IN FISH HYDROBIOLOGIA English Article; Proceedings Paper Mid-term Meeting of Fish-and-Land-Inland-Water-Ecotones on the Importance of Aquatic-Terrestrial Ecotones for Freshwater Fish AUG 31-SEP 02, 1992 LUNZ AM SEE, AUSTRIA Fish & Land Inland Water Ecotones FISH COMMUNITY; DRAINAGE DITALES; ENDANGERED SPECIES CONCEPTUAL-FRAMEWORK; ENVIRONMENTS; COMMUNITY; SELECTION A drainage channel network southeast of lake Neusiedl was investigated for fish species distribution. The network consists of relatively large and permanent channels providing a stable habitat for fish and smaller unstable channels drying up approximately once every five years. A consistent pattern of fish species distribution was found which could be interpreted with the help of a new triangular model of life history adaptations. In permanent channels so-called periodic and equilibrium species prevail whereas temporary channels are inhabited by opportunistic species exclusively. In the drainage channel network a number of locally endangered fish species which have disappeared from the adjacent lake during the last decades were found suggesting that the channel network functions as a refuge for these fishes. UNIV AGR SCI,INST ANIM HUSB,BIOTECHNOL LAB,H-2103 GODOLLO,HUNGARY WANZENBOCK, J (reprint author), UNIV VIENNA,INST ZOOL,ALTHANSTR 14,A-1090 VIENNA,AUSTRIA. BACKIEL T, 1968, FAO FISHERIES SYNOPS, V36; Balon E.K., 1984, P35; COWARDIN LM, 1979, FWSOBS7931 US FISH W; DEELDER CL, 1964, FAO FISHERIES SYNOPS, V28, P1758; DENIE HW, 1987, EIFACCECPI19 OCC PAP; Herzig-Straschil B., 1989, VOGELSCHUTZ OSTERREI, V3, P19; HOLCIK J, 1980, ACTA SC NAT BRNO, V14, P1; KAFEL G, 1991, THESIS U VIENNA; KIZINA LP, 1987, J ICHTHYOLOGY, P31; LADIGES W, 1965, SUSSWASSERFISCHE EUR; Lelek A, 1986, COUR FORSCH I SENCKE, V85, P57; Lelek A., 1987, FRESHWATER FISHES EU, V9; LESLIE JK, 1990, ARCH HYDROBIOL, V118, P227; MAC ARTHUR ROBERT H., 1967; MURPHY GI, 1968, AM NAT, V102, P390; MUUS BJ, 1981, SUSSWASSERFISCHE EUR; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIECZYNSKA E, 1990, MAN BIOSPH, V4, P103; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; TERBRAAK CJF, 1989, HYDROBIOLOGIA, V184, P169, DOI 10.1007/BF02392953; TEROFAL F, 1984, SUSSWASSERFISCHE EUR; TESCH FW, 1991, FRESHWATER FISHES EU, V2, P389; THORPE J, 1977, FAO FISHERIES SYNOPS, V113, P1814; TONER ED, 1969, FAO FISHERIES SYNOPS, V30; TONN WM, 1990, T AM FISH SOC, V119, P337, DOI 10.1577/1548-8659(1990)119<0337:CCAFCA>2.3.CO;2; TOWNSEND CR, 1988, J FISH BIOL, V32, P283, DOI 10.1111/j.1095-8649.1988.tb05362.x; WAIDBACHER H, 1984, NATURRAUMPOTENTIAL N, P469; WEINSTEIN MP, 1980, MAR BIOL, V58, P227, DOI 10.1007/BF00391880; WIENS JA, 1985, OIKOS, V45, P421, DOI 10.2307/3565577; WINEMILLER KO, 1992, ENVIRON BIOL FISH, V34, P29, DOI 10.1007/BF00004783; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810 36 3 3 0 3 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia APR 28 1995 303 1-3 247 255 10.1007/BF00034062 9 Marine & Freshwater Biology Marine & Freshwater Biology RC895 WOS:A1995RC89500024 2019-02-26 J SCHIEMER, F; ZALEWSKI, M; THORPE, JE SCHIEMER, F; ZALEWSKI, M; THORPE, JE LAND INLAND WATER ECOTONES - INTERMEDIATE HABITATS CRITICAL FOR CONSERVATION AND MANAGEMENT HYDROBIOLOGIA English Editorial Material AQUATIC RESOURCES; MANAGEMENT; TOP DOWN EFFECTS; LIFE HISTORY STRATEGIES; POPULATION GENETICS DIVERSITY UNIV LODZ,INST APPL ECOL,PL-90131 LODZ,POLAND; SOAFD,FRESHWATER FISHERIES LAB,PITLOCHRY,SCOTLAND SCHIEMER, F (reprint author), UNIV VIENNA,INST ZOOL,VIENNA,AUSTRIA. Zalewski, Maciej/0000-0002-4483-6200 AGOSTINHO AA, 1995, HYDROBIOLOGIA, V303, P141, DOI 10.1007/BF00034051; BRETSCHKO G, 1995, HYDROBIOLOGIA, V303, P83, DOI 10.1007/BF00034046; COELHO MM, 1995, HYDROBIOLOGIA, V303, P223, DOI 10.1007/BF00034059; DGEBUADZE Y, 1995, HYDROBIOLOGIA, V303, P237; DUNCAN A, 1995, HYDROBIOLOGIA, V303, P11, DOI 10.1007/BF00034040; DUNNING JB, 1992, OIKOS, V65, P169, DOI 10.2307/3544901; Frankel O. H., 1981, CONSERVATION EVOLUTI; Holland MM, 1988, BIOL INT, V17, P47; JUNGWIRTH M, 1995, HYDROBIOLOGIA, V303, P195, DOI 10.1007/BF00034056; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; KIRCHHOFER A, 1995, HYDROBIOLOGIA, V303, P103, DOI 10.1007/BF00034048; KOLASA J, 1995, HYDROBIOLOGIA, V303, P1, DOI 10.1007/BF00034039; KOLASA J, 1995, HYDROBIOLOGIA, V303, P61, DOI 10.1007/BF00034044; MATENA J, 1995, HYDROBIOLOGIA, V303, P31, DOI 10.1007/BF00034041; MCQUEEN DJ, 1989, ECOL MONOGR, V59, P289, DOI 10.2307/1942603; MUHAR S, 1995, HYDROBIOLOGIA, V303, P183, DOI 10.1007/BF00034055; NAIMAN RJ, 1988, J N AM BENTHOL SOC, V7, P289, DOI 10.2307/1467295; NEVO E, 1988, EVOL BIOL, V23, P217; PENCZAK T, 1995, HYDROBIOLOGIA, V303, P207, DOI 10.1007/BF00034057; POWER G, 1995, HYDROBIOLOGIA, V303, P111, DOI 10.1007/BF00034049; POWER G, 1995, HYDROBIOLOGIA, V303, P211; SALO J, 1986, NATURE, V322, P254, DOI 10.1038/322254a0; SCHIEMER F, 1992, NETH J ZOOL, V42, P323, DOI 10.1163/156854291X00360; SCHIEMER F, 1991, VERH INT VEREIN LIMN, V24, P2497; SCHLOSSER IJ, 1995, HYDROBIOLOGIA, V303, P71, DOI 10.1007/BF00034045; SHAPIRO J, 1984, FRESHWATER BIOL, V14, P371; SHAPIRO J, 1975, LIMNOLOGY RES CTR U, V143, P1; SIMONIAN A, 1995, HYDROBIOLOGIA, V303, P39, DOI 10.1007/BF00034042; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; WANZENBOCK J, 1995, HYDROBIOLOGIA, V303, P249; WETZEL RG, 1990, VERH INT VEREIN LIMN, V24, P6; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; ZAEIMULLER I, 1995, HYDROBIOLOGIA, V303, P125; ZALEWSKI M, 1995, HYDROBIOLOGIA, V303, P49, DOI 10.1007/BF00034043; ZALEWSKI M, 1991, VERH INT VER LIMNOL, V24, P2493 35 33 35 0 4 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia APR 28 1995 303 1-3 259 264 10.1007/BF00034063 6 Marine & Freshwater Biology Marine & Freshwater Biology RC895 WOS:A1995RC89500025 2019-02-26 J MAUCK, RA; GRUBB, TC MAUCK, RA; GRUBB, TC PETREL PARENTS SHUNT ALL EXPERIMENTALLY INCREASED REPRODUCTIVE COSTS TO THEIR OFFSPRING ANIMAL BEHAVIOUR English Article LEACHS STORM-PETREL; INDOOR FLIGHT EXPERIMENTS; TRAINED KESTRELS; SEX-DIFFERENCES; CLUTCH SIZE; PTILOCHRONOLOGY; MANIPULATION; GROWTH; CARE; SEABIRD Investment in current reproduction should be balanced against future reproduction. Thus, the allocation of resources during a breeding season is a trade-off between the needs of the parent and the needs of the offspring. Life-history theory predicts the trade-off point to favour the parent in long-lived species and the offspring in short-lived species. To investigate parent-offspring conflict in a long-lived species, the cost of flight was manipulated (by reducing wing span) in Leach's storm-petrel, Oceanodroma leucorhoa. The effect of the manipulation on adult nutritional condition was measured using ptilochronology and the effect on offspring nutritional condition was measured by tracking chick growth. No difference was found in nutritional condition between treatment and control parents. Treatment chicks gained mass more slowly and spent a greater proportion of nights without being fed by either parent. As predicted for a long-lived species, when faced with an increased cost of parental care, the storm-petrel parents apparently shunted that cost to their offspring. These results are compared with previous studies of long- and short-lived species in which parental costs were artificially increased. MAUCK, RA (reprint author), OHIO STATE UNIV,DEPT ZOOL,BEHAV ECOL GRP,COLUMBUS,OH 43210, USA. BEAUCHAMP G, 1990, J THEOR BIOL, V146, P513, DOI 10.1016/S0022-5193(05)80376-5; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BERNDT RUDOLF, 1963, PROC INTERNATL ORNITHOL CONGR, V13, P675; Brown R.G.B., 1980, Behavior of Marine Animals, V4, P1; BROWN RGB, 1988, COLON WATERBIRD, V11, P1, DOI 10.2307/1521164; BROWN RGB, 1988, COLON WATERBIRD, V11, P176, DOI 10.2307/1520998; CIMPRICH D, 1990, ORNIS SCAND, V21, P277; CLARK CW, 1990, EVOL ECOL, V4, P21, DOI 10.1007/BF02270712; CUTHILL I, 1991, ANIM BEHAV, V42, P1007, DOI 10.1016/S0003-3472(05)80153-8; DUFFY DC, 1989, COLON WATERBIRD, V12, P164, DOI 10.2307/1521337; GROSS WILLIAM A. 0., 1935, AUK, V52, P382; GRUBB TC, 1989, AUK, V106, P314; GRUBB TC, IN PRESS CUR ORNITHO; HANEY JC, 1985, WILSON BULL, V97, P543; HARRIS MP, 1971, BIRD STUDY, V18, P113, DOI 10.1080/00063657109476302; HUNTINGTON CE, 1990, ACTA C INT ORNITHO S, V20, P543; JOUVENTIN P, 1990, NATURE, V343, P746, DOI 10.1038/343746a0; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MARCHANT E, 1990, HDB AUSTR NZ ANTARCT, V1; MATHER MH, 1993, AUK, V109, P869; MORSE D H, 1979, Bird-Banding, V50, P145; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; Pennycuick C. J., 1989, BIRD FLIGHT PERFORMA; PERRINS CM, 1973, IBIS, V115, P535, DOI 10.1111/j.1474-919X.1973.tb01991.x; Perrins CM, 1979, BRIT TITS; PITTMAN RL, 1990, CONDOR, V92, P524; RICKLEFS RE, 1986, PHYSIOL ZOOL, V59, P649, DOI 10.1086/physzool.59.6.30158612; RICKLEFS RE, 1987, AM NAT, V130, P300, DOI 10.1086/284710; RICKLEFS RE, 1980, AUK, V97, P768; RICKLEFS RE, 1992, ANIM BEHAV, V43, P895, DOI 10.1016/0003-3472(92)90003-R; RICKLEFS RE, 1987, AUK, V104, P750; RICKLEFS RE, 1980, AUK, V97, P566; RICKLEFS RE, 1985, J ANIM ECOL, V54, P883, DOI 10.2307/4385; RICKLEFS RE, IN PRESS FUNCT ECOL; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; SLAGSVOLD T, 1988, ECOLOGY, V69, P1918, DOI 10.2307/1941168; SLAGSVOLD T, 1990, ECOLOGY, V71, P1258, DOI 10.2307/1938263; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V11, P249; VERBEEK NAM, 1980, CONDOR, V82, P224, DOI 10.2307/1367481; VIDELER JJ, 1988, J EXP BIOL, V134, P173; VIDELER JJ, 1988, J EXP BIOL, V134, P185; WAITE TA, 1990, ORNIS SCAND, V21, P122, DOI 10.2307/3676807; Warham J., 1990, THE PETRELS; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916; WRIGHT J, 1990, ANIM BEHAV, V40, P462, DOI 10.1016/S0003-3472(05)80526-3; YOSEF R, 1992, CONSERV BIOL, V6, P447, DOI 10.1046/j.1523-1739.1992.06030447.x 48 104 105 2 26 ACADEMIC PRESS (LONDON) LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0003-3472 ANIM BEHAV Anim. Behav. APR 1995 49 4 999 1008 10.1006/anbe.1995.0129 10 Behavioral Sciences; Zoology Behavioral Sciences; Zoology QT441 WOS:A1995QT44100012 2019-02-26 J POULIN, R POULIN, R CLUTCH SIZE AND EGG SIZE IN FREE-LIVING AND PARASITIC COPEPODS - A COMPARATIVE-ANALYSIS EVOLUTION English Article BODY SIZE; CLUTCH SIZE; COMPARATIVE ANALYSIS; COPEPODS; EGG SIZE; LIFE-HISTORY EVOLUTION; PARASITISM; PHYLOGENETIC CONTRASTS; TRADE-OFF LIFE-HISTORY EVOLUTION; COMPARATIVE FECUNDITY; PHYLOGENETIC ANALYSIS; DECAPOD CRUSTACEANS; CYCLOPOID COPEPODS; PLANKTONIC COPEPOD; MARINE COPEPOD; FISH; NUMBER; SIPHONOSTOMATOIDA The evolution of reproductive strategies and the trade-off be tween number and size of eggs were investigated in a comparative analysis of free-living and parasitic copepods. Data from 1038 copepod species were used to obtain family averages for 105 families; the phylogenetic relationships among these families Include 94 branching events or 94 independent contrasts on which the analysis was based. Transition from a free-living existence to parasitism on invertebrates resulted in small increases in body size. Transition from parasitism on invertebrates to parasitism on fish was associated with greater increases in body size. After controlling for body size, a switch to fish hosts resulted in an increase in the number of eggs produced and a reduction in egg size. Among all contrasts, there was a negative relationship between changes in relative clutch size and changes in relative egg size, suggesting the existence of a trade-off between egg size and numbers. However, opposite changes in these measures of clutch size and egg size were not quite more frequent than expected by chance, therefore indicating that investments into egg numbers are not necessarily made at the expense of egg size, and vice versa. Latitude affected copepod body size, clutch size, and egg size. whereas the effects of freshwater colonization or size of the fish host were not significant. Comparative analyses at either the genus or species levels within given taxa of copepods parasitic on fish provided limited support for a trade-off between clutch size and egg size, but were hampered by the small number of independent phylogenetic contrasts available. From the family-level comparative analysis, it appears that the evolutionary transition from a free life to parasitism on invertebrates, and the transition from parasitism on invertebrates to parasitism on fish, have led to changes in life-history traits in response to the different selective pressures associated with the different modes of life. POULIN, R (reprint author), UNIV OTAGO, DEPT ZOOL, POB 56, DUNEDIN, NEW ZEALAND. Poulin, Robert/C-3117-2008 Poulin, Robert/0000-0003-1390-1206 ABDULLAHI BA, 1990, HYDROBIOLOGIA, V196, P101, DOI 10.1007/BF00006104; Allan J. D., 1980, EVOLUTION ECOLOGY ZO, P388; ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; BERRIGAN D, 1993, EVOL ECOL, V7, P270, DOI 10.1007/BF01237744; BLACKBURN TM, 1991, AUK, V108, P209; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; BOWMAN TE, 1982, BIOL CRUSTACEA, V1, P1; Boxshall G. A, 1991, COPEPOD EVOLUTION; BOXSHALL GA, 1986, SYST PARASITOL, V8, P215, DOI 10.1007/BF00009890; BRAMBILLA DJ, 1982, HYDROBIOLOGIA, V97, P233, DOI 10.1007/BF00007111; BROOKS DR, 1989, J PARASITOL, V75, P606, DOI 10.2307/3282913; BURNS C W, 1979, Archiv fuer Hydrobiologie Supplement, V54, P409; CALOW P, 1983, PARASITOLOGY, V86, P197, DOI 10.1017/S0031182000050897; CHECKLEY DM, 1980, LIMNOL OCEANOGR, V25, P430, DOI 10.4319/lo.1980.25.3.0430; CHECKLEY DM, 1980, LIMNOL OCEANOGR, V25, P991, DOI 10.4319/lo.1980.25.6.0991; CLARKE A, 1979, MAR BIOL, V55, P111, DOI 10.1007/BF00397306; COONEY JD, 1980, LIMNOL OCEANOGR, V25, P549, DOI 10.4319/lo.1980.25.3.0549; COREY S, 1991, CRUSTACEANA, V60, P270, DOI 10.1163/156854091X00056; CRESSEY RF, 1970, FISHERY B, V68, P347; CRESSEY RF, 1983, BIOL CRUSTACEA, V6, P251; CRUZPIZARRO L, 1983, HYDROBIOLOGIA, V107, P97, DOI 10.1007/BF00017425; DEETS GB, 1988, P BIOL SOC WASH, V101, P317; DO TT, 1986, SYLLOGEUS, V58, P283; DUARTE CM, 1989, OECOLOGIA, V80, P401, DOI 10.1007/BF00379043; DUNBAR MJ, 1968, ECOLOGICAL DEV POLAR; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; Elgmork K., 1980, EVOLUTION ECOLOGY ZO, P411; EMSON RH, 1985, J NAT HIST, V19, P151, DOI 10.1080/00222938500770091; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; Gotto R.V., 1979, Advances in Marine Biology, V16, P1, DOI 10.1016/S0065-2881(08)60292-8; GOTTO R. V., 1962, ANN AND MAG NAT HIST, V5, P97; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HICKS GRF, 1979, CYCLIC PHENOMENA MAR, P139; HO J, 1990, J CRUSTACEAN BIOL, V10, P528, DOI 10.2307/1548343; Ho J.-s., 1986, SYLLOGEUS, V58, P177; HO JS, 1989, J NAT HIST, V23, P903, DOI 10.1080/00222938900770471; HO JS, 1991, SADO MARINE BIOL STA, V21, P49; HO JS, 1991, 4TH P INT C COP B PL, P25; JOHNSTON CE, 1987, CAN J ZOOL, V65, P415, DOI 10.1139/z87-062; KABATA Z, 1981, ADV PARASIT, V19, P1, DOI 10.1016/S0065-308X(08)60265-1; KABATA Z, 1982, PARASITES THEIR WORL, P203; Kabata Z, 1979, PARASITIC COPEPODA B; KIRCHNER TB, 1980, ECOLOGY, V61, P232, DOI 10.2307/1935179; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lang K, 1948, MONOGRAPHIE HARPACTI; Lessells C.M., 1991, P32; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MALY EJ, 1973, LIMNOL OCEANOGR, V18, P840, DOI 10.4319/lo.1973.18.6.0840; MAUCHLINE J, 1972, DEEP-SEA RES, V19, P753, DOI 10.1016/0011-7471(72)90097-6; MCLAREN IA, 1974, AM NAT, V108, P91, DOI 10.1086/282887; McLAREN IAN A., 1965, LIMNOL OCEANOGR, V10, P528; MILLER CB, 1977, LIMNOL OCEANOGR, V22, P326, DOI 10.4319/lo.1977.22.2.0326; NILSSEN JP, 1980, EVOLUTION ECOLOGY ZO, P418; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; Park T., 1986, SYLLOGEUS, V58, P191; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; Peters R.H., 1983, P1; POULIN R, 1990, PARASITOL TODAY, V6, P353, DOI 10.1016/0169-4758(90)90413-X; POULIN R, 1990, PARASITOLOGY, V100, P417, DOI 10.1017/S0031182000078707; PRICE PW, 1974, EVOLUTION, V28, P76, DOI 10.1111/j.1558-5646.1974.tb00728.x; Price PW, 1980, EVOLUTIONARY BIOL PA; REDDIAH K, 1970, Journal of Parasitology, V56, P278; REID DM, 1991, CRUSTACEANA, V61, P175, DOI 10.1163/156854091X00669; REID DM, 1991, CRUSTACEANA, V61, P308, DOI 10.1163/156854091X00209; RHODES CP, 1982, HYDROBIOLOGIA, V89, P231, DOI 10.1007/BF00005709; RUNGE JA, 1986, SYLLOGEUS, V58, P443; SASTRY AN, 1983, BIOL RUSTACEA, V8, P270; SIDDALL ME, 1993, EVOLUTION, V47, P308, DOI 10.1111/j.1558-5646.1993.tb01219.x; SILLENTULLBERG B, 1988, EVOLUTION, V42, P293, DOI 10.1111/j.1558-5646.1988.tb04133.x; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SKORPING A, 1991, OIKOS, V60, P365, DOI 10.2307/3545079; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; Steele D. H., 1991, CRUSTACEAN EGG PRODU, P157; TEDLA S, 1931, CRUSTACEANA, V19, P1; Van Dover C. L., 1991, CRUSTACEAN EGG PRODU, P143; VANDAMME PA, 1993, J FISH BIOL, V42, P395, DOI 10.1006/jfbi.1993.1042; VERNBERG WB, 1983, BIOL CRUSTACEA, V8, P335; WARE DM, 1975, J FISH RES BOARD CAN, V32, P2503, DOI 10.1139/f75-288; WATSON NHF, 1986, SYLLOGEUS, V58, P509; WEBB DG, 1988, OIKOS, V51, P189, DOI 10.2307/3565642 84 91 92 0 25 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution APR 1995 49 2 325 336 10.2307/2410343 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity RR186 WOS:A1995RR18600011 28565015 Bronze 2019-02-26 J FOUDA, MM FOUDA, MM LIFE-HISTORY STRATEGIES OF 4 SMALL-SIZE FISHES IN THE SUEZ CANAL, EGYPT JOURNAL OF FISH BIOLOGY English Article RED SEA; MEDITERRANEAN SEA; LIFE HISTORY; LESSEPSIAN MIGRATION GOBY Of 35 species collected from the shores of the Suez Canal and its lakes, five were abundant year round. Sihouettea aegyptia and aphanius dispar are of Red Sea (warm water) origin, whereas Pomatoschistus marmoratus, Aphanius fasciatus and Atherina boyeri are Mediterranean species. S. aegyptia and A. dispar are distributed throughout the Suez system whereas A. fasciatus is restricted to the northern canal. P. marmoratus and A. boyeri have not spread southward beyond the Bitter Lakes. Salinity is the main limiting factor for the distribution of Mediterranean species. S. aegyptia and A. dispar are dominant in the Bitter Lakes (salinity 44 parts per thousand), whereas P. marmoratus and A. boyeri are abundant in Timsah Lake (salinity 7.8-41.6 parts per thousand). There was considerable interannual and monthly variation in the relative abundance of each species. The populations were dominated by a single age group, and life spans were no more than 2 years. Rapid growth was evident during the first spring in P. marmoratus and A. boyeri and during the first summer, early autumn in S. aegyptia and A. dispar. The relative abundance of each food item in the diet varied with fish size and season. S. aegyptia, P. marmoratus and A. dispar fed mostly on harpacticoid copepods, polychaetes, demersal eggs, diatoms and blue-green algae whereas A. boyeri fed mostly on planktonic copepods. The warm water species are summer spawners, whereas the temperate species are autumn-winter spawners. AL-AZHAR UNIV,FAC SCI,DEPT ZOOL,CAIRO,EGYPT Ben-Tuvia A., 1989, ENV QUALITY ECOSYSTE, V4-B, P235; Chabanaud P., 1934, Bull Mus Hist nat Paris, V6, P156; ELETREBY SG, 1986, P ZOOLOGICAL SOC EGY, V12, P199; FOUDA MM, 1993, J FISH BIOL, V43, P139, DOI 10.1111/j.1095-8649.1993.tb00417.x; FOUDA MM, 1981, ESTUAR COAST SHELF S, V12, P121, DOI 10.1016/S0302-3524(81)80091-6; GOLANI D, 1992, J FISH BIOL, V40, P139, DOI 10.1111/j.1095-8649.1992.tb02561.x; Gruvel A., 1936, Memoires Institut d'Egypte, V29, P1; HYSLOP EJ, 1980, J FISH BIOL, V17, P411, DOI 10.1111/j.1095-8649.1980.tb02775.x; MILLER AR, 1974, CNEXO SERIES, V2, P295; MILLER P J, 1986, Cybium, V10, P395; Miller P.J., 1986, P1019; Miller P. J., 1979, S ZOOLOGICAL SOC LON, V44, P263; MILLER PJ, 1961, J MAR BIOL ASSOC UK, V41, P737; MILLER PJ, 1987, SENCKENBERG BIOL, V68, P241; NORMAN J. R., 1927, TRANS ZOOL SOC LONDON, V22, P375; Por FD, 1978, LESSEPSIAN MIGRATION; Randall J. E., 1983, RED SEA REEF FISHES; SOLIMAN GF, 1988, B I OCEANOGRAPHY FIS, V14, P205; STEINITZ H, 1972, ISRAEL J ZOOL, V21, P385; TILLIER JB, 1902, MEMOIRES SOC ZOOLOGI, V15, P297; TORTONESE E, 1952, PUBL HYDROBIOL RES B, V1, P1; TORTONESE E, 1947, HIST NAT ROMA, V2, P1; VILLWOCK W, 1987, 1985 P S FAUN ZOOG A, P238; WHITEHEAD PJP, 1986, FISHES N E ATLANTIC; Windell J. T., 1971, METHODS ASSESSMENT F, P215 25 23 25 0 10 ACADEMIC PRESS (LONDON) LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-1112 J FISH BIOL J. Fish Biol. APR 1995 46 4 687 702 10.1006/jfbi.1995.0061 16 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology QW427 WOS:A1995QW42700009 2019-02-26 J KAWECKI, TJ KAWECKI, TJ ADAPTIVE PLASTICITY OF EGG SIZE IN RESPONSE TO COMPETITION IN THE COWPEA WEEVIL, CALLOSOBRUCHUS-MACULATUS (COLEOPTERA, BRUCHIDAE) OECOLOGIA English Article LIFE HISTORY; DENSITY; PROPAGULE SIZE; SEED BEETLES; CALLOSOBRUCHUS LIFE-HISTORY; CLUTCH SIZE; AGE; ENVIRONMENT; STRATEGIES; FREQUENCY; SELECTION; HEIGHT; BEETLE; NUMBER Life history theory predicts that larger propagules should be produced when the offspring are expected to experience intense competition. This study tested whether female cowpea weevils responded to high larval or adult density by producing larger eggs. In a split-brood design I measured the effect of density experienced by females at their larval stage (1 vs. 4-6 larvae/cowpea) on the size of eggs produced just after emergence. The females were then kept either at low adult density (1 female+1 male per vial), or at high adult density (10 females+10 males) for 2 days, and tested for the effect of this adult density treatment on the size of eggs laid subsequently. I measured egg length and width, as well as the diameter of the entrance tunnel made by the larva, which can be regarded as a crude measure of larval size. Females that experienced high adult density subsequently laid slightly wider eggs than those kept at low density. This difference, albeit small (about 1-4% after correction for female weight and the effect of family, depending on the statistical model used), was statistically significant and robust to alterations of the statistical model. It may be a remnant of a larger plastic response of egg size to competition that has become eroded during many generations in high-density laboratory cultures. There was no difference in egg length or the diameter of the entrance tunnel. Eggs laid just after emergence by females reared at high larval density also tended to be wider than those produced by females that had no competitors. This effect was only marginally significant, however, and sensitive to the statistical model. Both egg length and width and the diameter of the entrance tunnel increased with female weight and decreased with female age. The tunnel diameter was positively correlated with both egg length and width, but the effect of width was larger. UNIV BASEL, INST ZOOL, CH-4051 BASEL, SWITZERLAND Kawecki, Tadeusz/K-5466-2015 Kawecki, Tadeusz/0000-0002-9244-1991 BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Duellman W. E., 1986, BIOL AMPHIBIANS; FOX CW, 1993, OECOLOGIA, V96, P139, DOI 10.1007/BF00318042; GIGA DP, 1985, AGR ECOSYST ENVIRON, V12, P229, DOI 10.1016/0167-8809(85)90114-8; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; KING DA, 1990, AM NAT, V135, P809, DOI 10.1086/285075; MAKELA A, 1985, THEOR POPUL BIOL, V27, P239, DOI 10.1016/0040-5809(85)90001-2; MCLACHLAN AJ, 1989, FUNCT ECOL, V3, P633; MESSINA FJ, 1991, OECOLOGIA, V85, P447, DOI 10.1007/BF00320624; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; ORTON RA, 1990, FUNCT ECOL, V4, P91, DOI 10.2307/2389657; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PERRIN N, 1989, FUNCT ECOL, V3, P29, DOI 10.2307/2389672; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Roff Derek A., 1992; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SIBLY R, 1988, J THEOR BIOL, V133, P13, DOI 10.1016/S0022-5193(88)80021-3; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH FE, 1963, ECOLOGY, V44, P651, DOI 10.2307/1933011; SMITH JM, 1986, THEOR POPUL BIOL, V30, P166, DOI 10.1016/0040-5809(86)90031-6; SOKAL RR, 1969, BIOMETRY; Stearns SC., 1992, EVOLUTION LIFE HIST; VISSER ME, 1990, BEHAVIOUR, V114, P21, DOI 10.1163/156853990X00031; WILSON K, 1989, PHYSIOL ENTOMOL, V14, P115, DOI 10.1111/j.1365-3032.1989.tb00943.x; 1989, SAS STAT USERS GUIDE 26 36 37 1 15 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia APR 1995 102 1 81 85 10.1007/BF00333313 5 Ecology Environmental Sciences & Ecology QY046 WOS:A1995QY04600011 28306810 2019-02-26 J CLARK, MM; GALEF, BG CLARK, MM; GALEF, BG PRENATAL INFLUENCES ON REPRODUCTIVE LIFE-HISTORY STRATEGIES TRENDS IN ECOLOGY & EVOLUTION English Review GERBILS MERIONES-UNGUICULATUS; FEMALE MONGOLIAN GERBILS; INTRAUTERINE POSITION; RATS; MALES; MASCULINIZATION; SELECTION; SUCCESS; UTERUS; VARY Over the past two decades, evolutionary and behavioural ecologists have become increasingly interested in the adaptive consequences of intraspecific variability in life history and behavioural strategies. Recently, behavioural endocrinologists have begun to uncover surprising relationships between levels of prenatal exposure to gonadal hormones and variation in reproductive behaviour in adulthood. Such relationships may provide a causal explanation for many variations in adult phenotype that are of interest to behavioural and evolutionary ecologists. CLARK, MM (reprint author), MCMASTER UNIV,DEPT PSYCHOL,HAMILTON,ON L8S 4K1,CANADA. Charnov Eric L., 1993, P1; CLARK MM, 1991, PHYSIOL BEHAV, V49, P239, DOI 10.1016/0031-9384(91)90038-P; CLARK MM, 1986, LAB ANIM, V20, P313, DOI 10.1258/002367786780808730; CLARK MM, 1986, ANIM BEHAV, V34, P551, DOI 10.1016/S0003-3472(86)80124-5; CLARK MM, 1988, PHYSIOL BEHAV, V42, P15, DOI 10.1016/0031-9384(88)90253-3; CLARK MM, 1992, ANIM BEHAV, V43, P215, DOI 10.1016/S0003-3472(05)80217-9; CLARK MM, 1993, NATURE, V364, P712, DOI 10.1038/364712a0; CLARK MM, IN PRESS PHYSL BEHAV; Crews D., 1987, P11; EVEN MD, 1992, J REPROD FERTIL, V96, P709; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; HENDRICKS C, 1990, PHYSIOL BEHAV, V48, P625; HEWS DK, 1994, HORM BEHAV, V28, P96, DOI 10.1006/hbeh.1994.1008; HOUTSMULLER EJ, 1990, PHYSIOL BEHAV, V48, P555, DOI 10.1016/0031-9384(90)90299-J; HUCK UW, 1990, BEHAV ECOL SOCIOBIOL, V26, P99; IMS RA, 1987, ECOLOGY, V68, P1812, DOI 10.2307/1939872; MASON RT, 1985, NATURE, V316, P59, DOI 10.1038/316059a0; Maynard-Smith J., 1982, EVOLUTION THEORY GAM; MEISEL RL, 1981, SCIENCE, V213, P239, DOI 10.1126/science.7244634; PRITCHARD DJ, 1994, NATURE, V367, P327, DOI 10.1038/367327b0; RICHMOND G, 1984, HORM BEHAV, V18, P484, DOI 10.1016/0018-506X(84)90032-1; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; STAMPS J, 1994, TRENDS ECOL EVOL, V9, P311, DOI 10.1016/0169-5347(94)90146-5; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; VANDENBERGH JG, IN PRESS P NATL ACAD; vom Saal F S, 1984, Prog Clin Biol Res, V169, P135; vom Saal F.S., 1989, J ANIM SCI, V67, P1824; VOMSAAL FS, 1992, PHYSIOL BEHAV, V52, P163; Williams George C., 1992, NATURAL SELECTION DO; ZIELINSKI WJ, 1992, BEHAV ECOL SOCIOBIOL, V30, P185, DOI 10.1007/BF00166702 30 115 119 0 20 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. APR 1995 10 4 151 153 10.1016/S0169-5347(00)89025-4 3 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity QM040 WOS:A1995QM04000007 21236985 2019-02-26 J CHAMBERS, JC CHAMBERS, JC DISTURBANCE, LIFE-HISTORY STRATEGIES, AND SEED FATES IN ALPINE HERBFIELD COMMUNITIES AMERICAN JOURNAL OF BOTANY English Article; Proceedings Paper Symposium on Seed Fates - Importance for Structuring Plant Populations and Communities, at the Botanical-Society-of-America Meeting AUG, 1992 HONOLULU, HI BOTAN SOC AMER PLANT-COMMUNITIES; TUNDRA DISTURBANCE; TUSSOCK TUNDRA; ALASKAN TUNDRA; BURIED SEED; BANK SIZE; GROWTH; SOIL; GERMINATION; DISPERSAL Species responses to disturbance are governed primarily by their life history and physiological traits and by the characteristics of the disturbance, Species reproductive traits are especially important in determining the potential of species to establish and to persist following disturbance. Herein, I review available literature on relationships among disturbance, species life histories, and seed fates in tundra environments. Research conducted on these relationships in alpine herbfield vegetation on the Beartooth Plateau, Montana, over the past 9 yr by my colleagues and myself is synthesized. In tundra environments, species reproductive capacities are often similar to those in more temperate environments, but short, cool growing seasons constrain seed production and reduce seedling growth and survival. Highly variable growing season conditions result in large differences in seed production and seedling establishment among years. On disturbed sites, disturbance characteristics determine the seed and seedling environment and influence rates of establishment. In these windy environments, relationships among soil surface characteristics and seed morphological attributes determine both the horizontal and vertical movement of seeds on exposed soils. Once seeds are incorporated into the soil, soil physical and chemical properties determine temperature and nutrient regimes and have the greatest effects on seed germination and seedling growth and survival. Examining the seed fates of herbfield species with varying life histories illustrates that the identities of species that establish following disturbance are largely predictable from their reproductive traits. Disturbance characteristics determine the success of different reproductive strategies and significantly influence community structure. CHAMBERS, JC (reprint author), US FOREST SERV,INTERMT RES STN,920 VALLEY RD,RENO,NV 89512, USA. ALVAREZBUYLLA ER, 1991, AM NAT, V137, P133, DOI 10.1086/285150; AMEN RD, 1966, Q REV BIOL, V41, P271, DOI 10.1086/405055; AMEN RD, 1964, ECOLOGY, V45, P881, DOI 10.2307/1934941; ANDERSON DJ, 1967, J ECOL, V55, P629, DOI 10.2307/2258414; ARCHIBOLD OW, 1984, CAN FIELD NAT, V98, P337; BELL KL, 1980, ARCTIC ALPINE RES, V12, P1, DOI 10.2307/1550585; BENNINGTON CC, 1991, J ECOL, V79, P627, DOI 10.2307/2260658; BILLINGS WD, 1968, BIOL REV, V43, P481, DOI 10.1111/j.1469-185X.1968.tb00968.x; BILLINGS WD, 1974, ARCTIC ALPINE ENV, P403; BLISS L. C., 1962, ARCTIC, V15, P117; BLISS L. C., 1958, ARCTIC, V11, P180; Bliss L. C., 1971, ANNU REV ECOL SYST, V2, P405, DOI DOI 10.1146/ANNUREV.ES.02.110171.002201; Bliss L. C., 1985, PHYSL ECOLOGY N AM P, P41; BLISS LC, 1966, ECOL MONOGR, V36, P125, DOI 10.2307/1942152; BONDE E K, 1968, Ecology (Washington D C), V49, P1193, DOI 10.2307/1934513; BONDE EK, 1965, U COLORADO STUDIES S, V14; BRINK VC, 1967, CAN J PLANT SCI, V47, P135, DOI 10.4141/cjps67-023; BRINK VC, 1964, ECOLOGY, V45, P431, DOI 10.2307/1936096; Brown R. W., 1978, Reclamation of drastically disturbed lands., P23; Callaghan TV, 1988, PLANT POPULATION ECO, P111; CHAMBERS JC, 1989, J RANGE MANAGE, V42, P304, DOI 10.2307/3899499; CHAMBERS JC, 1991, ECOLOGY, V72, P1668, DOI 10.2307/1940966; CHAMBERS JC, 1987, RECLAM REVEG RES, V6, P219; CHAMBERS JC, 1990, ECOLOGY, V71, P1323, DOI 10.2307/1938270; CHAMBERS JC, 1993, CAN J BOT, V71, P471, DOI 10.1139/b93-052; CHAMBERS JC, 1987, RECLAM REVEG RES, V6, P235; CHAMBERS JC, 1991, CAN J BOT, V69, P1977, DOI 10.1139/b91-248; CHAMBERS JC, 1984, COLORADO STATE U 53, V6, P215; Chapin F. S, 1983, ECOL STUD, V44, P175; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; Chapin III F.S, 1987, ECOLOGICAL B, V38, P69; CHESTER AL, 1982, HOLARCTIC ECOL, V5, P200; CHESTER AL, 1982, HOLARCTIC ECOL, V5, P207; Cook R. E., 1979, Topics in plant population biology., P207; DELMORAL R, 1985, CAN J BOT, V63, P1444; DENSMORE RV, 1979, THESIS DUKE U DURHAM; DIEMER M, 1993, ARCTIC ALPINE RES, V25, P194, DOI 10.2307/1551813; EBERSOLE JJ, 1989, CAN J BOT, V67, P466, DOI 10.1139/b89-065; FOX JF, 1981, NATURE, V293, P564, DOI 10.1038/293564a0; FOX JF, 1983, ARCTIC ALPINE RES, V15, P405, DOI 10.2307/1550835; FREEDMAN B, 1982, CAN J BOT, V60, P2112, DOI 10.1139/b82-259; GARTNER BL, 1983, J APPL ECOL, V20, P965, DOI 10.2307/2403140; Grime J. P, 1979, PLANT STRATEGIES VEG; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; HAGGAS L, 1987, J RANGE MANAGE, V40, P180, DOI 10.2307/3899216; HARPER JL, 1977, POPULATION BI0L PLAN; JOHNSON PL, 1962, ECOL MONOGR, V32, P102; JOLLS CL, 1983, ARCTIC ALPINE RES, V15, P119, DOI 10.2307/1550987; LECK MA, 1980, ARCTIC ALPINE RES, V12, P343, DOI 10.2307/1550720; MAESSEN O, 1983, CAN J BOT, V61, P1680, DOI 10.1139/b83-181; MATSON PA, 1981, FOREST SCI, V27, P781; MCGRAW JB, 1991, J ECOL, V79, P617, DOI 10.2307/2260657; MCGRAW JB, 1980, CAN J BOT, V58, P1607, DOI 10.1139/b80-195; McGraw JB, 1989, ECOLOGY SOIL SEED BA, P91, DOI 10.1016/B978-0-12-440405-2.50011-7; MCGRAW JB, 1992, ARCTIC ECOSYSTEMS CH, P359; MORIN H, 1988, CAN J BOT, V66, P101, DOI 10.1139/b88-015; MORTIMER AM, 1974, THESIS U COLLEGE WAL; Pickett S. T. A., 1985, ECOLOGY NATURAL DIST; REYNOLDS DN, 1984, ECOLOGY, V65, P759, DOI 10.2307/1938048; REYNOLDS DN, 1984, OECOLOGIA, V62, P250, DOI 10.1007/BF00379022; ROACH DA, 1983, OECOLOGIA, V60, P359, DOI 10.1007/BF00376852; ROACH DA, 1984, ARCTIC ALPINE RES, V16, P37, DOI 10.2307/1551170; SAYERS RL, 1966, BOT GAZ, V127, P11, DOI 10.1086/336337; SCOTT D, 1964, ECOL MONOGR, V34, P243, DOI 10.2307/1948502; SHELDON JC, 1974, J ECOL, V62, P47, DOI 10.2307/2258879; SIMPSON RL, 1989, ECOLOGY SOIL SEED BA, P3; SONESSON M, 1991, ARCTIC, V44, P95; SPENCE JR, 1990, NEW ZEAL J BOT, V28, P439, DOI 10.1080/0028825X.1990.10412327; STAMP NE, 1989, AM J BOT, V76, P555, DOI 10.2307/2444350; STAMP NE, 1984, J ECOL, V72, P611, DOI 10.2307/2260070; SVOBODA J, 1987, ARCTIC ALPINE RES, V19, P373, DOI 10.2307/1551402; THORN CE, 1982, ARCTIC ALPINE RES, V14, P45, DOI 10.2307/1550814; VANTOOREN BF, 1988, OIKOS, V53, P41, DOI 10.2307/3565661; VIERECK LA, 1966, ECOL MONOGR, V36, P181, DOI 10.2307/1942416; Wager HG, 1938, J ECOL, V26, P390, DOI 10.2307/2256256; WARRENWILSON J, 1966, ANN BOT, V30, P383; WATKINSON AR, 1978, J ECOL, V66, P483, DOI 10.2307/2259147; WHITE PS, 1979, BOT REV, V45, P229, DOI 10.1007/BF02860857; WILLSON MF, 1990, J VEG SCI, V1, P547, DOI 10.2307/3235789; YOUNG JA, 1990, J RANGE MANAGE, V43, P358, DOI 10.2307/3898932 80 91 94 2 27 BOTANICAL SOC AMER INC COLUMBUS OHIO STATE UNIV-DEPT BOTANY 1735 NEIL AVE, COLUMBUS, OH 43210 0002-9122 AM J BOT Am. J. Bot. MAR 1995 82 3 421 433 10.2307/2445588 13 Plant Sciences Plant Sciences QM775 WOS:A1995QM77500015 2019-02-26 J POULIN, R POULIN, R EVOLUTIONARY INFLUENCES ON BODY-SIZE IN FREE-LIVING AND PARASITIC ISOPODS BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article LIFE HISTORY EVOLUTION; COPES LAW; LATITUDE; DEPTH; REPRODUCTIVE OUTPUT; COMPARATIVE ANALYSIS; PHYLOGENY CRUSTACEA; BIOLOGY; WATER The influence of mode of life and habitat characteristics on the evolution of body size in isopods was investigated in a comparative analysis based on data from 746 free-living and parasitic species. The phylogeny of isopods allowed 24 independent comparisons to be made between higher taxa (families or superfamilies), each corresponding to a separate branching event. The evolution of parasitism was consistently associated with reductions in body size. On the contrary, invasion of freshwater habitats was consistently coupled with increases in body size. Lineages moving to higher latitudes were significantly more likely to evolve larger body sizes than those shifting toward the equator. In addition, colonizing deeper water resulted in a weak tendency to evolve larger body size. The analysis suggests that the large size of some isopod groups parasitic on fish (e.g. Cymothoidae) may have been inherited from a free-living ancestor and is not the product of directional selection toward large size and greater fecundity. POULIN, R (reprint author), UNIV OTAGO,DEPT ZOOL,POB 56,DUNEDIN,NEW ZEALAND. Poulin, Robert/C-3117-2008 Poulin, Robert/0000-0003-1390-1206 Allen J. A., 1966, Crustaceana, V10, P1, DOI 10.1163/156854066X00018; ANDERSON RC, 1984, CAN J ZOOL, V62, P317, DOI 10.1139/z84-050; BRUSCA R C, 1991, Memoirs of the Queensland Museum, V31, P143; BRUSCA RC, 1981, ZOOL J LINN SOC-LOND, V73, P117, DOI 10.1111/j.1096-3642.1981.tb01592.x; CAREFOOT TH, 1973, MAR BIOL, V18, P302; CLARKE A, 1979, MAR BIOL, V55, P111, DOI 10.1007/BF00397306; Cope E. D., 1885, AM NAT, V19, P140; DEARBORN JOHN H., 1967, TRANS ROY SOC NZ ZOOL, V8, P163; DUNBAR MJ, 1968, ECOLOGICAL DEV POLAR; FRANKEL B, 1978, J NAT HIST, V12, P177, DOI 10.1080/00222937800770061; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; HANKEN J, 1993, ANNU REV ECOL SYST, V24, P501, DOI 10.1146/annurev.es.24.110193.002441; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HESSLER RR, 1975, MAR BIOL, V32, P155, DOI 10.1007/BF00388508; KIRCHNER TB, 1980, ECOLOGY, V61, P232, DOI 10.2307/1935179; KITTLEIN MJ, 1991, J NAT HIST, V25, P1449, DOI 10.1080/00222939100770921; MAUCHLINE J, 1972, DEEP-SEA RES, V19, P753, DOI 10.1016/0011-7471(72)90097-6; NEWELL ND, 1949, EVOLUTION, V3, P103, DOI 10.2307/2405545; PARIS OH, 1962, ECOLOGY, V43, P229, DOI 10.2307/1931979; Peters R. H., 1983, ECOLOGICAL IMPLICATI; PIETSCH TW, 1976, COPEIA, P781; POULIN R, 1995, IN PRESS EVOLUTION; POWERS LW, 1983, BIOL CRUSTACEA, V8, P271; Price PW, 1980, EVOLUTIONARY BIOL PA; Sastry A.N., 1983, P179; SCHOENER TW, 1968, AM NAT, V102, P207, DOI 10.1086/282538; SCHRAM FR, 1986, CRUSTACEA; SHAFIR A, 1980, CRUSTACEANA, V39, P185, DOI 10.1163/156854080X00076; SMALDON G, 1973, CRUSTACEANA, V23, P310; STANLEY SM, 1973, EVOLUTION, V27, P1, DOI 10.1111/j.1558-5646.1973.tb05912.x; STEBBINS TD, 1988, J CRUSTACEAN BIOL, V8, P539, DOI 10.2307/1548690; TRUESDALE FM, 1977, CRUSTACEANA, V32, P216, DOI 10.1163/156854077X00665; TURNER RD, 1983, SCIENCE, V219, P1077, DOI 10.1126/science.219.4588.1077; VERNBERG WB, 1983, BIOL CRUSTACEA, V8, P335; WALLERSTEIN BR, 1982, J BIOGEOGR, V9, P135, DOI 10.2307/2844698; WARREN P J, 1974, Crustaceana (Leiden), V27, P21, DOI 10.1163/156854074X00181; WENNER EL, 1979, CRUSTACEANA, V37, P293, DOI 10.1163/156854079X01176 37 55 57 1 15 ACADEMIC PRESS (LONDON) LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0024-4066 BIOL J LINN SOC Biol. J. Linnean Soc. MAR 1995 54 3 231 244 14 Evolutionary Biology Evolutionary Biology QP046 WOS:A1995QP04600002 2019-02-26 J DANCHIN, E; GONZALEZDAVILA, G; LEBRETON, JD DANCHIN, E; GONZALEZDAVILA, G; LEBRETON, JD ESTIMATING BIRD FITNESS CORRECTLY BY USING DEMOGRAPHIC-MODELS JOURNAL OF AVIAN BIOLOGY English Article POPULATION-GROWTH RATE; LIFE-HISTORY EVOLUTION; ASYMPTOTIC-BEHAVIOR; AGE; DYNAMICS; SURVIVAL; HYPOTHESES; PARAMETER; MATURITY One aim of studies in evolutionary biology is to estimate the fitness of a phenotype within a population. One of the most natural estimates of fitness is lambda, the multiplication rate, or finit rate of increase, which results from the demographic parameters of that particular phenotype. Even though ad hoc computations of lambda may be strongly biased, they are still widely used, in particular in bird population biology. We compare ad hoc computation of the multiplication rate and exact ones using demographic models. The magnitude of the discrepancy increases sharply with the departure of lambda from unity. This may alter our perception of population functioning. Other outputs of demographic models, which play prominent roles in bird evolutionary biology and population management, are briefly discussed. As a whole, demographic models provide a link between empirical and theoretical approaches. CNRS,CTR ECOL FONCT & EVOLUT,F-34033 MONTPELLIER,FRANCE DANCHIN, E (reprint author), UNIV PARIS 06,INST ECOL,CNRS,URA 258,BAT A,7E ETAGE,7 QUAI ST BERNARD,CASE 237,F-75252 PARIS 05,FRANCE. Danchin, Etienne/A-2299-2009 ALVAREZBUYLLA ER, 1991, TRENDS ECOL EVOL, V6, P221, DOI 10.1016/0169-5347(91)90026-T; ANDERSON DH, 1975, BIOMETRICS, V31, P701, DOI 10.2307/2529553; BROOKE M, 1990, MANX SHEARWATER; BROWN L, 1972, IBIS, V115, P286; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H., 1989, MATRIX POPULATION MO; CAUGHLEY G, 1974, J WILDLIFE MANAGE, V38, P557, DOI 10.2307/3800890; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CLUTTONBROCK TH, 1988, REPRODUCTIVE SUCCESS; CROXALL JP, 1991, BIRD POPULATION STUD, P272; CULL P, 1973, B MATH BIOL, V35, P645, DOI 10.1016/S0092-8240(73)80060-6; DALEY DJ, 1979, THEOR POPUL BIOL, V15, P257, DOI 10.1016/0040-5809(79)90039-X; DANCHIN E, 1992, Ardea, V80, P171; DANCHIN E, 1992, ARDEA, V80, P157; EBERHARDT LL, 1985, J WILDLIFE MANAGE, V49, P997, DOI 10.2307/3801386; EBERHARDT LL, 1977, J FISH RES BOARD CAN, V34, P183, DOI 10.1139/f77-028; Euler L, 1970, Theor Popul Biol, V1, P307, DOI 10.1016/0040-5809(70)90048-1; FERRIERE R, 1992, J THEOR BIOL, V157, P253, DOI 10.1016/S0022-5193(05)80624-1; FERSON S, 1989, ECOL MODEL, V47, P175, DOI 10.1016/0304-3800(89)90116-6; FERSON S, 1987, RAMAS A USER MANUAL; GARGETT V, 1972, IBIS, V115, P285; GOODMAN L A, 1971, Theoretical Population Biology, V2, P339, DOI 10.1016/0040-5809(71)90025-6; HARRIS MP, 1983, IBIS, V125, P56, DOI 10.1111/j.1474-919X.1983.tb03083.x; HENNY CJ, 1970, J WILDLIFE MANAGE, V34, P690, DOI 10.2307/3799133; HOULLIER F, 1989, MATH BIOSCI, V95, P161, DOI 10.1016/0025-5564(89)90030-8; HOULLIER F, 1986, MATH BIOSCI, V79, P185, DOI 10.1016/0025-5564(86)90147-1; KANYAMIBWA S, 1990, IBIS, V132, P27, DOI 10.1111/j.1474-919X.1990.tb01013.x; KEYFITZ N, 1968, INTRO MATH POPULATIO; KOSINSKI RJ, 1979, AUK, V96, P537; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1989, OECOLOGIA BERLIN, V75, P601; Lebreton J. -D., 1989, B INT STAT I, V53, P267; LEBRETON JD, 1990, BIOMETRICS, V46, P609, DOI 10.2307/2532082; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LEBRETON JD, 1978, BIOMETRIE ECOLOGIE, P277; LEBRETON JD, 1991, BIRD POPULATION STUD, P105; LESLIE PH, 1948, BIOMETRIKA, V35, P213, DOI 10.1093/biomet/35.3-4.213; LESLIE PH, 1966, J ANIM ECOL, V35, P291, DOI 10.2307/2396; Leslie PH, 1945, BIOMETRIKA, V33, P183, DOI 10.1093/biomet/33.3.183; Lotka A. J., 1956, ELEMENTS MATH BIOL; McDonald David B., 1993, Current Ornithology, V10, P139; MIGOT P, 1992, ARDEA, V80, P161; MURRAY BG, 1992, AUK, V109, P167, DOI 10.2307/4088276; MURRAY BG, 1984, OIKOS, V42, P323, DOI 10.2307/3544400; MURRAY BG, 1990, OIKOS, V59, P189, DOI 10.2307/3545534; MURRAY BG, 1985, OIKOS, V44, P509, DOI 10.2307/3565794; MURRAY BG, 1988, OIKOS, V51, P249, DOI 10.2307/3565650; NEWTON I, 1989, LIFETIME REPRODUCTIO; NUR N, 1987, OIKOS, V48, P338, DOI 10.2307/3565523; Pollock K.H., 1990, WILDLIFE MONOGR, V107, P1; RICH A, 1989, USER MANUAL DRIVE MA; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; Tuljapurkar S., 1990, POPULATION DYNAMICS; VANGROENENDAEL J, 1988, TRENDS ECOL EVOL, V3, P264, DOI 10.1016/0169-5347(88)90060-2; Vermeer K., 1989, P88 57 16 17 0 1 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0908-8857 J AVIAN BIOL J. Avian Biol. MAR 1995 26 1 67 75 10.2307/3677214 9 Ornithology Zoology QQ432 WOS:A1995QQ43200010 2019-02-26 J FINCH, CE; ROSE, MR FINCH, CE; ROSE, MR HORMONES AND THE PHYSIOLOGICAL ARCHITECTURE OF LIFE-HISTORY EVOLUTION QUARTERLY REVIEW OF BIOLOGY English Review MAJOR HISTOCOMPATIBILITY COMPLEX; NEMATODE CAENORHABDITIS-ELEGANS; DEHYDROEPIANDROSTERONE-SULFATE CONCENTRATIONS; SEASONAL-MORPH DETERMINATION; PROGESTERONE-RECEPTOR GENE; AGE-DEPENDENT RESPONSE; CLINICAL BREAST-CANCER; WORKER HONEY BEES; CLASS-I ANTIGEN; DROSOPHILA-MELANOGASTER Hormones play key roles in the regulation of animal and plant life histories, particularly in the timing of transitions between prematurational stages and in the scheduling of reproduction. Furthermore, hormonal mechanisms are subject to information about the external and internal environment of the the individual. Within an evolutionary radiation, the same hormone subsets often regulate the schedules of development as well as adult reproduction and related activities end, moreover, are involved in mechanisms of senescence. We propose that the pleiotropic and epistatic effects from hormonal and neural mechanisms are an important substratum for life history evolution. This analysis of hormonal mechanisms in senescence implicates a role for antagonistic pleiotropy in selection for particular subsets of hormonal mechanisms that can be traced throughout prematurational and postmaturational stages. In the example of the vertebrate MHC (major histocompatibility complex), polymorphic loci have been assembled with pleiotropic actions on several regulatory axes affecting reproduction and other fitness components. We argue that the MHC and other complex loci may be considered as life history gene complexes, with pleiotropic influences throughout the lifespan. While analyses of this kind might suggest that life histories could be evolutionarily rigid in our interpretation the population genetics that is involved Provides a theoretical basis for great flexibility in hormonal regulation during life history evolution. It is possible that life history evolution among taxonomic groups may sometimes be chaotic, which would frustrate strong inferences by the comparative method in the study of life histories between taxonomic groups. UNIV SO CALIF, DEPT SCI BIOL, LOS ANGELES, CA 90089 USA; UNIV CALIF IRVINE, DEPT ECOL & EVOLUTIONARY BIOL, IRVINE, CA USA FINCH, CE (reprint author), UNIV SO CALIF, ANDRUS GERONTOL CTR, DIV NEUROGERONTOL, LOS ANGELES, CA 90089 USA. NIA NIH HHS [AG-09970, AG-07907] AEED PA, 1993, ANIM GENET, V24, P177; ANDERSEN LC, 1991, J EXP MED, V173, P181, DOI 10.1084/jem.173.1.181; ANDERSON GL, 1978, CAN J ZOOL, V56, P1786, DOI 10.1139/z78-244; Anderson J.R., 1987, P276; ANDRES AJ, 1992, TRENDS GENET, V8, P132, DOI 10.1016/0168-9525(92)90371-A; ARANEO BA, 1993, J INFECT DIS, V167, P830, DOI 10.1093/infdis/167.4.830; ARNOLD AP, 1988, FRONT NEUROENDOCRIN, V10, P185; ASENCOT M, 1976, LIFE SCI, V18, P693, DOI 10.1016/0024-3205(76)90180-6; ATKINSON MA, 1993, J CLIN INVEST, V91, P350, DOI 10.1172/JCI116192; AURORA R, 1992, MOL CELL BIOL, V12, P455, DOI 10.1128/MCB.12.2.455; BACON LD, 1987, POULTRY SCI, V66, P802, DOI 10.3382/ps.0660802; Baerg W. J., 1963, Journal of the New York Entomological Society, V71, P233; Baerg WJ, 1928, Q REV BIOL, V3, P109, DOI 10.1086/394296; BARGMANN CI, 1991, SCIENCE, V251, P1243, DOI 10.1126/science.2006412; BARKER GC, 1990, INVERTEBR REPROD DEV, V18, P1, DOI 10.1080/07924259.1990.9672124; BARRES BA, 1994, DEVELOPMENT, V120, P1097; BARRETTCONNOR E, 1986, NEW ENGL J MED, V315, P1519, DOI 10.1056/NEJM198612113152405; BEGG RJ, 1981, AUST WILDLIFE RES, V8, P57; BEHNKE RJ, 1992, AM FISH SOC MONOGR, V6; BELL AE, 1955, COLD SPRING HARB SYM, V20, P197, DOI 10.1101/SQB.1955.020.01.019; BLACK RW, 1987, FRESHWATER BIOL, V18, P373, DOI 10.1111/j.1365-2427.1987.tb01321.x; BLAKE MJ, 1991, P NATL ACAD SCI USA, V88, P9873, DOI 10.1073/pnas.88.21.9873; BOYSE EA, 1991, PSYCHONEUROIMMUNOLOG, V2, P831; BRADLEY DJ, 1994, P NATL ACAD SCI USA, V91, P439, DOI 10.1073/pnas.91.2.439; BRADSHAW WE, 1977, EVOLUTION, V31, P546, DOI 10.1111/j.1558-5646.1977.tb01044.x; BRENT GA, 1991, ANNU REV PHYSIOL, V53, P17, DOI 10.1146/annurev.ph.53.030191.000313; BRILES WE, 1961, GENETICS, V46, P1273; BRITTAIN JE, 1982, ANNU REV ENTOMOL, V27, P119, DOI 10.1146/annurev.en.27.010182.001003; BROOKS A, 1994, SCIENCE, V263, P668, DOI 10.1126/science.8303273; BRUCE H, 1960, J REPRO FERTIL, V11, P415; BUCKMANN D, 1992, GEN COMP ENDOCR, V88, P261, DOI 10.1016/0016-6480(92)90258-L; BULBROOK RD, 1971, LANCET, V2, P395; BUSH RM, 1992, EVOLUTION, V46, P1, DOI 10.1111/j.1558-5646.1992.tb01980.x; Buss L, 1987, EVOLUTION INDIVIDUAL; CARROLL SB, 1994, SCIENCE, V265, P109, DOI 10.1126/science.7912449; CARTAR RV, 1992, J ANIM ECOL, V61, P225, DOI 10.2307/5525; CASSADA RC, 1975, DEV BIOL, V46, P326, DOI 10.1016/0012-1606(75)90109-8; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHARLESWORTH B, 1990, NATURE, V346, P313, DOI 10.1038/346313a0; CHARLESWORTH B, 1975, GENET RES, V26, P1, DOI 10.1017/S0016672300015792; Charlesworth B, 1994, EVOLUTION AGE STRUCT; Chin W.W., 1991, NUCL HORMONE RECEPTO, P79; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CHITWOOD DJ, 1990, J NEMATOL, V22, P598; CLARE MJ, 1985, HEREDITY, V55, P19, DOI 10.1038/hdy.1985.67; CLAUDIO T, 1989, FRONTIERS MOL BIOL M, P63; COHAN FM, 1989, EVOLUTION, V43, P766, DOI 10.1111/j.1558-5646.1989.tb05175.x; COLOMBO P, 1992, P NATL ACAD SCI USA, V89, P6358, DOI 10.1073/pnas.89.14.6358; Comfort A., 1979, BIOL SENESCENCE; CONLEY AJ, 1988, J REPROD FERTIL, V82, P595; CRAMER SD, 1993, VERTEBRATE ENDOCRINO, P1; CREW MD, 1993, GENETICA, V91, P225, DOI 10.1007/BF01436000; CREWS D, 1993, BRAIN BEHAV EVOLUT, V42, P202, DOI 10.1159/000114155; CROUCH ML, 1982, PLANTA, V156, P520, DOI 10.1007/BF00392774; CUMMINGS SR, 1985, EPIDEMIOL REV, V7, P178, DOI 10.1093/oxfordjournals.epirev.a036281; DAVIDSON EH, 1993, DEVELOPMENT, V118, P665; Davies PJ, 1987, PLANT HORMONES THEIR; DAYNES R A, 1992, Aging Immunology and Infectious Disease, V3, P135; DAYNES RA, 1993, J IMMUNOL, V150, P5219; DENNO RF, 1989, ECOL ENTOMOL, V14, P31, DOI 10.1111/j.1365-2311.1989.tb00751.x; DESALLE R, 1986, GENETICS, V112, P861; DESJARDINS GC, 1993, ENDOCRINOLOGY, V132, P86, DOI 10.1210/en.132.1.86; DEVENPORT LD, 1985, EXP NEUROL, V90, P44, DOI 10.1016/0014-4886(85)90039-1; DIAMOND JM, 1992, NATURE, V357, P362, DOI 10.1038/357362a0; DIAMOND MI, 1990, SCIENCE, V249, P1266, DOI 10.1126/science.2119054; DODSON S, 1989, BIOSCIENCE, V39, P447, DOI 10.2307/1311136; DONOVAN CM, 1994, P NATL ACAD SCI USA, V91, P2863, DOI 10.1073/pnas.91.7.2863; DOUGLASS M, 1947, AM J OBSTET GYNECOL, V53, P190, DOI 10.1016/0002-9378(47)90331-1; DOWSE GK, 1991, AM J EPIDEMIOL, V133, P1093, DOI 10.1093/oxfordjournals.aje.a115822; EDNEY EB, 1968, NATURE, V220, P281, DOI 10.1038/220281a0; ENDO K, 1992, ZOOL SCI, V9, P725; ENDO K, 1988, ZOOL SCI, V5, P145; ENDO K, 1985, J INSECT PHYSIOL, V31, P701, DOI 10.1016/0022-1910(85)90050-2; ENDO K, 1985, J INSECT PHYSIOL, V31, P669, DOI 10.1016/0022-1910(85)90045-9; ENDO K, 1973, DEV GROWTH DIFFER, V15, P1; ESTRUCH JJ, 1991, SCIENCE, V254, P1364, DOI 10.1126/science.254.5036.1364; EVANS RM, 1988, SCIENCE, V240, P889, DOI 10.1126/science.3283939; Falconer D. S., 1989, INTRO QUANTITATIVE G; FALCONER DS, 1990, GENET RES, V56, P57, DOI 10.1017/S0016672300028883; Fallis A.M., 1971, ECOLOGY PHYSL PARASI, P232; FARRELL AP, 1992, ARTERIOSCLER THROMB, V12, P1171, DOI 10.1161/01.ATV.12.10.1171; FELTEN DL, 1992, ANN NEUROL, V32, pS133, DOI 10.1002/ana.410320723; FILSON AJ, 1993, DEVELOPMENT, V118, P731; FINCH CE, 1984, ENDOCR REV, V5, P467, DOI 10.1210/edrv-5-4-467; FINCH CE, 1994, P NATL ACAD SCI USA, V91, P11769, DOI 10.1073/pnas.91.25.11769; FINCH CE, 1994, OLONGEVITY SENESCENC; FLORINI JR, 1985, J GERONTOL, V40, P2, DOI 10.1093/geronj/40.1.2; FLURI P, 1982, J INSECT PHYSIOL, V28, P61, DOI 10.1016/0022-1910(82)90023-3; FUNDER JW, 1993, SCIENCE, V259, P1132, DOI 10.1126/science.8382375; GEBHARDT MD, 1993, J EVOLUTION BIOL, V6, P1, DOI 10.1046/j.1420-9101.1993.6010001.x; GEBHARDT MD, 1992, GENET RES, V60, P87, DOI 10.1017/S0016672300030780; GEBHARDT MD, 1993, J EVOLUTION BIOL, V6, P17, DOI 10.1046/j.1420-9101.1993.6010017.x; GEBHARDT MD, 1989, THESIS U BASEL SWITZ; GELMAN R, 1988, GENETICS, V118, P693; GELMAN R, 1990, GENETICS, V125, P167; GIESEL JT, 1980, OECOLOGIA, V47, P299, DOI 10.1007/BF00398520; GIESEL JT, 1982, AM NAT, V119, P464, DOI 10.1086/283926; GIESEL JT, 1979, EXP GERONTOL, V14, P323, DOI 10.1016/0531-5565(79)90044-5; GILBERT JJ, 1980, AM SCI, V68, P636; GILBERT JJ, 1980, AM NAT, V116, P409, DOI 10.1086/283635; GILBERT JJ, 1968, SCIENCE, V159, P734, DOI 10.1126/science.159.3816.734; GOHDES D, 1993, DIABETES CARE, V16, P239, DOI 10.2337/diacare.16.1.239; GOLDEN JW, 1985, MOL GEN GENET, V198, P534, DOI 10.1007/BF00332953; GOLDEN JW, 1982, SCIENCE, V218, P578, DOI 10.1126/science.6896933; GOLDEN JW, 1984, DEV BIOL, V102, P368, DOI 10.1016/0012-1606(84)90201-X; GOLDING DW, 1994, P NATL ACAD SCI USA, V91, P11777, DOI 10.1073/pnas.91.25.11777; GOLDSMITH MHM, 1993, P NATL ACAD SCI USA, V90, P11442, DOI 10.1073/pnas.90.24.11442; GONZALEZ FJ, 1988, PHARMACOL REV, V40, P243; Gosden R.G., 1985, BIOL MENOPAUSE CAUSE; GOULD E, 1990, NEUROSCIENCE, V37, P367, DOI 10.1016/0306-4522(90)90407-U; Gould S. J, 1977, ONTOGENY PHYLOGENY; GRAHAM ML, 1992, CANCER RES, V52, P593; GRAHOVAC B, 1993, HUM IMMUNOL, V37, P75, DOI 10.1016/0198-8859(93)90145-Q; GRANDY DK, 1992, GENOMICS, V13, P968, DOI 10.1016/0888-7543(92)90009-H; GREEN S, 1988, TRENDS GENET, V4, P309, DOI 10.1016/0168-9525(88)90108-4; GREENE E, 1989, SCIENCE, V243, P643, DOI 10.1126/science.243.4891.643; GREENSPAN SL, 1993, J GERONTOL, V48, pM72, DOI 10.1093/geronj/48.3.M72; GREGOROVA S, 1976, FOLIA BIOL-PRAGUE, V22, P82; GRIFFIN JE, 1992, NEW ENGL J MED, V326, P611; GUILD G, 1992, NATURE, V357, P539, DOI 10.1038/357539a0; GUILLAUDEUX T, 1993, CYTOGENET CELL GENET, V63, P212, DOI 10.1159/000133537; HADFIELD MG, 1990, ADV INVERTEBRATE REP, V5; HADORN E, 1968, SCI AM, V219, P110, DOI 10.1038/scientificamerican1168-110; HAMADA K, 1989, P NATL ACAD SCI USA, V86, P8289, DOI 10.1073/pnas.86.21.8289; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HANSCOMBE O, 1991, GENE DEV, V5, P1387, DOI 10.1101/gad.5.8.1387; Hartl D. L., 1989, PRINCIPLES POPULATIO; HARTY JT, 1992, J EXP MED, V175, P1531, DOI 10.1084/jem.175.6.1531; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HASHIMOTO L, 1994, NATURE, V371, P161, DOI 10.1038/371161a0; HEDRICK SM, 1992, CELL, V70, P177, DOI 10.1016/0092-8674(92)90092-Q; HENDERSON BE, 1993, SCIENCE, V259, P633, DOI 10.1126/science.8381558; HILL AVS, 1991, NATURE, V352, P595, DOI 10.1038/352595a0; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; HIRSCH HR, 1984, MECH AGEING DEV, V27, P43, DOI 10.1016/0047-6374(84)90081-2; HO KY, 1987, J CLIN ENDOCR METAB, V64, P51, DOI 10.1210/jcem-64-1-51; HO SM, 1993, CANCER RES, V53, P528; HOFFMANN AA, 1989, GENETICS, V122, P837; HOLLENBERG SM, 1985, NATURE, V318, P635, DOI 10.1038/318635a0; HOLMQUIST GP, 1992, AM J HUM GENET, V51, P17; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1992, NATURE, V359, P58, DOI 10.1038/359058a0; HOURCADE D, 1990, COMPLEMENT INFLAMMAT, V7, P302, DOI 10.1159/000463165; HOURCADE D, 1992, GENOMICS, V12, P289, DOI 10.1016/0888-7543(92)90376-4; HSU D, 1993, ENDOCRINOLOGY, V133, P1247, DOI 10.1210/en.133.3.1247; HUANG ZY, 1991, J INSECT PHYSIOL, V37, P733, DOI 10.1016/0022-1910(91)90107-B; HUCKABY CS, 1987, P NATL ACAD SCI USA, V84, P8380, DOI 10.1073/pnas.84.23.8380; HUGHES KA, 1994, NATURE, V367, P64, DOI 10.1038/367064a0; HUTCHINSON EW, 1991, GENETICS, V127, P729; HUTCHINSON EW, 1991, GENETICS, V127, P719; HUTCHINSON EW, 1990, GENETIC EFFECTS AGIN, P66; INUI Y, 1985, GEN COMP ENDOCR, V60, P450, DOI 10.1016/0016-6480(85)90080-2; IVANYI P, 1972, NATURE-NEW BIOL, V238, P280, DOI 10.1038/newbio238280a0; JACOB CO, 1992, IMMUNOL TODAY, V13, P122, DOI 10.1016/0167-5699(92)90107-I; JACOB CO, 1993, NUCLEIC ACIDS RES, V21, P2761, DOI 10.1093/nar/21.11.2761; JANZEN DH, 1976, ANNU REV ECOL SYST, V7, P347, DOI 10.1146/annurev.es.07.110176.002023; JAYCOX ER, 1974, ANN ENTOMOL SOC AM, V67, P529, DOI 10.1093/aesa/67.4.529; JEGLA TC, 1990, MORPHOGENETIC HORMON, V1, P229; JELTSCH JM, 1990, J BIOL CHEM, V265, P3967; JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681; JOHNSON TE, 1984, MECH AGEING DEV, V28, P23, DOI 10.1016/0047-6374(84)90150-7; JONES AM, 1992, BIOESSAYS, V14, P43, DOI 10.1002/bies.950140109; JUDD HL, 1983, NEUROENDOCRINOLOGY A, P173; KANAMORI A, 1992, J BIOL CHEM, V267, P739; KASTNER P, 1990, EMBO J, V9, P1603, DOI 10.1002/j.1460-2075.1990.tb08280.x; KASUYA T, 1984, REP INT WHALING COMM, V6, P260; KAUFMAN DL, 1992, J CLIN INVEST, V89, P283, DOI 10.1172/JCI115573; KAWAHARA A, 1991, DEVELOPMENT, V112, P933; KEAVENEY M, 1991, J MOL ENDOCRINOL, V6, P111, DOI 10.1677/jme.0.0060111; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; KETTERSON ED, 1992, AM NAT, V140, P933; KINDY MS, 1991, NEUROREPORT, V2, P465, DOI 10.1097/00001756-199108000-00014; KIRKWOOD TBL, 1982, HUM GENET, V60, P101, DOI 10.1007/BF00569695; KLASS M, 1976, NATURE, V260, P523, DOI 10.1038/260523a0; KLEE H, 1991, ANNU REV PLANT PHYS, V42, P529, DOI 10.1146/annurev.pp.42.060191.002525; KLEIN J, 1993, SCI AM, V269, P78, DOI 10.1038/scientificamerican1293-78; Klein J., 1986, NATURAL HIST MAJOR H; KLITZ W, 1992, NATURE, V356, P17, DOI 10.1038/356017a0; KOCH PB, 1987, J INSECT PHYSIOL, V33, P823, DOI 10.1016/0022-1910(87)90030-8; KOELLE MR, 1992, P NATL ACAD SCI USA, V89, P6167, DOI 10.1073/pnas.89.13.6167; KOIZUMI A, 1986, MECH AGEING DEV, V37, P119, DOI 10.1016/0047-6374(86)90070-9; KOSUDA K, 1985, BEHAV GENET, V15, P297, DOI 10.1007/BF01065984; KREMEN C, 1989, DEV BIOL, V133, P336, DOI 10.1016/0012-1606(89)90038-9; KRUMLAUF R, 1992, BIOESSAYS, V14, P245, DOI 10.1002/bies.950140408; KURLANDER RJ, 1992, SCIENCE, V257, P678, DOI 10.1126/science.1496381; KURTH MC, 1993, AM J MED GENET, V48, P166, DOI 10.1002/ajmg.1320480311; LAFUSE W, 1980, BIOCHEMISTRY-US, V19, P49, DOI 10.1021/bi00542a008; LAFUSE W, 1979, IMMUNOGENETICS, V9, P57, DOI 10.1007/BF01570393; LAM TJ, 1985, AQUACULTURE, V44, P201, DOI 10.1016/0044-8486(85)90244-3; LANDFIELD PW, 1994, EXP GERONTOL, V29, P3, DOI 10.1016/0531-5565(94)90058-2; LANDFIELD PW, 1978, SCIENCE, V202, P1098, DOI 10.1126/science.715460; LANKFORD KL, 1988, P NATL ACAD SCI USA, V85, P4567, DOI 10.1073/pnas.85.12.4567-a; LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905; LARSEN PL, 1994, J CELL BIOL S B, V18, P381; LARSEN PL, 1993, S D, V17, P160; LATHAM KR, 1976, ENDOCRINOLOGY, V98, P1480, DOI 10.1210/endo-98-6-1480; LAWLOR DA, 1990, IMMUNOL REV, V113, P147, DOI 10.1111/j.1600-065X.1990.tb00040.x; LEE AK, 1985, ACTA ZOOL FENN, V173, P75; Lee AK, 1985, EVOLUTIONARY ECOLOGY; LEHRER SP, 1993, BREAST CANCER RES TR, V26, P175, DOI 10.1007/BF00689690; LENSKI RE, 1991, AM NAT, V138, P1315, DOI 10.1086/285289; LEOPOLD AC, 1959, PLANT PHYSIOL, V34, P570, DOI 10.1104/pp.34.5.570; LEOPOLD AC, 1984, ENCY PLANT PHYSL, V10, P4; LERNER SP, 1988, BIOL REPROD, V38, P1035, DOI 10.1095/biolreprod38.5.1035; LERNER SP, 1992, EUR J IMMUNOGENET, V19, P361, DOI 10.1111/j.1744-313X.1992.tb00079.x; LERNER SP, 1991, ENDOCR REV, V12, P78, DOI 10.1210/edrv-12-1-78; LEROI AM, 1994, AM NAT, V143, P381, DOI 10.1086/285609; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LeVay S., 1993, SEXUAL BRAIN; Lewontin R., 1974, GENETIC BASIS EVOLUT; LING XB, 1993, IMMUNOGENETICS, V37, P331, DOI 10.1007/BF00216797; LIVELY CM, 1986, EVOLUTION, V40, P232, DOI 10.1111/j.1558-5646.1986.tb00466.x; LOBACCARO JM, 1992, J STEROID BIOCHEM, V43, P659, DOI 10.1016/0960-0760(92)90291-P; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; LUCKINBILL LS, 1985, HEREDITY, V55, P9, DOI 10.1038/hdy.1985.66; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; LUNSTRA DD, 1978, J ANIM SCI, V46, P1054; MACCLUER JW, 1988, ANIM GENET, V19, P359; MAEHLEN J, 1990, ACTA NEUROPATHOL, V80, P85, DOI 10.1007/BF00294226; MANNING CJ, 1992, NATURE, V360, P581, DOI 10.1038/360581a0; MARTINEZ E, 1991, NUCLEAR HORMONE RECE, P125; MATHEWS LS, 1991, CELL, V65, P973, DOI 10.1016/0092-8674(91)90549-E; MATSUDA R, 1987, ANIMAL EVOLUTION CHA; MAULE AG, 1987, CAN J FISH AQUAT SCI, V44, P161, DOI 10.1139/f87-021; Mayr E., 1963, ANIMAL SPECIES EVOLU; MCADAM SN, 1994, P NATL ACAD SCI USA, V91, P5893, DOI 10.1073/pnas.91.13.5893; McDowall RM, 1988, DIADROMY FISHES MIGR; MCGUIRE W, 1994, NATURE, V371, P508, DOI 10.1038/371508a0; MCGUIRE WL, 1991, MOL ENDOCRINOL, V5, P1571, DOI 10.1210/mend-5-11-1571; MCGUIRE WL, 1992, J STEROID BIOCHEM, V43, P243, DOI 10.1016/0960-0760(92)90214-4; MCKUSICK VA, 1994, MENDELIAN INHERITANC; MCNEILL TH, 1991, EXP NEUROL, V111, P140, DOI 10.1016/0014-4886(91)90062-H; MEANEY MJ, 1988, SCIENCE, V239, P766, DOI 10.1126/science.3340858; MEANEY MJ, 1987, NEUROENDOCRINOLOGY, V45, P278, DOI 10.1159/000124741; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MEREDITH PJ, 1977, IMMUNOGENETICS, V5, P109, DOI 10.1007/BF01570468; Metzyer J. D., 1987, Plant hormones and their role in plant growth and development., P431; MIJOVIC CH, 1991, BAILLIERE CLIN ENDOC, V5, P321, DOI 10.1016/S0950-351X(05)80130-2; MILLER MM, 1994, P NATL ACAD SCI USA, V91, P4397, DOI 10.1073/pnas.91.10.4397; MILLER WL, 1988, ENDOCR REV, V9, P295, DOI 10.1210/edrv-9-3-295; MOBBS CV, 1994, NEUROBIOL AGING, V15, P523, DOI 10.1016/0197-4580(94)90092-2; MOBBS CV, 1993, GENETICA, V91, P239, DOI 10.1007/BF01436001; MONSMA FJ, 1989, NATURE, V342, P926, DOI 10.1038/342926a0; MORRISON NA, 1994, NATURE, V367, P284, DOI 10.1038/367284a0; MORRISON NA, 1992, P NATL ACAD SCI USA, V89, P6665, DOI 10.1073/pnas.89.15.6665; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1993, FUNCT ECOL, V7, P469, DOI 10.2307/2390034; MURPHY LC, 1989, MOL ENDOCRINOL, V3, P687, DOI 10.1210/mend-3-4-687; NAFTOLIN F, 1988, J STEROID BIOCHEM, V30, P195, DOI 10.1016/0022-4731(88)90093-3; NAGYLAKI T, 1977, GENETICS, V85, P347; NAKANISHI S, 1992, SCIENCE, V258, P597, DOI 10.1126/science.1329206; NEBERT DW, 1984, BIOL REPROD, V30, P363, DOI 10.1095/biolreprod30.2.363; NEEL JV, 1962, AM J HUM GENET, V14, P353; NEUKIRCH A, 1982, J COMP PHYSIOL, V146, P35, DOI 10.1007/BF00688714; NIJHOUT HF, 1994, SCIENCE, V265, P44, DOI 10.1126/science.7912450; NIJHOUT HF, 1990, PROC R SOC SER B-BIO, V239, P81, DOI 10.1098/rspb.1990.0009; Nijhout HF, 1991, DEV EVOLUTION BUTTER; NIZETIC D, 1988, IMMUNOGENETICS, V28, P91, DOI 10.1007/BF00346156; NOODEN LD, 1988, SENESCENCE AGING PLA; OGREN L, 1994, PHYSL REPRODUCTION, P873; OLLIER W, 1989, DIS MARKERS, V7, P139; OMALLEY BW, 1989, ENDOCRINOLOGY, V125, P1119, DOI 10.1210/endo-125-3-1119; OMEARA GF, 1970, J MED ENTOMOL, V7, P328, DOI 10.1093/jmedent/7.3.328; OMEARA GF, 1981, WYEOMYIA SMITHII PHY, V6, P437; ORENTREICH N, 1984, J CLIN ENDOCR METAB, V59, P551, DOI 10.1210/jcem-59-3-551; PALLI SR, 1992, DEV BIOL, V150, P306, DOI 10.1016/0012-1606(92)90244-B; PARFITT AM, 1983, J CLIN INVEST, V72, P1396, DOI 10.1172/JCI111096; PARO R, 1991, P NATL ACAD SCI USA, V88, P263, DOI 10.1073/pnas.88.1.263; PARTRIDGE L, 1993, NATURE, V366, P404, DOI 10.1038/366404a0; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PEARCE D, 1993, SCIENCE, V259, P1161, DOI 10.1126/science.8382376; Pener M. P., 1985, COMPREHENSIVE INSECT, P491; PETERS JG, 1987, CAN J ZOOL, V65, P3177, DOI 10.1139/z87-476; PETERS WL, 1988, NAT HIST MAY, P8; PHARIS RP, 1985, ANNU REV PLANT PHYS, V36, P517, DOI 10.1146/annurev.pp.36.060185.002505; PHILLIPS ML, 1986, P NATL ACAD SCI USA, V83, P3474, DOI 10.1073/pnas.83.10.3474; PICKLES ALAN, 1931, TRANS ENT SOC LONDON, V79, P263; PIKE MC, 1983, NATURE, V303, P767, DOI 10.1038/303767a0; POMIANKOWSKI A, 1992, NATURE, V356, P293, DOI 10.1038/356293b0; PORTER TD, 1991, J BIOL CHEM, V266, P13469; POURRIOT R, 1975, OECOLOGIA, V22, P67, DOI 10.1007/BF00345259; PRINZ PN, 1983, J GERONTOL, V38, P519, DOI 10.1093/geronj/38.5.519; RANKIN MA, 1992, ANNU REV ENTOMOL, V37, P533; RAVEN PH, 1986, BIOL PLANTS; REINBOTH R, 1988, ENVIRON BIOL FISH, V2, P455; Renfree Marilyn B., 1994, P213; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; ROBERTSON O, 1961, P NATL ACAD SCI USA, V47, P609, DOI 10.1073/pnas.47.4.609; ROBERTSON O, 1961, CIRC RES, V9, P826, DOI 10.1161/01.RES.9.4.826; ROBERTSON OH, 1963, GEN COMP ENDOCR, V3, P422, DOI 10.1016/0016-6480(63)90056-X; ROBERTSON OH, 1961, GEN COMP ENDOCR, V1, P473, DOI 10.1016/0016-6480(61)90009-0; ROBINOW S, 1993, DEVELOPMENT, V119, P1251; ROBINSON GE, 1992, ANNU REV ENTOMOL, V37, P637, DOI 10.1146/annurev.en.37.010192.003225; Rockstein M., 1973, P371; ROGERS AR, 1993, EVOL ECOL, V7, P406, DOI 10.1007/BF01237872; ROLLISON ML, 1986, GROWTH DISORDERS INF; ROPER C, 1993, EVOLUTION, V47, P445, DOI 10.1111/j.1558-5646.1993.tb02105.x; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Rose M. R., 1985, REV BIOL RES AGING, V2, P85; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1984, EVOLUTION, V38, P516, DOI 10.1111/j.1558-5646.1984.tb00317.x; ROSE MR, 1981, GENETICS, V97, P187; ROSE MR, 1990, GENETICS EVOLUTION C, P33; ROSE MR, 1983, POPULATION BIOL, P47; ROTHSCHILD MF, 1986, 3RD WORLD C GEN APPL, V11, P197; ROY S, 1990, P NATL ACAD SCI USA, V87, P404, DOI 10.1073/pnas.87.1.404; RUDMAN D, 1981, J CLIN INVEST, V67, P1361, DOI 10.1172/JCI110164; RUDMAN D, 1990, NEW ENGL J MED, V323, P1, DOI 10.1056/NEJM199007053230101; RUSSFIELD AB, 1982, MOUSE BIOMEDICAL RES, V4, P465; RUTZ W, 1977, 8TH P INT C IUSSI WA, P26; SAAL FSV, 1985, BIOL REPROD, V32, P1116, DOI 10.1095/biolreprod32.5.1116; SAAL FSV, 1989, J ANIM SCI, V67, P1824; SAAL FSV, 1994, PHYSL REPRODUCTION, V2, P1213; Saitoh Tsunao, 1994, Society for Neuroscience Abstracts, V20, P1675; SAJI M, 1992, P NATL ACAD SCI USA, V89, P1944, DOI 10.1073/pnas.89.5.1944; SAKAGAMI S F, 1968, Researches on Population Ecology (Tokyo), V10, P127, DOI 10.1007/BF02510869; SAPOLSKY RM, 1993, J GERONTOL, V48, pB196, DOI 10.1093/geronj/48.5.B196; SAPOLSKY RM, 1990, J NEUROSCI, V10, P2897; SAPOLSKY RM, 1992, STRESS AGING BRAIN M; SATTA Y, 1994, P NATL ACAD SCI USA, V91, P7184, DOI 10.1073/pnas.91.15.7184; SAUNDERS RL, 1988, ARTERIOSCLEROSIS, V8, P378, DOI 10.1161/01.ATV.8.4.378; SCHREIBER E, 1993, NUCLEIC ACIDS RES, V21, P253, DOI 10.1093/nar/21.2.253; SCHULLER AGP, 1993, ENDOCRINOLOGY, V132, P2544, DOI 10.1210/en.132.6.2544; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; SCHWARTZ AG, 1988, CANCER RES, V48, P4817; SEEBURG PH, 1993, TRENDS NEUROSCI, V16, P359, DOI 10.1016/0166-2236(93)90093-2; SEEMAN P, 1980, PHARMACOL REV, V32, P229; Sell D. R. a. M. V. M., HDB PHYSL AGING; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; Shapiro A. M., 1976, EVOL BIOL, V9, P259; SHENG M, 1994, NATURE, V368, P144, DOI 10.1038/368144a0; SHERMAN L, 1993, DEVELOPMENT, V118, P1313; SHI YB, 1992, J BIOL CHEM, V267, P733; SHORT RV, 1994, DIFFERENCES SEXES; SIMMONS MJ, 1977, ANNU REV GENET, V11, P49, DOI 10.1146/annurev.ge.11.120177.000405; SIMMONS MJ, 1980, GENETICS, V94, P467; SKIPPER JK, 1993, P NATL ACAD SCI USA, V90, P7172, DOI 10.1073/pnas.90.15.7172; SLEDDENS HFBM, 1992, NUCLEIC ACIDS RES, V20, P1427; SLOVITER RS, 1989, SCIENCE, V243, P535, DOI 10.1126/science.2911756; SMITH DF, 1992, J BIOL CHEM, V267, P1350; SMITH GR, 1989, FISHERIES, V14, P4, DOI 10.1577/1548-8446(1989)014<0004:TCASNO>2.0.CO;2; SMITH GS, 1977, NATURE, V270, P727, DOI 10.1038/270727a0; Smith GS, 1990, GENETIC EFFECTS AGIN, P457; SODERSTROM TR, 1979, BIOTROPICA, V11, P161, DOI 10.2307/2388036; SOLANO AR, 1988, ENDOCRINOLOGY, V122, P2080, DOI 10.1210/endo-122-5-2080; SONNTAG WE, 1985, J GERONTOL, V40, P689, DOI 10.1093/geronj/40.6.689; SONNTAG WE, 1988, NEUROENDOCRINOLOGY, V47, P482, DOI 10.1159/000124959; SPECKER JL, 1992, GEN COMP ENDOCR, V88, P397, DOI 10.1016/0016-6480(92)90234-B; SPECTOR TD, 1988, DIS MARKERS, V6, P119; SRINIVASAN G, 1994, MOL ENDOCRINOL, V8, P189, DOI 10.1210/me.8.2.189; STAGSTED J, 1990, CELL, V62, P297, DOI 10.1016/0092-8674(90)90367-N; STEARLEY RF, 1993, T AM FISH SOC, V122, P1, DOI 10.1577/1548-8659(1993)122<0001:POTPTA>2.3.CO;2; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1992, OIKOS; Stearns SC., 1992, EVOLUTION LIFE HIST; Steele J.E., 1985, P99; Steeves TA, 1989, PATTERNS PLANT DEV; STEWARD FC, 1964, SCIENCE, V143, P20, DOI 10.1126/science.143.3601.20; SUGAWARA A, 1993, ENDOCRINOLOGY, V133, P965, DOI 10.1210/en.133.3.965; SWAAB DF, 1992, PROGR BRAIN RES HUMA, P205; SZPIRER J, 1991, GENOMICS, V11, P168, DOI 10.1016/0888-7543(91)90114-T; TAKAHATA N, 1990, GENETICS, V124, P967; TALBOT WS, 1993, CELL, V73, P1323, DOI 10.1016/0092-8674(93)90359-X; TASSABEHJI M, 1992, NATURE, V355, P635, DOI 10.1038/355635a0; TAYLOR JA, 1992, NUCLEIC ACIDS RES, V20, P2895, DOI 10.1093/nar/20.11.2895; TEMPLETON AR, 1989, GENOME, V31, P296, DOI 10.1139/g89-047; TEMPLETON AR, 1978, SCREWWORM PROBLEM, P81; TEMPLETON AR, 1990, ECOLOGICAL EVOLUTION; THOMAS HE, 1993, NATURE, V362, P471, DOI 10.1038/362471a0; THOMAS JH, 1993, GENETICS, V134, P1105; THUMMEL CS, 1990, BIOESSAYS, V12, P561, DOI 10.1002/bies.950121202; TODD JA, 1990, IMMUNOL TODAY, V11, P122, DOI 10.1016/0167-5699(90)90049-F; TROWSDALE J, 1993, TRENDS GENET, V9, P117, DOI 10.1016/0168-9525(93)90205-V; TRPIS M, 1978, J MED ENTOMOL, V15, P73, DOI 10.1093/jmedent/15.1.73; TUCIC N, 1988, HEREDITY, V60, P55, DOI 10.1038/hdy.1988.9; UDELSMAN R, 1993, J CLIN INVEST, V91, P465, DOI 10.1172/JCI116224; UEHARA H, 1991, IMMUNOGENETICS, V34, P266; UNO H, 1969, J GERONTOL, V24, P23, DOI 10.1093/geronj/24.1.23; UNO H, 1967, J INVEST DERMATOL, V49, P288, DOI 10.1038/jid.1967.138; UNO H, 1989, J NEUROSCI, V9, P1705; Ursprung H., 1972, BIOL IMAGINAL DISCS; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANHEUKELEM WF, 1979, REPROD ECOLOGY MARIN, P123; VANHOUTEN J, 1994, TRENDS NEUROSCI, V17, P62, DOI 10.1016/0166-2236(94)90076-0; VERLAND S, 1989, J IMMUNOL, V143, P945; VLASSARA H, 1994, LAB INVEST, V70, P138; WALLIS AE, 1993, MOL ENDOCRINOL, V7, P409, DOI 10.1210/me.7.3.409; WALLIS M, 1992, J MOL ENDOCRINOL, V9, P185, DOI 10.1677/jme.0.0090185; WARNER CM, 1987, BIOL REPROD, V36, P611, DOI 10.1095/biolreprod36.3.611; WASSERTHAL LT, 1982, J COMP PHYSIOL, V147, P27, DOI 10.1007/BF00689287; WATTIAUX JM, 1968, EVOLUTION, V22, P406, DOI 10.1111/j.1558-5646.1968.tb05908.x; WATTIAUX JM, 1968, EXP GERONTOL, V3, P55, DOI 10.1016/0531-5565(68)90056-9; WEAVER JU, 1992, J MOL ENDOCRINOL, V9, P295, DOI 10.1677/jme.0.0090295; WEI LL, 1990, MOL ENDOCRINOL, V4, P1833, DOI 10.1210/mend-4-12-1833; WEST MJ, 1993, NEUROBIOL AGING, V14, P287, DOI 10.1016/0197-4580(93)90113-P; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; Williams George C., 1992, NATURAL SELECTION DO; Wilson E.O., 1975, P1; WILSON J D, 1975, Birth Defects Original Article Series, V11, P1; WINKLER DW, 1993, P NATL ACAD SCI USA, V90, P11439, DOI 10.1073/pnas.90.24.11439; Winston M., 1987, BIOL HONEY BEE; WODINSKY J, 1977, SCIENCE, V198, P948, DOI 10.1126/science.198.4320.948; WOLFE JM, 1940, AM J CANC, V38, P383; Wright S, 1977, EVOLUTION GENETICS P; XU Y, 1993, P NATL ACAD SCI USA, V90, P227, DOI 10.1073/pnas.90.1.227; YAMAZAKI K, 1994, P NATL ACAD SCI USA, V91, P3735, DOI 10.1073/pnas.91.9.3735; YAMAZAKI K, 1976, J EXP MED, V144, P1324, DOI 10.1084/jem.144.5.1324; YAMAZAKI K, 1983, SCIENCE, V221, P186, DOI 10.1126/science.6857281; YAO TP, 1993, NATURE, V366, P476, DOI 10.1038/366476a0; YEN SSC, 1977, J REPROD MED, V18, P287; YUNIS EJ, 1984, GENETICS, V108, P999; YUNIS EJ, 1993, GENETICA, V91, P211, DOI 10.1007/BF01435999; ZHENG JQ, 1994, NATURE, V368, P140, DOI 10.1038/368140a0; ZIMMET P, 1990, DIABETES METAB REV, V6, P91, DOI 10.1002/dmr.5610060203; ZWAAN B, 1993, THESIS RIJKSUNIVERSI 429 170 173 0 29 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0033-5770 1539-7718 Q REV BIOL Q. Rev. Biol. MAR 1995 70 1 1 52 10.1086/418864 52 Biology Life Sciences & Biomedicine - Other Topics QR891 WOS:A1995QR89100001 7732161 2019-02-26 J ALI, MH; SALMAN, SD; ALADHUB, AY ALI, MH; SALMAN, SD; ALADHUB, AY POPULATION-DYNAMICS OF THE HYMENOSOMATID CRAB ELAMENOPSIS-KEMPI IN A BRACKISH SUBTIDAL REGION OF BASRA, IRAQ SCIENTIA MARINA English Article POPULATION BIOLOGY; GROWTH; HYMENOSOMATIDAE; CRAB ELAMENOPSIS KEMPI; SHATT AL-ARAB; IRAQ CRUSTACEA; AMPHIPODA The population biology of the subtidal crab Elamenopsis kempi (Chopra and Das) in the Garmat-Ali region of the Shatt Al-Arab River System at Basrah, Iraq was investigated, in the period from 16th March 1987 to 15th February 1989. Population density in this area ranged from 150 ind.m(-2)+/-22.75 SE to 1310 ind.m(-2) +/- 54.1 SE. No significant relation between water temperature and density of the species was noticed. The breeding season extended from April to November or December. The life span of the summer cohorts may be 4-8 months while the overwintering cohorts may live for 9-11 months. Sexual maturity of females may be attained at a size of 3.2 mm C.L. Males may achieve maturity at 3.9 mm C.L. Cohorts with shorter life span may achieve sexual maturity in 1-2 months after settlement, while those with a longer life span may do so in about 6-8 months. The incubation period in the field may extend to 35 days. In the laboratory, the incubation period ranged from 12 to 23 days depending on temperature. Egg size at the first stage of development was 0.356 mm. Fecundity is a function of size, and varied from 90 to 463 eggs. Several life history strategies are implicated by this species to compensate for low fecundity: 1. Maximum care of the brood. as the eggs are incubated in an internal cavity and not externally. 2. High percentage of ovigerous females which may be, in certain times, about 90% of mature females. 3. Production of multiple broods (9.6-10.5) during one breeding season. Rate of mortality was lower amongst the overwintering cohorts than the summer cohorts. Summer cohorts have a growth rate of 0.021 mm d(-1)and the overwintering cohorts grew at 0.015 mm d(-1). UNIV BASRAH,COLL SCI,DEPT BIOL,BASRAH,IRAQ ALI, MH (reprint author), UNIV BASRAH,CTR MARINE SCI,DEPT MARINE BIOL,BASRAH,IRAQ. ABELE L G, 1972, Crustaceana (Leiden), V23, P209, DOI 10.1163/156854072X00129; ALI MH, 1986, ESTUAR COAST SHELF S, V23, P339, DOI 10.1016/0272-7714(86)90032-6; ALI MH, 1989, THEIS U BASRAH; ALI MH, 1979, THESIS U BASRAH; BARNARD K. H., 1950, ANN S AFRICAN MUS, V38, P1; BROEKHUYSEN G. J., 1955, ANN S AFRICAN MUS, V41, P313; CASSIE R. M., 1954, AUSTRALIAN JOUR MARINE AND FRESHWATER RES, V5, P513; CHOPRA B., 1930, REC INDIAN MUS, V32, P413; DEFORGES RB, 1977, COMITE NATIONAL FRAN, V42, P71; ELLIOTT J. M., 1977, PUBLICATION FRESHWAT; HARDING JP, 1949, J MAR BIOL ASSOC UK, V28, P141, DOI 10.1017/S0025315400055259; HARTNOLL R G, 1974, Crustaceana (Leiden), V27, P131, DOI 10.1163/156854074X00334; HENMI Y, 1989, MAR BIOL, V101, P53, DOI 10.1007/BF00393477; LUCAS J S, 1982, Memoirs of the Queensland Museum, V20, P401; LUCAS J S, 1980, Records of the Australian Museum, V33, P148; LUCAS JS, 1970, AUST J MAR FRESH RES, V21, P149; LUCAS JS, 1975, B MAR SCI, V25, P94; MELROSE MJ, 1975, MEM NZ OCEANOGR I, V34, P1; SALMAN SD, 1990, HYDROBIOLOGIA, V196, P79, DOI 10.1007/BF00008895; SALMAN SD, 1975, THESIS U BASRAH; SOUD KD, 1987, THESIS U BASRAH; SULTAN EN, 1987, THESIS U BASRAH; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; WALKER K, 1969, AUST J MAR FRESH RES, V20, P163; WILDISH DJ, 1982, INT J INVER REP DEV, V5, P1 25 14 14 0 0 INST CIENCIAS MAR BARCELONA BARCELONA PASSEIG JOAN DE BORBO, 08039 BARCELONA, SPAIN 0214-8358 SCI MAR Sci. Mar. MAR 1995 59 1 1 13 13 Marine & Freshwater Biology Marine & Freshwater Biology RK115 WOS:A1995RK11500001 2019-02-26 J SEAMAN, MT; KOK, DJ; MEINTJES, S SEAMAN, MT; KOK, DJ; MEINTJES, S THE DESCRIPTION AND PRELIMINARY PREDICTION OF THE INUNDATION PATTERN IN A TEMPORARY HABITAT OF ANOSTRACA, NOTOSTRACA AND CONCHOSTRACA IN SOUTH-AFRICA HYDROBIOLOGIA English Article; Proceedings Paper 2nd International Large Branchiopod Symposium JUL 30-AUG 03, 1993 ULM, GERMANY TEMPORARY WATER; PANS; SOUTHERN AFRICA; MODEL; BRANCHIOPOD CRUSTACEA; GROWTH To explain the life-history strategies of temporary-water fauna, one must be able to describe the temporary habitat. It is necessary to know when it will be wet, how often this occurs, for what period each inundation lasts and what variability there is in this pattern. For logistic reasons one cannot follow each inundation in a pan for the ten years or more needed to establish a pattern. Based on the available inundation data for two seasons at Bain's Vlei Pan in a semi-arid part of South Africa, a model has been developed, using the rainfall pattern over ten years at nearby Bloemfontein, to predict inundation. Over a ten-year period predicted inundations ranged up to 87 days as a result of repeat-rain, with a mean period of 18.8 days, while a rain-episode of less than 20 mm was insufficient to inundate the pans. There was an average of 5.8 inundations per season. Single inundations do not exceed 20 days due to evaporation. When successive showers fall before periods of inundation are over, a specific extension of inundation is predictable. The precise implications of the inundation pattern on organisms requires much analysis. However, there are strong indications based on the growth, survival and pattern of egg-production among three species (Anostracan - Branchipodopsis tridens, Conchostracan - Leptestheriella inermis, and Notostracan - Triops granarius) from the pan and one species (Anostracan - Streptocephalus macrourus) from more permanent waters nearby, that the pattern of inundation is selective of the community held by the pan. SEAMAN, MT (reprint author), UNIV ORANGE FREE STATE,DEPT ZOOL & ENTOMOL,BLOEMFONTEIN 9300,SOUTH AFRICA. ANDERSON G, 1990, FRESHWATER BIOL, V24, P429, DOI 10.1111/j.1365-2427.1990.tb00722.x; BRENDONCK L, 1991, CRUSTACEANA, V60, P145, DOI 10.1163/156854091X00362; GELDENHUYS JN, 1982, S AFR J WILDL RES, V12, P55; GOUDIE AS, 1985, Z GEOMORPHOL, V29, P1; LeRoux J.S., 1978, S AFR GEOGR, V6, P167; MAC ARTHUR ROBERT H., 1967; MITCHELL SA, 1991, HYDROBIOLOGIA, V212, P1, DOI 10.1007/BF00025980; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; SEAMAN MT, 1991, HYDROBIOLOGIA, V212, P87, DOI 10.1007/BF00025991; SEAMAN MT, 1987, OCCASIONAL REPORT SE, V28, P260; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1993, EVOLUTION LIFE HIST; 1986, MANAGMENET WATER RES 13 7 7 1 2 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia FEB 24 1995 298 1-3 93 104 10.1007/BF00033804 12 Marine & Freshwater Biology Marine & Freshwater Biology QU206 WOS:A1995QU20600009 2019-02-26 J METCALFE, NB; TAYLOR, AC; THORPE, JE METCALFE, NB; TAYLOR, AC; THORPE, JE METABOLIC-RATE, SOCIAL-STATUS AND LIFE-HISTORY STRATEGIES IN ATLANTIC SALMON ANIMAL BEHAVIOUR English Article GROWTH-RATES; SALAR L; COMPETITIVE ABILITY; SEAWARD MIGRATION; RAINBOW-TROUT; PARUS-MAJOR; FOOD-HABITS; OTOLITH; ENERGETICS; DOMINANCE An animal's relative social status has major short- and long-term consequences, yet its determinants are rarely known. Here a strong relationship between status and standard metabolic rate (SMR) in juvenile Atlantic salmon, Salmo salar, is demonstrated; the higher the SMR, the more dominant the fish. After controlling for SMR, the relative size, weight or date of first feeding of two opponents had no effect on the outcome of encounters. Moreover, these differences in SMR are not a consequence of experience in encounters, since it has previously been shown that the onset of aggressive behaviour occurs later. Since relative social status has a significant influence on subsequent developmental pathways in this species, these results indicate an indirect link between intraspecific variation in metabolic rates and life-history strategies. SOAFD,FRESHWATER FISHERIES LAB,PITLOCHRY PH16 5LB,PERTH,SCOTLAND METCALFE, NB (reprint author), UNIV GLASGOW,DEPT ZOOL,GLASGOW G12 8QQ,LANARK,SCOTLAND. Metcalfe, Neil/C-5997-2009 Metcalfe, Neil/0000-0002-1970-9349 ABBOTT JC, 1985, BEHAVIOUR, V108, P104; ANDERSSON S, 1991, ANIM BEHAV, V41, P895, DOI 10.1016/S0003-3472(05)80356-2; Brett J, 1979, FISH PHYSIOL, V8, P279, DOI DOI 10.1016/S1546-5098(08)60029-1; BRYANT DM, 1994, ANIM BEHAV, V48, P447, DOI 10.1006/anbe.1994.1258; DANZMANN RG, 1987, PHYSIOL ZOOL, V60, P211, DOI 10.1086/physzool.60.2.30158645; DILL PA, 1977, ANIM BEHAV, V25, P116, DOI 10.1016/0003-3472(77)90073-2; DIXON WJ, 1983, BMDP STATISTICAL SOF; FAUSCH KD, 1984, CAN J ZOOL, V62, P441, DOI 10.1139/z84-067; Groot C., 1991, PACIFIC SALMON LIFE; HARVEY PH, 1991, AM NAT, V137, P556, DOI 10.1086/285183; HAYES JP, 1992, FUNCT ECOL, V6, P5, DOI 10.2307/2389765; HOGSTAD O, 1987, AUK, V104, P333; Huntingford FA, 1987, ANIMAL CONFLICT; LEMEL J, 1993, ANIM BEHAV, V45, P549, DOI 10.1006/anbe.1993.1065; MCNAB BK, 1980, AM NAT, V116, P106, DOI 10.1086/283614; MCNAB BK, 1986, ECOL MONOGR, V56, P1, DOI 10.2307/2937268; METCALFE NB, 1992, J FISH BIOL, V41, P93, DOI 10.1111/j.1095-8649.1992.tb03871.x; METCALFE NB, 1991, CAN J ZOOL, V69, P815, DOI 10.1139/z91-121; METCALFE NB, 1990, CAN J ZOOL, V68, P2630, DOI 10.1139/z90-367; METCALFE NB, 1986, J FISH BIOL, V28, P525, DOI 10.1111/j.1095-8649.1986.tb05190.x; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; METCALFE NB, 1992, J ANIM ECOL, V61, P585, DOI 10.2307/5613; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P21, DOI 10.1098/rspb.1989.0010; MOSEGAARD H, 1988, CAN J FISH AQUAT SCI, V45, P1514, DOI 10.1139/f88-180; NORUSIS MJ, 1988, SPSS PC PLUS ADV STA; Priede I.G., 1985, P33; ROSKAFT E, 1986, ANIM BEHAV, V34, P838, DOI 10.1016/S0003-3472(86)80069-0; STEFFENSEN JF, 1989, FISH PHYSIOL BIOCHEM, V6, P49, DOI 10.1007/BF02995809; THORPE JE, 1994, T AM FISH SOC, V123, P606; THORPE JE, 1989, J FISH BIOL, V35, P295; TITUS RG, 1991, CAN J FISH AQUAT SCI, V48, P19, DOI 10.1139/f91-003; TREVELYAN R, 1990, FUNCT ECOL, V4, P135, DOI 10.2307/2389332; WRIGHT PJ, 1990, J FISH BIOL, V36, P241, DOI 10.1111/j.1095-8649.1990.tb05599.x; WRIGHT PJ, 1991, J FISH BIOL, V38, P929, DOI 10.1111/j.1095-8649.1991.tb03632.x; YAMAMOTO K, 1991, COMP BIOCHEM PHYS A, V100, P113 35 299 318 4 92 ACADEMIC PRESS (LONDON) LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0003-3472 ANIM BEHAV Anim. Behav. FEB 1995 49 2 431 436 10.1006/anbe.1995.0056 6 Behavioral Sciences; Zoology Behavioral Sciences; Zoology QH123 WOS:A1995QH12300014 2019-02-26 J MARTIN, TE MARTIN, TE AVIAN LIFE-HISTORY EVOLUTION IN RELATION TO NEST SITES, NEST PREDATION, AND FOOD ECOLOGICAL MONOGRAPHS English Review ADULT SURVIVAL; CLUTCH SIZE; COST OF REPRODUCTION; FECUNDITY; LIFE HISTORY TRAITS; NEST PREDATION; NUMBER OF BROODS; REPRODUCTIVE EFFORT AGE-SPECIFIC MORTALITY; CLUTCH SIZE VARIATION; BLACKBIRD AGELAIUS-PHOENICEUS; MITOCHONDRIAL-DNA VARIATION; AMERICAN WOOD WARBLERS; WHITE-CROWNED SPARROWS; RED-WINGED BLACKBIRDS; TIT PARUS-MONTANUS; REPRODUCTIVE SUCCESS; BREEDING BIOLOGY Food limitation is generally thought to underlie much of the variation in life history traits of birds. I examined variation and covariation of life history traits of 123 North American Passeriformes and Piciformes in relation to nest sites, nest predation, and foraging sites to examine the possible roles of these ecological factors in life history evolution of birds. Annual fecundity was strongly inversely related to adult survival, even when phylogenetic effects were controlled. Only a little of the variation in fecundity and survival was related to foraging sites, whereas these traits varied strongly among nest sites. Interspecific differences in nest predation were correlated with much of the variation in life history traits among nest sites, although energy trade-offs with covarying traits also may account for some variation. For example, increased nest predation is associated with a shortened nestling period and broth are associated with more broods per year, but number of broods is inversely correlated with clutch size, possibly due to an energy trade-off. Number of broods was much more strongly correlated with annual fecundity and adult survival among species than was clutch size, suggesting that clutch size may not be the primary fecundity trait on which selection is acting. Ultimately, food limitation may cause trade-offs between annual fecundity and adult survival, but differences among species in fecundity and adult survival may not be explained by differences in food abundance and instead represent differing tactics for partitioning similar levels of food limitation. Variation in fecundity and adult survival is more clearly organized by nest sites and more closely correlated with nest predation, species that use nest sites with greater nest predation have shorter nestling periods and more broods, yielding higher fecundity, which in turn is associated with reduced adult survival. Fecundity also varied with migratory tendencies; short-distance migrants had more broods and greater fecundity than did neotropical migrants and residents using similar nest sites. However, migratory tendencies and habitat use were confounded. making separation of these two effects difficult. Nonetheless, the conventional view that neotropical migrants have fewer broods than residents was not supported when nest site effects were controlled. MARTIN, TE (reprint author), UNIV MONTANA, US NATL BIOL SURVEY, MONTANA COOPERAT WILDLIFE RES UNIT, MISSOULA, MT 59812 USA. Martin, Thomas/F-6016-2011; Langerhans, R./A-7205-2009 Martin, Thomas/0000-0002-4028-4867; ALBANO DJ, 1992, CONDOR, V94, P371, DOI 10.2307/1369210; ALLEN RW, 1952, AM MIDL NAT, V47, P606, DOI 10.2307/2422034; Anderson A. A., 1973, CACTUS WREN; ANDREN H, 1988, ECOLOGY, V69, P544, DOI 10.2307/1940455; ARCESE P, 1988, J ANIM ECOL, V57, P119, DOI 10.2307/4768; ARNER DS, 1945, WILSON B, V57, P56; AVISE JC, 1980, J HERED, V71, P303, DOI 10.1093/oxfordjournals.jhered.a109376; AVISE JC, 1980, AUK, V97, P135; AVISE JC, 1980, SYST ZOOL, V29, P323, DOI 10.2307/2992339; BALDA R P, 1972, Living Bird, V11, P5; BARBER DR, 1993, THESIS U ARKANSAS FA; BARLOW JON C., 1962, UNIV KANSAS PUBL MUS NAT HIST, V12, P241; BAYLOR LM, 1976, BIRD BANDING, V47, P301, DOI 10.2307/4512264; BEDARD J, 1984, WILSON BULL, V96, P196; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; BERGER AJ, 1967, JACK PINE WARBLER, V45, P117; BERMINGHAM E, 1992, P NATL ACAD SCI USA, V89, P6624, DOI 10.1073/pnas.89.14.6624; BERRIGAN D, 1993, EVOL ECOL, V7, P270, DOI 10.1007/BF01237744; BEST LB, 1978, AUK, V95, P9, DOI 10.2307/4085491; BEST LB, 1980, CONDOR, V82, P149, DOI 10.2307/1367468; BLANCHER PJ, 1985, J ANIM ECOL, V54, P1017, DOI 10.2307/4394; BLEDSOE AH, 1988, AUK, V105, P504; BLONDEL J, 1993, AUK, V110, P511, DOI 10.2307/4088415; BLONDEL J, 1992, J ANIM ECOL, V61, P205, DOI 10.2307/5523; BOGGS CL, 1993, ECOLOGY, V74, P433, DOI 10.2307/1939305; BRAWN JD, 1991, OECOLOGIA, V86, P193, DOI 10.1007/BF00317531; BRAY O E, 1979, Bird-Banding, V50, P252; BREWER RICHARD, 1963, AUK, V80, P9; BRISKIE JV, 1989, J ANIM ECOL, V58, P653, DOI 10.2307/4854; BRITTINGHAM MC, 1988, ECOLOGY, V69, P581, DOI 10.2307/1941007; BROKS DR, 1991, PHYLOGENY ECOLOGY BE; BROWN CR, 1992, ECOLOGY, V73, P1718, DOI 10.2307/1940023; BRYANT DM, 1979, J ZOOL, V189, P275; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; BULL E L, 1988, U S Forest Service Research Note PNW, P1; BULMER MG, 1984, J THEOR BIOL, V106, P529, DOI 10.1016/0022-5193(84)90005-5; BURNS J T, 1982, Wilson Bulletin, V94, P338; BUTLER RW, 1984, WILSON BULL, V96, P408; CACCAMISE DF, 1977, WILSON BULL, V89, P396; CALOW P, 1977, J ANIM ECOL, V46, P765, DOI 10.2307/3639; CANNINGS RJ, 1981, WILSON BULL, V93, P519; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Chapman L. B., 1955, Bird-Banding, V26, P45, DOI 10.2307/4510512; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CLARK CW, 1992, AM NAT, V139, P521, DOI 10.1086/285342; CLOBERT J, 1991, BIRD POPULATION STUD, P75; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Collias NE, 1984, NEST BUILDING BIRD B; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; CROCKETT A B, 1977, Living Bird, V16, P7; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; CURIO E, 1989, TRENDS ECOL EVOL, V4, P81, DOI 10.1016/0169-5347(89)90155-9; CUSTER TW, 1977, AUK, V94, P505; Dahlsten D.L., 1979, P217; DAHLSTEN DL, 1992, WILDLIFE 2001 : POPULATIONS, P502; DARLEY JA, 1977, BIRD BANDING, V48, P145; DAVIES NB, 1977, ANIM BEHAV, V25, P1016, DOI 10.1016/0003-3472(77)90053-7; DAVIS C M, 1978, Living Bird, V17, P237; DHONDT AA, 1992, J ANIM ECOL, V61, P643, DOI 10.2307/5619; DHONDT AA, 1990, NATURE, V348, P723, DOI 10.1038/348723a0; DIXON CL, 1978, AUK, V95, P235; Dobson A., 1990, Current Ornithology, V7, P115; DRILLING NE, 1988, AUK, V105, P480; Dunning JB, 1984, W BIRD BANDING ASS M, V1; EATON STEPHEN W., 1958, WILSON BUL, V70, P211; EDWARDS SV, 1993, AM NAT, V141, P754, DOI 10.1086/285504; Ehrlich P., 1988, BIRDERS HDB FIELD GU; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; EKMAN J, 1984, J ANIM ECOL, V53, P119, DOI 10.2307/4346; ERWIN W. G., 1935, JOUR TENNESSEE ACAD SCI, V10, P179; ETGES WJ, 1989, EVOL ECOL, V3, P189, DOI 10.1007/BF02270720; EVANS EW, 1978, CONDOR, V80, P34, DOI 10.2307/1367788; EVENDEN FRED G., 1957, CONDOR, V59, P112, DOI 10.2307/1364571; FANKHAUSER DP, 1967, BIRD BANDING, V38, P139, DOI 10.2307/4511362; FANKHAUSER DP, 1971, BIRD BANDING, V42, P36, DOI 10.2307/4511715; FARNER DONALD S., 1949, WILSON BULL, V61, P68; Farner DS., 1955, RECENT STUDIES AVIAN, P397; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FINCH DM, 1983, CONDOR, V85, P355, DOI 10.2307/1367076; FISCHER DH, 1980, CONDOR, V82, P392, DOI 10.2307/1367560; Forde J.D., 1984, North American Bird Bander, V9, P5; FOSTER MS, 1974, EVOLUTION, V28, P182, DOI 10.1111/j.1558-5646.1974.tb00739.x; FRANZREB KE, 1989, US FISH WILDLIFE SER, V89, P1; Fretwell S., 1986, Current Ornithology, V4, P211; GABRIEL W, 1992, J EVOLUTION BIOL, V5, P41, DOI 10.1046/j.1420-9101.1992.5010041.x; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GAVRILETS S, 1993, J EVOLUTION BIOL, V6, P31, DOI 10.1046/j.1420-9101.1993.6010031.x; GEUPEL GR, 1990, CONDOR, V92, P67, DOI 10.2307/1368384; GILL FB, 1993, EVOLUTION, V47, P195, DOI 10.1111/j.1558-5646.1993.tb01210.x; GODDARD SV, 1967, WILSON BULL, V79, P283; GOOSSEN JP, 1982, CAN FIELD NAT, V96, P189; GRABER JW, 1977, ILLINOIS NATURAL HIS, V102, P1; GRABERJW, 1991, ECOL MONOGR, V31, P313; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Greenberg R., 1980, P493; GRZYBOWSKI JA, 1990, POPULATION NESTING E; GUMBEL T, 1994, IN PRESS AUK; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HAGGERTY TM, 1988, WILSON BULL, V100, P247; Hann Harry W., 1948, BIRD BANDING, V19, P5; HANN HW, 1937, WILSON B, V49, P145; HARMESON JP, 1974, AUK, V91, P348; HARVELL CD, 1986, AM NAT, V128, P810, DOI 10.1086/284607; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1990, COMP SOCIOECOLOGY, P305; HENNY CJ, 1972, 1 US FISH WILDL SER; HILL GE, 1988, CONDOR, V90, P379, DOI 10.2307/1368566; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HOFSLUND P. B., 1957, AUK, V74, P42; HOFSLUND PB, 1959, P MINN ACAD SCI, V27, P144; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; HOGSTEDT G, 1981, AM NAT, V118, P568, DOI 10.1086/283850; HOLCOMB L C, 1972, Nebraska Bird Review, V40, P50; HOLCOMB LC, 1972, AUK, V89, P837, DOI 10.2307/4084112; HOLCOMB LC, 1969, BIRD BANDING, V40, P26, DOI 10.2307/4511534; HOLM CH, 1973, ECOLOGY, V54, P356, DOI 10.2307/1934343; HOLMES RT, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P563; HOLMES RT, 1992, AUK, V109, P321, DOI 10.2307/4088201; Howell J. C., 1942, American Midland Naturalist, V28, P529, DOI 10.2307/2420891; HUSSELL DJT, 1985, ORNIS SCAND, V16, P205, DOI 10.2307/3676632; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; INGOLD DJ, 1989, AUK, V106, P209; JOERN WT, 1983, AUK, V100, P497; Johnson E. J, 1980, IOWA STATE J RES, V55, P171; JOHNSON NK, 1988, CONDOR, V90, P428, DOI 10.2307/1368571; JOHNSON NK, 1983, AUK, V100, P871; JOHNSON RG, 1990, J WILDLIFE MANAGE, V54, P106, DOI 10.2307/3808909; JOHNSTON RICHARD F., 1956, CONDOR, V58, P254, DOI 10.2307/1364704; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; Kale HW, 1965, PUBL NUTTALL ORNITHO, V5, P1; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; KELLY JP, 1993, CONDOR, V95, P83, DOI 10.2307/1369389; KENDEIGH SC, 1937, ECOL MONOGR, V7, P91; KING JR, 1987, CONDOR, V89, P549, DOI 10.2307/1368644; KLOMP H, 1970, ARDEA, V58, P1; KNAPTON R W, 1978, Living Bird, V17, P137; KNAPTON RW, 1984, WILSON BULL, V96, P60; KNUPP DM, 1977, AUK, V94, P80; Koenig W. D., 1987, POPULATION ECOLOGY C; KOENIG WD, 1987, AUK, V104, P757; KREMENTZ DG, 1989, OIKOS, V56, P203, DOI 10.2307/3565337; KRIDELBAUGH A, 1983, WILSON BULL, V95, P303; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; La Rivers Ira, 1944, AMER MIDLAND NAT, V32, P417; LACK D, 1949, IBIS, V91, P64, DOI 10.1111/j.1474-919X.1949.tb02237.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lack D, 1954, NATURAL REGULATION A; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANYON SM, 1985, SYST ZOOL, V34, P404, DOI 10.2307/2413205; Lanyon W. E., 1957, Publ Nuttall orn Cl Cambridge Mass, VNo. 1, P1; Laskey A. R., 1957, Bird-Banding, V28, P135; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LAWRENCE LOUISE deKIRILINE, 1953, CANADIAN FIELD NAT, V67, P47; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LEONARD ML, 1987, AUK, V104, P491, DOI 10.2307/4087548; LEVINS R, 1963, AM NAT, V97, P75, DOI 10.1086/282258; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LINDEN M, 1988, OIKOS, V51, P285, DOI 10.2307/3565309; LIVELY CM, 1986, AM NAT, V128, P561, DOI 10.1086/284588; LONGCORE JR, 1969, WILSON BULL, V81, P396; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; LYNCH M, 1992, ECOLOGY, V73, P1620, DOI 10.2307/1940015; MAC ARTHUR ROBERT H., 1967; MAJOR RE, 1991, EMU, V91, P236, DOI 10.1071/MU9910236; MARTEN JA, 1986, CONDOR, V88, P409, DOI 10.2307/1368266; Martin T.E., 1992, Current Ornithology, V9, P163; MARTIN TE, 1993, AM NAT, V142, P937, DOI 10.1086/285582; MARTIN TE, 1988, ECOLOGY, V69, P74, DOI 10.2307/1943162; MARTIN TE, 1988, P NATL ACAD SCI USA, V85, P2196, DOI 10.1073/pnas.85.7.2196; MARTIN TE, 1993, AM NAT, V141, P897, DOI 10.1086/285515; MARTIN TE, 1988, AM NAT, V132, P900, DOI 10.1086/284896; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P455; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 1988, EVOL ECOL, V2, P37, DOI 10.1007/BF02071587; MARTINS EP, 1991, EVOLUTION, V45, P534, DOI 10.1111/j.1558-5646.1991.tb04328.x; MARVIL RE, 1989, AUK, V106, P476; MARZLUFF JM, 1988, ANIM BEHAV, V36, P1, DOI 10.1016/S0003-3472(88)80244-6; MARZLUFF JM, 1992, PLAYON JAY BEHAVIORA; Mayfield H.F., 1960, KIRTLANDS WARBLER; MAYFIELD HAROLD, 1961, WILSON BULL, V73, P255; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MAYFIELD HF, 1983, AUK, V100, P974; MAYHEW WILBUR W., 1958, CONDOR, V60, P7, DOI 10.2307/1365704; McCallum D.A., 1990, NATO ASI Series Series G Ecological Sciences, V24, P103; MCLENNAN DA, 1991, EVOLUTION, V45, P1773, DOI 10.1111/j.1558-5646.1991.tb02687.x; MEANLEY B, 1971, N AM FAUNA, V69, P1; MEWALDT L. RICHARD, 1964, BIRD BANDING, V35, P184, DOI 10.2307/4511084; MEWALDT LR, 1985, CONDOR, V87, P494, DOI 10.2307/1367946; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MIDDLETON ALA, 1979, ECOLOGY, V60, P418, DOI 10.2307/1937669; MILLER EH, 1993, IN PRES P WORKSHOP C; MOLLER AP, 1989, OIKOS, V56, P421, DOI 10.2307/3565628; MORTON ML, 1972, CONDOR, V74, P152, DOI 10.2307/1366279; Mumford K. E., 1964, Miscellaneous Publications Museum of Zoology University of Michigan, VNo. 125, P1; Murphy E.C., 1986, Current Ornithology, V4, P141; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; MURPHY MT, 1986, CONDOR, V88, P446, DOI 10.2307/1368270; MURPHY MT, 1983, AUK, V100, P326; MURPHY MT, 1983, CONDOR, V85, P208, DOI 10.2307/1367258; MURPHY MT, 1983, ECOLOGY, V64, P914, DOI 10.2307/1937213; MURPHY MT, 1989, OIKOS, V54, P3, DOI 10.2307/3565891; MURRAY BG, 1985, ORNITHOL MONOGR, V36, P505; NEWMAN GA, 1970, WILSON BULL, V82, P304; Nice MM, 1957, AUK, V74, P305, DOI [10.2307/4081922, DOI 10.2307/4081922]; Nice MM, 1937, T LINNAEAN SOC NEW Y, V4, P1; NICHOLS JD, 1981, STUDIES AVIAN BIOL, V6, P121; NICKELL WP, 1965, AM MIDL NAT, V73, P433, DOI 10.2307/2423464; NICKELL WP, 1985, AM MIDL NAT, V18, P10; NILSSON SG, 1986, AUK, V103, P432; NILSSON SG, 1984, ORNIS SCAND, V15, P167, DOI 10.2307/3675958; Nolan Jr V., 1978, ORNITHOL MONOGR, V26, P1; NOLAN V, 1963, ECOLOGY, V44, P305, DOI 10.2307/1932177; NORMENT CJ, 1992, CONDOR, V94, P955, DOI 10.2307/1369292; NORRIS ROBERT A., 1958, UNIV CALIFORNIA PUBL ZOOL, V56, P119; NUR N, 1988, ARDEA, V76, P155; NUR N., 1990, POPULATION BIOL PASS, P281; O'Connor R.J., 1985, P105; O'Connor R.J., 1990, P175; ORTEGO B, 1978, WILSON BULL, V90, P457; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PAYNE RB, 1990, CONDOR, V92, P938, DOI 10.2307/1368730; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PETERSEN KL, 1987, BEHAV ECOL SOCIOBIOL, V21, P351, DOI 10.1007/BF00299929; PETRINOVICH L, 1982, AUK, V99, P1; PETTIFOR RA, 1908, NATRE, V336, P360; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PICKWELL GAYLE B., 1931, TRANS ACAD SCI ST LOUIS, V27, P1; PICMAN J, 1981, CAN J ZOOL, V59, P2284, DOI 10.1139/z81-307; PICMAN J, 1980, CAN J ZOOL, V58, P337, DOI 10.1139/z80-043; PINKOWSKI BC, 1977, CONDOR, V79, P289, DOI 10.2307/1368006; PIPER WH, 1990, BEHAV ECOL SOCIOBIOL, V26, P201; PORTER D K, 1975, Southwestern Naturalist, V19, P429, DOI 10.2307/3670401; POST W, 1982, BEHAV ECOL SOCIOBIOL, V10, P101, DOI 10.1007/BF00300169; POST W, 1974, ECOLOGY, V55, P564, DOI 10.2307/1935147; Price F.E., 1983, STUD AVIAN BIOL, V7, P1; PRICE JOHN B., 1936, CONDOR, V38, P23, DOI 10.2307/1363588; PRICE T, 1989, AM NAT, V134, P950, DOI 10.1086/285023; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PURVIS A, 1991, COMP ANAL INDEPENDEN; RENDELL WB, 1989, CONDOR, V91, P875, DOI 10.2307/1368072; REYNOLDS JD, 1984, WILSON BULL, V96, P488; REYNOLDS TD, 1981, CONDOR, V83, P61, DOI 10.2307/1367605; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; RICHMAN AD, 1992, NATURE, V355, P817, DOI 10.1038/355817a0; RICKLEFS RE, 1984, ECOLOGY, V65, P1602, DOI 10.2307/1939139; RICKLEFS RE, 1968, IBIS, V110, P419, DOI 10.1111/j.1474-919X.1968.tb00058.x; Ricklefs RE, 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI DOI 10.5479/SI.00810282.9; Ritchison G., 1983, Western Birds, V14, P159; Ritter L.V., 1983, Western Birds, V14, P147; ROBBINS CS, 1989, P NATL ACAD SCI USA, V86, P7658, DOI 10.1073/pnas.86.19.7658; ROBBINS CS, 1989, WILDLIFE MONOGR, P1; ROBERTS JOL, 1971, BIRD BANDING, V42, P165, DOI 10.2307/4511771; ROBERTSON RJ, 1990, CAN J ZOOL, V68, P1046, DOI 10.1139/z90-152; ROBERTSON RJ, 1972, CAN J ZOOLOG, V50, P247, DOI 10.1139/z72-036; RODENHOUSE NL, 1992, ECOLOGY, V73, P357, DOI 10.2307/1938747; Roff Derek A., 1992; ROOT RB, 1969, CONDOR, V71, P16, DOI 10.2307/1366044; ROSE MR, 1981, GENETICS, V97, P172; ROSEBERR.JL, 1970, WILSON BULL, V82, P243; ROTENBERRY JT, 1989, CONDOR, V91, P1, DOI 10.2307/1368142; ROTH RR, 1993, AUK, V110, P37; ROWLEY I, 1991, EMU, V91, P197, DOI 10.1071/MU9910197; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; SAETHER BE, 1989, ORNIS SCAND, V20, P13, DOI 10.2307/3676702; SAKAI H F, 1988, Western Birds, V19, P49; SAMUEL DE, 1971, WILSON BULL, V83, P284; SAVIDGE IR, 1974, BIRD BANDING, V45, P152, DOI 10.2307/4512023; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHLUTER D, 1993, EVOLUTION, V47, P658, DOI 10.1111/j.1558-5646.1993.tb02119.x; Schrantz F. G., 1943, Auk, V60, P367; SCHULZE PC, 1990, ECOLOGY, V71, P2224, DOI 10.2307/1938635; SEBER GAF, 1965, BIOMETRIKA, V52, P249; SHERRY TW, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P431; SHIELDS WM, 1987, ECOLOGY, V68, P1373, DOI 10.2307/1939221; SHIELDS WM, 1984, AUK, V101, P780, DOI 10.2307/4086904; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; Sibley C.G., 1990, PHYLOGENY CLASSIFICA; SIEVING KE, 1992, ECOLOGY, V73, P2310, DOI 10.2307/1941477; Simons L.S., 1988, THESIS ARIZONA STATE; SIMONS LS, 1990, ECOLOGY, V71, P869, DOI 10.2307/1937358; SIMS E, 1948, REDSTART, V16, P1; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Skutch AF, 1985, ORNITHOLOGICAL MONOG, P575, DOI DOI 10.2307/40168306; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; SMALL MF, 1988, OECOLOGIA, V76, P62, DOI 10.1007/BF00379601; SMITH HG, 1988, BEHAV ECOL SOCIOBIOL, V22, P447, DOI 10.1007/BF00294983; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; SMITH KG, 1982, AUK, V99, P650; Southern W. E., 1958, Jack Pine Warbler, V36, P185; SOUTHERN WILLIAM E., 1958, JACK PINE WARBLER, V36, P105; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STERNS SC, 1992, EVOLUTION LIFE HIST; Stewart P.A., 1988, North American Bird Bander, V13, P106; STEWART PA, 1978, N AM BIRD BANDER, V3, P93; STEWART RM, 1978, LIVING BIRD, V16, P83; STEWART ROBERT E., 1953, WILSON BULL, V65, P99; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; STOKES ALLEN W., 1950, WILSON BULL, V62, P107; Sturm Louis, 1945, AUK, V62, P189; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; SUTHERLAND WJ, 1989, TRENDS ECOL EVOL, V4, P273, DOI 10.1016/0169-5347(89)90200-0; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; SYDEMAN WJ, 1988, AUK, V105, P70; TAMPLIN JW, 1993, WILSON BULL, V105, P93; TARVIN K, 1991, THESIS U ARKANSAS FA; Terres J., 1980, AUDUBON SOC ENCY N A; Thomas R. H., 1946, WILSON B, V58, P143; THOMPSON CF, 1973, ECOL MONOGR, V43, P145, DOI 10.2307/1942192; THRELFALL W, 1982, J FIELD ORNITHOL, V53, P235; TUOMI J, 1983, AM ZOOL, V23, P25; TYLER JD, 1992, WILSON BULL, V104, P95; VERBEEK NAM, 1970, AUK, V87, P425; von HAARTMAN LARS, 1968, ORNIS FENN, V45, P1; VONBROMSSEN A, 1980, ORNIS SCAND, V11, P173, DOI 10.2307/3676121; VONHAARTMAN L, 1957, EVOLUTION, V11, P339, DOI 10.2307/2405797; WALKINSH.LH, 1966, BIRD BANDING, V37, P227, DOI 10.2307/4511309; Walkinshaw L. H., 1966, Jack Pine Warbler, V44, P150; WALKINSHAW LAWRENCE H., 1953, WILSON BULL, V65, P152; WALKINSHAW LH, 1966, WILSON BULL, V78, P31; WALKINSHAW LH, 1968, LIFE HIST N AM CARDI, P1217; WALTERS JR, 1988, ETHOLOGY, V78, P275; WEBSTER MS, 1992, EVOLUTION, V46, P1621, DOI 10.1111/j.1558-5646.1992.tb01158.x; WEEKS HP, 1979, WILSON BULL, V91, P441; WEEKS HP, 1978, AUK, V95, P656; WESTMORELAND D, 1986, AUK, V103, P196; WESTON JG, 1947, CONDOR, V49, P54; WHEELWRIGHT NT, 1991, CAN J ZOOL, V69, P2540, DOI 10.1139/z91-358; WHITCOMB RF, 1981, FOREST ISLAND DYNAMI, P125; WHITE SC, 1973, BIRD BANDING, V44, P110, DOI 10.2307/4511945; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WILCOVE DS, 1985, ECOLOGY, V66, P1211, DOI 10.2307/1939174; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMS GC, 1965, ADAPTATION NATURAL S; WINKLER DW, 1987, AM NAT, V130, P526, DOI 10.1086/284729; WITTENBERGER JF, 1978, CONDOR, V80, P355, DOI 10.2307/1367186; WRAY T, 1982, AUK, V99, P157; YAHNER RH, 1991, J WILDLIFE MANAGE, V55, P155, DOI 10.2307/3809253; YAHNER RH, 1988, J WILDLIFE MANAGE, V52, P158, DOI 10.2307/3801078; YAHNER RH, 1983, WILSON BULL, V95, P573; YOMTOV Y, 1992, IBIS, V134, P374, DOI 10.1111/j.1474-919X.1992.tb08017.x; YOUNG HOWARD, 1955, AMER MIDLAND NAT, V53, P329, DOI 10.2307/2422072; YOUNG HOWARD, 1963, AUK, V80, P145; ZAIAS J, 1989, ETHOLOGY, V80, P94; Zimmerman J.L., 1989, North American Bird Bander, V14, P83; ZIMMERMAN J. L., 1963, JACK PINE WARBLER, V41, P142; ZIMMERMAN JL, 1983, WILSON BULL, V95, P7; ZIMMERMAN JL, 1982, AUK, V99, P292; ZIMMERMAN JL, 1984, CONDOR, V86, P68, DOI 10.2307/1367348; ZINK RM, 1982, AUK, V99, P632; ZINK RM, 1993, WILSON BULL, V105, P399; ZINK RM, 1991, CONDOR, V93, P98, DOI 10.2307/1368611; ZINK RM, 1991, AUK, V108, P578, DOI 10.2307/4088098; ZINK RM, 1991, CONDOR, V93, P318, DOI 10.2307/1368947; ZINK RM, 1984, SYST ZOOL, V33, P205, DOI 10.2307/2413021; ZINK RM, 1990, SYST ZOOL, V39, P148, DOI 10.2307/2992452 372 928 979 17 361 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9615 1557-7015 ECOL MONOGR Ecol. Monogr. FEB 1995 65 1 101 127 10.2307/2937160 27 Ecology Environmental Sciences & Ecology QF463 WOS:A1995QF46300004 2019-02-26 J SAULNIER, TP; REEKIE, EG SAULNIER, TP; REEKIE, EG EFFECT OF REPRODUCTION ON NITROGEN ALLOCATION AND CARBON GAIN IN OENOTHERA-BIENNIS JOURNAL OF ECOLOGY English Article COST OF REPRODUCTION; LIFE HISTORY THEORY; RESOURCE ALLOCATION; REPRODUCTIVE EFFORT; SIZE DEPENDENT REPRODUCTION; TIME OF REPRODUCTION LIFE HISTORIES; SEED PRODUCTION; ANNUAL PLANTS; GROWTH; PHOTOSYNTHESIS; FLOWERS 1 Reproduction in Oenothera biennis has been shown to decrease growth in young plants, whereas reproduction in older plants temporarily increases growth and has no negative effect on growth in the long term. The causes of these variable effects were investigated by examining the effect of reproduction upon photosynthetic rate, leaf area production, chlorophyll content and nitrogen allocation in young versus old plants grown at low versus high nutrient availability. 2 Reproduction was controlled experimentally by gibberellic acid applications, and measurements were made at three developmental stages: bolting, flowering, and capsule maturation. At each stage, measurements were also made on corresponding vegetative plants of the same age. 3 Reproduction decreased nitrogen allocation to roots and increased allocation to shoots. The decrease in root allocation was greater at low nutrient availability. Reproduction increased leaf area and, at bolting, the magnitude of this increase was greater in plants grown at high nutrient availability. Reproduction generally decreased photosynthetic rates, chlorophyll content and nitrogen content of leaves. The magnitude of the decreases was usually less for plants grown at high nutrient availability. Photosynthetic rate increased with reproduction for older plants grown at high nutrient availability in the latter part of the experiment. 4 We suggest that differences among Oenothera biennis individuals in the effect of reproduction on carbon gain are related to differences in extent of nutrient reserves. Older plants and plants grown at high nutrient availability have greater nutrient reserves upon which to draw when reproduction is initiated. Reproduction in younger plants grown at lower nutrient availability will rapidly deplete nutrient reserves and nutrients which are part of the photosynthetic apparatus (e.g. the nitrogen within the chlorophyll molecule) will have to be mobilized to supply reproductive structures. Reproduction in this latter case will therefore have more of a detrimental effect on photosynthetic rate and leaf area production. ACADIA UNIV,DEPT BIOL,WOLFVILLE,NS B0P 1X0,CANADA Antonovics J., 1980, LIMITS ACTION ALLOCA, P1; Bazzaz F. A., 1992, SEEDS ECOLOGY REGENE, P1; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; BURT RL, 1964, AUST J BIOL SCI, V17, P867, DOI 10.1071/BI9640867; CHIARIELLO N, 1984, ECOLOGY, V65, P1290, DOI 10.2307/1938334; EVANS JR, 1989, OECOLOGIA, V78, P9, DOI 10.1007/BF00377192; Field C. B, 1986, EC PLANT FORM FUNCTI, P25; GROSS KL, 1981, OECOLOGIA, V20, P197; HALL IV, 1988, CAN J PLANT SCI, V68, P163, DOI 10.4141/cjps88-016; Harper J.L., 1977, POPULATION BIOL PLAN; HEILMEIER H, 1987, OECOLOGIA, V73, P109, DOI 10.1007/BF00376985; HEILMEIER H, 1986, OECOLOGIA, V70, P446; JURIK TW, 1985, OECOLOGIA, V66, P394, DOI 10.1007/BF00378305; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; KING D, 1982, THEOR POPUL BIOL, V21, P194, DOI 10.1016/0040-5809(82)90013-2; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; LACEY EP, 1986, TRENDS ECOL EVOL, V43, P72; MAUN MA, 1974, CAN J BOT, V52, P2181, DOI 10.1139/b74-282; NEALES TF, 1968, BOT REV, V34, P107, DOI 10.1007/BF02872604; REEKIE EG, 1991, J ECOL, V79, P1061, DOI 10.2307/2261098; REEKIE EG, 1992, OECOLOGIA, V90, P21, DOI 10.1007/BF00317804; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REINARTZ JA, 1984, J ECOL, V72, P897, DOI 10.2307/2259539; ROSS CW, 1974, PLANT PHYSL LABORATO; SALISBURY FB, 1978, PLANT PHYSIOL; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SHIPLEY B, 1992, AM NAT, V139, P467, DOI 10.1086/285339; SILBY R, 1986, J THEOR BIOL, V123, P311; SINCLAIR TR, 1975, SCIENCE, V189, P565, DOI 10.1126/science.189.4202.565; STEARNS SC, 1977, ANNU REV ECOL SYST, V12, P253; TOMPSON BK, 1991, CAN J BOT, V69, P442; Weiner J., 1988, Plant reproductive ecology: patterns and strategies, P228; WERK KS, 1983, OECOLOGIA, V57, P311, DOI 10.1007/BF00377173; WILLIAMS K, 1985, OECOLOGIA, V66, P530, DOI 10.1007/BF00379345; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798 37 34 35 0 5 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0022-0477 J ECOL J. Ecol. FEB 1995 83 1 23 29 10.2307/2261147 7 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology QG774 WOS:A1995QG77400003 2019-02-26 J HUGUENEY, M; ESCUILLIE, F HUGUENEY, M; ESCUILLIE, F K-STRATEGY AND ADAPTATIVE SPECIALIZATION IN STENEOFIBER FROM MONTAIGU-LE-BLIN (DEPT ALLIER, FRANCE LOWER MIOCENE, MN 2A, +/-23 MA) - FIRST EVIDENCE OF FOSSIL LIFE-HISTORY STRATEGIES IN CASTORID RODENTS PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY English Article PUY The fresh-water limestone deposits of Montaigu-le-Blin yielded a small pocket containing almost exclusively cranial and post-cranial elements of the castorid Steneofiber. A full inventory of these skeletal remains makes it possible to recognize an assemblage of two adults and eight juveniles of two different ages. It corresponds well to a family group of the extant beaver, usually consisting of an adult breeding pair together with a variable number of yearlings and kits; consequently this pocket is interpreted as a fossil burrow containing the catastrophic death-assemblage of a Steneofiber family, and we infer a K-strategy model of reproductive pattern for this genus. Moreover, a minute fossil ungual phalanx corresponds well to the ''combing-claw'' of the extant beaver and suggests the development of non-wettable fur, an important adaptation to a semiaquatic way of life. The shape of the fossil caudal vertebrae, without the wing-like transverse processes of Castor, indicates that the tail of Steneofiber was cylindrical, however. HUGUENEY, M (reprint author), UNIV LYON 1, CTR PALEONTOL STRAT & PALEOECOL, CNRS, URA 11, 27-43 BVD 11 NOVEMBRE, F-69622 VILLEURBANNE, FRANCE. BUCHER H, 1985, GEOBIOS-LYON, V18, P823, DOI 10.1016/S0016-6995(85)80037-1; CHENEVAL J, 1989, PALAEOGEOGR PALAEOCL, V73, P295, DOI 10.1016/0031-0182(89)90010-2; FILHOL H, 1979, BIBL ECOLE HAUTES ET, V19; FISH FE, 1993, J MAMMAL, V74, P275, DOI 10.2307/1382382; FRANZEN J L, 1975, Senckenbergiana Lethaea, V56, P233; GEOFFROYSAINTHI.E, 1833, REV ENCY, V59, P76; Gervais P., 1859, ZOOLOGIE PALEONTOLOG; GRASSE PP, 1955, TRAITE ZOOL, V17, P1173; HUGUENEY M, 1990, PALAEONTOLOGY, V33, P495; Hugueney M., 1975, C INT CNRS, V218, P791; KORTH WW, 1986, PALAEOGEOGR PALAEOCL, V52, P227, DOI 10.1016/0031-0182(86)90048-9; KOTSAKIS T, 1989, Bollettino della Societa Paleontologica Italiana, V28, P271; KRETZOI M, 1974, WICHTIGERE STREUFUND, P415; MAC ARTHUR ROBERT H., 1967; MARTIN LD, 1977, PALAEOGEOGR PALAEOCL, V22, P173, DOI 10.1016/0031-0182(77)90027-X; MARTIN LD, 1987, S DAKOTA SCH MINES T, V3, P73; McLaughlin C.A., 1984, P267; MISONNE X, 1957, B I R SCI NAT BELG, V23, P1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Quinet GE, 1965, B I ROYAL SCI NATURE, V41, P1; SCHREUDER A., 1929, ARCH MUS TEYLER [HAARLEM], V6, P99; SCHREUDER A, 1951, ARCH NEERL ZOOL, V4, P400; Stirton R. A., 1935, University of California Publications in Geology, V23, P391 23 17 18 0 1 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0031-0182 1872-616X PALAEOGEOGR PALAEOCL Paleogeogr. Paleoclimatol. Paleoecol. FEB 1995 113 2-4 217 225 10.1016/0031-0182(95)00050-V 9 Geography, Physical; Geosciences, Multidisciplinary; Paleontology Physical Geography; Geology; Paleontology QN177 WOS:A1995QN17700006 2019-02-26 J MAGURRAN, AE; SEGHERS, BH; SHAW, PW; CARVALHO, GR MAGURRAN, AE; SEGHERS, BH; SHAW, PW; CARVALHO, GR THE BEHAVIORAL DIVERSITY AND EVOLUTION OF GUPPY, POECILIA-RETICULATA, POPULATIONS IN TRINIDAD ADVANCES IN THE STUDY OF BEHAVIOR, VOL 24 ADVANCES IN THE STUDY OF BEHAVIOR English Review LIFE-HISTORY EVOLUTION; GASTEROSTEUS-ACULEATUS L; MEDAKA ORYZIAS-LATIPES; MALE PREDATION RISK; SEXUAL SELECTION; FEMALE CHOICE; COLOR PATTERNS; MATING SUCCESS; MATE CHOICE; STICKLEBACKS GASTEROSTEUS UNIV OXFORD,DEPT ZOOL,OXFORD OX1 3PS,ENGLAND; UNIV COLL SWANSEA,SCH BIOL SCI,SWANSEA,W GLAM,WALES MAGURRAN, AE (reprint author), UNIV ST ANDREWS,SCH BIOL & MED SCI,ST ANDREWS,FIFE,SCOTLAND. Magurran, Anne/D-7463-2013 Magurran, Anne/0000-0002-0036-2795 ALI N, 1989, THESIS U W INDIES TR; Baker JA, 1994, EVOLUTIONARY BIOL TH, P144; BAKKER TCM, 1986, BEHAVIOUR, V98, P1, DOI 10.1163/156853986X00937; BAKKER TCM, 1985, BEHAVIOUR, V93, P69, DOI 10.1163/156853986X00748; Beardmore J.A., 1979, Aquilo Ser Zoologica, V20, P100; Bell M. F., 1994, EVOLUTIONARY BIOL TH; BELL MA, 1977, COPEIA, P277; Bell Michael A., 1994, P1; BOESEMAN M, 1960, STUD FAUNA CURACAO, V48, P72; BOOS HEA, 1984, LIVING WORLD, P19; BREDEN F, 1987, NATURE, V329, P831, DOI 10.1038/329831a0; Buth Donald G., 1994, P61; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; CARVALHO GR, 1993, J FISH BIOL, V43, P53, DOI 10.1111/j.1095-8649.1993.tb01179.x; CARVALHO GR, 1995, IN PRESS BIOL J LINN; Chace F. A., 1969, Bulletin United States National Museum, V292, P1; CHAKRABORTY R, 1977, EVOLUTION, V31, P347, DOI 10.1111/j.1558-5646.1977.tb01017.x; Constantz G.D., 1989, P33; CONSTANTZ GD, 1975, ECOLOGY, V56, P966, DOI 10.2307/1936307; Coss R.G., 1985, P167; Courtenay W.R. Jr, 1989, P319; CURIO E, 1993, ADV STUD BEHAV, V22, P135, DOI 10.1016/S0065-3454(08)60407-6; Dawkins R., 1989, SELFISH GENE; DOMINEY WJ, 1980, NATURE, V320, P62; DOUGLAS ME, 1992, J THEOR BIOL, V99, P777; DUGATKIN LA, 1992, ANN ZOOL FENN, V29, P233; DUGATKIN LA, 1991, BEHAV ECOL SOCIOBIOL, V28, P243; DUGATKIN LA, 1993, BEHAV ECOL, V4, P289, DOI 10.1093/beheco/4.4.289; DUGATKIN LA, 1992, AM NAT, V139, P1384, DOI 10.1086/285392; DUGATKIN LA, 1988, BEHAV ECOL SOCIOBIOL, V23, P395, DOI 10.1007/BF00303714; DUSSAULT GV, 1981, CAN J ZOOL, V59, P684, DOI 10.1139/z81-098; Endler J.A., 1991, P169; Endler J.A., 1989, P625; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1991, VISION RES, V31, P587, DOI 10.1016/0042-6989(91)90109-I; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; ENDLER JA, 1992, AM NAT, V139, pS125, DOI 10.1086/285308; ENDLER JA, 1988, NATURE, V332, P593, DOI 10.1038/332593b0; Endler JA, 1986, NATURAL SELECTION WI; FAJEN A, 1992, EVOLUTION, V46, P1457, DOI 10.1111/j.1558-5646.1992.tb01136.x; Farr J.A., 1989, P91; FARR JA, 1983, EVOLUTION, V37, P1193, DOI 10.1111/j.1558-5646.1983.tb00235.x; FARR JA, 1977, EVOLUTION, V31, P162, DOI 10.1111/j.1558-5646.1977.tb00993.x; FARR JA, 1981, HEREDITY, V47, P237, DOI 10.1038/hdy.1981.79; Foster Susan A., 1994, P472; Foster Susan A., 1994, P381; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; Fryer G, 1972, CICHLID FISHES GREAT; GEOGE CJW, 1960, THESIS HARVARD U CAM; GILES N, 1984, ANIM BEHAV, V32, P264, DOI 10.1016/S0003-3472(84)80346-2; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; GROSS MR, 1982, Z TIERPSYCHOL, V60, P1; GYLLENSTEN U, 1985, J FISH BIOL, V26, P691, DOI 10.1111/j.1095-8649.1985.tb04309.x; HASKINS CP, 1951, EVOLUTION, V5, P216, DOI 10.1111/j.1558-5646.1951.tb02780.x; HASKINS CP, 1950, P NATL ACAD SCI USA, V36, P464, DOI 10.1073/pnas.36.9.464; HASKINS CP, 1961, VERTEBRATE SPECIATIO, P6320; HOELZEL AR, 1992, MOL GENETIC ANAL POP; HOUDE AE, 1988, ANIM BEHAV, V36, P510, DOI 10.1016/S0003-3472(88)80022-8; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HOUDE AE, 1988, ANIM BEHAV, V36, P888, DOI 10.1016/S0003-3472(88)80171-4; HOUDE AE, 1994, P ROY SOC B-BIOL SCI, V256, P125, DOI 10.1098/rspb.1994.0059; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; Huntingford F.A., 1994, P277; HUNTINGFORD FA, 1982, ANIM BEHAV, V30, P909, DOI 10.1016/S0003-3472(82)80165-6; JEFFREYS AJ, 1985, NATURE, V316, P76, DOI 10.1038/316076a0; KAPOORBIJAY P, 1992, CONSERVATION BIOL; KENNY JS, 1989, STUD FAUNA CURACAO, V123, P83; KODRICBROWN A, 1985, BEHAV ECOL SOCIOBIOL, V17, P199, DOI 10.1007/BF00300137; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; KODRICBROWN A, 1992, ANIM BEHAV, V44, P165, DOI 10.1016/S0003-3472(05)80766-3; KREBS JR, 1993, INTRO BEHAVIOURAL EC; KRUMHOLZ LA, 1948, ECOL MONOGR, V18, P1, DOI 10.2307/1948627; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; LICHT T, 1989, ETHOLOGY, V82, P238; Liley N. R., 1966, Behaviour Suppl, V13, P1; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LONG KD, 1989, ETHOLOGY, V82, P316; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; LUYTEN PH, 1991, BEHAV ECOL SOCIOBIOL, V28, P329, DOI 10.1007/BF00164382; LYNCH M, 1988, MOL BIOL EVOL, V5, P584; Magurran A. E., 1993, BEHAV TELEOST FISHES, P441; MAGURRAN AE, 1985, Z TIERPSYCHOL, V67, P167; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1991, P ROY SOC B-BIOL SCI, V246, P31, DOI 10.1098/rspb.1991.0121; MAGURRAN AE, 1994, BEHAVIOUR, V128, P121, DOI 10.1163/156853994X00073; MAGURRAN AE, 1986, BEHAV ECOL SOCIOBIOL, V19, P267, DOI 10.1007/BF00300641; MAGURRAN AE, 1994, J FISH BIOL, V45, P401, DOI 10.1111/j.1095-8649.1994.tb01322.x; MAGURRAN AE, 1993, MAR BEHAV PHYSIOL, V23, P29, DOI 10.1080/10236249309378855; MAGURRAN AE, 1990, ANIM BEHAV, V39, P834, DOI 10.1016/S0003-3472(05)80947-9; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1990, ANIM BEHAV, V40, P443, DOI 10.1016/S0003-3472(05)80524-X; MAGURRAN AE, 1987, PROC R SOC SER B-BIO, V229, P439, DOI 10.1098/rspb.1987.0004; MAGURRAN AE, 1990, ANN ZOOL FENN, V27, P51; MAGURRAN AE, 1990, ETHOLOGY, V84, P334, DOI 10.1111/j.1439-0310.1990.tb00807.x; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V258, P89, DOI 10.1098/rspb.1994.0147; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; MAGURRAN AE, 1992, P R SOC LOND B, V248, P177; MAITLAND PS, 1992, FRESHWATER FISHES; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MAY RM, 1990, NATURE, V347, P129, DOI 10.1038/347129a0; MAY RM, 1990, PHIL T R SOC LOND B, V330, P2932; Mayr E., 1963, ANIMAL SPECIES EVOLU; McPhail J.D., 1994, P399; MEYER A, 1990, NATURE, V347, P550, DOI 10.1038/347550a0; MILINSKI M, 1990, BEHAV ECOL SOCIOBIOL, V27, P17; MILINSKI M, 1987, NATURE, V325, P433, DOI 10.1038/325433a0; Milinski M, 1990, BEHAV ECOL, V1, P7, DOI 10.1093/beheco/1.1.7; MURPHY KE, 1991, ETHOLOGY, V88, P307; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; NEI M, 1975, EVOLUTION, V29, P1, DOI 10.1111/j.1558-5646.1975.tb00807.x; NEI M, 1973, P NATL ACAD SCI USA, V70, P3321, DOI 10.1073/pnas.70.12.3321; Nei M., 1975, MOL POPULATION GENET; NEILL SRS, 1974, J ZOOL, V172, P549, DOI 10.1111/j.1469-7998.1974.tb04385.x; OHGUCHI O, 1981, Z TIERPSYCHOL S, V23, P1; Parenti L.R., 1989, P3; Parenti LR, 1981, B AM MUS NAT HIST, V168, P335; PITCHER T, 1993, NETH J ZOOL, V42, P371; PITCHER TJ, 1993, BEHAV TELEOST FISHES, P363; POMIANKOWSKI A, 1994, TRENDS ECOL EVOL, V9, P242, DOI 10.1016/0169-5347(94)90287-9; Reimchen Thomas E., 1994, P240; REYNOLDS JD, 1993, ANIM BEHAV, V45, P145, DOI 10.1006/anbe.1993.1013; REYNOLDS JD, 1992, P ROY SOC B-BIOL SCI, V250, P57, DOI 10.1098/rspb.1992.0130; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D.N., 1989, P125; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; RICE WR, 1993, EVOLUTION, V27, P1637; RIDGWAY MS, 1984, CAN J ZOOL, V62, P1813, DOI 10.1139/z84-264; RODD FH, 1994, PHENOTYPIC PLASTICIT; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; RUZZANTE DE, 1991, EVOLUTION, V45, P1936, DOI 10.1111/j.1558-5646.1991.tb02698.x; RUZZANTE DE, 1993, EVOLUTION, V47, P456, DOI 10.1111/j.1558-5646.1993.tb02106.x; Schluter Dolph, 1993, P1; Seghers B.H., 1992, P81; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1973, THESIS U BRIT COLUMB; Seghers BH, 1978, VERH INT VEREIN LIMN, V20, P2055; Shaw E, 1970, DEV EVOLUTION BEHAVI, P452; SHAW PW, 1994, J FISH BIOL, V45, P875, DOI 10.1006/jfbi.1994.1184; SHAW PW, 1991, J FISH BIOL, V39, P203, DOI 10.1111/j.1095-8649.1991.tb05084.x; SHAW PW, 1992, P ROY SOC B-BIOL SCI, V248, P111, DOI 10.1098/rspb.1992.0049; SLATKIN M, 1993, EVOLUTION, V47, P264, DOI 10.1111/j.1558-5646.1993.tb01215.x; SMUTS BB, 1993, ADV STUD BEHAV, V22, P1, DOI 10.1016/S0065-3454(08)60404-0; Snelson F.F. Jr, 1989, P149; STONER G, 1988, BEHAV ECOL SOCIOBIOL, V22, P285, DOI 10.1007/BF00299844; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; THEODORAKIS CW, 1989, ANIM BEHAV, V38, P496, DOI 10.1016/S0003-3472(89)80042-9; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; THOMPSON JD, 1991, TRENDS ECOL EVOL, V6, P246, DOI 10.1016/0169-5347(91)90070-E; THORPE JP, 1983, PROTEIN POLYMORPHISM, P131; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Trexler J.C., 1989, P201; TREXLER JC, 1989, EVOLUTION, V44, P143; TREXLER JC, 1989, EVOLUTION, V44, P157; VIA S, 1993, AM NAT, V142, P352, DOI 10.1086/285542; WAPLES RS, 1987, EVOLUTION, V41, P385, DOI 10.1111/j.1558-5646.1987.tb05805.x; WARD RD, 1994, J FISH BIOL, V44, P213, DOI 10.1111/j.1095-8649.1994.tb01200.x; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WILSON DS, 1989, SPECIATION ITS CONSE, P366; WINEMILLER KO, 1993, OECOLOGIA, V95, P266, DOI 10.1007/BF00323499; WINER L, 1991, LIVING WORLD J TRINI, P25; Winge O, 1937, NATURE, V140, P467, DOI 10.1038/140467b0; WOURMS JP, 1981, AM ZOOL, V21, P473; ZHUIKOV AY, 1993, ANIM BEHAV, V45, P825, DOI 10.1006/anbe.1993.1098 171 103 104 3 118 ACADEMIC PRESS INC SAN DIEGO 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 0065-3454 ADV STUD BEHAV 1995 24 155 202 10.1016/S0065-3454(08)60394-0 48 Behavioral Sciences; Computer Science, Theory & Methods; Zoology Behavioral Sciences; Computer Science; Zoology BD99F WOS:A1995BD99F00004 2019-02-26 J PEREIRA, ME PEREIRA, ME DEVELOPMENT AND SOCIAL-DOMINANCE AMONG GROUP-LIVING PRIMATES AMERICAN JOURNAL OF PRIMATOLOGY English Article PRIMATES; LIFE HISTORY; DEVELOPMENT; GROWTH; SOCIAL DOMINANCE; SOCIAL SYSTEMS MACAQUES MACACA-SYLVANUS; JUVENILE SAVANNA BABOONS; RANGING LEMUR-CATTA; JAPANESE MACAQUES; OLIVE BABOONS; LIFE-HISTORY; BODY SIZE; AGONISTIC INTERACTIONS; NATURAL-POPULATION; PHENOTYPIC PLASTICITY Organisms are integrated systems whose physical and behavioral components codevelop and coevolve. Ontogenetic requirements in one domain are satisfied in part by prior or concurrent developments in another. This work explores how characteristic growth patterns in two primate groups interact with ecological, social, and other life-history constraints to promote the development of particular systems of agonistic relationship. First, the markedly size-dimorphic savanna baboons are contrasted with relatively nondimorphic macaques, where the pubertal growth capacity of males, relative to that of females, is comparatively modest. In baboons and other dimorphic Papionines, maturing males can be expected to invest more heavily in successful feeding competition, and known variation in the ontogeny of male-female dominance relations is well explained by this prediction. Data from five of the best-known species, for example, suggest that the female inclination to promote offspring dominance over male peers before puberty diminishes with increases in relative male size and growth potential at puberty. Potential mechanisms for the development of this pattern are discussed. Next, ontogenies are considered for ringtailed lemurs, a highly social, monomorphic prosimian primate in which seasonal scheduling of growth causes a large proportion of adult size to be achieved before weaning. In this species, daughters invariably develop strong alliances with their mothers, and pubertal females must overturn adults in dominance to remain in large natal groups. Despite life-history parallels between ringtails and the focal Papionines, the lemurs do not collaborate agonistically in ways that ensure matrilineal ''inheritance'' of dominance status, as seen in the monkeys. Body weight and individual fighting ability appear to determine dominance relations among infants, and asymmetries established before weaning typically remain stable until sexual maturation. Anatomical and behavioral data suggest that low visual acuity prevents ringtailed lemurs from developing a system of agonistic intervention that could stabilize adult dominance hierarchies and mediate rank inheritance. In any case, failure to promote the dominance of close kin is argued to have influenced life-history evolution in ringtailed lemurs extensively, including aspects of growth, reproductive biology, and social structure. These analyses identify foci for future research and illustrate the importance of bidirectional effects and feedback in the development and evolution of primate life histories and behavior. (C) 1995 Wiley-Liss, Inc. DUKE UNIV, CTR PRIMATE, DURHAM, NC USA Allee W. C., 1938, SOCIAL LIFE ANIMALS; ALTMANN J, 1993, AM J PRIMATOL, V30, P149, DOI 10.1002/ajp.1350300207; Altmann J., 1988, P403; Altmann J., 1980, BABOON MOTHERS INFAN; BAKERDITTUS A, 1985, THESIS U MARYLAND; BARTON RA, 1993, ANIM BEHAV, V46, P777, DOI 10.1006/anbe.1993.1255; BEKOFF M, 1981, OECOLOGIA, V50, P386, DOI 10.1007/BF00344981; Berman C.M., 1980, International Journal of Primatology, V1, P153, DOI 10.1007/BF02735595; BERNSTEIN IS, 1985, AM J PRIMATOL, V8, P37, DOI 10.1002/ajp.1350080105; BERNSTEIN IS, 1981, BEHAV BRAIN SCI, V4, P419, DOI 10.1017/S0140525X00009614; Boyce M.S., 1988, EVOLUTION LIFE HIST; Brody S, 1945, BIOENERGETICS GROWTH; Buss L, 1987, EVOLUTION INDIVIDUAL; BUSS S, 1987, BIOENERGETICS GROWTH; CHAPAIS B, 1988, ANIM BEHAV, V36, P1025, DOI 10.1016/S0003-3472(88)80062-9; CHAPAIS B, 1991, ANIM BEHAV, V41, P481, DOI 10.1016/S0003-3472(05)80851-6; CHAPAIS B, 1986, CAYO SANTIAGO MACAQU, P172; Chapais B., 1983, PRIMATE SOCIAL RELAT; Chapais B., 1983, PRIMATE SOCIAL RELAT, P200; Chapais Bernard, 1993, P245; Chapais Bernard, 1992, P29; Cheney D. L, 1990, MONKEYS SEE WORLD; Cheney D.L., 1983, PRIMATE SOCIAL RELAT, P278; CHENEY DL, 1977, BEHAV ECOL SOCIOBIOL, V2, P303, DOI 10.1007/BF00299742; CHEVERUD JM, 1992, J HUM EVOL, V23, P51, DOI 10.1016/0047-2484(92)90043-9; COELHO AM, 1985, NONHUMAN PRIMATE MOD, P125; CROWL TA, 1990, SCIENCE, V324, P58; DASSER V, 1988, ANIM BEHAV, V36, P225, DOI 10.1016/S0003-3472(88)80265-3; Datta S., 1983, PRIMATE SOCIAL RELAT, P103; DATTA SB, 1983, PRIMATE SOCIAL RELAT, P289; DATTA SB, 1983, PRIMATE SOCIAL RELAT, P93; de Waal F. B. M., 1977, Zeitschrift Tierpsychol, V44, P225; de Waal Frans B.M., 1993, P259; DEWAAL FBM, 1985, AM J PRIMATOL, V9, P73, DOI 10.1002/ajp.1350090202; DEWAAL FBM, 1989, COMP SOCIOECOLOGY, P243; DRICKAMER LC, 1974, FOLIA PRIMATOL, V21, P61, DOI 10.1159/000155596; ETTER RJ, 1989, ECOLOGY, V70, P1857, DOI 10.2307/1938118; EVANS CS, 1967, J ZOOLOGY LONDON, V156, P181; Fairbanks Lynn A., 1993, P211; Gottlieb G., 1992, INDIVIDUAL DEV EVOLU; GOULD L, 1990, INT J PRIMATOL, V11, P297, DOI 10.1007/BF02193002; GRAY H, 1977, ANATOMY DESCRIPTIVE; Hall B. K., 1994, HOMOLOGY HIERARCHICA; HAMILTON WJ, 1990, BEHAV ECOL SOCIOBIOL, V26, P357; Harcourt A. H., 1992, COALITIONS ALLIANCES; HARCOURT AH, 1987, J ZOOL, V213, P471, DOI 10.1111/j.1469-7998.1987.tb03721.x; HAUSFATER G, 1975, CONTRIB PRIMATOL, V7, P2; HILL DA, 1990, PRIMATES, V31, P33, DOI 10.1007/BF02381028; HINES M, 1942, CONTRIB EMBRYOL CARN, V196, P155; Ho M.-W., 1988, P117; HORROCKS J, 1983, ANIM BEHAV, V31, P772, DOI 10.1016/S0003-3472(83)80234-6; Huntingford FA, 1987, ANIMAL CONFLICT; Janson Charles H., 1993, P57; JARMAN P, 1983, BIOL REV, V58, P485, DOI 10.1111/j.1469-185X.1983.tb00398.x; JOHNSON JA, 1987, ANIM BEHAV, V35, P1694, DOI 10.1016/S0003-3472(87)80062-3; JOHNSON JA, 1989, BEHAV ECOL SOCIOBIOL, V24, P277, DOI 10.1007/BF00290903; JOLLY A, 1966, LEMUR BEHAVIOR; JOLLY A, 1984, FEMALE PRIMATES STUD, P197; JONES KC, 1983, FOLIA PRIMATOL, V40, P145, DOI 10.1159/000156096; KAPPELER PM, 1990, AM J PRIMATOL, V21, P201, DOI 10.1002/ajp.1350210304; KAPPELER PM, 1992, THESIS DUKE U DURHAM; KAPPELER PM, 1990, FOLIA PRIMATOL, V55, P91; KAWAMURA S, 1958, PRIMATES, V1, P148; KIRKEVOLD BC, 1987, COMP BEHAVIOR AFRICA, P39; KIRKWOOD JK, 1985, J ZOOL, V205, P123; KLOPFER P H, 1970, Zeitschrift fuer Tierpsychologie, V27, P984; KOFORD CB, 1963, SCIENCE, V141, P356, DOI 10.1126/science.141.3578.356; KOYAMA N, 1991, PRIMATOLOGY TODAY, P173; KUESTER J, 1988, FOLIA PRIMATOL, V51, P33, DOI 10.1159/000156354; Lee P. C., 1992, P391; LEE PC, 1979, ANIM BEHAV, V27, P576, DOI 10.1016/0003-3472(79)90193-3; LEIGH SR, 1992, J HUM EVOL, V23, P27, DOI 10.1016/0047-2484(92)90042-8; LINDBURG DL, 1987, COMP PRIMATE BIOL, V2, P167; MACEDONIA JM, 1986, AM J PRIMATOL, V11, P163, DOI 10.1002/ajp.1350110208; MACEDONIA JM, IN PRESS FOLIA PRIMA; Martin RD, 1990, PRIMATE ORIGINS EVOL; Maynard Smith J., 1986, PROBLEMS BIOL; MCLAREN IA, 1993, BIOL REV, V68, P1, DOI 10.1111/j.1469-185X.1993.tb00731.x; MORI A, 1979, Primates, V20, P371, DOI 10.1007/BF02373390; MORLAND HS, 1993, LEMUR SOCIAL SYSTEMS AND THEIR ECOLOGICAL BASIS, P193; Netto W.J., 1986, P291; NEURINGER M, 1981, Investigative Ophthalmology and Visual Science, V20, P49; NOE R, 1991, ETHOLOGY, V87, P97; Noe Ronald, 1992, P285; OYAMA S, 1985, ONTOGENY INFORMATION; PACKER C, 1979, FOLIA PRIMATOL, V31, P212, DOI 10.1159/000155884; PAUL A, 1984, FOLIA PRIMATOL, V42, P2, DOI 10.1159/000156140; Pereira M. E., 1993, JUVENILE PRIMATES LI; PEREIRA ME, 1989, ETHOLOGY, V80, P152; PEREIRA ME, 1986, ANIM BEHAV, V34, P935, DOI 10.1016/S0003-3472(86)80084-7; PEREIRA ME, 1988, ANIM BEHAV, V36, P184, DOI 10.1016/S0003-3472(88)80262-8; PEREIRA ME, 1988, ETHOLOGY, V79, P195, DOI 10.1111/j.1439-0310.1988.tb00711.x; PEREIRA ME, 1990, FOLIA PRIMATOL, V55, P96, DOI 10.1159/000156505; PEREIRA ME, 1993, LEMUR SOCIAL SYSTEMS AND THEIR ECOLOGICAL BASIS, P205; PEREIRA ME, 1991, BEHAV ECOL SOCIOBIOL, V28, P141; PEREIRA ME, 1995, AM J PRIMATOL, V35, P1, DOI 10.1002/ajp.1350350102; PEREIRA ME, 1994, ANN M ANIMAL BEHAVIO; PEREIRA ME, IN PRESS BEHAVIOUR; PEREIRA ME, 1991, PHYSL BEHAVIOR, V49; PEREIRA ME, 1985, NONHUMAN PRIMATE MOD, P217; Pereira Michael E., 1992, P117; Pereira Michael E., 1993, P17; Pereira Michael E., 1993, P285; Poirier FE, 1972, PRIMATE SOCIALIZATIO, P3; Pusey A.E., 1987, P250; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; RICKLEFS RE, 1983, AVIAN BIOL, V7, P1; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Roff Derek A., 1992; ROTH VL, 1991, J EVOLUTION BIOL, V4, P167, DOI 10.1046/j.1420-9101.1991.4020167.x; ROWELL TE, 1988, PRIMATE RAD EVOLUTIO, P439; Rubenstein D.I., 1986, P282; Rubenstein Daniel I., 1993, P38; Sade D.S., 1967, P99; Salthe S. N., 1985, EVOLVING HIERARCHICA; Salthe Stanley., 1993, DEV EVOLUTION COMPLE; SAUTHER ML, 1991, AM J PHYS ANTHROPOL, V84, P463, DOI 10.1002/ajpa.1330840409; SAUTHER ML, 1992, EFFECT REPRODUCTIVE; SCHLICHTING CD, 1986, BIOL J LINN SOC, V29, P37, DOI 10.1111/j.1095-8312.1986.tb01769.x; SCHULZ AH, 1969, LIFE PRIAMTES; SHUSTER SM, 1991, NATURE, V350, P608, DOI 10.1038/350608a0; SILK JB, 1993, BEHAVIOUR, V126, P171, DOI 10.1163/156853993X00100; Silk JB, 1993, PRIMATE SOCIAL CONFL, P49; Smuts B.B., 1987, P400; Smuts B. B., 1985, SEX FRIENDSHIP BABOO; SPRAGUE DS, 1992, INT J PRIMATOL, V13, P437, DOI 10.1007/BF02547827; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Struhsaker T. T., 1970, P365; STRUM SC, 1991, AM J PRIMATOL, V25, P219, DOI 10.1002/ajp.1350250403; SUGIYAMA Y, 1982, FOLIA PRIMATOL, V39, P238, DOI 10.1159/000156080; Sugiyama Y., 1976, ADV STUD BEHAV, V7, P255; SUSSMAN RW, 1991, AM J PHYS ANTHROPOL, V84, P43, DOI 10.1002/ajpa.1330840105; TAYLOR L, 1986, THESIS WASHINGTON ST; THIERRY B, 1985, AGGRESSIVE BEHAV, V11, P223, DOI 10.1002/1098-2337(1985)11:3<223::AID-AB2480110305>3.0.CO;2-A; THOMPSON RF, 1975, INTRO PHYSL PSYCHOL; TINBERGEN N, 1953, SOCIAL BEHAVIOUR ANI; TURNQUIST JE, 1989, AM J PRIMATOL, V19, P1, DOI 10.1002/ajp.1350190102; van Noordwijk Maria A., 1993, P77; VANNOORDWIJK AJ, 1988, GENET RES, V51, P149; VANNOORDWIJK MA, 1988, BEHAVIOUR, V107, P24, DOI 10.1163/156853988X00179; VANSCHAIK CP, 1991, AM NAT, V138, P1552; VANWAGENEN G, 1956, AM J PHYS ANTHROPOL, V14, P245, DOI 10.1002/ajpa.1330140219; VICK LG, 1989, BEHAV ECOL SOCIOBIOL, V25, P3, DOI 10.1007/BF00299705; VICK LG, 1977, THESIS U N CAROLINA; WALTERS J, 1980, FOLIA PRIMATOL, V34, P61, DOI 10.1159/000155948; WASSER SK, 1988, AM J PRIMATOL, V16, P97, DOI 10.1002/ajp.1350160202; WATANABE K, 1979, Primates, V20, P459, DOI 10.1007/BF02373429; WATTS DP, 1994, BEHAVIORAL ECOLOGY S, V34, P397; Watts E.S., 1986, HUMAN GROWTH, V1, P153; WATTS ES, 1985, NONHUMAN PRIMATE MOD, P41; Whitehead A, 1920, CONCEPT NATURE 152 81 84 0 61 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0275-2565 1098-2345 AM J PRIMATOL Am. J. Primatol. 1995 37 2 143 175 10.1002/ajp.1350370207 33 Zoology Zoology RW315 WOS:A1995RW31500006 2019-02-26 J Hoffmann, AA; Sgro, CM; Lawler, SH Hoffmann, AA; Sgro, CM; Lawler, SH Ecological population genetics: The interface between genes and the environment ANNUAL REVIEW OF GENETICS English Review ecology; population biology; genetic variation; adaptation; tradeoffs; polymorphism LIFE-HISTORY EVOLUTION; MERCENARIA-MERCENARIA L; DROSOPHILA-MELANOGASTER; NATURAL-SELECTION; QUANTITATIVE GENETICS; PHENOTYPIC PLASTICITY; BODY-SIZE; OVIPOSITION PREFERENCE; INSECTICIDE RESISTANCE; ABNORMAL-ABDOMEN We review recent studies in ecological genetics considering the way genes interact with the environment. Studies on morphological and allozyme polymorphisms continue to highlight problems in identifying selective factors. Selection on allozymes as well as quantitative traits may only occur under specific conditions. Responses to toxins illustrate how adaptive changes can be based on major genes with polygenic modifiers. Analyses of continuous variation in ecologically relevant traits suggest low levels of heritable variation in some natural situations and emphasize the importance of genetic interactions. It is still not clear if adaptive responses in quantitative traits tend to involve major or minor genes. There is some evidence for genetic tradeoffs among environments and life history traits. Low levels of genetic variation, tradeoffs, and gene flow may restrict distributions and habitats occupied by species, but their relative importance remains unclear. LA TROBE UNIV, DEPT ENVIRONM MANAGEMENT & ECOL, WODONGA 3689, AUSTRALIA Hoffmann, AA (reprint author), LA TROBE UNIV, SCH GENET & HUMAN VARIAT, BUNDOORA, VIC 3083, AUSTRALIA. Hoffmann, Ary/C-2961-2011; Sgro, Carla/A-2495-2010; Sgro, Carla/G-5166-2010 ALLARD RW, 1972, P NATL ACAD SCI USA, V69, P3043, DOI 10.1073/pnas.69.10.3043; ALLARD RW, 1993, GENETICS, V135, P1125; Allendorf F.W., 1986, P57; ALLENDORF FW, 1993, CONSERV BIOL, V7, P416, DOI 10.1046/j.1523-1739.1993.07020416.x; ANDERSSON S, 1994, HEREDITY, V72, P113, DOI 10.1038/hdy.1994.17; Antonovics J., 1971, Advances in Ecological Research, V7, P1, DOI 10.1016/S0065-2504(08)60202-0; ASPI J, 1993, HEREDITY, V70, P400, DOI 10.1038/hdy.1993.56; BARKER JSF, 1994, HEREDITY, V72, P384, DOI 10.1038/hdy.1994.55; Barlow R., 1981, Animal Breeding Abstracts, V49, P715; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.genet.23.1.337; BEGUN DJ, 1994, GENETICS, V136, P155; BELL G, 1986, EVOL BIOL, V3, P314; BENNETT AF, 1992, EVOLUTION, V46, P16, DOI 10.1111/j.1558-5646.1992.tb01981.x; BENNETT AF, 1993, EVOLUTION, V47, P1, DOI 10.1111/j.1558-5646.1993.tb01194.x; BERRY A, 1993, GENETICS, V134, P869; BERRY RJ, 1992, GENES ECOLOGY, P393; BERVEN KA, 1983, AM ZOOL, V23, P85; BOAG PT, 1981, SCIENCE, V214, P82, DOI 10.1126/science.214.4516.82; BOULETREAUMERLE J, 1992, EVOL ECOL, V6, P223, DOI 10.1007/BF02214163; BRADSHAW AD, 1991, PHILOS T R SOC B, V333, P289, DOI 10.1098/rstb.1991.0079; BRAKEFIELD PM, 1987, HEREDITY, V59, P273, DOI 10.1038/hdy.1987.123; Burke T., 1992, Genes in ecology: the 33rd Symposium of the British Ecological Society, University of East Anglia, Norwich, UK, 1991., P229; CAIRNS J, 1988, NATURE, V335, P142, DOI 10.1038/335142a0; CHAMBERS GK, 1988, ADV GENET, V25, P40; CHAPPELL MA, 1988, EVOLUTION, V42, P681, DOI 10.1111/j.1558-5646.1988.tb02486.x; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHARLESWORTH B, 1994, AM NAT, V144, P839, DOI 10.1086/285710; CHEVERUD JM, 1993, J EVOLUTION BIOL, V6, P463, DOI 10.1046/j.1420-9101.1993.6040463.x; COOK LM, 1986, SCIENCE, V231, P611, DOI 10.1126/science.231.4738.611; COYNE JA, 1987, GENETICS, V117, P727; CRESPI BJ, 1989, EVOLUTION, V43, P18, DOI 10.1111/j.1558-5646.1989.tb04204.x; DALY JC, 1990, J ECON ENTOMOL, V83, P1682, DOI 10.1093/jee/83.5.1682; DEAN AM, 1994, GENETICS, V136, P1481; DEJONG G, 1990, J EVOLUTION BIOL, V3, P447, DOI 10.1046/j.1420-9101.1990.3050447.x; DESALLE R, 1986, GENETICS, V112, P877; DESALLE R, 1986, GENETICS, V112, P861; DOBZHANSKY T, 1947, EVOLUTION, V1, P1, DOI 10.2307/2405399; EBERT D, 1993, HEREDITY, V70, P344, DOI 10.1038/hdy.1993.49; ETGES WJ, 1993, EVOLUTION, V47, P750, DOI 10.1111/j.1558-5646.1993.tb01231.x; Falconer D. S., 1989, INTRO QUANTITATIVE G; FFRENCHCONSTANT RH, 1993, NATURE, V363, P449, DOI 10.1038/363449a0; FISHER RA, 1947, HEREDITY, V1, P143, DOI 10.1038/hdy.1947.11; FOX CW, 1993, EVOLUTION, V47, P166, DOI 10.1111/j.1558-5646.1993.tb01207.x; FRANKHAM R, 1990, GENET RES, V56, P35, DOI 10.1017/S0016672300028858; FRY JD, 1993, EVOLUTION, V47, P327, DOI 10.1111/j.1558-5646.1993.tb01224.x; FUTUYMA DJ, 1993, EVOLUTION, V47, P888, DOI 10.1111/j.1558-5646.1993.tb01242.x; GAVRILETS S, 1993, J EVOLUTION BIOL, V6, P31, DOI 10.1046/j.1420-9101.1993.6010031.x; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; GRANT BR, 1993, P ROY SOC B-BIOL SCI, V251, P111, DOI 10.1098/rspb.1993.0016; GRAVES JL, 1992, PHYSIOL ZOOL, V65, P268, DOI 10.1086/physzool.65.2.30158253; GUNNARSSON B, 1993, HEREDITY, V70, P520, DOI 10.1038/hdy.1993.75; HALL BG, 1990, GENETICS, V126, P5; HARTL DL, 1985, GENETICS, V111, P655; HAZEL WN, 1990, HEREDITY, V65, P449, DOI 10.1038/hdy.1990.116; HOFFMANN AA, 1994, TRENDS ECOL EVOL, V9, P223, DOI 10.1016/0169-5347(94)90248-8; HOFFMANN AA, 1993, J EVOLUTION BIOL, V6, P643, DOI 10.1046/j.1420-9101.1993.6050643.x; HOFFMANN AA, 1991, J INSECT PHYSIOL, V37, P757, DOI 10.1016/0022-1910(91)90110-L; Hoffmann AA, 1991, EVOLUTIONARY GENETIC; HOLLOCHER H, 1992, GENETICS, V130, P355; HOLLOWAY GJ, 1990, HEREDITY, V64, P323, DOI 10.1038/hdy.1990.40; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1992, GENETICS, V130, P195; JAENIKE J, 1990, ANNU REV ECOL SYST, V21, P243, DOI 10.1146/annurev.es.21.110190.001331; JENKINS NL, 1994, GENETICS, V137, P783; JONES DA, 1993, BIOL J LINN SOC, V49, P305, DOI 10.1006/bijl.1993.1039; JONES JS, 1982, NATURE, V298, P749, DOI 10.1038/298749a0; JORDAN N, 1992, AM NAT, V140, P149, DOI 10.1086/285407; KACSER H, 1981, GENETICS, V97, P639; KAITALA A, 1988, OIKOS, V53, P222, DOI 10.2307/3566066; KINGSOLVER JG, 1991, TRENDS ECOL EVOL, V6, P276, DOI 10.1016/0169-5347(91)90004-H; KINGSOLVER JG, 1983, AM NAT, V121, P32, DOI 10.1086/284038; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; KLERKS PL, 1989, BIOL BULL, V176, P135, DOI 10.2307/1541580; KOCH AL, 1993, J THEOR BIOL, V160, P1, DOI 10.1006/jtbi.1993.1001; KOEHN RK, 1988, GENETICS, V118, P121; KREBS RA, 1994, J EVOLUTION BIOL, V7, P39, DOI 10.1046/j.1420-9101.1994.7010039.x; LAM PKS, 1990, J MOLLUS STUD, V56, P17, DOI 10.1093/mollus/56.1.17; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1983, HEREDITY, V50, P47, DOI 10.1038/hdy.1983.6; LANDE R, 1981, GENETICS, V99, P541; LARSSON K, 1993, J EVOLUTION BIOL, V6, P195, DOI 10.1046/j.1420-9101.1993.6020195.x; LAWLER SH, 1992, THESIS WASHINGTON U; LENSKI RE, 1993, SCIENCE, V259, P188, DOI 10.1126/science.7678468; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LEROI AM, 1994, AM NAT, V144, P661, DOI 10.1086/285699; LOPEZ MA, 1993, GENET RES, V61, P117, DOI 10.1017/S0016672300031220; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; Lynch Carol Becker, 1994, P278; LYNCH M, 1993, BIOTIC INTERACTIONS AND GLOBAL CHANGE, P234; MACKAY TFC, 1992, GENETICS, V130, P315; MACNAIR MR, 1993, HEREDITY, V71, P445, DOI 10.1038/hdy.1993.162; MACNAIR MR, 1991, GENETICA, V84, P213, DOI 10.1007/BF00127250; MacPhee Donald G., 1993, Cytobios, V75, P69; MANI GS, 1990, BIOL J LINN SOC, V39, P355, DOI 10.1111/j.1095-8312.1990.tb00523.x; MANI GS, 1993, BIOL J LINN SOC, V48, P157, DOI 10.1111/j.1095-8312.1993.tb00884.x; MATHER K, 1973, GENETICAL STRUCTURE; MCALPINE S, 1993, HEREDITY, V70, P553, DOI 10.1038/hdy.1993.79; MCKENZIE JA, 1988, GENETICS, V120, P213; MCKENZIE JA, 1994, TRENDS ECOL EVOL, V9, P166, DOI 10.1016/0169-5347(94)90079-5; MCKENZIE JA, 1994, HEREDITY, V73, P57, DOI 10.1038/hdy.1994.98; MESSINA FJ, 1993, HEREDITY, V71, P623, DOI 10.1038/hdy.1993.187; MITCHELLOLDS T, 1990, GENETICS, V124, P417; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; MITTON JB, 1984, ANNU REV ECOL SYST, V15, P479; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; NEVO E, 1993, WATER SCI TECHNOL, V27, P489; NEVO E, 1993, THEOR APPL GENET, V85, P1029, DOI 10.1007/BF00215044; NUACNEZFARFAN J, 1994, EVOLUTION, V48, P423; ORR HA, 1992, AM NAT, V140, P725, DOI 10.1086/285437; OWEN DF, 1993, OIKOS, V67, P393, DOI 10.2307/3545352; PAIGE KN, 1993, EVOLUTION, V47, P36, DOI 10.1111/j.1558-5646.1993.tb01197.x; PARSONS PA, 1987, EVOL BIOL, V21, P311; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; Pimm SL, 1991, BALANCE NATURE ECOLO; PLATENKAMP GAJ, 1993, EVOLUTION, V47, P540, DOI 10.1111/j.1558-5646.1993.tb02112.x; PLATENKAMP GAJ, 1992, EVOLUTION, V46, P341, DOI 10.1111/j.1558-5646.1992.tb02042.x; POSTHUMA L, 1993, COMP BIOCHEM PHYS C, V106, P11, DOI 10.1016/0742-8413(93)90251-F; POSTHUMA L, 1993, OIKOS, V67, P235, DOI 10.2307/3545468; POWERS DA, 1991, ANNU REV GENET, V25, P629; PRICE TD, 1984, NATURE, V309, P787, DOI 10.1038/309787a0; PROUT T, 1989, GENETICS, V123, P803; RAUSHER MD, 1989, EVOLUTION, V43, P563, DOI 10.1111/j.1558-5646.1989.tb04252.x; RAWSON PD, 1991, EVOLUTION, V45, P1924, DOI 10.1111/j.1558-5646.1991.tb02697.x; RAYMOND M, 1991, NATURE, V350, P151, DOI 10.1038/350151a0; RAYMOND M, 1994, J EVOLUTION BIOL, V7, P315, DOI 10.1046/j.1420-9101.1994.7030315.x; REAL LA, 1994, ECOLOGICAL GENETICS; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RIDDOCH BJ, 1993, BIOL J LINN SOC, V50, P1; RIECHERT SE, 1993, BEHAV ECOL SOCIOBIOL, V32, P355; RISKA B, 1989, GENETICS, V123, P865; RITLAND DB, 1991, EVOLUTION, V45, P918, DOI 10.1111/j.1558-5646.1991.tb04360.x; RIVET Y, 1993, BIOL J LINN SOC, V49, P249, DOI 10.1006/bijl.1993.1035; ROBINSON CT, 1992, J N AM BENTHOL SOC, V11, P278, DOI 10.2307/1467648; ROFF DA, 1993, EVOLUTION, V47, P1572, DOI 10.1111/j.1558-5646.1993.tb02176.x; ROFF DA, 1994, AM NAT, V144, P772, DOI 10.1086/285706; ROPER C, 1993, EVOLUTION, V47, P445, DOI 10.1111/j.1558-5646.1993.tb02105.x; ROSE MR, 1981, GENETICS, V97, P187; ROUSH RT, 1987, ANNU REV ENTOMOL, V32, P361, DOI 10.1146/annurev.en.32.010187.002045; SCHAT H, 1992, HEREDITY, V68, P219, DOI 10.1038/hdy.1992.35; SCHEINER SM, 1991, J EVOLUTION BIOL, V4, P23, DOI 10.1046/j.1420-9101.1991.4010023.x; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SINGER MC, 1988, EVOLUTION, V42, P977, DOI 10.1111/j.1558-5646.1988.tb02516.x; SLATTERY JP, 1993, J EXP MAR BIOL ECOL, V165, P209, DOI 10.1016/0022-0981(93)90106-X; SMITH TB, 1993, NATURE, V363, P618, DOI 10.1038/363618a0; Stearns SC., 1992, EVOLUTION LIFE HIST; STRANGE J, 1991, NEW PHYTOL, V119, P383, DOI 10.1111/j.1469-8137.1991.tb00037.x; TEMPLETON AR, 1989, GENOME, V31, P296, DOI 10.1139/g89-047; THOMPSON JN, 1988, ENTOMOL EXP APPL, V47, P3, DOI 10.1111/j.1570-7458.1988.tb02275.x; TREXLER JC, 1992, ECOLOGY, V73, P2224, DOI 10.2307/1941470; TURNER JRG, 1987, ECOL ENTOMOL, V12, P81, DOI 10.1111/j.1365-2311.1987.tb00987.x; VANNOORDWIJK AJ, 1988, GENET RES, V51, P149; VANTIENDEREN PH, 1994, GENET RES, V64, P115, DOI 10.1017/S0016672300032729; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; VIA S, 1990, ANNU REV ENTOMOL, V35, P421, DOI 10.1146/annurev.en.35.010190.002225; VIA S, 1991, EVOLUTION, V45, P827, DOI 10.1111/j.1558-5646.1991.tb04353.x; VIA S, 1995, HEREDITY, V74, P80, DOI 10.1038/hdy.1995.10; Via Sara, 1994, P35; WATT WB, 1992, P NATL ACAD SCI USA, V89, P10608, DOI 10.1073/pnas.89.22.10608; WATT WB, 1991, FUNCT ECOL, V5, P145, DOI 10.2307/2389252; WHITLOCK M, 1993, HEREDITY, V70, P574, DOI 10.1038/hdy.1993.84; WILLIAMS SM, 1990, GENETICS, V124, P439; WINDIG JJ, 1994, HEREDITY, V73, P459, DOI 10.1038/hdy.1994.144; YOUNG HJ, 1994, HEREDITY, V73, P298, DOI 10.1038/hdy.1994.137 168 32 33 0 18 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA 0066-4197 1545-2948 ANNU REV GENET Annu. Rev. Genet. 1995 29 349 370 22 Genetics & Heredity Genetics & Heredity TL719 WOS:A1995TL71900014 8825479 2019-02-26 J Laleye, P; Baras, E; Philippart, JC Laleye, P; Baras, E; Philippart, JC Diet and food resource partitioning between Chrysichthys nigrodigitatus and C-auratus in South-Benin lagoons. AQUATIC LIVING RESOURCES French Article; Proceedings Paper International Workshop on the Biological Bases for Aquaculture of SILuriformes (BASIL) MAY 24-27, 1994 MONTPELLIER, FRANCE GAMET, CEMAGREF, CIRAD, ORSTOM Siluriformes; Chrysichthys; feeding ecology; Western Africa; lagoons; acadja The diet of Claroteid (formerly Bagrid) fish species, Chrysichthys nigrodigitatus Lacepede (N=646) and C. auratus Geoffroy Saint-Hilaire (N=253), was studied through the analysis of the stomach contents from fish captured in the lagoons of South Benin in 1990-1991. Correspondence analysis on the occurrence of 16 categories of preys in 21 categories of fish (depending on species, fish size, season and habitat) showed resource partitioning between C. auratus and size-related categories of C. nigrodigitatus captured in open environments. From prey volume and abundance indices (I-v and I-ab) and equitability (R(v) and R(ab)), it is evident that both species can be ranked as benthophagous. C. auratus (6-20 cm SL) is a generalist (R(v)=0.842), mainly feeding on small molluscs and small crustaceans (branchiopods, copepods, ostracods) living in the substratum. C. nigrodigitatus becomes more specialised with age and size (R(v)=0.826 to 0.597 from 6-20+cm SL) towards decapods (I-v from 13.4 to 49.4%) and fish (eggs and fry, I-v from 7.8 to 66.9%). Seasonal differences mainly refer to the season of spates, when fish forage on larvae or nymphs of insects on macrophytes in the inundated plain. In ''acadjas'' biotopes (man-assembled boughs), the two species share the same resources. These traits of the feeding ecology of the two Chrysichthys species inhabiting the lagoons of South Benin are analysed within the context of life-history strategies and growth potentialities. The generalist diet of C. auratus is probably a consequence of niche segregation with C. nigrodigitatus. The ecological roles of the two species in a modified and overfished ecosystem are discussed. Laleye, P (reprint author), UNIV NATL BENIN,BP 526,COTONOU,BENIN. Baras, Etienne/K-1894-2016 Baras, Etienne/0000-0002-3541-6597 0 4 4 0 2 GAUTHIER-VILLARS PARIS S P E S-JOURNAL DEPT, 120 BD ST GERMAIN, F-75006 PARIS, FRANCE 0990-7440 AQUAT LIVING RESOUR Aquat. Living Resour. 1995 8 4 365 372 10.1051/alr:1995041 8 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology TL683 WOS:A1995TL68300014 2019-02-26 J Winemiller, KO Winemiller, KO The structural and functional aspects of fish diversity. BULLETIN FRANCAIS DE LA PECHE ET DE LA PISCICULTURE French Article; Proceedings Paper International Symposium on Fish and Their Habitat DEC 06-08, 1994 LYON, FRANCE LIFE-HISTORY; CICHLID FISHES; POPULATION REGULATION; TROPHIC POLYMORPHISM; COMMUNITY STRUCTURE; RAINFOREST STREAMS; SPECIES-DIVERSITY; AMERICAN FISHES; LAKE VICTORIA; FOOD WEBS This paper briefly reviews relationships between fish biological diversity and ecological function. Local biodiversity and community structure can be viewed in terms of (1) phylogenetic diversity, (2) population structure, (3) life-history strategies, (4) morphological diversity, and (5) trophic diversity. A major challenge is to determine relationships between population/community structure and community/ecosystem function. Phylogenetic community structure is derived from the interaction between colonization, extinction, and evolution. Despite the fact that these factors operate over a broad spectrum of spatial and temporal scales, great progress has been achieved in modeling the processes giving rise to genetic/phylogenetic structure. Fish reproductive modes vary greatly, and reproductive guilds and life-history strategies provide frameworks that permit analysis of structure and function. Theory and empirical study reveal strong relationships between life-history, environmental variation, and population dynamics. Fishes display great morphological variation, and at the community-level, morphological diversification tends to increase with species richness. Relationships between morphology, mechanical function, and ecological performance have been established, but in some cases predicted patterns have been obscured by sampling limitations or by behavioral flexibility in response to environmental variation. A great breadth of feeding strategies exists among and often within fish species, particularly during ontogeny. Guild structure is more complex in more species-rich communities, and food partitioning generally emerges when diets are examined over time intervals sufficiently long to bracket fluctuations in resource supplies and demand. Food-web structure and function vary over time and space, and fishes can strongly affect both biotic and abiotic components of aquatic systems. Management of fishes in a changing biosphere requires further documentation of diversity in relation to habitat, improved understanding of factors causing observed patterns, and development of models that predict relationships between the elements of ecological structure and function. Winemiller, KO (reprint author), TEXAS A&M UNIV,DEPT WILDLIFE & FISHERIES SCI,COLLEGE STN,TX 77843, USA. ALLAN JD, 1993, BIOSCIENCE, V43, P32, DOI 10.2307/1312104; AVISE JC, 1992, OIKOS, V63, P62, DOI 10.2307/3545516; BAIRD D, 1989, ECOL MONOGR, V59, P329, DOI 10.2307/1943071; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; Bonetto A. A., 1969, Physis Buenos Aires, V29, P213; BROWN JH, 1989, SCIENCE, V243, P1145, DOI 10.1126/science.243.4895.1145; CARPENTER S R, 1988, P119; CARPENTER SR, 1988, BIOSCIENCE, V38, P764, DOI 10.2307/1310785; Cohen J., 1990, COMMUNITY FOOD WEBS; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; COPP GH, 1989, ENVIRON BIOL FISH, V26, P1, DOI 10.1007/BF00002472; CROWDER LB, 1986, ENVIRON BIOL FISH, V16, P147, DOI 10.1007/BF00005167; de Merona B., 1981, Revue d'Hydrobiologie Tropicale, V14, P63; DEANGELIS D. L., 1992, INDIVIDUAL BASED MOD; DEANGELIS DL, 1975, ECOLOGY, V56, P238; DEANGELIS DL, 1987, ECOL MONOGR, V57, P1, DOI 10.2307/1942636; Deangelis Donald L., 1994, P9; DEMELO R, 1992, LIMNOL OCEANOGR, V37, P192, DOI 10.4319/lo.1992.37.1.0192; DEMERONA B, 1993, AMAZONIANA, V12, P415; DIZON AE, 1992, CONSERV BIOL, V6, P24, DOI 10.1046/j.1523-1739.1992.610024.x; DOBZHANSKY T, 1950, AM SCI, V267, P76; DOMINEY WJ, 1984, EVOLUTION FISH SPECI, P231; Douglas M.E., 1987, P144; DRENNER RW, 1986, CAN J FISH AQUAT SCI, V43, P1935, DOI 10.1139/f86-239; DUTIL JD, 1986, COPEIA, P945, DOI 10.2307/1445291; EHLINGER TJ, 1988, P NATL ACAD SCI USA, V85, P1878, DOI 10.1073/pnas.85.6.1878; ELLIOT JM, 1987, J ANIM ECOL, V55, P907; ENDLER JA, 1982, AM ZOOL, V22, P441; FINDLEY JS, 1973, AM NAT, V107, P580, DOI 10.1086/282860; FRASER DF, 1982, ECOLOGY, V63, P307, DOI 10.2307/1938947; FRYER GEOFFREY, 1959, PROC ZOOL SOC LONDON, V132, P153; GATZ AJ, 1979, ECOLOGY, V60, P711, DOI 10.2307/1936608; GOLD JR, 1993, MAR BIOL, V116, P175, DOI 10.1007/BF00350007; Gorman O.T., 1993, P659; Goulding M., 1980, FISHES FOREST EXPLOR; Goulding M., 1988, RIO NEGRO RICH LIFE; HALL SJ, 1993, ADV ECOL RES, V24, P187, DOI 10.1016/S0065-2504(08)60043-4; HANSKI I, 1991, BIOL J LINN SOC, V42, P3, DOI 10.1111/j.1095-8312.1991.tb00548.x; HANSKI I, 1982, OIKOS, V38, P210, DOI 10.2307/3544021; HAYDON D, 1994, AM NAT, V144, P14, DOI 10.1086/285658; Hilborn R., 1992, QUANTITATIVE FISHERI; HOLT RD, 1984, AM NAT, V124, P377, DOI 10.1086/284280; HORI M, 1991, ECOL INT B, V19, P89; HTCHINSON GE, 1965, ECOLOGICAL THEATER E; HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; KARR JR, 1986, SPEC PUBL ILLINOIS N, V5; KAUFMAN L, 1992, BIOSCIENCE, V42, P846, DOI 10.2307/1312084; KAWASAKI T, 1980, B JPN SOC SCI FISH, V46, P289; KEAST A, 1966, J FISH RES BOARD CAN, V23, P1845, DOI 10.1139/f66-175; KITCHELL JA, 1986, FOOD WEB REGULATION, P25; KODRICBROWN A, 1993, ECOLOGY, V74, P1847, DOI 10.2307/1939942; KORNFIELD I, 1982, EVOLUTION, V36, P658, DOI 10.1111/j.1558-5646.1982.tb05433.x; LAUDER GV, 1983, J MORPHOL, V178, P1, DOI 10.1002/jmor.1051780102; LAWLOR LR, 1978, AM NAT, V112, P445, DOI 10.1086/283286; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LEVEQUE C, 1990, FAUNE POISSONS EAUX, V1, P384; LIEM KF, 1980, AM ZOOL, V20, P295; LUNDBERG JG, 1993, BIOL RELATIONSHIPS A, P157; MacArthur RH, 1972, GEOGRAPHICAL ECOLOGY; MacCall A.D., 1990, DYNAMIC GEOGRAPHY MA; MAHON R, 1984, CAN J FISH AQUAT SCI, V41, P330, DOI 10.1139/f84-037; MARRERO C, 1993, ENVIRON BIOL FISH, V38, P299, DOI 10.1007/BF00007523; MARTINEZ ND, 1992, AM NAT, V139, P1208, DOI 10.1086/285382; MATTHEWS WJ, 1994, ENVIRON BIOL FISH, V39, P381, DOI 10.1007/BF00004807; MATTHEWS WJ, 1986, ENVIRON BIOL FISH, V17, P81, DOI 10.1007/BF00001739; MAY B, 1975, J HERED, V66, P227, DOI 10.1093/oxfordjournals.jhered.a108618; MAY RM, 1972, NATURE, V238, P413, DOI 10.1038/238413a0; Mayden RL, 1992, SYSTEMATICS HIST ECO; MCQUEEN DJ, 1986, CAN J FISH AQUAT SCI, V43, P1571, DOI 10.1139/f86-195; MENGE BA, 1987, AM NAT, V130, P730, DOI 10.1086/284741; MEYER A, 1993, TRENDS ECOL EVOL, V8, P279, DOI 10.1016/0169-5347(93)90255-N; MEYER A, 1990, BIOL J LINN SOC, V39, P279, DOI 10.1111/j.1095-8312.1990.tb00517.x; MEYER A, 1990, NATURE, V347, P550, DOI 10.1038/347550a0; MOODIE GEE, 1972, HEREDITY, V28, P155, DOI 10.1038/hdy.1972.21; MOTTA PJ, IN PRESS ENV BIOL FI; MOYLE PB, 1984, J ZOOL, V202, P195, DOI 10.1111/j.1469-7998.1984.tb05951.x; NEWMAN CM, 1986, PROC R SOC SER B-BIO, V228, P355, DOI 10.1098/rspb.1986.0059; ODUM EP, 1969, SCIENCE, V164, P262, DOI 10.1126/science.164.3877.262; PAINE MD, 1990, J FISH BIOL, V37, P473, DOI 10.1111/j.1095-8649.1990.tb05877.x; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; PARSONS TR, 1992, MAR POLLUT B, V26, P51; PERSSON LG, 1988, J FISH BIOL, V38, P281; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIMM SL, 1991, NATURE, V350, P669, DOI 10.1038/350669a0; POWER ME, 1990, SCIENCE, V250, P811, DOI 10.1126/science.250.4982.811; POWER ME, 1985, ECOLOGY, V66, P1448, DOI 10.2307/1938007; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; REICE SR, 1994, AM SCI, V82, P424; RESH VH, 1988, J N AM BENTHOL SOC, V7, P433, DOI 10.2307/1467300; RICKLEFS RE, 1987, SCIENCE, V235, P167, DOI 10.1126/science.235.4785.167; ROBERTS T R, 1972, Bulletin of the Museum of Comparative Zoology, V143, P117; ROBINSON BW, 1994, AM NAT, V144, P596, DOI 10.1086/285696; ROSS ST, 1986, COPEIA, P352, DOI 10.2307/1444996; SALE PF, 1978, ENVIRON BIOL FISH, V3, P84; SCHLOSSER IJ, 1982, ECOL MONOGR, V52, P395, DOI 10.2307/2937352; SHMIDA A, 1985, J BIOGEOGR, V12, P1, DOI 10.2307/2845026; Shugart H. H, 1984, THEORY FOREST DYNAMI; SHUTER BJ, 1990, T AM FISH SOC, V119, P314, DOI 10.1577/1548-8659(1990)119<0314:CPVATZ>2.3.CO;2; SIMBERLOFF D, 1991, ANNU REV ECOL SYST, V22, P115, DOI 10.1146/annurev.ecolsys.22.1.115; Sinclair M, 1988, MARINE POPULATIONS; SNYDER RJ, 1990, CAN J ZOOL, V68, P2027, DOI 10.1139/z90-287; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; SPENCER CN, 1991, BIOSCIENCE, V41, P14, DOI 10.2307/1311536; STERNER RW, 1986, SCIENCE, V231, P605, DOI 10.1126/science.231.4738.605; Strauss R.E., 1987, P136; TAYLOR CM, 1994, AM NAT, V144, P549, DOI 10.1086/285694; TONN WM, 1982, ECOLOGY, V63, P1149, DOI 10.2307/1937251; VANEWRIGHT RI, 1991, BIOL CONSERV, V55, P235, DOI 10.1016/0006-3207(91)90030-D; VANNI MJ, 1990, ECOLOGY, V71, P921, DOI 10.2307/1937363; VANNI MJ, 1990, NATURE, V344, P333, DOI 10.1038/344333a0; VANNI MJ, IN PRESS FOOD WEBS I; VANWINKLE W, 1993, T AM FISH SOC, V122, P459, DOI 10.1577/1548-8659(1993)122<0459:LLHTES>2.3.CO;2; WAINWRIGHT PC, 1991, FUNCT ECOL, V5, P40, DOI 10.2307/2389554; WALKER BH, 1992, CONSERV BIOL, V6, P18, DOI 10.1046/j.1523-1739.1992.610018.x; WATSON DJ, 1984, J FISH BIOL, V25, P371, DOI 10.1111/j.1095-8649.1984.tb04885.x; Welcomme R. L, 1979, FISHERIES ECOLOGY FL; WERNER EE, 1977, AM NAT, V111, P553, DOI 10.1086/283184; WIKRAMANAYAKE ED, 1990, ECOLOGY, V71, P1756, DOI 10.2307/1937583; WILSON DS, 1992, ECOLOGY, V73, P1984, DOI 10.2307/1941449; WIMBERGER P, 1991, EVOLUTION, V45, P15454; WINEMILLER K.O., 1992, OIKOS, V62, P318; WINEMILLER KO, 1990, ECOL MONOGR, V60, P331, DOI 10.2307/1943061; WINEMILLER KO, 1992, ENVIRON BIOL FISH, V34, P29, DOI 10.1007/BF00004783; WINEMILLER KO, 1991, ECOL MONOGR, V61, P343, DOI 10.2307/2937046; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1990, ECOL MONOGR, V60, P27, DOI 10.2307/1943025; WINEMILLER KO, 1989, ENVIRON BIOL FISH, V26, P177, DOI 10.1007/BF00004815; WINEMILLER KO, IN PRESS FOOD WEBS I; WINEMILLER KO, IN PRESS ENV BIOL FI; WITTE F, 1992, ENVIRON BIOL FISH, V34, P1, DOI 10.1007/BF00004782; WITTE F, 1984, EVOLUTION FISH SPECI, P155; Wootton R.J., 1984, P1; Yamaoka K., 1982, Physiology and Ecology Japan, V19, P57; Yodzis Peter, 1993, P26; ZARET TM, 1973, SCIENCE, V182, P449, DOI 10.1126/science.182.4111.449; ZARET TM, 1971, ECOLOGY, V52, P336, DOI 10.2307/1934593 138 9 9 0 19 CONSEIL SUPERIEUR DE LA PECHE BOVES CENTRE DU PARACLET BP NO 5, 80440 BOVES, FRANCE 0767-2861 B FR PECHE PISCIC Bull. Fr. Pech. Piscic. 1995 337-9 23 45 10.1051/kmae:1995007 23 Fisheries Fisheries TV819 WOS:A1995TV81900004 Bronze 2019-02-26 J DICK, MW DICK, MW SEXUAL REPRODUCTION IN THE PERONOSPOROMYCETES (CHROMISTAN FUNGI) CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE English Article MEIOSIS; KARYOGAMY; SYNGAMY; MORPHOGENESIS; MORPHOMETRY; WALL MEMBRANES EVOLUTIONARY BIOLOGY; LAGENIDIUM-GIGANTEUM; PHYTOPHTHORA; OOSPORES; ULTRASTRUCTURE; OOGONIA; ACHLYA; ANTHERIDIOL; BIOMETRY; INVITRO An overview of sexual reproduction in the Peronosporomycetes leads to the recognition of constant features and variable traits. Variation in characters is accorded different weighting depending on its use for taxonomic identification or phylogenetic systematics. The phylogenetic significance of features of gametangial morphogenesis, such as vacuolation and the patterns of nuclear meioses and abortions, can be related to morphological characters such as the persistence of periplasm and oogonial and oospore wall deposition. The cellular reorganization occurring in the oogonium and oospores, particularly in relation to the possible functions of the dense body vesicle system and the glucan, phosphate, and lipid oospore reserves, may be critical for the internal morphology of the mature oospore and its function. Such differences are valuable for morphometric analysis, which lends itself to new identification procedures. The ecological implications of these differences in the production of oogonia and oospores are considered; sexual reproduction (its frequency or absence) may be crucial for successful life-history strategies in biodiversity. DICK, MW (reprint author), UNIV READING, SCH PLANT SCI, DEPT BOT, BLDG 2, EARLEY GATE, READING RG6 2AU, BERKS, ENGLAND. ALREKABI SAW, 1979, THESIS U READING REA; AMERSON HV, 1973, MYCOLOGIA, V65, P967; ANDERSEN RA, 1991, PROTOPLASMA, V164, P1, DOI 10.1007/BF01320809; ARSENAULT GP, 1968, J AM CHEM SOC, V90, P5635, DOI 10.1021/ja01022a072; BARR DJS, 1990, CAN J BOT, V68, P813, DOI 10.1139/b90-108; BEAKES GW, 1978, T BRIT MYCOL SOC, V71, P25, DOI 10.1016/S0007-1536(78)80003-5; BEAKES GW, 1980, CAN J BOT, V58, P182, DOI 10.1139/b80-020; BEAKES GW, 1980, CAN J BOT, V58, P228, DOI 10.1139/b80-023; BEAKES GW, 1980, J GEN MICROBIOL, V119, P361; BEAKES GW, 1977, T BRIT MYCOL SOC, V69, P459, DOI 10.1016/S0007-1536(77)80085-5; BEAKES GW, 1981, BR MYCOL SOC S, V5, P1; Beakes GW, 1981, FUNGAL SPORE MORPHOG, P71; BISHOP HARLOW, 1940, MYCOLOGIA, V32, P505; Blackwell Elizabeth, 1943, TRANS BRIT MYCOL SOC, V26, P71; Blackwell Elizabeth, 1943, TRANS BRIT MYCOL SOC, V26, P93; BRASIER CM, 1992, ANNU REV PHYTOPATHOL, V30, P173, DOI 10.1146/annurev.py.30.090192.001133; BRASIER CM, 1992, ANNU REV PHYTOPATHOL, V30, P153, DOI 10.1146/annurev.py.30.090192.001101; BRASIER CM, 1975, NEW PHYTOL, V74, P183, DOI 10.1111/j.1469-8137.1975.tb02604.x; CANTER HM, 1994, MYCOL RES, V98, P105, DOI 10.1016/S0953-7562(09)80347-X; CAVALIERSMITH T, 1989, SYST ASSOC SPEC VOL, V38, P381; CHILVERS GA, 1985, NEW PHYTOL, V99, P203, DOI 10.1111/j.1469-8137.1985.tb03650.x; DEBRUYN HLG, 1935, PHYTOPATHOLOGY, V25, P8; DICK M. W., 1992, FUNGAL COMMUNITY ITS, P355; DICK MW, 1973, BIOL REV, V48, P133; DICK MW, 1972, NEW PHYTOL, V71, P1151, DOI 10.1111/j.1469-8137.1972.tb01993.x; DICK MW, 1984, BOT J LINN SOC, V89, P171, DOI 10.1111/j.1095-8339.1984.tb01008.x; DICK MW, 1989, BOT J LINN SOC, V99, P97, DOI 10.1111/j.1095-8339.1989.tb00394.x; DICK MW, 1987, BIOL J LINN SOC, V30, P181, DOI 10.1111/j.1095-8312.1987.tb00296.x; DICK MW, 1995, IN PRESS STRAMINIPIL; DICK MW, 1970, BENAKI NEW SER, V9, P350; DICK MW, 1990, HDB PROTOCTISTA, P661; ELLIOTT CG, 1977, J GEN MICROBIOL, V98, P141, DOI 10.1099/00221287-98-1-141; ELLZEY JT, 1974, MYCOLOGIA, V66, P32, DOI 10.2307/3758450; ELLZEY JT, 1977, ARCH MICROBIOL, V112, P311, DOI 10.1007/BF00413099; FOISSNER I, 1987, ARCH MICROBIOL, V147, P143, DOI 10.1007/BF00415275; FRANCIS DM, 1993, EXP MYCOL, V17, P284, DOI 10.1006/emyc.1993.1027; GALINDO J, 1960, PHYTOPATHOLOGY, V50, P123; GALLEGLY ME, 1958, PHYTOPATHOLOGY, V48, P274; GLOCKLING SL, 1994, THESIS U READING REA; GOTELLI D, 1979, MYCOTAXON, V9, P90; GOW NAR, 1987, J GEN MICROBIOL, V133, P3531; HEATH IB, 1981, BIOSYSTEMS, V14, P261, DOI 10.1016/0303-2647(81)90033-2; HEMMES DE, 1984, MYCOLOGIA, V76, P924, DOI 10.2307/3793148; HEMMES DE, 1975, ARCH MICROBIOL, V103, P91, DOI 10.1007/BF00436336; HEMMES DE, 1977, CAN J BOT, V55, P436, DOI 10.1139/b77-053; HENDRIX JW, 1970, ANNU REV PHYTOPATHOL, V8, P111, DOI 10.1146/annurev.py.08.090170.000551; HORD MJ, 1991, PHYTOPATHOLOGY, V81, P1541, DOI 10.1094/Phyto-81-1541; HORGAN PA, 1981, SEXUAL INTERACTIONS, P179; HOWARD KL, 1970, BOT GAZ, V131, P311, DOI 10.1086/336549; JUDELSON HS, 1993, CURR GENET, V23, P211, DOI 10.1007/BF00351498; KERWIN JL, 1986, CAN J MICROBIOL, V32, P663, DOI 10.1139/m86-123; KERWIN JL, 1991, J INVERTEBR PATHOL, V58, P408, DOI 10.1016/0022-2011(91)90187-U; MARTIN RW, 1986, MYCOLOGIA, V78, P359, DOI 10.2307/3793039; MCMORRIS TC, 1978, PHILOS T ROY SOC B, V284, P459, DOI 10.1098/rstb.1978.0082; NES WD, 1990, BIOCH STRUCTURE UTIL, P308; POWELL MJ, 1977, 2ND P INT MYC C TAMP, P533; RAPER JOHN R., 1951, AMER SCIENTIST, V39, P110; RAPER JR, 1951, AM SCI, V39, P130; RIBEIRO OK, 1975, PHYTOPATHOLOGY, V65, P904, DOI 10.1094/Phyto-65-904; SANSOME E, 1977, J GEN MICROBIOL, V99, P311, DOI 10.1099/00221287-99-2-311; SANSOME E, 1979, T BRIT MYCOL SOC, V73, P293, DOI 10.1016/S0007-1536(79)80114-X; SANSOME E, 1974, T BRIT MYCOL SOC, V62, P323, DOI 10.1016/S0007-1536(74)80041-0; SANSOME E, 1975, NATURE, V255, P704, DOI 10.1038/255704a0; SHAHZAD S, 1992, BOT J LINN SOC, V108, P143, DOI 10.1111/j.1095-8339.1992.tb01638.x; SHERWOOD WA, 1971, MYCOLOGIA, V63, P22, DOI 10.2307/3757681; SOUMATI B, 1989, BOT J LINN SOC, V100, P219, DOI 10.1111/j.1095-8339.1989.tb01719.x; TEWARI JP, 1977, CAN J BOT, V55, P2348, DOI 10.1139/b77-268; WANG MC, 1973, J BIOL CHEM, V248, P4112; WANG MC, 1974, CARBOHYD RES, V37, P331, DOI 10.1016/S0008-6215(00)82922-5; WILLIAMSON HR, 1991, CAN J BOT, V69, P1384, DOI 10.1139/b91-178; WINTIN, 1975, ARCH MICROBIOL, V105, P283, DOI 10.1007/BF00447148 71 22 24 0 6 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4026 CAN J BOT Can. J. Bot.-Rev. Can. Bot. 1995 73 1 E-H S712 S724 13 Plant Sciences Plant Sciences TC463 WOS:A1995TC46300008 2019-02-26 J Jonsson, KI; Tuomi, J; Jaremo, J Jonsson, KI; Tuomi, J; Jaremo, J On the consequences of pre- and postbreeding costs in the evolution of reproductive effort tactics ECOSCIENCE English Article reproductive effort; reproductive tactics; costs of reproduction; prebreeding costs; life-history evolution LIFE-HISTORY EVOLUTION; NATURAL-SELECTION; PREDATION Models of reproductive effort have generally concentrated on the evolution of total reproductive effort, without considering the option for specific components of effort to evolve. Further, most analyses have assumed postbreeding costs of reproduction. We present an optimization model that evaluates the option for components of effort with different temporal distributions of survival costs, affecting either adult survival before offspring independence (prebreeding cost) or survival after offspring independence (postbreeding costs). We assume that total absolute effort is fixed, and that the two components therefore, are constrained in their variation. The results show that, in most cases, optimal effort tactics that imply prebreeding costs must have lower marginal effects on survival than tactics that imply postbreeding costs. Our analysis also shows that the marginal benefits on effective fecundity of effort components may influence the optimal effort tactics. An age-structured version of the model shows that effort tactics implying postbreeding survival costs will be favored over effort tactics that imply prebreeding costs, as the expectancy of future reproductive success declines. We suggest that the temporal distribution of reproductive costs may have an important impact on the evolution of reproductive effort tactics, and emphasize the need for empirical studies evaluating the occurrence and consequences of prebreeding costs of reproduction. Jonsson, KI (reprint author), LUND UNIV, S-22362 LUND, SWEDEN. Jonsson, Ingemar/K-6047-2013 Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BERGLUND A, 1986, OIKOS, V46, P349, DOI 10.2307/3565833; BOGGS CL, 1992, FUNCT ECOL, V6, P508, DOI 10.2307/2390047; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Chiang A. C., 1984, FUNDAMENTAL METHODS; EMLEN JM, 1970, ECOLOGY, V51, P588, DOI 10.2307/1934039; ENGEN S, 1988, J THEOR BIOL, V130, P229, DOI 10.1016/S0022-5193(88)80098-5; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Intriligator Michael D, 1971, MATH OPTIMIZATION EC; JONES PJ, 1979, J ZOOL, V189, P1; JONSSON KI, 1995, OIKOS, V74, P35, DOI 10.2307/3545672; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LLOYD DG, 1992, THEOR POPUL BIOL, V41, P90, DOI 10.1016/0040-5809(92)90051-T; MILLAR JS, 1975, CAN J ZOOL, V53, P967, DOI 10.1139/z75-112; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Pond C.M., 1981, P190; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; Roughgarden J, 1979, THEORY POPULATION GE; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHWARZKOPF L, 1992, BEHAV ECOL SOCIOBIOL, V31, P17, DOI 10.1007/BF00167812; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; Stephens DW, 1986, FORAGING THEORY; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; TUOMI J, 1983, AM ZOOL, V23, P25; WARD SA, 1983, J ANIM ECOL, V52, P305, DOI 10.2307/4602; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S 38 7 8 1 3 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 1195-6860 2376-7626 ECOSCIENCE Ecoscience 1995 2 4 311 320 10 Ecology Environmental Sciences & Ecology TK487 WOS:A1995TK48700002 2019-02-26 J HICKMAN, CS HICKMAN, CS ASYNCHRONOUS CONSTRUCTION OF THE PROTOCONCH/TELEOCONCH BOUNDARY - EVIDENCE FOR STAGED METAMORPHOSIS IN A MARINE GASTROPOD LARVA INVERTEBRATE BIOLOGY English Article VELIGER; LARVAL ECOLOGY; LIFE-HISTORY EVOLUTION; SYSTEMATICS NUDIBRANCH PHESTILLA-SIBOGAE; MOLLUSK HALIOTIS-RUFESCENS; SPECIES LONGEVITY; BERGH GASTROPODA; SETTLEMENT; ECOLOGY; OPISTHOBRANCHIA; NEOGASTROPODS; INVERTEBRATES; TOXOGLOSSA In the Hawaiian turrid gastropod Carinapex minutissima, secretory reorganization at the boundary between the larval protoconch and the juvenile teleoconch is a gradual process, a sequence of events occurring over 5-7 days rather than an instantaneous reprogramming. I argue that such a staged sequence yields useful information not only for phylogenetic reconstruction and systematics but also for grounding the comparative study of gastropod metamorphosis and life-history evolution. Secretion of juvenile shell follows a retreat of the mantle, so that the first material is deposited beneath the surface of the protoconch rather than at its margin. Growth continues by advance and retreat of the mantle, resulting in progressive imbricate thickening of the shell. The two velar notches fill sequentially. The anterior siphonal canal elongates before accretionary growth begins along the outer lip and before juvenile lip shape and juvenile ornamentation are established. The velum is lost through a combination of gradual disintegration and resorption during the period of secretory reorganization. The larval and early juvenile shells of other gastropods record many kinds of change. Sculptural zonation is common and provides indirect evidence of sequential reprogramming. Additional studies of larvae in culture are required to provide direct evidence and to establish the comparative data base for phylogenetic analysis. HICKMAN, CS (reprint author), UNIV CALIF BERKELEY,DEPT INTEGRAT BIOL,BERKELEY,CA 94720, USA. BABIO CR, 1975, CAH BIOL MAR, V16, P83; BABIO CR, 1974, CAH BIOL MAR, V15, P531; BABIO CR, 1975, CAH BIOL MAR, V16, P521; BALOUN AJ, 1984, BIOL BULL, V167, P124, DOI 10.2307/1541342; BONAR DB, 1974, J EXP MAR BIOL ECOL, V16, P227, DOI 10.1016/0022-0981(74)90027-6; CARRIKER MR, 1979, NAUTILUS, V93, P47; Dall W. H., 1924, Journal of the Washington Academy of Sciences, V14, P177; DAVIS M, 1993, VELIGER, V36, P236; Degnan Bernard M., 1993, Molecular Marine Biology and Biotechnology, V2, P1; Fretter V., 1969, Proceedings of the Malacological Society of London, V38, P375; FRETTER V, 1972, J MAR BIOL ASSOC UK, V52, P161, DOI 10.1017/S0025315400018622; FRETTER V, 1977, J MOLLUS STUD, V43, P255; Fretter V, 1994, BRIT PROSOBRANCH MOL; Hadfield M.G., 1978, P165; HADFIELD MG, 1985, B MAR SCI, V37, P556; HADFIELD MG, 1990, B MAR SCI, V46, P455; HADFIELD MG, 1984, AQUACULTURE, V39, P283, DOI 10.1016/0044-8486(84)90272-2; HADFIELD MG, 1980, AM ZOOL, V20, P955; HADFIELD MG, 1977, MARINE NATURAL PRODU, P403; HADFIELD MG, 1995, 1995 S SENS EC PHYS, P27; HANSEN TA, 1983, SCIENCE, V220, P501, DOI 10.1126/science.220.4596.501; HANSEN TA, 1978, SCIENCE, V199, P885, DOI 10.1126/science.199.4331.885; HANSEN TA, 1980, PALEOBIOLOGY, V6, P193; Hickman C. S., 1994, American Zoologist, V34, p54A; HICKMAN C.S., 1990, NATURAL HIST MUSEUM, V35, P1; HICKMAN CS, 1992, VELIGER, V35, P245; HICKMAN CS, 1988, PROSOBRANCH PHYLOGEN, P17; HICKMAN CS, 1994, GEOL SOC AM ABSTR, V26, pA52; HICKMAN CS, IN PRESS ORIGIN EVOL; HIRATA KY, 1986, COMP BIOCHEM PHYS C, V84, P15, DOI 10.1016/0742-8413(86)90158-1; Iredale Tom, 1910, Proceedings of the Malacological Society of London, V9; JABLONSKI D, 1986, B MAR SCI, V39, P565; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; JABLONSKI D., 1980, SKELETAL GROWTH AQUA, P323; Kay E. Alison, 1979, HAWAIIAN MARINE SHEL; KESTEVEN HL, 1901, P LINN SOC NEW S WAL, V26, P533; KNIGHT JB, 1964, TREATISE INVERTEBRAT; KOHN AJ, 1994, LIFE HIST BIOGEOGRAP; MILLER SE, 1986, J EXP MAR BIOL ECOL, V97, P95, DOI 10.1016/0022-0981(86)90070-5; MORSE ANC, 1991, AM SCI, V79, P154; MORSE ANC, 1984, J EXP MAR BIOL ECOL, V75, P191, DOI 10.1016/0022-0981(84)90166-7; MORSE DE, 1979, SCIENCE, V204, P407, DOI 10.1126/science.204.4391.407; MORSE DE, 1992, ABALONE WORLD BIOL F, P197; NYBAKKEN J, 1988, MAR BIOL, V98, P239, DOI 10.1007/BF00391200; PERRON FE, 1981, MAR BIOL, V61, P215, DOI 10.1007/BF00386662; PERRON FE, 1980, J EXP MAR BIOL ECOL, V42, P27, DOI 10.1016/0022-0981(80)90164-1; PIRES A, 1991, BIOL BULL, V180, P310, DOI 10.2307/1542402; PIRES A, 1993, J EXP ZOOL, V266, P234, DOI 10.1002/jez.1402660310; ROBERTSON R, 1971, Veliger, V14, P1; Robertson R., 1976, THALASSIA JUGOSLAVIC, V10, P213; Scheltema R. S., 1977, CONCEPTS METHODS BIO, P73; SCHELTEMA RS, 1978, MARINE ORGANISMS GEN, P303; SHUTO T, 1974, LETHAIA, V7, P239, DOI 10.1111/j.1502-3931.1974.tb00899.x; Taylor J. B, 1975, THESIS U HAWAII HONO; THIRIOTQUIEVREU.C, 1972, ARCH ZOOLOGIE EXPT G, V113, P553; THIRIOTQUIEVREU.C, 1975, CAH BIOL MAR, V16, P135; THORSON G, 1950, BIOL REV, V17, P341; TRAPIDOROSENTHA.HG, 1986, B MAR SCI, V39, P383; YOOL AJ, 1986, BIOL BULL, V170, P255, DOI 10.2307/1541807 59 9 9 1 3 AMER MICROSCOPICAL SOC LAWRENCE 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 1077-8306 INVERTEBR BIOL Invertebr. Biol. 1995 114 4 295 306 10.2307/3226839 12 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology TJ774 WOS:A1995TJ77400004 2019-02-26 J Martin, TE; Clobert, J; Anderson, DR Martin, TE; Clobert, J; Anderson, DR Return rates in studies of life history evolution: Are biases large? JOURNAL OF APPLIED STATISTICS English Article; Proceedings Paper EURING 94 Conference SEP 19-24, 1994 PATUXENT RIVER, MD European Union Bird Ringing, Patuxent Environm Sci Ctr, Natl Biol Serv, Bird Banding Lab REPRODUCTIVE EFFORT; BIRDS; SURVIVAL; PREDATION; TRAITS; COVARIATION; HYPOTHESES; POPULATION; MORTALITY; FITNESS Studies of life history evolution in passerine birds often depend on examination of annual survival probability of adult birds. Most studies rely on return rates (proportion of marked individuals released in one year that are recaptured in the next year) to estimate annual survival probability. Yet, return rate includes both the probability of survival and the probability of recapturing or resighting the bird in the next time interval. We use numerical estimation to illustrate the increasing bias in return rate as an estimator of annual survival probability as recapture/resighting probability decreases. Recapture/resighting probability is normally assumed to be high and relatively invariant for recapture/resighting studies of color-banded territorial birds. We tested this assumption through examination of 11 color-banding studies of passerines. These studies showed that recapture/resighting probabilities vary strongly and cannot be generalized as high. In short, return rates generally ave poor estimators of annual survival probabilities and use of return rates may strongly bias relationships explored in comparative studies or bias results of experiments to test survival costs of reproduction. Recapture/resighting probabilities should be estimated in all studies that attempt to estimate annual survival probabilities. UNIV MONTANA, US NATL BIOL SERV, MONTANA COOPERAT WILDLIFE RES UNIT, MISSOULA, MT 59812 USA; UNIV PARIS 06, ECOL LAB, F-75252 PARIS, FRANCE; COLORADO STATE UNIV, NATL BIOL SERV, COLORADO COOPERAT FISH & WILDLIFE RES UNIT, FT COLLINS, CO 80523 USA Martin, Thomas/F-6016-2011 Martin, Thomas/0000-0002-4028-4867 Akaike H, 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; ANDERSON DR, 1981, ECOLOGY, V62, P1121, DOI 10.2307/1937009; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; BURNHAM KP, 1979, J WILDLIFE MANAGE, V43, P356, DOI 10.2307/3800344; BURNHAM KP, 1987, AM FISHERIES SOC MON, V5; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CLOBERT J, 1987, ARDEA, V75, P133; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; HINES JE, 1989, 24 US FISH WILDL, P1; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; KARR JR, 1979, INLAND BIRD BANDING, V57, P1; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEBRETON A, 1987, J MULTIVARIATE ANAL, V23, P77, DOI 10.1016/0047-259X(87)90179-5; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARZOLIN G, 1988, OISEAU REV FRANCAISE, V58, P277; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; NICHOLS JD, 1986, J MAMMAL, V67, P590, DOI 10.2307/1381295; NICHOLS JD, 1983, J MAMMAL, V64, P253, DOI 10.2307/1380555; NICHOLS JD, 1981, STUDIES AVIAN BIOL, V6, P121; NUR N., 1990, POPULATION BIOL PASS, P281; Peach W.J., 1990, Ring International Ornithological Bulletin, V13, P87; Peach Will J., 1993, P107; POLLOCK KH, 1990, WILDLIFE MONOGR, P1; REMSEN JV, 1983, BIOTROPICA, V15, P223, DOI 10.2307/2387833; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Roff Derek A., 1992; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SAUER JR, 1989, J WILDLIFE MANAGE, V53, P137, DOI 10.2307/3801320; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Stearns SC., 1992, EVOLUTION LIFE HIST; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S 47 94 95 0 6 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0266-4763 1360-0532 J APPL STAT J. Appl. Stat. 1995 22 5-6 863 875 10.1080/02664769524676 13 Statistics & Probability Mathematics TQ773 WOS:A1995TQ77300024 2019-02-26 B BRAKEFIELD, PM; KESBEKE, F Sommeijer, MJ; Francke, PJ BRAKEFIELD, PM; KESBEKE, F Raised adult lifespan and female fecundity in tropical fruit-feeding Bicyclus butterflies PROCEEDINGS OF THE SECTION EXPERIMENTAL AND APPLIED ENTOMOLOGY OF THE NETHERLANDS ENTOMOLOGICAL SOCIETY (N.E.V.), VOL 6, 1995 English Proceedings Paper 6th Meeting of Experimental and Applied Entomologists in the Netherlands DEC 16, 1994 AMSTERDAM, NETHERLANDS Netherlands Entomol Soc, Exptl & Appl Entomol Sect, Univ Amsterdam LIFE HISTORY EVOLUTION; FRUGIVORY; BUTTERFLIES; LIFE-SPAN LEIDEN UNIV,INST EVOLUTIONARY & BIOL SCI,2300 RA LEIDEN,NETHERLANDS 0 12 12 0 3 NEDERLANDSE ENTOMOLOGISCHE VERNIGING ( N E V ) 1018 DH AMSTERDAM PLANTAGE MIDDENLAAN 64, 1018 DH AMSTERDAM, NETHERLANDS 90-71912-11-6 1995 93 98 6 Entomology Entomology BD28Z WOS:A1995BD28Z00017 2019-02-26 J ENDLER, JA ENDLER, JA MULTIPLE-TRAIT COEVOLUTION AND ENVIRONMENTAL GRADIENTS IN GUPPIES TRENDS IN ECOLOGY & EVOLUTION English Review LIFE-HISTORY EVOLUTION; POECILIA-RETICULATA PISCES; COLOR PATTERNS; GEOGRAPHIC-VARIATION; SEXUAL SELECTION; TRINIDAD GUPPY; ARTIFICIAL INTRODUCTION; NATURAL-POPULATIONS; ADAPTIVE RADIATION; N-TRINIDAD Guppies show geographical variation in many different kinds of traits. Traits covary with each other, with predation and with other environmental factors. Phenotypic correlations are often assumed to result from genetic correlations, but may also result from covariation among different sources of natural selection and interactions among the traits' functions. This network of interactions could bias the direction of evolution in characteristic ways, and suggests how intraspecific variation may give rise to interspecific variation. ENDLER, JA (reprint author), UNIV CALIF SANTA BARBARA, DEPT BIOL SCI, SANTA BARBARA, CA 93106 USA. Endler, John/B-6659-2009 Endler, John/0000-0002-7557-7627 ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; BAKKER TCM, 1904, EVOLUTIONARY BIOL TH, P345; BARLOW GW, 1961, SYST ZOOL, V10, P105, DOI 10.2307/2411595; Bell M. F., 1994, EVOLUTIONARY BIOL TH; BREDEN F, 1987, ANIM BEHAV, V35, P618, DOI 10.1016/S0003-3472(87)80297-X; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; DOUGLAS ME, 1982, J THEOR BIOL, V99, P777, DOI 10.1016/0022-5193(82)90197-7; DUGATKIN LA, 1992, EVOL ECOL, V6, P519, DOI 10.1007/BF02270695; DUSSAULT GV, 1981, CAN J ZOOL, V59, P684, DOI 10.1139/z81-098; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1991, VISION RES, V31, P587, DOI 10.1016/0042-6989(91)90109-I; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; ENDLER JA, IN PRESS EVOLUTION; Endler JA., 1977, GEOGRAPHIC VARIATION; FAJEN A, 1992, EVOLUTION, V46, P1457, DOI 10.1111/j.1558-5646.1992.tb01136.x; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; HARRIS PD, 1992, J PARASITOL, V78, P912, DOI 10.2307/3283329; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HOUDE AE, 1988, ANIM BEHAV, V36, P510, DOI 10.1016/S0003-3472(88)80022-8; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; Hynes H. B. N., 1970, ECOLOGY RUNNING WATE; HYNES HBN, 1971, HYDROBIOLOGIA, V38, P1, DOI 10.1007/BF00036787; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LICHT T, 1989, ETHOLOGY, V82, P238; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LONG KD, 1989, ETHOLOGY, V82, P316; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; LUYTEN PH, 1991, BEHAV ECOL SOCIOBIOL, V28, P329, DOI 10.1007/BF00164382; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1994, BEHAVIOUR, V128, P121, DOI 10.1163/156853994X00073; MAGURRAN AE, 1993, MAR BEHAV PHYSIOL, V23, P29, DOI 10.1080/10236249309378855; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1990, ANIM BEHAV, V40, P443, DOI 10.1016/S0003-3472(05)80524-X; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; PHILLIPS PC, 1989, EVOLUTION, V43, P1209, DOI 10.1111/j.1558-5646.1989.tb02569.x; REYNOLDS JD, 1993, ANIM BEHAV, V45, P145, DOI 10.1006/anbe.1993.1013; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Roff Derek A., 1992; SANDOVAL CP, 1994, BIOL J LINN SOC, V52, P341; SCHEINER SM, 1991, GENETICA, V84, P123, DOI 10.1007/BF00116552; SCHLUTER D, 1993, TRENDS ECOL EVOL, V8, P197, DOI 10.1016/0169-5347(93)90098-A; SCHLUTER D, 1993, ECOLOGY, V74, P699, DOI 10.2307/1940797; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1974, OECOLOGIA, V14, P93, DOI 10.1007/BF00344900; SHAW PW, 1991, J FISH BIOL, V39, P203, DOI 10.1111/j.1095-8649.1991.tb05084.x; SHAW PW, 1992, P ROY SOC B-BIOL SCI, V248, P111, DOI 10.1098/rspb.1992.0049; SHAW PW, IN PRESS J FISH BIOL; Stearns SC., 1992, EVOLUTION LIFE HIST; STONER G, 1988, BEHAV ECOL SOCIOBIOL, V22, P285, DOI 10.1007/BF00299844; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; Webb P.W., 1983, FISH BIOMECHANICS; WINEMILLER KO, 1990, ENVIRON BIOL FISH, V29, P179, DOI 10.1007/BF00002218 61 424 427 5 286 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 1872-8383 TRENDS ECOL EVOL Trends Ecol. Evol. JAN 1995 10 1 22 29 10.1016/S0169-5347(00)88956-9 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity QB763 WOS:A1995QB76300008 21236940 2019-02-26 J QUINN, JA; MOWREY, DP; EMANUELE, SM; WHALLEY, RDB QUINN, JA; MOWREY, DP; EMANUELE, SM; WHALLEY, RDB THE FOLIAGE-IS-THE-FRUIT HYPOTHESIS - BUCHLOE-DACTYLOIDES (POACEAE) AND THE SHORTGRASS PRAIRIE OF NORTH-AMERICA AMERICAN JOURNAL OF BOTANY English Article LIFE-HISTORY STRATEGIES; SEED DISPERSAL; HERBIVORY; PLANTS; SEX; EVOLUTION; GRAMINEAE; DIOECY; DIFFERENTIATION; CHARACTERS Janzen proposed that foliage of herbaceous plants may serve as the attractant for large herbivore dispersal of seeds. Such herbivore dispersal was envisioned to select for traits enhancing ingestion and passage of viable seeds through the animal. We tested this ''Foliage is the Fruit'' (FF) hypothesis by collecting and collating appropriate data from Buchloe dactyloides (buffalograss), one of the two dominant grasses of the shortgrass prairie. Passage of buffalograss diaspores through cattle had a positive effect on germination and seedling growth from intact diaspores, damage other than that due to mastication (15%) was minimal, and retention time was 1-5 days. This combination of retention time and migratory herbivores during the northward expansion of shortgrass prairie should have enhanced migration of buffalograss northward to Montana from its area of origin in central Mexico, and our comparisons with its five close dioecious relatives (the ''Buchloe group'') showed that buffalograss does possess a suite of distinctive FF traits. Lab analyses of foliage quality and digestibility also confirmed the high quality of its foliage. After reviewing comparable data for Bouteloua gracilis (blue grama), we conclude that buffalograss and blue grama, which dominate major portions of the largest North American steppe Province, provide strong support for the FF hypothesis. USDA ARS,GRAZINGLANDS RES LAB,EL RENO,OK 73036; RUTGERS STATE UNIV,DEPT ANIM SCI,NEW BRUNSWICK,NJ 08903; UNIV NEW ENGLAND,DEPT BOT,ARMIDALE,NSW 2351,AUSTRALIA QUINN, JA (reprint author), RUTGERS STATE UNIV,DEPT BIOL SCI,PISCATAWAY,NJ 08855, USA. Whalley, Ralph/F-9610-2018 Whalley, Ralph/0000-0002-2949-9891 ANDERSON B, 1985, 15 P INT GRASSL C KY, P947; [Anonymous], 1948, GRASS YB AGR; [Anonymous], 1980, OFFICIAL METHODS ANA; ARCHER SG, 1953, AM GRASS BOOK; BEETLE AA, 1950, WYOMING AGR EXPT STA, V293; BEETLE ALAN A., 1960, UNIV WYOMING PUBL, V24, P1; BELSKY AJ, 1986, AM NAT, V127, P870, DOI 10.1086/284531; BOECKLEN WJ, 1990, ECOLOGY, V71, P581, DOI 10.2307/1940311; Chailakhyan M. K, 1987, SEXUALITY PLANTS ITS; Clayton W.D., 1990, REPROD VERSATILITY G, P32; COLLINS SL, 1985, AM NAT, V125, P866, DOI 10.1086/284384; CONN JS, 1981, B TORREY BOT CLUB, V108, P446, DOI 10.2307/2484445; COOK CW, 1956, UTAH AGR EXPT STATIO, V385; COUGHENOUR MB, 1985, ANN MO BOT GARD, V72, P852, DOI 10.2307/2399227; Daubenmire R., 1978, PLANT GEOGRAPHY; Davidse G., 1987, GRASS SYSTEMATICS EV, P143; DETLING JK, 1980, OECOLOGIA, V45, P26, DOI 10.1007/BF00346702; DINERSTEIN E, 1989, BIOTROPICA, V21, P214, DOI 10.2307/2388646; DYKSTERHUIS E. J., 1949, JOUR RANGE MANAGEMENT, V2, P104, DOI 10.2307/3893680; GEHRING JL, 1993, B TORREY BOT CLUB, V120, P405, DOI 10.2307/2996744; GOERING HK, 1970, USDA ARS AGR HDB, V379; HARRIS WD, 1954, J AM OIL CHEM SOC, V31, P124, DOI 10.1007/BF02545694; Heady H. F., 1975, RANGELAND MANAGEMENT; HITCHCOCK AS, 1939, N AM FLORA, V17, P635; HITCHCOCK AS, 1951, USDA MISC PUBL, V200; JANIS C, 1976, EVOLUTION, V30, P757, DOI 10.1111/j.1558-5646.1976.tb00957.x; JANZEN DH, 1984, AM NAT, V123, P338, DOI 10.1086/284208; JING SW, 1990, OIKOS, V58, P369, DOI 10.2307/3545228; JOHNSON RA, 1985, ECOLOGY, V66, P819, DOI 10.2307/1940543; JONES MD, 1948, AGRON J, V40, P195; LLOYD DG, 1977, BOT REV, V43, P177, DOI 10.1007/BF02860717; MACK RN, 1982, AM NAT, V119, P757, DOI 10.1086/283953; MARTEN GC, 1980, STANDARDIZATION ANAL, P61; MCNAUGHTON SJ, 1979, AM NAT, V113, P691, DOI 10.1086/283426; McVaugh R., 1983, FLORA NOVO GALICIANA, V14; MEAGHER TR, 1984, ANN MO BOT GARD, V71, P254, DOI 10.2307/2399069; Mohr Carl O., 1943, ECOL MONOGR, V13, P275, DOI 10.2307/1943223; MOWREY DP, 1986, 1986 P FOR GRASSL C, P47; Nash GV, 1912, N AM FLORA, V17, P141; OWEN DF, 1981, OIKOS, V36, P376, DOI 10.2307/3544637; OWEN DF, 1980, OIKOS, V35, P230, DOI 10.2307/3544430; PAIGE KN, 1987, AM NAT, V129, P407, DOI 10.1086/284645; Pozarnsky T., 1983, RANGELANDS, V5, P214; PUTWAIN PD, 1972, J ECOL, V60, P113, DOI 10.2307/2258045; QUINN JA, 1991, AM J BOT, V78, P481, DOI 10.2307/2445257; QUINN JA, 1987, AM J BOT, V74, P1167, DOI 10.2307/2444153; QUINN JA, 1986, AM J BOT, V73, P874, DOI 10.2307/2444298; QUINN JA, 1970, J RANGE MANAGE, V23, P50, DOI 10.2307/3896008; REEDER JOHN R., 1965, BRITTONIA, V17, P26, DOI 10.2307/2805389; REEDER JOHN R., 1963, BULL TORREY BOT CLUB, V90, P193, DOI 10.2307/2482754; REEDER JR, 1969, B SOC BOT MEX, V30, P121; REPPERT JACK N., 1960, JOUR RANGE MANAGEMENT, V13, P58, DOI 10.2307/3895123; RING CB, 1985, J RANGE MANAGE, V38, P51, DOI 10.2307/3899333; Robbins C. T., 1983, WILDLIFE FEEDING NUT; Rzedowski J., 1975, Taxon, V24, P67, DOI 10.2307/1219002; SAVAGE DA, 1939, USDA491 CIRC; SCRIBNER FL, 1897, USDA DIVISION AGROST, V4; SCRIBNER FL, 1896, BOT GAZ, V21, P133; SIMS PL, 1988, N AM TERRESTRIAL VEG, P265; Soderstrom T.R., 1987, GRASS SYSTEMATICS EV; Stebbins G. L., 1975, Taxon, V24, P91, DOI 10.2307/1219004; STILES EW, 1980, AM NAT, V116, P670, DOI 10.1086/283657; THOMAS HS, 1991, RANGELANDS, V13, P285; THOMASSON JR, 1985, ANN MO BOT GARD, V72, P843, DOI 10.2307/2399226; VAIL SG, 1992, AM NAT, V139, P1, DOI 10.1086/285309; VANSOEST PJ, 1982, NUTRITIONAL ECOLOGY; WALLACE JD, 1972, J RANGE MANAGE, V25, P100, DOI 10.2307/3896794; WICKLOW DT, 1984, ENVIRON ENTOMOL, V13, P878, DOI 10.1093/ee/13.3.878; 1985, SAS USERS GUIDE STAT 69 25 26 0 4 BOTANICAL SOC AMER INC COLUMBUS OHIO STATE UNIV-DEPT BOTANY 1735 NEIL AVE, COLUMBUS, OH 43210 0002-9122 AM J BOT Am. J. Bot. DEC 1994 81 12 1545 1554 10.2307/2445331 10 Plant Sciences Plant Sciences PZ956 WOS:A1994PZ95600005 2019-02-26 J AZIZ, S; KHAN, MA AZIZ, S; KHAN, MA LIFE-HISTORY STRATEGIES OF TEPHROSIA-STRIGOSA WILLD - A DESERT SUMMER ANNUAL BANGLADESH JOURNAL OF BOTANY English Article SEED BANK; DEMOGRAPHY; DESERT; TEPHROSIA-STRIGOSA Variation in demography and life-history patterns of Tephrosia strigosa Willd., a summer annual of dry habitat, was studied under field conditions during 1988 and 1990 growing seasons. Seasonal data on persistent seed bank showed a substantial loss of seeds in the seed bank after dispersal especially after rainfall where seeds either germinated or were washed deep into the soil. A high degree of similarity was observed between the buried seed bank flora and vegetation. There was a significant increase in mortality soon after recruitment followed by little change in population size during late vegetative phase. Mortality rate again increased at the time of flowering. Vegetative growth of plants increases significantly at the seedling stage but declined at the time of flowering. Biomass allocated to reproduction increased with the increase in the size of the seedlings which was shared by roots and shoots and later by root, stem and leaf. During flowering and fruiting time the reproductive allocations approached up to 30%. AZIZ, S (reprint author), UNIV KARACHI,DEPT BOT,KARACHI 75270,PAKISTAN. Khan, Muhammad Ajmal/I-6429-2015; Khan, M. Ajmal/L-7721-2015 Khan, M. Ajmal/0000-0003-2837-0794 0 4 4 0 2 BANGLADESH BOTANICAL SOC DHAKA UNIV DACCA DEPT BOTANY, 2 DHAKA, BANGLADESH 0253-5416 BANGLADESH J BOTANY Bangladesh J. Bot. DEC 1994 23 2 139 146 8 Plant Sciences Plant Sciences PX710 WOS:A1994PX71000001 2019-02-26 J PARKER, T; TUNNICLIFFE, V PARKER, T; TUNNICLIFFE, V DISPERSAL STRATEGIES OF THE BIOTA ON AN OCEANIC SEAMOUNT - IMPLICATIONS FOR ECOLOGY AND BIOGEOGRAPHY BIOLOGICAL BULLETIN English Article LONG-DISTANCE DISPERSAL; BENTHIC INVERTEBRATES; NORTHEAST PACIFIC; PLANKTONIC LARVAE; MARINE-INVERTEBRATES; GENETIC-STRUCTURE; COBB SEAMOUNT; GIANT-KELP; PATTERNS; REPRODUCTION Cobb Seamount lies at 46 degrees 46'N, 130 degrees 48'W in the northeast Pacific 510 km due west of the Oregon coast. The isolated seamount rises 3000 m in a current held flowing from west to east. The seamount supports dense populations of fish and benthos. Collections and submersible observations of the benthic community produced a list of 117 species representing 13 phyla. The organisms present can nearly all be found on the North American Pacific coast, but the diversity is low. This paper presents an analysis of the larval dispersal modes of the benthos at Cobb Seamount. This remote seamount is dominated by species with either a short-lived or no planktonic larval phase. The preponderance of such larval strategies and the observation of abundant drifting kelp near the seamount suggest that rafting of adults may be an effective dispersal mode. The presence of a recirculating flow in the form of a modified Taylor cap appears important for trapping short-lived larvae on the seamount. However, because the water mass is replaced about every 17 days, medium and long-lived larvae would not be retained. The interplay between local currents, available dispersal vectors, and life-history strategies cannot be overlooked in the interpretation of marine biogeographic patterns. UNIV VICTORIA, SCH EARTH & OCEAN SCI, VICTORIA, BC V8W 2Y2, CANADA; UNIV VICTORIA, DEPT BIOL, VICTORIA, BC V8W 2Y2, CANADA Tunnicliffe, Verena/D-1056-2014 AMANO S, 1986, BIOL BULL, V171, P371, DOI 10.2307/1541679; AUSTIN WC, 1970, 3 BAMF MAR STAT REP; BERNARD F R, 1972, Syesis, V5, P73; BINGHAM BL, 1992, ECOLOGY, V73, P224; BIRKELAND C, 1971, Northwest Science, V45, P193; BODEN BP, 1952, NATURE, V169, P697, DOI 10.1038/169697a0; Boehlert G.W., 1988, Geojournal, V16, P45, DOI 10.1007/BF02626371; BOEHLERT GW, 1984, BIOL BULL, V167, P354, DOI 10.2307/1541282; BRIGGS JC, 1974, SYST ZOOL, V23, P248, DOI 10.2307/2412136; BUCKLIN A, 1987, DEEP-SEA RES, V34, P1795, DOI 10.1016/0198-0149(87)90054-9; BUDINGER TF, 1967, DEEP-SEA RES, V14, P191, DOI 10.1016/0011-7471(67)90005-8; BUDINGER TF, 1960, 60 U WASH DEP OC TEC; CHAPMAN DC, 1992, GEOPHYS ASTRO FLUID, V64, P31, DOI 10.1080/03091929208228084; CHIA F, 1972, BIOL BULL-US, V142, P206, DOI 10.2307/1540225; CHIA FS, 1976, COELENTERATE ECOLOGY, P261; DAVIS EE, 1986, EARTH PLANET SC LETT, V79, P385, DOI 10.1016/0012-821X(86)90194-9; de Schweinitz E.H., 1976, Biological Bull Mar Biol Lab Woods Hole, V150, P348, DOI 10.2307/1540677; DOWER J, 1992, DEEP-SEA RES, V39, P1139, DOI 10.1016/0198-0149(92)90061-W; DYMOND JR, 1968, J GEOPHYS RES, V73, P3977, DOI 10.1029/JB073i012p03977; FARROW GE, 1985, MAR GEOL, V65, P73, DOI 10.1016/0025-3227(85)90047-7; FREELAND H, 1994, IN PRESS DEEP SEA RE; GABRIELSON PW, 1989, U BRIT COLUMBIA PHYC, V4; GENIN A, 1985, J MAR RES, V43, P907, DOI 10.1357/002224085788453868; GILBERT MA, 1978, NAUTILUS, V92, P21; GRAHAME J, 1985, OCEANOGR MAR BIOL, V23, P373; GREER DONALD L., 1962, PACIFIC SCI, V16, P280; GRIFFITH LM, 1967, HDB BRIT COLUMBIA PR, V26; GUSTAFSON RG, 1985, THESIS U VICTORIA VI; HADFIELD MG, 1990, J MOLLUS STUD, V56, P239, DOI 10.1093/mollus/56.2.239; HARROLD C, 1989, J EXP MAR BIOL ECOL, V130, P237, DOI 10.1016/0022-0981(89)90166-4; Hart J. L, 1973, FISH RES BOARD CAN B, V180; HART JOSEPHINE F. L., 1960, CANADIAN JOUR ZOOL, V38, P539, DOI 10.1139/z60-058; HATCH MELVILLE H., 1947, UNIV WASHINGTON PUBL BIOL, V10, P155; HEDGECOCK D, 1986, B MAR SCI, V39, P550; Hickey B.M., 1989, COASTAL OCEANOGRAPHY; HICKS GRF, 1983, OCEANOGR MAR BIOL, V21, P67; HIGHSMITH RC, 1985, MAR ECOL PROG SER, V25, P169, DOI 10.3354/meps025169; HINES AH, 1986, B MAR SCI, V39, P444; HOFFMANN RJ, 1987, MAR BIOL, V93, P499, DOI 10.1007/BF00392787; HOGG NG, 1973, J FLUID MECH, V58, P517, DOI 10.1017/S0022112073002302; HOLYOAK AR, 1988, VELIGER, V30, P369; HUBBS CARL L., 1959, PACIFIC SCI, V13, P311; JACKSON JBC, 1986, B MAR SCI, V39, P588; JOHANNESSON K, 1988, MAR BIOL, V99, P507, DOI 10.1007/BF00392558; KEOUGH MJ, 1987, ECOLOGY, V68, P199, DOI 10.2307/1938820; KNOX GA, 1954, NATURE, V174, P871, DOI 10.1038/174871a0; KOEHL MAR, 1977, LIMNOL OCEANOGR, V22, P1067, DOI 10.4319/lo.1977.22.6.1067; Kozloff E.N., 1987, MARINE INVERTEBRATES; LAMBERT P, 1986, CAN J ZOOL, V64, P2266, DOI 10.1139/z86-340; LAMBERT P, 1981, HDB BRIT COLUMBIA PR, V39; LANE DJW, 1985, MAR BIOL, V84, P301, DOI 10.1007/BF00392500; LAUBITZ DR, 1970, NATIONAL MUSEUM NATU, V1; LEAL JH, 1991, J MAR BIOL ASSOC UK, V71, P11, DOI 10.1017/S0025315400037358; LEVIN LA, 1984, BIOL BULL, V166, P494, DOI 10.2307/1541157; Mackie GL., 1984, MOLLUSCA, V7; MARTEL A, 1991, J EXP MAR BIOL ECOL, V150, P131, DOI 10.1016/0022-0981(91)90111-9; MCEDWARD LR, 1988, INT J INVER REP DEV, V13, P9, DOI 10.1080/01688170.1988.10510338; MILEIKOVSKY SA, 1971, MAR BIOL, V10, P193, DOI 10.1007/BF00352809; MILLAR RH, 1971, ADV MAR BIOL, V9, P1, DOI 10.1016/S0065-2881(08)60341-7; MLADENOV PV, 1983, MAR BIOL, V73, P309, DOI 10.1007/BF00392257; MOORE PG, 1977, J MAR BIOL ASSOC UK, V57, P191, DOI 10.1017/S0025315400021330; MORRIS R. H., 1980, INTERTIDAL INVERTEBR; NIELSEN C, 1970, Ophelia, V7, P217; NIELSON WG, 1980, SARSIA, V65, P61; O-FOIGHIL D, 1989, Marine Biology (Berlin), V103, P349, DOI 10.1007/BF00397269; OLSON RR, 1985, ECOLOGY, V66, P30, DOI 10.2307/1941304; PINGREE RD, 1985, DEEP-SEA RES, V32, P929, DOI 10.1016/0198-0149(85)90037-8; Potswald H.E., 1978, P127; RICE MARY E., 1967, OPHELIA, V4, P143; Rudwick MJS, 1970, LIVING FOSSIL BRACHI; SANTELICES B, 1990, OCEANOGR MAR BIOL, V28, P177; SCHELTEMA RS, 1989, OLSEN INT S, P183; SCHELTEMA RS, 1983, B MAR SCI, V33, P545; SCHELTEMA RS, 1986, B MAR SCI, V39, P241; SCHELTEMA RS, 1986, B MAR SCI, V39, P290; SCHELTEMA RS, 1971, 4TH EUR MAR BIOL S, P7; SCHROEDER PC, 1975, REPRODUCTION MARINE, V3, P1; SEIBERT AE, 1976, BIOL BULL, V150, P128; SEIBERT AE, 1973, PAC SCI, V27, P363; SHIELD CJ, 1993, J EXP MAR BIOL ECOL, V166, P107; SORLIN T, 1988, OECOLOGIA, V77, P273, DOI 10.1007/BF00379198; Strathmann MF, 1987, REPRODUCTION DEV MAR; STRATHMANN R, 1978, J EXP MAR BIOL ECOL, V34, P23, DOI 10.1016/0022-0981(78)90054-0; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Thorson G., 1961, OCEANOGRAPHY AM ASS, V67, P455; VALENTINE JW, 1983, EVOLUTION, V37, P1050; Vasquez Julio A., 1993, Pacific Science, V47, P180; WALKER CW, 1989, MAR BIOL, V103, P519, DOI 10.1007/BF00399584; Webber H.H., 1977, REPRODUCTION MARINE, VIV, P1; WILDISH DJ, 1982, INT J INVER REP DEV, V5, P1; WILSON CD, 1993, MAR BIOL, V113, P537; Wilson R. R., 1987, GEOPHYS MONOGR SER, V43, P355; Woollacott R.M., 1978, P49; WOOLLACOTT RM, 1989, MAR BIOL, V102, P57, DOI 10.1007/BF00391323; YAMADA SB, 1989, MAR BIOL, V103, P403, DOI 10.1007/BF00397275; ZINSMEISTER WJ, 1979, VELIGER, V22, P32 96 78 85 0 21 MARINE BIOLOGICAL LABORATORY WOODS HOLE 7 MBL ST, WOODS HOLE, MA 02543 USA 0006-3185 1939-8697 BIOL BULL-US Biol. Bull. DEC 1994 187 3 336 345 10.2307/1542290 10 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology PX204 WOS:A1994PX20400006 29281394 2019-02-26 J YOUNG, MK YOUNG, MK MOBILITY OF BROWN TROUT IN SOUTH-CENTRAL WYOMING STREAMS CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article JUVENILE ATLANTIC SALMON; MICHIGAN STREAM; HOME RANGE; TRUTTA-L; POPULATION; MOVEMENTS; HABITAT; NORWAY; RESIDENT; CREEK Stream-resident brown trout (Salmo trutta) have often been considered to have small home ranges. To test this hypothesis, positions of adult brown trout in two streams were monitored from mid-June to early December 1991 and from late September 1992 to early June 1993 by using radiotelemetry. Thirty-seven of the 54 brown trout that were relocated at least once had home ranges greater than 50 m, trout larger than 340 mm moved more than did smaller brown trout, and movement of all fish tended to be greater in autumn. Different movement patterns of large and small fish imply the existence of two life-history strategies. YOUNG, MK (reprint author), ROCKY MT FOREST & RANGE EXPT STN,222 S 22ND ST,LARAMIE,WY 82070, USA. Allen KR, 1951, FISH B, V10; BACHMAN RA, 1984, T AM FISH SOC, V113, P1, DOI 10.1577/1548-8659(1984)113<1:FBOFWA>2.0.CO;2; Bachman RA, 1982, SALMON TROUT MIGRATO, P128; BEARD TD, 1991, T AM FISH SOC, V120, P711, DOI 10.1577/1548-8659(1991)120<0711:IOSAOS>2.3.CO;2; Burnet A.M.R., 1969, New Zealand Journal of Marine and Freshwater Research, V3, P385; CLAPP DF, 1990, T AM FISH SOC, V119, P1022, DOI 10.1577/1548-8659(1990)119<1022:RAAHOL>2.3.CO;2; CLOTHIER WD, 1953, J WILDLIFE MANAGE, V17, P144, DOI 10.2307/3796709; CONDER A L, 1987, North American Journal of Fisheries Management, V7, P339, DOI 10.1577/1548-8659(1987)7<339:TOWUAE>2.0.CO;2; DECKER LM, 1992, T AM FISH SOC, V121, P297, DOI 10.1577/1548-8659(1992)121<0297:SSCICA>2.3.CO;2; ELLIOTT JM, 1987, J ANIM ECOL, V56, P83, DOI 10.2307/4801; FAUSCH KD, 1988, PNWGTR219 US FOR SER; GERKING SD, 1959, BIOL REV, V34, P221, DOI 10.1111/j.1469-185X.1959.tb01289.x; GOWAN C, 1994, IN PRESS CAN J FISH, V51; HARCUP MF, 1984, J FISH BIOL, V24, P415, DOI 10.1111/j.1095-8649.1984.tb04812.x; HARRIS D D, 1991, Rivers, V2, P285; HESTHAGEN T, 1990, FRESHWATER BIOL, V24, P63, DOI 10.1111/j.1365-2427.1990.tb00307.x; HESTHAGEN T, 1988, J FISH BIOL, V32, P639, DOI 10.1111/j.1095-8649.1988.tb05404.x; HOLTON GD, 1953, J WILDLIFE MANAGE, V17, P62, DOI 10.2307/3796806; HOOVER EE, 1937, T AM FISH SOC, V67, P224; Jenkins T. M. Jr., 1969, Animal Behaviour Monographs, V2, P57; JONSSON B, 1985, ENVIRON BIOL FISH, V14, P281, DOI 10.1007/BF00002633; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; LEWIS SL, 1969, T AM FISH SOC, V98, P14, DOI 10.1577/1548-8659(1969)98[14:PFIFPI]2.0.CO;2; LINLOKKEN A, 1993, REGUL RIVER, V8, P145, DOI 10.1002/rrr.3450080117; MENSE JB, 1975, T AM FISH SOC, V104, P688, DOI 10.1577/1548-8659(1975)104<688:RODTBT>2.0.CO;2; MESING CL, 1986, T AM FISH SOC, V115, P286, DOI 10.1577/1548-8659(1986)115<286:HRSMAH>2.0.CO;2; Meyers Lee S., 1992, North American Journal of Fisheries Management, V12, P433, DOI 10.1577/1548-8675(1992)012<0433:SMOBTI>2.3.CO;2; MILNER NJ, 1979, J FISH BIOL, V15, P211, DOI 10.1111/j.1095-8649.1979.tb03584.x; Needham Paul R., 1943, JOUR WILDLIFE MANAGEMENT, V7, P142, DOI 10.2307/3795717; NORTHCOTE TG, 1992, J FRESHWATER RES, V67, P5; NORUSIS MJ, 1990, SPSS PCPLUS STATISTI; OSBORNE LL, 1992, CAN J FISH AQUAT SCI, V49, P671, DOI 10.1139/f92-076; PIMENTEL RA, 1990, BIOSTAT, V1; Platts W.S., 1988, North American Journal of Fisheries Management, V8, P333, DOI 10.1577/1548-8675(1988)008<0333:FITPAT>2.3.CO;2; Riley S.C., 1992, Ecology of Freshwater Fish, V1, P112, DOI 10.1111/j.1600-0633.1992.tb00080.x; Schuck Howard A., 1945, TRANS AMER FISH SOC, V73, P209, DOI 10.1577/1548-8659(1943)73[209:SPDGAM]2.0.CO;2; SHETTER DAVID S., 1938, TRANS AMER FISH SOC, V68, P281; SHETTER DS, 1968, T AM FISH SOC, V97, P472, DOI 10.1577/1548-8659(1968)97[472:OOMOWT]2.0.CO;2; SHETTER DS, 1938, T N AM WILDL C, V3, P331; SOLOMON DJ, 1976, J FISH BIOL, V9, P411, DOI 10.1111/j.1095-8649.1976.tb04690.x; STEFANICH FA, 1952, T AM FISH SOC, V81, P260; WATERS TF, 1972, ANNU REV ENTOMOL, V17, P253, DOI 10.1146/annurev.en.17.010172.001345; WIENS JA, 1976, ANNU REV ECOL SYST, V7, P81, DOI 10.1146/annurev.es.07.110176.000501; ZAR JH, 1994, BIOSTATISTICAL ANAL 44 64 65 0 6 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. DEC 1994 72 12 2078 2083 10.1139/z94-278 6 Zoology Zoology QW005 WOS:A1994QW00500002 2019-02-26 J LACHMANSINGH, E; ROLLO, CD LACHMANSINGH, E; ROLLO, CD EVIDENCE FOR A TRADE-OFF BETWEEN GROWTH AND BEHAVIORAL ACTIVITY IN GIANT SUPERMICE GENETICALLY-ENGINEERED WITH EXTRA GROWTH-HORMONE GENES CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article FOOD RESTRICTION; TRANSGENIC MICE; LIFE-HISTORY; DIETARY RESTRICTION; METABOLIC-RATE; HOUSE MICE; ENERGY-INTAKE; FUSION GENES; BODY-WEIGHT; SMALL SIZE The ''Supermouse,'' transgenic strain (Tg(MT-1,rGH),Bri2), contains multiple copies of rat growth hormone genes. Supermice exhibit doubled growth rates and body sizes but no increase in mass-specific feeding rates or assimilation efficiencies. Extra growth is achieved entirely by means of increased production efficiency by diverting energy from other processes. Reduction of behavioural activity is one potential mechanism for diverting energy to growth. To test this hypothesis we compared the behavioural time budgets (resting, sleeping, locomotion, wheel running, feeding, drinking, and grooming) of transgenic and normal male mice. The activities of individual Supermice and normal mice in artificial enclosures were videotaped and compared over 24-h periods. The duration of each activity was recorded and compared. Transgenic mice slept 126% as much as their normal counterparts (an increase of 3.4 hid), and locomotion and wheel running combined were only 53.8% that of normal mice (a decrease of 2.95 h/d). Supermice spent only 77% as much time drinking and 69% as much time grooming as normal mice. No differences in the duration of feeding were found. The evidence suggests a direct trade-off between growth rate and behavioural activity consistent with the ''principle of allocation'' paradigm for life-history evolution. MCMASTER UNIV,DEPT BIOL,HAMILTON,ON L8S 4K1,CANADA BARNETT SA, 1989, BIOL REV, V64, P317, DOI 10.1111/j.1469-185X.1989.tb00679.x; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BOZINOVIC F, 1989, FUNCT ECOL, V3, P173, DOI 10.2307/2389298; BRINSTER RL, 1986, HARVEY LECT, V80, P1; BRONSON FH, 1979, Q REV BIOL, V54, P265, DOI 10.1086/411295; BRONSON FH, 1984, BIOL REPROD, V31, P83, DOI 10.1095/biolreprod31.1.83; Calder W. A, 1984, SIZE FUNCTION LIFE H; CONN CA, 1993, GROWTH DEVELOP AGING, V57, P193; DEOL MS, 1962, J HERED, V53, P133, DOI 10.1093/oxfordjournals.jhered.a107147; DERTING TL, 1989, ECOLOGY, V70, P587, DOI 10.2307/1940210; DRENT RH, 1980, ARDEA, V68, P225; DRUCKERCOLIN R, 1982, SLEEP CLIN EXPT ASPE, P37; DRUCKERCOLIN RR, 1975, NEUROENDOCRINOLOGY, V18, P1, DOI 10.1159/000122377; EKLUND J, 1977, NATURE, V265, P48, DOI 10.1038/265048b0; FALCONER DS, 1952, J GENET, V51, P67, DOI 10.1007/BF02986705; FALCONER DS, 1953, J GENET, V51, P470, DOI 10.1007/BF02982939; FALCONER DS, 1977, INT C QUANTITATIVE G, P19; Finch C. E., 1990, LONGEVITY SENESCENCE; FORSUM E, 1981, J NUTR, V111, P1691; GOODRICK CL, 1977, GERONTOLOGY, V23, P405; HAMMER RE, 1985, COLD SPRING HARB SYM, V50, P379, DOI 10.1101/SQB.1985.050.01.048; HAMMER RE, 1985, NATURE, V315, P680, DOI 10.1038/315680a0; HANAHAN D, 1989, SCIENCE, V246, P1265, DOI 10.1126/science.2686032; HAVLICEK V, 1976, PHARMACOL BIOCHEM BE, V4, P455, DOI 10.1016/0091-3057(76)90063-0; HAYES JP, 1992, FUNCT ECOL, V6, P5, DOI 10.2307/2389765; HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408; HOLLOSZY JO, 1988, J GERONTOL, V43, pB149, DOI 10.1093/geronj/43.6.B149; JAENISCH R, 1988, SCIENCE, V240, P1468, DOI 10.1126/science.3287623; KAJIURA LJ, 1994, CAN J ZOOL, V72, P1010, DOI 10.1139/z94-137; KARASOV WH, 1986, AUK, V103, P453; KARASOV WH, 1986, TREE, V4, P101; KIM JD, 1993, FASEB J, V7, pA819; KIRKWOOD JK, 1983, COMP BIOCHEM PHYS A, V75, P1, DOI 10.1016/0300-9629(83)90033-6; KONIG B, 1987, BEHAV ECOL SOCIOBIOL, V20, P1, DOI 10.1007/BF00292161; Lessells C.M., 1991, P32; MACARTHUR JW, 1949, GENETICS, V34, P194; MacArthur JW, 1944, AM NAT, V78, P142, DOI 10.1086/281181; MACLEOD JN, 1991, J ENDOCRINOL, V131, P395, DOI 10.1677/joe.0.1310395; MALIK RC, 1984, J ANIM SCI, V58, P577; MASMAN D, 1989, J EVOLUTION BIOL, V2, P435, DOI 10.1046/j.1420-9101.1989.2060435.x; MASORO EJ, 1993, J AM GERIATR SOC, V41, P994, DOI 10.1111/j.1532-5415.1993.tb06767.x; MASORO EJ, 1988, J GERONTOL, V43, pB59, DOI 10.1093/geronj/43.3.B59; MATHEWS LS, 1988, ENDOCRINOLOGY, V123, P433, DOI 10.1210/endo-123-1-433; MAYER J, 1953, SCIENCE, V117, P504, DOI 10.1126/science.117.3045.504; MAYER J, 1954, AM J PHYSIOL, V177, P544; MCCARTER R, 1985, AM J PHYSIOL, V248, pE488; MCCARTHY JC, 1989, EVOLUTION ANIMAL BRE, P135; MCFARLAND DJ, 1977, NATURE, V269, P15, DOI 10.1038/269015a0; MCNAB BK, 1963, ECOLOGY, V44, P521, DOI 10.2307/1932531; MENDELSON WB, 1980, BIOL PSYCHIAT, V15, P613; MEYER JA, 1986, COMP BIOCHEM PHYS A, V83, P533, DOI 10.1016/0300-9629(86)90141-6; MILLAR JS, 1991, FUNCT ECOL, V5, P588, DOI 10.2307/2389476; MOLLER N, 1991, HORM RES, V36, P32, DOI 10.1159/000182185; MULLER EE, 1967, P SOC EXP BIOL MED, V125, P874; PALMITER RD, 1982, NATURE, V300, P611, DOI 10.1038/300611a0; PALMITER RD, 1983, SCIENCE, V222, P809, DOI 10.1126/science.6356363; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PEASE CM, 1988, J EVOLUTION BIOL, V1, P295; PERRIGO G, 1987, ANIM BEHAV, V35, P1298, DOI 10.1016/S0003-3472(87)80002-7; PETERSON CC, 1990, P NATL ACAD SCI USA, V87, P2324, DOI 10.1073/pnas.87.6.2324; PIDDUCK HG, 1978, GENET RES, V32, P195, DOI 10.1017/S001667230001867X; Pursel V G, 1990, J Reprod Fertil Suppl, V40, P235; PURSEL VG, 1989, SCIENCE, V244, P1281, DOI 10.1126/science.2499927; QUAIFE CJ, 1989, ENDOCRINOLOGY, V120, P40; RANDOLPH JC, 1980, PHYSIOL ZOOL, V53, P70, DOI 10.1086/physzool.53.1.30155776; REXROAD C E JR, 1989, Molecular Reproduction and Development, V1, P164, DOI 10.1002/mrd.1080010304; REZEK M, 1976, PHARMACOL BIOCHEM BE, V5, P73, DOI 10.1016/0091-3057(76)90290-2; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; ROBERTS RC, 1981, GENET RES, V38, P9, DOI 10.1017/S0016672300020371; Roff D., 1993, EVOLUTION LIFE HIST; ROLLE CD, 1994, PHENOTYPES THEIR EPI; ROSS MH, 1985, AM J CLIN NUTR, V41, P1332; SAARIKKO J, 1990, ANIM BEHAV, V40, P861, DOI 10.1016/S0003-3472(05)80987-X; SCHINDLE.WJ, 1972, ENDOCRINOLOGY, V91, P483, DOI 10.1210/endo-91-2-483; SHEA BT, 1987, ENDOCRINOLOGY, V121, P1924, DOI 10.1210/endo-121-6-1924; SHEA BT, 1990, GENET RES, V56, P21, DOI 10.1017/S0016672300028846; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SINERVO B, 1993, BIOSCIENCE, V43, P210, DOI 10.2307/1312121; Stearns SC., 1992, EVOLUTION LIFE HIST; Steger R W, 1993, J Reprod Fertil Suppl, V46, P61; STERN WC, 1975, HORM BEHAV, V6, P189, DOI 10.1016/0018-506X(75)90035-5; TAKAHASHI Y, 1968, J CLIN INVEST, V47, P2079, DOI 10.1172/JCI105893; THEISSEN DD, 1961, PSYCHOL REC, V11, P299; TOTTER JR, 1985, MECH AGEING DEV, V30, P261, DOI 10.1016/0047-6374(85)90116-2; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wall R. J., 1990, AgBiotech News and Information, V2, P391; WEINDRUCH R, 1986, J NUTR, V116, P641; WEINDRUCH R, 1988, RETARDATION AGING DI; WEINER J, 1992, TRENDS ECOL EVOL, V7, P384, DOI 10.1016/0169-5347(92)90009-Z; WESTERTERP K, 1977, PHYSIOL ZOOL, V50, P331, DOI 10.1086/physzool.50.4.30155736; WOLF E, 1993, MECH AGEING DEV, V68, P71, DOI 10.1016/0047-6374(93)90141-D; YU BP, 1985, J GERONTOL, V40, P657, DOI 10.1093/geronj/40.6.657; Zeplin H, 1974, BRAIN BEHAV EVOLUT, V10, P425 94 42 42 0 6 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. DEC 1994 72 12 2158 2168 10.1139/z94-288 11 Zoology Zoology QW005 WOS:A1994QW00500012 2019-02-26 J CHIPPINDALE, AK; HOANG, DT; SERVICE, PM; ROSE, MR CHIPPINDALE, AK; HOANG, DT; SERVICE, PM; ROSE, MR THE EVOLUTION OF DEVELOPMENT IN DROSOPHILA-MELANOGASTER SELECTED FOR POSTPONED SENESCENCE EVOLUTION English Article AGING; DEVELOPMENTAL RATE; DROSOPHILA; LIFE-HISTORY EVOLUTION; NATURAL SELECTION; PLEIOTROPY; SURVIVAL; TRADE-OFFS LIFE-HISTORY; PHENOTYPIC PLASTICITY; ARTIFICIAL SELECTION; CORRELATED RESPONSES; NATURAL-SELECTION; BODY-WEIGHT; REPRODUCTION; SIZE; RESISTANCE; LONGEVITY The role of development in the evolution of postponed senescence is poorly understood despite the existence of a major gerontological theory connecting developmental rate to aging. We investigate the role of developmental rate in the laboratory evolution of aging using 24 distinct populations of Drosophila melanogaster. We have found a significant difference between the larval developmental rates of our Drosophila stocks selected for early (B) and late-life (O) fertility. This larval developmental time difference of approximately 12% (O > B) has been stable for at least 5 yr, occurs under a wide variety of rearing conditions, responds to reverse selection, and is shown for two other O-like selection treatments. Emerging adults from lines with different larval developmental rates show no significant differences in weight at emergence, thorax length, or starvation resistance. Long-developing lines (O, CO, and CB) have greater survivorship from egg to pupa and from pupa to adult, with and without strong larval competition. Crosses between slower developing populations, and a variety of other lines of evidence, indicate that neither mutation accumulation nor inbreeding depression are responsible for the extended development of our late-reproduced selection treatments. These results stand in striking contrast to other recent studies. We argue that inbreeding depression and inadvertent direct selection in other laboratories' culture regimes explain their results. We demonstrate antagonistic pleiotropy between developmental rate and preadult viability. The absence of any correlation between longevity and developmental time in our stocks refutes the developmental theory of aging. NO ARIZONA UNIV, DEPT BIOL SCI, FLAGSTAFF, AZ 86011 USA CHIPPINDALE, AK (reprint author), UNIV CALIF IRVINE, DEPT ECOL & EVOLUTIONARY BIOL, IRVINE, CA 92717 USA. ASHBURNER M, 1989, DROSOPHILA LABORATOR; Bakker K., 1961, Archives Neerlandaises de Zoologie Leiden, V14, P200; BELL G, 1986, OXFORD SURVEYS EVOLU, V3; BRETT WILLIAM J., 1955, ANN ENT SOC AMER, V48, P119; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CHIPPINDALE AK, 1995, IN PRESS EVOLUTION; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; HUTCHINSON EW, 1991, GENETICS, V127, P719; IVES PT, 1970, EVOLUTION, V24, P507, DOI 10.1111/j.1558-5646.1970.tb01785.x; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LEROI AM, 1994, AM NAT, V144, P661, DOI 10.1086/285699; Lints F. A., 1978, INTERDISCIPLINARY TO; LINTS FA, 1969, EXP GERONTOL, V4, P231, DOI 10.1016/0531-5565(69)90011-4; Lints FA, 1988, DROSOPHILA MODEL ORG, P98; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MUELLER LD, 1988, AM NAT, V132, P786, DOI 10.1086/284890; MUELLER LD, 1986, EVOLUTION, V40, P1354, DOI 10.1111/j.1558-5646.1986.tb05761.x; MUELLER LD, 1993, FUNCT ECOL, V7, P469, DOI 10.2307/2390034; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; ROBERTSON FW, 1957, J GENET, V55, P428, DOI DOI 10.1007/BF02984061; ROPER C, 1993, EVOLUTION, V47, P445, DOI 10.1111/j.1558-5646.1993.tb02105.x; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1984, CAN J ZOOL, V62, P1576, DOI 10.1139/z84-230; ROSE MR, 1981, GENETICS, V97, P187; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; SIBLY RM, 1991, FUNCT ECOL, V5, P594, DOI 10.2307/2389477; Stearns SC., 1992, EVOLUTION LIFE HIST; TANTAWY AO, 1960, AM NAT, V94, P395, DOI 10.1086/282143; TUCIC N, 1988, HEREDITY, V60, P55, DOI 10.1038/hdy.1988.9; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; ZWAAN BJ, 1991, HEREDITY, V66, P29, DOI 10.1038/hdy.1991.4; ZWAAN BJ, 1992, HEREDITY, V68, P123, DOI 10.1038/hdy.1992.19; ZWAAN BJ, 1993, THESIS U GRONINGEN N 44 95 95 0 18 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution DEC 1994 48 6 1880 1899 10.2307/2410515 20 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity RA377 WOS:A1994RA37700011 28565158 Bronze 2019-02-26 J BATES, JW BATES, JW RESPONSES OF THE MOSSES BRACHYTHECIUM-RUTABULUM AND PSEUDOSCLEROPODIUM-PURUM TO A MINERAL NUTRIENT PULSE FUNCTIONAL ECOLOGY English Article BRYOPHYTES; LIFE-HISTORY STRATEGIES; LITTER; MINERAL NUTRITION; WET DEPOSITION 1. The mosses Brachythecium rutabolum and Pseudoscleropodium were subjected to a nutrient 'pulse' consisting of eight daily additions of a solution of KH2PO4 and NH4NO3 at a concentration of 5 mM, and then grown for 10 weeks with daily distilled water misting but no further nutrient application. Biomass increase and tissue contents of N, P, K, Ca and Mg were determined during the experiment. 2. Relative growth rate in the nutrient-deficient environment was higher in Pseudoscleropodium than in Brachythecium. The nutrient pulse significantly stimulated subsequent growth of Pseudoscleropodium but not of Brachythecium. 3. Pseudoscleropodium showed a greater net uptake of P and, to a lesser extent, of N and conserved these elements more effectively under nutrient-deficient conditions than did Brachythecium. Evidence was obtained of the importance of cell wall cation-exchange capacity in sequestering nutrient cations and of the later movement of these cations into the cells. 4. The results are in accordance with the hypothesis that Pseudoscleropodium depends on unpredictable nutrient inputs in wet deposition whereas Brachythecium requires a more continuous nutrient supply which is probably obtained from its substratum. BATES, JW (reprint author), UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT BIOL,SILWOOD PK,ASCOT SL5 7PY,BERKS,ENGLAND. 0 36 38 1 13 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. DEC 1994 8 6 686 693 10.2307/2390227 8 Ecology Environmental Sciences & Ecology PW403 WOS:A1994PW40300003 2019-02-26 J HEATH, DD; IWAMA, GK; DEVLIN, RH HEATH, DD; IWAMA, GK; DEVLIN, RH DNA-FINGERPRINTING USED TO TEST FOR FAMILY EFFECTS ON PRECOCIOUS SEXUAL-MATURATION IN 2 POPULATIONS OF ONCORHYNCHUS-TSHAWYTSCHA (CHINOOK SALMON) HEREDITY English Article ALLELE BINNING; ALLELE FREQUENCY DISTRIBUTION; JACKING; PRECOCIOUS PARR; VNTR ATLANTIC SALMON; IDENTIFICATION; SALAR; PROBE; M13 Two single locus Variable Number Tandem Repeat (VNTR) DNA probes were used to test for differences in allele distribution between precociously mature male and immature chinook salmon, Oncorhynchus tshawytscha. Two populations were examined: Robertson Creek (RC) adult salmon, and Nicola River (NR) freshwater juveniles, or parr. Genomic DNB was extracted from 74 RC precociously mature adult males (Tacks') and 94 RC immature adults of the same age and from 45 NR precociously mature parr and 51 NR nonmaturing parr. The genomic DNA was hybridized with a single locus VNTR probe developed for chinook salmon (OtSL1), as well as one developed for Atlantic salmon, Salmo salar (Ssa1). The allele frequency distributions at bath loci were si,significantly different for the RC jacks and immature fish, indicating a family effect on the incidence of precocious maturation in that population. No difference was found between the allele frequency distribution of the NR precocious and immature parr. A bin width sensitivity analysis showed that the comparisons of the allele frequency distributions were insensitive to the choice of bin size. No differences in heterozygosity were found between mature and immature fish at either locus far both stocks. Preliminary testing for family effects on phenotypes of interest, such as alternative life history strategies, can be performed using hypervariable VNTR DNA probes, prior to implementing costly and involved breeding programmes. UNIV BRITISH COLUMBIA,DEPT ANIM SCI,VANCOUVER V6T 1Z4,BC,CANADA; UNIV BRITISH COLUMBIA,CANADIAN BACTERIAL DIS NETWORK,VANCOUVER V6T 1Z4,BC,CANADA; FISHERIES & OCEANS CANADA,W VANCOUVER LAB,W VANCOUVER V7V 1N6,BC,CANADA AMOS B, 1991, HEREDITY, V67, P49, DOI 10.1038/hdy.1991.64; BALAZS I, 1992, GENETICS, V131, P191; BENTZEN P, 1993, GENOME, V36, P271, DOI 10.1139/g93-038; BENTZEN P, 1991, DNA FINGERPRINTING A, P243; BERNIER NJ, 1993, CAN J ZOOL, V71, P683, DOI 10.1139/z93-092; Bohlin T., 1986, REPORT I FRESHWATER, V63, P17; BURKE T, 1991, DNA FINGERPRINTING A, P154; Castelli M., 1990, AM FISH SOC S, V7, P514; DEVLIN RH, 1991, CAN J FISH AQUAT SCI, V48, P1606, DOI 10.1139/f91-190; FEINBERG AP, 1984, ANAL BIOCHEM, V137, P266; FIENBERG SE, 1970, ECOLOGY, V51, P419, DOI 10.2307/1935377; GILBERT DA, 1990, NATURE, V344, P764, DOI 10.1038/344764a0; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; HANOTTE O, 1991, DNA FINGERPRINTING A, P193; Healey M.C., 1991, P311; HEATH DD, 1993, CAN J FISH AQUAT SCI, V50, P435, DOI 10.1139/f93-049; HEATH DD, 1993, NUCLEIC ACIDS RES, V21, P5782, DOI 10.1093/nar/21.24.5782; HEATH DD, 1991, J FISH BIOL, V39, P565, DOI 10.1111/j.1095-8649.1991.tb04387.x; HEATH DD, 1994, HEREDITY, V72, P146, DOI 10.1038/hdy.1994.21; HENKE L, 1991, DNA FINGERPRINTING A, P144; JARMAN AP, 1989, TRENDS GENET, V5, P367, DOI 10.1016/0168-9525(89)90171-6; JEFFREYS AJ, 1991, NATURE, V354, P204, DOI 10.1038/354204a0; KEMPENAERS B, 1992, NATURE, V357, P494, DOI 10.1038/357494a0; Leonardsson K, 1986, REP I FRESHWATER RES, V63, P69; LYNCH M, 1991, DNA FINGERPRINTING A, P113; PASCALI VL, 1991, FORENSIC SCI INT, V51, P273, DOI 10.1016/0379-0738(91)90192-L; ROBERTSON O. H., 1957, CALIFORNIA FISH AND GAME, V43, P119; ROGSTAD SH, 1991, AM J BOT, V78, P1391, DOI 10.2307/2445277; Sambrook J., 1989, MOL CLONING LABORATO; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; SOKAL R., 1981, BIOMETRY; STEPHAN W, 1994, GENETICS, V136, P333; TAGGART JB, 1990, J FISH BIOL, V37, P991, DOI 10.1111/j.1095-8649.1990.tb03603.x; TAYLOR EB, 1989, CAN J ZOOL, V67, P1665, DOI 10.1139/z89-239; TRIGGS SJ, 1992, AUK, V109, P80, DOI 10.2307/4088268; TYNAN KM, 1991, GENOME, V34, P733, DOI 10.1139/g91-113; WESTNEAT DF, 1988, NUCLEIC ACIDS RES, V16, P4161, DOI 10.1093/nar/16.9.4161; WIRGIN II, 1991, T AM FISH SOC, V120, P273, DOI 10.1577/1548-8659(1991)120<0273:UODFIT>2.3.CO;2; WOLFF R, 1991, DNA FINGERPRINTING A, P20 39 13 14 0 7 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0018-067X HEREDITY Heredity DEC 1994 73 6 616 624 10.1038/hdy.1994.169 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity PU212 WOS:A1994PU21200006 7814263 Bronze 2019-02-26 J SHEA, K; REES, M; WOOD, SN SHEA, K; REES, M; WOOD, SN TRADE-OFFS, ELASTICITIES AND THE COMPARATIVE METHOD JOURNAL OF ECOLOGY English Note ELASTICITY ANALYSIS; LIFE HISTORY EVOLUTION; MATRIX MODELS; SENSITIVITY ANALYSIS UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT BIOL,ASCOT SL5 7PY,BERKS,ENGLAND; UNIV LONDON IMPERIAL COLL SCI & TECHNOL,CTR POPULAT BIOL,NERC,ASCOT SL5 7PY,BERKS,ENGLAND Wood, Simon/B-3058-2010; Shea, Katriona/B-7954-2008 Wood, Simon/0000-0002-2034-7453; Shea, Katriona/0000-0002-7607-8248 Caswell H., 1986, LECTURES MATH LIFE S, V18, P171; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; DEKROON H, 1987, OIKOS, V50, P3, DOI 10.2307/3565395; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; FONE AL, 1989, J ECOL, V77, P495, DOI 10.2307/2260765; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Law R, 1979, POPULATION DYNAMICS, P81; PARTRIDGE L, 1991, ENVOLUTION REPRODUCT, P3; Press W. H, 1989, NUMERICAL RECIPES PA; REES M, 1994, AM NAT, V144, P43, DOI 10.1086/285660; Seneta E., 1981, NONNEGATIVE MATRICES; SIBLY R, 1992, LIFE HIST EVOLUTION, P87; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Stearns SC., 1992, EVOLUTION LIFE HIST; Tuljapurkar S., 1990, POPULATION DYNAMICS; VANGROENENDAEL J, 1988, TRENDS ECOL EVOL, V3, P264, DOI 10.1016/0169-5347(88)90060-2; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795 19 23 23 0 5 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0022-0477 J ECOL J. Ecol. DEC 1994 82 4 951 957 10.2307/2261457 7 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology PV009 WOS:A1994PV00900021 2019-02-26 J GUSTAFSON, MP GUSTAFSON, MP SIZE-SPECIFIC INTERACTIONS AMONG LARVAE OF THE PLETHODONTID SALAMANDERS GYRINOPHILUS-PORPHYRITICUS AND EURYCEA-CIRRIGERA JOURNAL OF HERPETOLOGY English Article COMPLEX LIFE-CYCLES; AMPHIBIAN METAMORPHOSIS; INTRAGUILD PREDATION; BODY SIZE; COMPETITION; BISLINEATA; DESMOGNATHUS; POPULATIONS; COMMUNITY; BEHAVIOR I used a replicated factorial experiment in artificial streams to study the effects of large and small larval Gyrinophilus porphyriticus on larval Eurycea cirrigera and on other larval G. porphyriticus. Both small and large Gyrinophilus predation significantly reduced Eurycea survival. Large Gyrinophilus also reduced the growth of small Gyrinophilus through interference competition or threat of predation, but the reverse did not occur. In a second experiment in small artificial stream pools, large Gyrinophilus inhibited Eurycea nighttime activity more strongly than small Gryinophilus. The results of a laboratory experiment suggest that as Gyrinophilus grows, its ability to prey on Eurycea increases, becoming asymptotic near 30 mm snout-vent length. Size-specific interactions demonstrated in this study may influence the population dynamics and life history evolution of these species. DUKE UNIV,DEPT ZOOL,DURHAM,NC 27708 GUSTAFSON, MP (reprint author), N CAROLINA STATE UNIV,DEPT ZOOL,RALEIGH,NC 27695, USA. BRUCE R C, 1972, Herpetologica, V28, P230; BRUCE RC, 1980, HERPETOLOGICA, V36, P78; BRUCE RC, 1979, EVOLUTION, V33, P998, DOI 10.1111/j.1558-5646.1979.tb04753.x; BRUCE RC, 1982, COPEIA, P117; BRUCE RC, 1985, HERPETOLOGICA, V41, P19; BURTON T M, 1976, Journal of Herpetology, V10, P187, DOI 10.2307/1562980; CALDWELL R S, 1973, Journal of Herpetology, V7, P386, DOI 10.2307/1562878; COLLEY SA, 1989, COPEIA, P1; Ebenman B., 1988, SIZE STRUCTURED POPU; FRASER DF, 1976, ECOLOGY, V57, P238, DOI 10.2307/1934813; GUSTAFSON MP, 1993, OECOLOGIA, V96, P271, DOI 10.1007/BF00317741; Hairston N. G, 1987, COMMUNITY ECOLOGY SA; HAIRSTON NG, 1986, AM NAT, V127, P266, DOI 10.1086/284485; JACOBS JF, 1987, HERPETOLOGICA, V43, P423; Kerfoot WC, 1987, PREDATION DIRECT IND; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; MORIN PJ, 1983, COPEIA, P628, DOI 10.2307/1444327; Neill W.E., 1988, P236; NEILL WE, 1975, ECOLOGY, V56, P809, DOI 10.2307/1936293; Persson L., 1988, P203; PETRANKA JW, 1984, J HERPETOL, V18, P48, DOI 10.2307/1563671; POLIS GA, 1989, ANNU REV ECOL SYST, V20, P297, DOI 10.1146/annurev.es.20.110189.001501; RESETARITS WJ, 1991, ECOLOGY, V72, P1782, DOI 10.2307/1940977; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SMITH CK, 1990, ECOLOGY, V71, P1777, DOI 10.2307/1937585; Snedecor G, 1989, STATISTICAL METHODS; SOUTHERLAND MT, 1986, ECOLOGY, V67, P175, DOI 10.2307/1938516; SOUTHERLAND MT, 1986, ECOLOGY, V67, P721, DOI 10.2307/1937695; STEIN R A, 1988, P161; STENHOUSE SL, 1983, J HERPETOL, V17, P210, DOI 10.2307/1563822; Werner E.E., 1988, P60; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wilbur H.M., 1988, P157; WILBUR HM, 1972, ECOLOGY, V53, P3, DOI 10.2307/1935707; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; 1988, SAS STAT USERS GUIDE 38 25 26 0 6 SOC STUD AMPHIBIANS REPTILES OXFORD DEPT OF ZOOLOGY MIAMI UNIV, OXFORD, OH 45056 0022-1511 J HERPETOL J. Herpetol. DEC 1994 28 4 470 476 10.2307/1564960 7 Zoology Zoology QA125 WOS:A1994QA12500011 2019-02-26 J LANDWER, AJ LANDWER, AJ MANIPULATION OF EGG-PRODUCTION REVEALS COSTS OF REPRODUCTION IN THE TREE LIZARD (UROSAURUS-ORNATUS) OECOLOGIA English Article COST OF REPRODUCTION; EXPERIMENTAL MANIPULATION; FECUNDITY; GROWTH; UROSAURUS ORNATUS LIFE HISTORIES; NATURAL-SELECTION; BLUE TITS; EVOLUTION; SIZE; CONSTRAINTS Life-history theory predicts that the allocation of energy to current reproduction is associated with a decrement in future fecundity, future survival, or both. I treated this notion as the ''cost hypothesis'', and tested the assumption that current reproduction exacts a ''cost'' in future survival and fecundity. Surgical manipulations of egg production were applied to natural populations of the tree lizard, Urosaurus ornatus, in south western New Mexico by yolkectomy surgery in two different years. I reduced the number of eggs produced in the first clutch during vitellogenesis by approximately 50% in yolkectomized females relative to controls. Subsequent survival, fecundity, and growth of females were followed for two or three years, depending on the cohort. Treated females in both cohorts showed significantly higher growth and survivorship throughout the experiment than in controls. After 2 years, yolkectomized females had grown an additional 2 mm (snout-vent length) compared to controls, enough for them to add on average an additional egg to their next clutch. This demonstrated a cost in terms of future fecundity through a reduction ingrowth and an increase in mortality in these lizards. HARDIN SIMMONS UNIV,DEPT BIOL,ABILENE,TX 79698 LANDWER, AJ (reprint author), UNIV NEW MEXICO,DEPT BIOL,ALBUQUERQUE,NM 87131, USA. BAILEY RC, 1992, OIKOS, V65, P349, DOI 10.2307/3545031; BALLINGER R E, 1976, Southwestern Naturalist, V21, P203, DOI 10.2307/3669956; BALLINGER RE, 1984, J HERPETOL, V18, P480, DOI 10.2307/1564108; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1986, COST REPRODUCTION; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; Dunham A.E., 1988, Biology of Reptilia, V16, P441; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; HOULE D, 1992, GENETICS, V130, P195; JONES SM, 1987, ECOLOGY, V68, P1828, DOI 10.2307/1939874; Lande R., 1982, P21; MADSEN T, 1993, OECOLOGIA, V94, P488, DOI 10.1007/BF00566963; Merriam CH, 1898, LIFE ZONES CROP ZONE; MICHEL L, 1976, Southwestern Naturalist, V21, P281, DOI 10.2307/3669714; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; PARKER W S, 1973, Journal of Herpetology, V7, P21, DOI 10.2307/1562825; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PARTRIDGE L, 1988, SCIENCE, V214, P1449; PETTIFOR RA, 1993, J ANIM ECOL, V62, P145, DOI 10.2307/5489; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SCHWARZKOPF L, 1992, BEHAV ECOL SOCIOBIOL, V31, P17, DOI 10.1007/BF00167812; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1991, J EXP BIOL, V155, P323; SNELL HL, 1988, EVOL ECOL, V2, P353, DOI 10.1007/BF02207566; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; TOUMI J, 1983, AM ZOOL, V23, P25; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLSON MF, 1986, AM MIDL NAT, V115, P204, DOI 10.2307/2425852; 1991, SAS SYSTAT USERS GUI 40 42 42 0 10 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia DEC 1994 100 3 243 249 10.1007/BF00316951 7 Ecology Environmental Sciences & Ecology PZ755 WOS:A1994PZ75500006 28307007 2019-02-26 J MICHALAKIS, Y; HOCHBERG, ME MICHALAKIS, Y; HOCHBERG, ME PARASITIC EFFECTS ON HOST LIFE-HISTORY TRAITS - A REVIEW OF RECENT STUDIES PARASITE English Review HOST-PARASITE INTERACTIONS; LIFE-HISTORY EVOLUTION; AGE AT MATURITY EVOLUTION; COEVOLUTION; DROSOPHILA; VIRUS; SNAIL We review empirical studies bearing on the effects of parasites on the age of maturity of their hosts. The few cases already published support theoretical predictions, namely a decrease of host pre reproductive lifespan unless parasites are benign. Host responses may be due either to phenotypic plasticity or io genetic differences, and even though very few studies on this topic have already been published both mechanisms occur. Promising areas of research include the distribution oi age-specific potential costs of resistance to parasitism, as well as the evolution of age-specific parasite preferences under the concomitant evolution of host life history traits. UNIV PARIS 06, INST ECOL, ENS, CNRS, URA 258, F-75230 PARIS 05, FRANCE MICHALAKIS, Y (reprint author), UNIV PARIS 06, INST ECOL,ENS,CNRS,URA 258,BAT A 7E & CC 237, 7 QUAI ST BERNARD, F-75252 PARIS 05, FRANCE. BOOTS M, 1993, FUNCT ECOL, V7, P528, DOI 10.2307/2390128; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; FRANK SA, 1992, TRENDS GENET, V8, P213, DOI 10.1016/0168-9525(92)90101-9; GOMARIZZILBER E, 1993, J EVOLUTION BIOL, V6, P677, DOI 10.1046/j.1420-9101.1993.6050677.x; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; HARVELL CD, 1990, PARASITOLOGY, V100, pS53, DOI 10.1017/S0031182000073017; HOCHBERG ME, 1992, J EVOLUTION BIOL, V5, P491, DOI 10.1046/j.1420-9101.1992.5030491.x; JEUNE B, 1991, ACTA OECOL, V12, P489; Klein J., 1982, IMMUNOLOGY SCI SELF; LAFFERTY KD, 1993, OIKOS, V68, P3, DOI 10.2307/3545303; MAY RM, 1990, PARASITOLOGY, V100, pS89, DOI 10.1017/S0031182000073042; MICHALAKIS Y, 1992, TRENDS ECOL EVOL, V7, P59, DOI 10.1016/0169-5347(92)90108-N; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roff Derek A., 1992; Stearns SC., 1992, EVOLUTION LIFE HIST; THORNHILL JA, 1986, PARASITOLOGY, V93, P443, DOI 10.1017/S0031182000081166; TOFT CA, 1990, TRENDS ECOL EVOL, V5, P326, DOI 10.1016/0169-5347(90)90179-H 20 59 61 0 9 EDP SCIENCES S A LES ULIS CEDEX A 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE 1252-607X 1776-1042 PARASITE Parasite DEC 1994 1 4 291 294 10.1051/parasite/1994014291 4 Parasitology Parasitology PZ468 WOS:A1994PZ46800001 9140497 Bronze 2019-02-26 J DENNO, RF DENNO, RF THE EVOLUTION OF DISPERSAL POLYMORPHISMS IN INSECTS - THE INFLUENCE OF HABITATS, HOST PLANTS AND MATES RESEARCHES ON POPULATION ECOLOGY English Article; Proceedings Paper International Symposium on Dispersal Polymorphism of Insects: Its Adaptation and Evolution JUN 30-JUL 01, 1994 OKAYAMA UNIV, OKAYAMA, JAPAN OKAYAMA UNIV DISPERSAL; HABITAT PERSISTENCE; HOST PLANT ARCHITECTURE; LIFE HISTORY EVOLUTION; WING POLYMORPHISM PROKELISIA-MARGINATA HOMOPTERA; NILAPARVATA-LUGENS STAL; LIFE-HISTORY TRAITS; BROWN PLANTHOPPER; WING POLYMORPHISM; SOGATELLA-FURCIFERA; DELPHACIDAE; MIGRATION; POPULATIONS; DIMORPHISM Wing-dimorphic, delphacid planthoppers were used to test hypotheses concerning the effects of habitat persistence and architectural complexity on the occurrence of dispersal. For reasons concerning both the durational stability of the habitat and the reduced availability of mates, selection has favored high levels of dispersal in species occupying temporary habitats. Flightlessness predominates in species occupying persistent habitats, and is promoted by a phenotypic trade-off between reproductive success and flight capability. Wings are retained in tree-inhabiting species, probably for reasons concerning the more effective negotiation of three-dimensional habitats. In contrast, flightlessness is characteristic of those species inhabiting low profile host plants. For several delphacid genera, migratory species are larger than their sedentary congeners. Because body size and fecundity are positively related in planthoppers, the large body size observed in migratory taxa may result from selection for increased fecundity in colonizing species. DENNO, RF (reprint author), UNIV MARYLAND,DEPT ENTOMOL,COLLEGE PK,MD 20742, USA. BARBOSA P, 1989, AM MIDL NAT, V122, P262, DOI 10.2307/2425912; BROWN VK, 1982, BIOL J LINN SOC, V18, P279, DOI 10.1111/j.1095-8312.1982.tb02040.x; BULL JJ, 1987, AM NAT, V129, P143, DOI 10.1086/284626; Cheng Jiaan, 1994, P635; CLARIDGE MF, 1985, ANNU REV ENTOMOL, V30, P297, DOI 10.1146/annurev.en.30.010185.001501; COOK AG, 1985, CROP PROT, V4, P423, DOI 10.1016/0261-2194(85)90047-X; COYNE JA, 1987, AM NAT, V130, P70, DOI 10.1086/284698; DENBOER PJ, 1980, ENTOMOL GEN, V6, P107; DENBOER PJ, 1981, OECOLOGIA, V50, P39, DOI 10.1007/BF00378792; Denno R.F., 1981, P151; Denno R.F., 1983, P291; Denno R.F., 1981, P1; DENNO RF, 1990, ANNU REV ENTOMOL, V35, P489, DOI 10.1146/annurev.en.35.010190.002421; DENNO RF, 1978, CAN ENTOMOL, V110, P135, DOI 10.4039/Ent110135-2; DENNO RF, 1989, ECOL ENTOMOL, V14, P31, DOI 10.1111/j.1365-2311.1989.tb00751.x; DENNO RF, 1991, AM NAT, V138, P1513, DOI 10.1086/285298; DENNO RF, 1992, ECOLOGY, V73, P1323, DOI 10.2307/1940679; DENNO RF, 1985, ECOLOGY, V66, P1588, DOI 10.2307/1938021; DENNO RF, 1985, ENVIRON ENTOMOL, V14, P846, DOI 10.1093/ee/14.6.846; DENNO RF, 1979, ECOLOGY, V60, P221, DOI 10.2307/1936482; Denno Robert F., 1994, P163; DINGLE H, 1985, COMPREHENSIVE INSECT, V9, P575; FAIRBAIRN DJ, 1990, ECOL ENTOMOL, V15, P131, DOI 10.1111/j.1365-2311.1990.tb00794.x; GIFFARD WM, 1922, P HAWAIIAN ENTOMOL S, V1, P103; HARRISON RG, 1980, ANNU REV ECOL SYST, V11, P95, DOI 10.1146/annurev.es.11.110180.000523; HASTINGS A, 1982, J MATH BIOL, V16, P49, DOI 10.1007/BF00275160; HEADY SE, 1991, J INSECT BEHAV, V4, P367, DOI 10.1007/BF01048284; ICHIKAWA T, 1975, Applied Entomology and Zoology, V10, P162; Ichikawa T., 1977, The rice brown planthopper., P84; ICHIKAWA T, 1982, APPL ENTOMOL ZOOL, V17, P439, DOI 10.1303/aez.17.439; IWANAGA K, 1986, J INSECT PHYSIOL, V32, P585, DOI 10.1016/0022-1910(86)90076-4; IWANAGA K, 1988, JPN J APPL ENTOMOL Z, V32, P68; IWANAGA K, 1987, ENTOMOL EXP APPL, V43, P3; KISIMOTO R, 1976, ECOL ENTOMOL, V1, P95, DOI 10.1111/j.1365-2311.1976.tb01210.x; Kisimoto R., 1965, Bull Shikoku Agric Exp Sta, V13, P1; Kisimoto Ryoiti, 1994, P302; KUNO E, 1981, OECOLOGIA, V49, P123, DOI 10.1007/BF00376909; Kuno E, 1979, BROWN PLANTHOPPER TH, V107, P45; NEW TR, 1974, ROYAL ENTOMOLOGICA 7; RAATIKAINEN M, 1976, Annales Zoologici Fennici, V13, P1; REDDINGIUS J, 1970, OECOLOGIA, V5, P240, DOI 10.1007/BF00344886; Reuter O. M., 1875, Annales de la Societe Entomologique de France, V(5), P225; RODERICK GK, 1987, THESIS U CALIFORNIA; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; ROFF DA, 1991, AM ZOOL, V31, P243; ROFF DA, 1984, OECOLOGIA, V63, P30, DOI 10.1007/BF00379781; ROFF DA, 1990, ECOL MONOGR, V60, P389, DOI 10.2307/1943013; ROFF DA, 1974, OECOLOGIA, V15, P245, DOI 10.1007/BF00345181; ROFF DA, 1991, AM ZOOL, V31, P205; Solbreck C., 1978, P195; Southwood T. R. E., 1959, LAND WATER BUGS BRIT; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1962, BIOL REV, V37, P171, DOI 10.1111/j.1469-185X.1962.tb01609.x; Tallamy D.W., 1981, P129; TAYLOR CE, 1984, EVOLUTION, V38, P1397, DOI 10.1111/j.1558-5646.1984.tb05660.x; Vepsalainen K., 1978, P218; Wagner W.L., 1990, BISHOP MUSEUM SPECIA, V2; WALOFF N, 1973, J APPL ECOL, V10, P705, DOI 10.2307/2401864; WALOFF N, 1983, ECOL ENTOMOL, V8, P229, DOI 10.1111/j.1365-2311.1983.tb00502.x; Wilson Stephen W., 1994, P7; ZIMMERMAN BC, 1948, INSECTS HAWAII, V4 61 46 48 0 15 SOC POPULATION ECOLOGY KYOTO SHIMOTACHIURI OGAWA-HIGASHI KAMIKYO-KU, KYOTO 602, JAPAN 0034-5466 RES POPUL ECOL Res. Popul. Ecol. DEC 1994 36 2 127 135 10.1007/BF02514927 9 Ecology Environmental Sciences & Ecology QP562 WOS:A1994QP56200002 2019-02-26 J FLETCHER, JP; HUGHES, JP; HARVEY, IF FLETCHER, JP; HUGHES, JP; HARVEY, IF LIFE EXPECTANCY AND EGG LOAD AFFECT OVIPOSITION DECISIONS OF A SOLITARY PARASITOID PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article CONSPECIFIC SUPERPARASITISM; ADAPTIVE SUPERPARASITISM; HOST DISCRIMINATION; CLUTCH SIZE; SELECTION; WASPS; HYMENOPTERA; EVOLUTION; STRATEGY; MATTER Life-history theory predicts that animals should be sensitive to both the amount of resources available and life expectancy in making reproductive decisions. Because it is easier to control the mortality of insect parasitoids (insects whose larva develop in or on another insect) than many other groups of animals, the best tests of these predictions have used them. However, because of the inter-correlation of several of the variables of interest, much of this evidence is equivocal, and experimental manipulations have failed to isolate the most important factors. Here we report an experiment which circumvents such problems by comparing the superparasitism rates of fed and starved parasitoids. By using the asexual solitary hymenopteran parasitoid Venturia canescens, we demonstrate that starved wasps with a reduced life expectancy lay eggs in low-quality hosts more frequently than those with a greater expected lifespan, as do parasitoids with higher egg loads and hence more resources available for reproduction. UNIV LIVERPOOL, DEPT ENVIRONM & EVOLUT BIOL, POPULAT BIOL RES GRP, LIVERPOOL L69 3BX, MERSEYSIDE, ENGLAND FLETCHER, JP (reprint author), UNIV DUNDEE, DEPT BIOL SCI, DUNDEE DD1 4HN, SCOTLAND. Ahmad T, 1936, J ANIM ECOL, V5, P67, DOI 10.2307/1092; CHARNOV EL, 1988, AM NAT, V132, P707, DOI 10.1086/284883; CHARNOV EL, 1985, ENVIRON ENTOMOL, V14, P383, DOI 10.1093/ee/14.4.383; DONALDSON JS, 1988, PHYSIOL ENTOMOL, V13, P407, DOI 10.1111/j.1365-3032.1988.tb01124.x; FISHER RC, 1961, J EXP BIOL, V38, P605; FLANDERS STANLEY E., 1950, CANADIAN ENT, V82, P134; HARVEY I, 1988, L COLL INRA, V48, P137; HUBBARD SF, 1987, J ANIM ECOL, V56, P387, DOI 10.2307/5055; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; MANGEL M, 1992, EVOL ECOL, V6, P152, DOI 10.1007/BF02270709; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; MANGEL M, 1989, AM NAT, V133, P688, DOI 10.1086/284945; MANGEL M, 1989, J EVOLUTION BIOL, V2, P157, DOI 10.1046/j.1420-9101.1989.2030157.x; MARRIS G, 1986, J ANIM ECOL, V55, P631, DOI 10.2307/4744; MINKENBERG OPJM, 1992, OIKOS, V65, P134, DOI 10.2307/3544896; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; ROGERS D, 1972, ENTOMOL EXP APPL, V15, P190, DOI 10.1111/j.1570-7458.1972.tb00195.x; ROGERS DJ, 1970, THESIS U OXFORD; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; ROITBERG BD, 1992, BEHAV ECOL, V3, P156, DOI 10.1093/beheco/3.2.156; ROSENHEIM JA, 1991, J ANIM ECOL, V60, P373; SPEIRS DC, 1991, TRENDS ECOL EVOL, V6, P22, DOI 10.1016/0169-5347(91)90143-L; VANALPHEN JJM, 1982, NETH J ZOOL, V32, P232, DOI 10.1163/002829682X00157; VANALPHEN JJM, 1990, ANNU REV ENTOMOL, V35, P59, DOI 10.1146/annurev.en.35.010190.000423; VANDIJKEN MJ, 1987, ENTOMOL EXP APPL, V43, P183, DOI 10.1111/j.1570-7458.1987.tb03604.x; VANLENTEREN JC, 1975, NATURE, V254, P417, DOI 10.1038/254417a0; VISSER ME, 1992, ECOL ENTOMOL, V17, P76, DOI 10.1111/j.1365-2311.1992.tb01042.x; VISSER ME, 1993, BEHAV ECOL, V4, P22; VISSER ME, 1992, J ANIM ECOL, V61, P93, DOI 10.2307/5512; WEISSER WW, 1993, FUNCT ECOL, V7, P27, DOI 10.2307/2389864 31 83 85 0 13 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 22 1994 258 1352 163 167 10.1098/rspb.1994.0157 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology PU275 WOS:A1994PU27500010 7838854 2019-02-26 J RAYNIE, RC; SHAW, RF RAYNIE, RC; SHAW, RF ICHTHYOPLANKTON ABUNDANCE ALONG A RECRUITMENT CORRIDOR FROM OFFSHORE SPAWNING TO ESTUARINE NURSERY GROUND ESTUARINE COASTAL AND SHELF SCIENCE English Article ICHTHYOPLANKTON; ICHTHYOPLANKTON SURVEY; FISH LARVAE; TIDAL INLETS; COASTAL FISHERIES; ESTUARINE FISHERIES; BAYOU; LOUISIANA COAST RIVER DELTAIC PLAIN; GULF MENHADEN; LARVAL FISHES; FRESH-WATER; LOUISIANA; RETENTION; TRANSPORT; DYNAMICS; SEASONALITY; VEGETATION Two temporally separate larval fish assemblages were identified from ichthyoplankton samples collected between November 1987 and January 1990 along a transect from offshore to Oyster Bayou tidal pass into Fourleague Bay, Louisiana. The warm water species (e.g. bay anchovy, naked goby, Microgobius sp., spotted seatrout and skilletfish) dominated in water temperatures >23 degrees C and the cooler water species (e.g. gulf menhaden and Atlantic croaker) dominated in water temperatures <23 degrees C. These assemblages were characterized by different life-history strategies, distributions, and seasonal abundances suggesting that they utilize resources in different locations and times. Analysis of Oyster Bayou tidal pass data indicated that larvae from all species were more abundant on flood than ebb tides and larval fish densities were often statistically greater near bottom, suggesting tidal transport and/or retention. In addition, larger larval bay anchovy and gulf menhaden were taken in the middle of the tidal pass during flood tides. During ebb tides, however, larger bay anchovy larvae were taken along the pass edges, suggesting behaviourally mediated transport into and/or retention within the estuary. LOUISIANA STATE UNIV,INST COASTAL FISHERIES,BATON ROUGE,LA 70803 RAYNIE, RC (reprint author), LOUISIANA DEPT NAT RESOURCES,DIV COASTAL RESTORAT,POB 94396,BATON ROUGE,LA 70804, USA. CHILDERS DL, 1990, ESTUARIES, V13, P404, DOI 10.2307/1351785; CROWDER LB, 1992, 1ST SABRE PRINC INV; DAGG MJ, 1988, PHYSICAL PROCESSES E, P150; Deegan L.A., 1985, P35; DEEGAN LA, 1990, MAR ECOL PROG SER, V68, P195, DOI 10.3354/meps068195; DENES TA, 1988, ESTUARIES, V11, P184, DOI 10.2307/1351971; DITTY JG, 1988, FISH B-NOAA, V86, P811; DRAKE P, 1991, ESTUAR COAST SHELF S, V32, P347, DOI 10.1016/0272-7714(91)90048-G; FORE PL, 1972, T AM FISH SOC, V101, P729, DOI 10.1577/1548-8659(1972)101<729:DFITCO>2.0.CO;2; FRUGE DJ, 1978, COPEIA, P643, DOI 10.2307/1443691; GRAHAM JJ, 1972, FISH BULL NATL OC AT, V70, P299; Hartman R D, 1987, COMMUNITY STRUCTURE; HENRI M, 1985, CAN J FISH AQUAT SCI, V42, P91; HERKE WH, 1969, PROG FISH CULT, V31, P177, DOI 10.1577/1548-8640(1969)31[177:ABSPFS]2.0.CO;2; HILLMANNKITALONG A, 1987, MAR ECOL PROG SER, V38, P131, DOI 10.3354/meps038131; HOESE HD, 1977, NATURAL HIST SERIES, V1; HOLT SA, 1989, RAP PROCES, V191, P100; JOHNSON WB, 1985, J ECOL, V73, P973, DOI 10.2307/2260162; KEMP WM, 1989, ESTUARINE ECOLOGY, P147; KRIETE WH, 1980, T AM FISH SOC, V109, P649, DOI 10.1577/1548-8659(1980)109<649:DAREOA>2.0.CO;2; LASSUY DR, 1983, TR EL824 US ARM CROP; LYCZKOWSKISHULTZ J, 1990, B MAR SCI, V46, P563; MADDEN CJ, 1988, LIMNOL OCEANOGR, V33, P982, DOI 10.4319/lo.1988.33.4_part_2.0982; MADDEN CJ, 1988, PHYSICAL PROCESSES E, P64; MADDEN CJ, 1988, PHYSICAL PROCESSES E, P116; MADDEN CJ, 1992, THESIS LOUISIANA STA; MILLER JM, 1973, LIMNOL OCEANOGR, V18, P175, DOI 10.4319/lo.1973.18.1.0175; MILLER JM, 1984, MECH MIGRATION FISHE, P209; Pietrafesa LJ, 1988, AM FISHERIES SOC S, V3, P34; RANDALL JM, 1987, NETH J SEA RES, V21, P231, DOI 10.1016/0077-7579(87)90015-9; Raynie R. C., 1991, THESIS LOUISIANA STA; REJMANEK M, 1987, VEGETATIO, V69, P133, DOI 10.1007/BF00038694; RIJNSDORP AD, 1985, T AM FISH SOC, V114, P461, DOI 10.1577/1548-8659(1985)114<461:STTONS>2.0.CO;2; ROBINETTE HR, 1983, TR EL824 US FISH WIL; SABINS DS, 1974, 28TH P ANN C SE ASS, V28, P161; Shaw R. F., 1988, AM FISH SOC S, V3, P77; SHAW RF, 1985, T AM FISH SOC, V114, P452, DOI 10.1577/1548-8659(1985)114<452:TOLGMB>2.0.CO;2; STERN MK, 1986, ESTUARIES, V9, P301, DOI 10.2307/1352102; TEAGUE KG, 1988, ESTUARIES, V11, P1, DOI 10.2307/1351712; VANHEERDEN IL, 1980, T GULF COAST ASS GEO, V30, P497; WEINSTEIN MP, 1980, FISH B-NOAA, V78, P419 41 36 36 0 9 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0272-7714 ESTUAR COAST SHELF S Estuar. Coast. Shelf Sci. NOV 1994 39 5 421 450 10.1006/ecss.1994.1074 30 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography PR684 WOS:A1994PR68400001 2019-02-26 J ZHANG, ZQ; CROFT, BA ZHANG, ZQ; CROFT, BA A COMPARATIVE LIFE-HISTORY STUDY OF IMMATURE AMBLYSEIUS-FALLACIS, AMBLYSEIUS-ANDERSONI, TYPHLODROMUS-OCCIDENTALIS AND TYPHLODROMUS-PYRI (ACARI, PHYTOSEIIDAE) WITH A REVIEW OF LARVAL FEEDING PATTERNS IN THE FAMILY EXPERIMENTAL & APPLIED ACAROLOGY English Article DEVELOPMENT; SURVIVAL; FEEDING; ACTIVITY; BODY SIZE; LIFE HISTORY EVOLUTION; PHYTOSEIIDAE Survival, developmental time, activity, feeding rates, and other biological aspects of immatures of Amblyseius fallacis, Anablyseius andersoni, Typhlodromus occidentalis and Typhlodromus pyri were examined in the laboratory in small arenas (2 X 2 cm) with different egg densities (0, 5, 10, 20 per 12 h) of the twospotted spider mite, Tetranychus urticae (Koch), at 25 +/- 1 degrees C, approximate to 80% RH, and 16L: 8D photoperiod. Egg survival was high (86-100%) in all four species. Larval survival was similarly high except for T. occidentalis which all died in the absence of food. Survival rates of protonymphs and deutonymphs were also high except that up to 50% of A. andersoni died at 5 prey eggs per 1/2 day. Developmental time did not vary significantly with prey density and was similar for males and females in the oligophagous predators (A. fallacis and T. occideatalis), but was longer at lower prey densities and in females than males in the polyphagous predators (A. andersoni and T. pyri). In general, the time allocated to three active instars (=stases) decreased in the order: A. andersoni (81%), T. pyri (78%), A. fallacis (69%), and T. occidentalis (64%). The polyphagous predator species had a shorter larval stage and much longer deutonymphal stage than the oligophagous species. The proportion of time allocated to the protonymphal stage was the least variable among the four species. The interspecific differences in walking activities also appeared greater in larval and deutonymphal stages than in the protonymphal stage. The larvae of the two oligophagous predators (A. fallacis and T. occidentalis, walking activity averaging 36-49%) were more active than the two polyphagous predators (A. andersoni and T. pyri), which spent 80% or more time resting. In deutonymphs, walling activity increased in the order: T. occidentalis (14%), A. andersoni (27%), A. fallacis (43%) and T. pyri (59%). Larvae were more active during the first half of their life than the latter half. In general, most life history traits of immature A. andersoni, T. pyri, A. fallacis, and T. occidentalis are not associated with their phylogenetic relatedness or size, but with the feeding specialization of the predator species. Larval feeding patterns in Phytoseiidae are reviewed and a hypothesis about the evolution of larval feeding behavior in Phytoseiidae is proposed. ZHANG, ZQ (reprint author), INT INST ENTOMOL,56 QUEENS GATE,LONDON SW7 5JR,ENGLAND. Zhang, Zhi-Qiang/C-4107-2009 Zhang, Zhi-Qiang/0000-0003-4172-0592 0 30 31 0 1 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0168-8162 EXP APPL ACAROL Exp. Appl. Acarol. NOV-DEC 1994 18 11-12 631 657 27 Entomology Entomology QU694 WOS:A1994QU69400001 2019-02-26 J BRZEZIECKI, B; KIENAST, F BRZEZIECKI, B; KIENAST, F CLASSIFYING THE LIFE-HISTORY STRATEGIES OF TREES ON THE BASIS OF THE GRIMIAN MODEL FOREST ECOLOGY AND MANAGEMENT English Article FOREST SUCCESSION; PLANT SUCCESSION; DYNAMICS; GROWTH; SIZE In forest succession studies, two major groups of tree species are usually recognized: pioneer and non-pioneer (climax) species. It is assumed that each group has its own set of adaptive traits that impart advantages or disadvantages to trees in early- and late-successional stages. In the present paper, the pioneer/climax concept is tested for 36 major European tree species, whose ontogenetic and ecological attributes (in total 21 variables) were compiled from the literature and analyzed by multivariate statistical methods. On this basis, a new ecological classification of tree species is proposed and interpreted in terms of the theoretical, triangular model of life-history strategies developed by Grime. For each type of life-history strategy (ruderal, stress-tolerant, competitive and intermediate), specific adaptations determining the functional roles of tree species in the dynamics of forest communities are identified and described. AGR UNIV WARSAW,DEPT SILVICULTURE,PL-02528 WARSAW,POLAND BRZEZIECKI, B (reprint author), SWISS FED INST FOREST,SNOW & LANDSCAPE RES,DIV LANDSCAPE ECOL,CH-8903 BIRMENSDORF,SWITZERLAND. Kienast, Felix/L-3536-2013 Kienast, Felix/0000-0002-3812-3124; Brzeziecki, Bogdan/0000-0001-5786-3075 BAZZAZ FA, 1979, ANNU REV ECOL SYST, V10, P351, DOI 10.1146/annurev.es.10.110179.002031; BITKA R, 1978, NASIENNICTWO SELEKCJ; BOTKIN DB, 1972, J ECOL, V60, P849, DOI 10.2307/2258570; Brang P., 2008, UNSERE WALDBAUME; CLEMENTS FE, 1916, CARNEGIE I WASHINGTO, V242; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; DELMORAL R, 1983, CAN J BOT, V61, P3117; Ellenberg H, 1978, VEGETATION MITTELEUR; FALINSKI JB, 1980, VEGETATIO, V43, P23, DOI 10.1007/BF00121014; FALINSKI JB, 1977, ZIELONE GRADY CZARNE; Gleason HA, 1926, B TORREY BOT CLUB, V53, P7, DOI [10.2307/2479933, DOI 10.2307/2479933]; Grime J. P, 1979, PLANT STRATEGIES VEG; Grime J. P, 1988, COMP PLANT ECOLOGY F; Grime J. P., 1984, COLONIZATION SUCCESS, P413; GRIME JP, 1977, AM NAT, V111, P169; HRYNKIEWICZSUDN.J, 1990, ROZMNAZANIE DRZEW KR; HUSTON M, 1987, AM NAT, V130, P168, DOI 10.1086/284704; KARPINSKI JJ, 1949, MATERIALY BIOEKOLOGI, V3, P1; KIENAST F, 1989, VEGETATIO, V79, P7; KIENAST F, 1987, ORNL ENV SCI DIV PUB, V2989; LEEMANS R, 1987, VEGETATIO, V69, P147, DOI 10.1007/BF00038696; LEEMANS R, 1989, FORSKA GENERAL FORES; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; MARKS PL, 1975, B TORREY BOT CLUB, V102, P172, DOI 10.2307/2484938; PRENTICE IC, 1991, FOREST ECOL MANAG, V42, P79; PUCHALSKI T, 1972, REBNIE GOSPODARSTWIE; SELL J, 1987, EIGENSCHAFTEN KENNGR; Shugart H. H, 1984, THEORY FOREST DYNAMI; SMITH T, 1989, VEGETATIO, V83, P49, DOI 10.1007/BF00031680; SPRUGEL DG, 1989, AM NAT, V133, P465, DOI 10.1086/284930; SWAINE MD, 1988, VEGETATIO, V75, P81, DOI 10.1007/BF00044629; Thomasius H., 1988, Archiv fur Naturschutz und Landschaftsforschung, V28, P3; TOMANEK J, 1987, BOTANIKA LESNA; TURNER DP, 1985, B TORREY BOT CLUB, V112, P421, DOI 10.2307/2996045; Wagenfuhr R, 1985, HOLZATLAS; WHITMORE TC, 1989, ECOLOGY, V70, P536, DOI 10.2307/1940195; WHITTAKER RH, 1979, AM NAT, V113, P185, DOI 10.1086/283378; Wildi O, 1990, NUMERICAL EXPLORATIO; Zarzycki K., 1984, EKOLOGICZNE LICZBY W 39 100 105 1 40 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0378-1127 FOREST ECOL MANAG For. Ecol. Manage. NOV 1994 69 1-3 167 187 10.1016/0378-1127(94)90227-5 21 Forestry Forestry PV627 WOS:A1994PV62700013 2019-02-26 J BAUR, A BAUR, A WITHIN-CLUTCH AND BETWEEN-CLUTCH VARIATION IN EGG SIZE AND NUTRIENT CONTENT IN THE LAND SNAIL ARIANTA-ARBUSTORUM FUNCTIONAL ECOLOGY English Article CLUTCH SIZE; EGG WEIGHT; GASTROPODA; INDIVIDUAL VARIATION; LIFE HISTORY 1. Life-history theory often assumes that energy and nutrient contents are correlated with egg size. I assessed the within- and among-clutch variation in egg size, nitrogen (N) and carbon (C) content of eggs of the land snail Arianta arbustorum and examined their intercorrelations. I also examined whether the diet of the mother snail (Petasites albus or lettuce) and/or the time of the reproductive season when the eggs were laid affected the variation in egg size and nutrient content. 2. The volume of single eggs ranged from 5.5 to 26.3 mm3 (n = 956, grand mean 13.4 mm3). The overall range of the nitrogen concentration of the eggs was 3.1-5.0% (grand mean 4.1%), and that of the carbon concentration 28.6-34.9% (32.2%). The nitrogen concentration indicates that eggs of A. arbustorum have a protein concentration of 25.5%. 3. The within-clutch variation in egg size expressed by the coefficient of variation averaged 11.1% for egg volume, 8.4% for wet weight and 8.3% for dry weight. Corresponding values for the N and C concentrations were 3.7 and 1.6%. Thus, egg size was in general more variable than the nutrient concentration of the eggs. In all triats the within-clutch variation was significantly smaller than the among-clutch variation, indicating that individual snails produced eggs of relatively constant size and nutrient content. 4. Considering mean clutch values, the nutrient contents (in mg) scaled isometrically with egg size. On the within-clutch level the N content correlated with egg size in only 22 out of 36 clutches (61.1%), and the C content in only 23 of 36 clutches (63.9%). 5. Volume and wet weight but not dry weight were significantly larger in eggs produced by snails maintained on a lettuce diet than in eggs from snails fed on P. albus. This suggests a difference in water content of eggs laid by snails eating different diets. Furthermore, eggs produced by snails maintained on P. albus were more variable in dry weight than eggs produced by snails fed on lettuce. 6. Neither egg size nor nutrient composition in snails fed on both diets changed over the course of the reproductive season. 7. The dry weight of eggs from snails eating P. albus decreased with increasing clutch size, indicating a possible trade-off between egg size and number. This was not the case in snails maintained on lettuce. BAUR, A (reprint author), UNIV BASEL, CONSERVAT BIOL RES GRP, ST JOHANNS VORSTADT 10-12, CH-4056 BASEL, SWITZERLAND. 0 19 19 0 5 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. OCT 1994 8 5 581 586 10.2307/2389918 6 Ecology Environmental Sciences & Ecology PL918 WOS:A1994PL91800004 2019-02-26 J BEVANGER, K BEVANGER, K BIRD INTERACTIONS WITH UTILITY STRUCTURES - COLLISION AND ELECTROCUTION, CAUSES AND MITIGATING MEASURES IBIS English Article The causes of collision and electrocution accidents involving birds and power lines, and measures to mitigate such accidents, are reviewed. It is convenient to group the causes according to (1) biological, (2) topographical, (3) meteorological and (4) technical aspects. As regards collisions with power lines, the important biological variables are connected with the morphology, aerodynamic capability, physiology, behaviour and life-history strategies of birds. To understand the electrocution problem, the relationship between body size and electrocuting installations must be considered. Removing earth wires (and modifying earthing methods), modifying line, pole and tower design, installing underground cables and conspicuous marking of lines, poles and towers are important measures for tackling the problems. The route planning process should include careful mapping of (1) topographical features which are leading lines and flight lanes for migrating birds and/or are important for local movements of resident species, (2) topographical elements such as cliffs and rows of trees that force birds to fly over power lines, (3) primary ornithological functions or uses of the area to avoid key areas for birds and avoid separating these areas and (4) local climatic conditions (including seasonal variations) like fog frequency and prevailing wind direction. The outcome depends largely on a combination of these factors. Objective assessment of the effects of mitigating measures, in particular wire marking, is required. The mitigating efforts should be directed against species known to be potential collision victims, and their design should be the result of a careful analysis of the biology and ecology of the target species. Because of the cumulative effects of negative impacts on bird populations today and the alarming number of species with endangered or vulnerable status being killed in connection with utility structures, the problem deserves increased general awareness. BEVANGER, K (reprint author), NORWEGIAN INST NAT RES,DIV TERR ECOL,TUNGASLETTA 2,N-7005 TRONDHEIM,NORWAY. AKCAKAYA R, IN PRESS P INT WORKS; ALDRICH JW, 1966, AUK, V83, P465; ALERSTAM T, 1974, IBIS, V116, P522, DOI 10.1111/j.1474-919X.1974.tb07649.x; ALERSTAM T, 1977, J THEOR BIOL, V65, P699, DOI 10.1016/0022-5193(77)90016-9; ALERSTAM T, 1977, 129 U LUND DEP ZOOL; Ansell A. R., 1980, P WORKSH RAPT EN DEV, P56; AREND PH, 1970, 121 WILDL ASS PAC GA; AVERY M, 1977, WILSON BULL, V89, P291; Avery M., 1980, FWSOBS8054, P1; AVERY ML, 1978, P C OAK RIDGE; BEAULAURIER DL, 1981, 183 US DEP EN BONN P; BERGMAN G, 1978, OIKOS, V30, P393, DOI 10.2307/3543488; BEVANGER K, 1990, Fauna Norvegica Series C Cinclus, V13, P11; Bevanger K., 1988, OKOFORSK UTREDNING, V1, P1; BEVANGER K, 1993, NINA OPPDRAGSMELDING, V135, P1; Blokpoel H, 1976, Canadian Field Naturalist, V90, P195; BLOKPOEL H, 1976, BIRD HAZARDS AIRCRAF; BOUDREAU G W, 1968, Living Bird, V7, P27; BRAAKSMA S, 1966, HET VOGELJAAR, V14, P147; BROWN C J, 1989, Madoqua, V16, P59; BROWN JE, 1971, WINT IEEE POW M NEW; BROWN WM, 1987, 1985 P CRAN WORKSH, P128; BROWN WM, IN PRESS AVIAN INTER; COLLAR NJ, 1988, ICBP TECHNICAL PUBLI, V8; CRIVELLI AJ, 1988, COLON WATERBIRD, V1, P301; ELKINS N, 1988, WEATHER BIRD BEHAVIO; ENGEL K, IN PRESS AVIAN INTER; FAANES CA, 1987, US FISH WILDLIFE SER, V7, P1; FOLKESTAD AO, 1980, VASSRAGSREGULERINGER, P169; FREDRICKSON L H, 1983, Transactions of the Missouri Academy of Science, V17, P129; GARZON J, 1977, P WORLD C BIRDS PREY, P159; Haas D., 1980, Oekologie der Voegel, V2, P7; HAAS D, 1975, UHUS ENDEN ELECTRISC, P45; Heijnis R., 1980, Oekologie der Voegel, V2, P111; Hobbs J. C. A, 1987, S AFRICAN WILDLIFE R, V1, P24; HOBBS JCA, 1986, 11TH P TECH M PORT E, P41; HOERSCHELMANN H., 1988, OKOL VOGEL, V10, P85; JAMES BW, 1979, FACTORS AFFECTING AV, P1; Johnson D.N., 1984, Lammergeyer, V34, P64; KEMPER CA, 1964, AUDUBON MAG, V66, P89; Kerlinger P., 1989, Current Ornithology, V6, P109; KOOPS FBJ, 1985, KEMA VII8551 MOB REP; KOOPS FBJ, 1986, KEMA01282 REP; KROODSMA RL, 1985, PUBL ORNL, V2067, P1; LEDGER J, 1990, SO AFRICAS THREATENE; Ledger J. A., 1984, Certificated Engineer, V57, P92; LEDGER JA, 1981, BIOL CONSERV, V20, P15, DOI 10.1016/0006-3207(81)90057-4; LEDGER JA, IN PRESS AVIAN INTER; LEE JM, 1978, IMPACTS TRANSMISSION, P93; LID G, 1977, Fauna (Oslo), V30, P185; LINDGREN R, 1984, FAGELSKYDD MILJOFRAG, V8, P1; LONGRIDGE MW, 1986, IMPACTS TRANSMISSION; Lovei G.L., 1989, Current Ornithology, V6, P143; MADSEN JO, 1979, ELEKTROTEKNIKEREN, V75, P313; Martin G.R., 1985, P311; MARTIN GR, 1990, BIRDS NIGHT; MCNEIL R, 1985, BIOL CONSERV, V31, P153, DOI 10.1016/0006-3207(85)90046-1; MEHLUM F, 1977, Fauna (Oslo), V30, P191; MEYBURG BU, 1989, RAPTORS MODERN WORLD, V3, P225; MEYER JR, 1978, EFFECTS TRANSISSION, P1; MICHENER HAROLD, 1928, CONDOR, V30, P169, DOI 10.2307/1363273; MILLER D, 1975, SURGESTED PRACTICES; MILLER WA, 1978, IMPACTS TRANSMISSION, P129; MORKILL AE, IN PRESS AVIAN INTER; MUELLER HC, 1967, WILSON BULL, V79, P50; NAGEL TJ, 1978, SCIENCE, V201, P985, DOI 10.1126/science.201.4360.985; Nelson M.W., 1982, Raptor Research, V16, P97; Norberg UM, 1990, VERTEBRATE FLIGHT; OLENDORFF RR, 1981, 4 RAPT RES F RAPT RE; OLENDORFF RR, 1986, RAPTOR COLLISION UTI; OLENDORFF RR, 1989, 8 RAPT RES FDN INC, P1; PENNYCUICK CJ, 1979, ORNIS SCAND, V10, P241, DOI 10.2307/3676068; PERDECK AC, 1984, ARDEA, V72, P189; PUMPHREY RJ, 1948, J EXP BIOL, V25, P299; Rayner J.M.V., 1988, Current Ornithology, V5, P1; RENSSEN TA, 1975, VOGELSTERFTE NEDERLA; RICHARDSON WJ, 1979, NAT WILDL FED SCI TE, V3, P171; ROSE P, 1992, BTO42 BRIT TRUST ORN; Schmidt-Morand D, 1992, VET INT, V4, P3; SCHROEDER C, 1977, N D OUTDOORS, V40; Scott R.E., 1972, British Birds, V65, P273; SILLMAN AJ, 1973, AVIAN BIOL, V3, P349; Snyder N.F.R., 1986, Raptor Research Report, P56; STAHLECKER D W, 1979, Wildlife Society Bulletin, V7, P59; STEENHOF K, 1988, SNAKE RIVER BIRDS PR, P24; STORKERSEN OR, 1992, DN RAPPORT, V6, P1; THOMPSON LS, 1978, IMPACTS TRANSMISSION, P51; VERHEIJEN F J, 1981, American Birds, V35, P251; VONSCHWEPPENBUR.HF, 1963, J ORNITHOL, V104, P191; VONSCHWEPPENBUR.HG, 1929, ORN FESTSCHER HARTER, P17; WILLARD DE, 1978, IMPACTS TRANSMISSION, P5; WILLIAMS RD, 1989, I WILDL RES NAT WILD, P173; YOUNG LS, 1988, SNAKE RIVER BIRDS PR, P36; 1993, NEW SCI, P6; 1982, IMPACT ASHE SLATT 50, P1; 1986, INT PEST CONTROL, P106; 1986, VOGELSCHUTZ STARKSTR, P1 97 99 106 1 49 BRITISH ORNITHOLOGISTS UNION TRING C/O NATURAL HISTORY MUSEUM, SUB-DEPT ORNITHOLOGY, TRING, HERTS, ENGLAND HP23 6AP 0019-1019 IBIS Ibis OCT 1994 136 4 412 425 10.1111/j.1474-919X.1994.tb01116.x 14 Ornithology Zoology PN832 WOS:A1994PN83200002 2019-02-26 J CLAPHAM, PJ CLAPHAM, PJ MATURATIONAL CHANGES IN PATTERNS OF ASSOCIATION IN MALE AND FEMALE HUMPBACK WHALES, MEGAPTERA-NOVAEANGLIAE JOURNAL OF ZOOLOGY English Article GULF-OF-MAINE; SOUTHERN GULF; WEST-INDIES; DISPERSAL; SEX; PHILOPATRY; MONKEYS; MAMMALS The patterns of association of juvenile male and female humpback whales, Megaptera a novaeangliae, in the southern Gulf of Maine were studied for evidence of maturational changes. Both males and females became less solitary with age. In males, time spent alone changed from a mean of 55.8% of observations at age one to 26.8% at age six. Females were alone in a mean of 49.9% of observations at age one, but in only 20.5% by age six. However, females that produced calves at five, six or seven were associated with no whales but the calf in 73.8% of observations. Males exhibited a clear age-related trend of increasing associations with adults, notably with adult females which constituted approximately 80% of the associates of males aged six years or more. Females showed a similar trend of increasing associations with adults of both sexes. Tests of association data for whales of known age with similar data for adults of the same sex showed that the association patterns of young males and females became statistically indistinguishable from those of adults by the ages of five and four, respectively. The data suggest that the observed changes in social behaviour are closely linked to the attainment of sexual maturity and preparation for adult roles. The different patterns of males and females after maturity may reflect differing reproductive and life-history strategies. CTR COASTAL STUDIES,CETACEAN RES PROGRAM,PROVINCETOWN,MA 02657 BAKER CS, 1984, CAN J ZOOL, V62, P1922, DOI 10.1139/z84-282; BIGG MA, 1990, SOCIAL ORG GENEALOGY, P383; CHAPMAN CA, 1990, BEHAV ECOL SOCIOBIOL, V26, P409; CHITTLEBOROUGH R. G., 1958, AUSTRALIAN JOUR MARINE AND FRESHWATER RES, V9, P1; CHITTLEBOROUGH R. G., 1965, AUSTRALIAN J MAR FRESHWATER RES, V16, P33; Clapham Phillip J., 1993, Symposia of the Zoological Society of London, V66, P131; CLAPHAM PJ, 1987, CAN J ZOOL, V65, P2853, DOI 10.1139/z87-434; CLAPHAM PJ, 1992, BEHAVIOUR, V122, P182, DOI 10.1163/156853992X00507; CLAPHAM PJ, 1993, CAN J ZOOL, V71, P440, DOI 10.1139/z93-063; CLAPHAM PJ, 1992, CAN J ZOOL, V70, P1470, DOI 10.1139/z92-202; CLARKE AL, 1992, ANIM BEHAV, V44, P677, DOI 10.1016/S0003-3472(05)80295-7; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; Glockner D.A., 1983, AAAS SELECTED S, V76, P447; GLOCKNERFERRARI DA, 1985, MMC8306 NAT TECH INF; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; Hinde RA, 1983, PRIMATE SOCIAL RELAT; JOHNSON CN, 1986, OECOLOGIA, V69, P626, DOI 10.1007/BF00410373; Katona S.K., 1981, Polar Record, V20, P439; Katona SK, 1990, POPULATION SIZE MIGR, P295; Kummer H, 1968, SOCIAL ORG HAMADRYAS; LAWS RM, 1968, S ZOOL SOC LOND, V21, P319; MATTILA DK, 1989, CAN J ZOOL, V67, P281, DOI 10.1139/z89-041; Mobley J. R., 1985, CAN J ZOOL, V63, P763; Moss CJ, 1983, PRIMATE SOCIAL RELAT, P315; MYERS JH, 1971, ECOL MONOGR, V41, P53, DOI 10.2307/1942435; NAKAMICHI M, 1989, ANIM BEHAV, V38, P737, DOI 10.1016/S0003-3472(89)80106-X; Nishiwaki M., 1959, Scientific Reports of the Whales Research Institute Tokyo, VNo. 14, P49; Pereira ME, 1985, MONOGRAPHS PRIMATOLO, V6, P217; PERRY A, 1990, POPULATION CHARACTER, P307; PUSEY AE, 1990, BEHAVIOUR, V115, P203, DOI 10.1163/156853990X00581; TYACK P, 1981, BEHAV ECOL SOCIOBIOL, V8, P105, DOI 10.1007/BF00300822; TYACK P, 1983, BEHAVIOUR, V83, P132, DOI 10.1163/156853982X00067; WATTS ES, 1985, MONOGRAPHS PRIMATOLO, V6, P41; WEINRICH MT, 1991, CAN J ZOOL, V69, P3005, DOI 10.1139/z91-424; WEINRICH MT, 1991, CAN J ZOOL, V69, P3012, DOI 10.1139/z91-425; Wells R.S., 1987, Current Mammalogy, V1, P247; WHITEHEAD H, 1983, CAN J ZOOL, V61, P1391, DOI 10.1139/z83-186; WINN HE, 1978, MAR BIOL, V47, P97, DOI 10.1007/BF00395631 38 8 8 2 5 OXFORD UNIV PRESS UNITED KINGDOM OXFORD WALTON ST JOURNALS DEPT, OXFORD, ENGLAND OX2 6DP 0952-8369 J ZOOL J. Zool. OCT 1994 234 2 265 274 10.1111/j.1469-7998.1994.tb06074.x 10 Zoology Zoology PP865 WOS:A1994PP86500009 2019-02-26 J GOTTHARD, K; NYLIN, S; WIKLUND, C GOTTHARD, K; NYLIN, S; WIKLUND, C ADAPTIVE VARIATION IN GROWTH-RATE - LIFE-HISTORY COSTS AND CONSEQUENCES IN THE SPECKLED WOOD BUTTERFLY, PARARGE AEGERIA OECOLOGIA English Article PHYSIOLOGICAL TRADE-OFF; SIZE AND AGE AT MATURITY; STARVATION; LONGEVITY; SATYRINAE PHENOTYPIC PLASTICITY; TRADE-OFFS; SIZE; EVOLUTION; PROTANDRY; PREDATION; MATURITY; BIRDS; MORTALITY; NORMS An important assumption made in most life-history theory is that there is a trade-off between age and size at reproduction. This trade-off may, however, disappear if growth rate varies adaptively. The fact that individuals do not always grow at the maximum rate can only be understood if high growth rates carry a cost. This study investigates the presence and nature of such costs in Pararge aegeria. Five females from two populations with known differences in life history (south Sweden and Madeira) were allowed to oviposit in the laboratory and their offspring were reared in environmental chambers under conditions leading to direct development. We measured several aspects of life history, including development times, pupal and adult weights, growth rate, female fecundity, longevity and larval starvation endurance. In both populations there seemed to be genetic variation in growth rate. There was no evidence for a trade-off between age and size at pupation. As predicted, larvae with high growth rates also lost weight at a relatively higher rate during starvation. High weight-loss rates were furthermore associated with a lower probability of surviving when food became available again. This is apparently the first physiological trade-off with growth rate that has been experimentally demonstrated. In both populations there were significant differences in growth rate between the sexes, but the populations differed in which sex was growing at the highest rate. In Sweden males had higher growth rates than females, whereas the reverse was true for Madeira. These patterns most likely reflect differences in selection for protandry, in turn caused by differences in seasonality between Sweden and Madeira. Together with the finding that males had shorter average longevity than females in the Swedish, but not in the Madeiran, population, this indicates that a lower adult quality also may be a cost of high growth rate. We argue that for the understanding of life history variation it is necessary to consider not only the two dimensions of age and size, but also to take into full account the triangular nature of the relationship between size, time and growth rate. GOTTHARD, K (reprint author), UNIV STOCKHOLM,DEPT ZOOL,S-10691 STOCKHOLM,SWEDEN. Nylin, Soren/B-7375-2008; Gotthard, Karl/F-1163-2011 Nylin, Soren/0000-0003-4195-8920; Gotthard, Karl/0000-0002-4560-6271 CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; GUNNARSSON B, 1990, OIKOS, V59, P205, DOI 10.2307/3545536; Hargreaves B, 1983, BUTTERFLIES BRITAIN; Higgins L. G., 1977, Entomologist's Record and Journal of Variation, V89, P22; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; NEGUS NC, 1992, CAN J ZOOL, V70, P2121, DOI 10.1139/z92-285; NIEWIAROWSKI PH, 1993, ECOLOGY, V74, P1992, DOI 10.2307/1940842; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; OWEN DF, 1986, ECOL ENTOMOL, V11, P349, DOI 10.1111/j.1365-2311.1986.tb00312.x; PERRIN N, 1990, FUNCT ECOL, V4, P53, DOI 10.2307/2389652; Reavey D., 1991, P293; RICE JA, 1993, CAN J FISH AQUAT SCI, V50, P133, DOI 10.1139/f93-015; RICKLEFS RE, 1973, IBIS, V115, P177, DOI 10.1111/j.1474-919X.1973.tb02636.x; RICKLEFS RE, 1969, ECOLOGY, V50, P1031, DOI 10.2307/1936894; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D, 1983, DIAPAUSE LIFE CYCLE, P253; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; SINGER MC, 1982, AM NAT, V119, P337; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; WIKLUND C, 1983, ECOL ENTOMOL, V8, P233, DOI 10.1111/j.1365-2311.1983.tb00503.x; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; WILKINSON L, 1992, SYSTAT 5 I 36 221 228 5 64 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia OCT 1994 99 3-4 281 289 10.1007/BF00627740 9 Ecology Environmental Sciences & Ecology PP227 WOS:A1994PP22700009 28313882 2019-02-26 J LUNDBERG, S; SMITH, HG LUNDBERG, S; SMITH, HG PARENT-OFFSPRING CONFLICTS OVER REPRODUCTIVE EFFORTS - VARIATIONS UPON A THEME BY CHARNOV JOURNAL OF THEORETICAL BIOLOGY English Article CLUTCH-SIZE; MODELS; EVOLUTION A novel formulation of the theory of parent-offspring conflict is proposed. The basis of this formulation is an application of traditional life-history theory in combination with simple genetic arguments. The advanatage with this approach is conceptual, and the formulation is not in variance with earlier studies in the area. Parent-offspring conflict is, in our forumlation, not seen as a conflict between individuals, but as a tradeoff-an age-specific selection pressure acting on a trait, which is favourable when an individual is offspring and disadvantageous when it becomes parent. Using an ESS approach we investigate a simple offspring-wins problem: we find that a gene causing assertiveness of offspring will increase when rare, because the advantage thus gained by an assertive individual when young exceeds the cost incurred as adult by that half of its own offspring which belongs to the same assertive genotype. LUND UNIV,DEPT ANIM ECOL,S-22362 LUND,SWEDEN LUNDBERG, S (reprint author), LUND UNIV,DEPT ECOL,ECOL BLDG,S-22362 LUND,SWEDEN. Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; CAVALLISFORZA LL, 1978, THEOR POPUL BIOL, V14, P260; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1982, AM NAT, V119, P736, DOI 10.1086/283947; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; GODFRAY HCJ, 1991, PHILOS T ROY SOC B, V332, P67, DOI 10.1098/rstb.1991.0034; GODFRAY HCJ, 1992, ANIM BEHAV, V43, P473, DOI 10.1016/S0003-3472(05)80106-X; GODFRAY HCJ, 1991, NATURE, V352, P328, DOI 10.1038/352328a0; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; MACNAIR MR, 1978, ANIM BEHAV, V26, P111, DOI 10.1016/0003-3472(78)90010-6; MACNAIR MR, 1979, ANIM BEHAV, V27, P1202, DOI 10.1016/0003-3472(79)90067-8; PARKER GA, 1985, ANIM BEHAV, V33, P519, DOI 10.1016/S0003-3472(85)80075-0; PARKER GA, 1978, ANIM BEHAV, V26, P97, DOI 10.1016/0003-3472(78)90009-X; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; SMITH JM, 1983, PROC R SOC SER B-BIO, V219, P315, DOI 10.1098/rspb.1983.0076; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; TRIVERS RL, 1974, AM ZOOL, V14, P249; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 19 9 9 0 5 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-5193 J THEOR BIOL J. Theor. Biol. SEP 21 1994 170 2 215 218 10.1006/jtbi.1994.1180 4 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology PK512 WOS:A1994PK51200009 7967642 2019-02-26 J PRIMACK, RB; MIAO, SL; BECKER, KR PRIMACK, RB; MIAO, SL; BECKER, KR COSTS OF REPRODUCTION IN THE PINK LADYS SLIPPER ORCHID (CYPRIPEDIUM ACAULE) - DEFOLIATION, INCREASED FRUIT PRODUCTION, AND FIRE AMERICAN JOURNAL OF BOTANY English Article TIPULARIA-DISCOLOR ORCHIDACEAE; LIFE-HISTORY EVOLUTION; BREEDING BLUE TITS; BROOD SIZE; SHORT-TERM; GROWTH; PHOTOSYNTHESIS; SURVIVAL; CONSEQUENCES; LIMITATIONS An earlier experiment with the pink lady's slipper orchid demonstrated that plant leaf area was lowered only after successive years of increased fruit production. This result suggested that the cost of reproduction was small in relation to the energy budget of the plant. To test this idea, plants were subjected to experimental hand-pollination treatments to increase fruit set as well as leaf removal treatments to decrease the energy budget of plants. Changes in plant size in years 2 and 3 and, to some extent, rate of flowering, were determined by a combination of initial plant size, leaf removal treatments in year 1, fruit production in year 1, and damage from an unplanned fire in year 2. Plants that had both leaves removed and produced a fruit in 1987 decreased in size in the following 2 years in comparison with other treatment groups. The cost of fruit production was not apparent in plants that had only one or no leaves removed. Plants apparently have to be put into severe physiological stress in order for a cost of reproduction to appear in the following year. The cost of producing one fruit was a decline of plant size in the following year of 30 cm(2), which is very similar to our previous experiment using a different design. An additional experiment failed to find evidence that these plants increase their photosynthetic rate to compensate for the loss of leaves or the cost of maturing fruit. Published experiments in both the greenhouse and the field that failed to find a cost of reproduction should be reevaluated in terms of the intensity of treatment imposed and the overall energy budget of the plant in field situations. PRIMACK, RB (reprint author), BOSTON UNIV,DEPT BIOL,5 CUMMINGTON ST,BOSTON,MA 02215, USA. ACKERMAN JD, 1990, ECOLOGY, V71, P263, DOI 10.2307/1940265; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; CALVO RN, 1993, ECOLOGY, V74, P1033, DOI 10.2307/1940473; CALVO RN, 1990, AM J BOT, V77, P736, DOI 10.2307/2444365; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Cochran ME, 1986, THESIS U TENNESSEE K; DAFNI A, 1981, ANN MO BOT GARD, V68, P652, DOI 10.2307/2398893; DAVIS RW, 1986, RHODORA, V88, P445; DELPH LF, 1993, AM J BOT, V80, P607, DOI 10.2307/2445429; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; GEIGER DR, 1979, BOT GAZ, V140, P241, DOI 10.1086/337081; GIFFORD RM, 1981, ANNU REV PLANT PHYS, V32, P485, DOI 10.1146/annurev.pp.32.060181.002413; HORVITZ CC, 1988, ECOLOGY, V69, P1741, DOI 10.2307/1941152; LUBBERS AE, 1989, ECOLOGY, V70, P85, DOI 10.2307/1938415; MONTALVO AM, 1987, BIOTROPICA, V19, P24, DOI 10.2307/2388456; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; PAINTER EL, 1981, J RANGE MANAGE, V34, P68, DOI 10.2307/3898458; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PLOWRIGHT RC, 1980, CAN ENTOMOL, V112, P765, DOI 10.4039/Ent112765-8; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; RESNICK D, 1985, OIKOS, V44, P257; RESNIK D, 1986, EVOLUTION, V40, P1338; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; VONCAEMMERER S, 1984, PLANTA, V160, P320, DOI 10.1007/BF00393413; WASER PM, 1991, ECOLOGY, V72, P771, DOI 10.2307/1940579; WHIGHAM DF, 1991, POPULATION ECOLOGY OF TERRESTRIAL ORCHIDS, P89; WHIGHAM DF, 1990, CAN J BOT, V68, P1812, DOI 10.1139/b90-234; ZIMMERMAN JK, 1992, FUNCT ECOL, V6, P575, DOI 10.2307/2390055; ZIMMERMAN JK, 1989, AM J BOT, V76, P67, DOI 10.2307/2444775; ZIMMERMAN M, 1988, J ECOL, V76, P777, DOI 10.2307/2260573 38 62 65 2 28 BOTANICAL SOC AMER INC COLUMBUS OHIO STATE UNIV-DEPT BOTANY 1735 NEIL AVE, COLUMBUS, OH 43210 0002-9122 AM J BOT Am. J. Bot. SEP 1994 81 9 1083 1090 10.2307/2445469 8 Plant Sciences Plant Sciences PG630 WOS:A1994PG63000001 2019-02-26 J ODONOGHUE, M ODONOGHUE, M EARLY SURVIVAL OF JUVENILE SNOWSHOE HARES ECOLOGY English Article FOOD LIMITATION; LIFE HISTORY THEORY; POPULATION CYCLE; SNOWSHOE HARE; SURVIVAL; TRADEOFFS; YUKON COLUMBIAN GROUND-SQUIRRELS; SUPPLEMENTAL FOOD; POPULATION-DYNAMICS; LITTER SIZE; CLUTCH-SIZE; PEROMYSCUS-LEUCOPUS; BROOD SIZE; EVOLUTION; DISPERSAL; BIOLOGY Juvenile snowshoe hares (Lepus americanus) were radio-tagged at birth on one food addition grid and one control grid, to determine early juvenile survival, the effects of the food addition on survival, and proximate causes of mortality. Indices of survival were also estimated by live-trapping on these grids and on a replicate pair of grids. The overall 30-d survival rates of radio-tagged leverets were 0.46, 0.15, and 0.43 for the first, second, and third litters of the year, respectively. There were no differences between early juvenile survival on the food addition and control grids in any of the litter groups. The main proximate cause of juvenile mortality was predation by small mammalian predators, the most important being red squirrels and arctic ground squirrels. Seventy percent of early juvenile mortality occurred during the first 5 d after birth. Survival of littermates was not independent; litters tended to all live or die as a unit more often than expected by chance. Fifty-one percent of litters had no known survivors after 14 d of age. Individual survival rates were negatively related to litter size and positively related to body size at birth, and litter size was negatively correlated with body size. These correlations were most closely related to differences in life history traits among litters born at different times of the summer, rather than to trade-offs among traits within litter groups. UNIV BRITISH COLUMBIA,DEPT ZOOL,ECOL GRP,VANCOUVER V6T 1W5,BC,CANADA ANGELSTAM P, 1984, OECOLOGIA, V62, P199, DOI 10.1007/BF00379014; BOONSTRA R, 1990, CAN J ZOOL, V68, P757, DOI 10.1139/z90-109; BOONSTRA R, 1985, CAN J ZOOL, V64, P1034; BOUTIN S, 1985, CAN J ZOOL, V63, P106, DOI 10.1139/z85-019; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; BOUTIN S, 1988, J ANIM ECOL, V57, P455, DOI 10.2307/4917; CARY JR, 1979, CAN J ZOOL, V57, P375, DOI 10.1139/z79-044; Caughley G, 1977, ANAL VERTEBRATE POPU; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Cox D. R., 1970, ANAL BINARY DATA; DESY EA, 1983, J ANIM ECOL, V52, P127, DOI 10.2307/4592; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DOBSON FS, 1985, CAN J ZOOL, V63, P2095, DOI 10.1139/z85-308; DOUGLAS GW, 1974, CAN J BOT, V52, P2505, DOI 10.1139/b74-327; Elton C, 1942, J ANIM ECOL, V11, P215, DOI 10.2307/1358; FESTABIANCHET M, 1991, J ANIM ECOL, V60, P1077, DOI 10.2307/5432; FLOWERDEW JR, 1972, J ANIM ECOL, V41, P553, DOI 10.2307/3195; FORD RG, 1984, ECOLOGY, V65, P122, DOI 10.2307/1939465; GRAF RP, 1987, ARCTIC, V40, P175; GREEN R. G., 1940, JOUR WILDLIFE MANAGEMENT, V4, P267, DOI 10.2307/3795613; HANSEN LP, 1979, J MAMMAL, V60, P335, DOI 10.2307/1379805; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; Holling C. S., 1959, Canadian Entomologist, V91, P385; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; Keith L.B., 1990, Current Mammalogy, V2, P119; Keith LB, 1977, P INT C GAME BIOL, V13, P151; KEITH LB, 1984, WILDLIFE MONOGR, V90, P1; KEITH LB, 1978, WILDLIFE MONOGR, V58, P1; KLOMP H, 1970, ARDEA, V58, P1; KREBS CJ, 1986, J ANIM ECOL, V55, P963, DOI 10.2307/4427; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LEE ET, 1980, STATISTICAL METHODS; Lessells C.M., 1991, P32; MORRIS DW, 1986, EVOLUTION, V40, P169, DOI 10.1111/j.1558-5646.1986.tb05728.x; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; ODONOGHUE M, 1992, CAN J ZOOL, V70, P1787, DOI 10.1139/z92-246; ODONOGHUE M, 1992, J ANIM ECOL, V61, P631, DOI 10.2307/5618; POLLOCK KH, 1989, J WILDLIFE MANAGE, V53, P7, DOI 10.2307/3801296; POLLOCK KH, 1989, BIOMETRICS, V45, P99, DOI 10.2307/2532037; RONGSTAD OJ, 1971, J WILDLIFE MANAGE, V35, P338, DOI 10.2307/3799610; SAVAGE IR, 1956, ANN MATH STAT, V27, P590, DOI 10.1214/aoms/1177728170; SEVERAID JH, 1942, SNOWSHOE HARE ITS LI; Sinclair A.R.E., 1989, P197; SINCLAIR ARE, 1988, J ANIM ECOL, V57, P787, DOI 10.2307/5093; SMITH JNM, 1988, J ANIM ECOL, V57, P269, DOI 10.2307/4778; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; SULLIVAN TP, 1983, J ANIM ECOL, V52, P743, DOI 10.2307/4451; TREXLER JC, 1993, ECOLOGY, V74, P1629, DOI 10.2307/1939921; VAUGHAN MR, 1981, J WILDLIFE MANAGE, V45, P354, DOI 10.2307/3807918; Williams GC, 1966, ADAPTATION NATURAL S; WINDBERG LA, 1976, CAN J ZOOL, V54, P2061, DOI 10.1139/z76-240 54 50 51 1 9 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology SEP 1994 75 6 1582 1592 10.2307/1939619 11 Ecology Environmental Sciences & Ecology PE267 WOS:A1994PE26700007 2019-02-26 J POIANI, A; JERMIIN, LS POIANI, A; JERMIIN, LS A COMPARATIVE-ANALYSIS OF SOME LIFE-HISTORY TRAITS BETWEEN COOPERATIVELY AND NONCOOPERATIVELY BREEDING AUSTRALIAN PASSERINES EVOLUTIONARY ECOLOGY English Article LIFE-HISTORY STRATEGIES; COADAPTATION; COOPERATIVE BREEDING; AUSTRALIAN PASSERINES MINER MANORINA-MELANOPHRYS; FRONTED BEE-EATERS; CLUTCH SIZE; REPRODUCTIVE-BEHAVIOR; SOCIAL-ORGANIZATION; MALURUS-SPLENDENS; BIRDS; BIOLOGY; WREN; SELECTION Comparative analyses were carried out for some life-history traits of cooperatively and non-cooperatively breeding Australian Corvida (i.e. old-endemic passerines). Multivariate statistical analyses at the family and genus levels revealed no significant differences between cooperative and non-cooperative breeders. A matched-pairs analysis between congeneric species showed that cooperatively breeding species lay smaller clutches than non-cooperatively breeding congenerics. Preliminary results also suggest that cooperative breeders have higher probabilities of rearing a second brood in the season and lower probabilities of survival than do non-cooperative breeders. However, the result for survival was significant in only one out of three tests. We conclude that cooperatively and non-cooperatively breeding Australian Corvida cannot be separated into distinct groups showing K- and r-selected life-history traits, respectively. Some life-history traits follow the prediction of the r-K selection model, others show evidence of co-adaptation instead, whereas still others show evidence of trade-offs. POIANI, A (reprint author), LA TROBE UNIV,DEPT GENET & HUMAN VARIAT,BUNDOORA,VIC 3083,AUSTRALIA. Jermiin, Lars/C-2458-2009 Jermiin, Lars/0000-0002-9619-3809 AMBROSE SJ, 1989, EMU, V89, P40, DOI 10.1071/MU9890040; ASTON HI, 1988, EMU, V88, P112, DOI 10.1071/MU9880112; Bell H, 1982, EMU, V82, P315, DOI 10.1071/MU9820315s; BELL HL, 1986, BEHAV ECOL SOCIOBIOL, V19, P381, DOI 10.1007/BF00300540; Beruldsen G, 1980, FIELD GUIDE NESTS EG; Blakers M, 1984, ATLAS AUSTR BIRDS; BOLES WE, 1981, CORELLA, V5, P36; Brooker MG, 1989, AUSTR ZOOLOGICAL REV, V2, P1; BROWN JL, 1978, ANNU REV ECOL SYST, V9, P123, DOI 10.1146/annurev.es.09.110178.001011; BROWN JL, 1974, AM ZOOL, V14, P63; Brown JL, 1987, HELPING COMMUNAL BRE; BRUCE P J, 1988, Papers and Proceedings of the Royal Society of Tasmania, V122, P139; CHRISTIDIS L, 1991, IBIS, V133, P277, DOI 10.1111/j.1474-919X.1991.tb04570.x; CHRISTIDIS L, UNPUB SPECIES LIST T; CLARKE MF, 1988, EMU, V88, P88, DOI 10.1071/MU9880088; Conover W. J., 1980, PRACTICAL NONPARAMET; COOKE F, 1990, AM NAT, V136, P261, DOI 10.1086/285095; DOW DD, 1984, EMU, V84, P193, DOI 10.1071/MU9840193; DOW DD, 1980, EMU, V80, P121, DOI 10.1071/MU9800121; EDWARDS SV, 1993, AM NAT, V141, P754, DOI 10.1086/285504; Efron B, 1983, AM STAT, V37, P36, DOI DOI 10.2307/2685844; Emlen S.T., 1991, P301; EMLEN ST, 1991, J ANIM ECOL, V60, P309, DOI 10.2307/5462; EMLEN ST, 1989, BEHAV ECOL SOCIOBIOL, V25, P303, DOI 10.1007/BF00302988; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FORD HA, 1988, BEHAV ECOL SOCIOBIOL, V22, P239, DOI 10.1007/BF00299838; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GLEN NW, 1988, BRIT BIRDS, V81, P630; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HEGNER RE, 1982, NATURE, V298, P264, DOI 10.1038/298264a0; HEINSOHN RG, 1991, AM NAT, V137, P864, DOI 10.1086/285198; Hotelling H, 1931, ANN MATH STAT, V2, P360, DOI 10.1214/aoms/1177732979; Johnson R. A., 1988, APPLIED MULTIVARIATE; Lessells C.M., 1991, P32; LYNCH M, 1991, EVOLUTION, V45, P1065, DOI 10.1111/j.1558-5646.1991.tb04375.x; MACLAUGHLIN J, 1990, RAOU71 ROYAL AUSTR O; MAHALANOBIS PC, 1936, P NAT I SCI INDIA, V2, P49; MAJOR RE, 1991, EMU, V91, P236, DOI 10.1071/MU9910236; Marchant S., 1985, P231; MARCHANT S, 1983, EMU, V83, P66, DOI 10.1071/MU9830066; MARCHANT S, 1974, Emu, V74, P149; MAXWELL A.E., 1977, MULTIVARIATE ANAL BE; MCGOWAN KJ, 1989, ANIM BEHAV, V37, P1000, DOI 10.1016/0003-3472(89)90144-9; MOFFATT D, 1983, EMU, V83, P202; NOSKE RA, 1991, EMU, V91, P73, DOI 10.1071/MU9910073; PAGEL MD, 1989, FOLIA PRIMATOL, V53, P203, DOI 10.1159/000156417; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; PAGEL MD, 1988, Q REV BIOL, V63, P413, DOI 10.1086/416027; POIANI A, 1993, EVOL ECOL, V7, P329, DOI 10.1007/BF01237866; POIANI A, 1991, EMU, V91, P164, DOI 10.1071/MU9910164; Poiani A., 1991, Corella, V15, P87; PRICE T, 1989, AM NAT, V134, P950, DOI 10.1086/285023; RABENOLD KN, 1985, BEHAV ECOL SOCIOBIOL, V17, P1, DOI 10.1007/BF00299422; RABENOLD KN, 1984, ECOLOGY, V65, P871, DOI 10.2307/1938061; REYMENT RA, 1984, MULTIVARIATE MORPHOM; RIDLEY M, 1989, J THEOR BIOL, V136, P361, DOI 10.1016/S0022-5193(89)80171-7; ROWLEY I, 1981, Z TIERPSYCHOL, V55, P228; ROWLEY I, 1988, EMU, V88, P161, DOI 10.1071/MU9880161; ROWLEY I, 1991, BIRD POPULATION STUD, P22; Rubenstein D.I., 1982, P91; RUSSELL E, 1988, BEHAV ECOL SOCIOBIOL, V22, P131, DOI 10.1007/BF00303548; RUSSELL EM, 1989, EMU, V89, P61, DOI 10.1071/MU9890061; SCHODDE R, 1982, FIARY WRENS MONOGRAP; Sibley C.G., 1990, PHYLOGENY CLASSIFICA; SIBLEY CG, 1985, EMU, V85, P1, DOI 10.1071/MU9850001; SJOVOLD T, 1975, J HUM EVOL, V4, P549, DOI 10.1016/0047-2484(75)90155-4; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; SMITH CAB, 1986, ANN HUM GENET, V50, P163, DOI 10.1111/j.1469-1809.1986.tb01035.x; SOKAL R., 1981, BIOMETRY; Stearns SC., 1992, EVOLUTION LIFE HIST; THIOLLAY JM, 1991, IBIS, V133, P382, DOI 10.1111/j.1474-919X.1991.tb04586.x; TIDEMANN SC, 1986, EMU, V86, P131, DOI 10.1071/MU9860131; Woinarski J.C.Z., 1985, Proceedings of the Ecological Society of Australia, V14, P159; Woodall P.F., 1980, Sunbird, V11, P73; YOMTOV Y, 1992, IBIS, V134, P374, DOI 10.1111/j.1474-919X.1992.tb08017.x; YOMTOV Y, 1987, AUST WILDLIFE RES, V14, P319, DOI 10.1071/WR9870319 77 25 27 1 24 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. SEP 1994 8 5 471 488 10.1007/BF01238252 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity PF608 WOS:A1994PF60800002 2019-02-26 J CLAUSS, MJ; AARSSEN, LW CLAUSS, MJ; AARSSEN, LW PHENOTYPIC PLASTICITY OF SIZE-FECUNDITY RELATIONSHIPS IN ARABIDOPSIS-THALIANA JOURNAL OF ECOLOGY English Article ANNUAL PLANTS; FECUNDITY ALLOCATION; FITNESS; G X E INTERACTIONS; LIFE-HISTORY VARIATION REPRODUCTIVE EFFORT; PLANTS; ALLOCATION; GROWTH 1 The patterns of above ground allocation of meristems and resources are primary components of plant life history strategies, and are reflected in fecundity allocation, i.e. the observed relationship between plant size and fecundity. Phenotypic plasticity in fecundity allocation was investigated in the annual Arabidopsis thaliana. Individuals of each of three genotypes were grown under light, nutrient and pot volume gradients. Plant size (above ground vegetative mass excluding seeds) and fecundity (number of seeds) were measured for each individual at complete senescence. 2 In all combinations of three genotypes and three environmental factors, fecundity increased significantly with increasing plant size (P < 0.001). This increase was expressed through linear, quadratic, cubic and exponential relationships. Analyses of covariance with transformed data indicated that size-fecundity relationships were variable both between factors for individual genotypes and between genotypes within environmental factors. Hence not only size and fecundity, but also the relationship between size and fecundity can display phenotypic plasticity in this species. 3 Under light limitation some plants remained vegetative throughout their life span and it was therefore possible to identify a minimum size necessary to initiate production of reproductive meristems. However, some individuals of the same genotypes under nutrient limitation flowered and set seed although they were below this size limit. Hence, the minimum size for reproduction may also show phenotypic plasticity in A, thaliana. The observed variability in minimum size for reproduction and in fecundity allocation was not due to variation in developmental stage since all plants were harvested after fully completing their development. 4 Phenotypic plasticity in fecundity allocation and minimum size for reproduction implies that plants of the same size, in different environments, may not have the same fecundity, even if they are the same genotype. This plasticity has important implications in the interpretation of fitness estimates and in comparisons of life histories in plants. QUEENS UNIV,DEPT BIOL,KINGSTON K7L 3N6,ON,CANADA Aarssen, Lonnie/K-5778-2012 AARSSEN LW, 1992, J ECOL, V80, P109, DOI 10.2307/2261067; AARSSEN LW, 1992, OIKOS, V65, P225, DOI 10.2307/3545013; AERTS R, 1990, OIKOS, V57, P310, DOI 10.2307/3565959; CLAUSS MJ, 1992, THESIS QUEENS U KING; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; GRACE JB, 1990, PERSPECTIVES PLANT C; Halle F., 1978, TROPICAL TREES FORES; Harper J.L., 1977, POPULATION BIOL PLAN; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; JACKSON DA, 1991, OECOLOGIA, V86, P147, DOI 10.1007/BF00317404; Keddy P. A., 1989, COMPETITION; KENNEY BC, 1982, WATER RESOUR RES, V18, P1041, DOI 10.1029/WR018i004p01041; KLINKHAMER PGL, 1990, AM NAT, V135, P291, DOI 10.1086/285045; KLINKHAMER PGL, 1992, FUNCT ECOL, V6, P308, DOI 10.2307/2389522; KRANNITZ PG, 1991, AM J BOT, V78, P446, DOI 10.2307/2444967; Kranz A.R., 1987, GENETIC RESOURCES AR; MAILLETTE L, 1990, OIKOS, V59, P235, DOI 10.2307/3545539; MARSHALL DL, 1986, AM NAT, V127, P508, DOI 10.1086/284499; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SMITH BH, 1984, AM NAT, V123, P197, DOI 10.1086/284197; Stearns SC., 1992, EVOLUTION LIFE HIST; Tilman D, 1982, RESOURCE COMPETITION; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WALLER DM, 1988, PLANT REPRODUCTIVE E; WATKINSON AR, 1985, PHILOS T R SOC B, V313, P31; WATSON MA, 1984, AM NAT, V123, P411, DOI 10.1086/284212; WEINER J, 1988, PLANT REPRODUCTIVE E; WEINER J, 1987, PLANT POPULATION ECO; 1989, SAS STAT USERS GUIDE 29 59 62 0 17 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0022-0477 J ECOL J. Ecol. SEP 1994 82 3 447 455 10.2307/2261254 9 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology PF542 WOS:A1994PF54200002 2019-02-26 J BERRIGAN, D; KOELLA, JC BERRIGAN, D; KOELLA, JC THE EVOLUTION OF REACTION NORMS - SIMPLE-MODELS FOR AGE AND SIZE AT MATURITY JOURNAL OF EVOLUTIONARY BIOLOGY English Article AGE AT MATURITY; BODY SIZE; DROSOPHILA-MELANOGASTER; LIFE HISTORY EVOLUTION; FITNESS MEASURES; PHENOTYPIC PLASTICITY This paper presents a simple model for the evolution of reaction norms for age and size at maturity that predicts reaction norms with a variety of shapes. Using realistic parameter values the model predicts reaction norms close to those observed in Drosophila. The major assumptions of the model are: 1) that net reproductive rate is maximized, 2) that growth is determinate, and 3) that mortality rates are independent of age and size at maturity. If, additionally, juvenile mortality is uncorrelated with a growth coefficient, k, the model predicts that selection favors maturation later at a smaller size when k is reduced by environmental factors and that decreased juvenile mortality leads to delayed maturity. These two predictions conform with those found by previous models using other measures of fitness. Correlations between k and juvenile mortality can change the shape of the predicted reaction norm. Depending on the precise form of the correlation, the model can predict dome- or bowl-shaped reaction norms and can predict delayed or earlier maturity as k decreases. These shapes are qualitatively different from those predicted by previous models that used different fitness measures. Systematic estimates of the parameter values for this and for related models are required to determine the appropriate fitness measure for models of reaction norms. BERRIGAN, D (reprint author), UNIV WASHINGTON,DEPT ZOOL NJ-15,SEATTLE,WA 98195, USA. 0 74 77 1 19 BIRKHAUSER VERLAG AG BASEL PO BOX 133 KLOSTERBERG 23, CH-4010 BASEL, SWITZERLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. SEP 1994 7 5 549 566 10.1046/j.1420-9101.1994.7050549.x 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity PM562 WOS:A1994PM56200003 2019-02-26 J MCNAMARA, KJ MCNAMARA, KJ DIVERSITY OF CENOZOIC MARSUPIATE ECHINOIDS AS AN ENVIRONMENTAL INDICATOR LETHAIA English Article ECHINOIDEA; EVOLUTION; DIVERSITY; LIFE-HISTORY STRATEGY; CENOZOIC ANTARCTIC SEA-URCHIN; MARINE-INVERTEBRATES; SOUTHERN-OCEAN; BENTHIC INVERTEBRATES; LARVAL DEVELOPMENT; EVOLUTION; ECOLOGY; WATER Marsupiate echinoids are today largely confined to the seas around Antarctica. Consequently, it has often been inferred that the presence of marsupiate echinoids in the fossil record is indicative of the former existence of low oceanic temperatures. In this study the distribution of marsupiate echinoids through the Cenozoic succession of southern Australia is compared with palaeo-temperature data to test this assumption. The analysis reveals that there is no positive correlation between high marsupiate echinoid diversity during the Cenozoic and low oceanic temperatures. An alternative hypothesis, based on life-history strategies, is investigated. This reveals that marsupiate echinoids show many characteristics typical of organisms with slow growth, long life spans and production of few, large offspring. It is suggested that the northward migration of Australia during the Cenozoic from an original high-latitude location in the early Cenozoic was accompanied by an increase in environmental instability in the southern Australian region in the late Cenozoic. This led to a consequent decrease in marsupiate echinoid diversity. During the Pliocene these direct brooding echinoids were replaced by non-brooders with pelagic lecithotrophic larvae, which dominate the southern coastal echinoid fauna of Australia today. The environmental stability experienced in southern Australia in the early Cenozoic persisted throughout the Cenozoic in the Antarctic region, particularly with regard to predictability of nutrient supply. The result has been the dominance of marsupiate echinoids in that region today. Temporal changes in the diversity of marsupiate echinoids in southern Australia therefore supports the view that their spatial and temporal distribution may be more closely correlated with aspects of their life-history strategy and environmental stability than with low temperature. MCNAMARA, KJ (reprint author), WESTERN AUSTRALIAN MUSEUM,DEPT EARTH & PLANETARY SCI,FRANCIS ST,PERTH,WA 6000,AUSTRALIA. ARNAUD PM, 1974, TETHYS, V6, P577; BARKER PF, 1977, MAR GEOL, V25, P15, DOI 10.1016/0025-3227(77)90045-7; BLAKE DB, 1991, PALAEONTOLOGY, V34, P629; BOSCH I, 1987, BIOL BULL, V173, P126, DOI 10.2307/1541867; CHIA FS, 1968, J ZOOLOGY LONDON, V4, P453; Clarke A., 1990, P9; CLARKE A, 1988, COMP BIOCHEM PHYS B, V90, P461, DOI 10.1016/0305-0491(88)90285-4; CLARKE A, 1982, INT J INVER REP DEV, V5, P71; CLARKE A, 1991, FUNCT ECOL, V5, P724, DOI 10.2307/2389534; CLARKE A, 1991, AM ZOOL, V31, P81; CLARKE A, 1986, J EXP MAR BIOL ECOL, V104, P31, DOI 10.1016/0022-0981(86)90096-1; CLARKE A, 1983, OCEANOGR MAR BIOL, V21, P341; CLARKE A, 1988, BR ANTARCT SURV B, V80, P65; Cushing D. H., 1975, MARINE ECOLOGY FISHE; DELL RK, 1972, ADV MAR BIOL, V10, P1, DOI 10.1016/S0065-2881(08)60416-2; Emlet R.B., 1987, Echinoderm Studies, V2, P55; Emlet R.B., 1990, Advances in Invertebrate Reproduction, V5, P329; EMLET RB, 1989, PALEOBIOLOGY, V15, P223; Fell FJ, 1976, THESIS U MAINE; Fischer A. G., 1963, AM J SCI, V261, P282; Fordyce R. Ewan, 1991, P1165; FOSTER R J, 1980, Proceedings of the Royal Society of Victoria, V91, P155; FOSTER RJ, 1974, NATURE, V249, P751, DOI 10.1038/249751a0; Herron E., 1976, INITIAL REPORTS DEEP, V35, P263; JABLONSKI D, 1986, B MAR SCI, V39, P565; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; Kennett J.P., 1990, Proceedings of the Ocean Drilling Program Scientific Results, V113, P937; KENNETT JP, 1986, S AFR J SCI, V82, P497; KENNETT JP, 1980, PALAEOGEOGR PALAEOCL, V31, P123, DOI 10.1016/0031-0182(80)90017-6; KENNETT JP, 1985, S AFR J SCI, V81, P251; KENNETT JP, 1978, MAR MICROPALEONTOL, V3, P301, DOI 10.1016/0377-8398(78)90017-8; KENNETT JP, 1978, ANTARCTIC GLACIAL HI, P41; KENNETT JP, 1985, INITIAL REPORTS DEEP, V150, P1383; Kier P. M., 1969, P215; KIER PORTER M., 1967, J PALEONTOL, V41, P988; Knox G.A., 1990, P115; KNOX GA, 1980, PALAEOGEOGR PALAEOCL, V31, P267, DOI 10.1016/0031-0182(80)90022-X; Kruse P.D., 1985, SPECIAL PUBLICATIONS, V5, P167; Lambert J., 1933, Annales Geologiques du Service des Mines Madagascar, V3, P1; Liao Y.-l., 1981, Acta Palaeontologica Sinica, V20, P482; McGowran B., 1985, S AUST DEP MINES ENE, V5, P247; McKinney Michael L., 1992, P349; MCKINNEY ML, 1988, MEM GEOL SOC AM, V169, P499; McNamara K. J., 1993, RECORDS S AUSTR MUSE, V26, P139; McNamara K. J., 1980, MEM NAT MUS VICTORIA, V41, P1; MESPHOULHE P, 1992, CR ACAD SCI III-VIE, V314, P205; MILEIKOVSKY SA, 1971, MAR BIOL, V10, P193, DOI 10.1007/BF00352809; Mortensen T., 1948, MONOGRAPH ECHINOIDEA; NERAUDEAU D, 1993, PALAEONTOLOGY, V36, P311; Pearse J.S., 1965, BIOL ANTARCTIC SEAS, VII, P39; PEARSE JS, 1966, BIOL BULL, V130, P387, DOI 10.2307/1539745; Philip G. M, 1971, Palaeontology, V14, P666; PICKEN GB, 1980, BIOL J LINN SOC, V14, P67, DOI 10.1111/j.1095-8312.1980.tb00098.x; RAYMO ME, 1992, NATURE, V359, P117, DOI 10.1038/359117a0; ROMAN J, 1983, Annales de Paleontologie, V69, P13; ROMAN J, 1989, GEOL FRANCE, V1, P227; Rowe F.W.E., 1982, Echinoderms, P219; Smith A. B., 1984, ECHINOID PALAEOBIOLO; Stott L.D., 1990, Proceedings of the Ocean Drilling Program Scientific Results, V113, P849, DOI 10.2973/odp.proc.sr.113.187.1990; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TUCHOLKE BE, 1976, INITIAL REP DEEP SEA, V35, P359; VALENTINE JW, 1986, P NATL ACAD SCI USA, V83, P6912, DOI 10.1073/pnas.83.18.6912; WHITAKER TM, 1982, PROC R SOC SER B-BIO, V214, P169, DOI 10.1098/rspb.1982.0003; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D 64 19 20 0 3 SCANDINAVIAN UNIVERSITY PRESS OSLO PO BOX 2959 TOYEN, JOURNAL DIVISION CUSTOMER SERVICE, N-0608 OSLO, NORWAY 0024-1164 LETHAIA Lethaia SEP 1994 27 3 257 268 10.1111/j.1502-3931.1994.tb01419.x 12 Paleontology Paleontology PN714 WOS:A1994PN71400011 2019-02-26 J ENS, BJ; PIERSMA, T; DRENT, RH ENS, BJ; PIERSMA, T; DRENT, RH THE DEPENDENCE OF WADERS AND WATERFOWL MIGRATING ALONG THE EAST ATLANTIC FLYWAY ON THEIR COASTAL FOOD SUPPLIES - WHAT IS THE MOST PROFITABLE RESEARCH-PROGRAM OPHELIA English Article OYSTERCATCHERS HAEMATOPUS-OSTRALEGUS; STANDARD OPERATIVE TEMPERATURE; TURNSTONE ARENARIA-INTERPRES; HEATED TAXIDERMIC MOUNTS; MUSSELS MYTILUS-EDULIS; GEESE BRANTA-BERNICLA; KNOT CALIDRIS-CANUTUS; MACOMA-BALTHICA; BRITISH ESTUARIES; PREY AVAILABILITY Predicting the effects of human activities, like shell-fisheries, exploitation of gas, recreation, chemical pollution, land reclamation and man-induced sea-level rise, on the population dynamics and migratory behaviour of the waders and waterfowl using the Wadden Sea and other intertidal areas along the East Atlantic Flyway is a tall order. Mathematical models with a strong empirical basis are our only hope for achieving this aim. Though applied models almost always sacrifice generality to achieve precision and realism, it is important to develop unifying concepts that can guide empirical research. We should aim to understand the underlying processes at the level of the individual consumers and consumed. These processes include social competition among the waders and waterfowl(the consumers) for nesting territories and wintering sites, as well as seasonal changes in availability of the prey (the consumed). With regard to the former it can be remarked that ultimately social competition revolves around access to resources vital for reproduction and survival. With regard to the latter we suspect that changes in prey availability are often due to changes in risk-taking behaviour on the part of the prey. In all these cases behavioural ecology and life history theory provide the concepts that link the 'decisions' of individuals to the population processes we aim to predict. The research programme that we describe has proven very useful in investigations of prey choice, migratory behaviour and local distribution patterns. It is only very recently that attempts are made to put the programme to full use in predicting the effects of habitat changes on the population dynamics of the affected birds. UNIV GRONINGEN, ZOOL LAB, 9750 AA HAREN, NETHERLANDS; NETHERLANDS INST SEA RES, 1790 AB DEN BURG, NETHERLANDS ENS, BJ (reprint author), INST FORESTRY & NAT RES, POB 167, 1790 AD DEN BURG, NETHERLANDS. Piersma, Theunis/D-1871-2012 BAKKEN GS, 1981, ECOLOGY, V62, P311, DOI 10.2307/1936705; BAKKEN GS, 1983, ECOLOGY, V64, P1658, DOI 10.2307/1937520; Beekman Jan H., 1991, Wildfowl Supplement, V1, P238; BOOTH DT, 1993, P ROY SOC B-BIOL SCI, V253, P125, DOI 10.1098/rspb.1993.0091; CALDOW RWG, IN PRESS ARDEA; CARMI N, 1992, AUK, V109, P268; CAYFORD JT, 1990, ANIM BEHAV, V40, P609, DOI 10.1016/S0003-3472(05)80691-8; CHARNOV EL, 1976, AM NAT, V110, P141, DOI 10.1086/283054; CHRISTY JH, 1984, BIOL REV, V59, P483, DOI 10.1111/j.1469-185X.1984.tb00412.x; CRESSWELL W, 1993, ANIM BEHAV, V46, P609, DOI 10.1006/anbe.1993.1231; DHONDT AA, 1988, ACTA OECOL-OEC GEN, V9, P337; Drent R. H., 1987, Disturbance in grasslands, P131; DURELL SEAL, 1984, ANIM BEHAV, V32, P1197; EBBINGE BS, 1989, IBIS, V131, P196, DOI 10.1111/j.1474-919X.1989.tb02762.x; Ens B., 1980, Watervogels, V5, P108; ENS BJ, 1993, NETH J SEA RES, V31, P477, DOI 10.1016/0077-7579(93)90060-6; ENS BJ, 1984, J ANIM ECOL, V53, P217, DOI 10.2307/4353; ENS BJ, 1986, IBIS, V128, P382, DOI 10.1111/j.1474-919X.1986.tb02687.x; ENS BJ, 1994, IN PRESS PREDICITIVE; ENS BJ, THESIS U GRONINGEN; Ens BJ, 1982, WADER STUDY GROUP B, V34, P16; ENS BJ, IN PRESS BEHAVIORAL; ENS BJ, IN PRESS ARDEA; EVANS PR, 1976, ARDEA, V64, P117; FRETWELL S D, 1969, Acta Biotheoretica, V19, P16, DOI 10.1007/BF01601953; Fretwell SD, 1972, POPULATIONS SEASONAL; GENDRON RP, 1983, AM NAT, V121, P172, DOI 10.1086/284049; Goss-Custard J.D., 1985, P169; Goss-Custard J. D., 1970, P3; GOSS-CUSTARD J D, 1976, Wildfowl, V27, P157; Goss-Custard J.D., 1984, Behavior of Marine Animals, V6, P233; GOSSCUSTARD JD, 1993, BIRD STUDY, V40, P81, DOI 10.1080/00063659309477133; GOSSCUSTARD JD, 1977, J APPL ECOL, V14, P721, DOI 10.2307/2402805; GOSSCUSTARD JD, 1990, IBIS, V132, P273, DOI 10.1111/j.1474-919X.1990.tb01045.x; GOSSCUSTARD JD, 1988, J APPL ECOL, V25, P95, DOI 10.2307/2403612; GOSSCUSTARD JD, 1988, J ANIM ECOL, V57, P827, DOI 10.2307/5095; GOSSCUSTARD JD, 1980, ARDEA, V68, P31; GOSSCUSTARD JD, 1984, J ANIM ECOL, V53, P233, DOI 10.2307/4354; GREENSPAN BN, 1980, ANIM BEHAV, V28, P387, DOI 10.1016/S0003-3472(80)80047-9; HAIRSTON NG, 1960, AM NAT, V94, P421, DOI 10.1086/282146; HEDENSTROM A, 1992, J THEOR BIOL, V158, P535, DOI 10.1016/S0022-5193(05)80714-3; Holling C. S., 1959, Canadian Entomologist, V91, P385; HULSCHER J B, 1989, Limosa, V62, P177; HULSCHER JB, 1985, NETH J ZOOL, V35, P124, DOI 10.1163/002829685X00109; HULSCHER JB, 1982, ARDEA, V70, P89; HULSCHER JB, 1976, ARDEA, V64, P292; KACELNIK A, 1992, TRENDS ECOL EVOL, V7, P50, DOI 10.1016/0169-5347(92)90106-L; KLAASSEN M, 1993, NETH J SEA RES, V31, P495, DOI 10.1016/0077-7579(93)90061-V; KREBS JR, 1991, BEHAVIOURAL ECOLOGY; Lessells C.M., 1991, P32; Levins R., 1968, EVOLUTION CHANGING E; LOMNICKI A, 1978, J ANIM ECOL, V47, P461, DOI 10.2307/3794; Madsen J., 1988, Danish Review of Game Biology, V13, P1; MCFARLAND DJ, 1977, NATURE, V269, P15, DOI 10.1038/269015a0; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MEIRE P, 1993, THESIS U GENT; MEIRE PM, 1986, ANIM BEHAV, V34, P1427, DOI 10.1016/S0003-3472(86)80213-5; MEIRE PM, IN PRESS ARDEA; MOSER ME, 1988, J APPL ECOL, V25, P473, DOI 10.2307/2403838; MURDOCH WW, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P18; MYERS JP, 1984, BEHAV MARINE ANIM, V6, P273; Pienkowski M.W., 1985, P331; PIERCE GJ, 1987, OIKOS, V49, P111, DOI 10.2307/3565560; PIERSMA T, 1993, NETH J SEA RES, V31, P331, DOI 10.1016/0077-7579(93)90052-T; PIERSMA T, 1987, MAR ECOL PROG SER, V38, P187, DOI 10.3354/meps038187; PIERSMA T, 1990, ARDEA, V78, P315; PIERSMA T, 1991, 20 C INT ORN CHRISTC, P761; PIERSMA T, IN PRESS AUK, V111; POOT M, 1994, THESIS U GRONINGEN, P158; Prins H. H. T, 1987, THESIS U GRONINGEN; PROP J, 1991, OECOLOGIA, V87, P19, DOI 10.1007/BF00323775; READING CJ, 1978, ESTUAR COAST MAR SCI, V6, P135, DOI 10.1016/0302-3524(78)90095-6; SALMON M, 1987, J CRUSTACEAN BIOL, V7, P25, DOI 10.2307/1548623; SCHOENER TW, 1986, AM ZOOL, V26, P81; Stearns SC., 1992, EVOLUTION LIFE HIST; Stephens DW, 1986, FORAGING THEORY; SUTER W, 1989, WADER STUDY GROUP B, V57, P22; SUTHERLAND WJ, 1982, OECOLOGIA, V55, P108, DOI 10.1007/BF00386724; SUTHERLAND WJ, 1982, J ANIM ECOL, V51, P491, DOI 10.2307/3979; SUTHERLAND WJ, 1982, ESTUAR COAST SHELF S, V14, P223, DOI 10.1016/S0302-3524(82)80047-9; SUTHERLAND WJ, 1987, BEHAVIOUR, V103, P187, DOI 10.1163/156853987X00341; SUTHERLAND WJ, P ROYAL SOC B; SUTHERLAND WJ, 1991, 20 ACT C INT ORN, P2199; SWENNEN C, 1989, ANIM BEHAV, V38, P8, DOI 10.1016/S0003-3472(89)80061-2; SWENNEN C, 1983, NETH J SEA RES, V17, P57, DOI 10.1016/0077-7579(83)90006-6; SZEKELY T, 1992, J ANIM ECOL, V61, P447, DOI 10.2307/5335; THOMPSON DBA, 1983, ANIM BEHAV, V31, P1226, DOI 10.1016/S0003-3472(83)80029-3; van Eerden M.R., 1984, P84; VINES G, 1980, ANIM BEHAV, V28, P1175, DOI 10.1016/S0003-3472(80)80105-9; WANINK J, 1985, OECOLOGIA, V67, P98, DOI 10.1007/BF00378457; WHITFIELD DP, 1988, ANIM BEHAV, V36, P408, DOI 10.1016/S0003-3472(88)80011-3; WHITFIELD DP, 1990, J ANIM ECOL, V59, P193, DOI 10.2307/5168; WHITFIELD DP, 1985, OECOLOGIA, V27, P554; WIERSMA P, 1994, CONDOR, V96, P257, DOI 10.2307/1369313; Wiersma Popko, 1993, Limosa, V66, P41; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; ZWARTS L, 1989, MAR ECOL PROG SER, V56, P255, DOI 10.3354/meps056255; ZWARTS L, 1993, NETH J SEA RES, V31, P441, DOI 10.1016/0077-7579(93)90059-2; ZWARTS L, 1992, MAR ECOL PROG SER, V83, P129, DOI 10.3354/meps083129; ZWARTS L, 1990, ARDEA, V78, P279; ZWARTS L, 1990, ARDEA, V78, P257; ZWARTS L, 1992, MAR ECOL PROG SER, V83, P113, DOI 10.3354/meps083113; ZWARTS L, 1980, BIRDS WADDEN SEA, P271; ZWARTS L, 1981, FEEDING SURVIVAL STR, P193 104 10 11 1 8 OPHELIA PUBLICATIONS STENSTRUP KIRKEBY SAND 19, DK-5771 STENSTRUP, DENMARK 0078-5326 OPHELIA Ophelia SEP 1994 6 127 151 25 Marine & Freshwater Biology Marine & Freshwater Biology PK307 WOS:A1994PK30700015 2019-02-26 J LYNCH, M; DENG, HW LYNCH, M; DENG, HW GENETIC SLIPPAGE IN RESPONSE TO SEX AMERICAN NATURALIST English Article LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; NATURAL-POPULATIONS; DAPHNIA-PULEX; RECOMBINATION; SELECTION; DISEQUILIBRIUM; PARTHENOGEN; LINKAGE; LOAD It is widely held that sexual reproduction enhances the potential for evolution by expanding the range of variation on which selection can act. However, when nonadditive gene action contributes to the expression of traits under selection, sexual reproduction can also result in slippage of the mean genotypic value in the direction contrary to selection. We show how the magnitude of genetic slippage depends on the extent to which segregation and recombination create maladapted genotypes. We also show how random mating can induce a change in the expressed genetic variance for a quantitative trait by eliminating Hardy-Weinberg disequilibria and reducing gametic-phase disequilibria. Depending on whether genes of like effects are in repulsion or coupling disequilibrium, this change will be positive or negative. Thus, depending on the mode of gene action and the form of the selection function, sexual reproduction can either enhance or impede the short-term response of quantitative characters to selection. Although this issue is relevant to all sexual populations, it is most easily investigated in species that infrequently engage in sex, since prolonged phases of clonal propagation can greatly exaggerate genetic disequilibria. We describe a population of the cyclical parthenogen Daphnia pulex in which sexual reproduction induced average changes in the means of life-history characters equivalent to approximately one-tenth of a phenotypic standard deviation. Contrary to the usual expectation, sex also caused a significant reduction in the expressed genetic variance for several traits in this population. A large fraction of the genetic variance in Daphnia appears to be due to dominance, and in the study population, clonal selection appears to cause a buildup of coupling disequilibrium between genes and gene combinations of like effects. LYNCH, M (reprint author), UNIV OREGON,DEPT BIOL,EUGENE,OR 97403, USA. ALLEN AC, 1966, GENETICS, V54, P1409; ANDERSON VL, 1954, GENETICS, V39, P883; BANTA AM, 1939, 39 CARN I DEP GEN PA; BARKER JSF, 1979, THEOR POPUL BIOL, V16, P323, DOI 10.1016/0040-5809(79)90021-2; CHARLESWORTH B, 1993, GENET RES, V61, P205, DOI 10.1017/S0016672300031372; CHARLESWORTH B, 1975, GENET RES, V25, P267, DOI 10.1017/S001667230001569X; COCKERHAM CC, 1980, THEOR APPL GENET, V56, P119, DOI 10.1007/BF00265082; DICKERSON GE, 1955, COLD SPRING HARB SYM, V20, P213, DOI 10.1101/SQB.1955.020.01.020; DOBZHANSKY T, 1959, GENETICS, V44, P75; EBERT D, 1993, HEREDITY, V70, P335, DOI 10.1038/hdy.1993.48; Falconer D.S., 1981, INTRO QUANTITATIVE G; INNES DJ, 1989, J HERED, V80, P6, DOI 10.1093/oxfordjournals.jhered.a110791; KOSUDA K, 1971, GENETICS, V67, P287; KRIMBAS CB, 1961, GENETICS, V46, P1323; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; LYNCH M, 1983, AM NAT, V122, P745, DOI 10.1086/284169; LYNCH M, 1989, EVOLUTION, V43, P1724, DOI 10.1111/j.1558-5646.1989.tb02622.x; LYNCH M, 1991, EVOLUTION, V45, P622, DOI 10.1111/j.1558-5646.1991.tb04333.x; Mather K, 1942, J GENET, V43, P309, DOI 10.1007/BF02982906; MATHER K, 1970, NATURE, V227, P520; MATHER K, 1972, ANN HUM GENET, V35, P485; QUELLER DC, 1989, EVOLUTION, V43, P258, DOI 10.1111/j.1558-5646.1989.tb04226.x; Shields W. M, 1982, PHILOPATRY INBREEDIN; SHNOL EE, 1993, GENETICS, V134, P995; SPASSKY B, 1958, GENETICS, V43, P844; SPEISS EB, 1961, GENETICS, V46, P1531; SPEISS EB, 1959, GENETICS, V44, P43; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; TESSIER AJ, 1992, LIMNOL OCEANOGR, V37, P1; THOMPSON V, 1976, Evolutionary Theory, V1, P131; WEIR BS, 1980, HEREDITY, V45, P351, DOI 10.1038/hdy.1980.77; WRIGHT S, 1951, ANN EUGENIC, V15, P323; ZAPATA C, 1992, EVOLUTION, V46, P1900, DOI 10.1111/j.1558-5646.1992.tb01177.x; ZAPATA C, 1993, MOL BIOL EVOL, V10, P823 35 72 75 1 24 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. AUG 1994 144 2 242 261 10.1086/285673 20 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology PA421 WOS:A1994PA42100004 2019-02-26 J RICKLEFS, RE; SHEA, RE; CHOI, IH RICKLEFS, RE; SHEA, RE; CHOI, IH INVERSE RELATIONSHIP BETWEEN FUNCTIONAL MATURITY AND EXPONENTIAL-GROWTH RATE OF AVIAN SKELETAL-MUSCLE - A CONSTRAINT ON EVOLUTIONARY RESPONSE EVOLUTION English Article AVIAN GROWTH; DEVELOPMENT; EVOLUTIONARY CONSTRAINT; GROWTH RATE; LIFE-HISTORY EVOLUTION; MATURATION; SKELETAL MUSCLE; TRADE-OFF BIRDS; BONE; REPRODUCTION; SELECTION In this study, we investigate whether a tissue-level constraint can explain the general inverse relationship between growth rate and precocity of development in birds. On the whole, altricial (dependent) chicks grow three for four times faster than the less dependent, more able chicks of precocial species of similar adult mass. We suggest that an antagonism between growth and acquisition of mature function in skeletal muscle constrains postnatal growth and development in most species of birds. Altricial species, represented by European starlings in this study, hatch with skeletal muscle having low capacity for generating force but grow rapidly. Conversely, precocial species (northern bobwhite quail and Japanese quail), hatch with relatively mature skeletal muscle, especially in their legs, but grow more slowly. As development proceeds in all species, exponential growth rates decrease as muscles acquire adults levels of function. Among four variables associated with muscle function, exponential growth rate (EGR) was negatively correlated with pyruvate kinase activity (glycolysis), potassium concentration (electrical potential), and dry weight fraction (contractile proteins) in both pectoral and leg muscles but not with citrate synthase activity (aerobic metabolism) in either set of muscles. For pectoral muscle, these variables accounted for 87% of the total variation in EGR in all three species combined despite a twofold difference in growth rates between the starling and quail. EGRs of leg muscle (51% of variation accounted for) were less than predicted by the pectoral-muscle equation in quail during the early part of the postnatal period and in starling during the late postnatal period. This result would not contradict a growth rate-maturity constraint hypothesis if EGRs were down-regulated for allometric other considerations. RANDOLPH MACON COLL, DEPT BIOL, ASHLAND, VA 23005 USA; YONSEI UNIV, COLL LIBERAL ARTS & SCI, DEPT BIOL, KANGWON DO 222701, SOUTH KOREA RICKLEFS, RE (reprint author), UNIV PENN, DEPT BIOL, PHILADELPHIA, PA 19104 USA. CARRIER D, 1990, J ZOOL, V222, P375, DOI 10.1111/j.1469-7998.1990.tb04039.x; CARRIER DR, 1991, AM ZOOL, V31, P644; CHOI IH, 1993, PHYSIOL ZOOL, V66, P455, DOI 10.1086/physzool.66.4.30163803; DAYTON WR, 1991, POULTRY SCI, V70, P1815, DOI 10.3382/ps.0701815; HARTMAN FRANK A., 1961, SMITHSONIAN MISC COLL, V143, P1; KARZEL K, 1968, J PHYSIOL-LONDON, V196, pP86; KIRKWOOD JK, 1989, J ZOOL, V217, P403, DOI 10.1111/j.1469-7998.1989.tb02498.x; KIRKWOOD JK, 1983, COMP BIOCHEM PHYS A, V75, P1, DOI 10.1016/0300-9629(83)90033-6; KONARZEWSKI M, 1989, FUNCT ECOL, V3, P589, DOI 10.2307/2389573; LILJA C, 1983, GROWTH, V47, P317; MARKS HL, 1978, GROWTH, V42, P129; MARSH RL, 1982, J COMP PHYSIOL, V149, P99, DOI 10.1007/BF00735720; MOSS FP, 1971, ANAT REC, V170, P421, DOI 10.1002/ar.1091700405; NICE MARGARET MORSE, 1962, TRANS LINN SOC NY, V8, P1; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1988, ARDEA, V76, P155; PINES M, 1991, POULTRY SCI, V70, P1806, DOI 10.3382/ps.0701806; RANAWEERA KNP, 1982, BRIT POULTRY SCI, V23, P195, DOI 10.1080/00071688208447947; Ratkowsky D.A., 1983, NONLINEAR REGRESSION; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICKLEFS RE, 1985, POULTRY SCI, V64, P1563, DOI 10.3382/ps.0641563; RICKLEFS RE, 1979, BIOL REV, V54, P269, DOI 10.1111/j.1469-185X.1979.tb01013.x; RICKLEFS RE, 1973, IBIS, V115, P177, DOI 10.1111/j.1474-919X.1973.tb02636.x; RICKLEFS RE, 1987, J EXPT ZOOLOGY, V51, P309; RICKLEFS RE, 1983, AVIAN BIOL, V7, P1; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Roff Derek A., 1992; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Sibley C.G., 1990, PHYLOGENY CLASSIFICA; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; Starck J.M., 1993, Current Ornithology, V10, P275; Stearns SC., 1992, EVOLUTION LIFE HIST; SWARTZ SM, 1992, NATURE, V359, P726, DOI 10.1038/359726a0; VISSER GH, 1991, THESIS U UTRECHT NET 34 85 85 0 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution AUG 1994 48 4 1080 1088 10.2307/2410368 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity QE323 WOS:A1994QE32300012 28564466 Bronze 2019-02-26 J CASPER, BB CASPER, BB POSTDISPERSAL SIBLING COMPETITION AND THE EVOLUTION OF SINGLE-SEEDEDNESS IN CRYPTANTHA-FLAVA EVOLUTION English Note CRYPTANTHA FLAVA; OVULE ABORTION; SIBLING COMPETITION; SINGLE-SEEDEDNESS PARENT-OFFSPRING CONFLICT; BUCHLOE-DACTYLOIDES GRAMINEAE; LIFE-HISTORY STRATEGIES; SHORT-TERM ADVANTAGE; SEXUAL REPRODUCTION; SEED DISPERSAL; WIND DISPERSAL; CONSEQUENCES; FRUITS; PLANTS CASPER, BB (reprint author), UNIV PENN,DEPT BIOL,PHILADELPHIA,PA 19104, USA. ADAMS MW, 1967, CROP SCI, V7, P505, DOI 10.2135/cropsci1967.0011183X000700050030x; AUGSPURGER CK, 1983, AM J BOT, V70, P1031, DOI 10.2307/2442812; AUGSPURGER CK, 1986, BIOTROPICA, V18, P45, DOI 10.2307/2388361; BULMER MG, 1980, J THEOR BIOL, V82, P335, DOI 10.1016/0022-5193(80)90107-1; CASPER BB, 1988, AM J BOT, V75, P859, DOI 10.2307/2444005; CASPER BB, 1988, AM NAT, V132, P318, DOI 10.1086/284855; CASPER BB, 1990, AM NAT, V136, P167, DOI 10.1086/285090; CASPER BB, 1987, AM J BOT, V74, P1646, DOI 10.2307/2444133; CASPER BB, 1992, OECOLOGIA, V90, P212, DOI 10.1007/BF00317178; CASPER BB, 1981, ECOLOGY, V62, P866, DOI 10.2307/1937752; CHEPLICK GP, 1992, J ECOL, V80, P567, DOI 10.2307/2260699; CONNELL J H, 1971, P298; Cronquist A., 1968, EVOLUTION CLASSIFICA; ELLNER S, 1986, J THEOR BIOL, V123, P173, DOI 10.1016/S0022-5193(86)80151-5; ELLSTRAND NC, 1985, EVOLUTION, V39, P657, DOI 10.1111/j.1558-5646.1985.tb00402.x; FOWLER N, 1986, ANNU REV ECOL SYST, V17, P89, DOI 10.1146/annurev.es.17.110186.000513; GARRISON WJ, 1983, B TORREY BOT CLUB, V110, P154, DOI 10.2307/2996335; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; HERRERA CM, 1984, OIKOS, V42, P166, DOI 10.2307/3544789; HIGGINS LC, 1971, BRIGHAM YOUNG U SCI, V16; HOWE HF, 1982, ANNU REV ECOL SYST, V13, P201, DOI 10.1146/annurev.es.13.110182.001221; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; Keddy P. A., 1989, COMPETITION; KELLEY SE, 1988, NATURE, V331, P714, DOI 10.1038/331714a0; Manly B. F. J., 1991, RANDOMIZATION MONTE; MARSHALL DL, 1985, ECOLOGY, V66, P753, DOI 10.2307/1940536; Maynard Smith J, 1978, EVOLUTION SEX; MCCALL C, 1989, EVOLUTION, V43, P1075, DOI 10.1111/j.1558-5646.1989.tb02552.x; QUINN JA, 1987, AM J BOT, V74, P1167, DOI 10.2307/2444153; QUINN JA, 1986, AM J BOT, V73, P874, DOI 10.2307/2444298; SCHMITT J, 1986, EVOLUTION, V40, P830, DOI 10.1111/j.1558-5646.1986.tb00542.x; SCHOEN DJ, 1984, BIOL J LINN SOC, V23, P303, DOI 10.1111/j.1095-8312.1984.tb00147.x; SHAANKER RU, 1988, ANNU REV ECOL SYST, V19, P177, DOI 10.1146/annurev.es.19.110188.001141; STEBBINS G. LEDYARD, 1967, EVOL BIOL, V1, P101; TAYLOR PD, 1979, J THEOR BIOL, V81, P407, DOI 10.1016/0022-5193(79)90044-4; TONSOR SJ, 1989, AM NAT, V134, P897, DOI 10.1086/285020; VENABLE DL, 1980, OECOLOGIA, V46, P272, DOI 10.1007/BF00540137; WILLIAMS GC, 1973, J THEOR BIOL, V39, P545, DOI 10.1016/0022-5193(73)90067-2; Williams GC, 1975, SEX EVOLUTION; WILLSON MF, 1987, AM NAT, V129, P304, DOI 10.1086/284636; 1985, STATISTICS USERS GUI 41 11 11 0 7 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution AUG 1994 48 4 1377 1382 10.2307/2410394 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity QE323 WOS:A1994QE32300038 28564458 Bronze 2019-02-26 J TRIPET, F; PERRIN, N TRIPET, F; PERRIN, N SIZE-DEPENDENT PREDATION BY DUGESIA-LUGUBRIS (TURBELLARIA) ON PHYSA-ACUTA (GASTROPODA) - EXPERIMENTS AND MODEL FUNCTIONAL ECOLOGY English Article LIFE-HISTORY THEORY; PREDATOR-PREY INTERACTIONS; SELECTION (DIRECT, INDIRECT) 1. We investigated experimentally predation by the flatworm Dugesia lugubris on the snail Physa acuta in relation to predator body length and to prey morphology [shell length (SL) and aperture width (AW)]. 2. SL and AW correlate strongly in the field, but display significant and independent variance among populations. In the laboratory, predation by Dugesia resulted in large and significant selection differentials on both SL and AW. Analysis of partial effects suggests that selection on AW was indirect, and mediated through its strong correlation with SL. 3. The probability P(ij) for a snail of size category i (SL) to be preyed upon by a flatworm of size category j was fitted with a Poisson-probability distribution, the mean of which increased linearly with predator size (i). Despite the low number of parameters, the fit was excellent (r2 = 0.96). We offer brief biological interpretations of this relationship with reference to optimal foraging theory. 4. The largest size class of Dugesia (>2 cm) did not prey on snails larger than 7 mm shell length. This size threshold might offer Physa a refuge against flatworm predation and thereby allow coexistence in the field. 5. Our results are further discussed with respect to previous field and laboratory observations on P acuta life-history patterns, in particular its phenotypic variance in adult body size. UNIV LAUSANNE,INST ZOOL & ECOL ANIM,CH-1015 LAUSANNE,SWITZERLAND Tripet, Frederic/M-6693-2015; Langerhans, R./A-7205-2009 Tripet, Frederic/0000-0002-7939-0712; 0 27 28 0 12 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. AUG 1994 8 4 458 463 10.2307/2390069 6 Ecology Environmental Sciences & Ecology PA056 WOS:A1994PA05600005 2019-02-26 J SIBLY, RM; ATKINSON, D SIBLY, RM; ATKINSON, D HOW REARING TEMPERATURE AFFECTS OPTIMAL ADULT SIZE IN ECTOTHERMS FUNCTIONAL ECOLOGY English Article ADULT SIZE; LIFE-HISTORY THEORY; OPTIMIZATION; REACTION NORM 1. Rearing temperature may affect juvenile mortality, growth and development rates, adult mortality rate, and/or population growth rate. Increased juvenile growth rate may affect the trade-off curve relating fecundity to development period, lowering it and making it less steep. Here we identify the overall effects of temperature on optimal adult size. Larger bodies are favoured by decreased juvenile mortality rate and decreased population growth rate (the sum of these is termed discounted juvenile mortality rate). 2. The effects of the other variables depend on whether environmental heterogeneity is spatial or temporal. Under spatial heterogeneity larger adult bodies are favoured by increased juvenile growth rate but varying adult mortality rate has no effect. Under temporal heterogeneity larger adult bodies are favoured by increased adult mortality rate but the effects of juvenile growth rate depend on the details of the changes in the fecundity-development period trade-off curve. 3. If discounted juvenile mortality rate does not increase at higher temperatures, some of these predictions are hard to reconcile with the finding that higher rearing temperatures generally result in smaller adult bodies. Using available data, we conclude that temperature effects on juvenile growth in spatially heterogeneous environments, and on adult mortality in temporally heterogeneous environments, would generally predict larger rather than smaller size. 4. Predictions involving juvenile mortality and population growth rate are also evaluated using the available data, and mechanisms linking temperature to increased juvenile mortality are discussed. They include increased molecular damage, ectotherm predation and parasitism, drought and oxygen shortage. SIBLY, RM (reprint author), UNIV READING,DEPT PURE & APPL ZOOL,POB 228,READING RG6 2AJ,BERKS,ENGLAND. Sibly, Richard/0000-0001-6828-3543 0 151 155 2 52 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. AUG 1994 8 4 486 493 10.2307/2390073 8 Ecology Environmental Sciences & Ecology PA056 WOS:A1994PA05600009 2019-02-26 J GABLER, S; VOLAND, E GABLER, S; VOLAND, E FITNESS OF TWINNING HUMAN BIOLOGY English Article TWINNING; REPRODUCTIVE SUCCESS; HISTORICAL DEMOGRAPHY; ERROR HYPOTHESIS; LIFE HISTORY EVOLUTION; KRUMMHORN SEX; CONCEPTIONS; SUCCESS; SWEDEN On the basis of a family reconstitution of the rural Krummhorn population (Ostfriesland, Germany) of the eighteenth and nineteenth centuries, we pursued the question of to what extent the birth of twins contributed to the reproductive fitness of their mothers. The twinning rate was 16.2/1000; the secondary sex ratio among twins was 0.93, and it was 1.16 among their singleton siblings. Mothers of twins were older, had a longer generative life phase, and achieved higher age-specific fertility rates with shorter birth intervals. Parity effects on twinning tendency could not be detected. Twin maternities caused reproductive costs, namely, increased maternal, infant, and child mortality and obviously higher intrafamilial competition, because adult twins had fewer local marriage chances and to a higher degree were forced to emigrate. These reproductive disadvantages mean that the productivity of a male pair of twins, as measured by the number of live-born grandchildren, is clearly less than the productivity of a single boy. On the other hand, the birth of a female pair of twins led to more live-born grandchildren than the birth of a single girl. In sum, mothers of twins achieved greater reproductive success, with 13.5% more live-born grandchildren, than mothers of singletons only. The results are discussed against the background of Anderson's (1990) error hypothesis of twinning. UNIV LONDON UNIV COLL, DEPT ANTHROPOL, GOWER ST, LONDON WC1E 6BT, ENGLAND; UNIV GOTTINGEN, INST ANTHROPOL, D-37073 GOTTINGEN, GERMANY AALEN G, 1971, SOC BIOL, V18, P18; ALLEN G, 1981, TWIN RES, V3, P1; ANDERSON DJ, 1990, EVOLUTION, V44, P438, DOI 10.1111/j.1558-5646.1990.tb05211.x; BOKLAGE CE, 1990, INT J FERTIL, V35, P75; Bulmer M.G., 1970, BIOL TWINNING MAN; BULMER MG, 1959, ANN HUM GENET, V23, P454, DOI 10.1111/j.1469-1809.1959.tb01486.x; ENGEL C, 1990, THESIS U GOTTINGEN; ERIKSSON AW, 1990, ACTA GENET MED GEMEL, V39, P279, DOI 10.1017/S0001566000005195; ERIKSSON AW, 1967, ACTA GENET STAT MED, V17, P385; ERIKSSON AW, 1973, HUMAN TWINNING IN AR; FELLMAN JO, 1993, HUM BIOL, V65, P463; GABLER S, 1992, THESIS U GROTTIGEN; GALTON F, 1876, P R ANTHR I GREAT BR, V5, P324; GEDDA L, 1981, TWIN RES, V3, P75; GOSLING LM, 1986, AM NAT, V127, P772, DOI 10.1086/284524; Harrison G. A., 1977, HUMAN BIOL INTRO HUM; HAUKIOJA E, 1989, AM NAT, V133, P572, DOI 10.1086/284936; HOGBERG U, 1992, J BIOSOC SCI, V24, P487; JAMES WH, 1983, SEX SELECTION CHILDR; KENT JP, 1992, BEHAV ECOL SOCIOBIOL, V30, P151, DOI 10.1007/BF00166697; LESSELLS CM, 1992, BEHAVIOURAL ECOLOGY, P32; Little J, 1988, TWINNING TWINS; MELIS GB, 1987, FERTIL STERIL, V47, P441; MOSTELLER M, 1981, TWIN RES, V3, P57; PARISI P, 1983, NATURE, V304, P626, DOI 10.1038/304626a0; PARISI P, 1981, TWIN RES, V3, P35; PHILIPPE P, 1989, HUM BIOL, V61, P599; PHILIPPE P, 1985, AM J MED GENET, V20, P97, DOI 10.1002/ajmg.1320200112; RENNER B, 1986, HOMO, V37, P39; ROBINSON HP, 1977, BRIT J OBSTET GYNAEC, V84, P22, DOI 10.1111/j.1471-0528.1977.tb12460.x; SCHNEIDER L, 1979, ACTA GENET MED GEMEL, V28, P271; SCHUTZENBERGER M P, 1950, Sem Hop, V26, P4458; Stearns SC., 1992, EVOLUTION LIFE HIST; STEPHAN P, 1983, THESIS FORSCHUNGSZEN; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; VOGEL F, 1986, HUMAN GENETICS; VOLAND E, 1990, BEHAV ECOL SOCIOBIOL, V26, P65; WYSHAK G, 1969, HUM BIOL, V41, P66 38 32 32 0 7 WAYNE STATE UNIV PRESS DETROIT 4809 WOODWARD AVE, DETROIT, MI 48201-1309 USA 0018-7143 1534-6617 HUM BIOL Hum. Biol. AUG 1994 66 4 699 713 15 Anthropology; Biology; Genetics & Heredity Anthropology; Life Sciences & Biomedicine - Other Topics; Genetics & Heredity NX225 WOS:A1994NX22500010 8088755 2019-02-26 J BARNES, RSK BARNES, RSK INVESTMENT IN EGGS IN LAGOONAL HYDROBIA-VENTROSA AND LIFE-HISTORY STRATEGIES IN NORTH-WEST EUROPEAN HYDROBIA SPECIES JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM English Article MUD-SNAILS HYDROBIIDAE; COASTAL LAGOONS; EAST-ANGLIA; CONSERVATION; POPULATIONS; COEXISTENCE; GASTROPODA Expected lifetime investment in eggs and related parameters are described for a lagoonal population of Hydrobia ventrosa (Mollusca: Gastropoda) in East Anglia, UK, and these are compared with those of East Anglian lagoonal populations of H. neglecta and both lagoonal and intertidal-marine populations of H. ulvae. In contrast to an earlier study on Danish populations, which suggested that H. neglecta and H. ventrosa are at opposite ends of the hydrobiid spectrum of investment in reproduction, the order of increasing relative allocation of resources to egg production runs H. neglecta = H. ventrosa --> lagoonal H. ulvae --> intertidal-marine H. ulvae. That is, from the two small, short-lived, specialist lagoonal species producing few, large, directly-developing eggs, to the larger, potentially longer-lived H. ulvae that produces many small eggs which develop into veliger larvae. The lagoonal populations of all three Hydrobia species, however, are very similar to each other in terms of reproductive investment. When like cohorts are compared, in each, the annual egg weight is equal to the annual adult growth increment, and the weight of eggs produced per expected lifetime is half the adult growth increment at the time of death. These lagoonal populations are markedly dissimilar to intertidal-marine populations of H. ulvae, which produce an annual weight of eggs some 15 times the annual adult growth increment, and an expected lifetime egg weight some two-and-a-half times the adult growth increment at the time of death. BARNES, RSK (reprint author), UNIV CAMBRIDGE,DEPT ZOOL,CAMBRIDGE CB2 3EJ,ENGLAND. Barnes, Richard/0000-0002-5773-5994 Barnes R. S. K., 1993, Vie et Milieu, V43, P73; BARNES RSK, 1987, J COASTAL RES, V3, P417; BARNES RSK, 1991, AQUAT CONSERV, V1, P79, DOI 10.1002/aqc.3270010107; BARNES RSK, 1989, BIOL CONSERV, V49, P295, DOI 10.1016/0006-3207(89)90049-9; BARNES RSK, 1988, J MAR BIOL ASSOC UK, V68, P365, DOI 10.1017/S0025315400043265; BARNES RSK, 1990, J EXP MAR BIOL ECOL, V138, P183, DOI 10.1016/0022-0981(90)90166-A; BARNES RSK, 1991, J CONCHOL, V34, P59; CADWALLDR RA, 1993, BEHAVIOUR ECOLOGY E; CHERRILL AJ, 1987, HYDROBIOLOGIA, V150, P25, DOI 10.1007/BF00006607; CHERRILL AJ, 1985, J CONCHOL, V32, P123; DAVIS GM, 1989, P ACAD NAT SCI PHILA, V141, P333; FENCHEL T, 1975, OECOLOGIA, V20, P19, DOI 10.1007/BF00364319; FENCHEL T, 1975, OECOLOGIA, V20, P1, DOI 10.1007/BF00364318; FISH JD, 1981, J MOLLUS STUD, V47, P89, DOI 10.1093/oxfordjournals.mollus.a065561; Giusti F., 1984, Lavori della Societa Italiana di Malacologia, V21, P117; GRAHAM A, 1988, MOLLUSCS PROSOBRANCH; HYLLEBERG J, 1986, OPHELIA S, V4, P85; LAFFERTY KD, 1993, OIKOS, V68, P3, DOI 10.2307/3545303; LASSEN HH, 1979, OECOLOGIA, V40, P365, DOI 10.1007/BF00345332; LASSEN HH, 1979, OPHELIA, V18, P171; LEVINTON JS, 1979, OECOLOGIA, V43, P27, DOI 10.1007/BF00346670; Muus B. J., 1967, Meddelelser fra Danmarks Fiskeri- og Havundersogelser, V5, P1; PONDER WF, 1988, J MOLLUS STUD, V54, P271, DOI 10.1093/mollus/54.3.271; RASMUSSEN E, 1973, Ophelia, V11, P1; ROTHSCHILD MIRIAM, 1936, JOUR MARINE BIOL ASSOC UNITED KINGDOM, V20, P537; SIEGISMUND HR, 1987, MAR BIOL, V94, P395, DOI 10.1007/BF00428245; SIEGISMUND HR, 1982, MAR ECOL PROG SER, V7, P75, DOI 10.3354/meps007075; THORSON GUNNAR, 1946, MEDDEL KOMM DANMARKS FISKERI OG HAVUNDERSOGELSER SER PLANKTON, V4, P1; WINTERBOURN M J, 1972, Proceedings of the Malacological Society of London, V40, P133 29 22 22 0 1 CAMBRIDGE UNIV PRESS NEW YORK 40 WEST 20TH STREET, NEW YORK, NY 10011-4211 0025-3154 J MAR BIOL ASSOC UK J. Mar. Biol. Assoc. U.K. AUG 1994 74 3 637 650 10.1017/S0025315400047718 14 Marine & Freshwater Biology Marine & Freshwater Biology PB759 WOS:A1994PB75900012 2019-02-26 J ABRAMS, PA ABRAMS, PA EVOLUTIONARILY STABLE GROWTH-RATES IN SIZE-STRUCTURED POPULATIONS UNDER SIZE-RELATED COMPETITION THEORETICAL POPULATION BIOLOGY English Article LIFE-HISTORY EVOLUTION; REPRODUCTIVE VALUE; HERMIT CRABS; AGE; PLASTICITY; DYNAMICS; TRAITS; CYCLES The competitive interactions between individuals in size-structured populations usually change as a function of the individuals' sizes. A general model of a density-dependent size-structured population is used to investigate the size-specific birth and death rates that result when growth rates can be adjusted adaptively. If there is no cost associated with faster growth, the evolutionarily stable growth rates result in an ideal free distribution of individuals among size classes, provided that competition within size classes is stronger than competition between size classes. When the population is stationary, this ideal free distribution is characterized by identical ratios of expected number of offspring per unit time to probability of death per unit time for all size classes with growth rates less than the physiologically maximum level. If more rapid growth reduces birth rate or increases death rate, the size-specific ratios of births to mortality increase with the organism's size. If the population is growing in a density independent manner, but there is a cost to growth, there should be an increase with size in the ratio of reproductive output to the quantity (population growth rate minus survival probability). Available evidence about size-specific birth and death rates in some size-structured populations is discussed. (C) 1994 Academic Press, Inc. UNIV STOCKHOLM,DEPT ZOOL,S-10691 STOCKHOLM,SWEDEN; UNIV MINNESOTA,DEPT ECOL EVOLUT & BEHAV,ST PAUL,MN 55108 Abrams, Peter/A-5240-2008 Abrams, Peter/0000-0002-1828-326X ABRAMS P, 1986, OECOLOGIA, V69, P429, DOI 10.1007/BF00377066; ABRAMS PA, 1980, OECOLOGIA, V46, P365, DOI 10.1007/BF00346266; ABRAMS PA, 1993, EVOL ECOL, V7, P465, DOI 10.1007/BF01237642; ABRAMS PA, 1987, OECOLOGIA, V72, P233, DOI 10.1007/BF00379274; ABRAMS PA, 1994, UNPUB EFFECT FLEXIBL; BENCE JR, 1989, ECOLOGY, V70, P1434, DOI 10.2307/1938202; BERTNESS MD, 1981, AM NAT, V117, P754, DOI 10.1086/283757; BERTNESS MD, 1981, AM NAT, V118, P432, DOI 10.1086/283835; CALDWELL R L, 1979, Behaviour, V69, P255, DOI 10.1163/156853979X00502; CALDWELL RL, 1979, ANIM BEHAV, V27, P194, DOI 10.1016/0003-3472(79)90139-8; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; CASWELL H, 1982, ECOLOGY, V63, P1223, DOI 10.2307/1938847; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; EBENMAN B, 1987, J THEOR BIOL, V124, P25, DOI 10.1016/S0022-5193(87)80249-7; EBENMAN B, 1992, AM NAT, V139, P990, DOI 10.1086/285370; Ebenman B., 1988, SIZE STRUCTURED POPU; Fretwell SD, 1972, POPULATIONS SEASONAL; HAZLETT BA, 1981, ANNU REV ECOL SYST, V12, P1, DOI 10.1146/annurev.es.12.110181.000245; IWASA Y, 1980, J THEOR BIOL, V84, P545, DOI 10.1016/S0022-5193(80)80019-1; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; PASCUAL M, 1991, THEOR POPUL BIOL, V39, P129, DOI 10.1016/0040-5809(91)90032-B; POLIS GA, 1984, AM NAT, V123, P541, DOI 10.1086/284221; PROUT T, 1985, AM NAT, V126, P521, DOI 10.1086/284436; Reiss M. J, 1989, ALLOMETRY GROWTH REP; RODRIGUEZ DJ, 1988, THEOR POPUL BIOL, V34, P93, DOI 10.1016/0040-5809(88)90036-6; SIBLEY RM, 1986, PHYSL ECOLOGY ANIMAL; Smith J.M., 1982, EVOLUTION THEORY GAM; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HIST; Stephens DW, 1986, FORAGING THEORY; TAKADA T, 1992, MATH BIOSCI, V112, P155, DOI 10.1016/0025-5564(92)90091-A; VANCE RR, 1972, ECOLOGY, V53, P1062, DOI 10.2307/1935418; Werner E.E., 1988, P60; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; Yodzis P, 1989, INTRO THEORETICAL EC 36 10 10 0 3 ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 0040-5809 THEOR POPUL BIOL Theor. Popul. Biol. AUG 1994 46 1 78 95 10.1006/tpbi.1994.1020 18 Ecology; Evolutionary Biology; Genetics & Heredity; Mathematical & Computational Biology Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity; Mathematical & Computational Biology PA138 WOS:A1994PA13800004 8079198 2019-02-26 J JONSSON, KI; TUOMI, J JONSSON, KI; TUOMI, J COSTS OF REPRODUCTION IN A HISTORICAL-PERSPECTIVE TRENDS IN ECOLOGY & EVOLUTION English Article CLUTCH-SIZE; EVOLUTION; SELECTION Costs of reproduction constitute a core assumption of life history theory. After reformulation by G.C. Williams, the cost hypothesis soon became a major foundation of phenotypic life history models. More-recent studies have approached reproductive costs from the perspective of quantitative genetics. Here, we present a brief historical perspective to the development of the cost of reproduction hypothesis. We evaluate the status and heuristic value of the different approaches, and outline how the approaches have originated. JONSSON, KI (reprint author), LUND UNIV, DEPT ECOL, S-22362 LUND, SWEDEN. Jonsson, Ingemar/K-6047-2013 ALERSTAM T, 1984, OIKOS, V43, P253, DOI 10.2307/3544778; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Caswell H., 1989, MATRIX POPULATION MO; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHARNOV EL, 1989, HEREDITY, V62, P113, DOI 10.1038/hdy.1989.15; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; EMLEN JM, 1984, POPULATION BIOL COEV; Fisher R.A., 1930, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; LACK D, 1964, NATURE, V203, P98, DOI 10.1038/203098a0; Lack D, 1954, NATURAL REGULATION A; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MANLY RFJ, 1990, STAGE STRUCTURED POP; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; Orton JH, 1929, NATURE, V123, P14, DOI 10.1038/123014a0; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; ROSE MR, 1983, AM ZOOL, V23, P15; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; SVARDSON GUNNAR, 1949, REPT INST FRESHWATER RES DROTTNINGHOLM, V29, P115; TUOMI J, 1990, OIKOS, V58, P387, DOI 10.2307/3545231; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S 34 43 45 0 21 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 1872-8383 TRENDS ECOL EVOL Trends Ecol. Evol. AUG 1994 9 8 304 307 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity NX318 WOS:A1994NX31800016 21236867 2019-02-26 J ZHANG, DY; WANG, G ZHANG, DY; WANG, G EVOLUTIONARILY STABLE REPRODUCTIVE STRATEGIES IN SEXUAL ORGANISMS - AN INTEGRATED APPROACH TO LIFE-HISTORY EVOLUTION AND SEX ALLOCATION AMERICAN NATURALIST English Article POPULATION-GROWTH RATE; DARWINIAN FITNESS; PLANTS; SELECTION; AGE Resource allocation to reproduction versus survival and allocation of reproductive effort to male versus female function are two basic issues in evolutionary ecology of sexually reproducing organisms. Both have received considerable, but independent, theoretical and empirical attention. An integrated analysis of these two sorts of resource allocation is attempted using Maynard Smith's evolutionarily stable strategy (ESS) technique. The specific goal of this study is to determine under what circumstances separate study of reproductive and sex allocation is justified and under what conditions the rate of population growth is maximized by natural selection, which forms the basis of optimality theory of life-history evolution. We find that if female fitness gain increases linearly with resource investment, the ESS reproductive effort is immune from the effect of sex allocation and if, in addition, male fitness gain is a power function of investment, the ESS sex allocation does not depend on total reproductive effort. However, both male and female fitness gains have to be linear to justify the use of the usual maximization principle of life-history theory. LANZHOU UNIV,DEPT BIOL,LANZHOU 730000,PEOPLES R CHINA Zhang, Da-Yong/B-3078-2011 Zhang, Da-Yong/0000-0003-1056-8735 ABUGOV R, 1986, J THEOR BIOL, V122, P311, DOI 10.1016/S0022-5193(86)80123-0; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Begon M, 1986, ECOLOGY INDIVIDUALS; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BULL J J, 1988, P96; Caswell H., 1989, P285; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charlesworth B., 1984, EVOLUTIONARY ECOLOGY, P117; CHARLESWORTH D, 1987, EVOLUTION, V41, P948, DOI 10.1111/j.1558-5646.1987.tb05869.x; Charlesworth D., 1984, BIOL J LINN SOC, V23, P333; CHARNOV E L, 1982; CHARNOV EL, 1979, AM NAT, V113, P465, DOI 10.1086/283407; CHARNOV EL, 1979, P NATL ACAD SCI USA, V76, P2480, DOI 10.1073/pnas.76.5.2480; CHARNOV EL, 1988, THEOR POPUL BIOL, V34, P38, DOI 10.1016/0040-5809(88)90034-2; CHARNOV EL, 1986, J THEOR BIOL, V118, P321, DOI 10.1016/S0022-5193(86)80062-5; EHRLICH PR, 1987, SCIENCE ECOLOGY; Fisher R.A., 1930, GENETICAL THEORY NAT; FRANK SA, 1990, ANNU REV ECOL SYST, V21, P13, DOI 10.1146/annurev.ecolsys.21.1.13; FREEMAN DC, 1981, EVOLUTION, V35, P194, DOI 10.1111/j.1558-5646.1981.tb04875.x; GOLDMAN DA, 1986, BOT REV, V52, P157, DOI 10.1007/BF02861000; Karlin S., 1986, THEORETICAL STUDIES; Lessells C.M., 1991, P32; Lloyd D.G., 1988, EVOLUTION SEX, P233; LLOYD DG, 1982, AM NAT, V120, P571, DOI 10.1086/284014; Lloyd DG., 1984, PERSPECTIVES PLANT P, P277; MURRAY BG, 1985, OIKOS, V44, P509, DOI 10.2307/3565794; NUR N, 1984, OIKOS, V42, P413, DOI 10.2307/3544416; NUR N, 1987, OIKOS, V48, P338, DOI 10.2307/3565523; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Smith J.M., 1982, EVOLUTION THEORY GAM; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; SMITH JM, 1972, EVOLUTION; SMITH RH, 1991, ADV ECOL RES, V21, P63, DOI 10.1016/S0065-2504(08)60097-5; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STENSETH NC, 1983, OIKOS, V41, P152, DOI 10.2307/3544364; STENSETH NC, 1984, OIKOS, V42, P414, DOI 10.2307/3544417 38 36 47 2 15 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. JUL 1994 144 1 65 75 10.1086/285661 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology NV079 WOS:A1994NV07900006 2019-02-26 J KAMMENGA, JE; VANGESTEL, CAM; BAKKER, J KAMMENGA, JE; VANGESTEL, CAM; BAKKER, J PATTERNS OF SENSITIVITY TO CADMIUM AND PENTACHLOROPHENOL AMONG NEMATODE SPECIES FROM DIFFERENT TAXONOMIC AND ECOLOGICAL GROUPS ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY English Article HEAVY-METALS; MARINE NEMATODE; TOXICITY; SOIL; CHLOROPHENOLS; BIOASSAYS; POLLUTION; NITROGEN; COPPER; LEAD The variation of acute toxicity data among nematode species belonging to different taxonomic and ecological groups was investigated. Twelve different nematode species were extracted from the soil and directly exposed to cadmium and pentachlorophenol. LC(50)-values were estimated after 24, 48, 72, and 96 h of exposure in aqueous solutions. The species exhibited large differences in sensitivity. LC(50)-values (72 h) for pentachlorophenol ranged from 0.5 to more than 34.5 mu mol/L and for cadmium from 29 to more than 800 mu mol/L. These toxicity data could be described by a log-logistic distribution function. LC(50)-values for cadmium were not correlated with those for pentachlorophenol. Species of the subphylum Secernentia were less sensitive to pentachlorophenol than species of the subphylum Penetrantia, while no differences were observed for cadmium. In addition, no relationship was found between toxicity data and life-history strategies. Slow colonizers (K-strategists, sensu late) were not more sensitive to cadmium and pentachlorophenol than opportunistic species (r-strategists, sensu late). Nematodes appeared to be as sensitive to pentachlorophenol as other soil invertebrates. Nematodes were generally tolerant to cadmium. NATL INST PUBL HLTH & ENVIRONM PROTECT,3720 BA BILTHOVEN,NETHERLANDS KAMMENGA, JE (reprint author), AGR UNIV WAGENINGEN,DEPT NEMATOL,BINNENHAVEN 10,6709 PD WAGENINGEN,NETHERLANDS. van Gestel, Kees/0000-0002-5651-0208 ABEN WJM, 1992, DLO59 WIN STAR CTR R; ANDERSON RV, 1981, ECOLOGY, V62, P549, DOI 10.2307/1937720; BONGERS T, 1988, KNNV46; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; BRKOVICPOPOVIC I, 1977, ENVIRON POLLUT, V13, P65, DOI 10.1016/0013-9327(77)90034-9; Bunt J. A., 1980, Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent, V45, P815; Castro CE, 1971, PLANT PARASIT NEMAT, VII, P289; FRECKMAN DW, 1988, BIOL INTERACTIONS SO, P195; HAIGHT M, 1982, NEMATOLOGICA, V28, P1, DOI 10.1163/187529282X00466; HAMILTON MA, 1977, ENVIRON SCI TECHNOL, V11, P714, DOI 10.1021/es60130a004; HAMILTON MA, 1978, ENVIRON SCI TECHNOL, V12, P417, DOI 10.1021/es60140a017; HOWELL R, 1983, MAR POLLUT BULL, V14, P263, DOI 10.1016/0025-326X(83)90170-4; KAMPFE L, 1984, NEMATOLOGICA, V30, P193, DOI 10.1163/187529284X00095; KOOIJMAN SALM, 1987, WATER RES, V21, P269, DOI 10.1016/0043-1354(87)90205-3; KOOIJMAN SALM, 1981, WATER RES, V15, P107; MA W, 1982, STAAT SUIT GEV BOD B; Maggenti A. R., 1981, GENERAL NEMATOLOGY; MARKS CF, 1968, EXP PARASITOL, V22, P321, DOI 10.1016/0014-4894(68)90109-4; NOTENBOOM J, 1992, ECOTOX ENVIRON SAFE, V24, P131, DOI 10.1016/0147-6513(92)90041-Z; OOSTENBRINK M., 1954, Mededelingen van de Landbouwhogeschool en de Opzoekingsstations van de Staat te Gent., V19, P377; Oostenbrink M, 1960, NEMATOLOGY, P85; ROS JPM, 1988, 758476004 NAT I PUBL; SCHOUTEN AJ, 1989, 718603001 NAT I PUBL; SLOOFF W, 1983, AQUAT TOXICOL, V4, P113, DOI 10.1016/0166-445X(83)90049-8; SOHLENIUS B, 1980, OIKOS, V34, P186, DOI 10.2307/3544181; VANGESTEL CAM, 1988, ECOTOX ENVIRON SAFE, V15, P289, DOI 10.1016/0147-6513(88)90084-X; VANGESTEL CAM, 1990, CHEMOSPHERE, V21, P1023, DOI 10.1016/0045-6535(90)90125-D; VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V17, P190, DOI 10.1016/0147-6513(89)90038-9; VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V18, P241, DOI 10.1016/0147-6513(89)90018-3; VRANKEN G, 1991, ICES J MAR SCI, V48, P325, DOI 10.1093/icesjms/48.3.325; VRANKEN G, 1986, MAR POLLUT BULL, V17, P453, DOI 10.1016/0025-326X(86)90834-9; WALLACE HR, 1977, NEMATODE ECOLOGY PLA; WARWICK RM, 1986, MAR BIOL, V92, P557, DOI 10.1007/BF00392515; Whitley L. S., 1968, Hydrobiologia, V32, P193; WILLIAMS PL, 1990, ENVIRON TOXICOL CHEM, V9, P1285, DOI 10.1897/1552-8618(1990)9[1285:ATTUTN]2.0.CO;2; WODARZ D, 1992, BIOL FERT SOILS, V14, P5, DOI 10.1007/BF00336296; WOODS LE, 1982, SOIL BIOL BIOCHEM, V14, P93, DOI 10.1016/0038-0717(82)90050-5; Yeates G.W., 1982, P55; YEATES GW, 1993, J NEMATOL, V25, P315; ZULLINI A, 1986, WATER AIR SOIL POLL, V27, P403, DOI 10.1007/BF00649421; 1987, ENV HLTH CRITERIA, V71 41 51 51 1 21 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0090-4341 ARCH ENVIRON CON TOX Arch. Environ. Contam. Toxicol. JUL 1994 27 1 88 94 10.1007/BF00203892 7 Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology NK798 WOS:A1994NK79800015 8024325 2019-02-26 J WILSON, DS WILSON, DS ADAPTIVE GENETIC-VARIATION AND HUMAN EVOLUTIONARY PSYCHOLOGY ETHOLOGY AND SOCIOBIOLOGY English Article INDIVIDUAL DIFFERENCES; PHENOTYPIC PLASTICITY; GENETIC POLYMORPHISMS; EVOLUTIONARY PSYCHOLOGY; SHY-BOLD CONTINUUM LIFE-HISTORY EVOLUTION; GENERATION; CULTURE; GUPPIES Phenotypic differences between individuals can be adaptive (the product of natural selection) or nonadaptive. Adaptive individual differences can be caused by underlying genetic differences or by mechanisms of phenotypic plasticity that allow single genotypes to achieve multiple forms. Many examples of adaptive individual differences have been documented in nonhuman species and these differences tend to be caused by a mixture of genetic polymorphisms and phenotypic plasticity. Human evolutionary psychologists appreciate the adaptive nature of individual differences at the phenotypic level but they tend to overemphasize the importance of phenotypic plasticity as the proximate cause. I criticize this position, focusing on the work of J. Tooby and L. Cosmides. I briefly review the literature on nonhuman species, review and criticize arguments against adaptive genetic variation in humans, and present a model that shows how a combination of genetic polymorphism and phenotypic plasticity might be favored by natural selection in humans and other species. WILSON, DS (reprint author), SUNY BINGHAMTON,DEPT BIOL SCI,BINGHAMTON,NY 13902, USA. BRODIE ED, 1992, EVOLUTION, V46, P1284, DOI 10.1111/j.1558-5646.1992.tb01124.x; BRODIE EDI, 1990, NAT HIST, P45; Buss D.M., 1992, ADAPTED MIND EVOLUTI, P249; Clarke CA, 1969, PHILOS T R SOC LON B, V263, P35; COSMIDES L, 1989, ETHOL SOCIOBIOL, V10, P51, DOI 10.1016/0162-3095(89)90013-7; Cosmides L., 1992, ADAPTED MIND EVOLUTI, P3; COSMIDES LM, 1981, J THEOR BIOL, V89, P83; EHRLICH PR, 1969, SCIENCE, V165, P1228, DOI 10.1126/science.165.3899.1228; Endler JA, 1986, NATURAL SELECTION WI; Falconer D.S., 1981, INTRO QUANTITATIVE G; Gross M.R., 1987, AM FISH SOC S, V1, P14; GROSS MR, 1982, Z TIERPSYCHOL, V60, P1; KAGAN J, 1987, CHILD DEV, V58, P1459, DOI 10.1111/j.1467-8624.1987.tb03858.x; KAGAN J, 1988, SCIENCE, V240, P167, DOI 10.1126/science.3353713; Levins R., 1968, EVOLUTION CHANGING E; MACDONALD KB, 1983, J COMP PSYCHOL, V2, P99; Mayr E., 1963, ANIMAL SPECIES EVOLU; Mayr E, 1942, SYSTEMATICS ORIGIN S; NOAKES DLG, 1989, PERSP VERT, V6, P329; ORZACK SH, 1994, AM NAT, V143, P361, DOI 10.1086/285608; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; ROBINSON BW, 1994, UNPUB ROLE PHENOTYPI; ROBINSON BW, 1994, IN PRESS AM NATURALI; Stephens DW, 1986, FORAGING THEORY; SUOMI SJ, 1991, PLASTICITY DEV, P27; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; TOOBY J, 1989, ETHOL SOCIOBIOL, V10, P29, DOI 10.1016/0162-3095(89)90012-5; TOOBY J, 1990, ETHOL SOCIOBIOL, V11, P375, DOI 10.1016/0162-3095(90)90017-Z; TOOBY J, 1982, J THEOR BIOL, V97, P557, DOI 10.1016/0022-5193(82)90358-7; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; Williams George C., 1992, NATURAL SELECTION DO; WILSON DS, 1986, AM NAT, V127, P835, DOI 10.1086/284528; WILSON DS, 1993, J COMP PSYCHOL, V107, P250, DOI 10.1037/0735-7036.107.3.250; WILSON DS, IN PRESS AM NATURALI; WILSON DS, 1992, Q REV BIOL, V68, P621; WILSON DS, 1989, SPECIATION ITS CONSE, P366; Wilson Margo, 1992, P289 38 114 114 1 12 ELSEVIER SCIENCE INC NEW YORK 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 0162-3095 ETHOL SOCIOBIOL Ethol.Sociobiol. JUL 1994 15 4 219 235 17 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical; Sociology; Zoology Psychology; Behavioral Sciences; Biomedical Social Sciences; Sociology; Zoology PH980 WOS:A1994PH98000003 2019-02-26 J WHEELWRIGHT, NT; SCHULTZ, CB WHEELWRIGHT, NT; SCHULTZ, CB AGE AND REPRODUCTION IN SAVANNA SPARROWS AND TREE SWALLOWS JOURNAL OF ANIMAL ECOLOGY English Article AGE; LIFE-HISTORY EVOLUTION; COST OF REPRODUCTION; PASSERCULUS-SANDWICHENSIS; REPRODUCTION; SAVANNA SPARROW; TACHYCINETA-BICOLOR; TREE SWALLOW; KENT ISLAND; NEW-BRUNSWICK RED-WINGED BLACKBIRDS; TITS PARUS-MAJOR; CLUTCH-SIZE; TACHYCINETA-BICOLOR; BREEDING SUCCESS; SONG SPARROWS; ECOLOGICAL CONSTRAINTS; INDIVIDUAL VARIATION; EUROPEAN BLACKBIRDS; IRIDOPROCNE-BICOLOR 1. Compared to older females, 1-year-old Savannah sparrows (Passerculus sandwichensis) and tree swallows (Tachycineta bicolor), studied over seven breeding seasons on Kent Island, New Brunswick, Canada, laid eggs later in the season, had smaller clutches, and produced fewer surviving offspring. 2. To determine why young birds have lower reproductive success than older birds, we induced birds of different ages to replace clutches under the same conditions by removing clutches in an experiment simulating nest predation. 3. In both species, yearlings produced eggs similar in size to those of older females, but they laid fewer eggs per clutch in both first and replacement clutches than older birds. Yearling Savannah sparrows took more time to replace their clutches and lost more mass than older females. Differences were not significant in tree swallows because only three 1-year-old experimental females replaced their clutches. 4. Replacement clutches were larger than first clutches in Savannah sparrows and mean egg size increased between clutches, outcomes not expected had there been a major physiological cost of reproduction. Tree swallows showed a decline in clutch size and no change in mean egg size between clutches. Possibly Savannah sparrows lay their first clutch earlier than optimal in terms of clutch and egg size in order to leave time to replace failed clutches, to lay a second clutch after their first brood fledges, or to coordinate fledging (rather than egg-laying) with periods of food abundance. 5. The results of this experiment suggest that the higher reproductive success of older birds is due to improvement of reproductive performance with age and experience, rather than higher survivorship of successful breeders or increased reproductive effort. Age-specific reproduction was not an artefact of differential mortality of inferior breeders: birds that laid early in the season or produced large clutches were no more likely to survive than less successful breeders. Yearlings did not appear to withhold reproductive effort nor did older birds seem to invest more in reproduction, although the failure of some yearling tree swallows to replace their lost clutches provided some support for age-specific differences in reproductive effort. Constraint, rather than restraint, most probably explains the relatively poor reproductive success of yearlings. WHEELWRIGHT, NT (reprint author), BOWDOIN COLL,DEPT BIOL,BRUNSWICK,ME 04011, USA. Schultz, Cheryl/0000-0003-3388-8950 AFTON AD, 1984, AUK, V101, P255; ARCESE P, 1989, ANIM BEHAV, V37, P45, DOI 10.1016/0003-3472(89)90005-5; ASKENMO C, 1986, ORNIS SCAND, V17, P237, DOI 10.2307/3676832; BEDARD J, 1985, CONDOR, V87, P106, DOI 10.2307/1367141; BEDARD J, 1984, WILSON BULL, V96, P196; BLANK JL, 1983, P NATL ACAD SCI-BIOL, V80, P6141, DOI 10.1073/pnas.80.19.6141; BLUS LJ, 1978, AUK, V95, P128, DOI 10.2307/4085503; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; CATTERALL CP, 1989, J ANIM ECOL, V58, P557, DOI 10.2307/4848; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1988, REPRODUCTIVE SUCCESS; COLLIAS NE, 1986, AUK, V103, P408; COSENS SE, 1986, CAN J ZOOL, V64, P1926, DOI 10.1139/z86-289; CRAWFORD RD, 1977, WILSON BULL, V89, P73; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; CURIO E, 1988, AM NAT, V131, P825, DOI 10.1086/284824; DAVIS SD, 1986, AUK, V101, P556; DELAET JF, 1988, IBIS, V131, P281; DESROCHERS A, 1992, ANIM BEHAV, V43, P885, DOI 10.1016/S0003-3472(06)80002-3; DESROCHERS A, 1992, ECOLOGY, V73, P1128, DOI 10.2307/1940186; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DESTEVEN D, 1978, IBIS, V120, P516; DHONDT AA, 1989, IBIS, V131, P268, DOI 10.1111/j.1474-919X.1989.tb02770.x; DIXON CL, 1978, AUK, V95, P235; DIXON CL, 1972, THESIS U MICHIGAN; DUNCAN DC, 1987, CAN J ZOOL, V65, P234, DOI 10.1139/z87-038; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; EMLEN ST, 1982, AM NAT, V119, P29, DOI 10.1086/283888; EWALD PW, 1982, J ANIM ECOL, V51, P429, DOI 10.2307/3975; FINKE MA, 1987, J ANIM ECOL, V56, P99, DOI 10.2307/4802; FLEISCHER RC, 1987, CAN J ZOOL, V65, P2724, DOI 10.1139/z87-413; FORSLUND P, 1992, J ANIM ECOL, V61, P195, DOI 10.2307/5522; FRANCIS CM, 1986, AUK, V103, P548; GRATTO CL, 1983, CAN J ZOOL, V61, P1133, DOI 10.1139/z83-149; HANNON SJ, 1984, AUK, V101, P848, DOI 10.2307/4086912; HARVEY PH, 1985, J ANIM ECOL, V54, P391, DOI 10.2307/4486; HESP LS, 1989, BEHAV ECOL SOCIOBIOL, V24, P297, DOI 10.1007/BF00290906; HOCHACHKA W, 1992, BEHAV ECOL, V3, P42, DOI 10.1093/beheco/3.1.42; HOGSTEDT G, 1981, AM NAT, V118, P568, DOI 10.1086/283850; HUND K, 1985, J ORNITHOL, V126, P15, DOI 10.1007/BF01640440; HUSSELL DJT, 1987, IBIS, V129, P243, DOI 10.1111/j.1474-919X.1987.tb03204.x; HUSSELL DJT, 1983, J FIELD ORNITHOL, V54, P312; Ketterson E.D., 1983, Current Ornithology, V1, P357; LEIONEN M, 1973, ORNIS FENNICA, V50, P126; LESSELLS CM, 1989, AUK, V106, P375; MATTHYSEN E, 1989, BIRD STUDY, V36, P134, DOI 10.1080/00063658909477015; MCCAIN J W, 1975, Rhodora, V77, P196; MCGILLIVRAY WB, 1983, AUK, V100, P25; MIDDLETON ALA, 1979, ECOLOGY, V60, P418, DOI 10.2307/1937669; MOSER TJ, 1989, J WILDLIFE MANAGE, V53, P734, DOI 10.2307/3809205; MURPHY AJ, 1989, AUK, V106, P439; MURPHY MT, 1986, ECOLOGY, V67, P1483, DOI 10.2307/1939079; Murray B.G. Jr, 1984, Evolutionary Biology (New York), V18, P71; Newton I., 1986, SPARROWHAWK; NILSSON JA, 1988, J ANIM ECOL, V57, P917, DOI 10.2307/5101; NOL E, 1987, J ANIM ECOL, V56, P301, DOI 10.2307/4816; Nolan V, 1978, ORNITHOL MONOGR, V26; NUR N, 1988, ARDEA, V76, P155; OLLASON JC, 1986, IBIS, V128, P290, DOI 10.1111/j.1474-919X.1986.tb02678.x; ORIANS GH, 1969, ANIM BEHAV, V17, P316, DOI 10.1016/0003-3472(69)90016-5; OTTO C, 1979, ORNIS SCAND, V10, P111, DOI 10.2307/3676350; Paynter R. A., 1954, BIRD BANDING, V25, P102; Paynter R. A., 1954, BIRD BANDING, V25, P136; Paynter R. A. Jr., 1954, Bird-Banding, V25, P35; PERDECK AC, 1992, J ANIM ECOL, V61, P13, DOI 10.2307/5504; PERRINS CM, 1989, WILSON BULL, V101, P236; PERRINS CM, 1985, IBIS, V127, P306, DOI 10.1111/j.1474-919X.1985.tb05072.x; Perrins CM, 1979, BRIT TITS; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PUGESEK BH, 1981, SCIENCE, V212, P822, DOI 10.1126/science.212.4496.822; PUGESEK BH, 1987, BEHAV ECOL SOCIOBIOL, V21, P217, DOI 10.1007/BF00292502; PYLE P, 1991, AUK, V108, P2; QUINNEY TE, 1980, CAN J ZOOL, V58, P1168, DOI 10.1139/z80-161; REESE KP, 1985, CONDOR, V87, P96, DOI 10.2307/1367140; REID WV, 1987, ECOLOGY, V69, P1454; ROBERTSON RJ, 1992, BIRDS N AM, V45; ROCKWELL RF, 1983, OECOLOGIA, V56, P318, DOI 10.1007/BF00379706; ROCKWELL RF, 1985, CONDOR, V87, P142, DOI 10.2307/1367145; ROSKAFT E, 1983, ORNIS SCAND, V14, P180, DOI 10.2307/3676151; ROSS HA, 1980, CAN J ZOOL, V58, P1557, DOI 10.1139/z80-215; SHAW P, 1985, IBIS, V127, P537, DOI 10.1111/j.1474-919X.1985.tb04849.x; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; SMITH JNM, 1980, CAN J ZOOL, V58, P1007, DOI 10.1139/z80-141; SMITH JNM, 1984, BEHAV ECOL SOCIOBIOL, V14, P101, DOI 10.1007/BF00291901; SOKAL R., 1981, BIOMETRY; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STOBO WT, 1975, P NOVA SCOTIAN I S2, V27, P1; STUTCHBURY BJ, 1988, CAN J ZOOL, V66, P827, DOI 10.1139/z88-122; SULLIVAN KA, 1988, ECOLOGY, V69, P118, DOI 10.2307/1943166; SYDEMAN WJ, 1991, J ANIM ECOL, V60, P135, DOI 10.2307/5450; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; WEATHERHEAD PJ, 1979, AUK, V96, P391; WHEELWRIGHT NT, 1991, CAN J ZOOL, V69, P2540, DOI 10.1139/z91-358; WHEELWRIGHT NT, 1992, BEHAV ECOL SOCIOBIOL, V31, P279; WHEELWRIGHT NT, 1991, AUK, V108, P719, DOI 10.2307/4088118; WHEELWRIGHT NT, 1993, BIRDS N AM, V45; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMS JB, 1987, AUK, V104, P277; WINKEL W, 1987, Vogelwelt, V108, P209; WOOLLER RD, 1992, TRENDS ECOL EVOL, V7, P111, DOI 10.1016/0169-5347(92)90143-Y; 1992, STATVIEW 101 55 55 0 17 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. JUL 1994 63 3 686 702 10.2307/5234 17 Ecology; Zoology Environmental Sciences & Ecology; Zoology NW730 WOS:A1994NW73000018 2019-02-26 J NEILL, WH; MILLER, JM; VANDERVEER, HW; WINEMILLER, KO NEILL, WH; MILLER, JM; VANDERVEER, HW; WINEMILLER, KO ECOPHYSIOLOGY OF MARINE FISH RECRUITMENT - A CONCEPTUAL-FRAMEWORK FOR UNDERSTANDING INTERANNUAL VARIABILITY NETHERLANDS JOURNAL OF SEA RESEARCH English Article TEMPERATURE; HYPOTHESIS; DIVERSITY; PLAICE; LIFE; SEA Present data and our application of logic do not permit confident rejection of the null hypothesis: Interannual variation in recruitment of marine fishes (typified by certain flatfishes) is independent of ecophysiological factors. Our inability to reject this hypothesis reflects not its likely validity but rather a lack of conceptual structure and appropriate data for realistic evaluation of alternative hypotheses. Therefore, in this paper, we set aside as presently intractable the problem of understanding in any generalizable way the specific effects of environment on interannual variation in marine fish recruitment. Instead, we return to a conceptual scheme first proposed almost 50 years ago by F.E.J. Fry for considering effects of environmental factors on the physiology of fishes. We first extend this scheme to population-level responses, including recruitment, and then even further, to community/ecosystem-level responses. Fry supposed that all of environment can be resolved into five classes of physiological effects-controlling (which set the pace of metabolism), limiting (which constrain maximum metabolism), lethal (which completely interdict metabolism), masking (which increase obligatory metabolic work), and directive (which release and unload metabolism by guiding enviroregulatory responses). We suggest that corresponding effects can be recognized at the levels both of population and community/ecosystem. The key analogy is that environment operates on individuals through metabolism, on populations through recruitment, and on communities/ecosystems through abiotic and biotic diversification. In the context of marine-fish populations, we propose that scope for population increase is the difference between maximum and maintenance recruitment to the spawning stock. Maintenance recruitment is the product of critical spawner density and spawner mortality rate; this product varies with environment as the resultant of controlling effects on the metabolism of individuals, and is increased by loading due to masking factors-e.g, predation-that increase one or both multiplicands. Maximum recruitment is limited by deficiencies of resources, primarily food, but also, potentially, by low spawner density. Population-level lethal factors cause extinction, by reducing population scope to sub-zero values for a time exceeding the generation interval. Directive factors distribute the population in space and time, influencing not only habitat use and zoogeographic range, but also providing context for genetic adaptation and speciation. Exploration of this conceptual scheme from the perspective of flatfish life-history strategies and population dynamics, leads to several testable ecophysiological hypotheses about recruitment. N CAROLINA STATE UNIV, DEPT ZOOL, RALEIGH, NC 27695 USA; NETHERLANDS INST SEA RES, 1790 AB DEN BURG, NETHERLANDS NEILL, WH (reprint author), TEXAS A&M UNIV, DEPT WILDLIFE & FISHERIES SCI, COLLEGE STN, TX 77843 USA. van der Veer, Henk/I-5383-2016 van der Veer, Henk/0000-0001-5035-661X; Winemiller, Kirk/0000-0003-0236-5129 BAILEY KM, 1994, NETH J SEA RES, V32, P175, DOI 10.1016/0077-7579(94)90039-6; BEVERTON RJH, 1957, FISHERY INVEST LON 2, V19, P1; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; DAVIS JC, 1975, J FISH RES BOARD CAN, V32, P2295, DOI 10.1139/f75-268; Dobzhansky T, 1950, AM SCI, V38, P208; EVANS DO, 1990, T AM FISH SOC, V119, P567, DOI 10.1577/1548-8659-119.4.567; Fry F. E. J., 1947, University of Toronto Studies Biological Series, VNo. 55, P1; Fry F. E. J., 1971, FISH PHYSIOL, V34, P1, DOI DOI 10.1016/S1546-5098(08)60146-6; GIBSON RN, 1994, NETH J SEA RES, V32, P191, DOI 10.1016/0077-7579(94)90040-X; HALL CAS, 1992, OIKOS, V65, P377, DOI 10.2307/3545553; HANSKI I, 1982, OIKOS, V38, P210, DOI 10.2307/3544021; HILBORN R, 1992, UQNATITATIVE FISHERI, P1; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; HOUDE ED, 1989, J FISH BIOL, V35, P29, DOI 10.1111/j.1095-8649.1989.tb03043.x; HOVENKAMP F, 1991, NETH J SEA RES, V27, P287, DOI 10.1016/0077-7579(91)90031-U; Hughes G.M., 1981, P121; HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366; JOBLING M, 1981, J FISH BIOL, V19, P439, DOI 10.1111/j.1095-8649.1981.tb05847.x; JONES FRH, 1980, ICLARM C P, V5, P383; KINNE O, 1962, COMP BIOCHEM PHYSIOL, V5, P265, DOI 10.1016/0010-406X(62)90056-7; KREBS CJ, 1989, ECOLOGICAL METHODOLO, P1; Lasker R, 1978, RAPPORTS PROCES VERB, V173, P212; LEGGETT WC, 1994, NETH J SEA RES, V32, P119, DOI 10.1016/0077-7579(94)90036-1; MAC ARTHUR ROBERT H., 1967; MacCall A. D, 1990, DYNAMIC GEOGRAPHY MA, P1; MAGNUSON JJ, 1979, AM ZOOL, V19, P331; MAY RM, 1984, DAHLEM WORKSHOP REPO, V32, P1; Miller J.M., 1985, Contributions in Marine Science, V27, P338; MILLER JM, 1984, MECH MIGRATION FISHE, P209; Neill W. H., 1991, AQUACULTURE WATER QU, V3, P30; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; RIJNSDORP AD, 1994, NETH J SEA RES, V32, P207, DOI 10.1016/0077-7579(94)90041-8; RIJNSDORP AD, 1991, J CONSEIL, V47, P352; RIJNSDORP AD, 1992, THESIS U AMSTERDAM, P1; ROTHSCHILD BJ, 1986, DYNAMICS MARINE FISH, P1; SIMPSON A. C., 1959, FISH INVEST MIN AGRIC FISH AND FOOD [GT BRIT] SER II, V22, P1; SINCLAIR M, 1988, MARINE POPULATIONS E, P1; Ulanowicz RE, 1986, GROWTH DEV ECOSYSTEM, P1; van der Walt P.T., 1982, Koedoe, P1; VANDERVEER HW, 1994, NETH J SEA RES, V32, P153, DOI 10.1016/0077-7579(94)90038-8; WARE DM, 1982, CAN J FISH AQUAT SCI, V39, P3, DOI 10.1139/f82-002; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 42 93 96 0 19 NETHERLANDS INST SEA RES TEXEL PO BOX 59 1790 AB DEN BURG, TEXEL, NETHERLANDS 0077-7579 NETH J SEA RES Neth. J. Sea Res. JUL 1994 32 2 135 152 10.1016/0077-7579(94)90037-X 18 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography PG725 WOS:A1994PG72500006 2019-02-26 J KAJIURA, LJ; ROLLO, CD KAJIURA, LJ; ROLLO, CD A MASS BUDGET FOR TRANSGENIC SUPERMICE ENGINEERED WITH EXTRA RAT GROWTH-HORMONE GENES - EVIDENCE FOR ENERGETIC LIMITATION CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article RAPID POSTWEANING GAIN; BODY-COMPOSITION; FEED-EFFICIENCY; METABOLIC-RATE; GROWING-PIGS; FUSION GENES; FEMALE MICE; MAJOR GENE; LIFE-SPAN; FACTOR-I Genetically engineered ''Supermice'' (Mus musculus, transgenic strain Tg[MT-1,rGH],Bri2) possess multiple copies of rat growth hormone genes yielding growth rates 220% that of normal mice. To discover how Supermice alter their acquisition and allocation of resources under elevated costs of growth, a resource allocation study was conducted on forty 50-day-old normal and transgenic male mice. Individual dry mass budgets were used to compare rates of growth, consumption, faecal deposition, digestive assimilation, and respiration over ii-day intervals. The mean body mass of transgenic mice was 153% that of normal animals during this period. Surprisingly, on a mass-specific basis, Supermice consumed 6% less food despite their higher investment in growth (normal: 0.50 +/- 0.01 mg food/mg dry body mass per day; Supermice: 0.47 +/- 0.01 mg food/mg dry body mass per day). Assimilation efficiency was also slightly lower in Supermice (64.1%) than in normal animals (66.7%). Enhanced growth was achieved entirely through improved conversion efficiencies. Gross and net production efficiencies of Supermice were 227 and 244% those of controls, respectively. Such increased efficiencies appeared to be the result of diverting resources from processes such as behaviour, longevity assurance, and other respiratory demands. Evidence for such trade-offs supports the ''principle of allocation,'' a key assumption for theories of life-history evolution. MCMASTER UNIV,DEPT BIOL,HAMILTON L8S 4K1,ON,CANADA ANAND BK, 1951, P SOC EXP BIOL MED, V77, P323; BARTKE A, 1988, J EXP ZOOL, V248, P121, DOI 10.1002/jez.1402480116; BCHINI O, 1991, ENDOCRINOLOGY, V128, P539, DOI 10.1210/endo-128-1-539; BERNIER JF, 1986, J NUTR, V116, P419; BOOTLAND LH, 1991, J ENDOCRINOL, V131, P19, DOI 10.1677/joe.0.1310019; Bradford G. E., 1980, Selection experiments in laboratory and domestic animals., P161; BREM G, 1989, MOL BIOL MED, V6, P531; BREMNER I, 1990, ANNU REV NUTR, V10, P63, DOI 10.1146/annurev.nu.10.070190.000431; BRONSON FH, 1984, BIOL REPROD, V31, P83, DOI 10.1095/biolreprod31.1.83; CALVERT CC, 1986, J ANIM SCI, V62, P77; CAMPBELL RG, 1989, J ANIM SCI, V67, P177; CAMPBELL RG, 1988, J ANIM SCI, V66, P1643; DERTING TL, 1989, ECOLOGY, V70, P587, DOI 10.2307/1940210; DUFFY PH, 1989, MECH AGEING DEV, V48, P117, DOI 10.1016/0047-6374(89)90044-4; EKLUND J, 1977, NATURE, V265, P48, DOI 10.1038/265048b0; ETHERTON TD, 1987, J ANIM SCI, V64, P433; FALCONER DS, 1953, J GENET, V51, P561, DOI 10.1007/BF02982944; FALCONER DS, 1953, J GENET, V51, P470, DOI 10.1007/BF02982939; FALCONER DS, 1977, INT C QUANTITATIVE G, P19; Finch C. E., 1990, LONGEVITY SENESCENCE; GOODRICK CL, 1977, GERONTOLOGY, V23, P405; GROESBECK MD, 1987, ENDOCRINOLOGY, V120, P1963, DOI 10.1210/endo-120-5-1963; HALL TR, 1986, COMP BIOCHEM PHYS A, V84, P231, DOI 10.1016/0300-9629(86)90608-0; HAMMER RE, 1985, NATURE, V315, P680, DOI 10.1038/315680a0; HAMMER RE, 1985, NATURE, V315, P413, DOI 10.1038/315413a0; Hoffmann AA, 1991, EVOLUTIONARY GENETIC; HOLEHAN AM, 1986, BIOL REV, V61, P329, DOI 10.1111/j.1469-185X.1986.tb00658.x; HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408; Ingram D. K., 1987, Evolution of longevity in mammals. A comparative approach., P247; KNAPP JR, 1993, FASEB J, V7, pA645; LACHMANSINGH EI, 1994, IN PRESS CAN J ZOOL; Lessells C.M., 1991, P32; MACARTHUR JW, 1949, GENETICS, V34, P194; MALIK RC, 1984, J ANIM SCI, V58, P577; MASORO EJ, 1993, J AM GERIATR SOC, V41, P994, DOI 10.1111/j.1532-5415.1993.tb06767.x; MATHEWS LS, 1988, ENDOCRINOLOGY, V123, P2827, DOI 10.1210/endo-123-6-2827; MCCARTER R, 1985, AM J PHYSIOL, V248, pE488; McCarthy J. C., 1980, Selection experiments in laboratory and domestic animals., P100; MCCARTHY JC, 1989, EVOLUTION ANIMAL BRE, P135; MILLER KF, 1989, J ENDOCRINOL, V120, P481, DOI 10.1677/joe.0.1200481; MILLWARD DJ, 1976, P NUTR SOC, V35, P339, DOI 10.1079/PNS19760054; MILTON S, 1992, ENDOCRINOLOGY, V131, P536, DOI 10.1210/en.131.1.536; MOURNIER F, 1989, HORM RES BASEL, V31, P266; NAAR EM, 1991, BIOL REPROD, V45, P128; PALMITER RD, 1982, NATURE, V300, P611, DOI 10.1038/300611a0; PALMITER RD, 1983, SCIENCE, V222, P809, DOI 10.1126/science.6356363; PARSONS PA, 1991, ANNU REV ECOL SYST, V22, P1, DOI 10.1146/annurev.es.22.110191.000245; PIDDUCK HG, 1978, GENET RES, V32, P195, DOI 10.1017/S001667230001867X; POMP D, 1992, LIVEST PROD SCI, V31, P335, DOI 10.1016/0301-6226(92)90079-J; Pursel V G, 1990, J Reprod Fertil Suppl, V40, P235; PURSEL VG, 1989, SCIENCE, V244, P1281, DOI 10.1126/science.2499927; PYKE GH, 1984, ANNU REV ECOL SYST, V15, P523, DOI 10.1146/annurev.es.15.110184.002515; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Roberts R. C., 1980, Selection experiments in laboratory and domestic animals., P110; ROBERTS RC, 1981, S ZOOL SOC LOND, V47, P231; Roff D., 1993, EVOLUTION LIFE HIST; ROLLO CD, 1994, IN PRESS PHENOTYPES; SACHER GA, 1979, FED PROC, V38, P184; SCHINDLE.WJ, 1972, ENDOCRINOLOGY, V91, P483, DOI 10.1210/endo-91-2-483; SEARLE TW, 1992, J ENDOCRINOL, V132, P285, DOI 10.1677/joe.0.1320285; SHEA BT, 1987, ENDOCRINOLOGY, V121, P1924, DOI 10.1210/endo-121-6-1924; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SIBLY RM, 1986, PHYSIOLOGICAL ECOLOG; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; Stearns SC., 1992, EVOLUTION LIFE HIST; STEFANEANU L, 1993, LAB INVEST, V68, P584; Steger R W, 1993, J Reprod Fertil Suppl, V46, P61; STEGER RW, 1991, NEUROENDOCRINOLOGY, V53, P365, DOI 10.1159/000125743; SUTHERLAND TM, 1974, GENETICS, V78, P525; TIMON VM, 1970, GENETICS, V65, P145; TUOMI J, 1983, AM ZOOL, V23, P25; WADE GN, 1974, J COMP PHYSIOL PSYCH, V86, P359, DOI 10.1037/h0035945; WARD KA, 1991, EXPERIENTIA, V47, P913, DOI 10.1007/BF01929882; WEINDRUCH R, 1988, RETARDATION AGING DI; WOLF E, 1993, MECH AGEING DEV, V68, P71, DOI 10.1016/0047-6374(93)90141-D; WOLF E, 1991, GROWTH DEVELOP AGING, V55, P225 76 26 26 0 1 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. JUN 1994 72 6 1010 1017 10.1139/z94-137 8 Zoology Zoology PP591 WOS:A1994PP59100006 2019-02-26 J FOX, MG FOX, MG GROWTH, DENSITY, AND INTERSPECIFIC INFLUENCES ON PUMPKINSEED SUNFISH LIFE-HISTORIES ECOLOGY English Article CENTRARCHIDS; COMPETITION; FISHES; GONADS; LIFE HISTORY THEORY; MATURATION; POPULATION; SUNFISH SUCKER CATOSTOMUS-COMMERSONI; CONTRASTING ENVIRONMENTS; GASTEROSTEUS-ACULEATUS; LEPOMIS-GIBBOSUS; FISH ASSEMBLAGES; SIZE; REPRODUCTION; EVOLUTION; PATTERNS; AGE I collected data on 27 pumpkinseed (Lepomis gibbosus) populations in eastern and central Ontario and conducted a transplant experiment with one of these populations to test growth and competition-related predictions of several life history models. The predictions are that early maturity and high gonadal investment will occur: (1) in large and fast-growing juveniles; (2) in populations with low adult:juvenile growth ratios; (3) in populations with low density; and (4) in the absence of bluegill sunfish (Lepomis macrochirus), a competing congener. Predictions 1 and 4 were fully supported and Prediction 2 was partly supported, but Prediction 3 was not. The earliest maturing juveniles within populations were significantly larger than conspecifics of the same age that did not mature. Females from a lake population that were transplanted into a fishless pond exhibited both significantly faster growth and a significantly higher gonad to body mass ratio (gonadosomatic index) than females living in the lake. At the population level, juvenile growth was significantly correlated with age at maturity (r = -0.53), but not with gonadosomatic index, whereas the Adult: Juvenile Growth Ratio showed a significant, negative correlation with gonadosomatic index (r = -0.66), but not with mean age at maturity. Mean age at maturity showed a stronger correlation with the indicator of life-span and adult survival rate (r = 0.74), suggesting that mortality is more important than growth in the shaping of reproductive life histories of pumpkinseed. High population density was associated with early maturity and high gonadal investment, the opposite of what was predicted. However, pumpkinseed populations that co-occurred with bluegills did mature significantly later and at a larger size and tended to have a lower gonadal investment than populations living in waterbodies without bluegills. This difference in reproductive patterns in the presence of bluegill is consistent with two-stage life history theory and may be the result of a direct effect of bluegills on pumpkinseed growth and survivorship, as well as differences in environmental conditions where the two species do or do not co-occur. FOX, MG (reprint author), TRENT UNIV,ENVIRONM & RESOURCE STUDIES PROGRAM,PETERBOROUGH K9J 7B8,ON,CANADA. ALM G, 1959, I FRESHWATER RES DRO, V40, P1; ALM G, 1946, MEDD STATENS UNDERSO, V25, P1; BAGENAL TB, 1978, INT BIOL PROGRAMME H, V3, P101; BALTZ DM, 1982, ENVIRON BIOL FISH, V7, P229, DOI 10.1007/BF00002498; Calow P., 1985, P13; Carlander K. D., 1977, HDB FRESHWATER FISHE, V2; CARLANDER KD, 1982, T AM FISH SOC, V111, P332, DOI 10.1577/1548-8659(1982)111<332:SIFCLF>2.0.CO;2; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CONSTANTZ GD, 1979, OECOLOGIA, V40, P189, DOI 10.1007/BF00347936; CRIVELLI AJ, 1988, ARCH HYDROBIOL, V111, P449; CRIVELLI AJ, 1987, ENVIRON BIOL FISH, V18, P109, DOI 10.1007/BF00002599; DANYLCHUK AJ, IN PRESS CANADIAN J; DEACON LI, 1987, ENVIRON BIOL FISH, V19, P281, DOI 10.1007/BF00003229; DEMASTER DP, 1978, J FISH RES BOARD CAN, V35, P912, DOI 10.1139/f78-148; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; FOX MG, 1990, T AM FISH SOC, V119, P112, DOI 10.1577/1548-8659(1990)119<0112:EOFDOG>2.3.CO;2; FOX MG, 1991, CAN J FISH AQUAT SCI, V49, P1792; FOX MG, 1990, CAN J ZOOL, V68, P2487; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GROSS MR, 1982, Z TIERPSYCHOL, V60, P1; GROSS MR, 1980, THESIS U UTAH SALT L; HALL DJ, 1989, CAN J FISH AQUAT SCI, V46, P2203; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; KEAST A, 1977, Environmental Biology of Fishes, V2, P235, DOI 10.1007/BF00005992; KEAST A, 1978, J FISH RES BOARD CAN, V35, P12, DOI 10.1139/f78-003; KEAST A, 1989, ENVIRON BIOL FISH, V27, P201; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1991, ACTA OECOL, V12, P11; KOZLOWSKI J, 1992, ACTA ECOLOGICA, V7, P15; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LEGGETT WC, 1969, J FISH RES BOARD CAN, V26, P1585, DOI 10.1139/f69-142; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; MAC ARTHUR ROBERT H., 1967; Mann R.H.K., 1984, P171; MILLS CA, 1988, J FISH BIOL, V33, P53; MITTELBACH G, 1986, ENVIRON BIOL FISH, V16, P159, DOI 10.1007/BF00005168; MITTELBACH GG, 1988, ECOLOGY, V69, P614, DOI 10.2307/1941010; MORIN R, 1982, CAN J FISH AQUAT SCI, V39, P958, DOI 10.1139/f82-131; OSENBERG CW, 1992, ECOLOGY, V73, P255, DOI 10.2307/1938737; OSENBERG CW, 1988, CAN J FISH AQUAT SCI, V45, P17, DOI 10.1139/f88-003; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PINHORN AT, 1969, J FISH RES BOARD CAN, V26, P3133, DOI 10.1139/f69-298; PITT TK, 1975, J FISH RES BOARD CAN, V32, P1383, DOI 10.1139/f75-158; REGIER HENRY A., 1962, TRANS AMER FISH SOC, V91, P362, DOI 10.1577/1548-8659(1962)91[362:VOTSMF]2.0.CO;2; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Scott WB, 1973, B FISH RES BOARD CAN, V184; SEABURG KEITH G., 1964, TRANS AMER FISH SOC, V93, P269, DOI 10.1577/1548-8659(1964)93[269:FHDRAG]2.0.CO;2; Sibly R., 1985, P75; Stearns S.C., 1984, P13; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TONN WM, 1986, CAN J FISH AQUAT SCI, V43, P194, DOI 10.1139/f86-022; TONN WM, 1982, ECOLOGY, V63, P1149, DOI 10.2307/1937251; TRIPPEL EA, 1989, CAN J ZOOL, V67, P2180, DOI 10.1139/z89-308; TRIPPEL EA, 1987, CAN J FISH AQUAT SCI, V44, P1018, DOI 10.1139/f87-119; Venne H, 1989, PHYSL ECOLOGY JAPAN, V1, P239; VOLLESTAD LA, 1990, J FISH BIOL, V37, P853, DOI 10.1111/j.1095-8649.1990.tb03589.x; WERNER EE, 1977, J FISH RES BOARD CAN, V34, P360, DOI 10.1139/f77-058; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WOOTTON RJ, 1977, J ANIM ECOL, V46, P823, DOI 10.2307/3643 63 95 99 6 75 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology JUN 1994 75 4 1157 1171 10.2307/1939439 15 Ecology Environmental Sciences & Ecology NP103 WOS:A1994NP10300028 2019-02-26 J MILLER, EM MILLER, EM OPTIMAL ADJUSTMENT OF MATING EFFORT TO ENVIRONMENTAL-CONDITIONS - A CRITIQUE OF CHISHOLMS APPLICATION OF LIFE-HISTORY THEORY WITH COMMENTS ON RACE DIFFERENCES IN MALE PATERNAL INVESTMENT STRATEGIES MANKIND QUARTERLY English Article R/K REPRODUCTIVE STRATEGIES; EVOLUTIONARY ANALYSIS; CHILDHOOD EXPERIENCE; BEHAVIOR; TESTOSTERONE; SOCIOBIOLOGY; PERSPECTIVE; MINNESOTA; SELECTION In a recent article, Chisholm drew attention to the possibility of applying life history theory to humans. He argued that humans could have a built-in mechanism which detects parental stress (indicating high mortality conditions) and responds by increasing mating effort;at the expense of parenting effort. However, the production of more offspring in adverse times would force parents to divide scarcer resources among more children, thereby lowering reproductive success. The evolutionary facts are better explained by simple genetic mechanisms. The optimal strategy in the plentiful environments such as most tropical zones would differ from that appropriate to colder climates. Males in the tropics would be selected for high mating efforts, while males in harsher northern climates would be selected for strong pair bonding that would enhance the likelihood that their offspring will survive to reach maturity and reproduce in their turn. Certain racial differences can be explained by this theory of evolutionary adaptation. MILLER, EM (reprint author), UNIV NEW ORLEANS, NEW ORLEANS, LA 70148 USA. AMA PFM, 1986, J APPL PHYSIOL, V61, P1758; BACHU A, 1993, FERTILIGY AM WOMEN J; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; BOUCHARD TJ, 1990, SCIENCE, V250, P223, DOI 10.1126/science.2218526; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Brownmiller S, 1975, AGAINST OUR WILL; BRUES AM, 1990, PEOPLE RACES; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1988, SOCIOBIOLOGICAL PERS, P340; DAMON A, 1962, AM J PHYS ANTHROPOL, V20, P461, DOI 10.1002/ajpa.1330200407; DRAPER P, 1989, ETHOL SOCIOBIOL, V10, P145, DOI 10.1016/0162-3095(89)90017-4; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Eaves LJ, 1989, GENES CULTURE PERSON; ELLIS L, 1992, STEROIDS, V57, P72, DOI 10.1016/0039-128X(92)90032-5; ELLIS L, 1987, DEVIANT BEHAV, V8, P149, DOI 10.1080/01639625.1987.9967739; ELLIS L, 1991, J RES CRIME DELINQ, V28, P227, DOI 10.1177/0022427891028002006; ELLIS L, 1989, THEORIES RAPE; ELLIS L, 1993, SOCIAL STRATIFICATIO, V1, P159; FELLOUS M, 1990, ANN HUM GENET, V54, P287; FRISCH RE, 1988, SCI AM, V258, P88, DOI 10.1038/scientificamerican0388-88; FRISCH RE, 1972, DEV PSYCHOL, V7, P313; HAMMER MF, 1994, MOL BIOL EVOL, V11, P749; HIMES JH, 1988, CAN J SPORT SCI, V13, P117; Jaynes Gerald, 1989, COMMON DESTINY BLACK; LASKAMIERZEJEWS.T, 1982, DYMORFIZM PLCLOWY CZ; Lee R. B., 1968, MAN HUNTER, P3048; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; LIVELY CM, 1986, AM NAT, V128, P561, DOI 10.1086/284588; Loehlin J. C., 1992, GENES ENV PERSONALIT; LYKKEN DT, 1990, ACTA GENET MED GEMEL, V39, P35, DOI 10.1017/S0001566000005572; LYNN R, 1991, MANKIND QUART, V32, P99; LYNN R, 1991, MANKIND QUART, V31, P255; LYNN R, 1990, PSYCHOL REP, V67, P1203; MAC ARTHUR ROBERT H., 1967; MACCOBY EE, 1991, CHILD DEV, V62, P676, DOI 10.1111/j.1467-8624.1991.tb01560.x; MALINA RM, 1988, CAN J SPORT SCI, V13, P136; MILLER EM, 1994, PERS INDIV DIFFER, V17, P227, DOI 10.1016/0191-8869(94)90029-9; MILLER EM, 1993, PERS INDIV DIFFER, V15, P665, DOI 10.1016/0191-8869(93)90008-Q; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MORGAN SP, 1993, AM J SOCIOL, V98, P799, DOI 10.1086/230090; OTTERBEIN KF, 1965, AM ANTHROPOL, V67, P66, DOI 10.1525/aa.1965.67.1.02a00050; PEARSON R, 1991, RACE INTELLIGENCE BI; PLOMIN R, 1990, HDB DEV PSYCHOPATHOL; POLLITZER WS, 1989, AM J CLIN NUTR, V50, P1244; ROBERTS GW, 1978, WOMEN JAMAICA; Rowe D., 1994, LIMITS FAMILY INFLUE; Rushton J. P., 1994, RACE EVOLUTION BEHAV; RUSHTON JP, 1989, J RES PERS, V23, P35, DOI 10.1016/0092-6566(89)90032-9; RUSHTON JP, 1987, J RES PERS, V21, P529, DOI 10.1016/0092-6566(87)90038-9; RUSHTON JP, 1987, ACTA GENET MED GEMEL, V36, P289, DOI 10.1017/S0001566000006048; RUSHTON JP, 1988, PERS INDIV DIFFER, V9, P1009, DOI 10.1016/0191-8869(88)90135-3; RUSHTON JP, 1986, J PERS SOC PSYCHOL, V50, P1192, DOI 10.1037/0022-3514.50.6.1192; RUSHTON JP, 1992, PERS INDIV DIFFER, V13, P439, DOI 10.1016/0191-8869(92)90072-W; RUSHTON JP, 1989, SOC SCI MED, V28, P1211, DOI 10.1016/0277-9536(89)90339-0; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; RUSHTON JP, 1994, CURRENT ANTHR; RUSHTON JP, 1994, PERSONALITY INDIVIDU; SMITH MG, 1962, W INDIAN FAMILY STRU; STAPLES R, 1993, BLACK FAMILIES CROSS; TAYLOR J, 1992, PAVED GOOD INTENTION; Wilson James Q., 1985, CRIME HUMAN NATURE; WORTHY M, 1970, J PERS SOC PSYCHOL, V16, P439, DOI 10.1037/h0020917; WORTHY M, 1977, EYE COLOR SEX RACE 64 11 11 0 4 COUNCIL SOCIAL & ECONOMIC STUDIES WASHINGTON 1133 13TH ST, NW #C-2, WASHINGTON, DC 20005 USA 0025-2344 MANKIND QUART Mankind Q. SUM 1994 34 4 297 316 20 Anthropology Anthropology RA348 WOS:A1994RA34800003 2019-02-26 J PRICE, PW PRICE, PW PHYLOGENETIC CONSTRAINTS, ADAPTIVE SYNDROMES, AND EMERGENT PROPERTIES - FROM INDIVIDUALS TO POPULATION-DYNAMICS RESEARCHES ON POPULATION ECOLOGY English Review ERUPTIVE POPULATIONS; FEMALE PREFERENCE; LARVAL PERFORMANCE; LATENT POPULATIONS; LIFE HISTORY EVOLUTION; POPULATION DYNAMICS OVIPOSITION PREFERENCE; LARVAL PERFORMANCE; HABITAT SELECTION; PEMPHIGUS APHIDS; EUURA-MUCRONATA; PLANT VIGOR; ATTACK; HYPOTHESIS; INSECTS; WILLOW The hypothesis is developed that there are causal linkages in evolved insect herbivore life histories and behaviors from phylogenetic constrains to adaptive syndromes to the emergent properties involving ecological interactions and population dynamics. Thus the argument is developed that the evolutionary biology of a species predetermines its current ecology. Phylogenetic Constraints refer to old characters in the phylogeny of a species and a group of species which set limits on the range of life history patterns and behaviors that can evolve. For example, a sawfly is commonly limited to oviposition in soft plant tissue, while plants are growing rapidly. Adaptive Syndromes are evolutionary responses to the phylogenetic constraints that minimize the limitations and maximize larval performance. Such syndromes commonly involve details of female ovipositional behavior and how individuals make choices for oviposition sites relative to plant quality variation which maximize larval survival. Syndromes also involve larval adaptations to the kinds of choices females make in oviposition. The evolutionary biology involved with phylogenetic constraints and adaptive syndromes commonly predetermines the ecological interactions of a species and its population dynamics. Therefore, these ecological interactions are called Emergent Properties because they are natural consequences of evolved morphology, behavior, and physiology. They commonly strongly influence the three-trophic-level interactions among host plants, insect herbivores, and carnivores, and the relative forces of bottom-up and top-down influences in food webs. The arguments are supported using such examples as galling sawflies and other gallers, shoot-boring moths and beetles, budworms, and forest Macrolepidoptera. The contrasts between outbreak or eruptive species and uncommon and rare species with latent population dynamics are emphasized. PRICE, PW (reprint author), NO ARIZONA UNIV,DEPT BIOL SCI,FLAGSTAFF,AZ 86011, USA. BAKER WL, 1972, USDA SERV MISC PUB, V1175; Barbosa P., 1987, INSECT OUTBREAKS; CAOUETTE MR, 1989, ENVIRON ENTOMOL, V18, P822, DOI 10.1093/ee/18.5.822; CAPPUCCINO N, POPULATION DYNAMICS; CLARIDGE MF, 1978, ENTOMOL EXP APPL, V24, P301, DOI 10.1111/j.1570-7458.1978.tb02786.x; Courtney S.P., 1990, P161; CRAIG TP, 1989, ECOLOGY, V70, P1691, DOI 10.2307/1938103; CRAIG TP, 1986, ECOLOGY, V67, P419, DOI 10.2307/1938585; DANELL K, 1985, OIKOS, V44, P75, DOI 10.2307/3544046; FURNISS RL, 1977, USDA SERV MISC PUB, V1339; Gilbert L.E., 1979, P117; Gilbert L.E., 1991, P403; HUNTER MD, 1992, ECOLOGY, V73, P724; HUNTER MD, 1992, EFFECTS RESOURCE DIS; Hutchinson G. E., 1965, ECOLOGICAL THEATER E; KIMBERLING DN, 1990, OECOLOGIA, V84, P1, DOI 10.1007/BF00665587; KOGAN M, 1977, ROLE CHEM FACTORS IN, P211; KUNIN WE, 1993, TRENDS ECOL EVOL, V8, P298, DOI 10.1016/0169-5347(93)90259-R; Mason R.R., 1987, P31; Mattson W.J., 1987, P365; MATTSON WJ, 1980, ANN ENTOMOL SOC AM, V73, P390, DOI 10.1093/aesa/73.4.390; MATTSON WJ, 1987, BIOSCIENCE, V37, P110, DOI 10.2307/1310365; Nothnagle P.J., 1987, P59; PRESZLER RW, 1988, ECOLOGY, V69, P2012, DOI 10.2307/1941179; Price P.W., 1992, P139; Price Peter W., 1993, P229; PRICE PW, 1991, OIKOS, V62, P244, DOI 10.2307/3545270; PRICE PW, 1987, OECOLOGIA, V73, P334, DOI 10.1007/BF00385248; PRICE PW, 1987, OECOLOGIA, V74, P1, DOI 10.1007/BF00377338; PRICE PW, 1989, ENVIRON ENTOMOL, V18, P61, DOI 10.1093/ee/18.1.61; PRICE PW, 1990, INSECT PLANT INTERAC, V2, P1; Rausher M.D., 1983, P223; RAUSHER MD, 1979, ECOLOGY, V60, P503, DOI 10.2307/1936070; RAUSHER MD, 1980, EVOLUTION, V34, P342, DOI 10.1111/j.1558-5646.1980.tb04823.x; ROININEN H, 1989, ECOLOGY, V70, P129, DOI 10.2307/1938419; ROININEN H, 1993, OIKOS, V68, P448, DOI 10.2307/3544912; SMILEY J, 1978, SCIENCE, V201, P745, DOI 10.1126/science.201.4357.745; THOMPSON JN, 1988, ENTOMOL EXP APPL, V47, P3, DOI 10.1111/j.1570-7458.1988.tb02275.x; WATT AD, 1990, POPULATION DYNAMICS; WHITE T C R, 1969, Ecology (Washington D C), V50, P905, DOI 10.2307/1933707; WHITE TCR, 1974, OECOLOGIA, V16, P279, DOI 10.1007/BF00344738; WHITE TCR, 1976, OECOLOGIA, V22, P119, DOI 10.1007/BF00344712; WHITHAM TG, 1980, AM NAT, V115, P449, DOI 10.1086/283573; WHITHAM TG, 1978, ECOLOGY, V59, P1164, DOI 10.2307/1938230; WHITHAM TG, 1979, NATURE, V279, P324, DOI 10.1038/279324a0; WIKLUND C, 1974, ENTOMOL EXP APPL, V17, P189, DOI 10.1111/j.1570-7458.1974.tb00335.x; WOOD J, IN PRESS ENV ENTOMOL 47 70 73 1 16 SOC POPULATION ECOLOGY KYOTO SHIMOTACHIURI OGAWA-HIGASHI KAMIKYO-KU, KYOTO 602, JAPAN 0034-5466 RES POPUL ECOL Res. Popul. Ecol. JUN 1994 36 1 3 14 10.1007/BF02515079 12 Ecology Environmental Sciences & Ecology PH050 WOS:A1994PH05000002 2019-02-26 J UENO, H UENO, H GENETIC ESTIMATIONS FOR BODY-SIZE CHARACTERS, DEVELOPMENT PERIOD AND DEVELOPMENT RATE IN A COCCINELID BEETLE, HARMONIA-AXYRIDIS RESEARCHES ON POPULATION ECOLOGY English Article HARMONIA-AXYRIDIS; HERITABILITY; GENETIC CORRELATION; PLEIOTROPY LIFE-HISTORY EVOLUTION; ONCOPELTUS-FASCIATUS; POPULATIONS; PLASTICITY; TRAITS; INSECT Heritabilities and genetic correlations for body size characters and development period in a coccinellid beetle, Harmonia axyridis were estimated by a sib-analysis experiment. Positive genetic correlations were detected between size characters and development rate. If this is upheld in the field, genetic variation would be eliminated, as the loci affecting the characters are supposed to be fixed. However, the results indicated moderate heritabilities for all characters. Possible explanations for the results are discussed. UENO, H (reprint author), HOKKAIDO UNIV,GRAD SCH ENVIRONM EARTH SCI,SAPPORO,HOKKAIDO 060,JAPAN. Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BERVEN KA, 1987, EVOLUTION, V41, P1088, DOI 10.1111/j.1558-5646.1987.tb05878.x; BERVEN KA, 1983, AM ZOOL, V23, P85; DAWSON PS, 1977, NATURE, V270, P340, DOI 10.1038/270340a0; DINGLE H, 1977, AM NAT, V111, P1047, DOI 10.1086/283237; Falconer D. S., 1989, INTRO QUANTITATIVE G; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; GIESEL JT, 1982, AM NAT, V119, P464, DOI 10.1086/283926; GROETERS FR, 1987, AM NAT, V129, P332, DOI 10.1086/284640; JINKS JL, 1963, HEREDITY, V18, P319, DOI 10.1038/hdy.1963.33; Lande R., 1976, Genetical Research, V26, P221; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LYNCH M, 1989, EVOLUTION, V43, P1724, DOI 10.1111/j.1558-5646.1989.tb02622.x; NEWMAN RA, 1988, EVOLUTION, V42, P763, DOI 10.1111/j.1558-5646.1988.tb02494.x; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; Okamoto H., 1978, MEM FAC AGR KAGAWA U, V32, P1; OSAWA N, 1992, HEREDITY, V69, P297, DOI 10.1038/hdy.1992.129; OSAWA N, 1991, THESIS KYOTO U; PERRINS CM, 1974, CONDOR, V76, P225, DOI 10.2307/1366744; ROBERTS RC, 1961, HEREDITY, V16, P369, DOI 10.1038/hdy.1961.46; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; Snedecor G.W., 1967, STATISTICAL METHODS; SOKAL R., 1981, BIOMETRY; STEARNS SC, 1984, EVOLUTION, V38, P368, DOI 10.1111/j.1558-5646.1984.tb00295.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; VIA S, 1984, EVOLUTION, V38, P896, DOI 10.1111/j.1558-5646.1984.tb00360.x 28 17 17 0 7 SOC POPULATION ECOLOGY KYOTO SHIMOTACHIURI OGAWA-HIGASHI KAMIKYO-KU, KYOTO 602, JAPAN 0034-5466 RES POPUL ECOL Res. Popul. Ecol. JUN 1994 36 1 121 124 10.1007/BF02515093 4 Ecology Environmental Sciences & Ecology PH050 WOS:A1994PH05000016 2019-02-26 J KALISZ, S; WARDLE, GM KALISZ, S; WARDLE, GM LIFE-HISTORY VARIATION IN CAMPANULA-AMERICANA (CAMPANULACEAE) - POPULATION DIFFERENTIATION AMERICAN JOURNAL OF BOTANY English Article GENOTYPE-ENVIRONMENT INTERACTION; QUANTITATIVE GENETICS; CHAMAECRISTA-FASCICULATA; IMPATIENS-CAPENSIS; VERBASCUM-THAPSUS; COMMON MULLEIN; PLANT SIZE; EVOLUTION; SELECTION; REPRODUCTION Genetic variation in life history traits has important consequences for life-history evolution. Here we report the results of a greenhouse experiment investigating the broad sense genetic basis of variation in life history traits within and among five populations of Campanula americana distributed along a latitudinal gradient. The populations exhibit differentiation for a number of morphological traits (seed weight, number of branches, final plant size, number of capsules) and the phenological traits, days to emergence, days to bolting, the onset of flowering, and the duration of flowering. Families within populations differed only in days to emergence and seed weight. These results suggest that the life history differences among populations are genetically based. In addition, two life history types-winter annuals and biennials-have previously been reported from natural populations of Campanula americana. This experiment identified a third type-summer annuals from the Florida population. UNIV CHICAGO,COMM EVOLUTIONARY BIOL,CHICAGO,IL 60637 KALISZ, S (reprint author), MICHIGAN STATE UNIV,KELLOGG BIOL STN,3700 GULL LAKE DR,HICKORY CORNERS,MI 49060, USA. Wardle, Glenda/D-6533-2016; Wardle, Glenda/D-9332-2012 Wardle, Glenda/0000-0003-0189-1899; Antonovics J., 1984, PERSPECTIVES PLANT P, P229; ARTHUR AE, 1973, HEREDITY, V30, P189, DOI 10.1038/hdy.1973.21; BARTON NH, 1987, GENET RES, V49, P157, DOI 10.1017/S0016672300026951; BASKIN JM, 1984, B TORREY BOT CLUB, V111, P329, DOI 10.2307/2995914; BILLINGTON HL, 1990, J ECOL, V78, P1, DOI 10.2307/2261032; BOCHER T.W, 1958, BOT NOTISER, V111, P289; BOCHER TW, 1949, NEW PHYTOL, V48, P285; Bradshaw A. D., 1984, PERSPECTIVES PLANT P, P213; BULL JJ, 1987, EVOLUTION, V41, P303, DOI 10.1111/j.1558-5646.1987.tb05799.x; CLARK A G, 1987, American Naturalist, V129, P932, DOI 10.1086/284686; Clausen J., 1948, CARNEGIE I WASHINGTO, V581; Clausen J., 1940, CARNEGIE I WASHINGTO, V520; COUVET D, 1990, OIKOS, V57, P161, DOI 10.2307/3565935; CRUDEN RW, 1962, OHIO J SCI, V62, P142; DIGGS G M JR, 1982, Virginia Journal of Science, V33, P206; FELSENSTEIN J, 1976, ANNU REV GENET, V10, P253, DOI 10.1146/annurev.ge.10.120176.001345; FOWLER NL, 1981, ECOLOGY, V62, P1450, DOI 10.2307/1941501; FRANK SA, 1990, AM NAT, V136, P244, DOI 10.1086/285094; FURUSHO M, 1992, CROP SCI, V32, P384, DOI 10.2135/cropsci1992.0011183X003200020021x; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; GILLESPIE J, 1974, AM NAT, V108, P831, DOI 10.1086/282958; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; Haldane J. B. S., 1963, Journal of Genetics, V58, P237, DOI 10.1007/BF02986143; KELLY CA, 1992, EVOLUTION, V46, P1658, DOI 10.1111/j.1558-5646.1992.tb01160.x; KELLY CA, 1993, EVOLUTION, V47, P88, DOI 10.1111/j.1558-5646.1993.tb01201.x; LACEY EP, 1984, AM J BOT, V71, P1175, DOI 10.2307/2443641; LACEY EP, 1986, J ECOL, V74, P73, DOI 10.2307/2260349; LACEY EP, 1988, ECOLOGY, V69, P220, DOI 10.2307/1943178; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; Law R, 1979, POPULATION DYNAMICS, P81; LINHART YB, 1979, GENET RES, V33, P237, DOI 10.1017/S0016672300018371; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MITCHELLOLDS T, 1990, GENETICS, V124, P407; MITCHELLOLDS T, 1986, EVOLUTION, V40, P107, DOI 10.1111/j.1558-5646.1986.tb05722.x; MITCHELLOLDS T, 1986, AM NAT, V127, P379, DOI 10.1086/284490; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PRIMACK RB, 1981, EVOLUTION, V35, P1069, DOI 10.1111/j.1558-5646.1981.tb04975.x; RADFORD A. F., 1968, MANUAL VASCULAR FLOR; REINARTZ JA, 1984, J ECOL, V72, P913, DOI 10.2307/2259540; REINARTZ JA, 1984, J ECOL, V72, P897, DOI 10.2307/2259539; RICHARDSON TE, 1992, EVOLUTION, V46, P1731, DOI 10.1111/j.1558-5646.1992.tb01165.x; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.ecolsys.18.1.209; ROACH DA, 1986, AM NAT, V128, P47, DOI 10.1086/284538; SCHAAL BA, 1984, PERSPECTIVES PLANT P, P188; SCHEMSKE DW, 1984, EVOLUTION, V38, P817, DOI 10.1111/j.1558-5646.1984.tb00354.x; SCHWAEGERLE KE, 1986, EVOLUTION, V40, P506, DOI 10.1111/j.1558-5646.1986.tb00503.x; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; SHETLER SG, 1962, MICHIGAN BOTANIST, V1, P9; SLATKIN M, 1976, AM NAT, V110, P31, DOI 10.1086/283047; SMALL J. K., 1933, MANUAL SE FLORA; Smith HB, 1927, AM J BOT, V14, P129, DOI 10.2307/2435604; SOLBRIG OT, 1974, J ECOL, V63, P473; STEYERMARK J, 1963, FLORA MISSOURI; STRUIK GJ, 1965, ECOLOGY, V46, P401, DOI 10.2307/1934873; Venable D. L, 1984, PERSPECTIVES PLANT P, P166; VENABLE DL, 1989, EVOLUTION, V43, P113, DOI 10.1111/j.1558-5646.1989.tb04211.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; VIA S, 1987, GENET RES, V49, P147, DOI 10.1017/S001667230002694X; 1985, USERS GUIDE 1985 59 41 44 0 9 BOTANICAL SOC AMER INC COLUMBUS OHIO STATE UNIV-DEPT BOTANY 1735 NEIL AVE, COLUMBUS, OH 43210 0002-9122 AM J BOT Am. J. Bot. MAY 1994 81 5 521 527 10.2307/2445725 7 Plant Sciences Plant Sciences NM601 WOS:A1994NM60100001 2019-02-26 J KOZLOWSKI, J; JANCZUR, M KOZLOWSKI, J; JANCZUR, M DENSITY-DEPENDENT REGULATION OF POPULATION NUMBER AND LIFE-HISTORY EVOLUTION - OPTIMIZATION OF AGE AT MATURITY IN A SIMPLE ALLOCATION MODEL FOR ANNUALS AND BIENNIALS ECOLOGICAL MODELLING English Article AGE AT MATURITY; ANNUAL; BIENNIAL; DENSITY DEPENDENCE; LIFE HISTORY; OPTIMIZATION REPRODUCTIVE GROWTH; STRATEGIES; SELECTION; PLANTS There is controversy about what fitness measure to maximize in life-history models: the Malthusian parameter r; or net reproductive rate R, which is equivalent to lifetime production of offspring. Neither of these can be considered universal: R is a proper measure only at population equilibrium, and r cannot remain positive and constant for long. If we wish to make quantitative predictions of life-history parameters, density dependence should be incorporated directly into the model. The paper gives numerical examples of optimal allocation of energy to growth and reproduction. For annual plants, the density dependence of seed or seedling mortality does not affect age and size at maturity. This means that the same clone is optimal under low and high densities. But the density dependence or biomass dependence of the production rate does affect age and size at maturity. Although clones adapted to low density can achieve ecological equilibrium, they can be invaded by any clone better adapted to crowding. Such invasions can be repeated until the ESS (evolutionarily stable strategy) clone invades and outcompetes other clones. This last state can be called ''evolutionary equilibrium'' as opposed to the ''ecological equilibrium'' that can be achieved by any clone. Invasion of a population of annuals by biennials is unlikely at low density when generation time is crucial. But biennials can invade a population of annuals at equilibrium if a rare biennial surrounded by annuals has R at least slightly greater than one. The paper discusses why the concept of r- and K-selection is vague, and how it can be translated to optimal allocation models. KOZLOWSKI, J (reprint author), JAGIELLONIAN UNIV,INST ENVIRONM BIOL,OLEANDRY 2A,PL-30063 KRAKOW,POLAND. Kozlowski, Jan/K-5549-2012 Kozlowski, Jan/0000-0002-7084-2030; Janczur, Mariusz Krzysztof/0000-0002-3886-6710 BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DEJONG TJ, 1987, VEGETATIO, V70, P149; Fisher R.A., 1930, GENETICAL THEORY NAT; Harper J.L., 1977, POPULATION BIOL PLAN; HASTINGS A, 1978, J THEOR BIOL, V75, P527, DOI 10.1016/0022-5193(78)90361-2; KELLY D, 1985, OECOLOGIA, V67, P292, DOI 10.1007/BF00384302; KELLY D, 1985, AM NAT, V125, P473, DOI 10.1086/284355; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; KOZLOWSKI J, 1988, THEOR POPUL BIOL, V34, P118, DOI 10.1016/0040-5809(88)90037-8; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; KOZLOWSKI J, 1986, OPTYMALIZACJA WIEKU; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; MAY RM, 1976, MODELS SINGLE POPULA, P4; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Pianka ER, 1974, EVOLUTIONARY ECOLOGY; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; SILVERTOWN J, 1984, NATURE, V310, P271, DOI 10.1038/310271a0; STEARNS SC, 1986, EVOLUTION, V34, P65; VINCENT TL, 1980, THEOR POPUL BIOL, V17, P215, DOI 10.1016/0040-5809(80)90007-6; ZIOLKO M, 1983, MATH BIOSCI, V64, P127, DOI 10.1016/0025-5564(83)90032-9 28 11 11 0 8 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 ECOL MODEL Ecol. Model. MAY 1994 73 1-2 81 96 10.1016/0304-3800(94)90099-X 16 Ecology Environmental Sciences & Ecology NM453 WOS:A1994NM45300006 2019-02-26 J HUTCHINGS, JA; MYERS, RA HUTCHINGS, JA; MYERS, RA THE EVOLUTION OF ALTERNATIVE MATING STRATEGIES IN VARIABLE ENVIRONMENTS EVOLUTIONARY ECOLOGY English Article ALTERNATIVE MATING STRATEGIES; ENVIRONMENTAL VARIABILITY; LIFE HISTORY EVOLUTION; SALMONID FISH; PHENOTYPIC PLASTICITY MALE ATLANTIC SALMON; LIFE HISTORIES; PHENOTYPIC PLASTICITY; NATURAL-SELECTION; PARR MATURATION; REACTION NORMS; SALAR; SIZE; AGE; MATURITY We assessed the influence of phenotypic plasticity in age at maturity on the maintenance of alternative mating strategies in male Atlantic salmon, Salmo salar. We calculated the fitness, r, associated with the parr and the anadromous strategies, using age-specific survival data from the field and strategy-specific fertilization data from the laboratory. The fitness of each strategy depended largely on mate competition (numbers of parr per female, i.e. parr frequency) and on age at maturity. Fitness declined with increasing numbers of parr per female with equilibrium frequencies (at which the fitnesses of each strategy are equal) being within the range observed in the wild. Equilibrium parr frequencies declined with decreasing growth rate and increasing age at maturity. Within populations, the existence of multiple age-specific sets of fitness functions suggests that the fitnesses of alternative strategies are best represented as multidimensional surfaces. The points of intersection of these surfaces, whose boundaries encompass natural variation in age at maturity and mate competition, define an evolutionarily stable continuum (ESC) of strategy frequencies along which the fitnesses associated with each strategy are equal. We propose a simple model that incorporates polygenic thresholds of a largely environmentally-controlled trait (age at maturity) to provide a mechanism by which an ESC can be maintained within a population. An indirect test provides support for the prediction that growth-rate thresholds for parr maturation exist and are maintained by stabilizing selection. Evolutionarily stable continua, maintained by negative frequency-dependent selection on threshold traits, provide a theoretical basis for understanding how alternative life histories can evolve in variable environments. UNIV EDINBURGH,INST CELL ANIM & POPULAT BIOL,EDINBURGH EH9 3JT,MIDLOTHIAN,SCOTLAND HUTCHINGS, JA (reprint author), FISHERIES & OCEANS CANADA,SCI BRANCH,POB 5667,ST JOHNS A1C 5X1,NF,CANADA. ALM G, 1959, I FRESHWATER RES DRO, V40, P1; ASH EGM, 1985, CAN DATA REP RISH AQ, V672, P284; BERGLUND I, 1992, CAN J FISH AQUAT SCI, V49, P1097, DOI 10.1139/f92-121; BLEY PW, 1988, US FISH WILDL SERV B, V91, P88; BOHLIN T, 1990, ANN ZOOL FENN, V27, P139; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Falconer D. S., 1989, INTRO QUANTITATIVE G; FIELDDODGSON MS, 1988, J FISH BIOL, V32, P27, DOI 10.1111/j.1095-8649.1988.tb05333.x; GAVRILETS S, 1993, J EVOLUTION BIOL, V6, P31, DOI 10.1046/j.1420-9101.1993.6010031.x; GIBSON RJ, 1987, CAN TECH REP FISH AQ, V1538; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; HAZEL WN, 1990, P ROY SOC B-BIOL SCI, V242, P181, DOI 10.1098/rspb.1990.0122; HOUSTON AI, 1992, EVOL ECOL, V6, P242; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; HUTCHINGS JA, 1988, OECOLOGIA, V75, P169, DOI 10.1007/BF00378593; HUTCHINGS JA, 1985, OIKOS, V45, P118, DOI 10.2307/3565229; HUTCHINGS JA, 1985, THESIS U NEWFOUNDLAN; HUTCHINGS JA, 1986, INT COUNC EXPLOR SEA, V3; HUTCHINGS JA, 1993, EXPLOITATION EVOLVIN, P107; JONES JW, 1959, SALMON; JORDAN WC, 1992, J FISH BIOL, V41, P613, DOI 10.1111/j.1095-8649.1992.tb02687.x; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; Leonardsson K, 1986, REP I FRESHWATER RES, V63, P69; Levins R., 1968, EVOLUTION CHANGING E; METCALFE NB, 1992, J ANIM ECOL, V61, P585, DOI 10.2307/5613; MURRAY AR, 1968, J FISH RES BOARD CAN, V25, P2165, DOI 10.1139/f68-192; Myers R.A., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P53; MYERS RA, 1986, AQUACULTURE, V53, P313, DOI 10.1016/0044-8486(86)90362-5; MYERS RA, 1986, CAN J FISH AQUAT SCI, V43, P1242, DOI 10.1139/f86-154; MYERS RA, 1987, J FISH BIOL, V32, P143; NAEVDAL G, 1976, INT COUNC EXPLOR SEA, P40; Needham A.E., 1964, GROWTH PROCESS ANIMA; NORTHCOTE TG, 1984, MECH MIGRATION FISHE, P317; Parker G. A, 1984, BEHAVIOURAL ECOLOGY, P30; PARTRIDGE L, 1988, PHILOS T ROY SOC B, V319, P525, DOI 10.1098/rstb.1988.0063; POWER G, 1980, CHARRS SALMONID FISH, P141; Ricker W. E., 1975, B FISH RES BOARD CAN, V191; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Schmalhausen I.I., 1949, FACTORS OF EVOLUTION; SLATKIN M, 1978, AM NAT, V112, P845, DOI 10.1086/283327; Smith J.M., 1982, EVOLUTION THEORY GAM; SNUCINS EJ, 1992, CAN J ZOOL, V70, P423, DOI 10.1139/z92-064; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; THORPE JE, 1983, AQUACULTURE, V33, P119, DOI 10.1016/0044-8486(83)90392-7; THORPE JE, 1986, CAN SPEC PUB FISH AQ, V879, P7; VANDENBERGHE EP, 1989, EVOLUTION, V43, P125, DOI 10.1111/j.1558-5646.1989.tb04212.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x 49 138 139 2 37 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAY 1994 8 3 256 268 10.1007/BF01238277 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity NM256 WOS:A1994NM25600004 2019-02-26 J VOLLESTAD, LA; LABEELUND, JH VOLLESTAD, LA; LABEELUND, JH EVOLUTION OF THE LIFE-HISTORY OF ARCTIC CHARR SALVELINUS-ALPINUS EVOLUTIONARY ECOLOGY English Article MORTALITY; AGE AT MATURITY; GROWTH; REPRODUCTIVE INVESTMENT; LIFE HISTORY THEORY BROWN TROUT; DIMENSIONLESS NUMBERS; SALMO-TRUTTA; NATURAL MORTALITY; LOCH-RANNOCH; GROWTH; AGE; PARAMETERS; MATURITY; SURVIVAL Arctic chaff Salvelinus alpinus life histories are very variable, both within and between localities. In some lakes we find more than one phenotype (in Lake Thingvallavatn there are four), each phenotype having a characteristic life history. In spite of this, the life histories of 44 populations of Arctic chaff from throughout its range of distribution can be described accurately by a number of dimensionless indices made up from some common life-history descriptors (age and length at maturity, theoretical maximal length, instantaneous rate of natural mortality). This is contrary to what we previously have found for Brown trout Salmo trutta and we discuss this difference. We also test a new model which seeks to predict reproductive effort based on information on relative length at maturity (L(alpha))/L(inf)) and age at maturity. The model did not fit the observed reproductive investment data. NORWEGIAN WATER RESOURCES & ENERGY ADM, N-0301 OSLO, NORWAY VOLLESTAD, LA (reprint author), UNIV OSLO, DEPT BIOL, DIV ZOOL, POB 1050, N-0316 OSLO, NORWAY. Vollestad, Leif Asbjorn/0000-0002-9389-7982 Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; CHARNOV EL, 1989, EVOL ECOL, V3, P236, DOI 10.1007/BF02270724; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; Charnov Eric L., 1993, P1; Dahl K., 1917, STUDIER FORSOK ORRET; DALENE M, 1973, THESIS OSLO; DEMPSON JB, 1985, CAN J ZOOL, V63, P315, DOI 10.1139/z85-048; FJELD E, 1985, THESIS OSLO; FJELDSET T, 1983, THESIS OSLO; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; FRASER NC, 1981, BIOL ARCTIC CHARR, P163; FROST WE, 1965, PROC R SOC SER B-BIO, V163, P232, DOI 10.1098/rspb.1965.0070; FURST M, 1978, INFORMATION FRAN SOT, V15, P1; GUDBERGSSON G, 1985, THESIS OSLO; GUNDERSON DR, 1980, CAN J FISH AQUAT SCI, V37, P2266, DOI 10.1139/f80-272; GUNDERSON DR, 1988, J CONSEIL, V44, P200; HARTLEY SE, 1992, J FISH BIOL, V41, P1021, DOI 10.1111/j.1095-8649.1992.tb02729.x; HEALEY MC, 1984, CAN J FISH AQUAT SCI, V41, P476, DOI 10.1139/f84-057; HEGGE O, 1991, T AM FISH SOC, V120, P141, DOI 10.1577/1548-8659(1991)120<0141:AASASM>2.3.CO;2; HINDAR K, 1986, BIOL J LINN SOC, V27, P269, DOI 10.1111/j.1095-8312.1986.tb01737.x; HUNTER JG, 1970, FISH RES BOARD CAN T, V231, P1; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; JONSSON B, 1989, FRESHWATER BIOL, V21, P71, DOI 10.1111/j.1365-2427.1989.tb01349.x; JONSSON B, 1982, CAN J FISH AQUAT SCI, V39, P1404, DOI 10.1139/f82-189; Jonsson B., 1989, PHYSL ECOL JAPAN, V1, P93; LABEELUND, 1991, THESIS TRONDHEIM; LABEELUND JH, 1989, J ANIM ECOL, V58, P525, DOI 10.2307/4846; LABEELUND JH, 1990, J FISH BIOL, V37, P755, DOI 10.1111/j.1095-8649.1990.tb02539.x; Lien L., 1978, Holarctic Ecology, V1, P279; MAAR ALEXANDER, 1949, REPT INST FRESHWATER RES DROTTNINGHOLM, V29, P57; MANN RHK, 1985, ENVIRON BIOL FISH, V13, P277, DOI 10.1007/BF00002911; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; MILLS CA, 1989, PHYSL ECOL JAPAN SPE, V1, P371; NORDENG H, 1983, CAN J FISH AQUAT SCI, V40, P1372, DOI 10.1139/f83-159; OTTAWAY EM, 1981, J FISH BIOL, V19, P593, DOI 10.1111/j.1095-8649.1981.tb03825.x; PAULY D, 1980, J CONSEIL, V39, P175; Ricker WE., 1975, FISHERIES RES BOARD, V191, P382; RIGET FF, 1986, CAN J FISH AQUAT SCI, V43, P985, DOI 10.1139/f86-121; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROFF DA, 1982, CAN J FISH AQUAT SCI, V39, P1686, DOI 10.1139/f82-225; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Roff Derek A., 1992; SANDLUND OT, 1992, OIKOS, V64, P305, DOI 10.2307/3545056; SAUNDERS L H, 1969, Naturaliste Canadien (Quebec), V96, P919; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; SKURDAL J, 1982, ROYE SALVELINUS ALPI; SOKAL R., 1981, BIOMETRY; SPARHOLT H, 1985, J FISH BIOL, V26, P313, DOI 10.1111/j.1095-8649.1985.tb04270.x; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; SVENNING MA, 1985, THESIS TROMSO; Venne H, 1989, PHYSL ECOLOGY JAPAN, V1, P239; VOLLESTAD LA, 1990, J FISH BIOL, V37, P853, DOI 10.1111/j.1095-8649.1990.tb03589.x; VOLLESTAD LA, 1993, EVOL ECOL, V7, P207, DOI 10.1007/BF01239389; WALKER AF, 1988, BIOL CONSERV, V43, P43, DOI 10.1016/0006-3207(88)90077-8; WOOTON RL, 1990, ECOLOGY TELEOST FISH; 1982, FJELDORREDUNDERSOGEL 61 27 28 0 1 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. MAY 1994 8 3 315 327 10.1007/BF01238281 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity NM256 WOS:A1994NM25600008 2019-02-26 J FISHER, M FISHER, M ANOTHER LOOK AT THE VARIABILITY OF DESERT CLIMATES, USING EXAMPLES FROM OMAN GLOBAL ECOLOGY AND BIOGEOGRAPHY LETTERS English Article DESERT CLIMATE; OMAN; PRECIPITATION; PREDICTABILITY; VARIABILITY ENVIRONMENTAL PREDICTABILITY; SPECIES-DIVERSITY; PATTERNS; TEMPERATURE; ELEVATION; RICHNESS; VARIANCE Desert precipitation is often highly variable both between and within years, frequently being described as 'unpredictable'. Biogeographers and ecologists interested in the effects of desert climate on life history strategies, community structure and species diversity and composition have used a wide range of methods to describe and quantify this variability. However, descriptions and analyses of the temporal variability of climate should logically be based on a common analytical framework: the statistical components of a time series. The widely used and often unqualified term 'unpredictable' encompasses both the irregular and seasonal components of such a series. Within this framework I describe a suite of illustrative and quantitative tools for the description of climate using data from the varied deserts of Oman. FISHER, M (reprint author), SULTAN QABOOS UNIV,DEPT BIOL,POB 36 AL KHOD 123,MASQAT,OMAN. Begon M., 1990, ECOLOGY INDIVIDUALS; BENELIAHU MN, 1988, OIKOS, V52, P255, DOI 10.2307/3565199; COLWELL RK, 1974, ECOLOGY, V55, P1148, DOI 10.2307/1940366; Deshmukh I., 1986, ECOLOGY TROPICAL BIO; Diggle PJ, 1990, TIME SERIES BIOSTATI; HASTINGS A, 1979, P NATL ACAD SCI USA, V76, P4700, DOI 10.1073/pnas.76.9.4700; HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366; INGER RF, 1977, ECOL MONOGR, V47, P229, DOI 10.2307/1942516; LEHOUEROU HN, 1985, ARID LANDS TODAY TOM, P417; Lousy G. N, 1982, ECOLOGY DESERT ORGAN; MAIORANA VC, 1976, EVOLUTION, V30, P599, DOI 10.1111/j.1558-5646.1976.tb00937.x; MCGINNIES WG, 1985, ARID LANDS TODAY TOM, P61; Noy-Meir I., 1973, Annual Review of Ecology and Systematics, V4, P25, DOI 10.1146/annurev.es.04.110173.000325; OWEN JG, 1990, J MAMMAL, V71, P1, DOI 10.2307/1381311; OWEN JG, 1990, ECOLOGY, V71, P1823, DOI 10.2307/1937591; OWEN JG, 1989, J BIOGEOGR, V16, P141, DOI 10.2307/2845088; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pianka ER., 1986, ECOLOGY NATURAL HIST; RADER RB, 1989, OIKOS, V54, P107, DOI 10.2307/3565903; Ricklefs R.E., 1973, ECOLOGY; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SLOBODKIN LB, 1969, BROOKHAVEN SYM BIOL, P82; STEARNS SC, 1981, ECOLOGY, V62, P185, DOI 10.2307/1936681; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SUTHERLAND RA, 1991, J ARID ENVIRON, V20, P257, DOI 10.1016/S0140-1963(18)30688-8; WEIS IM, 1988, J BIOGEOGR, V15, P419, DOI 10.2307/2845273; WILKINSON L, 1992, SYSTAT VERSION 5 EDI 27 26 27 1 4 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0960-7447 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. Lett. MAY 1994 4 3 79 87 10.2307/2997782 9 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography QR521 WOS:A1994QR52100003 2019-02-26 J ROGERS, CM; NOLAN, V; KETTERSON, ED ROGERS, CM; NOLAN, V; KETTERSON, ED WINTER FATTENING IN THE DARK-EYED JUNCO - PLASTICITY AND POSSIBLE INTERACTION WITH MIGRATION TRADE-OFFS OECOLOGIA English Article PLASTICITY; LIFE HISTORY; MIGRATION; FAT; TRADE-OFF PHENOTYPIC PLASTICITY; GEOGRAPHIC-VARIATION; LIFE-HISTORY; BODY-MASS; REPRODUCTIVE TRAITS; WEIGHT; CONSEQUENCES; SPARROWS; BIRDS; FAT Although fat often supplies the major source of metabolic fuel during winter fasts of birds, this critical life-history trait is little studied by ecologists. In the dark-eyed junco Junco hyemalis, we have in a series of studies investigated the extent of plasticity in the winter fat reserve. Earlier (Rogers et al. 1993), we reported (1) a highly variable pattern of geographic variation in the winter fat reserve of junco populations in eastern North America, (2) disappearance of statistically significant interpopulation variation after experimental displacement to a common latitude, and (3) post-displacement temporal variation in the fat reserve. In analyses reported here, recent temperature, recent snowfall (a measure of short-term predictability of resources), season (perhaps reflecting continued exposure to unpredictable resources) and daylength explained spatial variation in the fat store. Recent temperature explained temporal variation in the fat reserves of groups of displaced juncos. These results suggest that plasticity in a life-history trait has evolved in an uncertain winter environment. Through environment-dependent fattening, the costs of fat can be avoided during warm periods and at locations where fat confers little benefit, whereas benefits of fat can be quickly gained if weather conditions become harsh and snowfall might restrict food. Three types of winter fatteners probably exist among birds: responders (fatten in response to the proximate environment), predictors (fatten in anticipation of long-term environmental conditions), and responder-predictors (combination of both types of regulation). Because dark-eyed juncos select different winter latitudes as they age, we hypothesize that the nonbreeding component of the life-history of juncos includes the co-adapted plastic traits of winter fattening and post-breeding migration. Life-history theory can apparently explain important traits related to fitness in the nonbreeding period. INDIANA UNIV,DEPT BIOL,BLOOMINGTON,IN 47405 ARCESE P, 1992, ECOLOGY, V73, P805, DOI 10.2307/1940159; Blem C.R., 1990, Current Ornithology, V7, P59; BLEM CR, 1986, CAN J ZOOL, V64, P2405, DOI 10.1139/z86-359; BLEM CR, 1975, WILSON BULL, V87, P543; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRAWN JD, 1991, OECOLOGIA, V86, P193, DOI 10.1007/BF00317531; BROWN KM, 1985, EVOLUTION, V39, P387, DOI 10.1111/j.1558-5646.1985.tb05675.x; CASWELL H, 1983, AM ZOOL, V23, P35; DAWSON WR, 1986, PHYSIOL ZOOL, V59, P357, DOI 10.1086/physzool.59.3.30156107; Ekman JB, 1990, BEHAV ECOL, V1, P62, DOI 10.1093/beheco/1.1.62; EVANS PR, 1969, J ANIM ECOL, V38, P415, DOI 10.2307/2781; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; HAFTORN S, 1989, WILSON BULL, V101, P217; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HOUSTON AI, 1993, ORNIS SCAND, V24, P205, DOI 10.2307/3676736; Jain S., 1979, Topics in plant population biology., P160; KAPLAN RH, 1986, OECOLOGIA, V71, P273; KENDEIGH SC, 1969, COMP BIOCHEM PHYSIOL, V31, P941, DOI 10.1016/0010-406X(69)91803-9; Ketterson E.D., 1983, Current Ornithology, V1, P357; KETTERSON ED, 1976, ECOLOGY, V57, P679, DOI 10.2307/1936182; KETTERSON ED, 1982, AUK, V99, P243; KING JR, 1981, AUK, V98, P752; LEHIKOINEN E, 1987, ORNIS SCAND, V18, P216, DOI 10.2307/3676769; LESSELLS CM, 1989, J EVOLUTION BIOL, V2, P457, DOI 10.1046/j.1420-9101.1989.2060457.x; Levins R., 1968, EVOLUTION CHANGING E; Lima S. L., 1986, ECOLOGY, V67, P366; McNamara J., 1990, LIVING PATCHY ENV; MCNAMARA JM, 1990, BEHAV MECH FOOD SELE, P39; NEWMAN RA, 1989, ECOLOGY, V70, P1775, DOI 10.2307/1938111; NEWTON I, 1969, PHYSIOL ZOOL, V42, P96, DOI 10.1086/physzool.42.1.30152470; NOLAN V, 1983, WILSON BULL, V95, P603; NOLAN V, 1991, ETHOLOGY, V87, P123; NOLAN V, 1990, ECOLOGY, V71, P1267, DOI 10.2307/1938264; O'Connor R.J., 1973, P111; ROGERS CM, 1990, ORNIS SCAND, V21, P105, DOI 10.2307/3676805; ROGERS CM, 1987, ECOLOGY, V68, P1051, DOI 10.2307/1938377; ROGERS CM, 1993, ECOLOGY, V74, P1183, DOI 10.2307/1940488; ROGERS CM, 1991, ORNIS SCAND, V22, P387, DOI 10.2307/3676513; ROGERS CM, 1989, ANIM BEHAV, V37, P498, DOI 10.1016/0003-3472(89)90096-1; ROGERS CM, 1992, J FIELD ORNITHOL, V62, P349; ROGERS CM, 1993, IN PRESS ECOLOGY, V74; ROTENBERRY JT, 1991, ECOLOGY, V72, P1325, DOI 10.2307/1941105; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; SCHLICHTING CD, 1989, BIOSCIENCE, V39, P460, DOI 10.2307/1311138; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Weisberg S., 1985, APPLIED LINEAR REGRE; Williams GC, 1966, ADAPTATION NATURAL S; WONNACOTT TH, 1985, INTRO STATISTICS; 1985, SAS USERS GUIDE STAT; 1982, CLIMATOLOGICAL DATA; 1963, CLIMATOGRAPHY US, V84 53 21 21 1 11 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia MAY 1994 97 4 526 532 10.1007/BF00325892 7 Ecology Environmental Sciences & Ecology NL979 WOS:A1994NL97900014 28313743 2019-02-26 J HUTCHINGS, JA HUTCHINGS, JA AGE-SPECIFIC AND SIZE-SPECIFIC COSTS OF REPRODUCTION WITHIN POPULATIONS OF BROOK TROUT, SALVELINUS-FONTINALIS OIKOS English Article LIFE-HISTORY EVOLUTION; MALE ATLANTIC SALMON; DROSOPHILA-MELANOGASTER; EGG-PRODUCTION; SALAR L; SELECTION; CONSEQUENCES; CONSTRAINTS; MATURATION; RESISTANCE Age and size at maturity influence a survival cost of reproduction in brook trout, Salvelinus fontinalis, within three unexploited populations in southeastern Newfoundland, Canada. Post-reproductive, overwinter survival increased significantly with female body size in all three populations but was positively associated with male body size in only one. Reproduction increased the age-specific risk of overwinter mortality by 17-89% and appears to be costly for brook trout because it reduces the lipid reserves upon which individuals depend to survive winter. This survival cost of reproduction (overwinter survival of reproductive individuals relative to that of non-reproductive individuals) increased with age but was negatively associated with body size within each population. The increase in cost with increasing age can be attributable to senescent decline in body condition. Physiological constraints imposed by metabolic allometry and the diversion of lipids from soma to gonads may be responsible for higher reproductive costs in small females; higher costs among small males may result from physical injury during mate competition. Empirically-based interactions among reproductive cost, age and body size provide a theoretical basis for predicting life history responses by salmonid fish to environmental change. UNIV EDINBURGH,INST CELL ANIM & POPULAT BIOL,EDINBURGH EH9 3JT,MIDLOTHIAN,SCOTLAND ALM G, 1959, I FRESHWATER RES DRO, V40, P1; BELL G, 1986, EVOLUTION, V40, P1344, DOI 10.1111/j.1558-5646.1986.tb05758.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BELL G, 1986, OXFORD SURVEYS EVOLU, P88; BRETT JR, 1969, J FISH RES BOARD CAN, V26, P2363, DOI 10.1139/f69-230; CALOW P, 1979, BIOL REV, V54, P3; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; CUNJAK RA, 1986, J FISH BIOL, V29, P279, DOI 10.1111/j.1095-8649.1986.tb04945.x; CUNJAK RA, 1988, CAN J FISH AQUAT SCI, V45, P443, DOI 10.1139/f88-053; Dufresne F, 1990, BEHAV ECOL, V1, P140, DOI 10.1093/beheco/1.2.140; DUTIL JD, 1986, COPEIA, P945, DOI 10.2307/1445291; ELLIOTT JM, 1976, J ANIM ECOL, V45, P273, DOI 10.2307/3779; FERGUSON MM, 1991, J FISH BIOL, V39, P79, DOI 10.1111/j.1095-8649.1991.tb05070.x; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; GIBSON R J, 1988, Polskie Archiwum Hydrobiologii, V35, P469; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Hutchings J. A., 1990, THESIS MEMORIAL U NE; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; HUTCHINGS JA, 1987, CAN J ZOOL, V65, P766, DOI 10.1139/z87-120; HUTCHINGS JA, 1988, OECOLOGIA, V75, P169, DOI 10.1007/BF00378593; Hutchings Jeffrey A., 1993, Lecture Notes in Biomathematics, V99, P107; JONSSON N, 1991, J FISH BIOL, V39, P739, DOI 10.1111/j.1095-8649.1991.tb04403.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; MADSEN T, 1993, OECOLOGIA, V94, P488, DOI 10.1007/BF00566963; Manly B. F. J., 1991, RANDOMIZATION MONTE; MCCULLAGH P, 1989, GENERALIZED LINEAR M; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MYERS RA, 1986, CAN J FISH AQUAT SCI, V43, P1242, DOI 10.1139/f86-154; NUR N, 1988, ARDEA, V76, P155; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1986, J INSECT PHYSIOL, V32, P925, DOI 10.1016/0022-1910(86)90140-X; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; POWER G, 1980, CHARRS SALMONID FISH, P141; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF DA, 1992, EVOLUTION HIST THEOR; Rogerson R. J., 1981, NATURAL ENV NEWFOUND, P24; ROSE MR, 1981, GENETICS, V97, P187; ROSE MR, 1981, GENETICS, V97, P73; ROWE DK, 1990, J FISH BIOL, V36, P643, DOI 10.1111/j.1095-8649.1990.tb04319.x; SCHMIDTNIELSEN K, 1984, SCALING WHY ANIMAL S; SCHULMAN GE, 1974, LIFE CYCLES FISH PHY; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SINERVO B, 1991, J EXP BIOL, V155, P323; SOKAL R., 1981, BIOMETRY; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; Thorpe J.E., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P7; TURELLI M, 1988, EVOLUTION, V42, P1342, DOI 10.1111/j.1558-5646.1988.tb04193.x; TUTTLE MD, 1981, SCIENCE, V214, P677, DOI 10.1126/science.214.4521.677; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILKINSON GS, 1990, EVOLUTION, V44, P1990, DOI 10.1111/j.1558-5646.1990.tb04305.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; Wootton R. J., 1990, ECOLOGY TELEOST FISH; WOOTTON RJ, 1976, J FISH BIOL, V8, P385, DOI 10.1111/j.1095-8649.1976.tb03967.x 62 68 69 0 16 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos MAY 1994 70 1 12 20 10.2307/3545693 9 Ecology Environmental Sciences & Ecology NP633 WOS:A1994NP63300002 2019-02-26 J ECKELBARGER, KJ ECKELBARGER, KJ DIVERSITY OF METAZOAN OVARIES AND VITELLOGENIC MECHANISMS - IMPLICATIONS FOR LIFE-HISTORY THEORY PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON English Review HETEROSYNTHETIC YOLK FORMATION; DEEP-SEA BENTHOS; LECITHOTROPHIC DEVELOPMENT; ULTRASTRUCTURAL EVIDENCE; PHRAGMATOPOMA-LAPIDOSA; CAENORHABDITIS-ELEGANS; REPRODUCTIVE PATTERNS; MARINE-INVERTEBRATES; PLANKTONIC COPEPOD; CAPITELLA-CAPITATA Metazoan life histories are diverse and the selective pressures that have shaped them have resulted in wide interspecific variation in egg size and energy content, fecundity, the age of first reproduction, and the number of and interval between reproductive episodes. Metazoan ovaries show wide morphological variation and a number of mechanisms have evolved by which yolk is synthesized within growing oocytes. The ovary and associated vitellogenic mechanisms play a direct role in the rate of egg production, the frequency of breeding, and the size and energy content of the egg and resultant consequences for larval dispersal. Evolutionary discussions of semelparity vs. iteroparity, r-selected and K-selected species, and the significance of interspecific variability in egg size, energy content and resultant larval mode, should consider the role of oogenesis because the developmental pathways established during oogenesis have a direct effect on subsequent life histories. Reproductive success in both pelagic and benthic marine communities is influenced by a species' capacity to convert food into egg production. The vitellogenic phase of oogenesis is generally the longest phase of egg growth but its duration varies by orders of magnitude between species due to interspecific differences in vitellogenic mechanisms. Metazoans can be viewed on a continuum from slow to fast egg producers, each utilizing physiologically distinct vitellogenic pathways that limit the rate of egg production. Reproductive responses to food vary widely among species and are probably correlated with interspecific differences in digestive kinetics and vitellogenic mechanisms. So-called opportunistic species have evolved specialized vitellogenic pathways for the rapid conversion of food into egg production while many other species (e.g., annual spawners) utilize slower pathways. There exist complex interrelationships between habitat, food, feeding strategies, digestive constraints, and vitellogenic mechanisms that need to be appreciated if marine community dynamics are to be fully comprehended. This review discusses the adaptive significance of metazoan ovaries and vitellogenic mechanisms and their possible life history consequences. UNIV MAINE, DEPT ANIM VET & AQUAT SCI, ORONO, ME 04469 USA ECKELBARGER, KJ (reprint author), UNIV MAINE, DARLING MARINE CTR, WALPOLE, ME 04573 USA. ARMANT DR, 1986, DEV BIOL, V113, P342, DOI 10.1016/0012-1606(86)90169-7; BEIJNINK FB, 1984, CELL TISSUE RES, V238, P339; BENTFELD ME, 1971, Z ZELLFORSCH MIK ANA, V115, P184, DOI 10.1007/BF00391124; BLADESECKELBARG.PI, 1992, BIOL BULL, V182, P241; BLADESECKELBARGER PI, 1984, J MORPHOL, V179, P33, DOI 10.1002/jmor.1051790105; BOWNES M, 1982, Q REV BIOL, V57, P247, DOI 10.1086/412802; BRAFIELD AE, 1967, J MAR BIOL ASSOC UK, V47, P619, DOI 10.1017/S0025315400035232; CHECKLEY DM, 1980, LIMNOL OCEANOGR, V25, P991, DOI 10.4319/lo.1980.25.6.0991; CLARK RB, 1973, OCEANOGR MAR BIOL AN, V11, P176; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DAVIDSON EH, 1986, GENE ACTIVITY EARLY; DAVIS WR, 1969, THESIS CALIFORNIA ST; ECKELBARGER KJ, 1980, ZOOMORPHOLOGIE, V94, P241, DOI 10.1007/BF00998204; ECKELBARGER KJ, 1979, TISSUE CELL, V11, P425, DOI 10.1016/0040-8166(79)90054-5; ECKELBARGER KJ, 1986, B MAR SCI, V39, P426; ECKELBARGER KJ, 1983, BIOL BULL, V165, P379, DOI 10.2307/1541203; ECKELBARGER KJ, 1992, MAR BIOL, V114, P633, DOI 10.1007/BF00357260; ECKELBARGER KJ, 1988, MAR BIOL, V100, P103, DOI 10.1007/BF00392960; ECKELBARGER KJ, 1992, J MAR BIOL ASSOC UK, V72, P759, DOI 10.1017/S0025315400060033; ECKELBARGER KJ, 1982, J MORPHOL, V171, P305, DOI 10.1002/jmor.1051710306; ECKELBARGER KJ, 1983, CAN J ZOOL, V61, P487, DOI 10.1139/z83-065; ECKELBARGER KJ, 1976, B MAR SCI, V26, P117; ECKELBARGER KJ, 1994, REPRODUCTION DEV MAR; Emlet R.B., 1987, Echinoderm Studies, V2, P55; Fautin D.G., 1991, P267; Fischer A., 1986, Advances in Invertebrate Reproduction, V4, P195; FISCHER A, 1985, CELL TISSUE RES, V240, P67; Gage J. D., 1991, DEEP SEA BIOL NATURA; Gardiner S. L., 1992, American Zoologist, V32, p124A; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; GHISELIN MT, 1978, AM ECON REV, V68, P233; Gould S. J, 1977, ONTOGENY PHYLOGENY; GRAHAME J, 1985, OCEANOGR MAR BIOL, V23, P373; GRASSLE JF, 1974, J MAR RES, V32, P253; GRASSLE JF, 1973, DEEP-SEA RES, V20, P643; GREMARE A, 1989, MAR BIOL, V100, P365, DOI 10.1007/BF00391152; GREMIGNI V, 1991, HYDROBIOLOGIA, V227, P105, DOI 10.1007/BF00027589; GREVE W, 1970, HELGOLAND WISS MEER, V20, P304, DOI 10.1007/BF01609908; GUSTAFSON RG, 1994, REPRODUCTION LARVAL; HAGEDORN HH, 1979, ANNU REV ENTOMOL, V24, P475, DOI 10.1146/annurev.en.24.010179.002355; HAND C, 1992, BIOL BULL, V182, P169, DOI 10.2307/1542110; HARRISON K E, 1990, Journal of Shellfish Research, V9, P1; HILL SD, 1981, BIOL BULL, V161, P327; HILL SD, 1982, BIOL BULL, V163, P366; HINES AH, 1979, REPRODUCTIVE ECOLOGY, P213; HOFMANN DK, 1976, ARCH ENTWICKLUNGSUCH, V180, P47; HONEGGER TG, 1981, INT J INVER REP DEV, V3, P245; HUEBNER E, 1976, AM ZOOL, V16, P315; Hutchinson G. E., 1967, TREATISE LIMNOLOGY, VII; Jamieson B. G. M., 1992, P217; JENNISON BL, 1979, CAN J ZOOL, V57, P403, DOI 10.1139/z79-047; JUMARS PA, 1990, PHILOS T R SOC A, V331, P85, DOI 10.1098/rsta.1990.0058; JUMARS PA, 1989, LIFE SCI R, V44, P235; KIMBLE J, 1983, DEV BIOL, V96, P189, DOI 10.1016/0012-1606(83)90322-6; LAWRENCE JM, 1984, INT J INVER REP DEV, V7, P249, DOI 10.1080/01688170.1984.10510097; LEVIN LA, 1986, MAR BIOL, V92, P103, DOI 10.1007/BF00392752; LEVIN LA, 1990, ECOLOGY, V71, P2191, DOI 10.2307/1938632; LEVIN LA, 1986, BIOL BULL, V171, P143, DOI 10.2307/1541913; LEVIN LA, 1984, ECOLOGY, V65, P1185, DOI 10.2307/1938326; LEVIN LA, 1994, REPRODUCTION LARVAL; LEVITAN DR, 1988, 6TH P INT ECH C ROTT, P181; LINKE P, 1992, MAR ECOL PROG SER, V81, P51, DOI 10.3354/meps081051; LOPEZ GR, 1987, Q REV BIOL, V62, P235, DOI 10.1086/415511; MAC ARTHUR ROBERT H., 1967; MACARTHUR R, 1960, AM NAT, V94, P25, DOI 10.1086/282106; Mackie GO, 1966, CNIDARIA THEIR EVOLU, P397; MANAHAN DT, 1982, SCIENCE, V215, P1253, DOI 10.1126/science.215.4537.1253; MARSH AG, 1989, MAR BIOL, V102, P519, DOI 10.1007/BF00438354; MARSHALL SM, 1956, PAPERS MARINE BIOL O, V3, P110; MCCLINTOCK JB, 1986, COMP BIOCHEM PHYS A, V85, P341, DOI 10.1016/0300-9629(86)90259-8; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; MCEDWARD LR, 1991, J EXP MAR BIOL ECOL, V147, P95, DOI 10.1016/0022-0981(91)90039-Y; OHMAN MD, 1987, LIMNOL OCEANOGR, V32, P1317, DOI 10.4319/lo.1987.32.6.1317; Pearse John S., 1991, P513; PENRY DL, 1990, OECOLOGIA, V82, P1, DOI 10.1007/BF00318526; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA HD, 1974, REPRODUCTION MARINE, V1, P201; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; RAFF RA, 1983, EMBRYOS GENES EVOLUT; RAIKHEL AS, 1992, ANNU REV ENTOMOL, V37, P217, DOI 10.1146/annurev.en.37.010192.001245; RAZOULS S, 1991, MAR BIOL, V110, P65, DOI 10.1007/BF01313093; REED CG, 1988, OPHELIA, V29, P1; REED CG, 1991, REPRODUCTION MARINE, V6, P85; RIEGER GE, 1980, ZOOMORPHOLOGY, V96, P215, DOI 10.1007/BF00310287; RIVEST BR, 1983, J EXP MAR BIOL ECOL, V69, P217, DOI 10.1016/0022-0981(83)90071-0; ROKOP FJ, 1974, SCIENCE, V186, P743, DOI 10.1126/science.186.4165.743; ROTH TF, 1964, J CELL BIOL, V20, P313, DOI 10.1083/jcb.20.2.313; RUNGE JA, 1984, J EXP MAR BIOL ECOL, V74, P53, DOI 10.1016/0022-0981(84)90037-6; RUTHMANN A, 1964, Z ZELLFORSCH MIK ANA, V63, P816, DOI 10.1007/BF00336223; Sargent J.R., 1986, P59; Schechtman A. M., 1955, BIOL SPECIFICITY GRO, P3; SCHELTEMA RS, 1994, REPRODUCTION LARVAL; SCHROEDER PC, 1968, PAC SCI, V22, P476; SCOTT LB, 1989, DEV BIOL, V132, P91, DOI 10.1016/0012-1606(89)90208-X; SCOTT LB, 1990, DEV BIOL, V138, P188, DOI 10.1016/0012-1606(90)90188-O; SELMAN K, 1988, J EXP ZOOL, V246, P42, DOI 10.1002/jez.1402460107; SHINN GL, 1992, J MORPHOL, V211, P221, DOI 10.1002/jmor.1052110211; SOUTHWARD AJ, 1982, AM ZOOL, V22, P647; Spight T. M., 1979, REPRODUCTIVE ECOLOGY, P135; STARCK J, 1984, INT J INVER REP DEV, V7, P149, DOI 10.1080/01688170.1984.10510086; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STRATHMANN RR, 1977, MAR BIOL, V39, P305, DOI 10.1007/BF00391933; STRICKER SA, 1986, CAN J ZOOL, V64, P1256, DOI 10.1139/z86-188; Telfer W. H., 1975, Advances Insect Physiol, V11, P223, DOI 10.1016/S0065-2806(08)60164-2; TENORE KR, 1983, ESTUAR COAST SHELF S, V17, P733, DOI 10.1016/0272-7714(83)90039-2; TESTER PA, 1990, J EXP MAR BIOL ECOL, V141, P169, DOI 10.1016/0022-0981(90)90222-X; TLER PA, 1994, REPRODUCTION LARVAL; TURNER RD, 1973, SCIENCE, V180, P1377, DOI 10.1126/science.180.4093.1377; TURNER RL, 1979, REPROD ECOLOGY MARIN, P25; Wallace R A, 1985, Dev Biol (N Y 1985), V1, P127; WILD AE, 1980, COATED VESICLES, P1; Williams J., 1967, BIOCH ANIMAL DEV, P341; Wourms J.P., 1987, REPRODUCTION MARINE, P50; Wynne-Edwards Vero C, 1962, ANIMAL DISPERSION RE; YAMASHITA O, 1988, DEV GROWTH DIFFER, V30, P337; YOUNG CM, 1990, OPHELIA, V32, P1 117 85 87 0 18 ALLEN PRESS INC LAWRENCE 810 E 10TH ST, LAWRENCE, KS 66044 USA 0006-324X 1943-6327 P BIOL SOC WASH Proc. Biol. Soc. Wash. APR 20 1994 107 1 193 218 26 Biology Life Sciences & Biomedicine - Other Topics NG958 WOS:A1994NG95800021 2019-02-26 J DETHIER, MN DETHIER, MN THE ECOLOGY OF INTERTIDAL ALGAL CRUSTS - VARIATION WITHIN A FUNCTIONAL-GROUP JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article CRUSTOSE ALGAE; DISTURBANCE; FUNCTIONAL GROUP; HERBIVORY; MORPHOLOGY; STRESS PLANT-HERBIVORE INTERACTIONS; GAMMA-AMINOBUTYRIC ACID; CORALLINE ALGAE; LIFE HISTORIES; MARINE MACROALGAE; CONSUMER PRESSURE; UNIFIED APPROACH; SEA-URCHINS; FORM GROUPS; STRATEGIES Encrusting marine algae are found at all depths in the photic zone from polar to tropical seas worldwide, yet little is known about their ecology. Crusts (including red, brown, and green algae as well as lichens and Cyanobacteria) tend to predominate in areas of high disturbance (e.g. from herbivores or sand scour) or high stress (= low potential productivity, e.g. high on the shore). Patterns of crust and herbivore distribution and abundance were quantified in the intertidal zone in Washington state, and then the two environmental parameters predicted to be critical to among-crust variation in survival were manipulated: disturbance potential by varying abundances of herbivores, or by eliminating herbivores and artificially disturbing crusts with nylon and steel brushes; productivity potential by transplanting crusts along an environmental gradient from the high to the low intertidal zone and onto a submerged raft. Within-functional-group variation among crusts was studied by transplanting eight species (varying in calcification, thickness, tightness of construction, and other characters), and measuring their survival and growth over 2-3 yr in the different environments. Crusts varied widely in their responses to both disturbance and productivity potential. In general, thick, calcified, or very tightly constructed crusts withstood being steel-brushed at regular intervals. Nylon brushing sometimes actually benefitted these crusts relative to the controls (unbrushed but cleaned monthly), probably because of the reduction in fouling. In contrast, thinner or more loosely-constructed species showed poor survival when steel-brushed and often suffered significant losses even when nylon-brushed. Most crusts tended to do best in habitats having higher productivity potential (lower intertidal zone), showing mortality or reduced growth when transplanted into more stressful areas, although two species were healthiest under ''stressful'' conditions, i.e. desiccated or submerged in high pools. Experiments in the laboratory with herbivores (littorinid snails, limpets, and a chiton) demonstrated that they did not always consume the species that are mechanically easiest to remove (as indicated by the steel brushing experiments). Three species were avoided, including a brown known to contain high concentrations of phenolics, a blue-green crust, and a lichen with a blue-green phycobiont. All crusts grew very slowly, even in their optimal habitats; the fastest species grew laterally at < 20 mm/yr, and the slowest measurable at < 0.5 mm/yr. Some species showed no lateral growth over 2 yr. This low ability to sequester space, and their two-dimensional growth form, means that crusts often rely on grazers or other disturbance to keep from being overgrown. In other cases, they grow in areas where desiccation or low light levels apparently eliminate other algal forms. Crusts survive disturbance by either resisting it (through calcification or toughness), tolerating it (by being thick or regenerating rapidly), or avoiding it (by having an opportunistic life history, living in refugia such as crevices or high tidepools, or being unpalatable). Their life histories are highly variable, allowing them to exploit habitats in different ways. For example, in the mid intertidal zone in Washington the three dominant crust species include: (1) a fast-growing, frequently-recruiting brown (Ralfsia pacifica Hollenberg) that senesces after several years and sloughs away; (2) a fast-growing but rarely-recruiting red (''Petrocelis'') that lives for decades; and (3) a very slow-growing and rarely-recruiting red [Hildenbrandia rubra (Sommerfelt) Meneghini] that persists even when overgrown, and regenerates following disturbance. These diverse morphologies and life history strategies help make this morphology an ecological success. UNIV WASHINGTON,FRIDAY HARBOR LABS,FRIDAY HARBOR,WA 98250 DETHIER, MN (reprint author), UNIV WASHINGTON,INST ENVIRONM STUDIES,620 UNIV RD,FRIDAY HARBOR,WA 98250, USA. ADEY WH, 1970, J PHYCOL, V6, P269, DOI 10.1111/j.1529-8817.1970.tb02392.x; AYLING AM, 1981, ECOLOGY, V62, P830, DOI 10.2307/1937749; BARNES JR, 1973, MAR BIOL, V20, P259; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; BERTNESS MD, 1983, J EXP MAR BIOL ECOL, V71, P147, DOI 10.1016/0022-0981(93)90070-5; BERTNESS MD, 1987, ECOL MONOGR, V57, P129, DOI 10.2307/1942621; BRANCH GM, 1976, J ANIM ECOL, V45, P507, DOI 10.2307/3888; BRANCH GM, 1975, J ANIM ECOL, V44, P575, DOI 10.2307/3612; BREITBURG DL, 1984, ECOLOGY, V65, P1136, DOI 10.2307/1938321; CARMICHAEL WW, 1981, WATER ENV ALGAL TOXI, P1; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; DALY MA, 1977, MAR BIOL, V43, P45, DOI 10.1007/BF00392570; DAVIS AN, 1987, MAR ECOL PROG SER, V37, P229, DOI 10.3354/meps037229; DELLOW VIVIENNE, 1955, TRANS ROY SOC NEW ZEALAND, V83, P321; DETHIER MN, 1988, MAR ECOL PROG SER, V50, P97, DOI 10.3354/meps050097; DETHIER MN, 1987, CAN J BOT, V65, P1838, DOI 10.1139/b87-253; DETHIER MN, 1984, ECOL MONOGR, V54, P99, DOI 10.2307/1942457; DETHIER MN, 1991, BOT MAR, V34, P201, DOI 10.1515/botm.1991.34.3.201; DETHIER MN, 1981, OECOLOGIA, V49, P333, DOI 10.1007/BF00347594; DETHIER MN, 1993, MAR ECOL PROG SER, V96, P93, DOI 10.3354/meps096093; DEWREEDE RE, 1983, PHYCOLOGIA, V22, P153, DOI 10.2216/i0031-8884-22-2-153.1; DUNGAN ML, 1986, AM NAT, V127, P292, DOI 10.1086/284486; ELLIS DV, 1961, ARCTIC, V14, P224; FLETCHER A, 1973, Lichenologist (London), V5, P368, DOI 10.1017/S0024282973000459; GAINES SD, 1982, ANNU REV ECOL SYST, V13, P111, DOI 10.1146/annurev.es.13.110182.000551; GEE JM, 1965, ANIM BEHAV, V13, P181, DOI 10.1016/0003-3472(65)90090-4; Givnish T. J., 1986, EC PLANT FORM FUNCTI, P635; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; GRIME JP, 1981, PLANT STRATEGIES VEG; Harper J.L., 1977, POPULATION BIOL PLAN; HARPER JL, 1980, OIKOS, V35, P244, DOI 10.2307/3544432; HAY ME, 1981, AM NAT, V118, P520, DOI 10.1086/283845; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661; JACKSON JBC, 1985, AM SCI, V73, P265; JARA HF, 1983, ECOLOGY, V65, P28; JOHNSON CR, 1986, J EXP MAR BIOL ECOL, V96, P127, DOI 10.1016/0022-0981(86)90238-8; KENDRICK GA, 1991, J EXP MAR BIOL ECOL, V147, P47, DOI 10.1016/0022-0981(91)90036-V; KITTING C L, 1989, Bulletin of Marine Science, V45, P550; KITTING CL, 1980, ECOL MONOGR, V50, P527, DOI 10.2307/1942656; LAMI MR, 1939, CR HEBD ACAD SCI, V207, P764; LEVINGS SC, 1983, J EXP MAR BIOL ECOL, V67, P261, DOI 10.1016/0022-0981(83)90043-6; LITTLER MM, 1980, AM NAT, V116, P25, DOI 10.1086/283610; LITTLER MM, 1984, J EXP MAR BIOL ECOL, V74, P13, DOI 10.1016/0022-0981(84)90035-2; LITTLER MM, 1983, J PHYCOL, V19, P229, DOI 10.1111/j.0022-3646.1983.00229.x; LITTLER MM, 1986, DEEP-SEA RES, V33, P881, DOI 10.1016/0198-0149(86)90003-8; LITTLER MM, 1983, J PHYCOL, V19, P425, DOI 10.1111/j.0022-3646.1983.00425.x; LITTLER MM, 1984, PROGR PHYCOLOGICAL R, V3, P323; LOWELL RB, 1991, P ROY SOC B-BIOL SCI, V243, P31, DOI 10.1098/rspb.1991.0006; LUBCHENCO J, 1980, ECOLOGY, V61, P676, DOI 10.2307/1937433; LUBCHENCO J, 1980, ECOLOGY, V61, P333, DOI 10.2307/1935192; LUBCHENCO J, 1981, ANNU REV ECOL SYST, V12, P405, DOI 10.1146/annurev.es.12.110181.002201; LUNING K, 1970, HELGOLAND WISS MEER, V21, P271, DOI 10.1007/BF01609062; MASAKI T, 1981, Bulletin of the Faculty of Fisheries Hokkaido University, V32, P349; MENGE BA, 1972, ECOL MONOGR, V42, P25, DOI 10.2307/1942229; MENGE BA, 1985, OECOLOGIA, V65, P394, DOI 10.1007/BF00378915; MENGE BA, 1981, ECOL MONOGR, V51, P429, DOI 10.2307/2937323; MILES AK, 1990, J EXP MAR BIOL ECOL, V135, P229, DOI 10.1016/0022-0981(90)90120-2; MORRISON D, 1988, ECOLOGY, V69, P1367, DOI 10.2307/1941634; MORSE DE, 1979, SCIENCE, V204, P407, DOI 10.1126/science.204.4391.407; NORTON TA, 1982, BOT MAR, V25, P501, DOI 10.1515/botm.1982.25.11.501; PADILLA DK, 1985, MAR BIOL, V90, P103, DOI 10.1007/BF00428220; PADILLA DK, 1989, ECOLOGY, V70, P835, DOI 10.2307/1941352; PADILLA DK, 1984, J EXP MAR BIOL ECOL, V79, P105, DOI 10.1016/0022-0981(84)90213-2; PAINE RT, 1984, ECOLOGY, V65, P1339, DOI 10.2307/1939114; PEARCE CM, 1990, BIOL BULL-US, V179, P304, DOI 10.2307/1542322; PECKOL P, 1983, B MAR SCI, V33, P67; PUESCHEL CM, 1988, BRIT PHYCOL J, V23, P25, DOI 10.1080/00071618800650031; ROWLEY RJ, 1989, MAR BIOL, V100, P485, DOI 10.1007/BF00394825; RUMRILL SS, 1983, MAR BIOL, V72, P243, DOI 10.1007/BF00396829; SCHEIBLING RE, 1990, MAR ECOL PROG SER, V63, P127, DOI 10.3354/meps063127; SEARS JR, 1978, MAR BIOL, V44, P309, DOI 10.1007/BF00390894; SEBENS KP, 1983, BIOL BULL, V165, P286, DOI 10.2307/1541370; SEBENS KP, 1986, ECOL MONOGR, V56, P73, DOI 10.2307/2937271; SINGLETARY RL, 1983, CRUSTACEANA, V45, P53, DOI 10.1163/156854083X00190; SLOCUM CJ, 1980, J EXP MAR BIOL ECOL, V46, P99, DOI 10.1016/0022-0981(80)90095-7; Steneck R.S., 1990, NATO ASI Series Series G Ecological Sciences, V22, P107; STENECK RS, 1983, PALEOBIOLOGY, V9, P44; STENECK RS, 1991, ECOLOGY, V72, P938, DOI 10.2307/1940595; STENECK RS, 1986, PHYCOLOGIA, V25, P221, DOI 10.2216/i0031-8884-25-2-221.1; STENECK RS, 1986, ANNU REV ECOL SYST, V17, P273, DOI 10.1146/annurev.es.17.110186.001421; STENECK RS, 1982, MAR BIOL, V68, P299, DOI 10.1007/BF00409596; STENECK RS, 1982, ECOLOGY, V63, P507, DOI 10.2307/1938967; STENECK RS, 1982, THESIS J HOPKINS U B; STENECK RS, 1994, IN PRESS OIKOS, V69; STEPHENSON TA, 1972, LIFE TIDEMARKS ROCKY; STEWART JG, 1989, J PHYCOL, V25, P436, DOI 10.1111/j.1529-8817.1989.tb00248.x; SZE P, 1980, BOT MAR, V23, P313; UNDERWOOD AJ, 1980, OECOLOGIA, V46, P201, DOI 10.1007/BF00540127; VADAS RL, 1988, J PHYCOL, V24, P338; WANDERS JBW, 1977, AQUAT BOT, V3, P357, DOI 10.1016/0304-3770(77)90040-7; WILCE RT, 1967, BOT MAR, V10, P185, DOI 10.1515/botm.1967.10.3-4.185; WOODIN SA, 1979, AM ZOOL, V19, P1029; YAMADA SB, 1992, 3RD P INT S LITT BIO, P281; Zar J. H., 1984, BIOSTATISTICAL ANAL; ZUPAN JR, 1990, J PHYCOL, V26, P232, DOI 10.1111/j.0022-3646.1990.00232.x 96 63 63 1 53 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. APR 8 1994 177 1 37 71 10.1016/0022-0981(94)90143-0 35 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology NJ117 WOS:A1994NJ11700004 2019-02-26 J VANLENT, F; VERSCHUURE, JM VANLENT, F; VERSCHUURE, JM INTRASPECIFIC VARIABILITY OF ZOSTERA-MARINA L (EELGRASS) IN THE ESTUARIES AND LAGOONS OF THE SOUTHWESTERN NETHERLANDS .1. POPULATION-DYNAMICS AQUATIC BOTANY English Article SEED-GERMINATION; THALASSIA-TESTUDINUM; CHESAPEAKE BAY; NOLTII HORNEM; PACIFIC COAST; ANNUAL FORM; GROWTH; SEAGRASS; STRATEGIES; COMMUNITY Within one geographical region the life-history of different Populations of Zostera marina L. (eelgrass) occurring under varying environmental conditions was followed for 2 years. Life-history strategies ranged from annual to perennial. Comprehensive data on biomass, density, generative reproduction, growth rate and production are given, compared with information in the literature, and discussed. Among populations, total annual aboveground production ranged between 160 and 412 g AFDW (ash-free dry weight) per m2 per year, below-ground production varied from 53 to 132 g AFDW per M2 per year. Flowering shoots had significantly higher growth rates compared with non-flowering shoots. Populations allocated a comparable part of total production towards below-ground structures (22-30%), but investment in reproductive tissue varied widely (1-34%). (Semi-) annuals could be distinguished from perennials by a number of characteristics: relatively small below-ground biomass, high above-ground relative growth rate, high generative reproduction effort and seed production, later seasonal timing and a high variability from year to year. The present study gives substantial data to support the theory that Z. marina in principle strives towards a perennial life-history, while life-histories of the species can range between two extremes (annual and perennial) along a continuum. NETHERLANDS INST ECOL,4401 EA YERSEKE,NETHERLANDS VANLENT, F (reprint author), CATHOLIC UNIV NIJMEGEN,AQUAT ECOL LAB,6525 ED NIJMEGEN,NETHERLANDS. BACKMAN TWH, 1984, THESIS U WASHINGTON; CAFFREY JM, 1991, AQUAT BOT, V40, P109, DOI 10.1016/0304-3770(91)90090-R; CHURCHILL AC, 1978, AQUAT BOT, V4, P83; CHURCHILL AC, 1983, AQUAT BOT, V16, P21; DECOCK AWAM, 1980, AQUAT BOT, V9, P201, DOI 10.1016/0304-3770(80)90023-6; DEHEIJ H, 1992, J EXP MAR BIOL ECOL, V161, P1, DOI 10.1016/0022-0981(92)90185-D; Den Hartog C, 1970, VERH K NED AKAD WE 2, V59, P1; DENHARTOG C, 1994, AQUAT BOT, V47, P21, DOI 10.1016/0304-3770(94)90045-0; DENNISON WC, 1985, MAR ECOL PROG SER, V25, P51, DOI 10.3354/meps025051; DENNISON WC, 1986, J EXP MAR BIOL ECOL, V98, P265, DOI 10.1016/0022-0981(86)90217-0; DENNISON WC, 1979, OECOLOGIA; GAGNON PS, 1980, AQUAT BOT, V8, P157, DOI 10.1016/0304-3770(80)90047-9; Grime J. P, 1979, PLANT STRATEGIES VEG; GRIME JP, 1974, NATURE, V250, P26, DOI 10.1038/250026a0; HAMBURG SP, 1986, MAR BIOL, V93, P299, DOI 10.1007/BF00508267; HARRISON PG, 1979, AQUAT BOT, V57, P2635; HOOTSMANS MJM, 1985, AQUAT BOT, V22, P83, DOI 10.1016/0304-3770(85)90032-4; HOOTSMANS MJM, 1987, AQUAT BOT, V28, P275, DOI 10.1016/0304-3770(87)90005-2; IBARRAOBANDO SE, 1987, AQUAT BOT, V28, P301, DOI 10.1016/0304-3770(87)90007-6; Jacobs R.P.W.M., 1982, STUDIES AQUATIC VASC, P150; JACOBS RPWM, 1979, AQUAT BOT, V7, P151, DOI 10.1016/0304-3770(79)90019-6; JACOBS RPWM, 1983, P K NED AKAD C BIOL, V86, P347; JACOBS RPWM, 1981, AQUAT BOT, V10, P241, DOI 10.1016/0304-3770(81)90026-7; KAUTSKY L, 1988, OIKOS, V53, P126, DOI 10.2307/3565672; KEDDY CJ, 1987, AQUAT BOT, V27, P243, DOI 10.1016/0304-3770(87)90044-1; KEDDY CJ, 1978, AQUAT BOT, V5, P163, DOI 10.1016/0304-3770(78)90059-1; KENTULA ME, 1986, ESTUARIES, V9, P188, DOI 10.2307/1352130; KENWORTHY WJ, 1984, B MAR SCI, V35, P364; MADSEN JD, 1991, AQUAT BOT, V41, P67, DOI 10.1016/0304-3770(91)90039-8; MCMILLAN C, 1982, AQUAT BOT, V14, P231, DOI 10.1016/0304-3770(82)90101-2; MCMILLAN C, 1983, AQUAT BOT, V16, P105, DOI 10.1016/0304-3770(83)90055-4; MCMILLAN C, 1978, AQUAT BOT, V4, P169, DOI 10.1016/0304-3770(78)90017-7; McRoy C. P., 1980, HDB SEAGRASS BIOL EC, P297; MEIRE P, 1991, Levende Natuur, V92, P56; MUKAI H, 1979, AQUAT BOT, V7, P47, DOI 10.1016/0304-3770(79)90006-8; NIENHUIS P H, 1980, Netherlands Journal of Sea Research, V14, P102, DOI 10.1016/0077-7579(80)90016-2; NIENHUIS PH, 1977, HYDROBIOLOGIA, V52, P55, DOI 10.1007/BF02658082; NIENHUIS PH, 1978, NETH J SEA RES, V12, P180, DOI 10.1016/0077-7579(78)90004-2; NIENHUIS PH, 1986, MAR ECOL PROG SER, V29, P29, DOI 10.3354/meps029029; ORTH RJ, 1983, AQUAT BOT, V15, P117, DOI 10.1016/0304-3770(83)90023-2; PENHALE PA, 1977, J EXP MAR BIOL ECOL, V26, P211, DOI 10.1016/0022-0981(77)90109-5; PHILLIPS RC, 1983, AQUAT BOT, V15, P145, DOI 10.1016/0304-3770(83)90025-6; PHILLIPS RC, 1983, AQUAT BOT, V17, P85, DOI 10.1016/0304-3770(83)90020-7; PHILLIPS RC, 1983, AQUAT BOT, V16, P1, DOI 10.1016/0304-3770(83)90047-5; PHILLIPS RC, 1983, MAR TECHNOL SOC J, V17, P59; PHILLIPS RC, 1971, AM J BOT, V58, P459; RASMUSSEN E, 1977, SEAGRASS ECOSYSTEMS, V4, P1; RIGGS S A JR, 1975, Rhodora, V77, P456; ROBERTSON AI, 1984, MAR BIOL, V80, P131, DOI 10.1007/BF02180180; ROMAN CT, 1988, AQUAT BOT, V32, P353, DOI 10.1016/0304-3770(88)90107-6; SAND-JENSEN K, 1975, Ophelia, V14, P185; SETCHELL WILLIAM ALBERT, 1929, UNIV CALIFORNIA PUBL BOT, V14, P389; SHORT FT, 1988, AQUAT BOT, V30, P295, DOI 10.1016/0304-3770(88)90062-9; SILBERHORN GM, 1983, AQUAT BOT, V15, P133, DOI 10.1016/0304-3770(83)90024-4; THAYER GW, 1984, ESTUARIES, V7, P351, DOI 10.2307/1351619; THORNEMILLER B, 1984, BOT MAR, V27, P539, DOI 10.1515/botm.1984.27.12.539; TUBBS CR, 1983, AQUAT BOT, V15, P223, DOI 10.1016/0304-3770(83)90070-0; VANLENT F, 1994, AQUAT BOT, V48, P59, DOI 10.1016/0304-3770(94)90073-6; VERMAAT JE, 1987, AQUAT BOT, V28, P287, DOI 10.1016/0304-3770(87)90006-4; WIGAND C, 1988, ESTUARIES, V11, P180, DOI 10.2307/1351970; WIUMANDERSEN S, 1984, OPHELIA, V23, P33, DOI 10.1080/00785236.1984.10426603; WIUMANDERSEN S, 1980, OPHELIA S, V1, P49 62 61 62 0 11 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3770 AQUAT BOT Aquat. Bot. APR 1994 48 1 31 58 10.1016/0304-3770(94)90072-8 28 Plant Sciences; Marine & Freshwater Biology Plant Sciences; Marine & Freshwater Biology NX131 WOS:A1994NX13100003 2019-02-26 J HANEY, JC; LEE, DS HANEY, JC; LEE, DS AIR-SEA HEAT-FLUX, OCEAN WIND FIELDS, AND OFFSHORE DISPERSAL OF GULLS AUK English Article SOUTH-ATLANTIC BIGHT; SEABIRD MOVEMENTS; ALBATROSSES; FLIGHT; PROCELLARIIFORMES Gull numbers in pelagic habitats off the southeastern United States were weakly associated with seasonal variability in mean wind speeds, but strongly associated with accumulated air-sea heat flux (a surrogate for temperature inversions; i.e. pre-thermal conditions) and wind-speed variance (an energy source for flight, as well as a thermal inducement). Single meteorological variables accounted for as much as 59 to 93% of seasonal changes in gull abundance. Gulls (including nonbreeders) delayed dispersal to oceanic waters until onset of winter meteorological conditions, several months after cessation of breeding. Our findings support Woodcock's convective-soaring hypothesis, which ascribed gull dispersal in winter to boundary-layer dynamics along eastern continental margins. We extend this model by linking gull morphology and flight to energy-efficient reliance on air-sea interactions and spatial patterns in seasonal wind fields. Summer meteorological conditions in much of the western North Atlantic Ocean facilitate coastal foraging by gulls, but act to preclude efficient foraging to and in offshore habitats. The presence or absence of coherence (meteorological consistency) in the aerial environment may have acted to select and maintain divergent life-history strategies in gulls and certain other inshore feeders. N CAROLINA STATE MUSEUM NAT SCI,RALEIGH,NC 27611 HANEY, JC (reprint author), PENN STATE UNIV,SCH FOREST RESOURCES,WILDLIFE TECHNOL PROGRAM,COLL PL,DU BOIS,PA 15801, USA. ATKINSON LP, 1983, J GEOPHYS RES-OC ATM, V88, P4705, DOI 10.1029/JC088iC08p04705; BLANTON JO, 1985, OCEANOGRAPHY SE US C, P10; BLOMQVIST S, 1984, MAR ECOL PROG SER, V20, P85, DOI 10.3354/meps020085; BOURNE WRP, 1982, IBIS, V124, P81, DOI 10.1111/j.1474-919X.1982.tb03746.x; BURGER J, 1989, SEABIRDS OTHER MARIN; Cairns D.K., 1992, Current Ornithology, V9, P37; CLAPP RB, 1983, MARINE BIRDS SE US 3; CONE CD, 1964, VIRGINIA I MAR SCI S, V50, P1; DOWDY S, 1991, STATISTICS RES; DUNN EK, 1973, NATURE, V244, P520, DOI 10.1038/244520a0; HANEY J C, 1985, Biological Oceanography, V3, P401; Haney J.C., 1992, Current Ornithology, V9, P105; HANEY JC, 1986, J MAR RES, V44, P361, DOI 10.1357/002224086788405301; HANEY JC, 1992, ORNIS SCAND, V23, P49, DOI 10.2307/3676427; HANEY JC, 1986, THESIS U GEORGIA ATH; HUNT GL, 1986, AUK, V103, P306; JOUVENTIN P, 1990, NATURE, V343, P746, DOI 10.1038/343746a0; KAISER GW, 1992, ORNIS SCAND, V23, P1, DOI 10.2307/3676419; LEE DS, 1987, WILSON BULL, V99, P116; LEE DS, 1989, 19891 OCC PAP N CAR; MANIKOWSKI S, 1971, Acta Zoologica Cracoviensia, V16, P581; NEWTON JG, 1971, OCEANOGRAPHIC ATLAS; PENNYCUICK CJ, 1982, PHILOS T ROY SOC B, V300, P75, DOI 10.1098/rstb.1982.0158; PENNYCUICK CJ, 1987, J EXP BIOL, V128, P335; PENNYCUICK CJ, 1983, J EXP BIOL, V102, P307; Pennycuik C.J., 1987, P43; RICKLEFS RE, 1990, COLON WATERBIRD, V13, P1, DOI 10.2307/1521414; ROWLETT RA, 1980, FWSOBS8004 US FISH W; SAGAR P M, 1989, Notornis, V36, P171; SCHNEIDER DC, 1991, OCEANOGR MAR BIOL, V29, P487; Snedecor G. W., 1980, STATISTICAL METHODS; TASKER ML, 1984, AUK, V101, P567; TAYLOR IR, 1983, ORNIS SCAND, V14, P90, DOI 10.2307/3676011; VELLEMAN PF, 1981, AM STAT, V35, P234, DOI 10.2307/2683296; WEBER AH, 1980, J PHYS OCEANOGR, V10, P1256, DOI 10.1175/1520-0485(1980)010<1256:MMWFFT>2.0.CO;2; WEISBERG RH, 1983, J GEOPHYS RES-OC ATM, V88, P4593, DOI 10.1029/JC088iC08p04593; WILKINSON L, 1989, SYSTAT SYSTEM STATIS; WILSON JA, 1975, NATURE, V257, P307, DOI 10.1038/257307a0; WOOD CJ, 1973, IBIS, V114, P244; WOODCOCK A H, 1975, Boundary-Layer Meteorology, V9, P63; Woodcock AH, 1940, J MAR RES, V3, P248; WOODCOCK ALFRED H., 1940, AUK, V57, P219 42 7 7 0 1 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 0004-8038 AUK AUK APR 1994 111 2 427 440 10.2307/4088606 14 Ornithology Zoology NM641 WOS:A1994NM64100017 2019-02-26 J CHOE, JC CHOE, JC SEXUAL SELECTION AND MATING SYSTEM IN ZOROTYPUS-GURNEYI CHOE (INSECTA, ZORAPTERA) .2. DETERMINANTS AND DYNAMICS OF DOMINANCE BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article AGE; DOMINANCE; LIFE-HISTORY STRATEGY; SIZE; ZORAPTERA HIERARCHY FORMATION; SIZE; THYSANOPTERA; EVOLUTION; HISTORY; AGE Body size is clearly an important factor influencing the outcome of agonistic contests, but is often weakly correlated with dominance ranks in Zorotypus gurneyi Choe (Insecta: Zoraptera). The study of the development and dynamics of dominance relations using artificially constructed colonies show that age, or tenure within the colony, is the prime determinant of dominance among males. Dominance hierarchies become relatively stable within 2 or 3 days and males that emerge later normally begin at the bottom of the hierarchy regardless of size. Males interact much more frequently when they are simultaneously introduced to each other than when they are allowed to emerge at different times. In the latter case, males that emerge late appear to recognize relative dominance of older males and avoid direct contests. Considering the high correlation between dominance rank and mating success, there is a strong selective advantage to males that emerge earlier and such pressure of sexual selection may be responsible for the difference in life history strategies between Z. gurneyi and its sympatric congener, Z. barberi Gurney, in central Panama. HARVARD UNIV, BIOL LABS, DEPT ORGANISM & EVOLUT BIOL, CAMBRIDGE, MA 02138 USA; SMITHSONIAN TROP RES INST, BALBOA, PANAMA Alcock J., 1979, P381; APPLEBY MC, 1983, ANIM BEHAV, V31, P600, DOI 10.1016/S0003-3472(83)80084-0; BORGIA G, 1980, BEHAVIOUR, V75, P185, DOI 10.1163/156853980X00393; CHASE ID, 1982, BEHAVIOUR, V80, P218, DOI 10.1163/156853982X00364; CHASE ID, 1985, ANIM BEHAV, V33, P86, DOI 10.1016/S0003-3472(85)80122-6; CHOE JC, 1994, BEHAV ECOL SOCIOBIOL, V34, P87; CHOE JC, 1990, THESIS HARVARD U CAM; CHOE JC, 1982, INSECTS PANAMA MESOA, P249; CRESPI BJ, 1986, ANIM BEHAV, V34, P1324, DOI 10.1016/S0003-3472(86)80204-4; CRESPI BJ, 1986, ECOL ENTOMOL, V11, P119, DOI 10.1111/j.1365-2311.1986.tb00286.x; CRESPI BJ, 1988, BEHAV ECOL SOCIOBIOL, V22, P293, DOI 10.1007/BF00299845; Eberhard W.G., 1979, P231; EBERHARD WG, 1980, SCI AM, V242, P166, DOI 10.1038/scientificamerican0380-166; FRANK LG, 1986, ANIM BEHAV, V34, P1510, DOI 10.1016/S0003-3472(86)80221-4; HAMMERSTEIN P, 1981, ANIM BEHAV, V29, P193, DOI 10.1016/S0003-3472(81)80166-2; HAND JL, 1986, Q REV BIOL, V61, P201, DOI 10.1086/414899; HUGHES AL, 1982, OECOLOGIA, V55, P258, DOI 10.1007/BF00384497; HUGHES CR, 1988, BEHAVIOUR, V107, P1, DOI 10.1163/156853988X00151; JACKSON WM, 1988, ETHOLOGY, V79, P71; JACKSON WM, 1988, ANIM BEHAV, V36, P1237, DOI 10.1016/S0003-3472(88)80086-1; JACKSON WM, 1991, BEHAV ECOL SOCIOBIOL, V28, P271; JOHNSON LK, 1982, EVOLUTION, V36, P251, DOI 10.1111/j.1558-5646.1982.tb05039.x; LANDAU H. G., 1951, BULL MATH BIOPHYS, V13, P1, DOI 10.1007/BF02478336; Michener C.D., 1990, P77; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; SCHAL C, 1983, BIOL BEHAV, V8, P117; Schein MW, 1975, SOCIAL HIERARCHY DOM; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; THORNHILL R, 1984, EVOLUTION, V38, P204, DOI 10.1111/j.1558-5646.1984.tb00272.x; West Eberhard M. J., 1969, Miscellaneous Publications Museum of Zoology University of Michigan, VNo. 140, P1; Wilson E.O., 1975, P1 31 13 14 0 3 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. APR 1994 34 4 233 237 5 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology NK992 WOS:A1994NK99200001 2019-02-26 J YIN, TJ; QUINN, JA YIN, TJ; QUINN, JA EFFECTS OF EXOGENOUS GROWTH-REGULATORS AND A GIBBERELLIN INHIBITOR ON SEX EXPRESSION AND GROWTH FORM IN BUFFALOGRASS (BUCHLOE-DACTYLOIDES), AND THEIR ECOLOGICAL SIGNIFICANCE BULLETIN OF THE TORREY BOTANICAL CLUB English Article BREEDING SYSTEMS; BUCHLOE-DACTYLOIDES; GENOTYPIC VARIATION; SEX EXPRESSION LIFE-HISTORY STRATEGIES; ATRIPLEX-CANESCENS; GRAMINEAE; PLANTS; RATIOS; POPULATION; DIOECY Populations of buffalograss (Buchloe dactyloides (Nutt.) Engelm.) consist of varying proportions of plants with male inflorescences only, female inflorescences only, or a mixture of male and female inflorescences that appears to depend on environmental conditions. To investigate the degree of stability in sex expression and its potential hormonal control, we applied exogenous gibberellin, cytokinin, auxin, Ethrel, and a gibberellin inhibitor (paclobutrazol) to monoecious, male, and female plants of buffalo-grass in a series of experiments. No changes in sex type in male and female plants were observed. Gibberellin showed significant effects in promoting maleness in monoecious genotypes and increasing male inflorescences in male plants. Paclobutrazol greatly enhanced femaleness in monoecious genotypes. For all other hormones, there was no consistent effect on sex expression. For all genotypes paclobutrazol greatly reduced plant height and stolon internode length and produced a dense prostrate mat by changing the tiller habit from upright to prostrate. In contrast, gibberellin-treated plants had a higher growth rate and longer stolons (due to increased internode lengths) than controls. Furthermore, the gibberellin-treated female culms were significantly taller than controls, while male culms were not, also indicating that a higher gibberellin endogenous level is associated with the production of male inflorescences in buffalograss. There were highly significant genotypic differences within the same sex type in numbers of inflorescences and in the inflorescence sex ratio in monoecious plants. The results are consistent with the hypothesis that a mutation(s), greatly reducing gibberellin levels or its activity and leading more or less simultaneously to shortened culms, contracted inflorescences, and increased femaleness, initiated the evolution of dioecy in buffalograss. YIN, TJ (reprint author), RUTGERS STATE UNIV,DEPT BIOL SCI,PISCATAWAY,NJ 08855, USA. Arber A., 1934, GRAMINEAE STUDY CERE; BETTLE AA, 1950, WYOMING AGR EXP STA, V293; BURR RICHARD D., 1951, JOUR RANGE MANAGEMENT, V4, P267, DOI 10.2307/3894337; Chailakhyan M. K, 1987, SEXUALITY PLANTS ITS; CHAILAKHYAN MK, 1979, AM J BOT, V66, P717, DOI 10.2307/2442417; DELONG A, 1993, CELL, V74, P757, DOI 10.1016/0092-8674(93)90522-R; DOUST LL, 1981, J ECOL, V69, P743, DOI 10.2307/2259633; FREEMAN DC, 1984, BOT GAZ, V145, P385, DOI 10.1086/337471; FRIEDLANDER M, 1977, PLANT CELL PHYSIOL, V18, P681; FUCHS E, 1977, PLANT CELL PHYSIOL, V18, P1193, DOI 10.1093/oxfordjournals.pcp.a075540; GALUN E, 1965, PLANT PHYSIOL, V40, P321, DOI 10.1104/pp.40.2.321; HALEVY AH, 1967, PHYSIOL PLANTARUM, V20, P1052, DOI 10.1111/j.1399-3054.1967.tb08392.x; HANSEN DJ, 1976, CROP SCI, V16, P371, DOI 10.2135/cropsci1976.0011183X001600030013x; HENSEL R. L., 1938, JOUR AMER SOC AGRON, V30, P1043; HITCHCOCK AS, 1951, USDA MISC PUBL, V200; HUFF DR, 1992, AM J BOT, V79, P207, DOI 10.2307/2445109; HUFF DR, 1987, CROP SCI, V27, P623, DOI 10.2135/cropsci1987.0011183X002700040002x; MCARTHUR ED, 1992, EVOLUTION, V46, P1708, DOI 10.1111/j.1558-5646.1992.tb01163.x; MCARTHUR ED, 1982, BOT GAZ, V143, P476; METZGER JD, 1988, B PLANT GROWTH REGUL, V16, P13; METZGER JD, 1984, HDB FLOWERING, P384; PHINNEY BO, 1956, P NATL ACAD SCI USA, V42, P185, DOI 10.1073/pnas.42.4.185; PHINNEY BO, 1961, PLANT GROWTH REGUL, P489; PLANK EN, 1892, B TORREY BOT CLUB, V19, P303; QUINN JA, 1991, AM J BOT, V78, P481, DOI 10.2307/2445257; QUINN JA, 1987, AM J BOT, V74, P1167, DOI 10.2307/2444153; QUINN JA, 1986, AM J BOT, V73, P874, DOI 10.2307/2444298; REEDER JR, 1971, BRITTONIA, V23, P105, DOI 10.2307/2805426; ROOD SB, 1980, PLANT PHYSIOL, V66, P793, DOI 10.1104/pp.66.5.793; RUDICH J, 1976, J AM SOC HORTIC SCI, V101, P48; RUDICH J, 1972, PLANT PHYSIOL, V50, P585, DOI 10.1104/pp.50.5.585; SHAW RB, 1987, BOT GAZ, V148, P85, DOI 10.1086/337631; SHIFRISS O, 1964, SCIENCE, V143, P1452, DOI 10.1126/science.143.3613.1452; Winer B. J., 1971, STATISTICAL PRINCIPL; WU L, 1984, HORTSCIENCE, V19, P505; YIN TJ, 1992, B TORREY BOT CLUB, V119, P431, DOI 10.2307/2996731 36 4 4 6 11 TORREY BOTANICAL CLUB BRONX NEW YORK BOTANICAL GARDEN, BRONX, NY 10458 0040-9618 B TORREY BOT CLUB Bull. Torrey Bot. Club APR-JUN 1994 121 2 170 179 10.2307/2997169 10 Plant Sciences Plant Sciences NY138 WOS:A1994NY13800008 2019-02-26 J RICE, SD; THOMAS, RE; MOLES, A RICE, SD; THOMAS, RE; MOLES, A PHYSIOLOGICAL AND GROWTH DIFFERENCES IN 3 STOCKS OF UNDERYEARLING SOCKEYE-SALMON (ONCORHYNCHUS-NERKA) ON EARLY ENTRY INTO SEAWATER CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article We compared the impact of exposure to seawater on three sockeye salmon (Oncorhynchus nerka) stocks: one that normally migrates to sea as underyearlings (sea-type) and two with the more common life history strategies of 1 (river-type) or 2 (lake-type) yr of freshwater residence prior to seaward migration. Innate differences in survival, ability to regulate tissue chlorides, and oxygen consumption when first introduced into salt water were more evident in April and May when fish were less than 50 mm in length. In fish longer than 50 mm, the only significant differences among the stocks were in saltwater growth. Between June and August, sea-type fish showed faster growth than river-type fish which in turn grew faster than lake-type fish. When introduced into salt water in October, virtually no growth occurred in any stock, regardless of fish size. River-type and lake-type sockeye, which normally overwinter 1 and 2 yr, respectively, in freshwater, can be reared in seawater if underyearlings are raised to a length of 50 mm before release into salt water, similar to the normal life history of sea-type underyearlings. Early life history appears to be influenced more by habitat than by genetics. CALIF STATE UNIV CHICO,DEPT BIOL SCI,CHICO,CA 95929; NOAA,NATL MARINE FISHERIES SERV,AUKE BAY LAB,JUNEAU,AK 99801 AMEND DF, 1987, SE ALASKA INTERDIVIS; BARRON MG, 1986, PROG FISH CULT, V48, P294, DOI 10.1577/1548-8640(1986)48<294:TCLOCS>2.0.CO;2; BARTON BA, 1987, T AM FISH SOC, V116, P257, DOI 10.1577/1548-8659(1987)116<257:MCOAPS>2.0.CO;2; Birtwell I.K., 1987, Canadian Special Publication of Fisheries and Aquatic Sciences, V96, P25; BUCARIA PG, 1968, THESIS OREGON STATE; CLARKE WC, 1978, CAN J ZOOL, V56, P2413, DOI 10.1139/z78-326; FOERSTER RE, 1968, B FISH RES BOARD CAN, V162; FOOTE CJ, 1992, CAN J FISH AQUAT SCI, V49, P99, DOI 10.1139/f92-012; GILBERT CH, 1918, ANN REP BC FISH DEP, V5, P26; HEIFETZ J, 1989, CAN J FISH AQUAT SCI, V46, P633, DOI 10.1139/f89-080; Hoar W.S., 1988, P275; MCBRIDE DN, 1983, 101 AL DEP FISH GAM; MCGREGOR A, 1986, 174 AL DEP FISH GAM; MCPHERSON SA, 1987, SE ALASKA INTERDIVIS; MCPHERSON SA, 1986, 188 AL DEP FISH GAM; MURPHY ML, 1988, NWAFC8831 PROC REP; MURPHY ML, 1991, NOAA NMFSFNWC203 TEC; Pahlke KA, 1988, 224 AL DEP FISH GAM; SILVERSTONE H, 1957, J AM STAT ASSOC, V52, P567; SOKAL RR, 1969, BIOMETRY; TAYLOR SG, 1992, 1992 PAC NW FISH CUL; TAYLOR SG, 1992, ALASKA DEP FISH GAME, V9221; THORPE J E, 1985, Aquaculture, V45, P1; VAUGHAN DS, 1982, OAK RIDGE NATL LAB P, V1979; Wood C.C., 1987, Canadian Special Publication of Fisheries and Aquatic Sciences, V96, P12; ZIMMERMA.JL, 1965, PHYSIOL ZOOL, V38, P370, DOI 10.1086/physzool.38.4.30152415 26 8 9 0 2 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0706-652X CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. APR 1994 51 4 974 980 10.1139/f94-097 7 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology NR098 WOS:A1994NR09800023 2019-02-26 J BESHERS, SN; TRANIELLO, JFA BESHERS, SN; TRANIELLO, JFA THE ADAPTIVENESS OF WORKER DEMOGRAPHY IN THE ATTINE ANT TRACHYMYRMEX-SEPTENTRIONALIS ECOLOGY English Article ANT; ATTINI; CASTE THEORY; FITNESS; LIFE HISTORY STRATEGY; TRACHYMYRMEX PHEIDOLE-DENTATA; LOAD CARRIAGE; CASTE RATIOS; HYMENOPTERA; FORMICIDAE; ATTA; DIVISION; LABOR; ORGANIZATION; POLYMORPHISM Caste theory states that worker size distributions in ant colonies have evolved for efficient division of labor and predicts that they should vary with habitat and have an effect on fitness. We tested these predictions in a comparative study of worker size variation and colony fitness in Florida and Long Island populations of Trachymyrmex septentrionalis. Colonies from the two populations were excavated shortly before the time of the mating flights, so that workers and reproductive forms could be censused. We measured worker head widths in each colony and analyzed the resulting size frequency distributions using the mean, standard deviation, skewness, and kurtosis, and also principal components derived from these parameters. Size frequency distributions were unimodal and close to normal, with a tendency to negative skewness. Colonies in the Long Island population had both larger workers and greater size variation than those in Florida. Florida colonies followed a growth trajectory in which the mean and standard deviation of worker head width both increased with colony size, whereas in Long Island there was an inverse relationship between the mean and standard deviation that was independent of colony size. Analysis based on the principal components showed that worker size variation significantly affected fitness in both populations, and this was not a secondary effect of colony size. Population differences in colony life history strategies may account for the observed patterns: the Long Island population appears to be adapted for surviving the winter diapause, while the Florida population has experienced different selective pressures, possibly for rapid colony growth. Size variation that has evolved in the context of life history strategies may serve as a preadaptation for division of labor. BESHERS, SN (reprint author), BOSTON UNIV, DEPT BIOL, BOSTON, MA 02215 USA. ABRAHAMSON W G, 1984, Florida Scientist, V47, P209; BARTHOLOMEW GA, 1988, PHYSIOL ZOOL, V61, P57, DOI 10.1086/physzool.61.1.30163737; BOOMSMA JJ, 1985, BEHAV ECOL SOCIOBIOL, V18, P19; Brandao C.R.F., 1978, Psyche (Cambridge), V85, P229, DOI 10.1155/1978/10958; CALABI P, 1989, BEHAV ECOL SOCIOBIOL, V24, P69, DOI 10.1007/BF00299638; CALABI P, 1989, J INSECT BEHAV, V2, P663, DOI 10.1007/BF01065785; CALABI P, 1989, J INSECT PHYSIOL, V35, P643, DOI 10.1016/0022-1910(89)90127-3; CURETON EE, 1983, FACTOR ANAL APPLIED; DAGOSTINO RB, 1990, AM STAT, V44, P316, DOI 10.2307/2684359; Endler JA, 1986, NATURAL SELECTION WI; Gordon D.M., 1989, Oxford Surveys in Evolutionary Biology, V6, P55; HERBERS JM, 1980, EVOLUTION, V34, P575, DOI 10.1111/j.1558-5646.1980.tb04845.x; HOLLDOBLER B, 1990, ANTS BELKNAP; LENCZEWSKI B, 1987, THESIS FLORIDA STATE; LIGHTON JRB, 1987, PHYSIOL ZOOL, V60, P524, DOI 10.1086/physzool.60.5.30156127; LOPEZ JLR, 1987, ECOLOGY, V68, P1630, DOI 10.2307/1939855; Olsvig L. S., 1979, Pine barrens: ecosystem and landscape., P265; Oster G. F., 1978, CASTE ECOLOGY SOCIAL; PORTER SD, 1986, ANN ENTOMOL SOC AM, V79, P723, DOI 10.1093/aesa/79.4.723; PORTER SD, 1985, BEHAV ECOL SOCIOBIOL, V16, P323, DOI 10.1007/BF00295545; PORTER SD, 1983, ANN ENTOMOL SOC AM, V76, P866, DOI 10.1093/aesa/76.5.866; RISSING SW, 1987, BEHAV ECOL SOCIOBIOL, V20, P117, DOI 10.1007/BF00572633; SCHMIDHEMPEL P, 1992, J EVOLUTION BIOL, V5, P1, DOI 10.1046/j.1420-9101.1992.5010001.x; TSCHINKEL WR, 1988, BEHAV ECOL SOCIOBIOL, V22, P103, DOI 10.1007/BF00303545; TSCHINKEL WR, 1993, ECOL MONOGR, V63, P425, DOI 10.2307/2937154; WALKER J, 1986, ECOLOGY, V67, P1052, DOI 10.2307/1939828; WEBER NA, 1972, P AM PHILOS SOC PHIL; WHEELER DE, 1991, AM NAT, V138, P1218, DOI 10.1086/285279; Wheeler W.M., 1910, ANTS THEIR STRUCTURE; Wilson E.O., 1975, P1; WILSON EO, 1968, AM NAT, V102, P41, DOI 10.1086/282522; WILSON EO, 1980, BEHAV ECOL SOCIOBIOL, V7, P143, DOI 10.1007/BF00299520; WILSON EO, 1980, BEHAV ECOL SOCIOBIOL, V7, P157, DOI 10.1007/BF00299521; WILSON EO, 1953, Q REV BIOL, V28, P136, DOI 10.1086/399512; WILSON EO, 1976, BEHAV ECOL SOCIOBIOL, V1, P63, DOI 10.1007/BF00299953; WILSON EO, 1983, BEHAV ECOL SOCIOBIOL, V14, P55, DOI 10.1007/BF00366656; 1985, SAS USERS GUIDE STAT; 1982, MONTHLY NORMALS TEMP 38 52 52 1 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology APR 1994 75 3 763 775 13 Ecology Environmental Sciences & Ecology NE029 WOS:A1994NE02900017 2019-02-26 J GENOUD, M; PERRIN, N GENOUD, M; PERRIN, N FECUNDITY VERSUS OFFSPRING SIZE IN THE GREATER WHITE-TOOTHED SHREW, CROCIDURA-RUSSULA JOURNAL OF ANIMAL ECOLOGY English Article SIZE; REPRODUCTION; GROWTH; INDIVIDUAL VARIATION; LIFE-HISTORY THEORY LITTER SIZE; SORICIDAE; INSECTIVORA; POPULATION; EVOLUTION; HABITAT; SOREX 1. The relationships between female body mass (W(a)), litter size (m), juvenile growth rate (G) and mass at weaning (W20) were examined by monitoring natural litters in 29 greater white-toothed shrews, Crocidura russula (Hermann 1780). The trade-offs between m and G or W20 were further investigated by manipulating litter sizes: each of seven females reared four litters of 2, 4, 6 and 8 offspring. 2. Offspring mass at weaning (W20) exhibited a large variance, most of which could be attributed (ANCOVA On manipulated litters) to two effects: a litter-size effect, and a female individual effect, referred to as 'female quality'. 3. Litter size explained 68% of the variance in W20 among manipulated litters (linear regression). The limited milk supply was probably responsible for this effect, because litter size depressed growth rate during the first half of the lactation period (G1), but not during the weaning stage (G2). 4. Among non-manipulated litters, litter size correlated positively with maternal body mass (W(a)), so that large females tended to produce small juveniles. This correlation between m and W(a) is seen as the result of a body-mass dependence in the cost of raising a litter of a given size, during either pregnancy or lactation. 5. Differences in 'female quality' explained 16% of the variance in W20 among manipulated litters. This factor did not affect G1 and may thus relate to differences among offspring of different females in their rates of processing milk and/or external food during late lactation. 6. 'Female quality' was independent of both body mass and litter size: larger females did not produce larger offspring when controlled for litter size, while higher-quality females did not produce larger litters. 7. Our results support the hypothesis that most variance in adult and juvenile body masses is non-genetic, and stems from the trade-off between litter size and offspring size. GENOUD, M (reprint author), UNIV LAUSANNE,INST ZOOL & ANIM ECOL,CH-1015 LAUSANNE,SWITZERLAND. ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; BESANCON F, 1984, THESIS U LAUSANNE; CANTONI D, 1989, ANIM BEHAV, V38, P205, DOI 10.1016/S0003-3472(89)80083-1; CLUTTONBROCK TH, 1988, REPROD SUCCESS, P472; FALCONER D. S., 1965, Genetics today. Proceedings of the XI International Congress of Genetics, The Hague, the Netherlands, September, 1963., V3, P763; GENOUD M, 1985, J ZOOL, V207, P63; GENOUD M, 1979, TERRE VIE-REV ECOL A, V33, P539; GENOUD M, 1990, J ZOOL, V220, P41, DOI 10.1111/j.1469-7998.1990.tb04293.x; HANSKI I, 1984, ANN ZOOL FENN, V21, P157; JEANMAIREBESANCON F, 1988, ACTA THERIOL, V33, P477, DOI 10.4098/AT.arch.88-40; JEANMAIREBESANCON F, 1986, ACTA OECOL-OEC APPL, V7, P355; KENAGY GJ, 1990, J ANIM ECOL, V59, P73, DOI 10.2307/5159; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; KONIG B, 1993, BEHAV PROCESS, V28, P223; LACK D, 1954, NATURAL REGULATION A; MENDL M, 1988, J ZOOL, V215, P15, DOI 10.1111/j.1469-7998.1988.tb04882.x; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; RIBBLE DO, 1992, J ANIM ECOL, V61, P457, DOI 10.2307/5336; RICHNER H, 1989, J ANIM ECOL, V58, P427, DOI 10.2307/4840; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns SC., 1992, EVOLUTION LIFE HIST; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; TRIVERS RL, 1974, AM ZOOL, V14, P249; Trivers Robert, 1985, SOCIAL EVOLUTION; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VOGEL P, 1969, Revue Suisse de Zoologie, V76, P1079; VOGEL P, 1972, Revue Suisse de Zoologie, V79, P1201; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 29 15 15 0 7 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. APR 1994 63 2 328 336 10.2307/5551 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology MZ057 WOS:A1994MZ05700010 2019-02-26 J DEMEESTER, L DEMEESTER, L LIFE-HISTORIES AND HABITAT SELECTION IN DAPHNIA - DIVERGENT LIFE-HISTORIES OF DAPHNIA-MAGNA CLONES DIFFERING IN PHOTOTACTIC BEHAVIOR OECOLOGIA English Article LIFE HISTORY; COADAPTED TRAITS; CLONE; DAPHNIA; DIURNAL VERTICAL MIGRATION DIURNAL VERTICAL MIGRATION; ZOOPLANKTON; POPULATION; GROWTH; PULEX; CRUSTACEA; CLADOCERA; SIZE; FOOD; REPRODUCTION To test the hypothesis of co-adaptation of life histories and daytime vertical distribution (vertical migration behaviour) in Daphnia, life history characteristics were analysed for two positively, three negatively, and four intermediately phototactic Daphnia magna clones. Clones with different phototactic behaviour were found to have divergent life history strategies, with positively phototactic clones being good exploiters under the non-limiting conditions provided in the laboratory, i.e. low density (1 ind./1), high food concentration (6,5-7 10(5) Scenedesmus cells/ml, restored daily) and high temperature (20-degrees-C). They realized a high intrinsic rate of increase at a small adult body size through rapid development, at a cost of producing small neonates. Negatively and intermediately phototactic clones had larger adult body sizes, and produced larger neonates that were more starvation-resistant than those of positively phototactic clones. Selection for high intrinsic rate of increase in intermediately phototactic clones was mediated through the production of large clutches. DEMEESTER, L (reprint author), STATE UNIV GHENT,KL,ANIM ECOL LAB,LEDEGANCKSTR 35,B-9000 GHENT,BELGIUM. De Meester, Luc/F-3832-2015 De Meester, Luc/0000-0001-5433-6843 BROOKFIELD JFY, 1984, GENETICA, V63, P161, DOI 10.1007/BF00128409; CARVALHO GR, 1987, J ANIM ECOL, V56, P469, DOI 10.2307/5061; DAWIDOWICZ P, 1992, LIMNOL OCEANOGR, V37, P1589, DOI 10.4319/lo.1992.37.8.1589; de Meester L., 1991, Biologisch Jaarboek, V58, P84; De Meester L., 1993, Advances in Limnology, V39, P137; DEMEESTER L, 1991, HYDROBIOLOGIA, V225, P217, DOI 10.1007/BF00028400; DEMEESTER L, 1989, OECOLOGIA, V78, P142, DOI 10.1007/BF00377210; DEMEESTER L, 1993, ECOLOGY, V74, P1467; DEMEESTER L, 1993, ACAD ANALECTA, V55, P143; DEMEESTER L, IN PRESS GENETICS EV, P323; DODSON S, 1989, BIOSCIENCE, V39, P447, DOI 10.2307/1311136; DUMONT H J, 1990, Revista Brasileira de Biologia, V50, P867; Duncan A., 1993, Advances in Limnology, V39, P99; EBERT D, 1993, HEREDITY, V70, P335, DOI 10.1038/hdy.1993.48; EBERT D, 1991, OECOLOGIA, V86, P243, DOI 10.1007/BF00317537; EBERT D, 1991, HYDROBIOLOGIA, V225, P245, DOI 10.1007/BF00028402; GABRIEL W, 1988, AM NAT, V132, P199, DOI 10.1086/284845; GABRIEL W, 1988, VERH INT VEREIN LIMN, V23, P807; GLIWICZ MZ, 1988, B MAR SCI, V43, P695; GUISANDE C, 1991, OECOLOGIA, V87, P357, DOI 10.1007/BF00634591; Haney James F., 1993, Advances in Limnology, V39, P1; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; HEDRICK PW, 1986, ANNU REV ECOL SYST, V17, P535; HUTCHINSON G, 1961, AM NAT, V95, P137, DOI 10.1086/282171; LAMPERT W, 1989, FUNCT ECOL, V3, P21, DOI 10.2307/2389671; Lampert Winfried, 1993, Advances in Limnology, V39, P79; LEIBOLD M, 1991, OECOLOGIA, V86, P342, DOI 10.1007/BF00317599; LOARING JM, 1981, OECOLOGIA, V51, P162, DOI 10.1007/BF00540595; Loose Carsten J., 1993, Advances in Limnology, V39, P29; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; MACHACEK J, 1991, HYDROBIOLOGIA, V225, P193, DOI 10.1007/BF00028397; MEYER JS, 1986, ECOLOGY, V67, P1156, DOI 10.2307/1938671; Muller Jakob, 1993, Advances in Limnology, V39, P167; PACE ML, 1984, OECOLOGIA, V63, P43, DOI 10.1007/BF00379783; PIJANOWSKA J, 1987, HYDROBIOLOGIA, V148, P175, DOI 10.1007/BF00008403; Pijanowska Joanna, 1993, Advances in Limnology, V39, P89; RINGELBERG J, 1991, J PLANKTON RES, V13, P83, DOI 10.1093/plankt/13.1.83; SOKAL R., 1981, BIOMETRY; SPITZE K, 1992, AM NAT, V139, P229, DOI 10.1086/285325; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; STICH HB, 1984, OECOLOGIA, V61, P192, DOI 10.1007/BF00396759; STICH HB, 1981, NATURE, V293, P396, DOI 10.1038/293396a0; TESSIER AJ, 1982, LIMNOL OCEANOGR, V27, P707, DOI 10.4319/lo.1982.27.4.0707; VANNI MJ, 1987, OECOLOGIA, V72, P263, DOI 10.1007/BF00379277; WEIDER LJ, 1984, LIMNOL OCEANOGR, V29, P225, DOI 10.4319/lo.1984.29.2.0225; WEIDER LJ, 1993, OIKOS, V67, P385, DOI 10.2307/3545351; WEIDER LJ, 1987, OECOLOGIA, V73, P251, DOI 10.1007/BF00377515; WILKINSON L, 1990, SYSTAT SYSTEM STATIS; YAMPOLSKY LY, 1991, HYDROBIOLOGIA, V225, P255 49 37 37 1 16 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia APR 1994 97 3 333 341 10.1007/BF00317323 9 Ecology Environmental Sciences & Ecology NH877 WOS:A1994NH87700007 28313628 2019-02-26 J COOCH, EG; RICKLEFS, RE COOCH, EG; RICKLEFS, RE DO VARIABLE ENVIRONMENTS SIGNIFICANTLY INFLUENCE OPTIMAL REPRODUCTIVE EFFORT IN BIRDS OIKOS English Article LIFE-HISTORY TRAITS; CLUTCH SIZE; COMPUTER-SIMULATION; CYCLE THEORY; EVOLUTION; POPULATION; STRATEGIES; SELECTION; CONSEQUENCES; MORTALITY It is often assumed that environmental variability strongly influences the evolution of life-history strategies, principally by determining the optimal level of reproductive effort, and that differences in life histories between populations and species represent fundamental differences in reproductive effort. In this paper, we use computer simulations and simple analytical approaches to demonstrate that even large amounts of temporal variation in either fecundity or survival have relatively little influence on optimal reproductive effort for generalized avian life histories. We suggest that demographic differences among populations or closely related species are not likely to result from differences in the optimization of reproductive effort to environments with different levels of variability alone, but may reflect instead differences in average values of fecundity and survival. SIMON FRASER UNIV, DEPT BIOL SCI, BURNABY V5A 1S6, BC, CANADA COOCH, EG (reprint author), UNIV PENN, DEPT BIOL, PHILADELPHIA, PA 19104 USA. AINLEY DG, 1980, ECOLOGY, V61, P522, DOI 10.2307/1937418; ALERSTAM T, 1984, OIKOS, V43, P253, DOI 10.2307/3544778; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; ASKENMO C, 1979, AM NAT, V114, P748, DOI 10.1086/283523; BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; Caswell H., 1989, MATRIX POPULATION MO; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CLUTTONBROCK TH, 1988, REPRODUCTIVE SUCCESS; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; EMLEN JM, 1989, ECOL MODEL, V44, P253, DOI 10.1016/0304-3800(89)90033-1; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.es.22.110191.002205; HASTINGS A, 1979, P NATL ACAD SCI USA, V76, P4700, DOI 10.1073/pnas.76.9.4700; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LINTON L, 1991, COMPUT BIOL MED, V21, P345, DOI 10.1016/0010-4825(91)90015-2; Martin T.E., 1992, Current Ornithology, V9, P163; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MILLER RS, 1974, AM SCI, V62, P172; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; OCONNOR RJ, 1991, IBIS, V133, P36, DOI 10.1111/j.1474-919X.1991.tb07667.x; OCONNOR RJ, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P64; Perrins C.M., 1977, P181; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; REAL LA, 1992, ECOLOGY, V73, P1227, DOI 10.2307/1940671; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Ricklefs R.E., 1983, Current Ornithology, V1, P1; Ricklefs R.E., 1973, P366; RICKLEFS RE, 1980, AUK, V97, P38; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; RICKLEFS RE, 1968, P NATL ACAD SCI USA, V61, P847, DOI 10.1073/pnas.61.3.847; RICKLEFS RE, 1981, AM NAT, V117, P403, DOI 10.1086/283723; Rohwer Frank C., 1992, P486; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SIBLY RM, 1991, COMPUT BIOL MED, V21, P357, DOI 10.1016/0010-4825(91)90016-3; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 42 25 25 0 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos APR 1994 69 3 447 459 10.2307/3545857 13 Ecology Environmental Sciences & Ecology NP632 WOS:A1994NP63200010 2019-02-26 J SEYMOUR, RM SEYMOUR, RM OPTIMAL RESOURCE CONSUMPTION, DISCRETE DYNAMICS, AND INTRASPECIFIC COMPETITION THEORETICAL POPULATION BIOLOGY English Article DENSITY DEPENDENCE; RISK; MODELS; GROWTH; REPRODUCTION; POPULATIONS; STRATEGIES; EVOLUTION; SELECTION; ENERGY The relation of a single species population to a limiting resource (food) is considered. A notion of optimal consumption is defined whereby an average individual minimizes the net cost (in terms of loss of fitness) of securing sufficient resource for growth and reproduction. A corresponding optimal consumption dynamics for the species/resource interaction is obtained. It is shown that controlled, periodic resource renewal (such as in the experiments with flour beetles of Park et al., 1964) can prevent population crash, and determines both a discrete dynamics (corresponding to population numbers at renewal times) and an optimal continuous dynamics interpolating the values of the discrete dynamics. Furthermore, under mild hypotheses, any single species discrete population dynamics may be construed as arising in this way. Other types of resource renewal are also considered. Specific assumptions about the interaction between the rate of resource renewal, the (optimal) per capita consumption rate, and the cost of maintaining this rate in the face of competition are considered, and a continuum of optimal consumption strategies is delineated. The extremes of this continuum are discussed in relation to dynamic stability, life-history strategies, and the influence of intraspecific competition. Finally, the models constructed here are used to consider the 'stability question'': Why do most natural populations appear to be stable? (C) 1994 Academic. Press, Inc. SEYMOUR, RM (reprint author), UNIV LONDON UNIV COLL,DEPT MATH,GOWER ST,LONDON WC1E 6BT,ENGLAND. Allen T. F. H., 1982, HIERARCHY PERSPECTIV; Begon M, 1981, POPULATION ECOLOGY U; BEGON M, 1984, EVOLUTIONARY ECOLOGY, P175; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BELLOWS TS, 1981, J ANIM ECOL, V50, P139, DOI 10.2307/4037; CALOW P, 1983, SCI PROG, V68, P117; CALOW P, 1984, EVOLUTIONARY ECOLOGY, P81; CARACO T, 1981, BEHAV ECOL SOCIOBIOL, V8, P213, DOI 10.1007/BF00299833; CARACO T, 1986, ECOLOGY, V67, P1180, DOI 10.2307/1938673; DAWKINS R, 1979, PROC R SOC SER B-BIO, V205, P489, DOI 10.1098/rspb.1979.0081; Ellner S., 1989, Comments on Theoretical Biology, V1, P129; GILLESPIE RG, 1987, ECOLOGY, V68, P887, DOI 10.2307/1938360; GINZBURG L, 1983, SERIES EVOLUTIONARY; GREENWOOD JJD, 1984, EVOLUTIONARY ECOLOGY, P223; GURNEY WSC, 1980, NATURE, V287, P17, DOI 10.1038/287017a0; HASSELL MP, 1976, J ANIM ECOL, V45, P471, DOI 10.2307/3886; Hirsch MW, 1974, DIFFERENTIAL EQUATIO; KREBS CJ, 1985, ECOLOGY EXPT ANAL DI; LOMNICKI A, 1988, MONOGRAPHS POPULATIO, V25; MANI GS, 1984, EVOLUTIONARY ECOLOGY, P363; May R. M., 1973, STABILITY COMPLEXITY; May R.M., 1981, THEORETICAL ECOLOGY, P5; MAY RM, 1976, AM NAT, V110, P573, DOI 10.1086/283092; MAY RM, 1976, NATURE, V261, P459, DOI 10.1038/261459a0; NICHOLSON AJ, 1957, COLD SPRING HARB SYM, V22, P153, DOI 10.1101/SQB.1957.022.01.017; NICHOLSON AJ, 1954, AUST J ZOOL, V2, P9, DOI 10.1071/ZO9540009; PARK T, 1964, PHYSIOL ZOOL, V37, P94; REAL L, 1986, ANNU REV ECOL SYST, V17, P371, DOI 10.1146/annurev.es.17.110186.002103; REISS MJ, 1990, ALLOMETRY GROWTH REP; Roughgarden J, 1979, THEORY POPULATION GE; SCHMITZ OJ, 1991, THEOR POPUL BIOL, V39, P100, DOI 10.1016/0040-5809(91)90042-E; SCHOENER TW, 1973, THEOR POPUL BIOL, V4, P56, DOI 10.1016/0040-5809(73)90006-3; SCHROEDER LA, 1981, J THEOR BIOL, V93, P805, DOI 10.1016/0022-5193(81)90341-6; Seger J., 1985, P43; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; STUBBS M, 1977, J ANIM ECOL, V46, P677, DOI 10.2307/3837; THOMAS WR, 1980, ECOLOGY, V61, P1312, DOI 10.2307/1939039 39 2 2 1 10 ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 0040-5809 THEOR POPUL BIOL Theor. Popul. Biol. APR 1994 45 2 132 166 10.1006/tpbi.1994.1008 35 Ecology; Evolutionary Biology; Genetics & Heredity; Mathematical & Computational Biology Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity; Mathematical & Computational Biology NN334 WOS:A1994NN33400002 2019-02-26 J DRAYE, X; BULLENS, P; LINTS, FA DRAYE, X; BULLENS, P; LINTS, FA GEOGRAPHIC VARIATIONS OF LIFE-HISTORY STRATEGIES IN DROSOPHILA-MELANOGASTER .1. ANALYSIS OF WILD-CAUGHT POPULATIONS EXPERIMENTAL GERONTOLOGY English Article DROSOPHILA-MELANOGASTER; LIFE HISTORY STRATEGIES; AGING; ANTAGONISTIC PLEIOTROPY; WILD-CAUGHT POPULATIONS SPONTANEOUS LOCOMOTOR-ACTIVITY; LIVING THEORY; SELECTION; LONGEVITY; HYPERGRAVITY; ENVIRONMENT; FITNESS; SPAN; COVARIATION; EXPRESSION Life history traits-hatchability, developmental time, longevity, and egg production-of five freshly caught European populations of Drosophila melanogaster were measured under homogeneous laboratory conditions. No significant phenotypic correlations between early and late fitness could be found for the five populations at the within-population level. At the between-population level, no consistent indication of any significant genetic correlation, either positive or negative, was detected for the same traits. These results are not in agreement either with the predictions of the antagonistic pleiotropy hypothesis proposed by Williams, nor with the opposite hypothesis suggested by Lints. The results suggest that natural populations of Drosophila melanogaster are genetically different for at least some life history traits measured in the laboratory as soon as possible after capture. UNIV CATHOLIQUE LOUVAIN, UNITE GENET, PL CROIX SUD 2 BTE 14, B-1348 LOUVAIN, BELGIUM Draye, Xavier/0000-0002-3637-3330 ARKING R, 1988, EXP GERONTOL, V23, P59, DOI 10.1016/0531-5565(88)90020-4; ARKING R, 1987, EXP GERONTOL, V22, P199, DOI 10.1016/0531-5565(87)90040-4; BARET P, 1993, GERONTOLOGY, V39, P252; CHEVERUD JM, 1988, EVOLUTION, V42, P958, DOI 10.1111/j.1558-5646.1988.tb02514.x; CLARE MJ, 1985, HEREDITY, V55, P19, DOI 10.1038/hdy.1985.67; CLARK AG, 1987, AM NAT, V129, P933; DAVID J, 1963, J INSECT PHYSIOL, V9, P13, DOI 10.1016/0022-1910(63)90080-5; DAVID J, 1974, Archives de Zoologie Experimentale et Generale, V115, P263; DOBZHANSKY T, 1964, HEREDITY, V19, P597, DOI 10.1038/hdy.1964.73; DRAYE X, UNPUB GEOGRAPHIC VAR; ENGSTROM G, 1992, THEOR APPL GENET, V85, P26, DOI 10.1007/BF00223841; Falconer D. S., 1989, INTRO QUANTITATIVE G; GIESEL JT, 1979, EXP GERONTOL, V14, P323, DOI 10.1016/0531-5565(79)90044-5; GIESS MC, 1980, EXP GERONTOL, V6, P249; GOWEN JW, 1946, AM NAT, V80, P149, DOI 10.1086/281373; HUGHES DM, 1988, EVOLUTION, V42, P1309, DOI 10.1111/j.1558-5646.1988.tb04190.x; KALBFLEISCH JD, 1980, STATISTICAL ANAL FAI; KEMPTHORNE O, 1957, INTRO GENETIC STATIS; LEBOURG E, 1984, EXP GERONTOL, V19, P205, DOI 10.1016/0531-5565(84)90040-8; LEBOURG E, 1989, GERONTOLOGY, V35, P253; LEBOURG E, 1988, EXP GERONTOL, V23, P491, DOI 10.1016/0531-5565(88)90061-7; LEBOURG E, 1987, EXP GERONTOL, V22, P359, DOI 10.1016/0531-5565(87)90034-9; LEBOURG E, 1989, GERONTOLOGY, V35, P244; Lints F. A, 1983, REV BIOL RES AGING, V1, P51; LINTS FA, 1971, EXP GERONTOL, V6, P427, DOI 10.1016/0531-5565(71)90022-2; LINTS FA, 1989, EXP GERONTOL, V24, P265, DOI 10.1016/0531-5565(89)90017-X; LINTS FA, 1989, GERONTOLOGY, V35, P36, DOI 10.1159/000212998; LINTS FA, 1989, GERONTOLOGY, V35, P235, DOI 10.1159/000213032; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MALICK LE, 1966, GENETICS, V54, P203; MAYER PJ, 1984, MECH AGEING DEV, V26, P283, DOI 10.1016/0047-6374(84)90101-5; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MURPHY PA, 1983, EVOLUTION, V37, P1181, DOI 10.1111/j.1558-5646.1983.tb00233.x; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; Pearl R, 1927, AM NAT, V61, P289, DOI 10.1086/280154; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; SCHEINER SM, 1989, EVOL ECOL, V3, P51, DOI 10.1007/BF02147931; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; Snedecor G.W., 1967, STATISTICAL METHODS; STAMLER J, 1993, DIABETES CARE, V16, P434, DOI 10.2337/diacare.16.2.434; TUCIC N, 1988, HEREDITY, V60, P55, DOI 10.1038/hdy.1988.9; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x 45 7 7 0 2 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0531-5565 1873-6815 EXP GERONTOL Exp. Gerontol. MAR-APR 1994 29 2 205 222 10.1016/0531-5565(94)90052-3 18 Geriatrics & Gerontology Geriatrics & Gerontology ND217 WOS:A1994ND21700007 8026571 2019-02-26 J LAM, PKS LAM, PKS INTRASPECIFIC LIFE-HISTORY VARIATION IN RADIX PLICATULUS (GASTROPODA, PULMONATA, LYMNAEIDAE) JOURNAL OF ZOOLOGY English Article PEREGRA GASTROPODA; PHENOTYPIC PLASTICITY; POPULATIONS; GROWTH; FECUNDITY; SELECTION; SNAIL; BIOENERGETICS; CONSEQUENCES Life-histories of Radix plicatulus (Benson, 1842) populations inhabiting two neighbouring sites on a Hong Kong stream were investigated. In one of the two sites, R. plicatulus co-occurred with high densities of Pomacea levior which is known to prey on the egg capsules and hatchlings of sympatric gastropods. On the basis of general life-history theory, I hypothesized that R. plicatulus which co-occurred with P. levier should exhibit a life-history strategy characterized by a delayed reproduction, a longer recruitment period and a larger number of breeding bouts per year as compared with contemporaries inhabiting the other site with low P. levior abundance. Reproductive patterns of the two populations observed in the field accorded with the expectations of general life-history theory, and lent support to the hypothesis. However, laboratory culture experiments revealed no evidence of a genetic basis for the interpopulation differences. The importance of establishing a genetic basis for the interpopulation divergence before invoking an evolutionary explanation was discussed. LAM, PKS (reprint author), VICTORIA UNIV TECHNOL,DEPT ENVIRONM MANAGEMENT,POB 14428,VICTORIA,BC 3000,CANADA. LAM, Paul/B-9121-2008 LAM, Paul/0000-0002-2134-3710 ALDRIDGE DW, 1982, ECOLOGY, V63, P196, DOI 10.2307/1937044; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BROWN KM, 1985, EVOLUTION, V39, P387, DOI 10.1111/j.1558-5646.1985.tb05675.x; BROWN MB, 1985, COMPUT STAT DATA AN, V3, P143, DOI 10.1016/0167-9473(85)90076-3; BROWNE RA, 1978, ECOLOGY, V59, P742, DOI 10.2307/1938778; CALOW P, 1981, MALACOLOGIA, V21, P5; Calow P., 1981, PHYSL ECOLOGY EVOLUT, P3; CALOW P, 1983, MOLLUSCA, V6, P649; CASWELL H, 1983, AM ZOOL, V23, P35; CHA MW, 1989, THESIS HONG KONG POL; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; GILL DE, 1983, P BIOL C, V41, P1; HUBENDICK BENGT, 1951, K SVENSKA VETENSKAPSAKAD HANDL, V3, P1; HUNTER RD, 1975, ECOLOGY, V56, P50, DOI 10.2307/1935299; HUNTER W. RUSSELL, 1961, PROC ZOOL SOC LONDON, V137, P135; LAM PKS, 1990, J MOLLUS STUD, V56, P17, DOI 10.1093/mollus/56.1.17; LAM PKS, 1989, J ANIM ECOL, V58, P589, DOI 10.2307/4850; LAM PKS, 1989, J ANIM ECOL, V58, P571, DOI 10.2307/4849; LAM PKS, 1988, J MOLLUS STUD, V54, P357, DOI 10.1093/mollus/54.3.357; Lynch M., 1987, P67; MA HHT, 1991, J ZOOL, V224, P347, DOI 10.1111/j.1469-7998.1991.tb06030.x; MALTBY L, 1986, J ANIM ECOL, V55, P721, DOI 10.2307/4750; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Sibly R., 1985, P75; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WRONA FJ, 1986, CAN J FISH AQUAT SCI, V43, P2025, DOI 10.1139/f86-248; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798 27 10 10 0 2 OXFORD UNIV PRESS UNITED KINGDOM OXFORD WALTON ST JOURNALS DEPT, OXFORD, ENGLAND OX2 6DP 0952-8369 J ZOOL J. Zool. MAR 1994 232 3 435 446 10.1111/j.1469-7998.1994.tb01584.x 12 Zoology Zoology NB640 WOS:A1994NB64000007 2019-02-26 J TWOMBLY, S TWOMBLY, S COMPARATIVE DEMOGRAPHY AND POPULATION-DYNAMICS OF 2 COEXISTING COPEPODS IN A VENEZUELAN FLOODPLAIN LAKE LIMNOLOGY AND OCEANOGRAPHY English Article LIFE TABLE DATA; CYCLES; STATISTICS; COMMUNITY; DAPHNIA I used an inverse matrix projection model to estimate vital rates (growth, survival, and reproduction) for two coexisting copepod species in a Venezuelan floodplain lake as a first step in identifying the ultimate environmental factors that determine distribution and abundance of a species. Zooplankton were sampled four times a week from June through December 1984, and the resulting abundance data were used together with the estimation technique to extract time series of vital rates over a 6-month period. There were marked temporal differences in population maxima of each species. Abundance of Diaptomus negrensis fluctuated with changes in recruitment and mortality of stages NV, NVI, CIII, and CIV. Peak abundance of D. negrensis coincided with a peak in the abundance of the invertebrate predator Chaoborus sp. In contrast, population size of Oithona amazonica was unrelated to recruitment but directly related to survival of the youngest copepodite stages, which was poor until October when abundance of Chaoborus declined. These demographic analyses target the stages most susceptible to environmental (selection) pressures, providing a basis for understanding the evolution of life-history strategies, and suggest the hypothesis (as yet untested) that prolonged coexistence is facilitated between species whose abundance is determined by different demographic (and thus environmental) factors. TWOMBLY, S (reprint author), UNIV RHODE ISL,DEPT ZOOL,KINGSTON,RI 02881, USA. AKSNES DL, 1987, LIMNOL OCEANOGR, V32, P514, DOI 10.4319/lo.1987.32.2.0514; BRANER M, 1989, LECTURE NOTES STATIS, V55, P81; BRANER M, 1987, LIMNOL OCEANOGR, V32, P517; CASWELL H, 1982, ECOLOGY, V63, P1223, DOI 10.2307/1938847; Caswell H., 1989, LECT NOTES STAT, P93; COLE GA, 1961, LIMNOL OCEANOGR, V6, P432, DOI 10.4319/lo.1961.6.4.0432; COLE GERALD A., 1955, AMER MIDLAND NAT, V53, P213, DOI 10.2307/2422312; COMITA GW, 1972, ARCH HYDROBIOL, V70, P14; DeMott W.R., 1989, P195; Edmondson W. T., 1960, Mem 1st ital Idrobiol de Marchi, V12, P21; EDMONDSON W. T., 1968, OECOLOGIA, V1, P1, DOI 10.1007/BF00377252; ELGMORK K, 1990, HYDROBIOLOGIA, V208, P187, DOI 10.1007/BF00007784; ELMORE JL, 1983, LIMNOL OCEANOGR, V28, P522, DOI 10.4319/lo.1983.28.3.0522; GEHRS CW, 1975, ECOLOGY, V56, P665, DOI 10.2307/1935500; Gliwicz Z.M., 1985, Advances in Limnology, V21, P419; Gulati R.D., 1985, Advances in Limnology, V21, P91; HAIRSTON NG, 1985, LIMNOL OCEANOGR, V30, P886, DOI 10.4319/lo.1985.30.4.0886; HALL DJ, 1964, ECOLOGY, V45, P94, DOI 10.2307/1937111; HANEY JF, 1973, LIMNOL OCEANOGR, V18, P331, DOI 10.4319/lo.1973.18.2.0331; HUTCHINSON G. E., 1951, ECOLOGY, V32, P571, DOI 10.2307/1931745; HUTCHINSTON GE, 1967, TREATISE LIMNOLOGY, V2; Larsson P., 1985, Internationale Vereinigung fuer Theoretische und Angewandte Limnologie Verhandlungen, V22, P3131; Lewis Jr W. M, 1979, ZOOPLANKTON COMMUNIT; MATVEEV V, 1991, ARCH HYDROBIOL, V123, P53; McLAREN IAN A., 1965, LIMNOL OCEANOGR, V10, P528; Ravera O., 1954, Mem Ist ital Idrobiol de Marchi, V8, P109; RIGLER FH, 1974, LIMNOL OCEANOGR, V19, P636, DOI 10.4319/lo.1974.19.4.0636; SAUNDERS JF, 1988, ECOL MONOGR, V58, P337, DOI 10.2307/1942544; TESSIER AJ, 1991, ECOLOGY, V72, P468, DOI 10.2307/2937188; THRELKELD ST, 1986, FRESHWATER BIOL, V16, P673, DOI 10.1111/j.1365-2427.1986.tb01009.x; THRELKELD ST, 1979, LIMNOL OCEANOGR, V24, P601, DOI 10.4319/lo.1979.24.4.0601; TWOMBLY S, 1987, Archiv fuer Hydrobiologie Supplement, V79, P87; TWOMBLY S, 1989, J PLANKTON RES, V11, P317, DOI 10.1093/plankt/11.2.317; TWOMBLY S, 1991, INT VER THEOR ANGEW, V24, P1183; TWOMBLY S, 1983, THESIS YALE U; WYNGAARD GA, 1983, FRESHWATER BIOL, V13, P275, DOI 10.1111/j.1365-2427.1983.tb00677.x; Zaret T. M., 1980, PREDATION FRESHWATER; 1985, SAS USERS GUIDE STAT 38 17 18 0 5 AMER SOC LIMNOLOGY OCEANOGRAPH LAWRENCE 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 0024-3590 LIMNOL OCEANOGR Limnol. Oceanogr. MAR 1994 39 2 234 247 10.4319/lo.1994.39.2.0234 14 Limnology; Oceanography Marine & Freshwater Biology; Oceanography NM679 WOS:A1994NM67900003 2019-02-26 J DEJONG, G DEJONG, G THE FITNESS OF FITNESS CONCEPTS AND THE DESCRIPTION OF NATURAL-SELECTION QUARTERLY REVIEW OF BIOLOGY English Review LIFE-HISTORY EVOLUTION; QUANTITATIVE GENETIC-ANALYSIS; STABILIZING SELECTION; DROSOPHILA-MELANOGASTER; PLEIOTROPIC MODELS; DARWINIAN FITNESS; AMYLASE VARIANTS; BRUCHID BEETLE; BODY SIZE; POPULATION ''Fitness'' has been used to indicate a measure of general adaptedness, and to indicate a short-term measure of reproductive success. The former concept seems unproductive in evolutionary biology, but consensus on the exact form of the latter might be possible. Fitness as a short-term measure of reproductive success can be defined from the demographic recurrence equations for genotypic number; it refers to a genotype or to a genotypic combination, if genotypes interact. Fitness summarizes a model for genotypic demography for a given set of assumptions about the population and the genotypic and individual interactions within it. For a population growing at a constant rate, demographic genotypic fitness has the same shape as reproductive value at birth; but reproductive value refers to a cohort of a genotype, while demographic genotypic fitness refers to organisms of one genotype at one moment in time. This is a major conceptual difference, although the numerical identity between demographic genotypic fitness and reproductive value for a population growing at a constant rate explains why models of life history evolution based upon reproductive value are successful. The Secondary Theorem of Natural Selection (Robertson, 1968) predicts the selection response in mean trait value by the genetic covariance between trait and fitness. Selection on a quantitative trait is often formulated as involving the heritability and the phenotypic covariance between trait and fitness or the phenotypic selection gradient beta, the (partial) regression of fitness on the trait. The change in the covariance between the genotypic and the phenotypic level introduces an assumption on the additivity of fitness. The selection gradient, as a regression, focuses on differences in fitness as derived from differences in the trait. In the Secondary Theorem, trait and fitness play equivalent roles. The Secondary Theorem implies a different understanding of the process of selection from a phenotypic selection gradient and a heritability, on those two counts. Fitness might arise from the phenotype in interaction with the environment, but phenotype and fitness might both arise as consequences of development. The study of selection thus becomes the study of the biological mechanisms underlying and generating the genetic covariance between phenotype and fitness. DEJONG, G (reprint author), UNIV UTRECHT,DEPT PLANT ECOL & EVOLUT BIOL,POPULAT GENET GRP,PADUALAAN 8,3584 CH UTRECHT,NETHERLANDS. de Jong, Gerdien/J-6569-2012 ABUGOV R, 1986, J THEOR BIOL, V122, P311, DOI 10.1016/S0022-5193(86)80123-0; ABUGOV R, 1985, J THEOR BIOL, V114, P109, DOI 10.1016/S0022-5193(85)80259-9; ABUGOV R, 1983, AM NAT, V13, P880; ANHOLT BR, 1991, EVOLUTION, V45, P1091, DOI 10.1111/j.1558-5646.1991.tb04377.x; ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; ATKINSON WD, 1981, J ANIM ECOL, V50, P461, DOI 10.2307/4067; BARROWCLOUGH GF, 1993, AM NAT, V141, P281, DOI 10.1086/285473; BARTON NH, 1990, GENETICS, V124, P773; BROWN D, 1988, REPROD SUCCESS, P439; BYERLY HC, 1991, BIOL PHILOS, V6, P1, DOI 10.1007/BF02426816; CANNINGS C, 1969, GENETICS, V62, P225; Caswell H., 1989, MATRIX POPULATION MO; CHARLESWORTH B, 1970, Theoretical Population Biology, V1, P352, DOI 10.1016/0040-5809(70)90051-1; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARLESWORTH B, 1992, P R SOC LOND B, V251, P47; CHARNOV EL, 1989, EVOL ECOL, V3, P236, DOI 10.1007/BF02270724; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; Christiansen F., 1984, EVOLUTIONARY ECOLOGY, P65; CLARKE B, 1975, GENETICS, V79, P101; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEJONG G, 1972, NATURE, V238, P453, DOI 10.1038/238453a0; DEJONG G, 1976, GENETICS, V84, P77; DEJONG G, 1982, NETH J ZOOL, V32, P1; DEJONG G, 1982, NETH J ZOOL, V32, P572; DEJONG G, 1990, ORG CONSTRAINTS DYNA, P293; DENISTON C, 1978, ANN HUM GENET, V42, P77; EMLEN JM, 1984, POPULATION BIOL COEV; ENDLER JA, 1988, ANNU REV ECOL SYST, V19, P395, DOI 10.1146/annurev.es.19.110188.002143; Endler JA, 1986, NATURAL SELECTION WI; Falconer D.S., 1981, INTRO QUANTITATIVE G; Fisher R.A., 1930, GENETICAL THEORY NAT; GAVRILETS S, 1993, GENETICS, V134, P609; Grafen A., 1985, Oxford Surveys in Evolutionary Biology, V2, P28; Grafen A., 1988, REPROD SUCCESS, P454; GREGORIUS HR, 1984, J THEOR BIOL, V111, P205, DOI 10.1016/S0022-5193(84)80206-4; HAMILTON WD, 1970, NATURE, V228, P1218, DOI 10.1038/2281218a0; HENLE K, 1991, ACTA BIOTHEOR, V39, P91, DOI 10.1007/BF00046594; IWASA Y, 1980, J THEOR BIOL, V84, P545, DOI 10.1016/S0022-5193(80)80019-1; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; JACQUARD AM, 1977, P INT C QUANT GEN, P727; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KELLER E F, 1987, Biology and Philosophy, V2, P383, DOI 10.1007/BF00127697; KEMPTHORNE O, 1970, GENETICS, V64, P125; KIMURA MOTOO, 1958, HEREDITY, V12, P145, DOI 10.1038/hdy.1958.21; KISDI E, 1992, ADAPTATION STOCHASTI; KOJIMA KI, 1959, P NATL ACAD SCI USA, V45, P984, DOI 10.1073/pnas.45.7.984; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 1982, P21; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; MURRAY BG, 1990, OIKOS, V59, P189, DOI 10.2307/3545534; NAGYLAKI T, 1989, P NATL ACAD SCI USA, V86, P1910, DOI 10.1073/pnas.86.6.1910; NAGYLAKI T, 1989, GENETICS, V122, P235; OLLASON JG, 1991, BIOL PHILOS, V6, P81, DOI 10.1007/BF02426827; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; POLLAK E, 1978, GENETICS, V90, P383; PRICE GR, 1970, NATURE, V227, P520, DOI 10.1038/227520a0; PROUT T, 1965, EVOLUTION, V19, P546, DOI 10.2307/2406251; QUELLER DC, 1992, EVOLUTION, V46, P376, DOI 10.1111/j.1558-5646.1992.tb02045.x; REEVE HK, 1993, Q REV BIOL, V68, P1, DOI 10.1086/417909; ROBERTSON A, 1955, COLD SPRING HARB SYM, V20, P225, DOI 10.1101/SQB.1955.020.01.021; ROBERTSON A, 1968, POPULATION BIOL EVOL, P5; ROBERTSON A., 1956, Journal of Genetics, V54, P236, DOI 10.1007/BF02982779; ROUGHGARDEN J, 1976, THEOR POPUL BIOL, V9, P388, DOI 10.1016/0040-5809(76)90054-X; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1979, P NATL ACAD SCI USA, V76, P3567, DOI 10.1073/pnas.76.7.3567; SCHARLOO W, 1984, POPULATION BIOL EVOL, P5; SIBLY RM, 1991, FUNCT ECOL, V5, P594, DOI 10.2307/2389477; SIBLY RM, 1989, FUNCT ECOL, V3, P129, DOI 10.2307/2389293; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH JM, 1991, BIOL PHILOS, V6, P37, DOI 10.1007/BF02426821; Sober E., 1984, NATURE SELECTION; Stearns S. C., 1986, PATTERNS PROCESSES H, P23, DOI [10.1007/978-3-642-70831-2, DOI 10.1007/978-3-642-70831-2-3]; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TAYLOR PD, 1990, AM NAT, V135, P95, DOI 10.1086/285034; TEMPLETON AR, 1979, AM NAT, V114, P515, DOI 10.1086/283498; VANTIENDEREN PH, 1989, EVOL TREND PLANT, V3, P91; WADE MJ, 1985, AM NAT, V125, P61, DOI 10.1086/284328; WADE MJ, 1990, EVOLUTION, V44, P1947, DOI 10.1111/j.1558-5646.1990.tb04301.x; WILLIAMS GC, 1992, NATUURAL SELECTION D; Wright S, 1935, J GENET, V30, P257, DOI 10.1007/BF02982240 84 39 43 0 28 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0033-5770 Q REV BIOL Q. Rev. Biol. MAR 1994 69 1 3 29 10.1086/418431 27 Biology Life Sciences & Biomedicine - Other Topics NF152 WOS:A1994NF15200001 2019-02-26 J FORBES, MRL; CLARK, RG; WEATHERHEAD, PJ; ARMSTRONG, T FORBES, MRL; CLARK, RG; WEATHERHEAD, PJ; ARMSTRONG, T RISK-TAKING BY FEMALE DUCKS - INTRASPECIFIC AND INTERSPECIFIC TESTS OF NEST DEFENSE THEORY BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article LIFE HISTORY THEORY; PARENTAL INVESTMENT; PREDATION RISK; WATERFOWL; OBSERVER EFFECT RED-WINGED BLACKBIRDS; BROOD DEFENSE; PARENTAL INVESTMENT; LIFE-HISTORY; CLUTCH SIZE; SURVIVAL; BEHAVIOR; INTENSITY; KILLDEER; PREDATOR We tested several predictions of nest defense theory by observing variation in flushing distance and probability of nest abandonment within and between six species of waterfowl. In these species, only the females incubate eggs and attend offspring. First, we examined whether flushing distance by females varied in relation to clutch size, stage of incubation, and time of season, after controlling for the number of visits made to nests by observers. Revisits by observers appeared to affect flushing distance by females for reasons unrelated to the relative value of the current clutch. We found that as incubation progressed, females allowed observers to approach more closely before flushing from the nest. In some species, females with larger clutches allowed closer approaches to nests before flushing which was also consistent with nest defense theory. In contrast, time of season (Julian date) did not relate to flushing distance for any species. When species were compared, we found that species with moderate to high yearly mortality and high reproductive output per breeding attempt (e.g., northern shoveler and blue-winged teal) were less likely to abandon nesting attempts and exhibited ''riskier'' behavior (remained at nests when approached closely by observers) than species that had lower yearly mortality (e.g., mallard). Our results show that flushing distance and patterns of nest abandonment by female ducks conform to several predictions of nest defense theory. UNIV SASKATCHEWAN, DEPT BIOL, SASKATOON S7N 0W0, SASKATCHEWAN, CANADA; CARLETON UNIV, DEPT BIOL, OTTAWA K1S 5B6, ONTARIO, CANADA; CANADIAN WILDLIFE SERV PRAIRIE & NO WILDLIFE RES C, SASKATOON S7N 0X4, SK, CANADA FORBES, MRL (reprint author), UNIV REGINA, DEPT BIOL, REGINA S4S 0A2, SASKATCHEWAN, CANADA. Forbes, Mark/B-3575-2013 ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; ARMSTRONG T, 1988, ANIM BEHAV, V36, P941, DOI 10.1016/S0003-3472(88)80180-5; ARNOLD TW, 1987, AM NAT, V130, P643, DOI 10.1086/284736; BARASH DP, 1975, WILSON BULL, V87, P367; Bellrose F., 1980, DUCKS GEESE SWANS N; BLANCHER PJ, 1982, ANIM BEHAV, V30, P929, DOI 10.1016/S0003-3472(82)80167-X; BRUNTON DH, 1990, BEHAV ECOL SOCIOBIOL, V26, P181; BRUNTON DH, 1986, WILSON BULL, V98, P605; Clark Robert G., 1988, Wildfowl, V39, P137; COOKE F, 1984, AUK, V101, P451; CURIO E, 1984, Z TIERPSYCHOL, V66, P101; CURIO E, 1985, Z TIERPSYCHOL, V69, P3; CURIO E, 1987, IBIS, V129, P344, DOI 10.1111/j.1474-919X.1987.tb03178.x; DSARGEANT AB, 1984, WILDL MONOGR, V89; FORBES MRL, 1989, ORNIS SCAND, V20, P211, DOI 10.2307/3676915; GLOUTNEY ML, 1993, J WILDLIFE MANAGE, V57, P597, DOI 10.2307/3809288; GREENWOOD RJ, 1990, WILDLIFE SOC B, V18, P75; GREIGSMITH PW, 1980, ANIM BEHAV, V28, P604, DOI 10.1016/S0003-3472(80)80069-8; JOHNSON DH, 1977, USDI FISH WILDL SERV, V6; KLETT AT, 1988, J WILDLIFE MANAGE, V52, P431, DOI 10.2307/3801586; KNIGHT RL, 1986, ANIM BEHAV, V34, P561, DOI 10.1016/S0003-3472(86)80125-7; KNIGHT RL, 1986, ANIM BEHAV, V34, P887, DOI 10.1016/S0003-3472(86)80075-6; KNIGHT RL, 1986, AUK, V103, P318; KNIGHT RL, 1987, CONDOR, V89, P175, DOI 10.2307/1368772; Krapu G.L., 1979, Wildfowl, V30, P35; KREMENTZ DG, 1989, OIKOS, V56, P203, DOI 10.2307/3565337; MALLORY ML, 1993, CONDOR, V95, P467, DOI 10.2307/1369370; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; ORTHMEYER DL, 1990, J WILDLIFE MANAGE, V54, P62, DOI 10.2307/3808901; PUGESEK BH, 1983, BEHAV ECOL SOCIOBIOL, V13, P161, DOI 10.1007/BF00299919; REDONDO T, 1989, BEHAV ECOL SOCIOBIOL, V25, P369, DOI 10.1007/BF00302995; REGELMANN K, 1983, BEHAV ECOL SOCIOBIOL, V13, P131, DOI 10.1007/BF00293803; REGELMANN K, 1986, BEHAVIOUR, V97, P10, DOI 10.1163/156853986X00298; RICKLEFS RE, 1977, CONDOR, V79, P376, DOI 10.2307/1368016; Roff Derek A., 1992; ROHWER FC, 1988, AUK, V105, P161; ROTELLA JJ, 1992, J WILDLIFE MANAGE, V56, P499, DOI 10.2307/3808865; Siegel S., 1988, NONPARAMETRIC STATIS; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; WEATHERHEAD PJ, 1982, Z TIERPSYCHOL, V60, P199; WEATHERHEAD PJ, 1990, ANIM BEHAV, V39, P1173, DOI 10.1016/S0003-3472(05)80789-4; WEATHERHEAD PJ, 1989, BEHAV ECOL SOCIOBIOL, V25, P129, DOI 10.1007/BF00302929; WELTY JC, 1988, LIFE BIRDS; WESTNEAT DF, 1989, AUK, V106, P747; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WILKINSON L, 1989, SYSTAT SYSTEM STATIS; Zar J., 1984, BIOSTATISTICAL ANAL 47 70 71 1 19 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. FEB 1994 34 2 79 85 10.1007/BF00164178 7 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology MY908 WOS:A1994MY90800001 2019-02-26 J HAWKES, K HAWKES, K ON LIFE-HISTORY EVOLUTION CURRENT ANTHROPOLOGY English Letter HAWKES, K (reprint author), UNIV UTAH, DEPT ANTHROPOL, SALT LAKE CITY, UT 84112 USA. ALLEN G, 1988, ACTA GENET MED GEMEL, V37, P299, DOI 10.1017/S0001566000003883; BEALS KL, 1984, CURR ANTHROPOL, V25, P301, DOI 10.1086/203138; BOUCHARD TJ, 1990, SCIENCE, V250, P223, DOI 10.1126/science.2218526; Bulmer M.G., 1970, BIOL TWINNING MAN; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Degler Carl N., 1991, SEARCH HUMAN NATURE; Gould Stephen Jay, 1981, MISMEASURE OF MAN; Grafen A., 1991, P5; HARVEY PH, 1989, COMP SOCIOECOLOGY, P305; HAWKES K, 1993, CURR ANTHROPOL, V34, P341, DOI 10.1086/204182; HAWKES K, 1991, PHILOS T ROY SOC B, V334, P243, DOI 10.1098/rstb.1991.0113; HAWKES K, 1991, ETHOL SOCIOBIOL, V12, P29, DOI 10.1016/0162-3095(91)90011-E; Hawkes K., 1990, RISK UNCERTAINTY TRI, P145; HILL K, 1993, IN PRESS EVOLUTIONAR, V2; HILL K, 1993, HUMAN BEHAVIOR EVOLU; HO KC, 1980, ARCH PATHOL LAB MED, V104, P635; Hrdy S.B., 1987, P370; Hrdy S. B., 1981, WOMAN NEVER EVOLVED; HRDY SB, 1979, ETHOL SOCIOBIOL, V1, P13, DOI 10.1016/0162-3095(79)90004-9; JENSEN AR, 1984, ANN THEORETICAL PSYC, V2, P49; Lessells C.M., 1991, P32; OYAMA S, 1985, ONTOGENY INFORMATION; Roff Derek A., 1992; RUSHTON JP, 1988, PERS INDIV DIFFER, V9, P1009, DOI 10.1016/0191-8869(88)90135-3; RUSHTON JP, 1992, INTELLIGENCE, V16, P401, DOI 10.1016/0160-2896(92)90017-L; RUSHTON JP, RACE EVOLUTION BEHAV; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; Smuts B. B., 1985, SEX FRIENDSHIP BABOO; STEARNS S, 1982, EVOLUTION DEV; Stearns SC., 1992, EVOLUTION LIFE HIST; STRINGER CB, 1988, SCIENCE, V239, P1263, DOI 10.1126/science.3125610; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VITZTHUM VJ, 1992, DEC ANN M AM ANTHR A; Whitten P.L., 1987, P343; Wilson E. O., 1981, GENES MIND CULTURE 40 3 3 0 1 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0011-3204 1537-5382 CURR ANTHROPOL Curr. Anthropol. FEB 1994 35 1 39 46 10.1086/204234 8 Anthropology Anthropology MR030 WOS:A1994MR03000004 2019-02-26 J NIEWIAROWSKI, PH; DUNHAM, AE NIEWIAROWSKI, PH; DUNHAM, AE THE EVOLUTION OF REPRODUCTIVE EFFORT IN SQUAMATE REPTILES - COSTS, TRADE-OFFS, AND ASSUMPTIONS RECONSIDERED EVOLUTION English Article CLUTCH SIZE; FECUNDITY; OFFSPRING SIZE; REPRODUCTIVE COST; REPRODUCTIVE EFFORT; REPTILES LIFE-HISTORY EVOLUTION; OFFSPRING SIZE; CLUTCH SIZE; EGG-SIZE; NATURAL-SELECTION; FOOD AVAILABILITY; UTA-STANSBURIANA; GROWTH-RATE; LIZARD; SURVIVAL We evaluated Shine and Schwarzkopfs (SS) model of the evolution of reproductive effort (RE) in squamate reptiles. They suggested that fecundity trade-offs were unimportant in the evolution of RE in most squamate reptiles and that only survival trade-offs needed to be considered. However, we show that by assuming no variation in offspring size exists, and that adult mortality is episodic, the results of the SS model are not general. By extension, we argue that conclusions drawn about factors important in the evolution of RE in squamate reptiles are premature. Using a modified version of the SS model, we demonstrate that variation in the form of trade-offs relating offspring size and survival substantially affect relationships among dutch size, relative clutch mass, and lifetime reproductive success. We also demonstrate that the way in which adult mortality is simulated drastically affects conclusions about the potential fecundity trade-offs experienced by populations of squamate reptiles. Finally, we suggest that a complete understanding of the evolution of RE will come from theory that incorporates trade-offs between offspring size and quality, as well as other system-specific constraints on the allocation of energy to growth, maintenance, storage, and reproduction. UNIV PENN,DEPT BIOL,LEIDY LABS,PHILADELPHIA,PA 19104 ANDREWS RM, 1990, OIKOS, V57, P215, DOI 10.2307/3565942; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BROWN W. S., 1984, U KANS PUBL MUS NAT, V10, P13; BROWNE RA, 1982, ECOLOGY, V63, P43, DOI 10.2307/1937029; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Congdon J.D., 1982, Biology of Reptilia, V13, P233; DUNHAM AE, 1989, PHYSIOL ZOOL, V62, P335, DOI 10.1086/physzool.62.2.30156174; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; DUNHAM AE, 1982, HERPETOLOGICA, V38, P208; Ferguson G.W., 1978, P227; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; FERGUSON GW, 1986, HERPETOLOGICA, V42, P185; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HORVITZ CC, 1988, ECOLOGY, V69, P1741, DOI 10.2307/1941152; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MCGINLEY MA, 1989, EVOL ECOL, V3, P150, DOI 10.1007/BF02270917; MCLAUGHLIN JF, 1989, ECOLOGY, V70, P617, DOI 10.2307/1940213; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Parker W. S., 1980, MILWAUKEE PUBLIC MUS, V7, P1; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PIANKA ER, 1976, AM ZOOL, V16, P775; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P134, DOI 10.1016/0169-5347(92)90150-A; SCHAFFER WM, 1975, SELECTION OPTIMAL LI; SCHULTZ DL, 1991, EVOL ECOL, V5, P415, DOI 10.1007/BF02214158; SCHWARZKOPF L, 1992, HERPETOLOGICA, V48, P390; SELCER KW, 1990, HERPETOLOGICA, V46, P15; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SINERVO B, 1989, OECOLOGIA, V78, P411, DOI 10.1007/BF00379118; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Tinkle D. W., 1967, Miscellaneous Publications Museum of Zoology University of Michigan, VNo. 132, P1; TUOMI J, 1983, AM ZOOL, V23, P25; WASER PM, 1991, ECOLOGY, V72, P771, DOI 10.2307/1940579; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 45 37 41 1 14 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution FEB 1994 48 1 137 145 10.2307/2410009 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity NY643 WOS:A1994NY64300014 28567787 Bronze 2019-02-26 J MAIER, G MAIER, G PATTERNS OF LIFE-HISTORY AMONG CYCLOPOID COPEPODS OF CENTRAL-EUROPE FRESHWATER BIOLOGY English Article MESOCYCLOPS-LEUCKARTI CLAUS; METACYCLOPS-MINUTUS CLAUS; SEX SIZE RATIOS; PLANKTONIC COPEPOD; VERTICAL MIGRATION; CALANOID COPEPODS; VICINUS ULJANIN; MATING SUCCESS; LAKE BIEL; TEMPERATURE 1. Life history characters (body size of adults, egg diameter, egg sac length and breadth) of nineteen species of central European cyclopoid copepods were measured and sexual size dimorphism (adult female length x adult male length(-1)), relative egg size (egg weight x body weight(-1)), weight of adult females and of eggs, egg sac shape (egg sac length x egg sac breadth(-1)), and reproductive effort (clutch weight produced per female weight per day) were calculated to detect trends in life history strategies. 2. Typical planktonic species exhibited the lowest reproductive effort. Among planktonic species, the value for egg sac shape increased with clutch size. 3. Large species and small species exhibited different trends in life history characters. Large species had larger clutches, larger eggs, and a greater sex size dimorphism than small species. However, small species had a greater relative egg size. 4. Large species live in cold water and reproduce during the spring bloom of phytoplankton where the production of large clutches with relatively small eggs is advantageous. Reserves are unnecessary for juveniles because food is abundant. Small species generally are most abundant during the warm season, when conditions are less predictable, and relatively large eggs, possibly provided with reserves, are advantageous. MAIER, G (reprint author), UNIV ULM,ALBERT EINSTEIN ALLEE 11,D-89069 ULM,GERMANY. ABDULLAHI BA, 1985, OECOLOGIA, V67, P295, DOI 10.1007/BF00384303; ALEXEYEV VR, 1970, HYDROBIOL J, V14, P32; DEFRENZA J, 1986, LIMNOL OCEANOGR, V31, P491, DOI 10.4319/lo.1986.31.3.0491; DUMONT HJ, 1975, OECOLOGIA, V19, P75, DOI 10.1007/BF00377592; ELGMORK K, 1989, HOLARCTIC ECOL, V12, P60; ELGMORK K, 1981, HOLARCTIC ECOL, V4, P278; ELGMORK K, 1980, ARCH HYDROBIOL, V88, P178; ELGMORK K, 1978, VERH INT VER THEOR A, V20, P2518; Ewers L. A., 1936, Transactions of the American Microscopical Society, V55, P230, DOI 10.2307/3222616; FRENZEL P, 1977, ARCH HYDROBIOL, V80, P108; GEORGE DG, 1976, OIKOS, V27, P101, DOI 10.2307/3543438; GLIWICZ MZ, 1986, NATURE, V320, P746, DOI 10.1038/320746a0; GLIWICZ Z. M., 1967, POL ARCH HYDROBIOL, V14, P53; GLIWICZ ZM, 1984, LIMNOL OCEANOGR, V29, P1290; GOPHEN M, 1976, OECOLOGIA, V25, P271, DOI 10.1007/BF00345104; GRAD G, 1992, J PLANKTON RES, V14, P903, DOI 10.1093/plankt/14.7.903; GRAD G, 1988, LIMNOL OCEANOGR, V33, P1629, DOI 10.4319/lo.1988.33.6_part_2.1629; HANSEN AM, 1992, J PLANKTON RES, V14, P591, DOI 10.1093/plankt/14.4.591; HUNT GW, 1977, CRUSTACEANA, V32, P169, DOI 10.1163/156854077X00557; KHAN M. FAHEEM, 1965, PROC ROY IRISH ACAD SECT B, V64, P117; KIEFER F, 1973, RUDERFUBETAKREBSE; LAROCHE R, 1906, THESIS U BERN; Lescher-Moutoue F., 1985, Bulletin d'Ecologie, V16, P9; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; MAIER G, 1991, CRUSTACEANA, V61, P49, DOI 10.1163/156854091X00506; MAIER G, 1989, HYDROBIOLOGIA, V184, P79, DOI 10.1007/BF00014304; MAIER G, 1990, HYDROBIOLOGIA, V203, P165, DOI 10.1007/BF00005685; MAIER G, 1990, ARCH HYDROBIOL, V117, P485; MAIER G, 1992, INT REV GES HYDROBIO, V77, P455, DOI 10.1002/iroh.19920770309; MAIER G, 1990, CRUSTACEANA, V59, P76, DOI 10.1163/156854090X00318; MAIER G, 1990, HYDROBIOLOGIA, V198, P185, DOI 10.1007/BF00048634; MAIER G, 1989, ARCH HYDROBIOL, V115, P203; MAIER G, 1989, HYDROBIOLOGIA, V17, P43; MITTELHOLZER E, 1970, SCHWEIZ Z HYDROL, V32, P106; MUNRO IG, 1974, OECOLOGIA, V16, P355, DOI 10.1007/BF00344742; Nilssen J.P., 1978, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V36, P193; Nilssen J. P., 1977, MEM I ITAL IDROBIOL, V34, P197; Nilssen JP, 1977, MEM I ITAL IDROBIOL, V34, P187; NILSSEN JP, 1980, EVOLUTION ECOLOGY ZO, P418; Origgi I., 1978, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V36, P309; PAPINSKA K, 1984, EKOL POL-POL J ECOL, V32, P493; Ravera O., 1955, Verhandlungen Internationalen Vereinigung Limnologie, V12, P436; ROEN V, 1957, BIOL SKR, V9, P1; SANDSTROM O, 1980, HYDROBIOLOGIA, V69, P199, DOI 10.1007/BF00046793; SARVALA J, 1979, FRESHWATER BIOL, V9, P515, DOI 10.1111/j.1365-2427.1979.tb01536.x; Smyly W. J. P., 1970, Crustaceana, V18, P21, DOI 10.1163/156854070X00031; SMYLY WJP, 1973, OECOLOGIA, V11, P163, DOI 10.1007/BF00345130; SMYLY WJP, 1961, J ANIM ECOL, V30, P153, DOI 10.2307/2119; STEBLER R, 1979, SCHWEIZ Z HYDROL, V41, P1, DOI 10.1007/BF02551758; STICH HB, 1984, OECOLOGIA, V61, P192, DOI 10.1007/BF00396759; STICH HB, 1981, NATURE, V293, P369; VIJVERBERG J, 1980, FRESHWATER BIOL, V10, P317, DOI 10.1111/j.1365-2427.1980.tb01206.x; VIJVERBERG J, 1977, FRESHWATER BIOL, V7, P579, DOI 10.1111/j.1365-2427.1977.tb01710.x; VUILLE T, 1991, ARCH HYDROBIOL, V123, P165; WOLF E, 1905, ZOOL JAHRB AB GEOG B, V22, P101 55 29 29 2 8 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0046-5070 FRESHWATER BIOL Freshw. Biol. FEB 1994 31 1 77 86 10.1111/j.1365-2427.1994.tb00840.x 10 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology MV701 WOS:A1994MV70100007 2019-02-26 J STAPP, P STAPP, P CAN PREDATION EXPLAIN LIFE-HISTORY STRATEGIES IN MAMMALIAN GLIDERS JOURNAL OF MAMMALOGY English Article GLIDING MAMMALS; LIFE HISTORY; GLAUCOMYS-VOLANS METABOLISM Longevity, reproduction, and mortality rates may indeed be interrelated, but the evidence provided by Holmes and Austad (1994, Journal of Mammalogy, 75:224-226) does not resolve the nature of this relationship for gliding mammals or clarify the relative role of metabolic constraints. COLORADO STATE UNIV,DEPT BIOL,FT COLLINS,CO 80523 STAPP, P (reprint author), COLORADO STATE UNIV,PROGRAM ECOL STUDIES,FT COLLINS,CO 80523, USA. AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; DOLAN P G, 1977, Mammalian Species, V78, P1; FORSMAN ED, 1984, WILDLIFE MONOGR, V87, P1; HOLMES DJ, 1994, J MAMMAL, V75, P224, DOI 10.2307/1382255; MCNAB BK, 1988, Q REV BIOL, V63, P25, DOI 10.1086/415715; NAGY KA, 1987, ECOL MONOGR, V57, P111, DOI 10.2307/1942620; NOWAK RM, 1991, WALKERS MAMMALS WORL, V1, P1; STAPP P, 1992, J MAMMAL, V73, P914, DOI 10.2307/1382216; Zar J. H., 1984, BIOSTATISTICAL ANAL 9 12 13 0 6 AMER SOC MAMMALOGISTS PROVO BRIGHAM YOUNG UNIV, DEPT OF ZOOLOGY, PROVO, UT 84602 0022-2372 J MAMMAL J. Mammal. FEB 1994 75 1 227 228 10.2307/1382256 2 Zoology Zoology MX241 WOS:A1994MX24100029 2019-02-26 J FABER, DB FABER, DB PRZIBRAMS RULE AND MALE BODY-SIZE DIMORPHISM IN ZYGOBALLUS RUFIPES (ARANEAE, SALTICIDAE) JOURNAL OF ZOOLOGY English Article DEVELOPMENTAL CONVERSION; LIFE-HISTORY; SCORPIONES; PLASTICITY; INSECTS; GROWTH; RATIOS Przibram's Rule of growth in hemimetabolous insects is derived from average values for the ratios of mean weights (2.09) and mean lengths (1.29) of successive instars in mantids. Adult males of the jumping spider Zygoballus rufipes Peckham and Peckham (Araneae, Salticidae) were shown to be dimorphic, while adult females were monomorphic. The male body weight distribution was bimodal, with two distinct body-size classes (morphs). A method was developed for testing the null hypothesis that an observed ratio of two means is equivalent to a previously derived null ratio. The observed ratio of mean weights for the two male morphs of Z. rufipes (2.12) was not significantly different from the value for Przibram's Rule for weight (2.09), suggesting that males matured at two different instars. The body-size dimorphism found in males was consistent with the existence of two size-based alternative life-history strategies. FABER, DB (reprint author), UNIV WISCONSIN,DEPT ZOOL,250 N MILLS ST,MADISON,WI 53706, USA. BENTON TG, 1991, J ARACHNOL, V19, P105; BROWN V, 1972, J ZOOL, V166, P97; COLE BJ, 1980, ANN ENTOMOL SOC AM, V73, P489, DOI 10.1093/aesa/73.4.489; Curtis JT, 1959, VEGETATION WISCONSIN; DALY HV, 1985, ANNU REV ENTOMOL, V30, P415, DOI 10.1146/annurev.en.30.010185.002215; Dyar H. G., 1890, PSYCHE, V5, P420, DOI DOI 10.1155/1890/23871; Edwards G.B., 1980, Peckhamia, V2, P11; ENDERS F, 1976, ENVIRON ENTOMOL, V5, P1; FABER DB, 1993, ANIM BEHAV, V45, P289, DOI 10.1006/anbe.1993.1033; FISHER RA, 1957, STATISTICAL TABLES B; FRANCKE OF, 1982, J ARACHNOL, V10, P223; GADGIL M, 1972, AM NAT, V106, P574, DOI 10.1086/282797; GERHARDT ULRICH, 1933, ZEITSCHR WISS BIOL ABT A ZEITSCHR MORPH U OKOL TIERE, V27, P1, DOI 10.1007/BF00406040; HUTCHINSON GE, 1959, AM NAT, V93, P145, DOI 10.1086/282070; KASTON B. J., 1948, BULL CONNECTICUT GEOL AND NAT HIST SURV, V70, P1; KLOMPEN JSH, 1987, J ZOOL, V213, P591, DOI 10.1111/j.1469-7998.1987.tb03728.x; LIVELY CM, 1986, AM NAT, V128, P561, DOI 10.1086/284588; MAC NALLY RC, 1988, ECOLOGY, V69, P1974, DOI 10.2307/1941175; Oster G. F., 1978, CASTE ECOLOGY SOCIAL; Peckham G, 1889, OCCASIONAL PAPERS WI, V1, P3; Przibram H, 1912, ARCH ENTWICKLUNG ORG, V34, P680, DOI 10.1007/BF02292211; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; ROTH VL, 1981, AM NAT, V118, P394, DOI 10.1086/283831; SATTERTHWAITE FE, 1946, BIOMETRICS BULL, V2, P110, DOI 10.2307/3002019; SHUSTER SM, 1987, J CRUSTACEAN BIOL, V7, P318, DOI 10.2307/1548612; Smith J.M., 1982, EVOLUTION THEORY GAM; SMITHGILL SJ, 1983, AM ZOOL, V23, P47; Snedecor G. W., 1980, STATISTICAL METHODS; Sokal R.R., 1981, BIOMETRY PRINCIPLES; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Steel R. G. D., 1980, PRINCIPLES PROCEDURE; VOLLRATH F, 1980, Z TIERPSYCHOL, V53, P61; Waddington C. H., 1957, STRATEGY GENES; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; Wigglesworth VB, 1972, PRINCIPLES INSECT PH; WILLIAMS T, 1988, J ZOOL, V215, P703, DOI 10.1111/j.1469-7998.1988.tb02405.x 36 4 4 0 0 OXFORD UNIV PRESS UNITED KINGDOM OXFORD WALTON ST JOURNALS DEPT, OXFORD, ENGLAND OX2 6DP 0952-8369 J ZOOL J. Zool. FEB 1994 232 2 191 198 10.1111/j.1469-7998.1994.tb01568.x 8 Zoology Zoology NB239 WOS:A1994NB23900002 2019-02-26 J MATTINGLY, HT; BUTLER, MJ MATTINGLY, HT; BUTLER, MJ LABORATORY PREDATION ON THE TRINIDADIAN GUPPY - IMPLICATIONS FOR THE SIZE-SELECTIVE PREDATION HYPOTHESIS AND GUPPY LIFE-HISTORY EVOLUTION OIKOS English Review POECILIA-RETICULATA; HABITAT USE; BODY SIZE; SPECIES INTERACTIONS; BEHAVIOR; POPULATIONS; COMPETITION; PATTERNS; HAZARD; IMPACT Differences in size-specific predation among populations, attributable to different predator guilds, is believed to be the selective agent responsible for the evolution of disparate life history characteristics in Trinidadian guppies (Poecilia reticulata). Yet, the efficacy of this mechanism is inadequately tested. In this study, populations of different-sized guppies were exposed to individuals of two natural predatory species, the pike cichlid Crenicichla alta and the killifish Rivulus harti, under conditions of Varying prey (guppy) density and habitat complexity in the laboratory. Rivulus fed most frequently on newborn and juvenile guppies <14 mm SL. The mean guppy size consumed by Crenicichla increased with increasing predator length, although some large Crenicichla continued to feed on small guppies. Under test conditions that mimicked typical field conditions of habitat complexity and prey density, Crenicichla was a much more effective guppy predator than Rivulus. High habitat complexity and a shallow water refuge reduced Crenicichla predation rates from 10 to 3 guppies/day, but did not change prey-size selectivity. Rivulus predation rates never exceeded 1 guppy/day, regardless of habitat complexity. These data confirm results from a recent field investigation, but are inconsistent with the prevailing size-selective predation hypothesis regarding differences in life histories among Trinidadian guppy populations. An alternative hypothesis that incorporates differences in predation intensity among populations is supported. OLD DOMINION UNIV,DEPT BIOL SCI 4,NORFOLK,VA 23529 MATTINGLY, HT (reprint author), UNIV MISSOURI,DEPT FISHERIES & WILDLIFE,112 STEPHENS HALL,COLUMBIA,MO 65211, USA. BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DODSON SI, 1984, ECOLOGY, V65, P1249, DOI 10.2307/1938331; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; Havel J.E., 1987, P263; Hoogland R., 1957, Behaviour, V10, P205; Keenleyside M. H. A., 1979, DIVERSITY ADAPTATION; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; MATTINGLY HT, 1991, THESIS OLD DOMINION; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MITTELBACH G, 1986, ENVIRON BIOL FISH, V16, P159, DOI 10.1007/BF00005168; MITTELBACH GG, 1981, ECOLOGY, V62, P1370, DOI 10.2307/1937300; MORIN PJ, 1983, ECOL MONOGR, V53, P119, DOI 10.2307/1942491; Pitcher T.J., 1986, P294; Power M.E., 1987, P333; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, UNPUB NATURE; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; SCHLOSSER IJ, 1987, ECOLOGY, V68, P651, DOI 10.2307/1938470; SCHLOSSER IJ, 1988, OIKOS, V52, P36, DOI 10.2307/3565979; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1973, THESIS U BRIT COLUMB; Seghers BH, 1978, VERH INT VEREIN LIMN, V20, P2055; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; TREXLER JC, 1992, ECOLOGY, V73, P2224, DOI 10.2307/1941470; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WERNER EE, 1974, ECOLOGY, V55, P1042, DOI 10.2307/1940354; WILSON DS, 1975, AM NAT, V109, P769, DOI 10.1086/283042; Zaret T. M., 1980, PREDATION FRESHWATER 45 65 67 3 33 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos FEB 1994 69 1 54 64 10.2307/3545283 11 Ecology Environmental Sciences & Ecology MR887 WOS:A1994MR88700006 2019-02-26 J WEIMERSKIRCH, H; ROBERTSON, G WEIMERSKIRCH, H; ROBERTSON, G SATELLITE TRACKING OF LIGHT-MANTLED SOOTY ALBATROSSES POLAR BIOLOGY English Article SOUTH-GEORGIA; DIOMEDEA-EXULANS; CROZET ISLANDS; SURVIVAL; ECOLOGY Five light-mantled sooty albatrosses (Phoebetria palpebrata) breeding at Macquarie Island were tracked with miniaturised satellite transmitters during foraging trips of the incubation period. Birds moved rapidly to specific sectors of the Southern Ocean, where they spent several days foraging before returning to their nests. These specific sectors were at an average distance of 1516 km from Macquarie Island and located in pelagic Antarctic waters, mostly along the Antarctic continent. The maximum foraging range was in average 1721 km and the total distance covered by two birds for which there were complete tracks was 6463 and 6975 km. This study confirms previous suggestions that light-mantled sooty albatrosses are able to forage in the waters of the high Antarctic while breeding in the sub-Antarctic. The implications of the extreme separation of feeding zones from nesting grounds, in terms of conservation and life-history strategies, are discussed. AUSTRALIAN ANTARCTIC DIV,KINGSTON,TAS 7050,AUSTRALIA WEIMERSKIRCH, H (reprint author), CNRS,CEBC,F-79360 BEAUVOIR NIORT,FRANCE. AINLEY DG, 1984, MARINE ECOLOGY ROSS, V2; BARTLE J, 1991, BIRD CONSERV INT, P351; BERRUTI A, 1979, EMU, V79, P161, DOI 10.1071/MU9790161; BROTHERS N, 1991, BIOL CONSERV, V55, P255, DOI 10.1016/0006-3207(91)90031-4; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; CROXALL JP, 1990, J ANIM ECOL, V59, P775, DOI 10.2307/4895; Harcus T., 1978, S AFR J ANTARCT RES, V8, P99; JOUVENTIN P, 1990, NATURE, V343, P746, DOI 10.1038/343746a0; KREBS JR, 1984, BEHAVIOURAL ECOLOGY, P91; PENNYCUICK CJ, 1982, PHILOS T ROY SOC B, V300, P75, DOI 10.1098/rstb.1982.0158; SHINGU C, 1978, JAP ASS FISH RES PRO, V31; SOUTHWOOD TRE, 1966, ECOLOGICAL METHODS; THOMAS G, 1983, J ZOOL, V199, P123; THOMAS G, 1982, EMU, V82, P92, DOI 10.1071/MU9820092; WEIMERSKIRCH H, 1987, J ANIM ECOL, V56, P1043, DOI 10.2307/4965; Weimerskirch H., 1992, P185; WEIMERSKIRCH H, 1986, IBIS, V128, P195, DOI 10.1111/j.1474-919X.1986.tb02669.x; WEIMERSKIRCH H, 1992, MAR ECOL PROG SER, V86, P297, DOI 10.3354/meps086297; WEIMERSKIRCH H, 1987, OIKOS, V49, P315, DOI 10.2307/3565767; WEIMERSKIRCH H, 1993, AUK, V110, P325; Woehler E.J., 1990, ANARE Research Notes, V77, P1 21 50 50 0 5 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0722-4060 POLAR BIOL Polar Biol. FEB 1994 14 2 123 126 4 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology MX317 WOS:A1994MX31700006 2019-02-26 J POPE, JG; SHEPHERD, JG; WEBB, J POPE, JG; SHEPHERD, JG; WEBB, J SUCCESSFUL SURF-RIDING ON SIZE SPECTRA - THE SECRET OF SURVIVAL IN THE SEA PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES English Article; Proceedings Paper Royal-Soc Discussion Meeting: Generalizing Across Marine and Terrestrial Ecology JUL 07-08, 1993 LONDON, ENGLAND ROYAL SOC PELAGIC FOOD WEB; MARINE FISH; MORTALITY; DYNAMICS; PLANKTON All ecosystems require constituent species to survive against a backcloth of biotic and abiotic scenery. How this scenery shapes the life-history strategies of the players and how they in turn shape the scenery are important themes of the play of life. Species surviving in temperate and Arctic shelf seas do so against a scenery dominated by seasonal changes in the size-spectrum of other players. Successful survival in such an environment requires species to ride the big wave of annual productivity as it rolls through the extended size spectrum from phytoplankton to large fish. This wave flattens and broadens as it moves towards higher sizes. We speculate that in a seasonal shelf seas environment the wave shape is such that the Sheldon-Sutcliffe spectrum of equal biomass per log size interval is approximately true as an annual average although it may not be true at any particular moment in the year. Such spectra are structured by biomass being moved up the size spectrum mainly by predation processes, with growth of individuals being a second order process. However, the problem for an individual is to grow up through a size spectrum from its size at birth to its size at reproduction. Hence species need to find survival paths through the fluctuating scenery. This scenery is composed of the biomass of the prey, that of animals of a similar size, and larger predators. The paths followed dictate the life-history strategies of the species. This central problem for sea dwellers in temperate and Arctic shelf seas generates a broad similarity in the choice of life-history strategy for many key players over quite wide geographic areas of the globe. In these seas, strategies of high fecundity, high mortality and high growth rate are particularly common while strategies of low fecundity and parental care are rare for much of the size range. These seas also seem to favour longer trophic chains than terrestrial systems and either several generations per year or multiannual life cycles rather than annual cycles. POPE, JG (reprint author), MAFF,DIRECTORATE FISHERIES RES,PAKEFIELD RD,LOWESTOFT NR33 0HT,SUFFOLK,ENGLAND. Shepherd, John/0000-0002-5230-4781 BEYER JE, 1989, DANA-J FISH MAR RES, V7, P45; BRANDER K, 1992, CAN J FISH AQUAT SCI, V49, P238, DOI 10.1139/f92-028; CUSHING DH, 1969, J CONSEIL, V33, P81; FENCHEL T, 1974, OECOLOGIA, V14, P317, DOI 10.1007/BF00384576; GERRITSEN J, 1977, J FISH RES BOARD CAN, V34, P73, DOI 10.1139/f77-008; HARGRAVE BT, 1985, MAR ECOL PROG SER, V20, P221, DOI 10.3354/meps020221; PARANJAPE MA, 1991, 1991 P WORKSH POT US; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; Platt T., 1978, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V173, P60; Platt T, 1985, CAN B FISH AQUAT SCI, V213, P55; Pope J.G., 1988, P146; POPE JG, 1981, CAN SPEC PUBL FISH A, V59, P116; RICE JC, 1991, ICES MAR SC, V193, P34; SHELDON RW, 1977, J FISH RES BOARD CAN, V34, P2344, DOI 10.1139/f77-314; SHELDON RW, 1972, LIMNOL OCEANOGR, V17, P327, DOI 10.4319/lo.1972.17.3.0327; SHELDON RW, 1973, LIMNOL OCEANOGR, V1, P719; SILVERT W, 1978, LIMNOL OCEANOGR, V23, P813, DOI 10.4319/lo.1978.23.4.0813; Silvert W., 1980, EVOLUTION ECOLOGY ZO, P754; SPRULES WG, 1991, CAN J FISH AQUAT SCI, V48, P105, DOI 10.1139/f91-015; URSIN E, 1973, Meddelelser fra Danmarks Fiskeri- og Havundersogelser, V7, P85; WARE DM, 1975, J FISH RES BOARD CAN, V32, P2503, DOI 10.1139/f75-288; 1988, ICES CM1988 REP MULT 22 72 74 0 14 ROYAL SOC LONDON LONDON 6 CARLTON HOUSE TERRACE, LONDON, ENGLAND SW1Y 5AG 0962-8436 PHILOS T ROY SOC B Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. JAN 29 1994 343 1303 41 49 10.1098/rstb.1994.0006 9 Biology Life Sciences & Biomedicine - Other Topics MV155 WOS:A1994MV15500006 2019-02-26 J HART, RC HART, RC EQUIPROPORTIONAL TEMPERATURE-DURATION RESPONSES AND THERMAL INFLUENCES ON DISTRIBUTION AND SPECIES SWITCHING IN THE COPEPODS METADIAPTOMUS-MERIDIANUS AND TROPODIAPTOMUS-SPECTABILIS HYDROBIOLOGIA English Article FRESH-WATER COPEPODS; TEMPERATURE-DEPENDENT DEVELOPMENT; EQUIPROPORTIONALITY; EGG; NAUPLIAR AND COPEPODID DURATIONS; ZOOGEOGRAPHY; SPECIES SWITCHING; PARASITISM; LIFE-HISTORY STRATEGIES FRESH-WATER COPEPODS; LAKE LE-ROUX; EMBRYONIC-DEVELOPMENT; SEASONAL SUCCESSION; SOUTH-AFRICA; ZOOPLANKTON; TURBIDITY; DYNAMICS; NAUPLIAR; RIVER The temperature-dependence of development was studied in two ecologically divergent freshwater calanoids, Metadiaptomus meridianus (Douwe) and Tropodiaptomus spectabilis (Kiefer). Egg durations were determined between 10 and 35 degrees C, and food satiated post-embryonic development times between 12 and 32 degrees C. All responses were basically inverse monotonic functions of temperature, adequately described by Belehradek's equation. M. meridianus generally developed faster than T. spectabilis. Its egg development was faster at all temperatures, and while its naupliar durations were shorter only up to +/- 15 degrees C, its overall post-embryonic development was more rapid up to +/- 24 degrees C in females and +/- 28 degrees C in males. Relatively speaking, however, T. spectabilis is clearly more warm-adapted than M. meridianus. The respective distributions (warm subtropical lowlands vs cooler uplands) of these copepods in the southern African subcontinent, as well as reversible switches between these species observed in two Natal impoundments are consistent with their contrasting thermal responses, although additional considerations apply in respect of the species alternations. T. spectabilis was replaced by M. meridianus in L. Midmar in spring 1981 and 1989, and in L. Albert Falls in spring 1990. Reciprocal replacements occurred in Midmar in autumn 1984, and in Albert Falls in late summer 1991. Both spring switches in Midmar coincided with cool spring temperatures, although the consequent Shifts in growth rate advantage predicted from the measured temperature-duration responses only partly explain the switches in this warm-temperate reservoir. Parasitism of T. spectabilis by an ellobiopsid was observed during both switching events in Midmar, and perhaps augmented the change, although its effects on the host are indeterminate. Both species showed exactly parallel temporal changes in fecundity during the recent switches in both reservoirs, indicating closely similar trophic niches in the adults at least, and mitigating the possibility of trophic influences as determinants of the replacement. A dramatic but inexplicable increase (around 50% at 20 degrees C) in the development time of T. spectabilis was noted between 1988 and 1990, and perhaps contributed too. The protracted historical dominance of T. spectabilis in thermally suboptimal conditions in Midmar is ascribed to a general competitive superiority presumed from its K-selected attributes, in contrast to the r-selection evident in M. meridianus. This alternation between species with contrasting life styles is of fundamental ecological interest. Studies on Albert Falls, commenced in 1989, suggest an even greater competitive superiority of T. spectabilis, in keeping with the warmer conditions in this larger sister reservoir below Midmar. Overall, the species switches are intelligible largely as integrated manifestations of contrasting fecundity, temperature-dependent development, seasonality attributes and competitive ability, and parasite susceptibility of these copepods in habitats which tend to be marginal, especially for T. spectabilis in Midmar. Equiproportional development is apparent in these taxa. The implications of this apparently general feature to the estimation of copepod production is considered briefly with particular reference to warm and tropical waters. HART, RC (reprint author), UNIV NATAL, DEPT ZOOL & ENTOMOL, POB 375, PIETERMARITZBURG 3200, SOUTH AFRICA. ALLANSON BR, 1983, S AFR NAT SCI PROG R, V77, P1; Begon M., 1990, ECOLOGY INDIVIDUALS; BOTTRELL HH, 1975, OECOLOGIA, V18, P63, DOI 10.1007/BF00350636; BREEN CM, 1983, S AFRICAN NATIONAL S, V78, P1; CORKETT C J, 1972, Journal of Experimental Marine Biology and Ecology, V10, P171, DOI 10.1016/0022-0981(72)90070-6; CORKETT CJ, 1970, J MAR BIOL ASSOC UK, V50, P161, DOI 10.1017/S0025315400000680; CORKETT CJ, 1984, CRUSTACEANA S, V7, P150; DEVI CR, 1990, J PLANKTON RES, V12, P55, DOI 10.1093/plankt/12.1.55; Dumont H. J., 1980, EVOLUTION ECOLOGY ZO, P685; DUMONT HJ, 1984, HYDROBIOLOGIA, V113, P313, DOI 10.1007/BF00026618; EDMONDSON WT, 1982, LIMNOL OCEANOGR, V27, P272, DOI 10.4319/lo.1982.27.2.0272; Hart R. C., 1992, Southern African Journal of Aquatic Sciences, V18, P20; HART RC, 1986, FRESHWATER BIOL, V16, P351, DOI 10.1111/j.1365-2427.1986.tb00976.x; HART RC, 1985, HYDROBIOLOGIA, V127, P17, DOI 10.1007/BF00004659; HART RC, 1990, HYDROBIOLOGIA, V206, P175, DOI 10.1007/BF00014085; HART RC, 1994, HYDROBIOLOGIA, V272, P77, DOI 10.1007/BF00006513; HART RC, 1991, J PLANKTON RES, V13, P645, DOI 10.1093/plankt/13.3.645; HART RC, 1978, MAR BIOL, V45, P23, DOI 10.1007/BF00388974; HART RC, 1987, FRESHWATER BIOL, V18, P287, DOI 10.1111/j.1365-2427.1987.tb01315.x; HART RC, ECOLOGICAL FACTORS B; HART RC, 1994, IN PRESS VERH INT VE, V25; HERZIG A, 1983, HYDROBIOLOGIA, V100, P65, DOI 10.1007/BF00027423; HUNTLEY M, 1984, AM NAT, V124, P455, DOI 10.1086/284288; KING EM, 1986, SYLLOGEUS, V58, P341; KING EM, 1984, THESIS U NATAL PIETE; MACKENZIE AG, 1990, UNPUB NAUPLIAR DEV T; MCLAREN IA, 1969, BIOL BULL, V137, P486, DOI 10.2307/1540170; MCLAREN IA, 1966, BIOL BULL, V131, P457, DOI 10.2307/1539985; NOBLE RG, 1978, S AFRICAN NATIONAL S, V34, P1; Peters R.H., 1983, P1; Precht H., 1958, PHYSIOLOGICAL ADAPTA, P50; RAYNER NA, 1986, J PLANKTON RES, V8, P837, DOI 10.1093/plankt/8.5.837; RAYNER NA, 1994, HYDROBIOLOGIA, V272, P47, DOI 10.1007/BF00006512; RAYNER NA, 1981, THESIS U NATAL PIERT; RAYNER NA, 1990, THESIS U NATAL PIETE; SOMMER U, 1986, ARCH HYDROBIOL, V106, P433; STEELE D H, 1975, Internationale Revue der Gesamten Hydrobiologie, V60, P711, DOI 10.1002/iroh.19750600609; Thompson S.N., 1990, P64; WALMSLEY RD, 1980, LIMNOLOGY SOME SELEC, P1; Waters T.F., 1977, Advances in Ecological Research, V10, P91, DOI 10.1016/S0065-2504(08)60235-4; 1986, MANAGEMENT WATER RES 41 13 13 0 3 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia JAN 7 1994 272 1-3 163 183 10.1007/BF00006519 21 Marine & Freshwater Biology Marine & Freshwater Biology MV620 WOS:A1994MV62000013 2019-02-26 J WIENER, P; TULJAPURKAR, S WIENER, P; TULJAPURKAR, S MIGRATION IN VARIABLE ENVIRONMENTS - EXPLORING LIFE-HISTORY EVOLUTION USING STRUCTURED POPULATION-MODELS JOURNAL OF THEORETICAL BIOLOGY English Article SEED DORMANCY; DISPERSAL; SELECTION; STRATEGIES; DYNAMICS; FITNESS STANFORD UNIV,DEPT BIOL SCI,STANFORD,CA 94305 NICHD NIH HHS [HD 16640]; NIGMS NIH HHS [GM 28016] Charlesworth B., 1980, EVOLUTION AGE STRUCT; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; Cohen D., 1987, MATH TOPICS POPULATI, P110; Dingle H., 1988, P83; Dingle H., 1986, P11; FREAS KE, 1983, J ECOL, V71, P211, DOI 10.2307/2259973; GADGIL M, 1971, ECOLOGY, V52, P253, DOI 10.2307/1934583; GILLESPIE J, 1973, THEOR POPUL BIOL, V4, P193, DOI 10.1016/0040-5809(73)90028-2; GILLESPIE JH, 1981, AM NAT, V117, P223, DOI 10.1086/283703; Haldane J. B. S., 1963, Journal of Genetics, V58, P237, DOI 10.1007/BF02986143; JAIN SK, 1982, BOT GAZ, V143, P101, DOI 10.1086/337276; KARLIN S, 1974, THEOR POPUL BIOL, V6, P355, DOI 10.1016/0040-5809(74)90016-1; KARLIN S, 1975, J MATH BIOL, V2, P1, DOI 10.1007/BF00276012; KARLIN S, 1974, THEOR POPUL BIOL, V5, P59, DOI 10.1016/0040-5809(74)90052-5; KARLIN S, 1975, 1ST COURSE STOCHASTI; KUNO E, 1981, OECOLOGIA, V49, P123, DOI 10.1007/BF00376909; LACEY EP, 1983, AM NAT, V122, P114, DOI 10.1086/284122; LAVIE B, 1978, CAN J GENET CYTOL, V20, P589, DOI 10.1139/g78-068; LEVIN SA, 1984, THEOR POPUL BIOL, V26, P165, DOI 10.1016/0040-5809(84)90028-5; LEVIN SA, 1991, THEORY POPUL BIOL, V39, P63; Levins R., 1968, EVOLUTION CHANGING E; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; MCEVOY PB, 1984, OECOLOGIA, V61, P160, DOI 10.1007/BF00396754; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; ROERDINK JBTM, 1988, J MATH BIOL, V26, P199, DOI 10.1007/BF00277733; ROFF DA, 1975, OECOLOGIA, V19, P217, DOI 10.1007/BF00345307; Roughgarden J, 1979, THEORY POPULATION GE; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; TULJAPURKAR S, 1993, THEOR POPUL BIOL, V43, P251, DOI 10.1006/tpbi.1993.1011; Tuljapurkar S., 1990, POPULATION DYNAMICS; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P141, DOI 10.1016/0040-5809(82)90010-7; UYENOYAMA MK, 1991, THEOR POPUL BIOL, V40, P14, DOI 10.1016/0040-5809(91)90045-H; VENABLE DL, 1980, OECOLOGIA, V46, P272, DOI 10.1007/BF00540137; WIENER P, 1993, EVOL ECOL, V7, P251, DOI 10.1007/BF01237743 35 45 47 0 8 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-5193 J THEOR BIOL J. Theor. Biol. JAN 7 1994 166 1 75 90 10.1006/jtbi.1994.1006 16 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology MV130 WOS:A1994MV13000006 8145562 2019-02-26 J BACILIERI, R; BOUCHET, MA; BRAN, D; GRANDJANNY, M; MAISTRE, M; PERRET, P; ROMANE, F BACILIERI, R; BOUCHET, MA; BRAN, D; GRANDJANNY, M; MAISTRE, M; PERRET, P; ROMANE, F NATURAL GERMINATION AS RESILIENCE COMPONENT IN MEDITERRANEAN COPPICE STANDS OF CASTANEA-SATIVA MILL AND QUERCUS-ILEX L ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY English Article ABANDONED LAND; CASTANEA-SATIVA MILL; COPPICE STAND, GERMINATION; MEDITERRANEAN CLIMATE; REGENERATION; QUERCUS-ILEX L; VEGETATION DYNAMICS SUCCESSION; MECHANISMS; GARRIGUE; FIRE In the Mediterranean basin, most of the present forests derive from original forests where the dominant species was different from the present one. These changes are largely due to human activities reflecting millenia of management and, often, overexploitation. In southern France, for example, palaeoecologists believe that the original malacophyllous deciduous forest of downy oak (Quercus pubescens) was replaced by a sclerophyllous evergreen holm oak (Quercus ilex) coppice in the driest areas, and chestnut (Castanea sativa) orchards or coppices in the ''wettest'' areas. However, for the last several decades, exploitation of these coppice stands has been decreasing. In this study, we addressed the question of the resilience of these managed ecosystems in the fact of changing management schemes, and to determine appropriate strategies and criteria of sustainable development. We present some aspects of the auto-succession after clearcutting of holm oak coppice stands and aspects of the natural regeneration of 4 species (Q. ilex, Q. pubescens, C. sativa, and P. pinaster). The consequences of the contrasted life history strategies are compared to estimate the future of these coppices. CTR ECOL FONCTIONNELLE & EVOLUT,BP 5051,F-34033 MONTPELLIER 1,FRANCE Allen M. F., 1989, Arid Soil Research and Rehabilitation, V3, P229; [Anonymous], 1987, OUR COMMON FUTURE; ASCHMANN H, 1984, B SOC BOT FR, V131; Aschmann H., 1973, ECOL STUD, V7, P11; BOUCHET MA, 1989, THESIS U AIXMARSEILL; BOUCHET MA, 1993, THESIS U AIXMARSEILL; BOUGETTE E, 1950, HIST PEUCHABON; BRAN D, 1990, VEGETATIO, V87, P47; CARTAN-SON M, 1992, Vegetatio, V99-100, P61, DOI 10.1007/BF00118210; CARTANSON M, 1992, VEGETATIO, V99, P3; Castri F. di, 1990, Biological invasions in Europe and the Mediterranean Basin., P3; Connell J.H., 1977, AM NAT, V111, P1119; DAGET P, 1984, B SOC BOT FR, V131; DAGET P, 1970, GRUNFRAGEN METHODEN, P121; Emberger L, 1955, RECUEIL TRAV LAB BOT, V7, P3; FLORET C, 1989, ACTA OECOL-OEC PLANT, V10, P245; FLORET C, 1992, Vegetatio, V99-100, P97, DOI 10.1007/BF00118214; FOX BJ, 1986, RESILIENCE MEDITERRA, P39; Grubb P. J., 1986, RESILIENCE MEDITERRA, P21; Hanes T. L, 1981, ECOSYSTEMS WORLD, P139; HARRINGTON CA, 1984, CAN J FOREST RES, V14, P357, DOI 10.1139/x84-065; Kauppi A, 1988, SCAND J FOREST RES, V3, P343, DOI 10.1080/02827588809382522; LEPART J, 1983, B ECOL, V14, P133; MORRIS J W, 1974, Bothalia, V11, P355; MYERS N, 1986, ANN REGIONAL SCI, V21, P33; Nahal I, 1981, ECOSYSTEMS WORLD, V11, P63; NAVEH Z., 1973, ECOL STUD, V7, P373; PICKETT STA, 1987, VEGETATIO, V69, P109, DOI 10.1007/BF00038691; PITTE JR, 1986, TERRES CASTANIDES; PONS A, 1971, B SOC BOT FR, V118, P841, DOI 10.1080/00378941.1971.10838953; PONS A, 1990, BIOL INVASIONS EUROP, P169; PONS A, 1981, ECOSYSTEMS WORLD, V11, P131; Pons A., 1985, GEOBOTANY, P25; Quezel P, 1985, GEOBOTANY, P9; REPETTO R, 1987, AMBIO, V16, P94; RICE EL, 1979, BOT REV, V45, P15, DOI 10.1007/BF02869951; ROMANE F, 1992, RESPONSES OF FOREST ECOSYSTEMS TO ENVIRONMENTAL CHANGES, P374; SORK VL, 1984, ECOLOGY, V65, P1020, DOI 10.2307/1938075; SUC JP, 1984, NATURE, V307, P429, DOI 10.1038/307429a0; SVEDIN U, 1988, STOCKHOLM STUDIES NA, V1, P5; TRABAUD L, 1991, J VEG SCI, V2, P307, DOI 10.2307/3235921; TRABAUD L, 1980, VEGETATIO, V43, P49, DOI 10.1007/BF00121017; TUTIN TG, 1964, FORA EUROPAEA; Vernet J. L., 1990, BIOL INVASIONS EUROP, P161; Westman WE, 1986, RESILIENCE MEDITERRA, P5; YACINE A, 1987, BIOL POPULATIONS, P691; 1974, MANUEL CHEF EQUIPE 47 11 11 1 11 GAUTHIER-VILLARS MONTROUGE DEPT UNIV PROFESSIONNEL REVUES SCIENTIFIQUES TECHNIQUE 11 RUE GOSSIN, F-92543 MONTROUGE, FRANCE 1146-609X ACTA OECOL Acta Oecol.-Int. J. Ecol. 1994 15 4 417 429 13 Ecology Environmental Sciences & Ecology PW260 WOS:A1994PW26000003 2019-02-26 J FORD, SM FORD, SM EVOLUTION OF SEXUAL DIMORPHISM IN BODY-WEIGHT IN PLATYRRHINES AMERICAN JOURNAL OF PRIMATOLOGY English Article PLATYRRHINES; SEXUAL DIMORPHISM; BODY SIZE; SEXUAL SELECTION; DIET NEW-WORLD MONKEYS; WOOLLY SPIDER MONKEYS; BRACHYTELES-ARACHNOIDES; PHYLOGENETIC CONSTRAINTS; SAGUINUS-FUSCICOLLIS; FEEDING ADAPTATIONS; PROSIMIAN PRIMATES; CANINE DIMORPHISM; GEOFFROY,E. 1806; BREEDING SYSTEM Neotropical primates show a remarkable range in body size, spanning two orders of magnitude from the tiny pygmy marmosets (100 g) to the woolly spider monkeys (11,000 + g). Even among the ''smaller'' platyrrhines, the range is large. In addition, these primates demonstrate a wide diversity in degrees and directions of sexual dimorphism, in both body size and canine size, from marked positive dimorphism (males larger than females), through monomorphic species, to negative dimorphism. Potential correlates or causes of the patterns of dimorphism in body size are investigated, including overall body size, natural selection for life history strategies, sexual selection, diet, habitat, and phylogenetic inertia. Focus is especially on those genera that show species-specific variation in dimorphism (e.g., Saguinus, Pithecia). Results are contrary to those for cross-primate or catarrhine studies, but complementary to recent studies on strepsirhines. They suggest that sexual selection is the primary determinant of degree and pattern of sexual dimorphism in platyrrhines, but that there is also a dietary effect. Natural selection may have some effect, although not the parameters analyzed here. Body size, habitat (primary vs. secondary forest preference), and phylogenetic inertia or constraints do not have any effect on the presence of sexual dimorphism in body weights in New World monkeys. (C) 1994 Wiley-Liss, Inc. FORD, SM (reprint author), SO ILLINOIS UNIV,DEPT ANTHROPOL,CARBONDALE,IL 62901, USA. Ayres J. M., 1986, THESIS U CAMBRIDGE; BROWN JL, 1975, EVOLUTION BEHAVIOR; Buchanan DB, 1981, ECOLOGY BEHAVIOR NEO, V1, P391; BUCHANANSMITH H, 1990, AM J PRIMATOL, V22, P205, DOI 10.1002/ajp.1350220306; Cheney D.L., 1987, P227; CHEVERUD JM, 1985, EVOLUTION, V39, P1335, DOI 10.1111/j.1558-5646.1985.tb05699.x; Clutton-Brock T.H., 1985, P51; CLUTTONBROCK TH, 1977, NATURE, V269, P797, DOI 10.1038/269797a0; Coelho A. M, 1974, PRIMATES, V15, P262; Darwin C, 1871, DESCENT MAN SELECTIO; Dawson G. A., 1977, BIOL CONSERVATION CA, P23; DESA RML, 1993, AM J PRIMATOL, V29, P145; DESA RML, 1993, INT J PRIMATOL, V14, P755; ELY J, 1989, INT J PRIMATOL, V10, P151, DOI 10.1007/BF02735198; FEDIGAN L, 1993, INT J PRIMATOL, V14, P853, DOI 10.1007/BF02220256; FERRARI SF, 1989, FOLIA PRIMATOL, V52, P132, DOI 10.1159/000156392; FORD SM, 1992, AM J PHYS ANTHROPOL, V88, P415, DOI 10.1002/ajpa.1330880403; GARBER PA, 1988, BEHAVIOUR, V105, P18, DOI 10.1163/156853988X00421; GARBER PA, 1984, FOLIA PRIMATOL, V42, P17, DOI 10.1159/000156141; GARBER PA, 1992, AM J PHYS ANTHROPOL, V88, P469, DOI 10.1002/ajpa.1330880404; GAULIN SJC, 1984, INT J PRIMATOL, V5, P515, DOI 10.1007/BF02692284; GELVIN B, 1990, AM J PRIMATOL, V20, P141; GODFREY LR, 1993, AM J PHYS ANTHROPOL, V90, P315, DOI 10.1002/ajpa.1330900306; Goldizen A.W., 1987, P34; HARCOURT AH, 1986, NATURE, V263, P226; HARVEY PH, 1985, HUMAN SEXUAL DIMORPH, P43; HERSHKOVITZ P, 1984, AM J PRIMATOL, V7, P155, DOI 10.1002/ajp.1350070212; HERSHKOVITZ P, 1987, AM J PRIMATOL, V12, P387, DOI 10.1002/ajp.1350120402; JENKINS PD, 1991, AM J PRIMATOL, V24, P1, DOI 10.1002/ajp.1350240102; KAPPELER PM, 1990, AM J PRIMATOL, V21, P201, DOI 10.1002/ajp.1350210304; KAPPELER PM, 1991, FOLIA PRIMATOL, V57, P132, DOI 10.1159/000156575; KAY RF, 1988, AM J PHYS ANTHROPOL, V77, P385, DOI 10.1002/ajpa.1330770311; KINZEY W G, 1972, Primates, V13, P365, DOI 10.1007/BF01793656; KINZEY W G, 1983, Primates, V24, P337, DOI 10.1007/BF02381979; KINZEY WG, 1992, AM J PHYS ANTHROPOL, V88, P499, DOI 10.1002/ajpa.1330880406; Kinzey WG, 1982, BIOL DIVERSIFICATION, P455; Leutenegger W., 1982, International Journal of Primatology, V3, P387, DOI 10.1007/BF02693740; LEUTENEGGER W, 1978, NATURE, V272, P610, DOI 10.1038/272610a0; LEUTENEGGER W, 1987, AM J PRIMATOL, V13, P171, DOI 10.1002/ajp.1350130207; LEUTENEGGER W, 1985, FOLIA PRIMATOL, V44, P82, DOI 10.1159/000156199; LEUTENEGGER W, 1977, Primates, V18, P117, DOI 10.1007/BF02382954; LEUTENEGGER W, 1985, SIZE SCALING PRIMATE, P32; MYERS P, 1978, AM NAT, V112, P701, DOI 10.1086/283312; Neville M.K., 1988, P349; Pickford M., 1986, P77; PICKFORD M, 1986, SEXUAL DIMORPHISM LI, P1; PLAVCAN JM, 1992, AM J PHYS ANTHROPOL, V87, P461, DOI 10.1002/ajpa.1330870407; PLAVCAN JM, 1993, AM J PHYS ANTHR S, V16, P159; PROTHERO J, 1986, J THEOR BIOL, V118, P359; RALLS K, 1976, Q REV BIOL, V51, P245, DOI 10.1086/409310; RICHARD AF, 1992, J HUM EVOL, V22, P395, DOI 10.1016/0047-2484(92)90067-J; Robinson J.G., 1987, P44; Rodman P.S., 1987, P146; ROSENBERGER AL, 1992, AM J PHYS ANTHROPOL, V88, P525, DOI 10.1002/ajpa.1330880408; ROSS C, 1991, INT J PRIMATOL, V12, P481, DOI 10.1007/BF02547635; Rowell T.E., 1986, P107; RUSCHI A, 1964, BIOLOGIA, P1; SHINE R, 1988, AM NAT, V131, P124, DOI 10.1086/284778; SMITH RJ, 1980, J HUM EVOL, V10, P165; Strier K. B., 1992, FACES FOREST ENDANGE; STRIER KB, 1987, AM J PRIMATOL, V13, P385, DOI 10.1002/ajp.1350130404; SUSSMAN RW, 1984, AM J PHYS ANTHROPOL, V64, P419, DOI 10.1002/ajpa.1330640407; TERBORGH J, 1985, BEHAV ECOL SOCIOBIOL, V16, P293, DOI 10.1007/BF00295541; TERBORGH J, 1985, 5 NEW WORLD PRIMATES; THORINGTON RW, 1984, AM J PRIMATOL, V6, P357, DOI 10.1002/ajp.1350060405; VANSCHAIK CP, 1989, BEHAV ECOL SOCIOBIOL, V24, P265, DOI 10.1007/BF00290902; WILLNER LA, 1985, HUMAN SEXUAL DIMORPH, P1 67 81 83 1 21 WILEY-LISS NEW YORK DIV JOHN WILEY & SONS INC 605 THIRD AVE, NEW YORK, NY 10158-0012 0275-2565 AM J PRIMATOL Am. J. Primatol. 1994 34 2 221 244 10.1002/ajp.1350340211 24 Zoology Zoology PH345 WOS:A1994PH34500009 2019-02-26 J BERNARDO, J BERNARDO, J EXPERIMENTAL-ANALYSIS OF ALLOCATION IN 2 DIVERGENT, NATURAL SALAMANDER POPULATIONS AMERICAN NATURALIST English Article FROG RANA-SYLVATICA; GENOTYPE-ENVIRONMENT INTERACTION; SCAPHIOPUS-COUCHII TADPOLES; LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; DESMOGNATHUS-OCHROPHAEUS; AMBYSTOMA-TALPOIDEUM; GENETIC-BASIS; EGG SIZE; COUNTERGRADIENT VARIATION I explored contributions of phenotypic plasticity and local genetic differentiation to resource allocation patterns by juvenile salamanders from populations that are known to differ in age and size at maturity. Salamanders were raised in a realistic field-experimental system with a reciprocal transplant design crossed with a prey addition treatment. This design allowed simultaneous assessment of (1) environmental effects (prey and garden), (2) genetic effects (populations), and (3) interactions between environmental and genetic effects on overall allocation patterns and on particular response variables. Genetic differences in maturity but not growth were detected, suggesting local adaptation in age at maturity. Prey supplementation accelerated growth and increased gonad and fat body mass similarly in both populations. Gonad maturation was also accelerated by supplemental food, but the populations differed in the timing of this effect. Gonad development of low-elevation salamanders, known to mature earlier in nature, responded to high prey levels at smaller sizes (younger ages) than did high-elevation animals. The plasticity of overall allocation patterns in response to supplemental prey also differed between the populations. The result that these populations differ in maturation rates but not in growth potential suggests that growth capacity and maturation timing and size are free to evolve independently. I argue that correlations between growth rates and age and size at maturity observed in many taxa do not necessarily indicate causation but probably reflect correlated responses to local environments. BERNARDO, J (reprint author), DUKE UNIV, DEPT ZOOL, BOX 90325, DURHAM, NC 27708 USA. Bernardo, Joseph/C-2403-2008 Bernardo, Joseph/0000-0002-5516-4710 ALM G, 1959, 40 I FRESHW RES REP; ANTONOVICS J, 1982, J ECOL, V70, P55, DOI 10.2307/2259864; BERNARDO J, 1989, AM ZOOL, V29, pA29; BERNARDO J, 1991, TRENDS ECOL EVOL, V6, P1, DOI 10.1016/0169-5347(91)90137-M; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; BERNARDO J, 1991, AM ZOOL, V31, pA92; Bernardo J., 1991, THESIS DUKE U DURHAM; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BERVEN KA, 1982, OECOLOGIA, V52, P360, DOI 10.1007/BF00367960; BERVEN KA, 1979, EVOLUTION, V33, P609, DOI 10.1111/j.1558-5646.1979.tb04714.x; BERVEN KA, 1990, ECOLOGY, V71, P1599, DOI 10.2307/1938295; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; BROWN KM, 1985, EVOLUTION, V39, P387, DOI 10.1111/j.1558-5646.1985.tb05675.x; BURTON RS, 1990, EVOLUTION, V44, P1814, DOI 10.1111/j.1558-5646.1990.tb05252.x; CARR DE, 1985, J HERPETOL, V19, P507, DOI 10.2307/1564204; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; Congdon J.D., 1982, Biology of Reptilia, V13, P233; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONOVER DO, 1990, T AM FISH SOC, V119, P416, DOI 10.1577/1548-8659(1990)119<0416:TRBCFG>2.3.CO;2; CONSTANTZ GD, 1979, OECOLOGIA, V40, P189, DOI 10.1007/BF00347936; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DUNHAM AE, 1989, PHYSIOL ZOOL, V62, P335, DOI 10.1086/physzool.62.2.30156174; DUNHAM AE, 1993, BIOTIC INTERACTIONS AND GLOBAL CHANGE, P95; EAGLESON GW, 1976, CAN J ZOOL, V54, P2098, DOI 10.1139/z76-243; ETTER RJ, 1989, ECOLOGY, V70, P1857, DOI 10.2307/1938118; FOX GA, 1990, EVOLUTION, V44, P1404, DOI 10.1111/j.1558-5646.1990.tb03835.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARLAND T, 1991, ANNU REV ECOL SYST, V22, P193, DOI 10.1146/annurev.es.22.110191.001205; HAHN WE, 1965, J EXP ZOOL, V158, P79, DOI 10.1002/jez.1401580108; Hairston N. G, 1987, COMMUNITY ECOLOGY SA; HARRIS RN, 1990, EVOLUTION, V44, P1588, DOI 10.1111/j.1558-5646.1990.tb03848.x; HOM CL, 1988, AM NAT, V131, P71, DOI 10.1086/284774; HOM CL, 1987, J MATH BIOL, V25, P289, DOI 10.1007/BF00276438; HOM CL, 1992, EVOL ECOL, V6, P458, DOI 10.1007/BF02270692; HOUCK LD, 1988, ANIM BEHAV, V36, P837, DOI 10.1016/S0003-3472(88)80166-0; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; JONSSON B, 1984, OECOLOGIA, V61, P319, DOI 10.1007/BF00379628; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KUSANO T, 1982, RES POPUL ECOL, V24, P329, DOI 10.1007/BF02515580; LITTELL RC, 1991, SAS SYSTEM LINEAR MO; LOTZ LAP, 1990, J ECOL, V78, P757, DOI 10.2307/2260897; MAIORANA VC, 1977, NATURE, V265, P533, DOI 10.1038/265533a0; Martof B. S., 1963, American Midland Naturalist, V69, P376, DOI 10.2307/2422917; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; NEWMAN RA, 1989, ECOLOGY, V70, P1775, DOI 10.2307/1938111; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; Noble GK, 1931, BIOL AMPHIBIA; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; RAWSON PD, 1991, EVOLUTION, V45, P1924, DOI 10.1111/j.1558-5646.1991.tb02697.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P134, DOI 10.1016/0169-5347(92)90150-A; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, OECOLOGIA, V73, P401, DOI 10.1007/BF00385257; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; RISKA B, 1985, GENET RES, V45, P287, DOI 10.1017/S0016672300022278; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff Derek A., 1992; SCHMIDT KP, 1985, EVOLUTION, V39, P396, DOI 10.1111/j.1558-5646.1985.tb05676.x; SEMLITSCH RD, 1990, EVOLUTION, V44, P1604, DOI 10.1111/j.1558-5646.1990.tb03849.x; SEMLITSCH RD, 1990, ECOLOGY, V71, P1789, DOI 10.2307/1937586; SEMLITSCH RD, 1989, EVOLUTION, V43, P105, DOI 10.1111/j.1558-5646.1989.tb04210.x; SIMPSON AL, 1992, CAN J ZOOL, V70, P1737, DOI 10.1139/z92-241; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; SMITHGILL SJ, 1983, AM ZOOL, V23, P47; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; Stearns SC., 1992, EVOLUTION LIFE HIST; SWEET SS, 1980, AM ZOOL, V20, P643; TAYLOR P, 1991, J THEOR BIOL, V148, P33, DOI 10.1016/S0022-5193(05)80464-3; Tilley S.G., 1977, P1; TILLEY SG, 1990, P NATL ACAD SCI USA, V87, P2715, DOI 10.1073/pnas.87.7.2715; TILLEY SG, 1980, COPEIA, P806, DOI 10.2307/1444460; TILLEY SG, 1993, HERPETOLOGICA, V49, P154; TILLEY SG, 1973, ECOLOGY, V54, P3, DOI 10.2307/1934370; TILLEY SG, 1978, EVOLUTION, V32, P93, DOI 10.1111/j.1558-5646.1978.tb01101.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VERRELL PA, 1989, EVOLUTION, V43, P745, DOI 10.1111/j.1558-5646.1989.tb05173.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; VIA S, 1992, TRENDS ECOL EVOL, V7, P63, DOI 10.1016/0169-5347(92)90109-O; VOLLESTAD LA, 1992, J ANIM ECOL, V61, P41, DOI 10.2307/5507; Werner E.E., 1988, P60; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; Williams GC, 1966, ADAPTATION NATURAL S; Yodzis P, 1989, INTRO THEORETICAL EC; 1985, SAS STAT USERS GUIDE; 1988, SAS PROCEDURES GUIDE 97 83 85 1 19 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JAN 1994 143 1 14 38 10.1086/285594 25 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology MV276 WOS:A1994MV27600002 2019-02-26 J WRAY, GA WRAY, GA THE EVOLUTION OF CELL LINEAGE IN ECHINODERMS AMERICAN ZOOLOGIST English Article URCHIN HELIOCIDARIS-ERYTHROGRAMMA; PRIMARY MESENCHYME CELLS; SEA-URCHIN; HEMICENTROTUS-PULCHERRIMUS; ASTERINA-PECTINIFERA; PHYLOGENETIC HISTORY; MARINE-INVERTEBRATES; EMBRYOS; GASTRULATION; MORPHOLOGY Metazoan embryos in various phyla and classes often utilize quite different processes to specify cell fates during embryogenesis. These differences have been interpreted either as constraints, necessary for fabricating distinct adult body plans, or as adaptations for particular life history strategies. This paper analyzes the evolution of echinoderm cell lineage within a phylogenetic context as a means of testing these hypotheses. Several features of echinoderm cell lineage are: probably over 550 million years old, and have persisted despite extensive transformations in adult morphology. Other features are much more variable evolutionarily, and have changed on many separate occasions. Importantly, even some of the most ancient and conservative features of echinoderm cell lineage can still evolve. These transformations are correlated with a particular life history transformation, the switch from feeding to nonfeeding larvae. The results suggest that adaptation has played a significant role in the evolution of cell lineage in echinoderms: some ancient features have been maintained for functional reasons rather than because of constraints, and some derived features have evolved in response to particular environmental challenges. WRAY, GA (reprint author), SUNY STONY BROOK, DEPT ECOL & EVOLUT, STONY BROOK, NY 11794 USA. AMEMIYA S, 1992, BIOL BULL, V182, P15, DOI 10.2307/1542177; Anderson D T, 1973, EMBRYOLOGY PHYLOGENY; ANDERSON DT, 1987, RATES EVOLUTION, P143; ARTHUR W, 1988, THEORY EVOLUTION DEV; BAUM DA, 1991, SYST ZOOL, V40, P1, DOI 10.2307/2992218; Berrill NJ, 1931, PHILOS T R SOC LON B, V219, P281, DOI 10.1098/rstb.1931.0006; Boveri T, 1901, ZOOL JB, V14, P630; Brooks DR, 1991, PHYLOGENY ECOLOGY BE; Buss L, 1987, EVOLUTION INDIVIDUAL; CAMERON RA, 1989, DEVELOPMENT, V106, P641; CAMERON RA, 1990, DEV BIOL, V137, P77, DOI 10.1016/0012-1606(90)90009-8; CAMERON RA, 1991, DEVELOPMENT, V113, P1085; CAMERON RA, 1987, GENE DEV, V1, P75, DOI 10.1101/gad.1.1.75; DAVIDSON EH, 1990, DEVELOPMENT, V108, P365; DAVIDSON EH, 1991, DEVELOPMENT, V113, P1; DAVIDSON EH, 1986, GENE ACTIVITY EARLY; Emlet R.B., 1987, Echinoderm Studies, V2, P55; ETTENSOHN CA, 1987, EXP CELL RES, V168, P431, DOI 10.1016/0014-4827(87)90015-2; FREEMAN G, 1992, J EVOLUTION BIOL, V5, P205, DOI 10.1046/j.1420-9101.1992.5020205.x; FREEMAN G, 1979, DETERMINANTS SPATIAL, P53; GREENWALD I, 1992, CELL, V68, P271, DOI 10.1016/0092-8674(92)90470-W; HARVEY EB, 1946, J EXP ZOOL, V102, P253, DOI 10.1002/jez.1401020303; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HENRY JJ, 1992, DEVELOPMENT, V114, P931; HENRY JJ, 1990, DEVELOPMENT, V110, P875; HENRY JJ, 1990, DEV BIOL, V141, P155; HORSTADIUS S, 1973, EXPT EMBRYOLOGY ECHI; JEFFERY WR, 1992, BIOESSAYS, V14, P219, DOI 10.1002/bies.950140404; KIMMEL CB, 1991, CELL-CELL INTERACTIONS IN EARLY DEVELOPMENT, P203; KOMINAMI T, 1983, J EMBRYOL EXP MORPH, V75, P87; KOMINAMI T, 1984, J EMBRYOL EXP MORPH, V84, P177; KOMINAMI T, 1988, DEV BIOL, V127, P187, DOI 10.1016/0012-1606(88)90200-X; Kume M, 1968, INVERTEBRATE EMBRYOL; KURAISHI R, 1992, BIOL BULL-US, V183, P258, DOI 10.2307/1542213; LAUDER GV, 1990, ANNU REV ECOL SYST, V21, P317; Lillie F. R., 1899, Biological Lectures Wood's Hole 1898 Boston, P43; LILLIE FR, 1898, J MORPHOL, V10, P1; MADDISON WP, 1992, MACCLADE ANAL PHYLOG; Martindale M. Q., 1992, American Zoologist, V32, p79A; MARUYAMA YK, 1985, J EXP ZOOL, V236, P155, DOI 10.1002/jez.1402360206; MCGINNIS W, 1992, CELL, V68, P283, DOI 10.1016/0092-8674(92)90471-N; MCMILLAN WO, 1992, EVOLUTION, V46, P1299, DOI 10.1111/j.1558-5646.1992.tb01125.x; Mortensen T, 1921, STUDIES DEV LARVAL F; Okazaki K., 1975, P177; PARKS AL, 1989, BIOL BULL, V177, P96, DOI 10.2307/1541838; PARKS AL, 1988, J EVOLUTION BIOL, V1, P27, DOI 10.1046/j.1420-9101.1988.1010027.x; PEHRSON JR, 1986, DEV BIOL, V113, P522, DOI 10.1016/0012-1606(86)90188-0; RAFF RA, 1987, DEV BIOL, V119, P6, DOI 10.1016/0012-1606(87)90201-6; RAFF RA, 1992, DEVELOPMENT, P15; SCHROEDER TE, 1980, DEV BIOL, V79, P428, DOI 10.1016/0012-1606(80)90128-1; SKIBA F, 1992, DEV BIOL, V151, P597, DOI 10.1016/0012-1606(92)90197-O; Smith A. B., 1984, ECHINOID PALAEOBIOLO; Smith A. B., 1988, ECHINODERM PHYLOGENY, P85; SMITH AB, 1988, MOL BIOL EVOL, V5, P345; SMITH AB, 1992, TRENDS ECOL EVOL, V7, P224, DOI 10.1016/0169-5347(92)90049-H; SMITH MJ, 1990, MOL BIOL EVOL, V7, P315; STRATHMANN RR, 1978, EVOLUTION, V32, P894, DOI 10.1111/j.1558-5646.1978.tb04642.x; Tennent DH, 1914, CARNEGIE I WASH PUBL, V182, P129; VANDENBIGGELAAR JA, 1983, MOLLUSCA, V3, P179; Wall R, 1990, THIS SIDE SPATIAL DE; Wilkins A. S., 1992, GENETIC ANAL ANIMAL; WILLIAMS DHC, 1975, AUST J ZOOL, V23, P371, DOI 10.1071/ZO9750371; WRAY GA, 1989, EVOLUTION, V43, P803, DOI 10.1111/j.1558-5646.1989.tb05178.x; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D; WRAY GA, 1991, EVOLUTION, V45, P1741, DOI 10.1111/j.1558-5646.1991.tb02684.x; WRAY GA, 1988, DEVELOPMENT, V103, P305; WRAY GA, 1989, DEV BIOL, V132, P458, DOI 10.1016/0012-1606(89)90242-X; WRAY GA, 1992, PALEOBIOLOGY, V18, P258; WRAY GA, 1992, AM ZOOL, V32, P123; WRAY GA, 1990, DEV BIOL, V141, P41, DOI 10.1016/0012-1606(90)90100-W 70 29 29 0 0 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 0003-1569 AM ZOOL Am. Zool. 1994 34 3 353 363 11 Zoology Zoology PV955 WOS:A1994PV95500006 2019-02-26 J VIITALA, J; HAKKARAINEN, H; YLONEN, H VIITALA, J; HAKKARAINEN, H; YLONEN, H DIFFERENT DISPERSAL IN CLETHRIONOMYS AND MICROTUS ANNALES ZOOLOGICI FENNICI English Article FIELD VOLE; SOCIAL-ORGANIZATION; SPACING BEHAVIOR; RUFOCANUS SUND; POPULATIONS; AGRESTIS; GLAREOLUS; MAMMALS; PHILOPATRY; DEMOGRAPHY We studied dispersal in the bank vole (Clethrionomys glareolus), an omnivore, and the field vole (Microtus agrestis), a grazer, in two large outdoor enclosures in Konnevesi, central Finland to explore the causes of dispersal. The competition hypothesis--that superior animals oust the inferior ones from favoured resource--predicts that species living on more scarce resource (here bank vole) should be more prone to disperse. According to inbreeding avoidance hypothesis young animals should disperse to avoid mating with their parents and dispersal should be similar in both species. Two populations, one of each species, were introduced to separate 0.5 ha enclosures. The growth of the populations and dispersal of the animals through six one-way dispersal tubes were observed for three months. Both founder populations consisted of seven females and three males. The populations attained densities similar to those in previous experiments. Most bank vole dispersers left the area before maturation when about 30 days old, whereas almost all field vole dispersers were mature animals about 60 days old and all females were pregnant. Dispersal was not sex biased in either species. The different dispersal obviously reflects different life history strategies and supports the competition hypothesis of dispersal instead of the inbreeding avoidance one. UNIV TURKU,DEPT BIOL,ECOL ZOOL LAB,SF-20500 TURKU 50,FINLAND VIITALA, J (reprint author), UNIV JYVASKYLA,DEPT BIOL,KONNEVESI RES STN,SF-44300 KONNEVESI,FINLAND. BOONSTRA R, 1987, J ANIM ECOL, V56, P655, DOI 10.2307/5075; BUJALSKA G, 1970, Acta Theriologica, V15, P381; DOBSON FS, 1982, ANIM BEHAV, V30, P1183; DOBSON FS, 1985, AM NAT, V126, P855, DOI 10.1086/284457; Frank F., 1954, Zoologische Jahrbuecher (Systematik), V82, P354; GAINES MS, 1979, ECOLOGY, V60, P814, DOI 10.2307/1936617; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; HANSSON L, 1985, ANN ZOOL FENN, V22, P315; HOFFMEYER I, 1982, BEHAV NEURAL BIOL, V36, P178, DOI 10.1016/S0163-1047(82)90167-4; IMS RA, 1988, NATURE, V335, P541, DOI 10.1038/335541a0; KALELA OLAVI, 1957, ANN ACAD SCI FENNICAE SER A IV BIOL, V34, P1; LIBERG O, 1985, AM NAT, V126, P129, DOI 10.1086/284402; MYLLYMAKI A, 1977, OIKOS, V29, P468, DOI 10.2307/3543588; OSTFELD RS, 1985, AM NAT, V126, P1, DOI 10.1086/284391; POKI J, 1982, ACTA ZOL FENNICA, V164, P1; PUSENIUS J, 1993, ANN ZOOL FENN, V30, P143; PUSENIUS J, 1993, ANN ZOOL FENN, V30, P133; PUSEY AE, 1987, TRENDS ECOL EVOL, V2, P295, DOI 10.1016/0169-5347(87)90081-4; SAITOH T, 1981, J ANIM ECOL, V50, P79, DOI 10.2307/4032; SANDELL M, 1990, OECOLOGIA, V83, P145, DOI 10.1007/BF00317745; VIITALA J, 1977, ANN ZOOL FENN, V14, P53; VIITALA J, 1987, Z SAUGETIERKD, V54, P223; VIITALA J, 1981, 7 U JYVASKYLA BIOL R, P3; WOLFF JO, 1992, NATURE, V359, P409, DOI 10.1038/359409a0; YLONEN H, 1988, HOLARCTIC ECOL, V11, P286; YLONEN H, 1987, Z SAUGETIERKD, V52, P354; YLONEN H, 1991, HOLARCTIC ECOL, V14, P131; YLONEN H, 1990, OECOLOGIA, V83, P333, DOI 10.1007/BF00317556 28 21 21 0 3 FINNISH ZOOLOGICAL BOTANICAL PUBLISHING BOARD HELSINKI UNIV HELSINKI P O BOX 17 (P. RAUTATIEKATU 13), FIN-00014 HELSINKI, FINLAND 0003-455X ANN ZOOL FENN Ann. Zool. Fenn. 1994 31 4 411 415 5 Ecology; Zoology Environmental Sciences & Ecology; Zoology QB780 WOS:A1994QB78000007 2019-02-26 J FRANK, KT; LEGGETT, WC FRANK, KT; LEGGETT, WC FISHERIES ECOLOGY IN THE CONTEXT OF ECOLOGICAL AND EVOLUTIONARY-THEORY ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS English Review POPULATION REGULATION; DENSITY DEPENDENCE; DISPERSAL; LIFE HISTORY THEORY CAPELIN MALLOTUS-VILLOSUS; COD GADUS-MORHUA; STOCK-RECRUITMENT RELATIONSHIP; ANCHOVY ENGRAULIS-MORDAX; SHAD ALOSA-SAPIDISSIMA; LIFE-HISTORY EVOLUTION; SMALL-SCALE TURBULENCE; LARVAL FISH; CLASS STRENGTH; ATLANTIC COD This review examines the application of fisheries ecological data in the development and testing of ecological and evolutionary theory, and the use of such theory in the pursuit of fisheries science. The development of modem fisheries ecology is traced from the beginning of the twentieth century to illustrate the paradigm shifts that have influenced the discipline. The major influence of ecological theory on the development of fisheries ecology was the application of the theory of density dependence, developed in the context of studies of insect population biology. This led to the theoretical construct of a functional relationship between stock and recruitment-a central concept in fisheries ecology. Fisheries ecological data have not been used extensively in the testing of theory. Important exceptions include contributions to the development and testing of self-thinning, the role of density independence in population dynamics, metapopulation modelling and associated theory, and life history theory. The potential for the use of fisheries ecological data in the development and testing of ecological and evolutionary theory is great. The importance of a greater consideration of ecological and evolutionary theory in the development of fisheries ecology is advocated. MCGILL UNIV, DEPT BIOL, MONTREAL H3A 1B1, PQ, CANADA FRANK, KT (reprint author), FISHERIES & OCEANS CANADA, BEDFORD INST OCEANOG, DIV MARINE FISH, POB 1006, DARTMOUTH B2Y 4A2, NS, CANADA. Leggett, William/F-6009-2011 ANDREWARTHA HG, 1952, BIOL REV, V27, P50, DOI 10.1111/j.1469-185X.1952.tb01363.x; ARNOLD GP, 1981, ANIMAL MIGRATION, P55; BAILEY KM, 1981, MAR ECOL PROG SER, V6, P1, DOI 10.3354/meps006001; Barns R. A, 1969, S SALMON TROUT STREA, P71; BAZZAZ FA, 1979, ANNU REV ECOL SYST, V10, P351, DOI 10.1146/annurev.es.10.110179.002031; BELL FH, 1958, J FISH RES BOARD CAN, V15, P625, DOI 10.1139/f58-033; BENTZEN P, 1993, J FISH BIOL, V43, P909, DOI 10.1006/jfbi.1993.1194; BERTRAM DF, 1993, THESIS MCGILL U MONT; Beverton R. J. H., 1957, DYNAMICS EXPLOITED 2, VXIX; BEVERTON RJH, 1992, NETH J SEA RES, V29, P61, DOI 10.1016/0077-7579(92)90008-3; BEVERTON RJH, 1965, BIOL SIGNIFICANCE CL, P79; BLAXTER JHS, 1982, ADV MAR BIOL, V20, P3; BRADFORD MJ, 1992, FISH B-NOAA, V90, P439; BRANDER K, 1992, CAN J FISH AQUAT SCI, V49, P238, DOI 10.1139/f92-028; BROMLEY PJ, 1989, J FISH BIOL, V35, P117; CAMPANA SE, 1989, CAN J FISH AQUAT SCI, V46, P171, DOI 10.1139/f89-287; CHAMBERS RC, 1987, CAN J FISH AQUAT SCI, V44, P1936, DOI 10.1139/f87-238; CHECKLEY DM, 1988, NATURE, V335, P346, DOI 10.1038/335346a0; Clark CW, 1976, MATH BIOECONOMICS; Clark CW, 1985, BIOECONOMIC MODELING; CLARK WC, 1977, SPATIAL PATTERN PLAN; COHEN D, 1967, J THEOR BIOL, V16, P1, DOI 10.1016/0022-5193(67)90050-1; COHEN EB, 1991, CAN J FISH AQUAT SCI, V48, P1003, DOI 10.1139/f91-117; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CRECCO VA, 1984, CAN J FISH AQUAT SCI, V41, P1216, DOI 10.1139/f84-143; CURY P, 1989, CAN J FISH AQUAT SCI, V46, P670, DOI 10.1139/f89-086; Cushing D.H., 1978, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V173, P107; CUSHING D H, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P142; Cushing D. H., 1982, CLIMATE FISHERIES; CUSHING DH, 1983, J PLANKTON RES, V5, P847, DOI 10.1093/plankt/5.6.847; CUSHING DH, 1984, J CONSEIL, V41, P159; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; CUSHING DH, 1973, J FISH RES BOARD CAN, V30, P1965, DOI 10.1139/f73-320; DAAN N, 1990, NETH J SEA RES, V26, P343, DOI 10.1016/0077-7579(90)90096-Y; DAGG MJ, 1984, MAR ECOL PROG SER, V19, P7, DOI 10.3354/meps019007; Dahl K., 1907, REPORT NORWEGIAN FIS, V2, P1; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; DELAFONTAINE Y, 1988, CAN J FISH AQUAT SCI, V45, P1173, DOI 10.1139/f88-140; Dickson R.R., 1993, Fisheries Oceanography, V2, P124, DOI 10.1111/j.1365-2419.1993.tb00130.x; ELLIOTT JM, 1993, J ANIM ECOL, V62, P371, DOI 10.2307/5368; ELLIOTT JM, 1987, J ANIM ECOL, V56, P83, DOI 10.2307/4801; FORTIER L, 1989, MAR ECOL PROG SER, V51, P19, DOI 10.3354/meps051019; Frank Kenneth T., 1993, Fisheries Oceanography, V2, P114, DOI 10.1111/j.1365-2419.1993.tb00129.x; FRANK KT, 1982, CAN J FISH AQUAT SCI, V39, P991, DOI 10.1139/f82-134; FRANK KT, 1992, CAN J FISH AQUAT SCI, V49, P2222, DOI 10.1139/f92-243; FRANK KT, 1983, CAN J FISH AQUAT SCI, V40, P754, DOI 10.1139/f83-098; FRANK KT, 1981, CAN J FISH AQUAT SCI, V38, P215, DOI 10.1139/f81-028; FRANK KT, 1989, J CONSEIL, V45, P146; FRANK KT, 1991, CAN J FISH AQUAT SCI, V48, P1350, DOI 10.1139/f91-161; FRANK KT, 1983, CAN J FISH AQUAT SCI, V40, P1442, DOI 10.1139/f83-166; FUIMAN LA, 1989, MAR ECOL PROG SER, V51, P291, DOI 10.3354/meps051291; GAUTHREAUX SAJ, 1980, ANIMAL MIGRATION ORI; GIESEL JT, 1976, ANNU REV ECOL SYST, V7, P57, DOI 10.1146/annurev.es.07.110176.000421; GODFRAY HCJ, 1992, NATURE, V359, P673, DOI 10.1038/359673a0; GORDOA A, 1991, CAN J FISH AQUAT SCI, V48, P2095, DOI 10.1139/f91-248; GOTELLI NJ, 1991, AM NAT, V138, P768, DOI 10.1086/285249; Grant James W.A., 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V118, P99; Gulland J. A., 1953, J CONS INT EXPLOR ME, V18, P351; GULLAND JA, 1982, J THEOR BIOL, V97, P69, DOI 10.1016/0022-5193(82)90277-6; HALL CAS, 1988, ECOL MODEL, V43, P5, DOI 10.1016/0304-3800(88)90070-1; HANKIN DG, 1980, FISH B-NOAA, V78, P555; Harden Jones F, 1968, FISH MIGRATION; Harper J.L., 1977, POPULATION BIOL PLAN; HARPER JL, 1961, EVOLUTION, V15, P209, DOI 10.2307/2406081; HAYMAN RA, 1980, T AM FISH SOC, V109, P54, DOI 10.1577/1548-8659(1980)109<54:EACSOD>2.0.CO;2; Hempel G., 1978, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V173, P145; HEMPEL GOTTHILF, 1965, CALIF COOP OCEANIC FISH INVEST REP, V10, P13; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; Hollowed A.B., 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V108, P207; HORN HS, 1978, BEHAVIOURAL ECOLOGY, P411; HOUDE ED, 1989, FISH B-NOAA, V87, P471; HOUDE ED, 1987, AM FISH SOC S, V2, P17; Hovgard H., 1990, P36; Hutchinson G. E., 1978, INTRO POPULATION ECO; ITO Y, 1980, COMP ECOLOGY; Janzen D. H., 1971, A Rev Ecol Syst, V2, P465, DOI 10.1146/annurev.es.02.110171.002341; JANZEN DH, 1976, ANNU REV ECOL SYST, V7, P347, DOI 10.1146/annurev.es.07.110176.002023; JENKINS GP, 1987, J EXP MAR BIOL ECOL, V110, P147, DOI 10.1016/0022-0981(87)90025-6; JOHNSON ML, 1990, ANNU REV ECOL SYST, V21, P449, DOI 10.1146/annurev.es.21.110190.002313; JONES R, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P156; KAARTVEDT S, 1987, MAR ECOL PROG SER, V40, P195, DOI 10.3354/meps040195; KARBAN R, 1982, ECOLOGY, V63, P321, DOI 10.2307/1938949; KIKKAWA J, 1977, Australian Journal of Ecology, V2, P121, DOI 10.1111/j.1442-9993.1977.tb01132.x; KINGSFORD MJ, 1985, NEW ZEAL J MAR FRESH, V19, P429, DOI 10.1080/00288330.1985.9516107; LARKIN PA, 1977, T AM FISH SOC, V106, P1, DOI 10.1577/1548-8659(1977)106<1:AEFTCO>2.0.CO;2; LARKIN PA, 1964, J FISH RES BOARD CAN, V21, P477, DOI 10.1139/f64-041; LARKIN PA, 1978, ANNU REV ECOL SYST, V9, P57, DOI 10.1146/annurev.es.09.110178.000421; LASKER R, 1975, FISH B-NOAA, V73, P453; Leggett W.C., 1985, Contributions in Marine Science, V27, P277; LEGGETT WC, 1984, CAN J FISH AQUAT SCI, V41, P1193, DOI 10.1139/f84-141; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LEGGETT WC, 1977, ANNU REV ECOL SYST, V8, P285, DOI 10.1146/annurev.es.08.110177.001441; LEGGETT WC, 1994, IN PRESS NETH J SEA; LEGGETT WC, 1984, MECHANISMS MIGRATION, P159; LEGGETT WC, 1977, ASSESSING EFFECTS PO, P3; LITVAK MK, 1992, MAR ECOL PROG SER, V81, P13, DOI 10.3354/meps081013; LLOYD M, 1966, EVOLUTION, V20, P133, DOI 10.1111/j.1558-5646.1966.tb03350.x; LOFTUS KH, 1976, J FISH RES BOARD CAN, V33, P1822, DOI 10.1139/f76-235; MacCall A.D., 1990, DYNAMIC GEOGRAPHY MA; MACKENZIE BR, 1991, MAR ECOL PROG SER, V73, P149, DOI 10.3354/meps073149; MACKENZIE BR, 1994, IN PRESS LIMNOL OCEA; MAGNUSON JJ, 1988, AM FISH SOC S, V5, P1; MANGEL M, 1985, DECISION CONTROL UNC; Mann K. H, 1991, DYNAMICS MARINE ECOS; MANN R, 1982, FISH B-NOAA, V80, P315; MANN R, 1983, MAR ECOL PROG SER, V13, P211, DOI 10.3354/meps013211; MATLOCK GC, 1987, CONTRIB MAR SCI, V30, P39; MCCLEAVE JD, 1984, MECHANISMS MIGRATION; MONTELEONE DM, 1986, MAR ECOL PROG SER, V30, P133, DOI 10.3354/meps030133; MYERS RA, 1989, J MAR RES, V47, P635, DOI 10.1357/002224089785076208; MYERS RA, 1993, CAN J FISH AQUAT SCI, V50, P1599, DOI 10.1139/f93-181; MYERS RA, 1993, CAN J FISH AQUAT SCI, V50, P1576, DOI 10.1139/f93-179; NAIDU KS, 1970, CAN J ZOOLOG, V48, P1003, DOI 10.1139/z70-176; NELSON WR, 1977, FISH B-NOAA, V75, P23; Parrish R.H., 1981, Biological Oceanography, V1, P175; PAULIK GJ, 1973, RAPP P V REUN CONS I, V164, P303; PEPIN P, 1992, MAR ECOL PROG SER, V81, P1, DOI 10.3354/meps081001; PETERMAN RM, 1987, SCIENCE, V235, P354, DOI 10.1126/science.235.4786.354; PETERMAN RM, 1988, CAN J FISH AQUAT SCI, V45, P8, DOI 10.1139/f88-002; Peters RH, 1991, CRITIQUE ECOLOGY; PETERSEN CGJ, 1896, REPORT DANISH BIOL S, V6, P1; PETERSON WT, 1984, MAR ECOL PROG SER, V17, P65, DOI 10.3354/meps017065; Pope J.G., 1973, MATH THEORY DYNAMICS, P23; POTTS GW, 1984, FISH REPRODUCTION TA; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; QASIM S. Z., 1963, J MAR BIOL ASS INDIA, V5, P289; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; RIJNSDORP AD, 1991, J CONSEIL, V47, P352; Rivard D., 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V120, P31; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; Roff Derek A., 1992; ROSE GA, 1991, CAN J FISH AQUAT SCI, V48, P843, DOI 10.1139/f91-100; ROSE GA, 1989, CAN J FISH AQUAT SCI, V46, P1904, DOI 10.1139/f89-240; ROSE GA, 1989, J FISH BIOL, V35, P155; ROSE GA, 1990, ECOLOGY, V71, P33, DOI 10.2307/1940245; ROSE GA, 1993, NATURE, V366, P458, DOI 10.1038/366458a0; Rothschild B. J., 1986, DYNAMICS MARINE FISH; ROTHSCHILD BJ, 1988, J PLANKTON RES, V10, P465, DOI 10.1093/plankt/10.3.465; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; SCHNUTE J, 1985, CAN J FISH AQUAT SCI, V42, P414, DOI 10.1139/f85-057; Shepherd J.G., 1984, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V185, P255; SHEPHERD JG, 1980, J CONSEIL, V39, P160; SHEPHERD JG, 1990, POPULATION REGULATIO, P29; SINCLAIR M, 1984, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V183, P269; Sinclair M., 1988, MARINE POPULATIONS E; SKUD BE, 1982, SCIENCE, V216, P144, DOI 10.1126/science.216.4542.144; Smith R.J.F., 1985, CONTROL FISH MIGRATI; SNYDER RJ, 1991, ENVIRON BIOL FISH, V31, P381, DOI 10.1007/BF00002363; Solbreck C., 1985, Contributions in Marine Science, V27, P641; SOLEMDAL P, 1989, RAP PROCES, V191, P339; SOUTHWOOD TRE, 1981, ANIMAL MIGRATION, P197; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STOCKER M, 1985, CAN J FISH AQUAT SCI, V42, P174, DOI 10.1139/f85-272; TAGGART CT, 1987, CAN J FISH AQUAT SCI, V44, P1729, DOI 10.1139/f87-211; THOMPSON KR, 1989, CAN J FISH AQUAT SCI, V46, P1831, DOI 10.1139/f89-230; TUCK GN, 1994, B MATH BIOL, V56, P107, DOI 10.1007/BF02458291; Tyler A.V., 1992, Fisheries Oceanography, V1, P97, DOI 10.1111/j.1365-2419.1992.tb00027.x; Walker B. W., 1952, California Fish and Game, V38, P409; Walters C. J, 1986, ADAPTIVE MANAGEMENT; WALTERS CJ, 1987, CAN J FISH AQUAT SCI, V44, P156, DOI 10.1139/f87-319; WALTERS CJ, 1988, CAN J FISH AQUAT SCI, V45, P1848, DOI 10.1139/f88-217; WALTERS CJ, 1981, CAN J FISH AQUAT SCI, V38, P704, DOI 10.1139/f81-093; WALTERS CJ, 1993, CAN J FISH AQUAT SCI, V50, P2058, DOI 10.1139/f93-229; WARE DM, 1980, CAN J FISH AQUAT SCI, V37, P1012, DOI 10.1139/f80-129; WARE DM, 1975, J FISH RES BOARD CAN, V32, P2503, DOI 10.1139/f75-288; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; WELCH DW, 1986, CAN J FISH AQUAT SCI, V43, P108, DOI 10.1139/f86-012; WHITE PS, 1979, BOT REV, V45, P229, DOI 10.1007/BF02860857; WHITE TCR, 1976, OECOLOGIA, V22, P119, DOI 10.1007/BF00344712; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WOLDA H, 1988, ANNU REV ECOL SYST, V19, P1, DOI 10.1146/annurev.es.19.110188.000245; WOOTON RJ, 1990, ECOLOTY TELEOST FISH; WOURMS JP, 1972, J EXP ZOOL, V182, P389, DOI 10.1002/jez.1401820310; Wynne-Edwards Vero C, 1962, ANIMAL DISPERSION RE 178 73 76 1 27 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA 0066-4162 ANNU REV ECOL SYST Annu. Rev. Ecol. Syst. 1994 25 401 422 10.1146/annurev.es.25.110194.002153 22 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology PU883 WOS:A1994PU88300016 2019-02-26 J COELHO, ML; STOBBERUP, KA; ODOR, R; DAWE, EG COELHO, ML; STOBBERUP, KA; ODOR, R; DAWE, EG LIFE-HISTORY STRATEGIES OF THE SQUID, ILLEX-ILLECEBROSUS, IN THE NORTHWEST ATLANTIC AQUATIC LIVING RESOURCES English Article CEPHALOPODA; SQUID; CATCH; POPULATION STRUCTURE; LIFE HISTORY STRATEGIES; LIFE CYCLES; ATLANTIC Time series (1965-1985) of Illex illecebrosus catch and morphometric data from the Northwest Atlantic were analysed to describe geographic variability in population structure. The areas studied were NAFO sub-areas 3 to 6, which range from Newfoundland to the northeastern USA shelf. Population components, reflecting seasonal spawning groups, were identified based on analysis of length frequency data. Components 3 and 4 represent two prominent life cycles: the summer spawners and winter spawners respectively. Components 1, 2, and 5 do not represent different life cycles, but result from the capacity to shift between life cycles by prolonging (or shortening) the life span. The presence of up to five components in the southern area illustrates a life history strategy involving protracted spawning and complex population structure. There was clear geographic variability in annual catch, with fluctuations being most extreme in the most northern area. Annual catch levels in all areas were significantly correlated with the abundance of the winter-spawning component, as represented by the number of squid within samples which belong to component 4. Population structure in the most northern area was simplest and catch levels therefore were most dependent on the highly migratory winter-spawning component. This leads to greater catch variability in the most northern area than in the other areas. The advantages of good feeding conditions may compensate for the risks associated with long-range migrations, especially recruitment failure. Life history strategies involving migratory and non-migratory population components limit the risk of recruitment failure. The overall resultant life history strategy for Illex illecebrosus is one that ensures survival of the species by stabilizing recruitment in at least one (southern) area through protracted spawning, complex population structure and interaction of spawning components. COELHO, ML (reprint author), ALGARVE UNIV,UCTRA,CAMPUS GAMBELAS,P-8000 FARO,PORTUGAL. Stobberup, Kim/0000-0002-9975-5096 0 18 18 1 4 GAUTHIER-VILLARS MONTROUGE DEPT UNIV PROFESSIONNEL REVUES SCIENTIFIQUES TECHNIQUE 11 RUE GOSSIN, F-92543 MONTROUGE, FRANCE 0990-7440 AQUAT LIVING RESOUR Aquat. Living Resour. 1994 7 4 233 246 10.1051/alr:1994026 14 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology PZ620 WOS:A1994PZ62000002 2019-02-26 J JENKINS, GP; MAY, HMA JENKINS, GP; MAY, HMA VARIATION IN SETTLEMENT AND LARVAL DURATION OF KING GEORGE WHITING, SILLAGINODES-PUNCTATA (SILLAGINIDAE), IN SWAN BAY, VICTORIA, AUSTRALIA BULLETIN OF MARINE SCIENCE English Article; Proceedings Paper Symposium on Recent Advances in Reef Fish Recruitment Research, in Conjunction with Western-Society-of-Naturalists Meeting JUL, 1992 PERTH, AUSTRALIA W SOC NATURALISTS PLAICE PLEURONECTES-PLATESSA; THALASSOMA-BIFASCIATUM; OTOLITH MICROSTRUCTURE; SEMICOSSYPHUS-PULCHER; DELAYED METAMORPHOSIS; REEF FISH; GROWTH; RECRUITMENT; INVERTEBRATES; INCREMENTS Otoliths were examined from late-stage larvae and juveniles of King George whiting, Sillaginodes punctata, collected from Swan Bay in spring 1989. Increments in otoliths of larval S. punctata are known to be formed daily. A transition in the microstructure of otoliths from late-stage larvae was apparently related to environmental changes associated with entry to Port Phillip Bay. The pattern of abundance of post-larvae of S. punctata in fortnightly samples supported the contention that the transition was formed immediately prior to ''settlement'' in seagrass habitats. Backcalculation to the otolith transition suggested that five cohorts had entered Swan Bay, each approximately 10 days apart, from late September to early November. Stability of this pattern for juveniles from sequential samples indicated that otolith increments continued to be formed daily in the juvenile stage. The pattern of settlement was consistent for two sites within Swan Bay. The larval phase of King George whiting settling in Port Phillip Bay was extremely long and variable, ranging from approximately 100 to 170 days. Age at settlement was more variable than length, and growth rate at settlement was extremely slow, approximately 0.06 mm.d-1. Backcalculated hatching dates ranged from April to July. Increment widths in the larval stage suggest that growth slows after approximately 45 to 75 days; beyond which individuals are in a slow growth, competent stage of 40 to 100 days. Variable larval duration and settlement is discussed in terms of early-life-history strategies and hydrodynamic processes. UNIV MELBOURNE,DEPT ZOOL,QUEENSCLIFF,VIC 3225,AUSTRALIA JENKINS, GP (reprint author), UNIV MELBOURNE,VICTORIAN INST MARINE SCI,POB 138,QUEENSCLIFF,VIC 3225,AUSTRALIA. BROTHERS EB, 1983, MAR BIOL, V76, P319, DOI 10.1007/BF00393035; BRUCE BD, 1989, SAFISH, V13, P4; BRUCE BD, IN PRESS FISH B US; CAMPANA SE, 1985, CAN J FISH AQUAT SCI, V42, P1014, DOI 10.1139/f85-127; CHAMBERS RC, 1987, CAN J FISH AQUAT SCI, V44, P1936, DOI 10.1139/f87-238; CHECKLEY DM, 1988, NATURE, V335, P346, DOI 10.1038/335346a0; COWEN RK, 1985, J MAR RES, V43, P719, DOI 10.1357/002224085788440376; COWEN RK, 1991, MAR ECOL PROG SER, V69, P9, DOI 10.3354/meps069009; FOWLER AJ, 1989, MAR BIOL, V102, P167, DOI 10.1007/BF00428277; HALDANE JBS, 1955, EVOLUTION, V9, P484, DOI 10.2307/2405484; HOVENKAMP F, 1990, MAR ECOL PROG SER, V58, P205; Hutchins B, 1986, SEA FISHES SO AUSTR; JACKSON GA, 1981, AM NAT, V118, P16, DOI 10.1086/283797; JENKINS GP, 1986, AUST J MAR FRESH RES, V37, P507, DOI 10.1071/MF9860507; JENKINS GP, 1990, MAR ECOL PROG SER, V63, P93, DOI 10.3354/meps063093; JENKINS GP, 1986, THESIS U MELBOURNE; JESSOP R, 1986, SEMINAR P SCH BIOL S; Jones K., 1980, SAFIC (South Australian Fishing Industry Council), V4, P3; LITTLE KT, 1991, MAR ECOL PROG SER, V68, P235; MAY HMA, 1992, MAR ECOL PROG SER, V79, P203; MIDDLETON JF, 1991, J PHYS OCEANOGR, V21, P695, DOI 10.1175/1520-0485(1991)021<0695:TFOLFM>2.0.CO;2; Miller J.M., 1985, Contributions in Marine Science, V27, P338; MILLER JM, 1984, MECH MIGRATION FISHE, P209; MOSEGAARD H, 1988, CAN J FISH AQUAT SCI, V45, P1514, DOI 10.1139/f88-180; NORCROSS BL, 1984, T AM FISH SOC, V113, P153, DOI 10.1577/1548-8659(1984)113<153:OAETOF>2.0.CO;2; PECHENIK JA, 1990, OPHELIA, V32, P63, DOI 10.1080/00785236.1990.10422025; PECHENIK JA, 1984, SCIENCE, V224, P1097, DOI 10.1126/science.224.4653.1097; PITCHER CR, 1988, CORAL REEFS, V7, P105, DOI 10.1007/BF00300969; REZNICK D, 1989, CAN J FISH AQUAT SCI, V46, P108, DOI 10.1139/f89-014; ROBERTSON AI, 1977, AUST J MAR FRESH RES, V28, P35; ROBERTSON DR, 1988, ECOLOGY, V69, P370, DOI 10.2307/1940435; SCHELTEMA RS, 1986, B MAR SCI, V39, P290; SECOR DH, 1989, CAN J FISH AQUAT SCI, V46, P113, DOI 10.1139/f89-015; SOKAL RR, 1980, SYST ZOOL, V29, P50, DOI 10.2307/2412626; VANDERVEER HW, 1986, MAR ECOL PROG SER, V29, P223, DOI 10.3354/meps029223; VICTOR BC, 1986, CAN J FISH AQUAT SCI, V43, P1208, DOI 10.1139/f86-150; VICTOR BC, 1986, MAR BIOL, V90, P317, DOI 10.1007/BF00428555; VICTOR BC, 1982, MAR BIOL, V71, P203, DOI 10.1007/BF00394631; VONHERBING IH, 1991, MAR ECOL PROG SER, V72, P49; WELLINGTON GM, 1989, MAR BIOL, V101, P557, DOI 10.1007/BF00541659 40 60 60 2 9 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 0007-4977 B MAR SCI Bull. Mar. Sci. JAN 1994 54 1 281 296 16 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography NG919 WOS:A1994NG91900021 2019-02-26 B DEBRUYN, L Price, PW; Mattson, WJ; Baranchikov, YN DEBRUYN, L LIFE HISTORY STRATEGIES OF 3 GALL-FORMING FLIES TIED TO NATURAL VARIATION IN GROWTH OF PHRAGMITES-AUSTRALIS ECOLOGY AND EVOLUTION OF GALL-FORMING INSECTS USDA FOREST SERVICE GENERAL TECHNICAL REPORT NORTH CENTRAL English Proceedings Paper Symposium on the Ecology and Evolution of Gall-Forming Insects AUG 09-13, 1993 KRANSNOYARSK, RUSSIA INT UNION FORESTRY RES ORG, RUSSIAN ACAD SCI, SIBERIAN BRANCH, NO ARIZONA UNIV, DEPT BIOL SCI UNIV ANTWERP,DEPT BIOL,EVOLUTIONARY BIOL GRP,B-2020 ANTWERP,BELGIUM De Bruyn, Luc/C-7030-2008 De Bruyn, Luc/0000-0002-8968-8862 0 4 4 0 0 US DEPT AGR, FOREST SERV N CENTRAL FOREST EXPTL STN ST PAUL 1992 FOLWELL AVENUE, ST PAUL, MN 55108 USDA N CENT 1994 174 56 72 17 Ecology; Entomology; Forestry Environmental Sciences & Ecology; Entomology; Forestry BC49D WOS:A1994BC49D00007 2019-02-26 J KORFIATIS, KJ; STAMOU, GP KORFIATIS, KJ; STAMOU, GP EMERGENCE OF NEW FIELDS IN ECOLOGY - THE CASE OF LIFE-HISTORY STUDIES HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES English Article; Proceedings Paper 1991 Meeting of the International-Society-of-the-History-Philosophy-and-Social-Studies-of-Biology 1991 EVANSTON, IL INTER SOC HISTORY PHILOS & SOCIAL STUDIES BIOL MODELS; EVOLUTION; BIOLOGY We examine the emergence of the field of life-history strategies during the 1950s. (We consider a 'field' an area of scientific activity consisting of a theoretical core, a subject of research, a vocabulary and research tools). During the late 1940s and early 1950s, population ecology faced many problems, concerning its conceptual framework, its mathematical models, experimental deficiencies, etc. Research on life-history characteristics remained descriptive, lacking explanations about the causes and significance of phenomena. This was due to the deficiencies of the theoretical framework of population ecology up to the 1950s. The catalyzing factor for the emergence of the new field was the interdisciplinary impacts, and especially the impact of neodarwinism. The elaboration of a new theoretical core, invoking also methodological shifts, was the triggering factor, conditioning the emergence of the new field. KORFIATIS, KJ (reprint author), ARISTOTLE UNIV,SCH BIOL,DEPT ECOL,UP BOX 119,GR-54006 THESSALONIKI,GREECE. Korfiatis, Konstantinos/0000-0003-0297-6499 AMADON D, 1964, EVOLUTION, V18, P105, DOI 10.2307/2406424; ANDERSON RE, 1986, INEGRATING SCI DISCI, P323; Andrewartha H.G., 1954, DISTRIBUTION ABUNDAN, pII; BEATTY J, 1980, PHILOS SCI, V47, P532, DOI 10.1086/288955; BECHTEL W, 1986, INTEGRATING SCI DISC, P3, DOI DOI 10.1007/978-94-010-9435-1_1; BIRSCH LC, 1960, AM NAT, V94, P5; BURNETT T, 1960, AM NAT, V94, P201, DOI 10.1086/282123; Charlesworth B., 1984, EVOLUTIONARY ECOLOGY, P117; CHERRETT M, 1989, ECOLOGICAL CONCEPTS, P1; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COLLINS JP, 1986, J HIST BIOL, V19, P257, DOI 10.1007/BF00138879; CONNELL JH, 1964, AM NAT, V98, P399, DOI 10.1086/282335; DARDEN L, 1977, PHILOS SCI, V44, P43, DOI 10.1086/288723; Den Boer P. J., 1968, Acta Biotheoretica, V18, P165; Dobzhansky T., 1950, American Scientist, V38, P209; ELTON C, 1971, ANIMAL ECOLOGY, P173; Fisher R. A, 1958, GENETICAL THEORY NAT; FRANK PW, 1960, AM NAT, V94, P357, DOI 10.1086/282138; HACCOU P, IN PRESS PRACTICAL M; HAILA Y, 1982, ANN ZOOL FENN, V19, P255; HAILA Y, 1988, OIKOS, V53, P408, DOI 10.2307/3565543; Haila Y, 1982, CONCEPTUAL ISSUES EC, P261; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARPER JL, 1967, ECOLOGY, V55, P247; HUTCHINSON GE, 1948, ANN NY ACAD SCI, V50, P221, DOI 10.1111/j.1749-6632.1948.tb39854.x; ISTOCK CA, 1967, EVOLUTION, V21, P592, DOI 10.1111/j.1558-5646.1967.tb03414.x; KINGSLAND, 1986, J HIST BIOL, V19, P236; Kingsland S. E, 1985, MODELING NATURE; KLOPFER PH, 1960, AM NAT, V94, P293, DOI 10.1086/282130; KREBS CJ, 1978, ECOLOGY, P288; LACK D, 1954, NATURAL REGULATION A; LAUDAN L, 1986, SYNTHESE, V69, P141, DOI 10.1007/BF00413981; Laudan L, 1977, PROGR ITS PROBLEMS; Leslie PH, 1945, BIOMETRIKA, V33, P183, DOI 10.1093/biomet/33.3.183; Leslie PH, 1940, J ANIM ECOL, V9, P27, DOI 10.2307/1425; Levin S. A., 1988, COMMUNITY ECOLOGY, P1; Levins R., 1968, Q REV BIOL, V43, P301, DOI DOI 10.1086/405813; Levins R., 1968, EVOLUTION CHANGING E; Lewis EG, 1942, SANKHYA, V6, P93; LEWONTIN RC, 1965, GENETICS COLONIZING, P75; MAC ARTHUR ROBERT H., 1967; MACARTHUR R, 1960, AM NAT, V94, P25, DOI 10.1086/282106; MacArthur R.H., 1966, BIOL POPULATION; MACARTHUR RH, 1961, AM NAT, V95, P195, DOI 10.1086/282175; MACARTHUR RH, 1965, THEORETICAL MATH BIO, P388, DOI DOI 10.1038/NATURE04624; MAY R, 1975, STABILITY COMPLEXITY, P95; MAYNARDSMITH J, 1974, MODELS ECOLOGY, P36; McIntosh Robert P, 1985, BACKGROUND ECOLOGY C; MCINTOSH RP, 1980, SYNTHESE, V43, P195, DOI 10.1007/BF00413926; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MOROWITZ HJ, 1965, THEORETICAL MATHEMAT, P24; MURDOCH WW, 1966, AM NAT, V100, P5, DOI 10.1086/282396; MURTPHY GI, 1968, AM NAT, V102, P390; Nicholson AJ, 1933, J ANIM ECOL, V2, P132; NICOLSON AJ, 1935, P ZOOL SOC LOND, P551; ORIANS GH, 1962, AM NAT, V96, P257, DOI 10.1086/282233; ORIANS GH, 1962, AM NAT, V96, P262; PALLADINO P, 1991, J HIST BIOL, V24, P223; PITE MTR, 1985, CIENC BIOL ECOL SYST, V5, P269; Pratt DM, 1943, BIOL BULL-US, V85, P116, DOI 10.2307/1538274; RICHERSON PJ, 1978, LATEST BEST ESSAYS E, P25; Scudo F.M., 1978, GOLDEN AGE THEORETIC; SLOBODKIN LB, 1961, AM NAT, V95, P145; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TAYLOR P, 1989, OIKOS, V54, P121, DOI 10.2307/3565906; THOMPSON P, 1989, STRUCTURE BIOL THEOR, P29; TINKLE DW, 1965, EVOLUTION, V19, P569, DOI 10.1111/j.1558-5646.1965.tb03334.x; Varley G., 1973, INSECT POPULATION EC; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WILLIAMS GC, 1966, AM NAT, V100, P68787 73 12 14 1 6 TAYLOR & FRANCIS LTD LONDON LONDON ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE 0391-9714 HIST PHIL LIFE SCI Hist. Philos. Life Sci. 1994 16 1 97 116 20 History & Philosophy Of Science History & Philosophy of Science PW394 WOS:A1994PW39400002 7816910 2019-02-26 S SOTA, T Danks, HV SOTA, T VARIATION OF CARABID LIFE CYCLES ALONG CLIMATIC GRADIENTS - AN ADAPTIVE PERSPECTIVE FOR LIFE-HISTORY EVOLUTION UNDER ADVERSE CONDITIONS INSECT LIFE-CYCLE POLYMORPHISM: THEORY, EVOLUTION AND ECOLOGICAL CONSEQUENCES FOR SEASONALITY AND DIAPAUSE CONTROL SERIES ENTOMOLOGICA English Proceedings Paper 19th International Congress of Entomology JUN 27-JUL 04, 1992 BEIJING, PEOPLES R CHINA SHINSHU UNIV,FAC SCI,DEPT BIOL,MATSUMOTO,NAGANO 390,JAPAN 0 18 19 0 0 KLUWER ACADEMIC PUBL DORDRECHT PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0080-8954 0-7923-2828-0 SERIES ENTOM Ser. Entomol. 1994 52 91 112 22 Anatomy & Morphology; Ecology; Entomology Anatomy & Morphology; Environmental Sciences & Ecology; Entomology BB96Y WOS:A1994BB96Y00005 2019-02-26 S COLLART, OO; MAGALHAES, C Sladeckova, A COLLART, OO; MAGALHAES, C ECOLOGICAL CONSTRAINTS AND LIFE-HISTORY STRATEGIES OF PALAEMONID PRAWNS IN AMAZONIA INTERNATIONAL ASSOCIATION OF THEORETICAL AND APPLIED LIMNOLOGY - PROCEEDINGS, VOL 25, PT 4 International Association of Theoretical and Applied Limnology Proceedings English Proceedings Paper International-Association-of-Theoretical-and-Applied-Limnology Congress 1992 BARCELONA, SPAIN INT ASSOC THEORET & APPL LIMNOL INST FRANCAIS RECH SCI DEV COOPERAT, F-75480 PARIS, FRANCE 0 18 23 0 0 E SCHWEIZERBART'SCHE VERLAGSBUCHHANDLUNG STUTTGART JOHANNESTRASSE 3, W-7000 STUTTGART, GERMANY 0368-0770 3-510-54043-3 INT VER THEOR ANGEW Int. Assoc. Theor. Appl. Limnol. Proc. 1994 25 4 2460 2467 8 Ecology; Fisheries; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Fisheries; Marine & Freshwater Biology BC18H WOS:A1994BC18H00088 2019-02-26 S ARNTZ, WE; BREY, T; GALLARDO, VA Ansell, AD; Gibson, RN; Barnes, M ARNTZ, WE; BREY, T; GALLARDO, VA ANTARCTIC ZOOBENTHOS OCEANOGRAPHY AND MARINE BIOLOGY, VOL 32: AN ANNUAL REVIEW Oceanography and Marine Biology English Review EASTERN WEDDELL SEA; ROSS ICE SHELF; LISSARCA-NOTORCADENSIS BIVALVIA; EUSIRUS-PERDENTATUS CHEVREUX; SCALLOP ADAMUSSIUM-COLBECKI; SOUTH SHETLAND ISLANDS; MCMURDO-SOUND; POPULATION-DYNAMICS; REPRODUCTIVE-BIOLOGY; CONTINENTAL-SHELF Technical progress in recent years has extended Antarctic benthic research through more sensitive physiological techniques, more sophisticated and reliable measurements of environmental parameters, more efficient sampling gear, and a multitude of statistical and computer based methods. At the same time the high technical standard of modern ice-breaking research vessels has led to a revival of the original discovery phase by increasing access to remote areas under the packice and providing a platform for improved imaging techniques and sophisticated aquarium and experimental facilities. In recent years biodiversity studies, life cycle investigations, modern taxonomy, physiology and biochemistry have been combined to attempt to understand adaptive strategies of the benthic fauna, their functional role in the Antarctic ecosystem, and present zoogeographic patterns within the framework of evolutionary history. Based on recent literature (since 1985) on or related to Antarctic benthic research, but also considering major advances published earlier, an attempt is made to summarize the present stage of knowledge on: environmental conditions in the past and present evolution and zoogeography species richness and biodiversity abundance and biomass community dynamics and interactions physiology and autecology, and life history strategies, mainly reproduction, growth and productivity, of the Antarctic benthic fauna. Two additional sections deal with conservational and methodological aspects related to Antarctic benthic communities. Furthermore, future perspectives of benthic research in the Antarctic are considered, particularly against the background of global environmental changes and further advances in technology. UNIV CONCEPCION, DEPT OCEANOG, CONCEPCION, CHILE ARNTZ, WE (reprint author), ALFRED WEGENER INST POLAR & MARINE RES, COLUMBUSSTR, W-2850 BREMERHAVEN, GERMANY. Brey, Thomas/0000-0002-6345-2851 AARSET AV, 1989, POLAR BIOL, V9, P491, DOI 10.1007/BF00261032; Arnaud P., 1978, HALIOTIS, V7, P44; Arnaud P.M., 1985, P381; ARNAUD P M, 1986, Polish Polar Research, V7, P7; Arnaud P.M., 1985, Oceanis, V11, P117; ARNAUD P M, 1976, Tethys, V8, P213; Arnaud P. M., 1970, ANTARCT ECOL, V1, P259; ARNAUD PM, 1992, POLAR BIOL, V12, P103; ARNAUD PM, 1987, ACTES C RECHERCHE FR, P129; ARNAUD PM, 1992, ACTAS SEMINARIO INT, P341; ARNAUD PM, 1977, ADAPTATIONS ANTARCTI, P135; ARNTZ WE, 1991, POLAR BIOL, V11, P169; ARNTZ WE, 1982, J EXP MAR BIOL ECOL, V64, P17, DOI 10.1016/0022-0981(82)90066-1; ARNTZ WE, 1992, 25TH P EUR MAR BIOL, P221; AYALA FJ, 1978, MARINE ORGANISMS GEN, P23; BANDEL K, IN PRESS NAUTILUS; BAOLING W, 1989, P INT S ANTARCTIC RE, P335; Barker PF, 1982, ANTARCT GEOSCI, P377; BARNETT PRO, 1984, OCEANOL ACTA, V7, P399; Barrera E., 1991, Proceedings of the Ocean Drilling Program Scientific Results, V119, P693, DOI 10.2973/odp.proc.sr.119.167.1991; BARRERAORO ER, 1990, ANTARCT SCI, V2, P207; Barrett GW, 1981, STRESS EFFECTS NATUR; Barrett P.J., 1989, DSIR B, V245, P241; BARRY JP, 1988, POLAR BIOL, V8, P367, DOI 10.1007/BF00442028; BARRY JP, 1988, POLAR BIOL, V8, P377, DOI 10.1007/BF00442029; BARTHEL D, 1991, MAR ECOL PROG SER, V69, P303, DOI 10.3354/meps069303; BARTHEL D, 1992, ANTARCT SCI, V4, P137; BATHMANN U, 1991, POLAR BIOL, V11, P185; BAYNE BL, 1985, 18TH P EUR MAR BIOL, P331; BERKMAN PA, 1986, POLAR BIOL, V6, P1, DOI 10.1007/BF00446234; BERKMAN PA, 1991, ANTARCT SCI, V3, P151; BERKMAN PA, 1990, ANTARCTIC ECOSYSTEMS, P282; Birkenmajer K., 1988, B POL ACAD SCI-EARTH, V36, P133; BIRKENMAJER K, 1992, GEOLOGIA ANTARTIDA O, P251; Bone D.G., 1972, Bulletin Br Antarct Sun', VNo. 27, P105; BONNER WN, 1989, AMBIO, V18, P83; BOSCH I, 1987, BIOL BULL, V173, P126, DOI 10.2307/1541867; BOWSER SS, 1985, CELL BIOL INT REP, V9, P901, DOI 10.1016/S0309-1651(85)90111-0; Boysen- Ennen E, 1987, BER POLARFORSCH, V35, P1; BRANDT A, 1990, ANTARCT SCI, V2, P215; Brandt A., 1991, Berichte zur Polarforschung, V98, P1; Bregazzi P.K., 1972, Bulletin Br Antarct Surv, VNo. 30, P1; BREY T, 1992, MAR ECOL PROG SER, V82, P219, DOI 10.3354/meps082219; BREY T, 1993, ANTARCT SCI, V5, P253; BREY T, 1991, POLAR BIOL, V11, P227; BREY T, 1991, ANTARCT SCI, V3, P251; BREY T, 1993, POLAR BIOL, V13, P89; BRUCHHAUSEN PM, 1979, SCIENCE, V203, P449, DOI 10.1126/science.203.4379.449; Bullivant J. S., 1967, NZ DEP SCI IND RES B, V176, P1; BULLIVANT JS, 1967, B NZ DEP SCI IND RES, V176, P49; CAREY AG, 1987, POLAR BIOL, V8, P29, DOI 10.1007/BF00297161; CASAUX RJ, 1990, POLAR BIOL, V11, P63; CASTILLA JC, 1985, SER CIENT INACH, V32, P65; CHITTLEBOROUGH RG, 1987, SCI COMMITTEE COMMIS, V4, P513; CIESIELSKI PF, 1982, MAR GEOL, V46, P1, DOI 10.1016/0025-3227(82)90150-5; Clarke A., 1990, P9; CLARKE A, 1992, POLAR BIOL, V12, P129; CLARKE A, 1988, COMP BIOCHEM PHYS B, V90, P461, DOI 10.1016/0305-0491(88)90285-4; Clarke A., 1985, P237; CLARKE A, 1991, AM ZOOL, V31, P81; CLARKE A, 1992, PHILOS T ROY SOC B, V338, P299, DOI 10.1098/rstb.1992.0150; CLARKE A, 1987, MAR ECOL PROG SER, V38, P89, DOI 10.3354/meps038089; CLARKE A, 1982, MAR ECOL PROG SER, V9, P81, DOI 10.3354/meps009081; CLARKE A, 1990, J EXP MAR BIOL ECOL, V138, P227, DOI 10.1016/0022-0981(90)90169-D; Clarke A., 1987, P315; CLARKE A, 1983, OCEANOGR MAR BIOL, V21, P341; Clarke A., 1977, ADAPTATIONS ANTARCTI, P343; CLARKE A, 1979, BR ANTARCT SURV B, V47, P61; CLARKE A, 1988, BR ANTARCT SURV B, V80, P65; CLARKE A, 1989, GEOLOGICAL SOC SPECI, V47, P253, DOI DOI 10.1144/GSL.SP.1989.047.01.19; CLARKE A, 1980, ECOLOGY ANTARCTIC, P77; Clarke M. R., 1982, BRIT ANTARCTIC SURVE, V57, P27; CLARKE MR, 1982, BR ANTARCT SURV B, V57, P33; COLEMAN CO, 1990, J NAT HIST, V24, P1573, DOI 10.1080/00222939000770901; COLEMAN CO, 1989, POLAR BIOL, V10, P43; COLEMAN CO, 1991, HYDROBIOLOGIA, V223, P1, DOI 10.1007/BF00047623; COLEMAN CO, 1989, POLAR BIOL, V9, P287, DOI 10.1007/BF00287425; COLEMAN CO, 1990, OPHELIA, V31, P197, DOI 10.1080/00785326.1990.10430862; COLEMAN CO, 1930, ANTARCTIC SCI, V1, P343; CONSTABLE AJ, 1991, SCI COMMITTEE COMMIS, V19, P1; CRIPPS GC, 1991, ANTARCT SCI, V3, P233; DANIELS RA, 1982, FISH B-NOAA, V80, P575; Davenport J., 1989, Polar Record, V25, P323; DAVENPORT J, 1988, COMP BIOCHEM PHYS A, V90, P511, DOI 10.1016/0300-9629(88)90228-9; DAVID B, 1990, ZOOMORPHOLOGY, V110, P75, DOI 10.1007/BF01632814; Dayton P.K., 1970, P244; Dayton P.K., 1984, Antarctic Journal of the United States, V19, P128; Dayton P.K., 1990, P631; Dayton P. K, 1979, BIOL SPONGIAIRES, P273; DAYTON PK, 1978, ANTARCT J US, V13, P136; DAYTON PK, 1974, ECOL MONOGR, V44, P105, DOI 10.2307/1942321; DAYTON PK, 1977, SCIENCE, V197, P55, DOI 10.1126/science.197.4298.55; DAYTON PK, 1989, SCIENCE, V245, P1484, DOI 10.1126/science.245.4925.1484; DAYTON PK, 1972, DEEP-SEA RES, V19, P199, DOI 10.1016/0011-7471(72)90031-9; Dearborn J.H., 1986, Antarctic Research Series, V44, P1; Dearborn J. H., 1965, Journal of Mammalogy, V46, P37, DOI 10.2307/1377814; Dearborn J. H., 1977, ADAPTATIONS ANTARCTI, P293; DEARBORN JH, 1968, AUSTR NATURAL HI DEC, P134; DEBROYER C, 1991, ANTARCT SCI, V3, P159; DEBROYER C, 1993, STUDIEDOCUMENTAT KON, V73; DEBROYER C, 1977, ADAPTATIONS ANTARCTI, P327; DELL RK, 1972, ADV MAR BIOL, V10, P1, DOI 10.1016/S0065-2881(08)60416-2; DIECKMANN G, 1987, EOS, V68, P1765; DITTRICH B, 1992, J COMP PHYSIOL B, V162, P38; DITTRICH B, 1990, NATURWISSENSCHAFTEN, V7, P491; DITTRICH BU, 1992, POLAR BIOL, V12, P269; DUARTE WE, 1981, HYDROBIOLOGIA, V80, P241, DOI 10.1007/BF00018363; Dunbar R., 1985, ANTARCT RES SER, V43, P291; Eastman J.T., 1985, P430; EGOROVA EN, 1982, BIOL RESULTS SOVIETI, V26, P1; EHRMANN WU, 1992, PALAEOGEOGR PALAEOCL, V93, P85, DOI 10.1016/0031-0182(92)90185-8; EHRMANN WU, 1992, GEOPHYS MONOGR SER, V70, P423; El-Sayed S.Z., 1988, P101; El-Sayed SZ, 1971, ANTARCT RES SER, V17, P301; ELBRACHTER M, 1987, BERICHTE POLARFORSCH, V39, P190; EMILIANI C, 1961, DEEP-SEA RES, V8, P144, DOI 10.1016/0146-6313(61)90006-5; ERNST W, 1991, POLAR BIOL, V11, P249; EVERITT DA, 1980, AUST J MAR FRESH RES, V31, P829; EVERSON I, 1977, PHILOS T ROY SOC B, V279, P55, DOI 10.1098/rstb.1977.0071; Everson I., 1970, Bull. Br. Antarct. Surv., VNo. 23, P25; FAHRBACH E, 1992, POLAR BIOL, V12, P171; Feldmann R.M., 1989, GEOLOGICAL SOC SPECI, V47, P183; FOSTER BA, 1989, POLAR BIOL, V10, P175; FRAKES LA, 1988, NATURE, V333, P547, DOI 10.1038/333547a0; FRATT DB, 1984, POLAR BIOL, V3, P127, DOI 10.1007/BF00442644; GALERON J, 1992, POLAR BIOL, V12, P283; GALLARDO VA, 1987, ENVIRON INT, V13, P71, DOI 10.1016/0160-4120(87)90045-6; GALLARDO VA, 1977, ADAPTATIONS ANTARCTI, P361; GALLARDO VA, 1987, SERIE SCI I ANTARTIC, V36, P177; Gallardo VA, 1988, SER CIEN INACH, V37, P49; GALLARDO VA, 1969, GAYANA ZOOL, V16, P3; GALLARDO VA, 1986, B ANTARCTICO CHILENO, V6, P40; GALLARDO VA, 1991, BENTHIC REALM ANTARC; GAMBI MC, 1992, ACTAS SEMINARIO INT, P409; GAZDZICKI A, 1989, Polish Polar Research, V10, P47; GEORGE RY, 1977, POLAR OCEANS, P391; GERDES D, 1992, POLAR BIOL, V12, P291; Gerdes D., 1990, Polar Record, V26, P35; GORNY M, 1993, J EXP MAR BIOL ECOL, V174, P261, DOI 10.1016/0022-0981(93)90021-F; GORNY M, 1992, POLAR BIOL, V12, P111; GORNY M, 1989, THESIS U BREMEN GERM; GORNY M, 1992, THESIS U BREMEN GERM; GRASSLE JF, 1977, MARINE ORGANISMS GEN, P347; GREEN K, 1987, AUST WILDLIFE RES, V14, P475; GREEN K, 1986, POLAR BIOL, V6, P43, DOI 10.1007/BF00446239; GROBE H, 1992, ANTARCT RES SER, V0056; Grobe H., 1986, BER POLARFORSCH, V27, P1; Grohsler T., 1992, MITT I SEEFISCH HAMB, V47, P1; GRUZOV EN, 1977, ADAPTATIONS ANTARCTI, P263; GUTT J, 1991, ANTARCT SCI, V3, P363; GUTT J, 1991, MEERESFORSCHUNG, V33, P312; GUTT J, 1991, MAR ECOL PROG SER, V68, P277; GUTT J, 1991, MAR BIOL, V111, P281, DOI 10.1007/BF01319710; Gutt J., 1988, Berichte zur Polarforschung, V41, P1; GUTT J, 1991, POLAR BIOL, V11, P145; GUTT J, 1992, POLAR BIOL, V11, P533; Hain S., 1990, Berichte zur Polarforschung, V70, P1; HAIN S, 1994, ANTARCT SCI, V6, P29; HAIN S, 1992, POLAR BIOL, V12, P303; Hamada E., 1986, MEM NATL I POLAR RES, V40, P289; HAMBREY MJ, 1991, P OCEAN DRILLING PRO, V0119; HAMBREY MJ, 1990, POLAR REC, V25, P99; HAQ BU, 1987, SCIENCE, V235, P1156, DOI 10.1126/science.235.4793.1156; Hardy P., 1977, ADAPTATIONS ANTARCTI, P209; Hedgpeth J. W., 1971, P93; Hedgpeth J. W., 1969, ANTARCT ECOL, V1, P97; Hempel G., 1985, P3; HERMAN RL, 1992, POLAR BIOL, V12, P313; HESSLER RR, 1975, MAR BIOL, V32, P155, DOI 10.1007/BF00388508; HEUSSER CJ, 1989, PALAEOGEOGR PALAEOCL, V76, P31, DOI 10.1016/0031-0182(89)90101-6; HONJO S, 1990, POLAR OCEANOGRAPHY B, V13, P688; HOULIHAN DF, 1982, COMP BIOCHEM PHYS A, V73, P383, DOI 10.1016/0300-9629(82)90171-2; Howard-Williams C., 1990, P23; IVLEVA IV, 1980, INT REV GESAMTEN HYD, V65, P19; JAZDZEWSKI K, 1991, HYDROBIOLOGIA, V223, P105, DOI 10.1007/BF00047632; JUILFS HB, 1987, MAR BIOL, V95, P493, DOI 10.1007/BF00393092; KARENTZ D, 1991, ANTARCT SCI, V3, P3; KELLOGG DE, 1983, ANTARCT J US, V17, P167; Kennett J.P., 1990, Proceedings of the Ocean Drilling Program Scientific Results, V113, P865, DOI 10.2973/odp.proc.sr.113.188.1990; Kennett J.P., 1990, Proceedings of the Ocean Drilling Program Scientific Results, V113, P937; KENNETT JP, 1985, S AFR J SCI, V81, P251; KEYS JR, 1984, ANTARCTIC MARINE ENV; KIRKWOOD JM, 1988, MAR BIOL, V97, P445, DOI 10.1007/BF00397776; KLAGES M, 1990, POLAR BIOL, V10, P359; KLAGES M, 1993, ANTARCT SCI, V5, P349; KLAGES M, 1990, POLAR BIOL, V11, P79; Klages M., 1991, THESIS U BREMEN; KLAGES N, 1989, POLAR BIOL, V9, P385, DOI 10.1007/BF00442529; Klekowski R.Z., 1973, Polskie Archwm Hydrobiol, V20, P301; Knox G. A, 1977, POLAR OCEANS, P423; Kock K, 1992, ANTARCTIC FISH FISHE; KOCK KH, IN PRESS POLAR RECOR; KUHL S, 1988, MALACOLOGIA, V29, P89; KUNZMANN K, 1992, THESIS U KIEL GERMAN; LEVENTER A, 1987, MAR MICROPALEONTOL, V12, P49, DOI 10.1016/0377-8398(87)90013-2; Lien R., 1989, Polar Research, V7, P43, DOI 10.1111/j.1751-8369.1989.tb00603.x; LIPPS JH, 1979, SCIENCE, V203, P447, DOI 10.1126/science.203.4379.447; LIPPS JH, 1982, ENV DEEP SEA, P324; Littlepage J. L, 1965, ANTARCTIC RESEARCH S, V5, P1, DOI DOI 10.1029/AR005P0001; LOWRY J K, 1975, Antarctic Research Series, V23, P1; Luxmoore R.A., 1985, P389; Luxmoore R. A., 1984, BR ANTARCT SURV B, V62, P53; MACKENSEN A, 1992, MAR GEOL, V108, P1, DOI 10.1016/0025-3227(92)90210-9; Mackensen A., 1992, Proceedings of the Ocean Drilling Program Scientific Results, V120, P867, DOI 10.2973/odp.proc.sr.120.169.1992; MAKAROV R R, 1970, Zoologicheskii Zhurnal, V49, P28; MATTHEWS RK, 1980, GEOLOGY, V8, P501, DOI 10.1130/0091-7613(1980)8<501:TORAGS>2.0.CO;2; Maxwell J.G.H., 1985, P397; MAXWELL JGH, 1976, THESIS U ABERDEEN UK; MAXWELL JGH, 1977, ADAPTATIONS ANTARCTI, P335; MAXWELL JGH, 1972, AD62H1972N10 BRIT AN; MCCLINTOCK JB, 1987, MAR BIOL, V94, P479, DOI 10.1007/BF00428255; MCCLINTOCK JB, 1985, POLAR BIOL, V4, P95, DOI 10.1007/BF00442906; MCCLINTOCK JB, 1988, MAR BIOL, V99, P235, DOI 10.1007/BF00391986; Menzies R. J, 1973, ABYSSAL ENV ECOLOGY; Miller KG, 1987, PALEOCEANOGRAPHY, V2, P1, DOI 10.1029/PA002i001p00001; MOREAU J, 1986, 1ST ASIAN FISHERIES, P202; MORENO C, 1971, B I ANTARTICO CHILEA, V6, P9; MORISON GW, 1976, AD62H1976N4 BRIT ANT; MORISON GW, 1979, THESIS U LONDON UK; MOYANO GH, 1984, SER CIENT I ANTART C, V31, P75; Muhlenhardt-Siegel U., 1989, Archiv fuer Fischereiwissenschaft, V39, P123; MUHLENHARDTSIEGEL U, 1988, POLAR BIOL, V8, P241, DOI 10.1007/BF00263172; MULLINEAUX LS, 1984, POLAR BIOL, V3, P185, DOI 10.1007/BF00292622; Munro J. L, 1983, FISHBYTE, V1, P5; NICOL DAVID, 1967, J PALEONTOL, V41, P1330; NOLAN CP, 1987, AD62H1987N8 BRIT ANT; NOLAN CP, 1988, AD62H1988N8 BRIT ANT; OLIVER JS, 1976, ANTARCT J US, V11, P58; OLIVER JS, 1985, OPHELIA, V24, P155, DOI 10.1080/00785326.1985.10429725; OTTO RS, 1992, CCAMLR WGFSA9229, P1; PARRY GD, 1983, J THEOR BIOL, V101, P453, DOI 10.1016/0022-5193(83)90150-9; PATARNELLO T, 1990, POLAR BIOL, V10, P495; PEARSE JS, 1991, AM ZOOL, V31, P65; PEARSE JS, 1986, ANTARCT J US, V31, P182; Pearson T.H., 1987, P373; PECK LS, 1989, J EXP MAR BIOL ECOL, V127, P1, DOI 10.1016/0022-0981(89)90205-0; PECK LS, 1987, J EXP MAR BIOL ECOL, V114, P85, DOI 10.1016/0022-0981(87)90142-0; PECK LS, 1986, J EXP MAR BIOL ECOL, V104, P203, DOI 10.1016/0022-0981(86)90105-X; PERISSINOTTO R, 1990, MAR ECOL PROG SER, V64, P81, DOI 10.3354/meps064081; Petersen C. G. J., 1911, REPORT DANISH BIOL S, V20, P2; PIATKOWSKI U, 1987, BER POLARFORSCH, V34, P1; Picken G.B., 1985, P167; PICKEN GB, 1980, J EXP MAR BIOL ECOL, V42, P71, DOI 10.1016/0022-0981(80)90167-7; PICKEN GB, 1979, J EXP MAR BIOL ECOL, V40, P71, DOI 10.1016/0022-0981(79)90035-2; PICKEN GB, 1979, MALACOLOGIA, V19, P109; PICKEN GB, 1984, KEY ENV ANTARCTICA, P154; PICKEN GB, 1980, ECOLOGY ANTARCTIC, P67; PIRRIE D, 1989, SEDIMENT GEOL, V63, P61, DOI 10.1016/0037-0738(89)90071-7; PIRRIE D, 1990, GEOLOGY, V18, P31, DOI 10.1130/0091-7613(1990)018<0031:HPLCPN>2.3.CO;2; PLOTZ J, 1986, POLAR BIOL, V6, P97, DOI 10.1007/BF00258259; PLOTZ J, 1991, MAR MAMMAL SCI, V7, P136, DOI 10.1111/j.1748-7692.1991.tb00560.x; POREBSKI SJ, 1987, STUDIA GEOLOGICA POL, V93, P7; POWELL A W B, 1973, Indo-Pacific Mollusca, V3, P75; POWELL AWB, 1958, BANZ ANTARCTIC RES B, V6, P107; PRENTICE ML, 1988, GEOLOGY, V16, P963, DOI 10.1130/0091-7613(1988)016<0963:CIVHDO>2.3.CO;2; PRENTICE ML, 1991, J GEOPHYS RES-SOLID, V96, P6811, DOI 10.1029/90JB01614; PRESLER P, 1986, Polish Polar Research, V7, P25; QUILTY PG, 1990, ANTARCTIC ECOSYSTEMS, P4; RABARTS IW, 1970, AD62H1970N12 BRIT AN; RABARTS IW, 1970, AD62H1970N9 BRIT ANT; Rachor E., 1981, VEROEFFENTLICHUNGEN DES INSTITUTS FUER MEERESFORSCHUNG IN BREMERHAVEN, V19, P71; RAKUSA-SUSZCZEWSKI S, 1972, Polskie Archiwum Hydrobiologii, V19, P11; Ralph R, 1977, Bulletin Br Antarct Surv, VNo. 45, P19; Ralph R, 1977, Bulletin Br Antarct Surv, VNo. 45, P41; RAUSCHERT M, 1986, Mitteilungen aus dem Zoologischen Museum in Berlin, V62, P333; RAUSCHERT M, 1991, BER POLARFORSCH, V76, P1; REINECK HE, 1963, NATUR MUSEUM FRANKFU, V93, P102; RICHARDSON MD, 1977, ADAPTATIONS ANTARCTI, P181; Richardson MG, 1977, THESIS U DURHAM UK; RICHARDSON MG, 1979, BR ANTARCTIC SURVEY, V49, P91; SAGAR PM, 1980, J ROY SOC NEW ZEAL, V10, P259, DOI 10.1080/03036758.1980.10415332; SANDERS HL, 1969, BROOKHAVEN SYM BIOL, P71; SARA M, 1992, ACTA SEMINARIO INT O, P517; SCHALK PH, 1993, ICLARM C P, V26; Scharek R., 1991, BER POLARFORSCH, V94, P1; Schwarzbach W., 1988, Berichte zur Polarforschung, V54, P1; SEAGER JR, 1978, THESIS U COLLEGE CAR; Shackleton N.J., 1975, INITIAL REPORTS DEEP, V29, P743, DOI DOI 10.2973/DSDP.PROC.29.117.1975; SICINSKI J, 1986, Polish Polar Research, V7, P63; SIEG J, 1988, Z ZOOL SYST EVOL, V26, P363; SIEG J, 1992, ACTAS SEMINARIO INT, P421; SIEG J, 1990, FAUNA ANTARKTIS; SIEGEL V, 1988, POLAR BIOL, V8, P181, DOI 10.1007/BF00443451; SLATTERY PN, 1986, POLAR BIOL, V6, P171, DOI 10.1007/BF00274880; SMITH JMB, 1985, POLAR BIOL, V4, P89, DOI 10.1007/BF00442905; SOYER J, 1977, ADAPTATIONS ANTARCTI, P279; SPICER RA, 1990, ANTARCTIC PALEOBIOLOGY, P27; SPINDLER M, 1990, NATO ADV SCI I C-MAT, V308, P173; SPINDLER M, 1991, SPEKTRUM WISSENSCHAF, V2, P48; STOCKTON WL, 1984, MAR BIOL, V78, P171, DOI 10.1007/BF00394697; STOCKTON WL, 1982, DEEP-SEA RES, V29, P819, DOI 10.1016/0198-0149(82)90048-6; Stott L.D., 1990, Proceedings of the Ocean Drilling Program Scientific Results, V113, P849, DOI 10.2973/odp.proc.sr.113.187.1990; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Thurston M. H., 1968, Bulletin British Antarctic Survey, VNo. 16, P57; THURSTON MH, 1970, ANTARCT ECOL, V1, P269; TUCKER MJ, 1988, HYDROBIOLOGIA, V165, P151, DOI 10.1007/BF00025582; Uschakov P. V., 1963, Can Biol mar, V4, P81; Voss J., 1988, Berichte zur Polarforschung, V45, P1; Wagele H., 1988, Natur und Museum (Frankfurt am Main), V118, P46; Wagele J.W., 1990, Natur und Museum (Frankfurt am Main), V120, P269; WAGELE JW, 1987, PHILOS T ROY SOC B, V316, P429, DOI 10.1098/rstb.1987.0031; WAGELE JW, 1987, POLAR BIOL, V7, P11, DOI 10.1007/BF00286819; WAGELE JW, 1988, POLAR BIOL, V8, P287, DOI 10.1007/BF00263177; WAGELE JW, 1990, POLAR BIOL, V10, P521; WAGELE JW, 1992, ACTAS SEMINARIO INT, P417; Watling L., 1989, GEOLOGICAL SOC SPECI, V47, P297; WEBB PN, 1981, J ROY SOC NEW ZEAL, V11, P439, DOI 10.1080/03036758.1981.10423333; WEBB PN, 1984, GEOLOGY, V12, P287, DOI 10.1130/0091-7613(1984)12<287:CMSAIV>2.0.CO;2; WEFER G, 1991, MAR CHEM, V35, P597, DOI 10.1016/S0304-4203(09)90045-7; Wei W., 1992, Proceedings of the Ocean Drilling Program Scientific Results, V120, P1093, DOI 10.2973/odp.proc.sr.120.198.1992; WHITAKER TM, 1982, PROC R SOC SER B-BIO, V214, P169, DOI 10.1098/rspb.1982.0003; White M.C., 1984, P421; White M.G., 1975, P707; WHITE MG, 1977, ADAPTATIONS ANTARCTI, P197; WHITE MG, 1970, ANTARCT ECOL, V1, P279; WYANSKI DM, 1981, COPEIA, P686, DOI 10.2307/1444575; ZACHOS JC, 1992, GEOLOGY, V20, P569, DOI 10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2; ZAMORANO JH, 1986, POLAR BIOL, V6, P139, DOI 10.1007/BF00274876; ZAMORANO JH, 1983, SER CIENT I ANTART C, V30, P27; 1991, PROTOCOL ENV PROTECT, V1 320 386 395 4 42 U C L PRESS LTD LONDON UNIV COLL LONDON, GOWER STREET, LONDON WC1E 6BT, ENGLAND 0078-3218 1-85728-236-1 OCEANOGR MAR BIOL Oceanogr. Mar. Biol. 1994 32 241 304 64 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography BB49M WOS:A1994BB49M00005 2019-02-26 J DOBSON, A; ROBERTS, M DOBSON, A; ROBERTS, M THE POPULATION-DYNAMICS OF PARASITIC HELMINTH COMMUNITIES PARASITOLOGY English Article HELMINTH COMMUNITY; COMPETITION; MATHEMATICAL MODEL; TRANSMISSION; LIFE HISTORY; INTERSPECIFIC INTERACTIONS NORTHERN LESSER ANTILLES; SPECIES INTERACTIONS; ANOLIS LIZARDS; RICHNESS; PATTERNS; COEVOLUTION; COEXISTENCE; STABILITY; FISH; CORE This paper describes a mathematical model which allows us to compare the data collected from short-term cross-sectional surveys with the population dynamics of host and parasite populations over longer periods of time. The model extends an earlier framework for two parasite species in one host, to one for an arbitrary number of parasite species. We show that the conditions necessary for the coexistence of two parasite species extend to expressions for the coexistence of three or more parasite species. Furthermore, the model suggests that those species which form the 'core' of the parasite community are those whose high fecundity and transmission efficiency permit them to colonize hosts readily. In contrast, those species which are classified as 'satellite' species of the community are either species with low fecundity, or low transmission efficiencies. This work confirms earlier studies that suggest that increasing degrees of aggregation are crucial in allowing several species of parasites to coexist in the same species of hosts. The properties of the model are compared with patterns observed in data collected for helminth parasites of Anolis lizards, wood mice and eels. This combined theoretical and empirical approach confirms the importance of the life history strategies of the parasite in determining the abundance of each species in the community. It suggests that studies of parasite community structure have to pay more attention to the strategies pursued by each individual species before interactions between species are considered. AGRES,WALLACEVILLE ANIM RES CTR,UPPER HUTT,NEW ZEALAND DOBSON, A (reprint author), PRINCETON UNIV,PRINCETON,NJ 08544, USA. ANDERSON RM, 1978, J ANIM ECOL, V47, P219, DOI 10.2307/3933; ANDERSON RM, 1982, NATURE, V297, P557, DOI 10.1038/297557a0; ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; Anderson RM, 1991, INFECTIOUS DISEASES; BUSH AO, 1986, CAN J ZOOL, V64, P142, DOI 10.1139/z86-023; BUSH AO, 1990, EVOL ECOL, V4, P1, DOI 10.1007/BF02270711; CHESSON PL, 1981, AM NAT, V117, P923, DOI 10.1086/283778; CORNELL HV, 1992, J ANIM ECOL, V61, P1, DOI 10.2307/5503; DIEKMANN O, 1990, J MATH BIOL, V28, P365; Dobson A.P., 1990, P107; DOBSON AP, 1988, Q REV BIOL, V63, P139, DOI 10.1086/415837; DOBSON AP, 1985, PARASITOLOGY, V91, P317, DOI 10.1017/S0031182000057401; DOBSON AP, 1992, OECOLOGIA, V91, P110, DOI 10.1007/BF00317248; DOBSON AP, 1992, OECOLOGIA, V91, P118, DOI 10.1007/BF00317249; DOBSON AP, 1990, PARASITE COMMUNITIES : PATTERNS AND PROCESSES, P261; ESCH GW, 1988, PARASITOLOGY, V96, P519, DOI 10.1017/S003118200008015X; Esch GW, 1990, PARASITE COMMUNITIES; GOATER CP, 1988, HOLARCTIC ECOL, V11, P140; GOATER TM, 1987, AM MIDL NAT, V118, P289, DOI 10.2307/2425787; HANSKI I, 1982, OIKOS, V38, P210, DOI 10.2307/3544021; HEESTERBEEK JAP, 1994, OIKOS, V64, P505; Holmes J.C., 1986, P187; HOLMES JC, 1973, CAN J ZOOL, V51, P333, DOI 10.1139/z73-047; Kennedy C. R., 1992, Ecological Parasitology, V1, P122; KENNEDY CR, 1986, PARASITOLOGY, V93, P205, DOI 10.1017/S0031182000049945; KENNEDY CR, 1993, PARASITOLOGY, V107, P71, DOI 10.1017/S0031182000079427; MAY RM, 1990, PARASITOLOGY, V100, pS89, DOI 10.1017/S0031182000073042; MAY RM, 1978, J ANIM ECOL, V47, P248; MOLLISON D, 1991, MATH BIOSCI, V107, P255, DOI 10.1016/0025-5564(91)90009-8; MONTGOMERY SSJ, 1990, INT J PARASITOL, V20, P225, DOI 10.1016/0020-7519(90)90105-V; NEE S, 1991, OIKOS, V62, P83, DOI 10.2307/3545450; PENCE DB, 1984, J PARASITOL, V70, P733; ROBERTS MG, 1994, IN PRESS PARASITOLOG; ROBERTS MG, 1994, IN PRESS MATH BIOSCI; ROSENZWEIG ML, 1963, AM NAT, V97, P209, DOI 10.1086/282272; Schoener T.W., 1986, COMMUNITY ECOLOGY, P467; SOUSA WP, 1993, ECOL MONOGR, V63, P103, DOI 10.2307/2937176; SOUSA WP, 1994, TRENDS ECOL EVOL, V9, P52, DOI 10.1016/0169-5347(94)90268-2; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379 39 38 42 0 13 CAMBRIDGE UNIV PRESS NEW YORK 40 WEST 20TH STREET, NEW YORK, NY 10011-4211 0031-1820 PARASITOLOGY Parasitology 1994 109 S S97 S108 10.1017/S0031182000085115 12 Parasitology Parasitology PW296 WOS:A1994PW29600009 7854855 2019-02-26 B KITCHEN, SG Monsen, SB; Kitchen, SG KITCHEN, SG PERENNIAL FORB LIFE-HISTORY STRATEGIES ON SEMIARID RANGELANDS - IMPLICATIONS FOR REVEGETATION PROCEEDINGS - ECOLOGY AND MANAGEMENT OF ANNUAL RANGELANDS USDA FOREST SERVICE GENERAL TECHNICAL REPORT INTERMOUNTAIN English Proceedings Paper Symposium on Ecology, Management, and Restoration of Intermountain Annual Rangelands MAY 18-22, 1992 BOISE, ID USDA FOREST SERV, INTERMOUNTAIN RES STN US FOREST SERV,INTERMOUNTAIN RES STN,SHRUB SCI LAB,PROVO,UT 84606 0 2 2 0 2 US DEPT AGR, FOREST SERV INTERMOUNTARIN RESEARCH STN OGDEN FEDERAL BLDG, 324 25TH ST, OGDEN, UT 84401 USDA INTERM 1994 313 342 346 5 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology BC07J WOS:A1994BC07J00069 2019-02-26 B VANDENMEIRACKER, RAF Sommeijer, MJ; vanderBlom, J VANDENMEIRACKER, RAF Life history evolution in mass rearing of Orius insidiosus PROCEEDINGS OF THE SECTION EXPERIMENTAL AND APPLIED ENTOMOLOGY OF THE NETHERLANDS ENTOMOLOGICAL SOCIETY (N.E.V.), VOL 5, 1994 English Proceedings Paper 5th Meeting of Experimental and Applied Entomologists in the Netherlands DEC 17, 1993 AMSTERDAM, NETHERLANDS Netherlands Entomol Soc, Exptl & Appl Entomol Sect, Univ Amsterdam ORIUS INSIDIOSUS; LIFE HISTORY EVOLUTION; MASS REARING; SELECTION RES INST PLANT PROTECT,IPO,DLO,6700 GW WAGENINGEN,NETHERLANDS 0 4 4 0 2 NEDERLANDSE ENTOMOLOGISCHE VERNIGING ( N E V ) 1018 DH AMSTERDAM PLANTAGE MIDDENLAAN 64, 1018 DH AMSTERDAM, NETHERLANDS 90-71912-10-8 1994 25 30 6 Entomology Entomology BD28Y WOS:A1994BD28Y00003 2019-02-26 J ROSLAND, R; GISKE, J ROSLAND, R; GISKE, J A DYNAMIC OPTIMIZATION MODEL OF THE DIEL VERTICAL-DISTRIBUTION OF A PELAGIC PLANKTIVOROUS FISH PROGRESS IN OCEANOGRAPHY English Review GASTEROSTEUS-ACULEATUS L; LIFE-HISTORY THEORY; WESTERN NORWAY; PREDATION RISK; ZOOPLANKTON COMMUNITY; EVOLUTIONARY ECOLOGY; MAUROLICUS-MUELLERI; WINTER DISTRIBUTION; CONTINENTAL-SLOPE; EASTERN TASMANIA A stochastic dynamic optimization model for the diel depth distribution of juveniles and adults of the mesopelagic planktivore Maurolicus muelleri (Gmelin) is developed and used for a winter situation. Observations from Masfjorden, western Norway, reveal differences in vertical distribution, growth and mortality between juveniles and adults in January. Juveniles stay within the upper 100m with high feeding rates, while adults stay within the 100-150m zone with very low feeding rates during the diel cycle. The difference in depth profitability is assumed to be caused by age-dependent processes, and are calculated from a mechanistic model for visual feeding. The environment is described as a set of habitats represented by discrete depth intervals along the vertical axis, differing with respect to light intensity, food abundance, predation risk and temperature. The short time interval (24h) allows fitness to be linearly related to growth (feeding), assuming that growth increases the future reproductive output of the fish. Optimal depth position is calculated from balancing feeding opportunity against mortality risk, where the fitness reward gained by feeding is weighted against the danger of being killed by a predator. A basic run is established, and the model is validated by comparing predictions and observations. The sensitivity for different parameter values is also tested. The modelled vertical distributions and feeding patterns of juvenile and adult fish correspond well with the observations, and the assumption of age differences in mortality-feeding trade-offs seems adequate to explain the different depth profitability of the two age groups. The results indicate a preference for crepuscular feeding activity of the juveniles, and the vertical distribution of zooplankton seems to be the most important environmental factor regulating the adult depth position during the winter months in Masfjorden. INST MARINE RES,N-5024 BERGEN,NORWAY ROSLAND, R (reprint author), UNIV BERGEN,DEPT FISHERIES & MARINE BIOL,HOYTEKNOLOGISENTERET,N-5020 BERGEN,NORWAY. Giske, Jarl/A-2402-2010 Giske, Jarl/0000-0001-5034-8177 AKSNES DL, 1990, MAR ECOL PROG SER, V64, P209, DOI 10.3354/meps064209; AKSNES DL, 1993, ECOL MODEL, V67, P233, DOI 10.1016/0304-3800(93)90007-F; Alexander R M, 1972, Symp Soc Exp Biol, V26, P273; ATEMA J, 1980, J CHEM ECOL, V6, P457, DOI 10.1007/BF01402922; BALINO BM, 1993, MAR ECOL PROG SER, V102, P35, DOI 10.3354/meps102035; BLAXTER JHS, 1976, LIGHT ECOLOGICAL FAC, V2, P189; BODEN BRIAN P., 1967, SYMP ZOOL SOC LONDON, V19, P15; BOUSKILA A, 1992, AM NAT, V139, P161, DOI 10.1086/285318; BURROWS MT, 1991, FUNCT ECOL, V5, P461, DOI 10.2307/2389628; CARACO T, 1980, ECOLOGY, V61, P119, DOI 10.2307/1937162; CHILDRESS JJ, 1980, MAR BIOL, V61, P27, DOI 10.1007/BF00410339; CLARK CW, 1990, EVOL ECOL, V4, P21, DOI 10.1007/BF02270712; CLARK CW, 1986, THEOR POPUL BIOL, V30, P45, DOI 10.1016/0040-5809(86)90024-9; CLARK CW, 1990, EVOL ECOL, V4, P312, DOI 10.1007/BF02270930; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; CLARK TA, 1982, CSIRO145 MAR LAB REP; Colgan P, 1993, BEHAV TELEOST FISHES, P31; EGGERS DM, 1976, J FISH RES BOARD CAN, V33, P1964, DOI 10.1139/f76-250; FALKPETERSEN IB, 1986, POLAR BIOL, V5, P235, DOI 10.1007/BF00446091; FISKEN O, 1993, IFM3593 U BERG DEP F; GELLER W, 1986, Archiv fuer Hydrobiologie Supplement, V74, P1; GEORGE DG, 1983, J PLANKTON RES, V5, P457, DOI 10.1093/plankt/5.4.457; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GILLIAM JF, 1982, THESIS MICHIGAN STAT; GISKE J, 1990, SARSIA, V75, P65, DOI 10.1080/00364827.1990.10413442; GISKE J, 1993, EVOL ECOL, V7, P233, DOI 10.1007/BF01237741; GISKE J, 1992, SARSIA, V77, P253, DOI 10.1080/00364827.1992.10413510; GISKE J, 1994, VIE MILIEU, V44; GJOSAETER J, 1981, Fiskeridirektoratets Skrifter Serie Havundersokelser, V17, P109; GJOSAETER J, 1986, FLODEVIGEN RAPPORTSE, V1, P1; HOLBROOK SJ, 1988, ECOLOGY, V69, P125, DOI 10.2307/1943167; HOLTBY LB, 1990, ECOLOGY, V71, P678, DOI 10.2307/1940322; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HUNTLEY M, 1982, MAR BIOL, V71, P23, DOI 10.1007/BF00396989; IWASA Y, 1982, AM NAT, V120, P171, DOI 10.1086/283980; JAKOBSEN PJ, 1988, CAN J FISH AQUAT SCI, V45, P426, DOI 10.1139/f88-051; JOBLING M, 1981, J FISH BIOL, V19, P245, DOI 10.1111/j.1095-8649.1981.tb05829.x; JOHNSEN GH, 1987, LIMNOL OCEANOGR, V32, P873, DOI 10.4319/lo.1987.32.4.0873; KAARTVEDT S, 1988, MAR ECOL PROG SER, V45, P45, DOI 10.3354/meps045045; KATZ PL, 1974, AM NAT, V108, P758, DOI 10.1086/282953; KAWAGUCHI K, 1987, Biological Oceanography, V4, P99; KAWAGUCHI K, 1982, Biological Oceanography, V1, P337; KELLY EJ, 1993, ECOLOGY, V74, P351, DOI 10.2307/1939298; KIORBOE T, 1987, MAR ECOL PROG SER, V40, P1, DOI 10.3354/meps040001; KIRK JTO, 1981, AUST J MAR FRESH RES, V32, P517, DOI 10.1071/MF9810517; LEONARDSSON K, 1991, OIKOS, V60, P149, DOI 10.2307/3544860; LEVY DA, 1990, CAN J FISH AQUAT SCI, V47, P1796, DOI 10.1139/f90-204; LIE U, 1983, SARSIA, V68, P65; LOPED P D C, 1979, Sarsia, V64, P199; MAGNESEN T, 1989, SARSIA, V74, P115, DOI 10.1080/00364827.1989.10420529; MANGEL M, 1986, ECOLOGY, V67, P1127, DOI 10.2307/1938669; Mangel M., 1988, DYNAMIC MODELLING BE; MASON MD, 1993, T AM FISH SOC, V122, P844; MAUCHLINE J, 1991, MARINE BIOLOGY : ITS ACCOMPLISHMENT AND FUTURE PROSPECT, P107; MCLAREN IA, 1963, J FISH RES BOARD CAN, V20, P685, DOI 10.1139/f63-046; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MCNAMARA JM, 1990, ADV APPL PROBAB, V22, P295, DOI 10.2307/1427537; MELO YC, 1991, S AFR J MARINE SCI, V10, P125; METCALFE NB, 1984, BEHAV ECOL SOCIOBIOL, V15, P203, DOI 10.1007/BF00292976; MILINSKI M, 1985, BEHAVIOUR, V93, P203, DOI 10.1163/156853986X00883; MILINSKI M, 1978, NATURE, V275, P642, DOI 10.1038/275642a0; MONTGOMERY JC, 1989, NEUROBIOLOGY EVOLUTI, P561; Priede I.G., 1985, P33; ROBERTSON D A, 1976, New Zealand Journal of Marine and Freshwater Research, V10, P311; ROBINSON CJ, 1989, J FISH BIOL, V35, P459, DOI 10.1111/j.1095-8649.1989.tb02997.x; ROBINSON CJ, 1989, J FISH BIOL, V34, P631, DOI 10.1111/j.1095-8649.1989.tb03341.x; Rosenberg GV., 1966, TWILIGHT STUDY ATMOS; ROSLAND R, 1993, IFM1193 U BERG DEP F; Samyshev E. Z., 1971, ANN BIOL-COPENHAGEN, V28, P212; SARGENT RC, 1990, ANN ZOOL FENN, V27, P101; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Schmidt-Nielsen K., 1983, ANIMAL PHYSL ADAPTAT; Skartveit A, 1988, METEOROLOGICAL REPOR, V7; Stearns S.C., 1984, P13; STEPHENS DW, 1981, ANIM BEHAV, V29, P628, DOI 10.1016/S0003-3472(81)80128-5; STEPHENS DW, 1982, BEHAV ECOL SOCIOBIOL, V10, P251, DOI 10.1007/BF00302814; SUMIDA BH, 1990, J THEOR BIOL, V147, P59, DOI 10.1016/S0022-5193(05)80252-8; WERNER EE, 1988, ECOLOGY, V69, P1352, DOI 10.2307/1941633; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Windell J.T., 1978, P159; WURTSBAUGH WA, 1988, NATURE, V333, P846, DOI 10.1038/333846a0; YDENBERG RC, 1989, ECOLOGY, V70, P1494, DOI 10.2307/1938208; YOUNG JW, 1986, MAR BIOL, V93, P147, DOI 10.1007/BF00428663; YOUNG JW, 1987, MAR BIOL, V95, P323, DOI 10.1007/BF00409562 85 64 63 1 17 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0079-6611 PROG OCEANOGR Prog. Oceanogr. 1994 34 1 1 43 10.1016/0079-6611(94)90025-6 43 Oceanography Oceanography PM185 WOS:A1994PM18500001 2019-02-26 J WALLACE, MP WALLACE, MP CONTROL OF BEHAVIORAL-DEVELOPMENT IN THE CONTEXT OF REINTRODUCTION PROGRAMS FOR BIRDS ZOO BIOLOGY English Article; Proceedings Paper Symposium on The Contribution of Animal Behavior Studies to Zoo Propagation Programs SEP 16, 1994 OMAHA, NE AMER ZOO & AQUARIUM ASSOC RELEASE; TRANSLOCATE; INTRODUCE; BEHAVIORAL MANAGEMENT Only over the last few decades has there been a concerted effort to develop and refine release methods for threatened species. With the goal of achieving self-sustaining wild populations, three main techniques have been employed: parent-rearing, cross-fostering, and isolation-rearing. Although there are many considerations in developing or selecting the most efficient method for any given species, the behavioral aspects of preparing birds for release are important. The concept of different life history strategies may also help in designing a preparation and release methodology. The degree of interspecific and intraspecific sociality also is important in the development of effective behavioral preparation of individuals for release. (C) 1994 Wiley-Liss, Inc. WALLACE, MP (reprint author), LOS ANGELES ZOO,5333 ZOO DR,LOS ANGELES,CA 90027, USA. 0 11 12 0 8 WILEY-LISS NEW YORK DIV JOHN WILEY & SONS INC 605 THIRD AVE, NEW YORK, NY 10158-0012 0733-3188 ZOO BIOL Zoo Biol. 1994 13 5 491 499 10.1002/zoo.1430130511 9 Veterinary Sciences; Zoology Veterinary Sciences; Zoology QH184 WOS:A1994QH18400010 2019-02-26 J GREGORY, PT; LARSEN, KW GREGORY, PT; LARSEN, KW GEOGRAPHIC-VARIATION IN REPRODUCTIVE CHARACTERISTICS AMONG CANADIAN POPULATIONS OF THE COMMON GARTER SNAKE (THAMNOPHIS-SIRTALIS) COPEIA English Article LIFE-HISTORY STRATEGIES; BODY SIZE; STORERIA-OCCIPITOMACULATA; PHENOTYPIC PLASTICITY; EVOLUTION; SERPENTES; VIPERIDAE; NUMBER; SALMON; ISLAND We studied geographic variation in reproductive characteristics, especially litter size and neonate size, among several populations across Canada of the wide-ranging garter snake, Thamnophis sirialis. Gravid females differed significantly in body size among sites. However, even after we corrected for intersite differences in maternal body size, there were highly significant differences among populations in litter size and neonate size. Populations with large litters tended to have small progeny, but we found only weak evidence of a ''tradeoff'' between neonate size and litter size within populations. There was a conspicuous east-west difference in reproductive characteristics of snakes: snakes from eastern Canada were relatively small at maturity and produced large litters of very small young, whereas those from western Canada generally were large and produced smaller litters (for a given body size) of larger young. Although litter size and neonate size are both phenotypically plastic traits, the differences observed among populations in this study were often much larger than those expected from simple environmental influences. We, therefore, hypothesize that reproductive traits differ genetically among populations of T. sirtalis, at least between eastern and western Canada. UNIV ALBERTA,DEPT ZOOL,EDMONTON T6G 2E9,ALBERTA,CANADA GREGORY, PT (reprint author), UNIV VICTORIA,DEPT BIOL,VICTORIA V8W 2Y2,BC,CANADA. ANDREN C, 1983, Amphibia-Reptilia, V4, P63, DOI 10.1163/156853883X00274; ANDREN C, 1982, Amphibia-Reptilia, V3, P81, DOI 10.1163/156853882X00194; BARBAULT R, 1988, EVOL BIOL, V22, P261; BLAIR W. FRANK, 1965, P543; BRODIE ED, 1989, AM NAT, V134, P225, DOI 10.1086/284977; BRODIE ED, 1989, AM MIDL NAT, V122, P51; Brooks DR, 1991, PHYLOGENY ECOLOGY BE; BROWN KM, 1973, AM NAT, V121, P871; CARPENTER CC, 1952, ECOL MONOGR, V22, P235, DOI 10.2307/1948469; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; COVER JF, 1988, THAMNOPHIS SIRTALIS, V19, P29; Dunham A.E., 1988, Biology of Reptilia, V16, P441; DUNHAM AE, 1988, BIOL REPTILIA, V16, P332; DUNLAP KD, 1990, COPEIA, P568; FARR DR, 1991, J HERPETOL, V25, P261, DOI 10.2307/1564582; FARR DR, 1988, THESIS U VICOTIRA VI; FITCH HENRY S., 1965, UNIV KANS PUBL MUS NATUR HIST, V15, P493; FITCH HS, 1980, U KANSAS PUBL MUS NA; FITCH HS, 1985, MUS NAT HIST MISC PU, V76; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; FORSMAN A, 1991, J ANIM ECOL, V60, P253, DOI 10.2307/5458; FREUND RJ, 1986, SAS SYSTEM LINEAR MO; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; GREENWELL MG, 1984, DEV PSYCHOBIOL, V17, P457, DOI 10.1002/dev.420170504; GREGORY PT, 1992, HERP J, V2, P65; GREGORY PT, 1977, PUBL ZOOL, V13; Hasegawa M., 1989, P414; HEALEY MC, 1984, CAN J FISH AQUAT SCI, V41, P476, DOI 10.1139/f84-057; HEBARD WILLIAM B., 1950, HERPETOLOGICA, V6, P97; KEPHART DG, 1981, THESIS U CHICAGO CHI; KING RB, 1989, HERPETOLOGICA, V45, P84; KING RB, 1993, HERPETOLOGICA, V27, P175; LARSEN KW, 1989, HOLARCTIC ECOL, V12, P81; LARSEN KW, 1993, AM MIDL NAT, V129, P336, DOI 10.2307/2426514; LARZELERE RE, 1977, PSYCHOL BULL, V84, P557, DOI 10.1037/0033-2909.84.3.557; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; MARTOF B, 1954, COPEIA, P100; Mattlin R. H., 1948, Herpetologica San Diego, V4, P149; PARKER W S, 1987, P253; PLUMMER MV, 1992, COPEIA, P1096; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RITKE ME, 1990, AM MIDL NAT, V123, P390, DOI 10.2307/2426567; SEARLE SR, 1980, AM STAT, V34, P216, DOI 10.2307/2684063; SEIGEL R A, 1987, P210; SEIGEL RA, 1991, HERPETOLOGICA, V47, P301; SEIGEL RA, 1985, J ANIM ECOL, V54, P497, DOI 10.2307/4494; SEMLITSCH RD, 1984, AM MIDL NAT, V111, P33, DOI 10.2307/2425539; SHINE R, 1987, HERPETOLOGICA, V43, P233; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SOKAL R., 1981, BIOMETRY; SOLORZANO A, 1989, HERPETOLOGICA, V45, P444; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; VOLKL W, 1989, ZOOL ANZ, V222, P75; WALLACE CJ, 1938, COPEIA, P205; WOOD JT, 1945, COPEIA, P118; ZEHR DR, 1962, COPEIA, P322; 1982, CANADIAN CLIMATE NOR, V1; 1988, SAS STAT USERS GUIDE 60 35 38 0 12 AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS BUSINESS OFFICE CARBONDALE SOUTHERN ILLINOIS UNIV, DEPT ZOOLOGY, CARBONDALE, IL 62901-6501 0045-8511 COPEIA Copeia DEC 28 1993 4 946 958 13 Zoology Zoology MP586 WOS:A1993MP58600002 2019-02-26 J COOMBS, M; DELSOCORRO, AP; FITT, GP; GREGG, PC COOMBS, M; DELSOCORRO, AP; FITT, GP; GREGG, PC THE REPRODUCTIVE MATURITY AND MATING STATUS OF HELICOVERPA-ARMIGERA, HELIOTHIS-PUNCTIGERA AND MYTHIMNA-CONVECTA (LEPIDOPTERA, NOCTUIDAE) COLLECTED IN TOWER-MOUNTED LIGHT TRAPS IN NORTHERN NEW-SOUTH-WALES, AUSTRALIA BULLETIN OF ENTOMOLOGICAL RESEARCH English Article FLIGHT; BEHAVIOR; MIGRATION; ECOLOGY; MOTHS; AGE The reproductive condition and mating status of female Helicoverpa armigera (Hubner), H. punctigera (Wallengren) and the mating status of the armyworm Mythimna convecta (Walker), trapped in tower-mounted light traps were studied over a four and a half year period, from November 1985 to December 1989. The traps were mounted on towers (40 and 50 m high) in two geographically distinct sites, one located at Point Lookout and the other at Mt Dowe both in north-eastern New South Wales, Australia. At the Point Lookout site, 132 females of H. armigera and 366 of H. punctigera were examined and of those, 88.7% and 89.9% were unmated and immature, respectively. Most of the remaining females of both species were mature and mated. Of the mated H. armigera females, 78.6% carried only a single spermatophore, the remainder having either two or three spermatophores. Most of the mated H. punctigera females (97.1%) carried only a single spermatophore and the remainder had no more than two. Females of M. convecta were predominantly (97.1%) unmated. At the Mt Dowe site H. punctigera adults were predominant and all 44 females of this species examined were unmated and non-gravid. Pre-reproductive flight by Helicoverpa spp. and M. convecta is considered as an important component of the life-history strategies of these insects. Flexibility in the timing and spacing of reproductive effort is seen as enabling colonization of heterogeneous environments. UNIV NEW ENGLAND,DEPT AGRON & SOIL SCI,ARMIDALE,NSW 2351,AUSTRALIA; UNIV NEW ENGLAND,DEPT ZOOL,ARMIDALE,NSW 2351,AUSTRALIA; CSIRO,DIV ENTOMOL,NARRABRI,NSW,AUSTRALIA Fitt, Gary/C-5457-2008; gregg, peter/E-9408-2011 gregg, peter/0000-0001-7534-3567 ARMES NJ, 1991, PHYSIOL ENTOMOL, V16, P131, DOI 10.1111/j.1365-3032.1991.tb00549.x; Common I. F. B., 1965, Journal of the Entomological Society of Queensland, V4, P14; COMMON IFB, 1953, AUST J ZOOL, V1, P319, DOI 10.1071/ZO9530319; COMON IFB, 1954, AUSTR J ZOOLOGY, V2, P86; Dingle H., 1989, P99; DRAKE VA, 1988, ANNU REV ENTOMOL, V33, P183, DOI 10.1146/annurev.en.33.010188.001151; DRAKE VA, 1985, AUST J ECOL, V10, P223, DOI 10.1111/j.1442-9993.1985.tb00885.x; ENGELMANN F, 1970, PHYSL INSECT REPRODU; FARROW RA, 1987, AUST J ZOOL, V35, P1, DOI 10.1071/ZO9870001; FARROW RA, 1987, INSECT SCI APPL, V8, P531, DOI 10.1017/S174275840002258X; FITT GP, 1989, ANNU REV ENTOMOL, V34, P17, DOI 10.1146/annurev.en.34.010189.000313; Gatehouse A.G., 1989, P115; GREGG PC, IN PRESS B ENTOMOLOG; Johnson C. G., 1969, MIGRATION DISPERSAL; KOU R, 1987, ANN ENTOMOL SOC AM, V80, P490, DOI 10.1093/aesa/80.4.490; Mikkola K., 1986, P152; PAGE WW, 1988, B ENTOMOL RES, V79, P181; Raulston J. R., 1982, Proceedings of the International Workshop on Heliothis Management. ICRISAT Center, Patancheru, India, 15-20 November 1981, P61; RAULSTON JR, 1975, ANN ENTOMOL SOC AM, V68, P701, DOI 10.1093/aesa/68.4.701; Reed W., 1982, Proceedings of the International Workshop on Heliothis Management. ICRISAT Center, Patancheru, India, 15-20 November 1981, P9; RILEY JR, 1992, B ENTOMOL RES, V82, P243, DOI 10.1017/S0007485300051798; SWIER SR, 1976, ANN ENTOMOL SOC AM, V69, P546, DOI 10.1093/aesa/69.3.546; VANHANDEL E, 1974, J INSECT PHYSIOL, V20, P2329, DOI 10.1016/0022-1910(74)90020-1; WILLERS JL, 1987, J INSECT PHYSIOL, V33, P803, DOI 10.1016/0022-1910(87)90027-8; ZALUCKI MP, 1986, AUST J ZOOL, V34, P779, DOI 10.1071/ZO9860779 25 20 20 0 11 C A B INTERNATIONAL WALLINGFORD WALLINGFORD, OXON, ENGLAND OX10 8DE 0007-4853 B ENTOMOL RES Bull. Entomol. Res. DEC 1993 83 4 529 534 10.1017/S000748530003995X 6 Entomology Entomology MW327 WOS:A1993MW32700006 2019-02-26 J SCHAAF, WE; PETERS, DS; COSTONCLEMENTS, L; VAUGHAN, DS; KROUSE, CW SCHAAF, WE; PETERS, DS; COSTONCLEMENTS, L; VAUGHAN, DS; KROUSE, CW A SIMULATION-MODEL OF HOW LIFE-HISTORY STRATEGIES MEDIATE POLLUTION EFFECTS ON FISH POPULATIONS ESTUARIES English Article Pollution effects on fish populations were estimated with a simulation model, using Leslie matrices. Results from changing only first-year survival rate (S(o)) have already been published (Schaaf et al. 1987). This paper explores the effects of perturbing both S(o) and the adult survival rate (S(i)) for 12 spatial-temporal stocks. Most stocks examined are more sensitive to permanent change in S(1) than to changes in S(o). The relative importance of these two rates in determining the population growth rate (lambda) depends upon the age distribution of the expected lifetime egg production of age i females (V(i)). In turn, the vector V(i), as measured by its mean and standard deviation, is shown to vary among geographic or temporal stocks of a single species. Hence, we quantify the impact on population size of destroying a fixed percentage of habitat, relative to where and when it occurs (i.e., relative impact on S(i) and S(o)). For example, destroying 1% of the Atlantic menhaden habitat would reduce lambda by 0.8% and the population by 8.0% in 10 yr, if the impact affected only adults (e.g., offshore in winter). If the 1% habitat destruction all occurred in the estuaries, affecting juveniles as well, lambda would be reduced by almost 5%, and in 10 yr drive the population down to 58% of its former equilibrium. We show that knowledge of the mean and variance of the age distribution of V(i) permits prediction of relative sensitivity among species to pollution. Within species, this knowledge of V(i) permits comparison of the effects of impacting different life stages, and at different times and places. SCHAAF, WE (reprint author), NOAA,NATL MARINE FISHERIES SERV,BEAUFORT LAB,BEAUFORT,NC 28516, USA. CROSS FA, 1985, ASTM STP, V854, P383; Leslie PH, 1945, BIOMETRIKA, V33, P183, DOI 10.1093/biomet/33.3.183; Mercer L. P., 1984, FISHERY MANAGEMENT P; PETERS DS, 1984, RES MANAGING NATIONS, P255; Ray G. C., 1980, E US COASTAL OCEAN Z; SCHAAF WE, 1987, ESTUARIES, V10, P267, DOI 10.2307/1351854; VAUGHAN DS, 1988, NMFS63 NAT OC ATM AD; VAUGHAN DS, 1987, NMFS58 NAT OC ATM AD 8 16 17 0 3 ESTUARINE RES FEDERATION LAWRENCE PO BOX 368, LAWRENCE, KS 66044 0160-8347 ESTUARIES Estuaries DEC 1993 16 4 697 702 10.2307/1352428 6 Environmental Sciences; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology MW147 WOS:A1993MW14700001 2019-02-26 J GRAVES, JL GRAVES, JL THE COSTS OF REPRODUCTION AND DIETARY RESTRICTION - PARALLELS BETWEEN INSECTS AND MAMMALS GROWTH DEVELOPMENT AND AGING English Article LIFE-HISTORY TRAITS; CORPUS ALLATUM ACTIVITY; DROSOPHILA-MELANOGASTER; FOOD RESTRICTION; POSTPONED SENESCENCE; PHENOTYPIC PLASTICITY; GENE-EXPRESSION; BODY-WEIGHT; FEMALE RATS; ARTIFICIAL SELECTION Dietary restriction increases life span in mammals. This essay connects the dietary restriction response to evolutionary life history theory and experiments related to it. Evolutionary biologists have shown mathematically that aging is an inevitable consequence of age-specific natural selection acting on species with somata separate from germ lines. Empirical tests of this prediction currently point to its general validity. Two specific genetic mechanisms are known which could underlie the evolution of aging under these conditions: age-specificity of gene effects and antagonistic pleiotropy between early and late ages. The antagonistic pleiotropy theory assumes that some genes with beneficial effects on early life fitness will have deleterious effects upon fitness in later life. Experimental work in insects, particularly selection experiments in Drosophila melanogaster, has tested these ideas. The negative genetic correlation between longevity and reproductive effort produced by selection has been shown to be paralleled, in some cases, by environmental manipulation. Thus the increase in life span caused by dietary restriction might be explained as an incidental consequence of lower reproductive effort. This response also could have been an adaptation,that enhanced fitness in some species that faced uncertain food supplies, a condition that may have evolved independently in a wide variety of taxa. Several schools of research, besides that of the evolutionary biologists concerned with genetic correlations, have produced corroborations of this hypothesis in insects and mammals: the gerontological work on life span extension, reproductive physiologists concerned with factors that affect fertility, and various life history studies. GRAVES, JL (reprint author), UNIV CALIF IRVINE,SCH BIOL SCI,DEPT ECOL & EVOLUTIONARY BIOL,IRVINE,CA 92717, USA. PHS HHS [P01-9970, 95-2226406] ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; AGUILAR E, 1984, REV ESP FISIOL, V40, P83; AIGAKI T, 1984, EXP GERONTOL, V19, P267, DOI 10.1016/0531-5565(84)90022-6; AIGAKI T, 1984, EXP GERONTOL, V19, P19; AIJA S, 1991, J NUTR, V121, P1798; ALKASS JE, 1982, ANIM PROD, V34, P265, DOI 10.1017/S0003356100010205; ALMQUIST JO, 1982, J DAIRY SCI, V65, P814, DOI 10.3168/jds.S0022-0302(82)82270-4; ASKENMO C, 1979, AM NAT, V114, P748, DOI 10.1086/283523; ASKENMO C, 1977, Ornis Scandinavica, V8, P1, DOI 10.2307/3675982; AUSTAD SN, 1989, EXP GERONTOL, V24, P83, DOI 10.1016/0531-5565(89)90037-5; BARNES MA, 1980, THERIOGENOLOGY, V14, P67, DOI 10.1016/0093-691X(80)90135-1; BAZZARRE TL, 1984, NUTR REP INT, V29, P997; BEEBY JM, 1983, ANIM PROD, V37, P345, DOI 10.1017/S0003356100001951; BIERICH JR, 1991, Z GERONTOL, V24, P337; BISHOP JM, 1983, BIOCHEMISTRY-US, V50, P301; BRONSON FH, 1986, BIOL REV, V61, P157, DOI 10.1111/j.1469-185X.1986.tb00465.x; BRONSON FH, 1985, BIOL REPROD, V32, P1, DOI 10.1095/biolreprod32.1.1; BRONSON FH, 1986, ENDOCRINOLOGY, V118, P2483, DOI 10.1210/endo-118-6-2483; BRONSON FH, 1989, MAMMALIAN REPRODUCTI; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; CAMPAGNOLI C, 1992, European Journal of Gynaecological Oncology, V13, P139; CAMPBELL BA, 1987, J GERONTOL, V42, P154, DOI 10.1093/geronj/42.2.154; CHARKVARTY I, 1984, SERONO S PUBLICATION, V9, P367; CHATTERJEE B, 1990, J STEROID BIOCHEM, V37, P437, DOI 10.1016/0960-0760(90)90495-7; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CLARE MJ, 1985, HEREDITY, V55, P19, DOI 10.1038/hdy.1985.67; DAVID J, 1971, EXP GERONTOL, V6, P249, DOI 10.1016/0531-5565(71)90037-4; DE AK, 1983, MECH AGEING DEV, V21, P37, DOI 10.1016/0047-6374(83)90014-3; DE GRIMALDO E. P., 1960, REV IBERICA PARASITOL, V20, P163; DEGRIMALDO E, 1960, REV IBERICA PARASITO, V20, P39; DERICKSON WK, 1976, ECOLOGY, V57, P445, DOI 10.2307/1936430; DERTING TL, 1989, ECOLOGY, V70, P587, DOI 10.2307/1940210; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DICKERSON JWT, 1964, J ENDOCRINOL, V29, P111, DOI 10.1677/joe.0.0290111; DYER RG, 1981, J PHYSIOL-LONDON, V319, pP91; EARLE M, 1990, CAN J ZOOL, V68, P381, DOI 10.1139/z90-054; EGOSCUE HJ, 1970, J MAMMAL, V51, P622, DOI 10.2307/1378407; EISENBERG JF, 1981, MAMMALIAN RAD; ENGELMANN F, 1965, ARCH ANAT MICROSC MO, V54, P387; ENGELMANN F, 1970, PHYSL INSECT REPRODU; ERNSTING G, 1991, FUNCT ECOL, V5, P299, DOI 10.2307/2389268; FERGUSON GW, 1980, COPEIA, P259, DOI 10.2307/1444002; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; FERNANDES G, 1990, P SOC EXP BIOL MED, V193, P16; FITCH WM, 1985, SCIENCE, V228, P1169, DOI 10.1126/science.4001935; FRISCH RE, 1980, FED PROC, V39, P2395; FRISCH RE, 1984, BIOL REV, V59, P161, DOI 10.1111/j.1469-185X.1984.tb00406.x; FRISCH RE, 1977, P NATL ACAD SCI USA, V72, P4172; GARLAND T, 1994, IN PRESS ANN REV PHY, V56; Gillott C, 1980, ENTOMOLOGY; GLASS AR, 1979, ENDOCRINOLOGY, V104, P438, DOI 10.1210/endo-104-2-438; GLASS AR, 1984, ENDOCRINOLOGY, V115, P19, DOI 10.1210/endo-115-1-19; GLASS AR, 1980, FED PROC, V39, P2360; GRAVES JL, 1988, J INSECT PHYSIOL, V34, P1021, DOI 10.1016/0022-1910(88)90201-6; GRAVES JL, 1992, PHYSIOL ZOOL, V65, P268, DOI 10.1086/physzool.65.2.30158253; GRAVES JL, IN PRESS GENETICA; GRAVES JL, 1990, GENETIC EFFECTS AGIN, V2, pCH5; GROSVENOR CE, 1983, J ENDOCRINOL, V96, P215, DOI 10.1677/joe.0.0960215; HAMILTON GD, 1986, AM J PHYSIOL, V250, pR370; HAMILTON GD, 1985, BIOL REPROD, V32, P773, DOI 10.1095/biolreprod32.4.773; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARVEY PH, 1991, AM NAT, V137, P556, DOI 10.1086/285183; HAYES JP, 1992, FUNCT ECOL, V6, P5, DOI 10.2307/2389765; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; HOLEHAN AM, 1985, MECH AGEING DEV, V32, P63, DOI 10.1016/0047-6374(85)90036-3; HOLEHAN AM, 1986, BIOL REV, V61, P329, DOI 10.1111/j.1469-185X.1986.tb00658.x; HOLEHAN AM, 1985, MECH AGEING DEV, V32, P179, DOI 10.1016/0047-6374(85)90078-8; HOLLIDAY R, 1989, BIOESSAYS, V10, P4; HOLLIDAY R, 1988, PERSPECT BIOL MED, V37, P109; HOWLAND BE, 1971, J REPROD FERTIL, V27, P467; INGRAM DK, 1987, J GERONTOL, V42, P78, DOI 10.1093/geronj/42.1.78; JEANFAUCHER C, 1982, BIOL NEONATE, V40, P45; JOHNSON BC, 1990, P SOC EXP BIOL MED, V193, P4; KAISER FE, 1991, J AM GERIATR SOC, V39, P235, DOI 10.1111/j.1532-5415.1991.tb01643.x; KAITALA A, 1991, FUNCT ECOL, V5, P12, DOI 10.2307/2389551; KANEREK RB, 1986, PHYSIOL BEHAV, V38, P509; KENAGY GJ, 1989, PHYSIOL ZOOL, V62, P470, DOI 10.1086/physzool.62.2.30156180; KENNEDY GC, 1963, J PHYSIOL-LONDON, V166, P408, DOI 10.1113/jphysiol.1963.sp007112; KENNEDY GC, 1963, J PHYSIOL-LONDON, V166, P395, DOI 10.1113/jphysiol.1963.sp007111; KHAN MA, 1982, J INSECT PHYSIOL, V28, P791, DOI 10.1016/0022-1910(82)90140-8; KHANSARI DN, 1991, MECH AGEING DEV, V57, P87, DOI 10.1016/0047-6374(91)90026-V; Kirkwood T.B.L., 1981, P165; KLEIN G, 1988, ACTA ONCOL, V27, P427, DOI 10.3109/02841868809093569; KLUYVER H N, 1971, P507; KULIN HE, 1984, J PEDIATR-US, V105, P325, DOI 10.1016/S0022-3476(84)80141-9; LARSSON K, 1974, PHYSIOL BEHAV, V13, P307, DOI 10.1016/0031-9384(74)90049-3; LEBOURG E, 1991, AGE NUTR, V2, P90; LEE SJ, 1981, J INSECT PHYS, V27, P93; Levins R., 1968, EVOLUTION CHANGING E; LICHTMAN R, 1991, J NURSE-MIDWIFERY, V36, P30, DOI 10.1016/0091-2182(91)90019-L; LOCHMILLER RL, 1985, COMP BIOCHEM PHYS A, V82, P49, DOI 10.1016/0300-9629(85)90703-0; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; LUCKINBILL LS, 1985, HEREDITY, V55, P9, DOI 10.1038/hdy.1985.66; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MARTIN G, 1990, GENETIC EFFECTS AGIN, V2; MAYNARDSMITH J, 1958, J EXP BIOL, V35, P832; McCabe T. T., 1950, 3 SPECIES PEROMYSCUS; MCNAB BK, 1980, AM NAT, V116, P106, DOI 10.1086/283614; MENENDEZPATTERSON A, 1982, PHARMACOL BIOCHEM BE, V17, P659, DOI 10.1016/0091-3057(82)90341-0; MEREDITH S, 1986, BIOL REPROD, V35, P68, DOI 10.1095/biolreprod35.1.68; MERRY BJ, 1991, MECH AGEING DEV, V58, P139, DOI 10.1016/0047-6374(91)90088-H; MERRY BJ, 1981, EXP GERONTOL, V16, P431, DOI 10.1016/0531-5565(81)90025-5; MILLER RS, 1958, ECOLOGY, V39, P118, DOI 10.2307/1929973; MORRIS JG, 1991, ENV METABOLIC ANN PH; MUELLER LD, 1988, AM NAT, V132, P786, DOI 10.1086/284890; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; MUELLER LD, IN PRESS FUNCTIONAL; NDUKA EU, 1983, NUTR REP INT, V28, P31; NEGUS NC, 1987, CURRENT MAMMOLOGY, V1; NELSON RJ, 1993, PHYSIOL ZOOL, V66, P99, DOI 10.1086/physzool.66.1.30158289; NEWTON I, 1966, BR BIRDS, V19, P89; NEWTON I, 1979, J APPL ECOL, V16, P177; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PASHKO LL, 1983, J GERONTOL, V38, P8, DOI 10.1093/geronj/38.1.8; PERRIGO G, 1983, BIOL REPROD, V29, P455, DOI 10.1095/biolreprod29.2.455; PHELAN JP, 1989, GROWTH DEV AGING; PIACSEK BE, 1987, HDB ENDOCRINOLOGY, P143; PRETORIUS P S, 1968, South African Journal of Agricultural Science, V11, P319; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICKLEFS RE, 1979, BIOL REV, V54, P269, DOI 10.1111/j.1469-185X.1979.tb01013.x; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Riddiford L.M., 1985, P37; ROBERTSON JR, 1981, ECOLOGY, V62, P1585, DOI 10.2307/1941514; ROFF DA, 1990, INSECT LIFE CYCLES G, P1; RONNEKLEIV OK, 1978, BIOL REPROD, V19, P414, DOI 10.1095/biolreprod19.2.414; ROSE M, 1984, NEW SCI, V103, P15; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Rose M. R., 1985, REV BIOL RES AGING, V2, P85; ROSE MR, 1990, GROWTH DEVELOP AGING, V54, P7; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; ROSE MR, 1981, GENETICS, V97, P173; ROSE MR, 1990, REV BIOL RES AGING, V4, P3; ROSE MR, 1991, INSECT LIFE CYCLES G, pCH2; RUCKER R, 1986, J NUTR, V116, P177; Sacher GA., 1959, CIBA F COLLOQ AGEING, P115; SAUER JR, 1987, ANNU REV ECOL SYST, V18, P71; SCHENCK PE, 1980, BRIT J NUTR, V44, P179, DOI 10.1079/BJN19800025; SCHNEIDER JE, 1989, SCIENCE, V244, P1326, DOI 10.1126/science.2734610; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; Slama K., 1985, COMPREHENSIVE INSECT, V8, P357; SLOB AK, 1979, BRIT J NUTR, V41, P231, DOI 10.1079/BJN19790032; SOHAL RS, 1990, MECH AGEING DEV, V56, P223, DOI 10.1016/0047-6374(90)90084-S; SOHAL RS, 1990, MECH AGEING DEV, V53, P217, DOI 10.1016/0047-6374(90)90040-M; SREBNIK HH, 1978, ENV ENDOCRINOLOGY, P306; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEINER RA, 1983, NEUROENDOCRINE ASPEC, P183; Thoren M, 1991, Lakartidningen, V88, P1953; TYLER RH, IN PRESS GENETICA; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WALFORD RL, 1987, J NUTR, V117, P1650; WEAVER RJ, 1981, J INSECT PHYSIOL, V27, P75, DOI 10.1016/0022-1910(81)90035-4; WEINDRUCH R, 1982, SCIENCE, V215, P1415, DOI 10.1126/science.7063854; WEINDRUCH R, 1989, DIETARY RESTRICTION, P97; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; WIDDOWSON EM, 1964, J ENDOCRINOL, V29, P119, DOI 10.1677/joe.0.0290119; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; Williams GC, 1966, ADAPTATION NATURAL S; ZERA AJ, 1989, J INSECT PHYSIOL, V35, P7, DOI 10.1016/0022-1910(89)90031-0 171 19 19 2 5 GROWTH PUBL CO INC BAR HARBOR PO BOX 42, BAR HARBOR, ME 04609-0042 0017-4793 GROWTH DEVELOP AGING Growth Dev. Aging WIN 1993 57 4 233 249 17 Developmental Biology; Geriatrics & Gerontology Developmental Biology; Geriatrics & Gerontology MJ138 WOS:A1993MJ13800002 8300277 2019-02-26 J CARVALHO, GR CARVALHO, GR EVOLUTIONARY ASPECTS OF FISH DISTRIBUTION - GENETIC-VARIABILITY AND ADAPTATION JOURNAL OF FISH BIOLOGY English Article ADAPTATION; GENETIC VARIABILITY; GENETIC CONSERVATION; GENE HOW; STOCKING; POPULATION DIFFERENTIATION SALMON ONCORHYNCHUS-GORBUSCHA; GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; RAINBOW-TROUT; ATLANTIC SALMON; FUNDULUS-HETEROCLITUS; ARTIFICIAL INTRODUCTION; GASTEROSTEUS-ACULEATUS; ANTIPREDATOR BEHAVIOR; NATURAL-SELECTION CARVALHO, GR (reprint author), UNIV COLL SWANSEA, SCH BIOL SCI, MARINE & FISHERIES GENET LAB, SINGLETON PK, SWANSEA SA2 8PP, W GLAM, WALES. Allendorf F, 1987, POPULATION GENETICS, P1; Allendorf F.W., 1983, P51; ALLENDORF FW, 1983, P NATL ACAD SCI-BIOL, V80, P1397, DOI 10.1073/pnas.80.5.1397; ALLENDORF FW, 1983, CONSERVATION BIOL SC, P57; ALTUKHOV YP, 1991, AQUACULTURE, V98, P11, DOI 10.1016/0044-8486(91)90368-H; ALTUKHOV YP, 1981, CAN J FISH AQUAT SCI, V38, P1523, DOI 10.1139/f81-205; ALTUKHOV YP, 1980, MARINE BIOL VLADIVOS, V3, P23; ALTUKHOV YP, 1987, POPULATION GENETICS, P333; ARTHINGTON AH, 1991, CAN J FISH AQUAT SCI, V48, P33, DOI 10.1139/f91-302; AVISE JC, 1986, P NATL ACAD SCI USA, V83, P4350, DOI 10.1073/pnas.83.12.4350; BAILEY JK, 1987, P WORLD S SELECTION, V2, P443; BAMS RA, 1976, J FISH RES BOARD CAN, V33, P2716, DOI 10.1139/f76-323; Beacham T. D., 1992, Journal of Aquatic Animal Health, V4, P153, DOI 10.1577/1548-8667(1992)004<0153:PAGVIR>2.3.CO;2; Beacham T. D., 1992, Journal of Aquatic Animal Health, V4, P168, DOI 10.1577/1548-8667(1992)004<0168:PVIROP>2.3.CO;2; BEACHAM TD, 1991, CAN J ZOOL, V69, P274, DOI 10.1139/z91-042; BEACHAM TD, 1985, CAN J GENET CYTOL, V27, P571, DOI 10.1139/g85-084; Bishop J.A., 1980, Advances in Ecological Research, V11, P373, DOI 10.1016/S0065-2504(08)60270-6; Brannon E., 1982, SALMON TROUT MIGRATO, P219; BRNCIC D, 1954, GENETICS, V39, P77; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; CARVALHO GR, 1994, IN PRESS SPECIES CHA; Chakraborty R., 1981, Genetics, V96, P721; CHEVASSUS B, 1990, AQUACULTURE, V85, P83, DOI 10.1016/0044-8486(90)90009-C; CLARKE B, 1975, GENETICS, V79, P101; CRAWFORD DL, 1989, P NATL ACAD SCI USA, V86, P9365, DOI 10.1073/pnas.86.23.9365; DANZMANN RG, 1988, BIOL J LINN SOC, V33, P285, DOI 10.1111/j.1095-8312.1988.tb00813.x; DANZMANN RG, 1989, J FISH BIOL, V35, P313; DANZMANN RG, 1988, BIOCHEM GENET, V26, P53, DOI 10.1007/BF00555488; DANZMANN RG, 1988, BIOCHEM GENET, V26, P69, DOI 10.1007/BF00555489; DIAMOND SA, 1991, AQUAT TOXICOL, V21, P119, DOI 10.1016/0166-445X(91)90010-7; DIMICHELE L, 1982, SCIENCE, V216, P1014, DOI 10.1126/science.7079747; DOBZHANSKY T, 1968, GENETICS, V59, P411; EMLEN JM, 1991, FISH RES, V12, P187, DOI 10.1016/0165-7836(91)90095-W; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FERGUSON A, 1981, BIOCH SYSTEMATICS EV; FERGUSON MM, 1990, HEREDITY, V64, P413, DOI 10.1038/hdy.1990.52; FERGUSON MM, 1991, CAN J FISH AQUAT SCI, V48, P1308, DOI 10.1139/f91-157; FERGUSON MM, 1990, CAN J ZOOL, V68, P1053, DOI 10.1139/z90-153; Ford E. B., 1975, ECOLOGICAL GENETICS; GARCIAMARIN JL, 1991, AQUACULTURE, V95, P235, DOI 10.1016/0044-8486(91)90090-T; GHARRETT AJ, 1987, CAN J FISH AQUAT SCI, V44, P787, DOI 10.1139/f87-096; GREGORIUS HR, 1991, ADV LIF SCI, P31; GREIG JC, 1979, S AFR J WILDL RES, V9, P57; GYLLENSTEN U, 1985, J FISH BIOL, V26, P691, DOI 10.1111/j.1095-8649.1985.tb04309.x; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HEAGLER MG, 1993, ENVIRON TOXICOL CHEM, V12, P385, DOI 10.1897/1552-8618(1993)12[385:AGIMGH]2.0.CO;2; HEMMINGSEN AR, 1986, T AM FISH SOC, V115, P492, DOI 10.1577/1548-8659(1986)115<492:SOPFCA>2.0.CO;2; HERSHBERGER WK, 1992, AQUACULTURE, V100, P51; HINDAR K, 1991, CAN J FISH AQUAT SCI, V48, P945, DOI 10.1139/f91-111; HORRALL RM, 1981, CAN J FISH AQUAT SCI, V38, P1481, DOI 10.1139/f81-201; JAMIESON A, 1989, J FISH BIOL, V35, P193, DOI 10.1111/j.1095-8649.1989.tb03062.x; JORDAN WC, 1991, J FISH BIOL, V39, P185, DOI 10.1111/j.1095-8649.1991.tb05082.x; KRUEGER CC, 1981, CAN J FISH AQUAT SCI, V38, P1877, DOI 10.1139/f81-233; LANNAN JE, 1989, GENOME, V31, P798, DOI 10.1139/g89-141; LAVIN PA, 1986, CAN J FISH AQUAT SCI, V43, P2455, DOI 10.1139/f86-305; LUND RA, 1991, AQUACULTURE, V98, P143, DOI 10.1016/0044-8486(91)90379-L; MAGURRAN AE, 1990, ANIM BEHAV, V39, P834, DOI 10.1016/S0003-3472(05)80947-9; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; MAGURRAN AE, 1992, MAR BEHAV PHYSL, V22, P29; Mayama H., 1989, SCI REP HOKKAIDO SAL, V43, P99; Maynard-Smith J, 1974, GENET RES, V23, P23, DOI [10.1017/S0016672300014634, 10.1017/S0016672308009579]; MCDONALD JF, 1983, ANNU REV ECOL SYST, V14, P77, DOI 10.1146/annurev.es.14.110183.000453; MEFFE GK, 1987, ENVIRON BIOL FISH, V18, P3, DOI 10.1007/BF00002323; MITTON JB, 1975, GENETICS, V79, P97; MITTON JB, 1984, ANNU REV ECOL SYST, V15, P479; MYERS N, 1993, BIODIVERS CONSERV, V2, P2, DOI 10.1007/BF00055099; NEI M, 1973, P NATL ACAD SCI USA, V70, P3321, DOI 10.1073/pnas.70.12.3321; NELSON K, 1987, POPULATION GENETICS, P345; NILSSON J, 1992, Journal of Aquatic Animal Health, V4, P126, DOI 10.1577/1548-8667(1992)004<0126:GVIROA>2.3.CO;2; NORTHCOTE T. G., 1992, NORD J FRESHWATER RE, V67, P5; NORTHCOTE TG, 1981, J FISH BIOL, V18, P741, DOI 10.1111/j.1095-8649.1981.tb03815.x; NORTHCOTE TG, 1970, J FISH RES BOARD CAN, V27, P1987, DOI 10.1139/f70-223; PHILIPP DP, 1991, CAN J FISH AQUAT SCI, V48, P58, DOI 10.1139/f91-304; POWERS DA, 1986, AM ZOOL, V26, P131; POWERS DA, 1991, J FISH BIOL, V39, P169, DOI 10.1111/j.1095-8649.1991.tb05081.x; POWERS DA, 1991, ADV GENET, V29, P120; PURDOM CE, 1993, GENETICS FISH BREEDI; Reisenbichler R.R., 1988, North American Journal of Fisheries Management, V8, P172, DOI 10.1577/1548-8675(1988)008<0172:RBDTFN>2.3.CO;2; REISENBICHLER RR, 1977, J FISH RES BOARD CAN, V34, P123, DOI 10.1139/f77-015; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RIBBINK AJ, 1983, S AFR J ZOOL, V18, P149; Ricker W. E, 1972, STOCK CONCEPT PACIFI, P19; ROBINSON GD, 1976, J FISH BIOL, V8, P5, DOI 10.1111/j.1095-8649.1976.tb03901.x; Ros T., 1981, ECOLOGICAL B, V34, P21; RYMAN N, 1993, J FISH BIOL, V42, P471; RYMAN N, 1991, J FISH BIOL, V39, P211, DOI 10.1111/j.1095-8649.1991.tb05085.x; Ryman N., 1981, ECOLOGICAL B, V34; Ryman N., 1987, POPULATION GENETICS; Scheer BT, 1939, Q REV BIOL, V14, P408, DOI 10.1086/394593; SCHONEWALDCOX CM, 1983, GENETICS CONSERVATIO, P485; SCUDDER GGE, 1989, P NATIONAL WORKSHOP, V105, P180; SHAW PW, 1991, J FISH BIOL, V39, P203, DOI 10.1111/j.1095-8649.1991.tb05084.x; SHAW PW, 1992, P ROY SOC B-BIOL SCI, V248, P111, DOI 10.1098/rspb.1992.0049; SKAALA O, 1990, J FISH BIOL, V36, P449, DOI 10.1111/j.1095-8649.1990.tb05624.x; SMITH PJ, 1991, FISH RES, V10, P309, DOI 10.1016/0165-7836(91)90082-Q; SNYDER RJ, 1989, CAN J ZOOL, V67, P2448, DOI 10.1139/z89-345; STEPHEN A B, 1990, Aquaculture and Fisheries Management, V21, P47, DOI 10.1111/j.1365-2109.1990.tb00382.x; SWAIN DP, 1991, CAN J FISH AQUAT SCI, V48, P1783, DOI 10.1139/f91-210; TAGGART J B, 1986, Aquaculture and Fisheries Management, V17, P155, DOI 10.1111/j.1365-2109.1986.tb00097.x; TAYLOR EB, 1991, AQUACULTURE, V98, P185, DOI 10.1016/0044-8486(91)90383-I; Templeton A.R., 1986, P105; UTTER FM, 1981, CAN J FISH AQUAT SCI, V38, P1626, DOI 10.1139/f81-212; VERSPOOR E, 1991, AQUACULTURE, V98, P217, DOI 10.1016/0044-8486(91)90385-K; VERSPOOR E, 1986, CAN J FISH AQUAT SCI, V43, P1074, DOI 10.1139/f86-135; VERSPOOR E, 1989, J FISH BIOL, V35, P205; VUORINEN J, 1989, CAN J FISH AQUAT SCI, V46, P406, DOI 10.1139/f89-053; VUORINEN J, 1991, J FISH BIOL, V39, P193, DOI 10.1111/j.1095-8649.1991.tb05083.x; WALLACE B, 1968, TOPICS POPULATION GE; WAPLES RS, 1991, CAN J FISH AQUAT SCI, V48, P124, DOI 10.1139/f91-311; WISHARD LN, 1984, COPEIA, P120, DOI 10.2307/1445042; Wootton R. J., 1990, ECOLOGY TELEOST FISH; Wright S, 1931, GENETICS, V16, P0097; 1981, CANADIAN J FISHERIES, V38, P1457; 1981, FAO217 FISH TECHN PA; 1985, FAO CIFA8513 117 136 142 1 20 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 1095-8649 J FISH BIOL J. Fish Biol. DEC 1993 43 A 53 73 10.1111/j.1095-8649.1993.tb01179.x 21 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology MQ073 WOS:A1993MQ07300005 2019-02-26 J RIJNSDORP, AD RIJNSDORP, AD FISHERIES AS A LARGE-SCALE EXPERIMENT ON LIFE-HISTORY EVOLUTION - DISENTANGLING PHENOTYPIC AND GENETIC-EFFECTS IN CHANGES IN MATURATION AND REPRODUCTION OF NORTH-SEA PLAICE, PLEURONECTES-PLATESSA L OECOLOGIA English Article PLAICE; LIFE-HISTORY; EVOLUTION; MATURATION; REPRODUCTION MELANOGRAMMUS-AEGLEFINUS; GASTEROSTEUS-ACULEATUS; BACK-CALCULATION; SALMO-GAIRDNERI; SOMATIC GROWTH; EGG-PRODUCTION; SIZE; AGE; FECUNDITY; METAMORPHOSIS This paper attempts to interpret the observed changes in reproductive strategy of female North Sea plaice since 1900 in the light of possible genetical selection exerted by the fisheries. Somatic growth of juvenile plaice increased between the 1950s and the 1980s, probably as a response to an increase in food availability. Adult growth rate was constant, except during a period of increased population abundance when somatic growth decreased. Both length (L(mat)) and age at first sexual maturity decreased since 1900. No firm evidence was obtained for a change in total reproductive investment, although size-specific fecundity was reduced in the period of increased population abundance, suggesting a trade-off between egg numbers and egg size. Analysis of the phenotypic response of maturation to an increase in juvenile growth suggested that only a part of the decrease in L(mat) could be ascribed to the observed increase in juvenile growth. The unexplained part of the change in L(mat) corresponded with the predicted change due to genetical selection by the fisheries. This supported the hypothesis that fishing caused a genetical change in L(mat) although an unequivocal interpretation is not possible from a descriptive study. RIJNSDORP, AD (reprint author), NETHERLANDS INST FISHERIES RES, POB 68, 1970 AB IJMUIDEN, NETHERLANDS. Rijnsdorp, Adriaan/A-4217-2008 Rijnsdorp, Adriaan/0000-0003-0785-9662 BAERENDS GP, 1945, ANN BIOL, V2, P60; BAGENAL TB, 1969, J FISH BIOL, V1, P167, DOI 10.1111/j.1095-8649.1969.tb03850.x; BAKER RJ, 1978, GLIM SYSTEM, V3; Bannister R. C. A., 1978, RAPPORTS PROCES VERB, V172, P86; BEVERTON RJH, 1957, FISHERY INVEST LON 2, V19, P1; BROMAGE N, 1990, Aquaculture and Fisheries Management, V21, P269, DOI 10.1111/j.1365-2109.1990.tb00465.x; CHAMBERS RC, 1992, NETH J SEA RES, V29, P7, DOI 10.1016/0077-7579(92)90004-X; CHAMBERS RC, 1987, CAN J FISH AQUAT SCI, V44, P1936, DOI 10.1139/f87-238; CHARNOV EL, 1981, MAR BIOL LETT, V2, P53; de Veen J.F., 1976, Journal Cons int Explor Mer, V37, P60; De Veen J. F., 1978, RAPP P V REUN CONS P, V172, P124; Falconer D. S., 1989, INTRO QUANTITATIVE G; FRANZ V, 1910, WISS MEERESUNTERS, V9, P58; FRANZ W, 1910, WISS MEERESUNTERSUCH, V9, P217; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; GULLAND JA, 1968, J CONSEIL, V31, P305; HANDFORD P, 1977, J FISH RES BOARD CAN, V34, P954, DOI 10.1139/f77-148; HEINCKE F, 1908, 1905 6 1906 7 BET DE, P67; Heincke F., 1913, RAPP P V REUN CONS I, V16, P1; HISLOP JRG, 1978, J FISH BIOL, V13, P85, DOI 10.1111/j.1095-8649.1978.tb03416.x; HISLOP JRG, 1988, J FISH BIOL, V32, P923, DOI 10.1111/j.1095-8649.1988.tb05435.x; HORN HS, 1984, BEHAVIORAL ECOLOGY E, P279; HORWOOD JW, 1986, PROC R SOC SER B-BIO, V228, P401, DOI 10.1098/rspb.1986.0061; HORWOOD JW, 1989, J MAR BIOL ASSOC UK, V69, P81, DOI 10.1017/S0025315400049122; JENSSEN AJC, 1947, RAPP P V REUN CONS I, V122, P19; JONES A, 1974, J MAR BIOL ASSOC UK, V54, P109, DOI 10.1017/S0025315400022104; Jones R., 1976, P251; KJESBU OS, 1991, CAN J FISH AQUAT SCI, V48, P2333, DOI 10.1139/f91-274; KNOX D, 1988, AQUACULTURE, V69, P93, DOI 10.1016/0044-8486(88)90189-5; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; LAW R, IN PRESS EXPLOITATIO; MARGETTS AR, 1947, RAPP P V REUN CONS I, V122, P26; MASTERMAN AT, 1914, FISH INVEST LONDON 2, V2, P1; MCCULLAGH P, 1983, GENERALIZED LINEAR M; MCKENZIE WD, 1983, COPEIA, P770; MILLNER R, 1991, NETH J SEA RES, V27, P433, DOI 10.1016/0077-7579(91)90044-2; NELSON K, 1987, POPULATION GENETICS, P345; NELSON K, IN PRESS EXPLOITATIO; POLICANSKY D, 1982, CAN J FISH AQUAT SCI, V39, P514, DOI 10.1139/f82-071; POLICANSKY D, 1983, AM ZOOL, V23, P57; POLICANSKY D, IN PRESS EXPLOITATIO; POLICANSKY D, IN PRESS MANAGEMENT; PURDOM CE, 1979, S ZOOL SOC LONDON, V44, P207; Reibisch J, 1899, WISS MEERESUNTERSUCH, V4, P231; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; RIDELMAN JM, 1984, AQUACULTURE, V37, P133, DOI 10.1016/0044-8486(84)90070-X; RIJNSDORP AD, 1989, J FISH BIOL, V35, P401; RIJNSDORP AD, 1993, CAN J FISH AQUAT SCI, V50, P1617, DOI 10.1139/f93-183; RIJNSDORP AD, 1991, NETH J SEA RES, V27, P441, DOI 10.1016/0077-7579(91)90045-3; RIJNSDORP AD, 1992, MAR ECOL PROG SER, V88, P19, DOI 10.3354/meps088019; RIJNSDORP AD, 1990, FISH RES, V9, P97, DOI 10.1016/0165-7836(90)90058-4; RIJNSDORP AD, 1990, NETH J SEA RES, V25, P279, DOI 10.1016/0077-7579(90)90027-E; RIJNSDORP AD, 1989, J CONSEIL, V46, P35; RIJNSDORP AD, 1991, J CONSEIL, V47, P352; RIJNSDORP AD, 1991, ICES J MAR SCI, V48, P253, DOI 10.1093/icesjms/48.3.253; RIJNSDORP AD, 1992, THESIS U AMSTERDAM; RIJNSDORP AD, IN PRESS EXPLOITATIO; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROFF DA, 1991, NETH J SEA RES, V27, P197, DOI 10.1016/0077-7579(91)90024-U; Roff Derek A., 1992; Rothschild B. J., 1986, DYNAMICS MARINE FISH; ROWELL CA, IN PRESS EXPLOITATIO; SCOTT DP, 1962, J FISH RES BOARD CAN, V19, P715, DOI 10.1139/f62-047; SILLIMAN RP, 1975, FISH B-NOAA, V73, P495; Simpson A. C., 1951, Fish Invest, V17, P1; SIMPSON A. C., 1959, FISH INVEST MIN AGRIC FISH AND FOOD [GT BRIT] SER II, V22, P1; SMITH PJ, 1991, FISH RES, V10, P309, DOI 10.1016/0165-7836(91)90082-Q; SPRINGATE JRC, 1985, NUTRITION FEEDING FI, P371; Stearns S.C., 1984, P13; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HIST; STOKES TKA, IN PRESS EXPLOITATIO; TOWNSHEND TJ, 1984, J FISH BIOL, V24, P91, DOI 10.1111/j.1095-8649.1984.tb04779.x; VANDERHOEVEN PCT, 1982, KNMI WR828 NETH I FI; WAIWOOD KG, 1982, REPRODUCTIVE PHYSL F, P206; WALLACE W, 1909, MARINE BIOL ASS RE 2, V2; WALLACE W, 1914, FISH INVEST 2, V2, P1; WIMPENNY RS, 1953, PLAICE; WOOTTON RJ, 1977, J ANIM ECOL, V46, P823, DOI 10.2307/3643; WOOTTON RJ, 1973, J FISH BIOL, V5, P89, DOI 10.1111/j.1095-8649.1973.tb04433.x 83 193 202 3 61 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia DEC 1993 96 3 391 401 10.1007/BF00317510 11 Ecology Environmental Sciences & Ecology MP012 WOS:A1993MP01200015 28313655 2019-02-26 J MOLAU, U MOLAU, U RELATIONSHIPS BETWEEN FLOWERING PHENOLOGY AND LIFE-HISTORY STRATEGIES IN TUNDRA PLANTS ARCTIC AND ALPINE RESEARCH English Article BARTSIA-ALPINA; REPRODUCTIVE SUCCESS; GENETIC-STRUCTURE; BREEDING SYSTEMS; MATING SYSTEM; R-SELECTION; K-SELECTION; POPULATION; GROWTH Temperate plants show high correlations between life history strategies (e.g., along the r-K continuum), mating systems (in terms of pollen:ovule, seed: ovule, and fruit:flower ratios), and genetic population structure. In the tundra, nearly all plants would be categorized as being K-strategists if we use life history traits alone (life span, resource allocation patterns, etc.). However, there is immense variation among species with regard to reproductive traits, such as seed:ovule and fruit: flower ratios, and thus there is a decoupling of the relationships that are valid in other biota. Instead, the reproductive strategies of arctic and alpine plants show strong correlations with flowering phenology, and thereby also with snow cover duration. Early-flowering species show high outbreeding rates and low seed: ovule ratios, and most of the genetic variation is found within local populations; the opposite situation applies in late-flowering species. These two cases are the extremes of a continuum, but arctic plants can be as readily categorized in this model as temperate plants are in the r-K model. Gynodioecious and dioecious breeding systems are abundant only among early-flowering species, whereas apomixis and vivipary are restricted to the late-flowering species. The variation in ploidy levels among species increase from early- to late-flowering. According to the kind of bet-hedging with the resources spent on reproduction, the early- and late-flowering groups are recognized as pollen-risk and seed-risk strategists, respectively. MOLAU, U (reprint author), UNIV GOTEBORG,DEPT SYSTEMAT BOT,CARL SKOTTSBERGS GATA 22,S-41319 GOTHENBURG,SWEDEN. BAYER RJ, 1991, SYST BOT, V16, P492, DOI 10.2307/2419339; BELL KL, 1980, ARCTIC ALPINE RES, V12, P1, DOI 10.2307/1550585; BENEDICT JB, 1989, ARCTIC ALPINE RES, V21, P91, DOI 10.2307/1551520; BLISS LC, 1956, ECOL MONOGR, V26, P303, DOI 10.2307/1948544; Bocher TW, 1978, GRONLANDS FLORA; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; BROCHMANN C, 1993, PLANT SYST EVOL, V185, P55, DOI 10.1007/BF00937720; BROCHMANN C, 1992, PLANT SYST EVOL, V182, P35, DOI 10.1007/BF00941414; BROCHMANN C, 1992, EVOL TREND PLANT, V6, P111; BRUNSFELD SJ, 1991, AM J BOT, V78, P855, DOI 10.2307/2445077; CALLAGHAN TV, 1985, POPULATION STRUCTURE, P399, DOI DOI 10.1007/978-94-009-5500-4; CHESTER AL, 1982, HOLARCTIC ECOL, V5, P200; Cleve A, 1901, BIHANG KUNGLIGA SVEN, V26, P1; CRUDEN RW, 1977, EVOLUTION, V31, P32, DOI 10.1111/j.1558-5646.1977.tb00979.x; EKSTAM O, 1897, TROMSO MUSEUMS AARSH, V20, P1; EKSTAM O, 1895, TROMSO MUSEUMS AARSH, V18, P109; ERIKSEN B, 1993, ECOGRAPHY, V16, P154, DOI 10.1111/j.1600-0587.1993.tb00067.x; GALEN C, 1991, EVOLUTION, V45, P1218, DOI 10.1111/j.1558-5646.1991.tb04388.x; GEHRING JL, 1992, AM J BOT, V79, P1337, DOI 10.2307/2445131; Gelting P., 1934, MEDDR GRONLAND, V101, P1; Grime J. P, 1979, PLANT STRATEGIES VEG; HAGERUP G, 1926, MEDDELELSER GRONLAND, V58, P197; HERMANUTZ LA, 1989, AM J BOT, V76, P755, DOI 10.2307/2444422; HOLWAY JG, 1965, ECOLOGY, V46, P73, DOI 10.2307/1935259; Hulten E., 1968, FLORA ALASKA NEIGHBO; JONASSON S, 1981, VEGETATIO, V44, P51, DOI 10.1007/BF00119804; KUDO G, 1991, ARCTIC ALPINE RES, V23, P436, DOI 10.2307/1551685; LARIGAUDERIE A, 1991, HOLARCTIC ECOL, V14, P38; Lid J., 1979, NORSK SVENSK FLORA; LOVELESS MD, 1984, ANNU REV ECOL SYST, V15, P65, DOI 10.1146/annurev.es.15.110184.000433; MAC ARTHUR ROBERT H., 1967; MACDONALD SE, 1989, AM J BOT, V76, P1627, DOI 10.2307/2444400; MACINNES KL, 1972, THESIS U W ONTARIO; MAESSEN O, 1983, CAN J BOT, V61, P1680, DOI 10.1139/b83-181; MOLAU U, 1992, J ECOL, V80, P149, DOI 10.2307/2261072; MOLAU U, 1991, AM J BOT, V78, P326, DOI 10.2307/2444955; MOLAU U, 1989, OECOLOGIA, V81, P181, DOI 10.1007/BF00379803; MOLAU U, 1992, NORD J BOT, V12, P197, DOI 10.1111/j.1756-1051.1992.tb01290.x; MOLAU U, 1993, NORD J BOT, V13, P149, DOI 10.1111/j.1756-1051.1993.tb00025.x; MOLAU U, 1989, OIKOS, V55, P409, DOI 10.2307/3565602; MOLAU U, 1993, IN PRESS OPERA BOTAN; MURRAY C, 1982, HOLARCTIC ECOL, V5, P109; NILSSON O, 1986, NORDISK FJALLFLORA; ODASZ AM, 1991, NORSK GEOL TIDSSKR, V71, P219; OLESEN JM, 1989, HOLARCTIC ECOL, V12, P21; Philipp M., 1990, MEDD GRONLAND BIOSCI, V34, P1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; RESVOLL TR, 1917, ARK FOR MATH NATURVI, V35, P1; REYNOLDS DN, 1984, ECOLOGY, V65, P759, DOI 10.2307/1938048; RYKIEL EJ, 1985, AUST J ECOL, V10, P361, DOI 10.1111/j.1442-9993.1985.tb00897.x; SAVILE DBO, 1972, CANADA DEP AGR RES B, V6; SELIN E, 1988, PLANT SYST EVOL, V159, P237, DOI 10.1007/BF00935975; SOKAL R., 1981, BIOMETRY; Sorensen Thorvald, 1941, MEDDELSER OM GRONLAND, V125, P1; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; SOYRINKI N., 1938, Annales Botanici Societatis Zoologicae Botanicae Fennicae 'Vanamo', Helsinki, V11, P1; STENSTROM M, 1992, ARCTIC ALPINE RES, V24, P337, DOI 10.2307/1551289; TAYLOR DR, 1990, OIKOS, V58, P239, DOI 10.2307/3545432; TIKHMENEV EA, 1984, SOV J ECOL+, V15, P166; WIENS D, 1984, OECOLOGIA, V64, P47, DOI 10.1007/BF00377542; WILLIAMS JB, 1982, ARCTIC ALPINE RES, V14, P59, DOI 10.2307/1550816 61 183 195 0 72 INST ARCTIC ALPINE RES BOULDER UNIV COLORADO, BOULDER, CO 80309 0004-0851 ARCTIC ALPINE RES Arct. Alp. Res. NOV 1993 25 4 391 402 10.2307/1551922 12 Environmental Sciences; Geography Environmental Sciences & Ecology; Geography MJ165 WOS:A1993MJ16500011 2019-02-26 J BAI, B; SMITH, SM BAI, B; SMITH, SM EFFECT OF HOST AVAILABILITY ON REPRODUCTION AND SURVIVAL OF THE PARASITOID WASP TRICHOGRAMMA-MINUTUM ECOLOGICAL ENTOMOLOGY English Article REPRODUCTION; SURVIVAL; LIFE HISTORY; TRICHOGRAMMA MINUTUM; FECUNDITY SCHEDULE; LONGEVITY; PARASITOID; SEX RATIO LIFE-HISTORY PARAMETERS; HYMENOPTERA; FECUNDITY; EVOLUTION; SELECTION; ACQUISITION; ALLOCATION; RESOURCES; SIZE; COST 1. We tested the hypothesis that females of the egg parasitoid, Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae), could adjust their fecundity schedule according to host availability and that there was a negative correlation between reproduction and survival in these wasps. 2. Newly-emerged females were provided with an unlimited or limited number of hosts in the first trial and with either unlimited, limited or zero hosts in the second trial. 3. When hosts were unlimited, wasps had the highest rate of reproduction in the first day, which decreased dramatically thereafter. When hosts were limited, wasps from the two trials differed in their response. In Trial I, females with limited hosts had lower first-day fecundity than, and the same subsequent-day fecundity as, those with unlimited hosts. However, in Trial II, females with limited host had a lower first-day but a higher subsequent-day fecundity than those with unlimited hosts. This indicates variation in Trichogramma's ability to shift its fecundity schedule in response to host availability. 4. There was a positive (rather than a negative) correlation between reproduction and survival. Wasps that oviposited (in host-unlimited treatment) had greater longevity than those that could not (in host-unavailable treatment). 5. The sex ratio of the progeny produced by wasps in both host-unlimited and limited treatments shifted gradually from a female to a male bias as the wasps aged. 6. We consider the ability of parasitoids to adjust their fecundity schedule as an adaptation to changing host resources and discuss our findings with regard to theories of life history evolution. BAI, B (reprint author), UNIV TORONTO,FAC FORESTRY,33 WILCOCKS ST,TORONTO M5S 3B3,ON,CANADA. ANDERSON JF, 1976, PERSPECTIVES FOREST; BAI BR, 1992, ENTOMOL EXP APPL, V64, P37, DOI 10.1111/j.1570-7458.1992.tb01592.x; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BROWNE RA, 1982, ECOLOGY, V63, P43, DOI 10.2307/1937029; CALOW P, 1973, AM NAT, V107, P559, DOI 10.1086/282858; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1988, AM NAT, V132, P707, DOI 10.1086/284883; Clausen CP, 1977, USDA HDB, V480; DALY M, 1978, AM NAT, V112, P771, DOI 10.1086/283319; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DROST YC, 1992, PHYSIOL ENTOMOL, V17, P230, DOI 10.1111/j.1365-3032.1992.tb01015.x; FLANDERS S. E., 1956, INSECTES SOCIAUX, V3, P325, DOI 10.1007/BF02224314; GODFRAY HCJ, 1991, PHILOS T ROY SOC B, V332, P67, DOI 10.1098/rstb.1991.0034; HOHMANN C L, 1989, Anais da Sociedade Entomologica do Brasil, V18, P61; HOUSEWEART MW, 1982, CAN ENTOMOL, V114, P657, DOI 10.4039/Ent114657-8; HOUSEWEART MW, 1983, CAN ENTOMOL, V115, P1245, DOI 10.4039/Ent1151245-10; HOUSEWEART MW, 1984, COOPERATIVE FORESTRY, V5; Kirkwood T.B.L., 1981, P165; KOPELMAN AH, 1992, ANN ENTOMOL SOC AM, V85, P195, DOI 10.1093/aesa/85.2.195; Luckinbill LS, 1987, EVOL ECOL, V1, P37, DOI 10.1007/BF02067267; MACKAUER M, 1982, CAN ENTOMOL, V114, P721, DOI 10.4039/Ent114721-8; MANGEL M, 1989, AM NAT, V133, P688, DOI 10.1086/284945; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; ORR DB, 1990, ANN ENTOMOL SOC AM, V83, P902, DOI 10.1093/aesa/83.5.902; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROITBERG BD, 1989, EVOL ECOL, V3, P183, DOI 10.1007/BF02270920; SANDERS CJ, 1985, P CANUSA SPRUCE BUDW; SMITH SM, 1986, ENTOMOL EXP APPL, V42, P249, DOI 10.1111/j.1570-7458.1986.tb01030.x; SMITH SM, 1990, MEM ENTOMOL SOC CAN, V153, P1; SOKAL R., 1981, BIOMETRY; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANBALEN JH, 1987, ARDEA, V75, P1; Waage J.K., 1985, P449; 1990, SAS STAT USERS GUIDE 38 53 66 1 8 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0307-6946 ECOL ENTOMOL Ecol. Entomol. NOV 1993 18 4 279 286 10.1111/j.1365-2311.1993.tb01102.x 8 Entomology Entomology MJ229 WOS:A1993MJ22900001 2019-02-26 J PERRIN, N; SIBLY, RM; NICHOLS, NK PERRIN, N; SIBLY, RM; NICHOLS, NK OPTIMAL-GROWTH STRATEGIES WHEN MORTALITY AND PRODUCTION-RATES ARE SIZE-DEPENDENT EVOLUTIONARY ECOLOGY English Article OPTIMAL GROWTH STRATEGY; OPTIMAL ENERGY ALLOCATION; LIFE-HISTORY THEORY; INDETERMINATE GROWTH Pontryagin's maximum principle from optimal control theory is used to find the optimal allocation of energy between growth and reproduction when lifespan may be finite and the trade-off between growth and reproduction is linear. Analyses of the optimal allocation problem to date have generally yielded 'bang-bang' solutions, i.e. determinate growth: life-histories in which growth is followed by reproduction, with no intermediate phase of simultaneous reproduction and growth. Here we show that an intermediate strategy (indeterminate growth) can be selected for if the rates of production and mortality either both increase or both decrease with increasing body size, this arises as a singular solution to the problem. Our conclusion is that indeterminate growth is optimal in more cases than was previously realized. The relevance of our results to natural situations is discussed. UNIV READING,DEPT PURE & APPL ZOOL,READING RG6 2AJ,BERKS,ENGLAND Sibly, Richard/0000-0001-6828-3543 0 37 37 2 8 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. NOV 1993 7 6 576 592 10.1007/BF01237822 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity MK423 WOS:A1993MK42300003 2019-02-26 J BATES, WR BATES, WR EVOLUTIONARY MODIFICATIONS OF MORPHOGENETIC MECHANISMS AND ALTERNATE LIFE-HISTORY STRATEGIES IN ASCIDIANS MICROSCOPY RESEARCH AND TECHNIQUE English Article MOLGULA-PACIFICA; MOLGULA-PROVISIONALIS; URODELE; ANURAL MOLGULA-PACIFICA HUNTSMAN; MAJOR DEVELOPMENTAL TRANSITION; EARLY XENOPUS-EMBRYOS; ANURAL DEVELOPMENT; OOPLASMIC SEGREGATION; INTERSPECIFIC HYBRIDIZATION; MARINE-INVERTEBRATES; CYTOSKELETAL PROTEIN; AXIS FORMATION; EGGS Comparative embryological studies using anural and urodele ascidians provide an experimental system to study interactions between developmental and evolutionary mechanisms that produce alternate life history strategies. In this paper, cellular features of anural morphogenesis in Molgula pacifica are compared to morphogenesis in species that develop tailed (urodele) larvae and other anural molgulid species. The results of these studies are discussed with regard to possible mechanisms responsible for the evolution of anural morphogenesis and the ecological consequences of anural development. Early developmental processes including ooplasmic segregation, cleavage patterns, and the site and timing of gastrulation were similar in M. pacifica compared to urodele embryos and embryos produced by other anural species. The limited extent of invagination caused by large, yolky cells that restricted vegetal pole cell movements in M. pacifica gastrulae contrasted with the extensive movements of vegetal pole cells that accompanied invagination in M. provisionalis embryos and the embryos of four urodele species. The modified mode of gastrulation exhibited by M. pacifica embryos is likely due to the relatively high yolk content of their eggs. The developmental fates of muscle and epidermal progenitor cells in M. pacifica embryos were altered compared to urodele embryos. Ultrastructural studies and acetylcholinesterase histochemistry experiments indicate that muscle progenitor cells have lost their potential to develop muscle cell features. This loss in myogenic potential suggests that muscle progenitor cells were re-programmed to die. However, this possibility was not supported by the results of ultrastructural studies. A second possibility is discussed in that muscle progenitor cells may have been re-specified to differentiate into adult cells after metamorphosis. Evidence is presented suggesting that the timing mechanism responsible for controlling the onset of metamorphosis, first evident by the outgrowth of epidermal ampullae, was modified in M. pacifica. This paper concludes with a discussion of how anural morphogenesis altered the ancestoral urodele life cycle and the possible ecological benefits of these evolutionary alterations. (C) 1993 Wiley-Liss, Inc. BATES, WR (reprint author), CARLETON UNIV,DEPT BIOL,OTTAWA K1S 5B6,ONTARIO,CANADA. BATES WR, 1987, DEV BIOL, V124, P65, DOI 10.1016/0012-1606(87)90460-X; BATES WR, 1991, DEV GROWTH DIFFER, V33, P401; BATES WR, 1988, DEV BIOL, V130, P98, DOI 10.1016/0012-1606(88)90417-4; BATES WR, 1991, ROUX ARCH DEV BIOL, V200, P193, DOI 10.1007/BF00361337; BATES WR, 1991, CAN J ZOOL, V69, P618, DOI 10.1139/z91-092; BERRILL N. J., 1929, PHIL TRANS ROY SOC LONDON B, V218, P37; Berrill N.J., 1975, P241; Berrill NJ, 1935, PHILOS T ROY SOC B, V225, P255, DOI 10.1098/rstb.1935.0013; Berrill NJ, 1931, PHILOS T R SOC LON B, V219, P281, DOI 10.1098/rstb.1931.0006; BURKE RD, 1983, CAN J ZOOL, V61, P1701, DOI 10.1139/z83-221; Cloney R.A., 1978, P255; CLONEY RA, 1982, AM ZOOL, V22, P817; Conklin E. G., 1905, J ACAD NATL SCI PHIL, V13, P1, DOI DOI 10.5962/BHL.TITLE.4801; de Beer G., 1940, EMBRYOS ANCESTORS; DECK JD, 1966, J MORPHOL, V120, P267, DOI 10.1002/jmor.1051200304; FREEMAN G, 1987, ROUX ARCH DEV BIOL, V196, P30, DOI 10.1007/BF00376020; Freeman G. L., 1982, EVOL DEV, P155; Garstang W., 1922, Journal of the Linnean Society Zoology, V35, P81; Grave C, 1921, J MORPHOL, V36, P71, DOI 10.1002/jmor.1050360103; Grave C, 1944, J MORPHOL, V75, P173, DOI 10.1002/jmor.1050750202; GRAVE C, 1935, CARNEGIE I WASHINGTO, V452, P209; GROSBERG RK, 1986, NATURE, V322, P456, DOI 10.1038/322456a0; GROSBERG RK, 1981, NATURE, V290, P700, DOI 10.1038/290700a0; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; Huntsman A. G., 1912, Toronto Transactions of the Canadian Institute, V9; Jeffery W.R., 1990, Seminars in Developmental Biology, V1, P253; JEFFERY WR, 1990, DEV BIOL, V140, P388, DOI 10.1016/0012-1606(90)90088-Z; JEFFERY WR, 1992, BIOESSAYS, V14, P219, DOI 10.1002/bies.950140404; JEFFERY WR, 1984, BIOL BULL-US, V166, P277, DOI 10.2307/1541217; JEFFERY WR, 1983, DEV BIOL, V96, P125, DOI 10.1016/0012-1606(83)90317-2; JEFFERY WR, 1990, DEV BIOL, V141, P141, DOI 10.1016/0012-1606(90)90109-V; JEFFERY WR, 1991, DEV BIOL, V145, P328, DOI 10.1016/0012-1606(91)90131-L; JOHANNESSON K, 1988, MAR BIOL, V99, P507, DOI 10.1007/BF00392558; JOHNSON LV, 1981, J CELL BIOL, V88, P526, DOI 10.1083/jcb.88.3.526; KARNOVSKY MJ, 1964, J HISTOCHEM CYTOCHEM, V12, P219, DOI 10.1177/12.3.219; KATZ MJ, 1983, BIOL BULL-US, V164, P1, DOI 10.2307/1541186; Kowalevsky A, 1866, MEMOIRES ACAD IMPERI, V7, P1; Kozloff E. N., 1983, SEASHORE LIFE NO PAC; LACAZEDUTHIERS FJH, 1974, ARCH ZOOL EXP GEN, V3, P119; MARTEL A, 1991, J EXP MAR BIOL ECOL, V150, P131, DOI 10.1016/0022-0981(91)90111-9; McKinney ML, 1991, HETEROCHRONY EVOLUTI; MILLAR RH, 1971, ADV MAR BIOL, V9, P1, DOI 10.1016/S0065-2881(08)60341-7; MILNEEDWARDS H, 1842, MEM ACAD SCI PARIS, V18, P217; MITAMIYAZAWA I, 1987, DEVELOPMENT, V99, P155; MUKAI H, 1983, BIOL BULL, V164, P251, DOI 10.2307/1541143; NEWBERRY AT, 1965, ANN SOC ROY ZOOL BEL, V95, P57; NEWPORT J, 1982, CELL, V30, P675, DOI 10.1016/0092-8674(82)90272-0; NEWPORT J, 1982, CELL, V30, P687, DOI 10.1016/0092-8674(82)90273-2; O-FOIGHIL D, 1989, Marine Biology (Berlin), V103, P349, DOI 10.1007/BF00397269; Oka A., 1892, Zeitschrift fuer Wissenschaftliche Zoologie Bd, V54, P521; OKA H, 1957, BIOL BULL, V112, P225, DOI 10.2307/1539200; PEARSE JS, 1979, REPRODUCTION MARINE, V5, P27; PIZON A, 1991, B SOC PHILMATH, V3, P183; PONDER W F, 1971, Records of the Dominion Museum (Wellington), V7, P119; RAFF RA, 1983, EMBRYOS GENES EVOLUT, P1; Rose SM, 1939, BIOL BULL-US, V77, P216, DOI 10.2307/1537924; Satoh N., 1990, International Review of Cytology, V122, P221, DOI 10.1016/S0074-7696(08)61209-7; SAVIGNY M, 1916, MEMOIRS ANIMAUX VERT, V2, P1; SCOFIELD VL, 1982, NATURE, V295, P499, DOI 10.1038/295499a0; SIMPSON RD, 1977, MAR BIOL, V44, P125, DOI 10.1007/BF00386953; STRATHMANN RR, 1990, AM ZOOL, V30, P197; Svane I., 1989, Oceanography and Marine Biology an Annual Review, V27, P45; SWALLA BJ, 1991, DEVELOPMENT, V111, P425; SWALLA BJ, 1992, DEV GROWTH DIFFER, V34, P17; SWALLA BJ, 1990, DEV BIOL, V142, P319, DOI 10.1016/0012-1606(90)90353-K; THORSON G, 1964, SER PLANKTON, V4, P1; Torrence S.A., 1988, P151; TORRENCE SA, 1981, CELL TISSUE RES, V216, P293; VENUTI J M, 1989, International Journal of Developmental Biology, V33, P197; WARDROP AB, 1970, PROTOPLASMA, V70, P73, DOI 10.1007/BF01276843; WATANABE H, 1976, J MORPHOL, V148, P161, DOI 10.1002/jmor.1051480203; WHITTAKER JR, 1979, BIOL BULL-US, V156, P393, DOI 10.2307/1540926; WHITTAKER JR, 1973, P NATL ACAD SCI USA, V70, P2096, DOI 10.1073/pnas.70.7.2096; Whittaker JR, 1979, DETERMINANTS SPATIAL, P29; WOODIN SA, 1991, AM ZOOL, V31, P797; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D; YOUNG CM, 1988, BIOL BULL, V174, P39, DOI 10.2307/1541757 77 11 11 1 4 WILEY-LISS NEW YORK DIV JOHN WILEY & SONS INC 605 THIRD AVE, NEW YORK, NY 10158-0012 1059-910X MICROSC RES TECHNIQ Microsc. Res. Tech. NOV 1 1993 26 4 285 300 10.1002/jemt.1070260404 16 Anatomy & Morphology; Biology; Microscopy Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics; Microscopy MD253 WOS:A1993MD25300003 8305721 2019-02-26 J KOOISTRA, WHCF; OLSEN, JL; STAM, WT; VANDENHOEK, C KOOISTRA, WHCF; OLSEN, JL; STAM, WT; VANDENHOEK, C PROBLEMS RELATING TO SPECIES SAMPLING IN PHYLOGENETIC STUDIES - AN EXAMPLE OF NON-MONOPHYLY IN CLADOPHOROPSIS AND STRUVEA (SIPHONOCLADALES, CHLOROPHYTA) PHYCOLOGIA English Article RIBOSOMAL DNA; NUCLEAR; SEQUENCES; TAXONOMY Nucleotide sequences from the nuclear rDNA internal transcribed spacers (ITS1 and ITS2) and seven morphological characters were compared among 10 isolates of siphoncladalean algae representing six species in Boodlea, Chamaedoris, Cladophoropsis and Struvea. Parsimony analysis of both datasets revealed that Struvea is not monophyletic, Struvea elegans Borgesen being more closely related to Chamaedoris peniculum (Ellis et Solander) Kuntze and Struvea anastomosans (Harvey) Piccone et Grunow being more closely related to Cladophoropsis membranacea (Hofman Bang ex C. Agardh) Borgesen. Parsimony analysis of the ITS data further indicates that Cladophoropsis is not monophyletic and that Cladophoropsis and Boodlea may be paraphyletic. The influences of life history strategies, overlapping gene pools and the possibility of introgression are discussed. Finally, the point is made that although the results help to clarify phylogenetic relationships among species within these genera, they also illustrate the hazard of a priori assumptions about generic monophyly in which a single species (often the most commonly recognized one) is used to represent that genus in a biogeographic and/or phylogenetic study. UNIV GRONINGEN,DEPT GENET,9750 AA HAREN,NETHERLANDS KOOISTRA, WHCF (reprint author), UNIV GRONINGEN,DEPT MARINE BIOL,POB 14,9750 AA HAREN,NETHERLANDS. Olsen, Jeanine/D-3213-2013 Kooistra, Wiebe/0000-0002-8641-9739 BAKKER FT, 1992, J PHYCOL, V28, P839, DOI 10.1111/j.0022-3646.1992.00839.x; Baldwin BG, 1992, MOL PHYLOGENET EVOL, V1, P3, DOI 10.1016/1055-7903(92)90030-K; BODENBENDER S, 1990, Cryptogamic Botany, V1, P340; Borgesen F., 1925, DANSKE VIDENSK SELSK, V3, P1; Borgesen F, 1913, DANSK BOTANISK ARK, V1, P1; BORGESEN F, 1905, OVERSIGT KONGELIGE D, P259; CHAPMAN RL, 1991, CRIT REV PLANT SCI, V10, P343, DOI 10.1080/07352689109382316; Dawson E. Y., 1956, PAC SCI, V10, P25; DEVEREUX J, 1984, NUCLEIC ACIDS RES, V12, P387, DOI 10.1093/nar/12.1Part1.387; DOYLE JJ, 1992, SYST BOT, V17, P144, DOI 10.2307/2419070; EGEROD L, 1975, BOT MAR, V18, P41, DOI 10.1515/botm.1975.18.1.41; EGEROD L, 1974, BOT MAR, V17, P130, DOI 10.1515/botm.1974.17.3.130; EGEROD LOIS EUBANK, 1952, UNIV CALIFORNIA PUBL BOT, V25, P325; GARDES M, 1991, CAN J BOT, V69, P180, DOI 10.1139/b91-026; Humphries C.J., 1986, CLADISTIC BIOGEOGRAP; JORGENSEN RA, 1988, ANN MO BOT GARD, V75, P1238, DOI 10.2307/2399282; KAPRAUN DF, 1988, BOT MAR, V31, P515, DOI 10.1515/botm.1988.31.6.515; KAPRAUN DF, 1993, PHYCOLOGIA, V32, P1, DOI 10.2216/i0031-8884-32-1-1.1; KOOISTRA WHC, UNPUB ATLANTIC POPUL; KOOISTRA WHCF, 1992, J PHYCOL, V28, P660, DOI 10.1111/j.0022-3646.1992.00660.x; KUTZING FT, 1845, PHYCOLOGIA GENERALIS; LEE SB, 1992, MOL BIOL EVOL, V9, P636; MATHIESON AC, 1981, BOT REV, V47, P313, DOI 10.1007/BF02860577; Montagne C., 1842, ANN SCI NAT BOT 2, V18, P241; Murray G., 1889, J LINN SOC LOND, V25, P243; NIZAMUDDIN M, 1964, T AM MICROSCOPIC SOC, V83, P243; OLSENSTOJKOVICH JL, 1986, THESIS U CALIFORNIA; PHILLIPS RB, 1991, J FISH BIOL, V39, P259, DOI 10.1111/j.1095-8649.1991.tb05089.x; RIESEBERG LH, 1992, MOL SYSTEMATICS PLAN, P92; SMOUSE PE, 1991, SYST ZOOL, V40, P393, DOI 10.2307/2992235; Sonder O. W., 1845, BOT ZEITUNG, V3, P49; SWOFFORD DL, 1990, PAUP PHYLOGENETIC AN; VANOPPEN MJH, 1993, MAR BIOL, V115, P381, DOI 10.1007/BF00349835; WANNTORP HE, 1990, OIKOS, V57, P119, DOI 10.2307/3565745; ZECHMAN FW, 1990, J PHYCOL, V26, P700, DOI 10.1111/j.0022-3646.1990.00700.x 35 29 30 0 1 INT PHYCOLOGICAL SOC LAWRENCE NEW BUSINESS OFFICE, PO BOX 1897, LAWRENCE, KS 66044-8897 0031-8884 PHYCOLOGIA Phycologia NOV 1993 32 6 419 428 10.2216/i0031-8884-32-6-419.1 10 Plant Sciences; Marine & Freshwater Biology Plant Sciences; Marine & Freshwater Biology MG606 WOS:A1993MG60600003 2019-02-26 J FRAZER, NB; GREENE, JL; GIBBONS, JW FRAZER, NB; GREENE, JL; GIBBONS, JW TEMPORAL VARIATION IN GROWTH-RATE AND AGE AT MATURITY OF MALE PAINTED TURTLES, CHRYSEMYS-PICTA AMERICAN MIDLAND NATURALIST English Article LIFE-HISTORY TRAITS; PHENOTYPIC PLASTICITY; ORDER TESTUDINES; NESTING ECOLOGY; MUD TURTLE; EVOLUTIONARY; SIZE; DEMOGRAPHY; REPRODUCTION; SURVIVORSHIP Growth rates of juveniles and age at maturity of males were examined in a population of painted turtles, Chrysemys picta, inhabiting a marsh in southwestern Michigan (approximately 42 degrees 24'N, 85 degrees 24'W) to compare temporal variation in these two important life history traits within a decade. Elongation of the third right foreclaw was used as an indicator of incipient sexual maturity of males. Males in the late 1980s reached maturity at least a year earlier than did those in the early 1980s. Analysis of climatological data revealed that growing seasons in the late 1980s were typically warmer and longer than in the early years of the decade. The observed changes in juvenile growth rates and age at maturity of male C. picta are in accord with recent field and laboratory studies of emydid turtles. They also support predictions of life history theory, and may serve as working hypotheses that can be tested with data from other long-term projects. If substantiated, these patterns may indicate how some freshwater turtle populations in temperate latitudes might respond to predicted global warming trends. FRAZER, NB (reprint author), SAVANNAH RIVER ECOL LAB,PO DRAWER E,AIKEN,SC 29802, USA. BERRY JF, 1980, OECOLOGIA, V44, P185, DOI 10.1007/BF00572678; Bury R.B., 1979, P571; CAGLE FR, 1948, COPEIA, P108; CASWELL H, 1983, AM ZOOL, V23, P35; CHRISTENS E, 1986, CAN J ZOOL, V64, P914, DOI 10.1139/z86-138; Congdon J.D., 1990, P45; CONGDON JD, 1989, PHYSIOL ZOOL, V62, P356, DOI 10.1086/physzool.62.2.30156175; CONGDON JD, 1983, HERPETOLOGICA, V39, P417; CONGDON JD, 1987, HERPETOLOGICA, V43, P39; Dunham A.E., 1990, P135; ECKERT KL, 1987, HERPETOLOGICA, V43, P315; ERNST C H, 1989, Bulletin of the Maryland Herpetological Society, V25, P135; ERNST C H, 1971, Herpetologica, V27, P135; Frazer N.B., 1990, P183; FRAZER NB, 1991, ECOLOGY, V72, P2218, DOI 10.2307/1941572; FRAZER NB, 1991, AM MIDL NAT, V125, P245, DOI 10.2307/2426229; Gibbons J.W., 1990, P124; Gibbons J.W., 1990, P311; Gibbons J.W., 1990, P19; GIBBONS JW, 1968, COPEIA, P260; GIBBONS JW, 1981, AM NAT, V117, P841, DOI 10.1086/283774; GIBBONS JW, 1978, EVOLUTION, V32, P297, DOI 10.1111/j.1558-5646.1978.tb00645.x; GIBBONS JW, 1968, ECOLOGY, V49, P399, DOI 10.2307/1934106; GIBBONS JW, 1969, ECOLOGY, V50, P340, DOI 10.2307/1934863; GIBBONS JW, 1967, THESIS MICHIGAN STAT; GIBBONS JW, 1990, HERPETOL MONOGR, V4, P6; IVERSON JB, 1991, HERPETOLOGICA, V47, P373; IVERSON JB, 1991, CAN J ZOOL, V69, P385, DOI 10.1139/z91-060; LEWONTIN RC, 1965, GENETICS COLONIZING, P79; Mitchell J. C., 1988, HERPETOL MONOGR, V2, P40; MITCHELL JC, 1985, HERPETOLOGICA, V41, P45; PARMENTER RR, 1980, COPEIA, P503, DOI 10.2307/1444528; PARMENTER RR, 1981, COMP BIOCHEM PHYS A, V70, P235, DOI 10.1016/0300-9629(81)91451-1; Plummer M.V., 1979, P45; SCHWARZKOPF L, 1986, CAN J ZOOL, V64, P1148, DOI 10.1139/z86-173; Sexton O.J, 1965, COPEIA, P314; SEXTON OJ, 1959, ECOLOGY, V40, P716, DOI 10.2307/1929825; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; THORNHILL GM, 1982, J HERPETOL, V16, P347, DOI 10.2307/1563564; Wilbur H.M., 1988, Biology of Reptilia, V16, P387; WILBUR HM, 1975, ECOLOGY, V56, P64, DOI 10.2307/1935300; Williams GC, 1966, ADAPTATION NATURAL S; ZWEIFEL RG, 1989, AM MUS NOVIT, P1; 1987, CLIMATOLOGICAL DATA, V102; 1984, CLIMATOLOGICAL DATA, V99; 1981, CLIMATOLOGICAL DATA, V96; 1983, CLIMATOLOGICAL DATA, V98; 1982, CLIMATOLOGICAL DATA, V97; 1986, CLIMATOLOGICAL DATA, V101; 1988, CLIMATOLOGICAL DATA, V103; 1980, CLIMATOLOGICAL DATA, V95; 1985, CLIMATOLOGICAL DATA, V100 52 33 33 1 15 AMER MIDLAND NATURALIST NOTRE DAME UNIV NOTRE DAME, BOX 369, ROOM 295 GLSC, NOTRE DAME, IN 46556 0003-0031 AM MIDL NAT Am. Midl. Nat. OCT 1993 130 2 314 324 10.2307/2426130 11 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology ME264 WOS:A1993ME26400009 2019-02-26 J MCHUGH, D MCHUGH, D A COMPARATIVE-STUDY OF REPRODUCTION AND DEVELOPMENT IN THE POLYCHAETE FAMILY TEREBELLIDAE BIOLOGICAL BULLETIN English Article LIFE-HISTORY TRAITS; EUPOLYMNIA-NEBULOSA MONTAGU; LANICE-CONCHILEGA ANNELIDA; MARINE-INVERTEBRATES; LARVAL DEVELOPMENT; ADULT SIZE; 1ST DATA; PATTERNS; COVARIATION; EVOLUTION The reproduction and development of four species of terebellid polychaetes from the west coast of North America were studied and compared with several other terebellid species to reveal the covariation of life history traits in the group, and assess any limitations on terebellid life history evolution that may be imposed by ancestry or body design. The four species in the present study span the range of reproductive and developmental modes known for the family Terebellidae. Eupolymnia crescentis and Neoamphitrite robusta are both free spawners that reproduce during discrete 3-month breeding periods. In E. crescentis, oogenesis takes from 5 to 8 months and spawning occurs from July to September, maximum oocyte diameter is 210 mum, and fecundity reaches approximately 128,500 during a single breeding period. The E. crescentis larva develops near the bottom for about 7 days before settling as a five-setiger juvenile. Neoamphitrite robusta reproduces from April to July after a 12-month oogenic cycle; oocytes in this species measure up to 180 mum, and fecundity reaches approximately 830,000. The two brooders in the study, Ramex californiensis and Thelepus crispus, brood their larvae in the maternal tube. T. crispus reproduces continuously for at least 6 months, and has up to 51,500 larvae in a single brood. The oocytes in this species (400 mum) give rise to larvae that are brooded to the one-setiger stage and then emerge to undergo a one-day planktonic period before the larvae settle and become juveniles at eight setigers. Ramex californiensis reproduces continuously year round; larvae are brooded in cocoons that are laid sequentially in the tube, with up to 44 larvae in a single cocoon. Development from the 4 1 0 mum oocytes is direct, and juveniles have 11 setigers. Unlike E. crescentis and N. robusta, in which oogenesis is synchronized within individuals to produce a peak of large oocytes during the discrete spawning period, R. californiensis and T. crispus females have a wide range of oocyte sizes throughout the year. Correlation analysis and analysis of variance of reproductive and developmental traits of these and several other terebellid species revealed some expected trends. For example, egg size varies according to the mode of reproduction (free spawning, extratubular brooding, or intratubular brooding), and is also correlated with juvenile size. However, egg size does not predict fecundity in terebellids when body size is held constant, and brooding is not restricted to small-bodied species. Indeed, the largest and smallest species in the study brood their larvae intratubularly, suggesting that allometric constraints may not be important in determining mode of reproduction in these polychaetes. The Terebellidae is a diverse family found in all marine habitats, yet all known terebellid larvae are non-feeding; this contrasts with the occurrence of both planktotrophy and lecithotrophy in other polychaete families, and leads to the proposal that larval development in terebellids has been constrained during the evolution of the lineage. The results of this study demonstrate that generalizations regarding complex relationships among life history traits are often inappropriate. The need for more comparative studies of marine invertebrate reproduction and development, and the integration of phylogenetic analyses into the study of life history evolution in marine invertebrates is highlighted. UNIV CALIF SANTA CRUZ,DEPT BIOL,SANTA CRUZ,CA 95064; UNIV CALIF SANTA CRUZ,INST MARINE SCI,SANTA CRUZ,CA 95064 BARNES H, 1965, J ANIM ECOL, V34, P391, DOI 10.2307/2656; BHAUD M, 1990, OCEANIS S D, V16, P181; Bhaud M., 1982, Oceanis, V8, P57; BHAUD M, 1987, CR ACAD SCI III-VIE, V304, P119; BHAUD M, 1988, ZOOL SCR, V17, P347, DOI 10.1111/j.1463-6409.1988.tb00111.x; BHAUD M, 1988, OPHELIA, V29, P141, DOI 10.1080/00785326.1988.10430825; BHAUD MR, 1991, B MAR SCI, V48, P420; BLAKE JA, 1991, B MAR SCI, V48, P448; BUROKER NE, 1985, J EXP MAR BIOL ECOL, V90, P233, DOI 10.1016/0022-0981(85)90169-8; Chia F.S., 1974, Thalassia Jugosl, V10, P121; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; DALES R. PHILLIPS, 1961, PHYSIOL ZOOL, V34, P306; Day J. H, 1967, MONOGRAPH POLYCHAETA; DOYLE RW, 1981, J EXP MAR BIOL ECOL, V52, P147, DOI 10.1016/0022-0981(81)90033-2; Duchene J.C., 1991, OPHELIA S, V5, P313; DUCHENE JC, 1979, ANN I OCEANOGR PARIS, V55, P145; DUCHENE JC, 1980, ANN I OCEANOGR PARIS, V56, P109; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; ECKELBARGER KJ, 1976, MAR BIOL, V36, P169, DOI 10.1007/BF00388440; ECKELBARGER KJ, 1975, MAR BIOL, V30, P353, DOI 10.1007/BF00390640; ECKELBARGER KJ, 1974, MAR BIOL, V27, P101; Emlet R.B., 1987, Echinoderm Studies, V2, P55; FAUCHALD K, 1983, Proceedings of the Biological Society of Washington, V96, P160; GITTLEMAN JL, 1986, AM NAT, V127, P744, DOI 10.1086/284523; GRANT A, 1990, FUNCT ECOL, V4, P128; GREMARE A, 1986, J EXP MAR BIOL ECOL, V96, P287, DOI 10.1016/0022-0981(86)90208-X; GREMARE A, 1986, INT J INVER REP DEV, V9, P1; Hannan C. A., 1977, STUDY DEV STANDARD P; Hart M. W., 1992, American Zoologist, V32, p114A; Hartman O., 1969, ATLAS SEDENTARIATE P; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Heimler W., 1981, Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, V106, P12; HESS HC, 1993, AM NAT, V141, P577, DOI 10.1086/285492; HINES AH, 1982, MAR BIOL, V69, P309, DOI 10.1007/BF00397496; HINES AH, 1986, B MAR SCI, V39, P506; Jagersten G., 1972, EVOLUTION METAZOAN L; JAMIESON BGM, 1989, BIOL REV, V64, P93, DOI 10.1111/j.1469-185X.1989.tb00673.x; KABAT AR, 1985, J EXP MAR BIOL ECOL, V91, P271, DOI 10.1016/0022-0981(85)90181-9; KNIGHTJONES P, 1984, J MAR BIOL ASSOC UK, V64, P809; MARINESCU VP, 1964, ANN REV ROUM BIOL Z, V9, P87; MCCLARY DJ, 1989, MAR BIOL, V103, P531, DOI 10.1007/BF00399585; MCEDWARD LR, 1991, J EXP MAR BIOL ECOL, V147, P95, DOI 10.1016/0022-0981(91)90039-Y; MCEUEN FS, 1983, MAR BIOL, V76, P301, DOI 10.1007/BF00393033; MEAD AD, 1897, J MORPHOL, V3, P227; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; MILES DB, 1992, AM NAT, V139, P848, DOI 10.1086/285361; NYHOLM KG, 1951, ZOOL BIDR UPPS, V29, P79; Olive P.J.W., 1984, Advances in Invertebrate Reproduction, V3, P399; OLIVE PJW, 1984, FORTS ZOOL, V29, P17; Olive PJW., 1985, ORIGINS RELATIONSHIP, P42; PEARSE JS, 1979, REPRODUCTION MARINE, V5, P27; PECHENIK JA, 1979, AM NAT, V114, P859, DOI 10.1086/283533; PENNINGTON JT, 1984, BIOL BULL, V167, P168, DOI 10.2307/1541345; Roughgarden J., 1989, P270; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sastry A.N., 1979, P113; SCHROEDER PC, 1975, REPRODUCTION MARINE, V3, P1; Scott JW, 1909, BIOL BULL-US, V17, P327, DOI 10.2307/1536055; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; SMITH RI, 1989, INVERTEBR REPROD DEV, V15, P7, DOI 10.1080/07924259.1989.9672015; SMITH RI, 1989, B MAR SCI, V45, P406; SOKAL R., 1981, BIOMETRY; SPIGHT TM, 1974, MAR BIOL, V24, P229, DOI 10.1007/BF00391898; Stearns S.C., 1984, Advances in Invertebrate Reproduction, V3, P387; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; Strathmann MF, 1987, REPRODUCTION DEV MAR; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; STRATHMANN RR, 1978, EVOLUTION, V32, P894, DOI 10.1111/j.1558-5646.1978.tb04642.x; STRATHMANN RR, 1984, J EXP MAR BIOL ECOL, V84, P85, DOI 10.1016/0022-0981(84)90232-6; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; STRATHMANN RR, 1986, B MAR SCI, V39, P616; STRATHMANN RR, 1984, AM NAT, V123, P796, DOI 10.1086/284240; STRATHMANN RR, 1977, AM NAT, V108, P29; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TRENDALL JT, 1982, AM NAT, V119, P774, DOI 10.1086/283954; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; WILSON DOUGLAS P., 1928, JOUR MARINE BIOL ASSOC UNIT KINGDOM, V15, P129; WILSON WH, 1991, B MAR SCI, V48, P500 79 33 33 1 15 MARINE BIOLOGICAL LABORATORY WOODS HOLE BIOLOGICAL BULL MBL STREET, WOODS HOLE, MA 02543 0006-3185 BIOL BULL Biol. Bull. OCT 1993 185 2 153 167 10.2307/1541996 15 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology MG765 WOS:A1993MG76500002 27768421 2019-02-26 J SPITZE, K SPITZE, K POPULATION-STRUCTURE IN DAPHNIA-OBTUSA - QUANTITATIVE GENETIC AND ALLOZYMIC VARIATION GENETICS English Article LIFE-HISTORY EVOLUTION; PHENOTYPIC EVOLUTION; NATURAL-SELECTION; BODY-SIZE; ANTAGONISTIC PLEIOTROPY; CYCLICAL PARTHENOGEN; UNIFORM SELECTION; PULEX GROUP; CHARACTERS; FREQUENCIES Quantitative genetic analyses for body size and for life history characters within and among populations of Daphnia obtusa reveal substantial genetic variance at both hierarchical levels for all traits measured. Simultaneous allozymic analysis on the same population samples indicate a moderate degree of differentiation: G(ST) = 0.28. No associations between electrophoretic genotype and phenotypic characters were found, providing support for the null hypothesis that the allozymic variants are effectively neutral. Therefore, G(ST) can be used as the null hypothesis that neutral phenotypic evolution within populations led to the observed differentiation for the quantitative traits, which I call Q(ST). The results of this study provide evidence that natural selection has promoted diversification for body size among populations, and has impeded diversification for relative fitness. Analyses of population differentiation for clutch size, age at reproduction, and growth rate indicate that neutral phenotypic evolution cannot be excluded as the cause. SPITZE, K (reprint author), UNIV MIAMI, DEPT BIOL, CORAL GABLES, FL 33124 USA. ALLEGRUCCI G, 1987, BIOL J LINN SOC, V31, P151, DOI 10.1111/j.1095-8312.1987.tb01986.x; Bulmer M. G., 1980, MATH THEORY QUANTITA; CHAKRABORTY R, 1982, GENET RES, V39, P303, DOI 10.1017/S0016672300020978; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COHAN FM, 1984, EVOLUTION, V38, P495, DOI 10.1111/j.1558-5646.1984.tb00315.x; CREASE TJ, 1990, MOL BIOL EVOL, V7, P444; Crow J, 1986, BASIC CONCEPTS POPUL; DODSON SI, 1972, ECOLOGY, V53, P1011, DOI 10.2307/1935414; DODSON SI, 1970, LIMNOL OCEANOGR, V15, P131; Endler JA, 1986, NATURAL SELECTION WI; EWING EP, 1979, AM NAT, V114, P197, DOI 10.1086/283468; Falconer D.S., 1981, INTRO QUANTITATIVE G; FELSENSTEIN J, 1976, ANNU REV GENET, V10, P253, DOI 10.1146/annurev.ge.10.120176.001345; FELSENSTEIN J, 1986, AM NAT, V127, P731, DOI 10.1086/284520; Fisher R. A, 1958, GENETICAL THEORY NAT; HEBERT PD, 1989, AM MIDL NAT, V122, P59, DOI 10.2307/2425683; HEBERT PDN, 1985, BIOL BULL, V169, P143, DOI 10.2307/1541394; INNES DJ, 1989, J HERED, V80, P6, DOI 10.1093/oxfordjournals.jhered.a110791; INNES DJ, 1986, HEREDITY, V57, P345, DOI 10.1038/hdy.1986.134; KARL SA, 1987, AUK, V104, P767; Koehn R.K., 1983, P115; LANDE R, 1992, EVOLUTION, V46, P381, DOI 10.1111/j.1558-5646.1992.tb02046.x; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1975, GENET RES, V26, P221, DOI 10.1017/S0016672300016037; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; Lande R., 1982, P21; LANDE R, 1977, EVOLUTION, V31, P442, DOI 10.1111/j.1558-5646.1977.tb01025.x; LEIBOLD M, 1991, OECOLOGIA, V86, P342, DOI 10.1007/BF00317599; LEWONTIN RC, 1984, AM NAT, V123, P115, DOI 10.1086/284190; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; LYNCH M, 1990, AM NAT, V136, P727, DOI 10.1086/285128; LYNCH M, 1983, AM NAT, V122, P745, DOI 10.1086/284169; LYNCH M, 1986, EVOLUTION, V40, P915, DOI 10.1111/j.1558-5646.1986.tb00561.x; LYNCH M, 1989, EVOLUTION, V43, P1724, DOI 10.1111/j.1558-5646.1989.tb02622.x; LYNCH M, 1986, EVOLUTION, V40, P640, DOI 10.1111/j.1558-5646.1986.tb00515.x; LYNCH M, 1979, LIMNOL OCEANOGR, V24, P253, DOI 10.4319/lo.1979.24.2.0253; LYNCH M, 1983, EXP GERONTOL, V18, P147, DOI 10.1016/0531-5565(83)90008-6; LYNCH M, 1987, GENETICS, V115, P657; LYNCH M, 1984, EVOLUTION, V38, P186, DOI 10.1111/j.1558-5646.1984.tb00271.x; LYNCH M, 1983, EVOLUTION, V37, P358, DOI 10.1111/j.1558-5646.1983.tb05545.x; LYNCH M, 1988, GENET RES, V51, P137, DOI 10.1017/S0016672300024150; Lynch M., 1988, P29; LYNCH M, 1993, ECOLOGICAL GENETICS; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; PROUT T, 1993, GENETICS, V134, P369; RITLAND K, 1984, OECOLOGIA, V63, P243, DOI 10.1007/BF00379884; ROFF DA, 1987, HEREDITY, V58, P103, DOI 10.1038/hdy.1987.15; Roff Derek A., 1992; ROGERS AR, 1983, GENETICS, V105, P985; ROGERS AR, 1986, AM NAT, V127, P729, DOI 10.1086/284519; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1983, AM ZOOL, V23, P15; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; SCHNELL GD, 1978, SYST ZOOL, V27, P34, DOI 10.2307/2412811; SCHWARTZ SS, 1985, LIMNOL OCEANOGR, V30, P189, DOI 10.4319/lo.1985.30.1.0189; SPITZE K, 1985, ECOLOGY, V66, P938, DOI 10.2307/1940556; SPITZE K, 1991, EVOLUTION, V45, P1081, DOI 10.1111/j.1558-5646.1991.tb04376.x; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; TESSIER AJ, 1992, LIMNOL OCEANOGR, V37, P1; TURELLI M, 1984, THEOR POPUL BIOL, V25, P138, DOI 10.1016/0040-5809(84)90017-0; TURNER BJ, 1974, EVOLUTION, V28, P281, DOI 10.1111/j.1558-5646.1974.tb00748.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WRIGHT S, 1951, ANN EUGENIC, V15, P323 67 516 527 2 84 GENETICS SOCIETY AMERICA BETHESDA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA 0016-6731 1943-2631 GENETICS Genetics OCT 1993 135 2 367 374 8 Genetics & Heredity Genetics & Heredity LZ432 WOS:A1993LZ43200012 8244001 2019-02-26 J LAFFERTY, KD LAFFERTY, KD THE MARINE SNAIL, CERITHIDEA-CALIFORNICA, MATURES AT SMALLER SIZES WERE PARASITISM IS HIGH OIKOS English Article LIFE-HISTORY VARIATION; FRESH-WATER SNAIL; BIOMPHALARIA-GLABRATA; PHENOTYPIC PLASTICITY; SCHISTOSOMA-MANSONI; POPULATION; GROWTH; EVOLUTION; GASTROPODA; PREDATOR I investigated life-history and parasitism in the salt marsh snail, Cerithidea californica Latitude and growing conditions were important factors determining maturation size. After accounting for environmental variation, there was a negative association between the maturation size of snails and the prevalence of parasitic castration by larval trematodes. As predicted by life-history theory, this may represent an adaptation against parasitism that is similar to previous observations of life-history adaptations in species subject to predation or disturbance. However, it was unclear whether this adaptation was due to phenotypic plasticity or genetic differences among populations resulting from natural selection so I conducted a reciprocal transplant between sites with high and low prevalence and found source population differences in maturation size. It appears, therefore, that the life-history differences between.these populations are at least partially genetic or may represent an adaptive developmental switch that was initiate prior to the transplant. LAFFERTY, KD (reprint author), UNIV CALIF SANTA BARBARA,DEPT BIOL SCI,SANTA BARBARA,CA 93106, USA. Lafferty, Kevin/B-3888-2009 Lafferty, Kevin/0000-0001-7583-4593 ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; Bagenal T.B., 1978, P75; BARCLAY HJ, 1982, AM NAT, V120, P26, DOI 10.1086/283967; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRIGHT DONALD B., 1960, BULL SOUTHERN CALIFORNIA ACAD SCI, V59, P9; BROWN KM, 1985, EVOLUTION, V39, P387, DOI 10.1111/j.1558-5646.1985.tb05675.x; BROWN KM, 1985, MALACOLOGIA, V26, P191; BROWN KM, 1988, AM MIDL NAT, V120, P289, DOI 10.2307/2426001; CALOW P, 1981, MALACOLOGIA, V21, P5; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; EISENBER.RM, 1966, ECOLOGY, V47, P889, DOI 10.2307/1935637; Endler JA, 1986, NATURAL SELECTION WI; Everitt BS, 1977, ANAL CONTINGENCY TAB; Keymer A.E., 1991, P37; KURIS AM, 1973, EXP PARASITOL, V33, P365, DOI 10.1016/0014-4894(73)90040-4; KURIS AM, 1980, INT J PARASITOL, V10, P303, DOI 10.1016/0020-7519(80)90011-9; KURIS AM, 1974, Q REV BIOL, V49, P129, DOI 10.1086/408018; KURIS AM, 1992, CAN J FISH AQUAT SCI, V49, P327, DOI 10.1139/f92-037; LACK D, 1954, NATURAL REGULATION A; LAFFERTY KD, 1992, AM NAT, V140, P854, DOI 10.1086/285444; LAFFERTY KD, 1991, THESIS U CALIFORNIA; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; MARGOLIS L, 1982, J PARASITOL, V68, P131, DOI 10.2307/3281335; MARTIN W E, 1972, Bulletin Southern California Academy of Sciences, V71, P39; MINCHELLA DJ, 1983, PARASITOLOGY, V86, P335, DOI 10.1017/S0031182000050502; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; MOORE J, 1983, ECOLOGY, V64, P1000, DOI 10.2307/1937807; MUELEMAN EA, 1972, NETHERLANDS J ZOOLOG, V22, P355; PAGE HM, IN PRESS ZOOLOGICAL; PALMER AR, 1983, MAR BIOL, V75, P287, DOI 10.1007/BF00406014; PIANKA ER, 1976, AM ZOOL, V16, P775; RACE MS, 1981, VELIGER, V24, P18; REISE K, 1985, ECOLOGICAL STUDIES, V54; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Richards C.S., 1975, VeIiger, V17, P393; SCHULTZ ET, 1989, EVOLUTION, V43, P1497, DOI 10.1111/j.1558-5646.1989.tb02599.x; SMITHGILL SJ, 1983, AM ZOOL, V23, P47; SOLBRIG OT, 1974, J ECOL, V62, P473, DOI 10.2307/2258993; SOUSA WP, 1983, J EXP MAR BIOL ECOL, V73, P273, DOI 10.1016/0022-0981(83)90051-5; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; THORNHILL JA, 1986, PARASITOLOGY, V93, P443, DOI 10.1017/S0031182000081166; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; WENNER AM, 1972, AM NAT, V106, P321, DOI 10.1086/282774; Williams GC, 1966, ADAPTATION NATURAL S; YAMADA SB, 1989, MAR BIOL, V103, P403, DOI 10.1007/BF00397275 48 106 108 0 27 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos OCT 1993 68 1 3 11 10.2307/3545303 9 Ecology Environmental Sciences & Ecology MB138 WOS:A1993MB13800001 2019-02-26 J MCNAMARA, JM MCNAMARA, JM STATE-DEPENDENT LIFE-HISTORY EQUATIONS ACTA BIOTHEORETICA English Article PHENOTYPIC PLASTICITY; REPRODUCTIVE VALUE; AGE; SELECTION; THEOREM; SIZE Matrix population models provide a natural tool to analyse state-dependent life-history strategies. Reproductive value and the intrinsic rate of natural increase under a strategy, and the optimal life-history strategy can all be easily characterised using projection matrices. The resultant formulae, however, are not directly comparable with the corresponding formulae for age structured populations such as Lotka's equations and Fisher's formula for reproductive value. This is because formulae involving projection matrices lose track of what happens to an individual over its lifetime anti are only concerned with expected numbers of descendants one time step in the future. In contrast the usual age-dependent formulae explicitly followed a single individual through from birth to death. In this paper I show how the state-dependent formulae can be rewritten to be directly comparable with the standard age-structured formulae. Although the formulae are intuitively obvious the decomposition into current and future reproductive success differs from that previously given and is, I suggest, a more natural definition. The derivation of appropriate equations for optimal life-histories relies on results from dynamic programming theory; and is much more general and easier than previous derivations. The value of rewriting projection matrix results in terms of the lifetime of an individual organism is illustrated by an example in which the optimal plastic response to an environment is derived. MCNAMARA, JM (reprint author), UNIV BRISTOL,SCH MATH,UNIV WALK,BRISTOL BS8 1TW,ENGLAND. CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; Caswell H., 1989, MATRIX POPULATION MO; CHARLESWORTH B, 1989, EVOLUTION AGE STRUCT; Fisher R. A, 1958, GENETICAL THEORY NAT; GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KENNEDY DP, 1978, ADV APP PROB, V21, P685; KIRKPATRICK M, 1984, ECOLOGY, V65, P1874, DOI 10.2307/1937785; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; ROSS SM, 1982, INTRO STOCHASTIC DYN; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1983, AM NAT, V21, P418; SIBLY RM, IN PRESS J THEOR BIO; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 17 14 14 0 5 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0001-5342 ACTA BIOTHEOR Acta Biotheor. SEP 1993 41 3 165 174 10.1007/BF00712164 10 Mathematical & Computational Biology Mathematical & Computational Biology ML802 WOS:A1993ML80200002 2019-02-26 J HARD, JJ; BRADSHAW, WE; HOLZAPFEL, CM HARD, JJ; BRADSHAW, WE; HOLZAPFEL, CM THE GENETIC-BASIS OF PHOTOPERIODISM AND ITS EVOLUTIONARY DIVERGENCE AMONG POPULATIONS OF THE PITCHER-PLANT MOSQUITO, WYEOMYIA-SMITHII AMERICAN NATURALIST English Article LIFE-HISTORY EVOLUTION; QUANTITATIVE CHARACTER; DROSOPHILA-SILVESTRIS; HAWAIIAN DROSOPHILA; SELECTION; EPISTASIS; VARIANCE; BOTTLENECK; SPECIATION; NUMBER We measured the additive genetic variance within populations and the composite additive, dominance, and epistatic effects contributing to differentiation of photoperiodic response between two southern (ancestral) and each of four progressively more northern (derived) populations of the pitcher-plant mosquito, Wyeomyia smithii. Critical photoperiod and its additive genetic variance but not its heritability increased with latitude. Directional selection on critical photoperiod during the northward divergence of W. smithii has therefore not eroded the additive genetic variance underlying this trait. Joint scaling tests of crosses between populations showed that epistatic effects, especially additive x additive and dominance x dominance interactions, overwhelm composite additive and dominance effects on critical photoperiod. The presence of substantial epistasis suggests that multiple founder events during the northward divergence of W. smithii may have been responsible for the release of progressively greater additive genetic variance in derived populations, despite directional and stabilizing selection to reduce it. If epistasis makes a similar contribution to the genetic differentiation of populations in other species, then current models of adaptive evolution that consider only additive genetic variation and covariation within populations may be of limited value in predicting how natural populations differentiate in life history. HARD, JJ (reprint author), UNIV OREGON,DEPT BIOL,EUGENE,OR 97403, USA. Aitken A. C., 1934, P ROY SOC EDINB, V55, P42, DOI 10.1017/S0370164600014346; BARKER JFS, 1974, 1ST P WORLD C GEN AP, V1, P373; BARKER JSF, 1979, THEOR POPUL BIOL, V16, P323, DOI 10.1016/0040-5809(79)90021-2; Bradshaw W.E., 1986, P48; Bradshaw W.E., 1990, P47; Bradshaw W.E., 1983, P161; BRADSHAW WE, 1973, ECOLOGY, V54, P1247, DOI 10.2307/1934187; BRADSHAW WE, 1976, NATURE, V262, P384, DOI 10.1038/262384b0; BRADSHAW WE, 1989, AM NAT, V133, P869, DOI 10.1086/284957; BRADSHAW WE, 1977, EVOLUTION, V31, P546, DOI 10.1111/j.1558-5646.1977.tb01044.x; BRYANT EH, 1986, GENETICS, V114, P1191; BRYANT EH, 1986, GENETICS, V114, P1213; CARSON HL, 1989, AM NAT, V134, P668, DOI 10.1086/285004; CARSON HL, 1984, P NATL ACAD SCI-BIOL, V81, P6904, DOI 10.1073/pnas.81.21.6904; Cavalli L. L., 1952, Quantitative inheritance. Papers read at a colloquium held at the Institute of Animal Genetics Edinburgh University under the auspices of the Agricultural Research Council April 4th to 6th, 1950., P135; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHEVERUD JM, 1984, J THEOR BIOL, V110, P155, DOI 10.1016/S0022-5193(84)80050-8; COCKERHAM CC, 1984, GENETICS, V108, P487; COCKERHAM CC, 1986, GENETICS, V114, P659; COCKERHAM CC, 1980, THEOR APPL GENET, V56, P119, DOI 10.1007/BF00265082; COHAN FM, 1989, EVOLUTION, V43, P766, DOI 10.1111/j.1558-5646.1989.tb05175.x; CRADDOCK EM, 1979, EVOLUTION, V33, P137, DOI 10.1111/j.1558-5646.1979.tb04670.x; Danks H. V., 1987, BIOL SURVEY CANADA M, V1; Falconer D.S., 1981, INTRO QUANTITATIVE G; Fisher R. A, 1958, GENETICAL THEORY NAT; FLEISCHER RC, 1991, HEREDITY, V66, P125, DOI 10.1038/hdy.1991.15; GILLESPIE J, 1973, THEOR POPUL BIOL, V4, P193, DOI 10.1016/0040-5809(73)90028-2; GILLESPIE JH, 1989, GENETICS, V121, P124; GIMELFARB A, 1989, GENETICS, V123, P217; GIMELFARB A, 1985, GENET RES, V47, P71; GOODNIGHT CJ, 1988, EVOLUTION, V42, P441, DOI 10.1111/j.1558-5646.1988.tb04151.x; Griffing B., 1960, Australian Journal of Biological Sciences, V13, P307; HAITOVSKY Y, 1973, GRIFFINS STATISTICAL, V33; Haldane J. B. S., 1963, Journal of Genetics, V58, P237, DOI 10.1007/BF02986143; HANNAN MT, 1974, AM SOCIOL REV, V39, P374, DOI 10.2307/2094296; HARD JJ, 1992, GENETICS, V131, P389; HAYMAN B I, 1960, Genetica, V31, P133, DOI 10.1007/BF01984430; HAYMAN B. I., 1958, Heredity, V12, P371, DOI 10.1038/hdy.1958.36; HAYMAN BI, 1960, BIOMETRICS, V16, P369, DOI 10.2307/2527688; Hedrick P. W., 1978, EVOL BIOL, V11, P101; HEDRICK PW, 1986, ANNU REV ECOL SYST, V17, P535; HILL WG, 1982, Z TIERZ ZUCHTUNGSBIO, V99, P161; Istock C.A., 1978, P171; Istock CA, 1987, EVOL ECOL, V1, P348, DOI 10.1007/BF02071558; KEARSEY MJ, 1967, GENETICS, V56, P23; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1980, AM NAT, V116, P463, DOI 10.1086/283642; LANDE R, 1975, GENET RES, V26, P221, DOI 10.1017/S0016672300016037; LANDE R, 1981, GENETICS, V99, P541; LANDE R, 1980, GENETICS, V94, P203; LINTS F, 1982, ADV GENETICS DEV EVO, P423; LOPEZFANJUL C, 1989, EVOLUTION, V43, P1800, DOI 10.1111/j.1558-5646.1989.tb02628.x; LOUNIBOS LP, 1975, CAN J ZOOL, V53, P215, DOI 10.1139/z75-026; LYNCH M, 1991, EVOLUTION, V45, P622, DOI 10.1111/j.1558-5646.1991.tb04333.x; Masaki S., 1983, DIAPAUSE LIFE CYCLE, P1; Mather K, 1982, BIOMETRICAL GENETICS; POWELL JR, 1978, EVOLUTION, V32, P465, DOI 10.1111/j.1558-5646.1978.tb04589.x; PRAIS SJ, 1954, REV INT STATISTICAL, V22, P1; RINGO J, 1985, AM NAT, V126, P642, DOI 10.1086/284445; ROBERTSON ALAN, 1952, GENETICS, V37, P189; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; Sauer K.P., 1986, P153; SCHEINER SM, 1991, GENETICA, V84, P123, DOI 10.1007/BF00116552; SCHWAEGERLE KE, 1979, EVOLUTION, V33, P1210, DOI 10.1111/j.1558-5646.1979.tb04774.x; SENE FM, 1977, GENETICS, V86, P187; SLATKIN M, 1976, AM NAT, V110, P31, DOI 10.1086/283047; Tauber MJ, 1986, SEASONAL ADAPTATIONS; Taylor F., 1986, P66; TURELLI M, 1984, THEOR POPUL BIOL, V25, P138, DOI 10.1016/0040-5809(84)90017-0; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WADE MJ, 1984, EVOLUTION, V38, P1047, DOI 10.1111/j.1558-5646.1984.tb00375.x; Wright S, 1968, EVOLUTION GENETICS P, V1; Wright S, 1977, EVOLUTION GENETICS P; ZENG ZB, 1990, GENETICS, V126, P235; 1969, CLIMATOLOGICAL DATA 75 51 51 0 15 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. SEP 1993 142 3 457 473 10.1086/285549 17 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology LY873 WOS:A1993LY87300004 19425986 2019-02-26 J HOUDE, ED; ZASTROW, CE HOUDE, ED; ZASTROW, CE ECOSYSTEM-SPECIFIC AND TAXON-SPECIFIC DYNAMIC AND ENERGETICS PROPERTIES OF LARVAL FISH ASSEMBLAGES BULLETIN OF MARINE SCIENCE English Review EARLY LIFE-HISTORY; HERRING CLUPEA-HARENGUS; HADDOCK MELANOGRAMMUS-AEGLEFINUS; LANCE AMMODYTES-AMERICANUS; COD GADUS-MORHUA; FLOUNDER PSEUDOPLEURONECTES-AMERICANUS; ROTIFER BRACHIONUS-PLICATILIS; THERAGRA-CHALCOGRAMMA PALLAS; LABORATORY-REARED LARVAE; ANCHOVY ANCHOA-MITCHILLI Growth rates, mortality rates, and energetics properties of teleost larvae differ among species and among ecosystems. In this synthesis, the ingestion rates required to support mean growth of larvae were estimated and energy budgets were developed. Weight-specific growth coefficients (G), instantaneous mortality rates (Z), larval stage durations (D), gross growth efficiencies (K-1), and weight-specific oxygen uptake (QO(2)) were obtained from published sources and categorized by marine and freshwater species. Rates and properties were subcategorized by marine ecosystems and by taxonomic group. The strong temperature dependencies of rates and properties for larvae were adjusted by analysis of covariance to allow mean values to be compared among ecosystems and taxa. After adjustment, relatively few significant differences were detected, indicating that, with important exceptions, teleost larvae have characteristic and predictable attributes. Marine fish larvae have higher Z, longer D and higher QO(2) than freshwater larvae, probably because marine larvae weigh less at hatch (47 mu g versus 339 mu g). Larvae of coral reef fishes had lower temperature-adjusted ($) over bar G than larvae from other marine ecosystems. Values of K-1 (mean = 0.301) differed little among ecosystems or taxonomic groups and were not related to temperature. Energy budgets, which integrate the effects of rates and propel-ties, differed appreciably among ecosystems and taxa. Ingestion, metabolism, and assimilation were higher for marine than for freshwater larvae. Mean temperature-adjusted ingestion rates usually were 40 to 65% of body weight, although values as high as 97% (Scombroidei) were estimated. Larvae from cool ecosystems (10 degrees C) required two to four times less ingested energy on a daily basis than larvae from warm systems (28 degrees C) to grow at their respective mean rates. Assimilation efficiencies declined as temperature increased. Temperature-adjusted mean assimilation efficiencies (($) over bar A) were 0.65 for marine and 0.56 for freshwater teleost larvae; ($) over bar A ranged from 0.54 (shelf) to 0.75 (upwelling) for marine ecosystems, and from 0.47 (Salmoniformes) to 0.82 (Gadiformes) across taxonomic groups. Rates and relationships reported here, while not intended to predict species-specific responses, do provide information on deviations by individual species from predicted rates and can identify specific adaptations and life-history strategies. Results of the analyses will be useful to categorize, compare, and model ichthyoplankton assemblages in pelagic communities. HOUDE, ED (reprint author), UNIV MARYLAND,CHESAPEAKE BIOL LAB,CTR ENVIRONM & ESTUARINE STUDIES,POB 38,SOLOMONS,MD 20688, USA. Houde, Edward/D-8498-2012 ALMATAR SM, 1984, MAR BIOL, V80, P117, DOI 10.1007/BF02180178; ANDERSON JT, 1984, CAN J FISH AQUAT SCI, V41, P1106, DOI 10.1139/f84-130; BAILEY KM, 1986, J EXP MAR BIOL ECOL, V99, P233, DOI 10.1016/0022-0981(86)90225-X; BAILEY KM, 1982, FISH B-NOAA, V80, P589; BAILEY RS, 1974, LIFE HIST BIOL BLU 1, P1; BALBONTIN F, 1977, Revista de Biologia Marina, V16, P171; Bannister RCA, 1974, EARLY LIFE HIST FISH, P21; BARAHONAFERNAND.MH, 1977, ACTES C CNEXO, V4, P69; BARAHONAFERNANDES MH, 1979, AQUACULTURE, V17, P311, DOI 10.1016/0044-8486(79)90086-3; BARAHONAFERNANDES MH, 1978, AQUACULTURE, V14, P67, DOI 10.1016/0044-8486(78)90141-2; BECK AD, 1980, PROG FISH CULT, V42, P138, DOI 10.1577/1548-8659(1980)42[138:EODOSA]2.0.CO;2; BERGEN R, 1985, 1985 INT COUNC EXPL, V6; BEYER JE, 1989, DANA-J FISH MAR RES, V7, P45; BLAXTER JHS, 1969, J MAR BIOL ASSOC UK, V49, P557, DOI 10.1017/S0025315400037140; BORGMANN U, 1985, ENVIRON BIOL FISH, V14, P269, DOI 10.1007/BF00002631; BRAMWELL M, 1977, RAND MCNALLY ATLAS O; Brett J. R., 1979, FISH PHYSIOL, P280, DOI DOI 10.1016/S1546-5098(08)60029-1; BROOKE LT, 1980, PROG FISH CULT, V42, P3, DOI 10.1577/1548-8659(1980)42[3:DASOEO]2.0.CO;2; BROTHERS EB, 1983, MAR BIOL, V76, P319, DOI 10.1007/BF00393035; BROTHERS EB, 1983, P INT WORKSH AG DET, P49; BROWNELL CL, 1987, S AFR J MARINE SCI, V5, P503, DOI 10.2989/025776187784522586; BRYANT PL, 1980, AQUACULTURE, V21, P203, DOI 10.1016/0044-8486(80)90131-3; BUCKLEY LJ, 1984, MAR ECOL PROG SER, V15, P91, DOI 10.3354/meps015091; BUCKLEY LJ, 1982, J EXP MAR BIOL ECOL, V59, P243, DOI 10.1016/0022-0981(82)90119-8; BUCKLEY LJ, 1982, MAR ECOL PROG SER, V8, P181, DOI 10.3354/meps008181; BUCKLEY LJ, 1979, J FISH RES BOARD CAN, V36, P1497, DOI 10.1139/f79-217; BUCKLEY LJ, 1987, CAN J FISH AQUAT SCI, V44, P14, DOI 10.1139/f87-003; BUCKLEY LJ, 1987, AM FISH SOC S, V2, P82; Butler J.L., 1985, California Cooperative Oceanic Fisheries Investigations Reports, V26, P113; CADA GF, 1980, T AM FISH SOC, V109, P479, DOI 10.1577/1548-8659(1980)109<479:NMROFD>2.0.CO;2; CETTA CM, 1982, MAR BIOL, V71, P327, DOI 10.1007/BF00397049; CHARLON N, 1984, AQUACULTURE, V41, P1, DOI 10.1016/0044-8486(84)90384-3; CHAVANCE P, 1984, T AM FISH SOC, V113, P166, DOI 10.1577/1548-8659(1984)113<166:ELHAAB>2.0.CO;2; CHECKLEY DM, 1984, MAR ECOL PROG SER, V18, P215, DOI 10.3354/meps018215; CHESNEY EJ, 1986, CM1986M26 INT COUN E; CHITTY N, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P320; CLADY MD, 1976, J FISH RES BOARD CAN, V33, P1887, DOI 10.1139/f76-241; CLARKE M, 1984, THESIS U CALIFORNIA; Comyns B. H., 1991, LARV FISH RECR RES A, P17; COMYNS BH, 1989, T AM FISH SOC, V118, P159, DOI 10.1577/1548-8659(1989)118<0159:AAGORD>2.3.CO;2; CONAND F, 1977, CAH ORSTOM OCEANOGR, V15, P201; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONOVER DO, 1990, T AM FISH SOC, V119, P4165; COWEN RK, 1991, MAR ECOL PROG SER, V69, P9, DOI 10.3354/meps069009; CRECCO V, 1983, CAN J FISH AQUAT SCI, V40, P1719, DOI 10.1139/f83-199; DABROWSKI K, 1984, AQUACULTURE, V41, P333, DOI 10.1016/0044-8486(84)90201-1; Dabrowski K., 1975, Wiadomosci Ekol, V21, P277; DABROWSKI K, 1984, J FISH BIOL, V24, P721, DOI 10.1111/j.1095-8649.1984.tb04843.x; DABROWSKI K R, 1976, Environmental Biology of Fishes, V1, P87, DOI 10.1007/BF00761732; DABROWSKI KR, 1986, FISH PHYSIOL BIOCHEM, V1, P125, DOI 10.1007/BF02290254; DABROWSKI KR, 1985, AQUACULTURE, V48, P123, DOI 10.1016/0044-8486(85)90099-7; DAVENPORT J, 1980, J FISH BIOL, V16, P249, DOI 10.1111/j.1095-8649.1980.tb03702.x; de Mendiola B.R., 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P565; De Silva C.D., 1973, Netherlands J Sea Res, V7, P345, DOI 10.1016/0077-7579(73)90057-4; DESILVA CD, 1986, J FISH BIOL, V29, P276; DEVRIES DA, 1990, ENVIRON BIOL FISH, V29, P135, DOI 10.1007/BF00005030; DEY WP, 1981, T AM FISH SOC, V110, P151, DOI 10.1577/1548-8659(1981)110<151:MAGOYS>2.0.CO;2; Divanach P, 1985, THESIS U SCI TECHNIQ; DROUIN MA, 1986, AQUACULTURE, V59, P107, DOI 10.1016/0044-8486(86)90124-9; DURAY M, 1984, AQUACULTURE, V41, P325, DOI 10.1016/0044-8486(84)90200-X; ELDRIDGE MB, 1977, T AM FISH SOC, V106, P452, DOI 10.1577/1548-8659(1977)106<452:EOPHCH>2.0.CO;2; ELDRIDGE MB, 1982, FISH B-NOAA, V80, P461; ELDRIDGE MB, 1981, T AM FISH SOC, V110, P111, DOI 10.1577/1548-8659(1981)110<111:EOFAFF>2.0.CO;2; ERLICH KF, 1976, MAR BIOL, V35, P105; FRANKLIN DONALD R., 1963, TRANS AMER FISH SOC, V92, P91, DOI 10.1577/1548-8659(1963)92[91:ELHOTN]2.0.CO;2; FREEBERG MH, 1990, T AM FISH SOC, V119, P92, DOI 10.1577/1548-8659(1990)119<0092:EOEALS>2.3.CO;2; FUCHS J, 1982, AQUACULTURE, V26, P321, DOI 10.1016/0044-8486(82)90167-3; FUKAHARA O, 1988, J APPL ICHTHY, V4, P158; FUKAHARA O, 1983, J FISH BIOL, V23, P641; FUKUSHO K, 1984, B JPN SOC SCI FISH, V50, P1439; FUSHIMI T, 1977, B HIROSHIMA FISH EXP, V8, P1; GALAT DL, 1975, T AM FISH SOC, V104, P338, DOI 10.1577/1548-8659(1975)104<338:POFOIT>2.0.CO;2; Gamble J.C., 1984, Flodevigen Rapportserie, V1, P123; GAMBLE JC, 1985, MAR ECOL PROG SER, V26, P19, DOI 10.3354/meps026019; GATESOUP FJ, 1991, AQUACULTURE, V22, P149; GATESOUPE FJ, 1982, AQUACULTURE, V27, P121, DOI 10.1016/0044-8486(82)90131-4; GATESOUPE FJ, 1982, AQUACULTURE, V26, P359, DOI 10.1016/0044-8486(82)90169-7; GIRIN M, 1979, 39 C NAT EXPL OC RAP; GIRIN M, 1975, CM1975G14 INT COUN E; GIRIN M, 1975, 10TH EUR S MAR BIOL, V2, P171; GRAHAM JJ, 1985, T AM FISH SOC, V114, P490, DOI 10.1577/1548-8659(1985)114<490:MGATOL>2.0.CO;2; HAMAI I, 1974, Bulletin of the Faculty of Fisheries Hokkaido University, V25, P20; HARDING D, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P261; Harding D., 1978, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V172, P102; HART TF, 1987, ENVIRON BIOL FISH, V18, P41, DOI 10.1007/BF00002326; HAYASHI A, 1989, NIPPON SUISAN GAKK, V55, P997; Herrera G., 1985, BIOL PESQUERA, V14, P11; HEWITT R, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P229; Hewitt R.P., 1982, California Cooperative Oceanic Fisheries Investigations Reports, V23, P226; HEWITT RP, 1985, MAR ECOL PROG SER, V26, P1, DOI 10.3354/meps026001; HIYASHI S, 1966, CALIFORNIA COOP FISH, V11, P44; HOKANSON KE, 1973, T AM FISH SOC, V102, P89, DOI 10.1577/1548-8659(1973)102<89:TRFEAL>2.0.CO;2; HOKANSON KEF, 1986, PROG FISH CULT, V48, P250, DOI 10.1577/1548-8640(1986)48<250:EODOGA>2.0.CO;2; HOLLIDAY FG, 1964, J MAR BIOL ASSOC UK, V44, P711, DOI 10.1017/S0025315400027880; HOUDE E D, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P441; HOUDE ED, 1969, COMMER FISH REV, V31, P32; HOUDE ED, 1977, FISH B-NOAA, V75, P493; HOUDE ED, 1975, J FISH BIOL, V7, P115, DOI 10.1111/j.1095-8649.1975.tb04581.x; HOUDE ED, 1977, FISH B-NOAA, V75, P613; HOUDE ED, 1989, FISH B-NOAA, V87, P471; HOUDE ED, 1977, FISH B-NOAA, V75, P61; HOUDE ED, 1989, J FISH BIOL, V35, P29, DOI 10.1111/j.1095-8649.1989.tb03043.x; HOUDE ED, 1983, MAR BIOL, V72, P283, DOI 10.1007/BF00396834; HOUDE ED, 1986, FISH B-NOAA, V84, P905; HOUDE ED, 1977, MAR BIOL, V43, P333, DOI 10.1007/BF00396927; HOUDE ED, 1978, B MAR SCI, V28, P395; HOUDE ED, IN PRESS KUWAIT B MA; HOUDE ED, 1990, CM1990L3 INT COUN EX; HOUDE ED, 1987, AM FISH SOC S, V2, P17; HOVENKAMP F, 1989, P REUN CONS PERM INT, V191, P248; Hunter J.R., 1981, P33; HUNTER JR, 1980, FISH B-NOAA, V78, P811; HUNTER JR, 1976, FISH B-NOAA, V74, P81; HUSSAIN N, 1981, AQUACULTURE, V22, P125, DOI 10.1016/0044-8486(81)90139-3; Inoue M., 1974, Journal Fac Mar Sci Technol Tokai Univ, VNo. 8, P27; JENKINS GP, 1990, MAR ECOL PROG SER, V63, P93, DOI 10.3354/meps063093; JITARIU P, 1971, Studii si Cercetari de Biologie Seria Zoologie, V23, P213; Jones A., 1974, P731; JONES R, 1973, RAPP REUN CONS INT E, V107, P10; KAMLER E, 1974, Polskie Archiwum Hydrobiologii, V21, P481; KAMLER E, 1990, ENVIRON BIOL FISH, V29, P303, DOI 10.1007/BF00001187; KAMLER E, 1972, POLSKIE ARCH HYDROBI, V23, P431; KARAKIRI M, 1989, RAP PROCES, V191, P376; KAUSHIK SJ, 1983, REPROD NUTR DEV, V23, P223, DOI 10.1051/rnd:19830207; KENDALL A W JR, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P337; KENDALL AW, 1987, FISH B-NOAA, V85, P499; KIM S, 1989, T AM FISH SOC, V118, P264, DOI 10.1577/1548-8659(1989)118<0264:CDOWPI>2.3.CO;2; KIORBOE T, 1986, ENVIRON BIOL FISH, V17, P133, DOI 10.1007/BF00001743; KIORBOE T, 1987, MAR ECOL PROG SER, V40, P1, DOI 10.3354/meps040001; KITAJIMA C, 1980, B JPN SOC SCI FISH, V46, P43; KOLMAN R, 1986, AQUACULTURE, V51, P207, DOI 10.1016/0044-8486(86)90311-X; KONCHIN VV, 1981, J ICHTHYOLOGY, V21, P122; KONDO K, 1972, IPFC P, V15, P195; KORWIN-KOSSAKOWSKI M, 1981, Roczniki Nauk Rolniczych Seria H Rybactwo, V99, P49; KRAMER ROBERT H., 1960, TRANS AMER FISH SOC, V89, P222, DOI 10.1577/1548-8659(1960)89[222:FGOTLB]2.0.CO;2; KUDRINSKAYA O I, 1969, Hydrobiological Journal, V5, P68; KUDRINSKAYA OM, 1970, J ICHTHYOL, V10, P779; KUHLMANN D, 1981, AQUACULTURE, V23, P183, DOI 10.1016/0044-8486(81)90013-2; Kuronuma K., 1984, REARING MARINE FISH; KUZNETSOV VA, 1973, J ICHTHY, V12, P433; LASKER REUBEN, 1962, JOUR CONSEIL PERM INTERNATL EXPLOR MER, V27, P25; LAURENCE G C, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P304; LAURENCE GC, 1974, J FISH RES BOARD CAN, V31, P1415, DOI 10.1139/f74-170; LAURENCE GC, 1975, MAR BIOL, V32, P223, DOI 10.1007/BF00399202; LAURENCE GC, 1978, MAR BIOL, V50, P1, DOI 10.1007/BF00390536; LAURENCE GC, 1969, T AM FISH SOC, V98, P398, DOI 10.1577/1548-8659(1969)98[398:TEEOLB]2.0.CO;2; LAURENCE GC, 1977, FISH B-NOAA, V75, P529; LEAK JC, 1987, MAR ECOL PROG SER, V37, P109, DOI 10.3354/meps037109; LEE WY, 1984, T AM FISH SOC, V113, P243, DOI 10.1577/1548-8659(1984)113<243:GORDLI>2.0.CO;2; LENARZ W H, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P270; LI S, 1982, T AM FISH SOC, V111, P710, DOI 10.1577/1548-8659(1982)111<710:COHMAC>2.0.CO;2; LIAO IC, 1979, AQUACULTURE, V18, P75, DOI 10.1016/0044-8486(79)90021-8; LOUGH R G, 1985, Journal of Northwest Atlantic Fishery Science, V6, P21; LUCZYNSKI M, 1985, AQUACULTURE, V50, P13, DOI 10.1016/0044-8486(85)90148-6; MACKENZIE BR, 1990, MAR ECOL PROG SER, V67, P209, DOI 10.3354/meps067209; MARGULIES D, 1986, THESIS U MARYLAND MA; MAY RC, 1971, FISH BULL NATL OC AT, V69, P411; MCCORMICK JH, 1971, J FISH RES BOARD CAN, V28, P924, DOI 10.1139/f71-134; MCFARLAND WN, 1985, FISH B-NOAA, V83, P413; MCGURK MD, 1984, MAR BIOL, V84, P13, DOI 10.1007/BF00394522; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; MCGURK MD, 1987, MAR ECOL PROG SER, V39, P201, DOI 10.3354/meps039201; MCGURK MD, 1989, MAR ECOL PROG SER, V51, P1, DOI 10.3354/meps051001; MCMULLEN DM, 1985, ESTUARIES, V8, P39, DOI 10.2307/1352120; METHOT RD, 1979, FISH B-NOAA, V77, P413; MILLER DANIEL J., 1952, CALIFORNIA FISH AND GAME, V38, P587; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; MOKSNESS E, 1982, Fiskeridirektoratets Skrifter Serie Havundersokelser, V17, P267; MONTELEONE DM, 1986, MAR ECOL PROG SER, V30, P133, DOI 10.3354/meps030133; Mori K., 1971, B FAR SEAS FISH RES, V5, P219; MORSE WW, 1989, FISH B-NOAA, V87, P417; NAKAI ZINZIRO, 1962, BUU TOKAI REG FISH RES LAB, V9, P23; NISHIMURA A, 1984, J EXP MAR BIOL ECOL, V82, P191, DOI 10.1016/0022-0981(84)90104-7; Noble R L, 1968, THESIS CORNELL U ITH; Oiestad V., 1985, N ATLANTIC FISHERIES, V8, P25; OIKAWA S, 1991, J FISH BIOL, V38, P483, DOI 10.1111/j.1095-8649.1991.tb03136.x; Palomares M. L. D., 1987, ICLARM STUDIES REV, V15, P117; PALOMERA I, 1989, J FISH BIOL, V35, P133; PALOMERA I, 1988, MAR BIOL, V99, P283, DOI 10.1007/BF00391991; PANOV DA, 1969, PROB ICHTHY, V9, P101; PAULSEN H, 1985, CM1985F33 INT COUN E; PEARCY WILLIAM G., 1962, BULL BINGHAM OCEANOGR COLL, V18, P16; PEARCY WILLIAM G., 1962, BULL BINGHAM OCEANOGR COLL, V18, P39; PEEBLES EB, 1988, B MAR SCI, V42, P397; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; PERSONLERUYET J, 1981, J WORLD MARICULT SOC, V12, P143; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; POST JR, 1990, CAN J FISH AQUAT SCI, V47, P554, DOI 10.1139/f90-063; PROKES M, 1973, Zoologicke Listy, V22, P375; QUANTZ G, 1985, CM1985F51 INT COUN E; RAISANEN GR, 1982, PROG FISH CULT, V44, P33, DOI 10.1577/1548-8659(1982)44[33:RLWTFS]2.0.CO;2; RANA KJ, 1985, AQUACULTURE, V46, P119, DOI 10.1016/0044-8486(85)90196-6; REED RK, 1989, CAN J FISH AQUAT SCI, V108, P280; RICE JA, 1985, T AM FISH SOC, V114, P532, DOI 10.1577/1548-8659(1985)114<532:EOAFBC>2.0.CO;2; RICE JA, 1987, CAN J FISH AQUAT SCI, V44, P467, DOI 10.1139/f87-055; RICE JA, 1987, T AM FISH SOC, V116, P703, DOI 10.1577/1548-8659(1987)116<703:EOMRLS>2.0.CO;2; ROBINSON MK, 1973, SIO738 SCRIPPS I OC; ROGERS BA, 1981, T AM FISH SOC, V110, P100, DOI 10.1577/1548-8659(1981)110<100:LSOEOT>2.0.CO;2; ROMBOUGH RJ, 1988, FISH PHYSIOL, V11, P55; SAKSENA VP, 1975, B MAR SCI, V25, P523; SCOFIELD EC, 1934, B CALIF DEP FISH GAM, V41, P1; Sette Oscar Elton, 1943, U S FISH AND WILDL SERV FISH BULL, V50, P149; SMIGIELSKI AS, 1984, MAR ECOL PROG SER, V14, P287, DOI 10.3354/meps014287; SMITH PE, 1985, CAN J FISH AQUAT SCI, V42, P69, DOI 10.1139/f85-263; Solberg T., 1984, Flodevigen Rapportserie, V1, P145; SPOOR WA, 1984, J FISH BIOL, V25, P587, DOI 10.1111/j.1095-8649.1984.tb04905.x; STEPIEN WP, 1976, MAR BIOL, V38, P1, DOI 10.1007/BF00391480; SUNDBY S, 1989, RAP PROCES, V191, P351; SWEDBERG DV, 1970, T AM FISH SOC, V99, P560, DOI 10.1577/1548-8659(1970)99<560:SAELHO>2.0.CO;2; Taggart C.T., 1990, P151; TAGGART CT, 1987, MAR ECOL PROG SER, V41, P219, DOI 10.3354/meps041219; TANDLER A, 1985, AQUACULTURE, V48, P71, DOI 10.1016/0044-8486(85)90053-5; TANIGUCHI A K, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P507; TANIGUCHI AK, 1979, INT COUN EXPLOR SEA, P1; TAYLOR WW, 1984, J FISH BIOL, V25, P733, DOI 10.1111/j.1095-8649.1984.tb04919.x; THEILACKER G, 1980, UNESCO INTERGOVERNME, V28, P105; THEILACKER GH, 1987, FISH B-NOAA, V85, P213; THORROLD SR, 1990, MAR BIOL, V105, P375, DOI 10.1007/BF01316308; THRESHER RE, 1989, MAR ECOL PROG SER, V57, P187, DOI 10.3354/meps057187; TISA MS, 1991, T AM FISH SOC, V120, P157, DOI 10.1577/1548-8659(1991)120<0157:COAAGS>2.3.CO;2; TOETZ DALE W., 1966, INVEST INDIANA LAKES STREAMS, V7, P115; TREASURER JW, 1988, ENVIRON BIOL FISH, V21, P37, DOI 10.1007/BF02984441; TUNCER H, 1988, THESIS U MARYLAND MA; UCHIDA RN, 1981, NOAA NMFS436 TECH RE; UEYANAGI S, 1974, B FAR SEAS FISH RES, V10, P179; UOTANI I, 1985, B JPN SOC SCI FISH, V51, P1057; VANDERMEEREN T, 1991, AQUACULTURE, V93, P35, DOI 10.1016/0044-8486(91)90203-J; VICTOR BC, 1987, MAR BIOL, V95, P145, DOI 10.1007/BF00447496; VICTOR BC, 1986, MAR BIOL, V90, P317, DOI 10.1007/BF00428555; WALLINE P, 1987, J PLANKTON RES, V9, P91, DOI 10.1093/plankt/9.1.91; WALLINE PD, 1985, MAR ECOL PROG SER, V21, P197, DOI 10.3354/meps021197; WARE DM, 1985, CAN J FISH AQUAT SCI, V42, P577, DOI 10.1139/f85-075; WARE DM, 1975, J FISH RES BOARD CAN, V32, P2503, DOI 10.1139/f75-288; WATANABE T, 1970, B TOKAI REG FISH RES, V61, P1; WELLINGTON GM, 1989, MAR BIOL, V101, P557, DOI 10.1007/BF00541659; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WIESER W, 1990, FUNCT ECOL, V4, P233, DOI 10.2307/2389342; Wieser W, 1988, FUNCT ECOL, V2, P499, DOI 10.2307/2389393; WIESER W, 1986, J COMP PHYSIOL B, V156, P791, DOI 10.1007/BF00694252; WIESER W, 1988, CAN J FISH AQUAT SCI, V45, P943, DOI 10.1139/f88-116; Wootton R. J., 1990, ECOLOGY TELEOST FISH; YAMASHITA Y, 1989, FISH B-NOAA, V87, P525; YOUNG JW, 1990, MAR ECOL PROG SER, V61, P17, DOI 10.3354/meps061017 243 152 155 1 27 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 0007-4977 B MAR SCI Bull. Mar. Sci. SEP 1993 53 2 290 335 46 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography MN606 WOS:A1993MN60600002 2019-02-26 J POSTHUMA, L; VANSTRAALEN, NM POSTHUMA, L; VANSTRAALEN, NM HEAVY-METAL ADAPTATION IN TERRESTRIAL INVERTEBRATES - A REVIEW OF OCCURRENCE, GENETICS, PHYSIOLOGY AND ECOLOGICAL CONSEQUENCES COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-PHARMACOLOGY TOXICOLOGY & ENDOCRINOLOGY English Review ONYCHIURUS-ARMATUS COLLEMBOLA; CADMIUM-BINDING-PROTEINS; ISOPOD PORCELLIO-SCABER; SNAIL HELIX-ASPERSA; LIFE-HISTORY TRAITS; ORCHESELLA-CINCTA COLLEMBOLA; DROSOPHILA-MELANOGASTER; LUMBRICUS-RUBELLUS; ARTIFICIAL SELECTION; METALLOTHIONEIN GENE 1. The occurrence of genetic adaptation to heavy metals in natural populations of terrestrial invertebrates is evaluated from literature data. Five criteria for adaptation evidence are applied, with concepts from ecotoxicology, ecology, life-history theory and quantitative genetics. 2. There is strong evidence for the occurrence of adaptation in natural populations of the isopod Porcellio scaber (Isopoda), the springtails Isotoma notabilis, Onychiurus armatus and Orchesella cincta (Collembola), the blowfly Lucilia cuprina and the fruit fly Drosophila melanogaster (Diptera). Adaptation to metal-containing pesticides has been demonstrated in ticks (Acarina). Population divergence indicates acclimation or adaptation in many other species. 3. Metal adaptation has been achieved within a few generations under laboratory conditions in some species; adapted populations occur at field sites that have been polluted for decades, or longer. 4. Genetic variation for tolerance and life-history characteristics, allowing for adaptation, was quantified in a reference population of Orchesella cincta. Tolerance and life-history patterns in exposed field populations matched predictions from genetic variation. 5. Adaptation involves modification and intensification of existing physiological mechanisms for metal assimilation, excretion, immobilization or compartmentalized storage. There are indications of inter-population divergence in metal-binding proteins in a snail. In the fruit fly Drosophila melanogaster metal adaptation is achieved by duplication of the metallothionein gene. 6. An altered life-history is often part of the complex adaptation syndrome. Metal-adapted invertebrates have a shorter life-cycle and a higher reproductive effort. 7. Possible consequences of adaptation, consisting of costs of tolerance determined by genetic correlations, and probably of reduced genetic variation for tolerance and other features, are discussed. Reduced genetic variation is suggested by results for the springtail Orchesella cincta. 8. The distinction between ''costs of tolerance'' on the one hand and linkage disequilibrium or direct selection for altered life-history patterns on the other hand is discussed. 9. Species with high sensitivity (i.e. a low NOEC), that do not have populations maintaining sufficient genetic variation to evolve tolerance or modified life-history characteristics, or that have costly tolerance mechanisms, or both, are most at risk for extinction at sites with increasing metal pollution. 10. Metal adaptation in terrestrial invertebrates appears to be of degree rather than of kind: indications for a specific metal-fauna, equivalent to metal-vegetation, are lacking. FREE UNIV AMSTERDAM,DEPT ECOL & ECOTOXICOL,1081 HV AMSTERDAM,NETHERLANDS POSTHUMA, L (reprint author), NATL INST PUBL HLTH & ENVIRONM PROTECT,ECOTOXICOL LAB,POB 1,3720 BA BILTHOVEN,NETHERLANDS. Posthuma, Leo/0000-0003-0399-5499 Antonovics J., 1971, Advances in Ecological Research, V7, P1, DOI 10.1016/S0065-2504(08)60202-0; AOKI Y, 1984, COMP BIOCHEM PHYS C, V77, P279, DOI 10.1016/0742-8413(84)90013-6; AOKI Y, 1989, COMP BIOCHEM PHYS C, V93, P345, DOI 10.1016/0742-8413(89)90245-4; ASHIDA J, 1965, ANNU REV PHYTOPATHOL, V3, P153, DOI 10.1146/annurev.py.03.090165.001101; BAJRAKTARI I, 1987, Acta Biologiae et Medicinae Experimentalis, V12, P57; BAJRAKTARI I, 1987, Acta Biologiae et Medicinae Experimentalis, V12, P7; BAKER AJM, 1987, NEW PHYTOL, V106, P93; BAKER AJM, 1986, NEW PHYTOL, V102, P575, DOI 10.1111/j.1469-8137.1986.tb00833.x; BAUR B, 1988, J ANIM ECOL, V57, P71, DOI 10.2307/4764; BEEBY A, 1983, ENVIRON POLLUT A, V30, P233, DOI 10.1016/0143-1471(83)90024-7; BEEBY A, 1987, ENVIRON POLLUT, V46, P73, DOI 10.1016/0269-7491(87)90146-1; BEEBY A, 1988, ARCH ENVIRON CON TOX, V17, P507, DOI 10.1007/BF01055516; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BENGTSSON G, 1985, OECOLOGIA, V68, P63, DOI 10.1007/BF00379475; BENGTSSON G, 1985, J APPL ECOL, V22, P967, DOI 10.2307/2403244; BENGTSSON G, 1992, OIKOS, V63, P289, DOI 10.2307/3545390; BENGTSSON G, 1988, CAN J ZOOL, V66, P1518, DOI 10.1139/z88-223; BENGTSSON G, 1983, OIKOS, V40, P216, DOI 10.2307/3544585; BENTON MJ, 1990, J N AM BENTHOL SOC, V9, P271, DOI 10.2307/1467590; BLACKMAN G G, 1975, Journal of the South African Veterinary Association, V46, P337; BOUTRON CF, 1991, NATURE, V353, P153, DOI 10.1038/353153a0; Bradshaw AD, 1990, HEAVY METAL TOLERANC, P323; BRADSHAW AD, 1981, STUDIES BIOL, V130; Brandon R, 1991, ADAPTATION ENV; BROWN BE, 1982, BIOL REV, V57, P621, DOI 10.1111/j.1469-185X.1982.tb00375.x; BULMER MG, 1971, AM NAT, V105, P201, DOI 10.1086/282718; CHAGNON NL, 1989, ENVIRON TOXICOL CHEM, V8, P319, DOI 10.1897/1552-8618(1989)8[319:DSOAGI]2.0.CO;2; CHAGNON NL, 1989, ENVIRON TOXICOL CHEM, V8, P1141; CHAPCO W, 1978, CAN J GENET CYTOL, V20, P555, DOI 10.1139/g78-065; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHRISTIE NT, 1985, BIOCHEM GENET, V23, P571, DOI 10.1007/BF00504291; CHRISTIE NT, 1983, TOXICOLOGY, V26, P295, DOI 10.1016/0300-483X(83)90090-2; CLARK AG, 1990, EVOLUTION, V44, P637, DOI 10.1111/j.1558-5646.1990.tb05944.x; CLARKE GM, 1987, NATURE, V325, P345, DOI 10.1038/325345a0; COOK LM, 1967, HEREDITY, V22, P397, DOI 10.1038/hdy.1967.49; COOK LM, 1965, EVOLUTION, V19, P86, DOI 10.2307/2406297; CORP N, 1991, ENVIRON POLLUT, V74, P39, DOI 10.1016/0269-7491(91)90025-R; COULAUD J, 1992, PLANT SYST EVOL, V179, P175, DOI 10.1007/BF00937595; DALLINGER R, 1988, CELL BIOL TOXICOL, V4, P97, DOI 10.1007/BF00141289; DALLINGER R, 1989, COMP BIOCHEM PHYS C, V92, P355, DOI 10.1016/0742-8413(89)90068-6; DALLINGER R, 1993, ECOTOXICOLOGY METALS, P245; DAVISON AW, 1982, NATURE, V297, P400, DOI 10.1038/297400a0; DERR JA, 1980, EVOLUTION, V34, P548, DOI 10.1111/j.1558-5646.1980.tb04843.x; DESENDER K, 1989, OECOLOGIA, V78, P513, DOI 10.1007/BF00378743; DINGLE H, 1991, AM ZOOL, V31, P253; DINGLE H, 1988, EVOLUTION, V42, P79, DOI 10.1111/j.1558-5646.1988.tb04109.x; DONKER MH, 1990, COMP BIOCHEM PHYS C, V97, P119, DOI 10.1016/0742-8413(90)90181-8; DONKER MH, 1992, FUNCT ECOL, V6, P445, DOI 10.2307/2389282; DONKER MH, 1991, COMP BIOCHEM PHYS C, V100, P143, DOI 10.1016/0742-8413(91)90141-F; DONKER MH, 1993, ECOTOXICOLOGY METALS, P383; DONKER MH, 1992, PHYSL METAL ADAPTATI, P53; DONKER MH, 1993, IN PRESS OECOLOGIA B; DUCRUET JM, 1985, PLANT CELL PHYSIOL, V26, P419, DOI 10.1093/oxfordjournals.pcp.a076925; DUECK TA, 1984, ANGEW BOT, V58, P47; EBERHARDT LL, 1991, ECOL MONOGR, V61, P53, DOI 10.2307/1942999; Endler JA, 1986, NATURAL SELECTION WI; ERNST WHO, 1983, BER DEUT BOT GES, V96, P49; ERNST WHO, 1990, EVOL TREND PLANT, V4, P45; ERNST WHO, 1974, SCHWERMETALLVEGETATI; ERNSTING G, 1993, OIKOS, V66, P17, DOI 10.2307/3545190; Falconer D.S., 1981, INTRO QUANTITATIVE G; FIRKO MJ, 1990, J ECON ENTOMOL, V83, P647, DOI 10.1093/jee/83.3.647; FRATI F, 1992, BIOCHEM SYST ECOL, V20, P297, DOI 10.1016/0305-1978(92)90041-B; Georghiou G.P., 1972, ANNU REV ECOL SYST, V3, P133, DOI DOI 10.1146/ANNUREV.ES.03.110172.001025; GILL HJ, 1989, TOXICOLOGY, V56, P315, DOI 10.1016/0300-483X(89)90094-2; GILLESPIE RB, 1989, ENVIRON TOXICOL CHEM, V8, P309, DOI 10.1897/1552-8618(1989)8[309:EOCOTF]2.0.CO;2; GRAVES JL, 1992, PHYSIOL ZOOL, V65, P268, DOI 10.1086/physzool.65.2.30158253; GREVILLE RW, 1991, ENVIRON POLLUT, V74, P115, DOI 10.1016/0269-7491(91)90108-9; GRUNDY AJ, 1989, HOLARCTIC ECOL, V12, P112; GUTH DJ, 1977, HYDROBIOLOGIA, V55, P225, DOI 10.1007/BF00017554; HAEFELFINGER DR, 1991, THESIS BASEL; HAGVAR S, 1990, ENVIRON ENTOMOL, V19, P1263, DOI 10.1093/ee/19.5.1263; HALLIDAY WR, 1990, J ENTOMOL SCI, V25, P239, DOI 10.18474/0749-8004-25.2.239; HAMER DH, 1986, ANNU REV BIOCHEM, V55, P913, DOI 10.1146/annurev.bi.55.070186.004405; HARINGTON JS, 1959, NATURE, V184, P1739, DOI 10.1038/1841739b0; HEAGLER MG, 1993, ENVIRON TOXICOL CHEM, V12, P385, DOI 10.1897/1552-8618(1993)12[385:AGIMGH]2.0.CO;2; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; HOFFMANN AA, 1991, AM NAT, V138, P668, DOI 10.1086/285241; Hoffmann AA, 1991, EVOLUTIONARY GENETIC; HOLLOWAY GJ, 1990, FUNCT ECOL, V4, P289, DOI 10.2307/2389588; Hopkin S.P., 1989, MICROSC ANAL, V14, P23; Hopkin S. P, 1989, ECOPHYSIOLOGY METALS; HOPKIN SP, 1984, J APPL ECOL, V21, P535, DOI 10.2307/2403427; HOPKIN SP, 1993, OIKOS, V66, P137, DOI 10.2307/3545206; HOPKIN SP, 1982, OECOLOGIA, V54, P227, DOI 10.1007/BF00378396; HOPKIN SP, 1990, J APPL ECOL, V27, P460, DOI 10.2307/2404294; HOPKIN SP, 1984, S ZOOL SOC LOND, V53, P143; HUMBERT W, 1978, CELL TISSUE RES, V187, P397; IRELAND MP, 1977, HISTOCHEMISTRY, V51, P153, DOI 10.1007/BF00567221; IRELAND MP, 1979, ENVIRON POLLUT, V19, P271; JANSSEN GM, 1988, EVOLUTION, V42, P828, DOI 10.1111/j.1558-5646.1988.tb02503.x; JANSSEN MPM, 1991, ARCH ENVIRON CON TOX, V20, P305, DOI 10.1007/BF01064395; JOOSSE ENG, 1981, PEDOBIOLOGIA, V21, P346; JOOSSE ENG, 1983, PEDOBIOLOGIA, V25, P11; JOOSSE ENG, 1983, P INT C HEAVY METALS, P467; JOOSSE ENG, 1981, 3RD P INT C HEAV MET, P425; KEIDING J, 1967, WORLD REV PEST CONTR, V6, P115; Klerks P. L., 1989, ECOTOXICOLOGY PROBLE, P41; KLERKS PL, 1989, BIOL BULL, V176, P135, DOI 10.2307/1541580; KLERKS PL, 1987, ENVIRON POLLUT, V45, P173, DOI 10.1016/0269-7491(87)90057-1; KLERKS PL, 1990, HEAVY METAL ADAPTATI, P314; KOEHN RK, 1978, ECOLOGICAL GENETICS, P51, DOI DOI 10.1007/978-1-4612-6330-2; KOPP RL, 1992, ENVIRON TOXICOL CHEM, V11, P665, DOI 10.1897/1552-8618(1992)11[665:GIOESI]2.0.CO;2; KRAMER VJ, 1992, ENVIRON TOXICOL CHEM, V11, P357, DOI 10.1897/1552-8618(1992)11[357:GAKCMI]2.0.CO;2; Lauverjat S., 1989, Biology of Metals, V2, P97, DOI 10.1007/BF01129208; LEARY RF, 1989, TRENDS ECOL EVOL, V4, P214, DOI 10.1016/0169-5347(89)90077-3; LEFEBVRE C, 1984, J APPL ECOL, V21, P255, DOI 10.2307/2403051; Levitt J., 1980, RESPONSES PLANTS ENV; LOWER WR, 1975, MUTAT RES, V31, P315, DOI 10.1016/0165-1161(75)90112-0; LUPETTI P, 1992, 54TH C UN ZOOL IT PE; Macnair M. R., 1990, Heavy metal tolerance in plants: evolutionary aspects., P235; MACNAIR MR, 1991, GENETICA, V84, P213, DOI 10.1007/BF00127250; MACNAIR MR, 1987, TRENDS ECOL EVOL, V2, P354, DOI 10.1016/0169-5347(87)90135-2; MACNAIR MR, 1983, NEW PHYTOL, V95, P133, DOI 10.1111/j.1469-8137.1983.tb03476.x; MAGNUSSON J, 1986, TERATOGEN CARCIN MUT, V6, P289, DOI 10.1002/tcm.1770060405; MALTBY L, 1991, OIKOS, V61, P11, DOI 10.2307/3545402; MARONI G, 1987, GENETICS, V117, P739; MARONI G, 1986, GENETICS, V112, P493; MARONI G, 1990, HEAVY METAL TOLERANC, P216; MATTHEWSON M D, 1975, Journal of the South African Veterinary Association, V46, P341; MICOD RE, 1979, AM NAT, V113, P531; MIGULA P, 1993, IN PRESS SCI TOT ENV; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; MORGAN AJ, 1990, B ENVIRON CONTAM TOX, V44, P363, DOI 10.1007/BF01701216; MORGAN AJ, 1982, HISTOCHEMISTRY, V75, P269, DOI 10.1007/BF00496017; MORGAN JE, 1989, COMP BIOCHEM PHYS C, V92, P15, DOI 10.1016/0742-8413(89)90195-3; MORGAN JE, 1988, ENVIRON POLLUT, V55, P41, DOI 10.1016/0269-7491(88)90158-3; MORGAN JE, 1990, OECOLOGIA, V84, P559, DOI 10.1007/BF00328174; MUNKITTRICK KR, 1988, ECOTOX ENVIRON SAFE, V15, P7, DOI 10.1016/0147-6513(88)90038-3; NASSAR R, 1979, AUST J BIOL SCI, V32, P127, DOI 10.1071/BI9790127; NEVO E, 1983, ISOZYMES-CURR T BIOL, V10, P69; NICHOLLS MK, 1985, NEW PHYTOL, V101, P207, DOI 10.1111/j.1469-8137.1985.tb02827.x; NOTTROT F, 1987, PEDOBIOLOGIA, V30, P45; NYBERG D, 1986, AM NAT, V127, P615, DOI 10.1086/284509; NYBERG D, 1983, EVOLUTION, V37, P341, DOI 10.1111/j.1558-5646.1983.tb05544.x; OBRIEN SJ, 1985, SCIENCE, V227, P1428, DOI 10.1126/science.2983425; OTTO E, 1986, P NATL ACAD SCI USA, V83, P6025, DOI 10.1073/pnas.83.16.6025; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; POSTHUMA L, 1990, J APPL ECOL, V27, P609, DOI 10.2307/2404306; POSTHUMA L, 1992, ARCH ENVIRON CON TOX, V22, P146, DOI 10.1007/BF00213314; POSTHUMA L, 1993, EVOLUTION, V47, P619, DOI 10.1111/j.1558-5646.1993.tb02116.x; POSTHUMA L, 1993, OIKOS, V67, P235, DOI 10.2307/3545468; POSTHUMA L, IN PRESS ACTA ZOOL F; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; READ HJ, 1987, ENVIRON POLLUT, V48, P61, DOI 10.1016/0269-7491(87)90086-8; ROESIJADI G, 1992, AQUAT TOXICOL, V22, P81, DOI 10.1016/0166-445X(92)90026-J; ROLLO CD, 1991, CAN J ZOOL, V69, P978, DOI 10.1139/z91-142; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1984, EVOLUTION, V38, P516, DOI 10.1111/j.1558-5646.1984.tb00317.x; ROSE MR, 1981, GENETICS, V97, P173; ROSENHEIM JA, 1991, AM NAT, V137, P527, DOI 10.1086/285181; ROUSH RT, 1987, ANNU REV ENTOMOL, V32, P361, DOI 10.1146/annurev.en.32.010187.002045; RUSSELL LK, 1981, B ENVIRON CONTAM TOX, V26, P634, DOI 10.1007/BF01622148; SCHAT H, 1992, HEREDITY, V68, P219, DOI 10.1038/hdy.1992.35; SHAW AJ, 1991, EVOLUTION, V45, P1260, DOI 10.1111/j.1558-5646.1991.tb04391.x; SHAW J, 1988, NEW PHYTOL, V109, P211, DOI 10.1111/j.1469-8137.1988.tb03710.x; SHAW J, 1990, HEAVY METAL TOLERANC, P133; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; SIEPEL H, UNPUB ENV POLLUTION; SIMKISS K, 1991, FUNCT ECOL, V5, P787, DOI 10.2307/2389542; SIMON E, 1975, Bulletin de la Societe Royale de Botanique de Belgique, V108, P273; SIMON E, 1977, NATURE, V265, P328, DOI 10.1038/265328a0; SLUYS R, 1988, Z ZOOL SYST EVOL, V26, P12; Sober E., 1984, NATURE SELECTION; SOUTYGROSSET C, 1988, INT J INVER REP DEV, V14, P131, DOI 10.1080/01688170.1988.10510373; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; STONE H, 1985, COMP BIOCHEM PHYS C, V80, P9, DOI 10.1016/0742-8413(85)90126-4; SULLIVAN JT, 1984, TROPENMED PARASITOL, V35, P189; SUZUKI KT, 1980, ARCH ENVIRON CON TOX, V9, P415, DOI 10.1007/BF01055293; THOMPSON ME, 1958, NATURE, V181, P647, DOI 10.1038/181647a0; TRANVIK L, 1989, OECOLOGIA, V80, P195, DOI 10.1007/BF00380150; TRANVIK L, 1992, SUSTAIN STRESSED ENV; TRANVK L, 1993, IN PRESS J APPL ECOL; TREVORS JT, 1985, FEMS MICROBIOL LETT, V32, P39, DOI 10.1111/j.1574-6968.1985.tb01181.x; TYLER G, 1989, WATER AIR SOIL POLL, V47, P189, DOI 10.1007/BF00279327; VANCAPELLEVEEN HE, 1987, THESIS VRIJE U AMSTE; VANCAPELLEVEEN HE, 1985, P INT C HEAVY METALS; VANSTRAALEN NM, 1987, J APPL ECOL, V24, P953, DOI 10.2307/2403992; VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V17, P190, DOI 10.1016/0147-6513(89)90038-9; VANSTRAALEN NM, 1985, OIKOS, V45, P253, DOI 10.2307/3565712; VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V18, P241, DOI 10.1016/0147-6513(89)90018-3; VANSTRAALEN NM, 1993, IN PRESS 4TH P KFK T; VANSTRAALEN NM, 1986, P INT C ENV CONT AMS, P16; VANSTRAALEN NM, 1993, ECOTOXICOLOGY METALS, P427; VERKLEIJ JAC, 1985, STRUCTURE FUNCTIONIN, V2, P355; WALLACE B, 1982, J HERED, V73, P35, DOI 10.1093/oxfordjournals.jhered.a109572; WAYNE RK, 1986, EVOLUTION, V40, P78, DOI 10.1111/j.1558-5646.1986.tb05719.x; WEIS JS, 1989, BIOSCIENCE, V39, P89, DOI 10.2307/1310907; WHITEHEAD GB, 1961, J INSECT PHYSIOL, V7, P177, DOI 10.1016/0022-1910(61)90070-1; WIESER W, 1961, NATURE, V191, P1020, DOI 10.1038/1911020a0; WIESER W, 1961, Z NATURFORSCH PT B, VB 16, P816; WILLIS JH, 1991, EVOLUTION, V45, P441, DOI 10.1111/j.1558-5646.1991.tb04418.x; WILSON JB, 1988, EVOLUTION, V42, P408, DOI 10.1111/j.1558-5646.1988.tb04146.x; ZIEGLER HV, 1990, BIOCHEM SYST ECOL, V18, P57 196 246 257 4 87 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0742-8413 COMP BIOCHEM PHYS C Comp. Biochem. Physiol. C-Pharmacol. Toxicol. Endocrinol. SEP 1993 106 1 11 38 10.1016/0742-8413(93)90251-F 28 Biochemistry & Molecular Biology; Endocrinology & Metabolism; Toxicology; Zoology Biochemistry & Molecular Biology; Endocrinology & Metabolism; Toxicology; Zoology MA392 WOS:A1993MA39200002 2019-02-26 J SILVERTOWN, J; FRANCO, M; PISANTY, I; MENDOZA, A SILVERTOWN, J; FRANCO, M; PISANTY, I; MENDOZA, A COMPARATIVE PLANT DEMOGRAPHY - RELATIVE IMPORTANCE OF LIFE-CYCLE COMPONENTS TO THE FINITE RATE OF INCREASE IN WOODY AND HERBACEOUS PERENNIALS JOURNAL OF ECOLOGY English Article CLONAL GROWTH; ELASTICITY ANALYSIS; LEFKOVITCH MATRIX; LIFE-HISTORY EVOLUTION; MATRIX ANALYSIS; PROGRESSION; RECRUITMENT; RETROGRESSION; STASIS; TRADE-OFF TRANSITION MATRIX MODELS; ANTHYLLIS-VULNERARIA L; RANUNCULUS-REPENS L; R-BULBOSUS L; POPULATION-DYNAMICS; NEW-ZEALAND; POTENTILLA-ANSERINA; ACRIS L; REPRODUCTION; BIOLOGY 1 Stage projection (Lefkovitch) matrices for 21 species of woody plants and 45 herbaceous perennials were extracted from the plant demographic literature or compiled from published data. 2 Each matrix was divided into six regions representing: 1, recruitment of seeds to the seed pool; 2, recruitment of seedlings or juveniles from current seed production; 3, clonal growth; 4, retrogression, due to plants decreasing in size or reverting in stage; 5, stasis, (survival from one year to the next in the same stage class); 6, progression to later stage classes. 3 Matrix analysis was used to calculate the finite rate of increase lambda for each population and to calculate the elasticities of each transition coefficient in the matrices. Elasticities were summed within each of the six regions of the matrix to give measures (E1 - E6, respectively) of the importance of each component of the life cycle to lambda and fitness. 4 Herbs as a group differed significantly from woody plants in most of these components. Seedling recruitment was more important in herbs than woody plants. Retrogression occurred only in herbs, particularly those with a tuber. Stasis occurred in nearly all species, but was most important in woody plants. Progression was more important than fecundity in almost all species. 5 Trade-offs among life cycle components were determined from correlation matrices of r (= In lambda) and elasticities E1 - E6 for the whole sample and for herbs and woody plants separately. As a whole, r was positively correlated with elasticities for fecundity (E1 + E2) and growth (E3 + E6) and negatively correlated with survival (E4 + E5). In clonal herbs, fecundity and clonal growth were negatively correlated. 6 The division of elasticities into three major components (growth, G = E3 + E6; fecundity, F = E1 + E2; and survival, L = E4 + E5) allowed us to construct triangular plots in G-L-F space. This was done separately for iteroparous forest herbs, iteroparous herbs from open habitats, semelparous herbs and woody plants. Each of these four groups occupied a distinct position in G-L-F space. Within woody plants, shrubs of fire-prone habitats occupied the end of the distribution with the lowest survival elasticity. 7 It is argued that the demographic approach to the classification of distinct ecological groups offers new insights into the relationship between life history and habitat. NATL AUTONOMOUS UNIV MEXICO,CTR ECOL,MEXICO CITY 04510,DF,MEXICO; NATL AUTONOMOUS UNIV MEXICO,FAC CIENCIAS,MEXICO CITY 04510,DF,MEXICO SILVERTOWN, J (reprint author), OPEN UNIV,DEPT BIOL,MILTON KEYNES MK7 6AA,BUCKS,ENGLAND. Franco, Miguel/A-4671-2008 Franco, Miguel/0000-0002-7249-4981; Mendoza Ochoa, Ana/0000-0002-3117-5351 ANGEVINE MW, 1983, J ECOL, V71, P959, DOI 10.2307/2259605; BARKHAM JP, 1980, J ECOL, V68, P607, DOI 10.2307/2259425; BIERZYCHUDEK P, 1982, NEW PHYTOL, V90, P757, DOI 10.1111/j.1469-8137.1982.tb03285.x; BIERZYCHUDEK P, 1982, ECOL MONOGR, V52, P335, DOI 10.2307/2937350; BOORMAN LA, 1986, NEW PHYTOL, V69, P609; BOUTIN C, 1991, J ECOL, V79, P199, DOI 10.2307/2260793; BRADSTOCK RA, 1988, AUST J ECOL, V13, P505, DOI 10.1111/j.1442-9993.1988.tb00999.x; BULLOCK SH, 1980, BIOTROPICA, V12, P247, DOI 10.2307/2387694; BURNS BR, 1985, AUST J ECOL, V10, P125, DOI 10.1111/j.1442-9993.1985.tb00874.x; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; Caswell H., 1986, LECTURES MATH LIFE S, V18, P171; CASWELL H, 1985, POPULATION BIOL EVOL, P187; Caswell H., 1989, MATRIX POPULATION MO; CHAPMAN SB, 1989, J APPL ECOL, V26, P1059, DOI 10.2307/2403712; CHARRON D, 1991, J ECOL, V79, P431, DOI 10.2307/2260724; DEKROON H, 1987, OIKOS, V50, P3, DOI 10.2307/3565395; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; EBERT TA, 1989, VEGETATIO, V85, P33, DOI 10.1007/BF00042253; ENRIGHT N, 1979, AUST J ECOL, V4, P3, DOI 10.1111/j.1442-9993.1979.tb01195.x; ENRIGHT NJ, 1992, NEW ZEAL J BOT, V30, P29, DOI 10.1080/0028825X.1992.10412883; ENRIGHT NJ, 1982, AUST J ECOL, V7, P227, DOI 10.1111/j.1442-9993.1982.tb01502.x; ERIKSSON O, 1988, J ECOL, V76, P522, DOI 10.2307/2260610; ERIKSSON O, 1986, VEGETATIO, V67, P17; Eriksson O., 1990, CLONAL GROWTH PLANTS, P79; FARAH KO, 1988, WEED SCI, V36, P186; FIEDLER PL, 1987, J ECOL, V75, P977, DOI 10.2307/2260308; FONE AL, 1989, J ECOL, V77, P495, DOI 10.2307/2260765; FORBES JC, 1977, WEED RES, V17, P387, DOI 10.1111/j.1365-3180.1977.tb00498.x; FRANCO M, 1990, EVOL TREND PLANT, V4, P74; GOODMAN LA, 1969, BIOMETRICS, V25, P659, DOI 10.2307/2528566; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; GRIME JP, 1988, COMP PLANT ECOLOGY; HARCOMBE PA, 1987, BIOSCIENCE, V37, P557, DOI 10.2307/1310666; Harper J.L., 1977, POPULATION BIOL PLAN; Hartshorn G. S., 1975, Tropical ecological systems., P41; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HEGAZY AK, 1990, J ARID ENVIRON, V19, P269, DOI 10.1016/S0140-1963(18)30791-2; HORVITZ CC, 1986, FRUGIVORES SEED DISP, P170; Hu Y. J., 1988, Acta Ecologica Sinica, V8, P104; HUBBELL SP, 1979, AM NAT, V113, P277, DOI 10.1086/283385; HUENNEKE LF, 1987, ECOLOGY, V68, P1234, DOI 10.2307/1939207; HUTCHINGS MJ, 1986, BIOSCIENCE, V36, P178, DOI 10.2307/1310305; KAWANO S, 1987, DIFFERENTIATION PATT, P153; KAWANO S, 1985, POPULATION STRUCTURE, P515; KINOSHITA E, 1987, PLANT SPEC BIOL, V2, P15; KLEMOW KM, 1985, J ECOL, V73, P147, DOI 10.2307/2259775; LAW R, 1983, ECOLOGY, V64, P224, DOI 10.2307/1937069; LEFEBVRE C, 1984, J APPL ECOL, V21, P255, DOI 10.2307/2403051; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LESLIE PH, 1948, BIOMETRIKA, V35, P213, DOI 10.1093/biomet/35.3-4.213; Leslie PH, 1945, BIOMETRIKA, V33, P183, DOI 10.1093/biomet/33.3.183; MALLIK AU, 1984, J ECOL, V72, P855, DOI 10.2307/2259536; Manly B. F. J., 1991, RANDOMIZATION MONTE; MEAGHER TR, 1982, ECOLOGY, V63, P1701, DOI 10.2307/1940112; MENGES ES, 1990, CONSERV BIOL, V4, P52, DOI 10.1111/j.1523-1739.1990.tb00267.x; MOLONEY KA, 1988, ECOLOGY, V69, P1588, DOI 10.2307/1941656; MOLONEY KA, 1986, OECOLOGIA, V69, P176, DOI 10.1007/BF00377618; Mortimer AM, 1984, PERSPECTIVES PLANT P, P363; NAMKOONG G, 1974, AM NAT, V108, P355, DOI 10.1086/282913; NEWELL SJ, 1981, J ECOL, V69, P997, DOI 10.2307/2259650; PAVLIK BM, 1988, BIOL CONSERV, V46, P217, DOI 10.1016/0006-3207(88)90069-9; PINARD M, 1993, BIOTROPICA, V25, P2, DOI 10.2307/2388974; PINERO D, 1984, J ECOL, V72, P977, DOI 10.2307/2259545; PITELKA LF, 1985, J ECOL, V73, P169, DOI 10.2307/2259776; PLATT WJ, 1988, AM NAT, V131, P491, DOI 10.1086/284803; RUST RW, 1981, AM MIDL NAT, V105, P51, DOI 10.2307/2425009; SARUKHAN J, 1973, J ECOL, V61, P675, DOI 10.2307/2258643; SARUKHAN J, 1974, J ECOL, V62, P151, DOI 10.2307/2258886; SCANDRETT E, 1989, VEGETATIO, V84, P143, DOI 10.1007/BF00036515; SCHAFFER WM, 1977, EVOLUTIONARY ECOLOGY, P261; SILANDER JA, 1983, OECOLOGIA, V60, P227, DOI 10.1007/BF00379524; SILVERTOWN J, 1992, FUNCT ECOL, V6, P130, DOI 10.2307/2389746; Silvertown J, 1987, INTRO PLANT POPULATI; Silvertown J., 1988, PLANT POPULATION ECO, P205; SOHN JJ, 1977, ECOLOGY, V58, P1366, DOI 10.2307/1935088; SOLBRIG OT, 1988, AM NAT, V137, P385; SOMARRIBA E, 1988, AGROFOREST SYST, V6, P3; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STEENBERGH WF, 1977, NATIONAL PARK SERVIC, V8; STERK AA, 1975, ACTA BOT NEERL, V24, P315, DOI 10.1111/j.1438-8677.1975.tb01023.x; STERK AA, 1982, ACTA BOT NEERL, V31, P11, DOI 10.1111/j.1438-8677.1982.tb01590.x; THOMAS AG, 1975, CAN J BOT, V53, P3022, DOI 10.1139/b75-331; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; TURKINGTON R, 1983, J ECOL, V71, P999, DOI 10.2307/2259607; VANBAALEN J, 1982, OECOLOGIA, V53, P61, DOI 10.1007/BF00377137; VANBAALEN J, 1983, OECOLOGIA, V58, P84, DOI 10.1007/BF00384546; VANGROENENDAEL JM, 1988, J ECOL, V76, P585, DOI 10.2307/2260614; VANGROENENDAEL JM, 1990, CLONAL GROWTH PLANTS; VENABLE DL, 1985, AM NAT, V126, P577, DOI 10.1086/284440; VERKAAR HJ, 1984, NEW PHYTOL, V98, P659, DOI 10.1111/j.1469-8137.1984.tb04155.x; WAITE S, 1991, POPULATION ECOLOGY OF TERRESTRIAL ORCHIDS, P161; WAITE S, 1984, J ECOL, V72, P809, DOI 10.2307/2259533; WIDEN B, 1987, NORD J BOT, V7, P687, DOI 10.1111/j.1756-1051.1987.tb02037.x; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913; ZHANG L., 1983, ACTA PHYTOGEOGRAPHIC, V73, P1 96 538 550 3 173 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0022-0477 J ECOL J. Ecol. SEP 1993 81 3 465 476 10.2307/2261525 12 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology LW843 WOS:A1993LW84300008 2019-02-26 J FORBES, MRL FORBES, MRL PARASITISM AND HOST REPRODUCTIVE EFFORT OIKOS English Article LIFE-HISTORY EVOLUTION; LARVAL WATER MITES; PEA APHIDS; SELECTION; BEHAVIOR; COSTS; AGE; COENAGRIONIDAE; SUSCEPTIBILITY; ECTOPARASITES Adaptive changes in reproductive effort (RE) of parasitized hosts may account for both inverse and positive relationships between host reproductive output and incidence or degree of parasitism. This hypothesis can be made more general (adaptive changes in patterns of allocation to reproductive functions), but has been largely ignored in the fields of behavioral and evolutionary ecology. In fact, definitive examples of such adaptive responses are lacking. Yet theory on life-history trade-offs predicts that hosts may minimize the impact of parasites by altering their own RE. Such alterations may occur with or without induction of defenses against parasites. Several empirical approaches exist for studying adaptive changes in host RE; all of these approaches require a firm understanding of the natural history of the parasite-host association under study. Tests of adaptive changes in host RE (and patterns of allocation) should provide a better understanding of parasite-host interactions and coevolution as well as insights into the evolution of adaptive phenotypic plasticity. FORBES, MRL (reprint author), UNIV TORONTO,ERINDALE COLL,DEPT ZOOL,MISSISSAUGA L5L 1C6,ONTARIO,CANADA. Forbes, Mark/B-3575-2013 ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; ANDERSON RM, 1981, PHILOS T R SOC LON B, V291, P46; APPLEGATE JE, 1970, J PARASITOL, V56, P439, DOI 10.2307/3277599; Begon M, 1986, ECOLOGY INDIVIDUALS; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BETHEL WM, 1977, CAN J ZOOL, V55, P110, DOI 10.1139/z77-013; BOONSTRA R, 1980, CAN J ZOOL, V58, P1683, DOI 10.1139/z80-230; BOUDOIN M, 1975, EVOLUTION, V29, P335; BURDON JJ, 1987, OECOLOGIA, V73, P257, DOI 10.1007/BF00377516; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COLEMAN RM, 1985, BEHAV ECOL SOCIOBIOL, V18, P59; COLLINS NC, 1980, ECOLOGY, V6, P650; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DOBSON AP, 1988, Q REV BIOL, V63, P139, DOI 10.1086/415837; EBEL J, 1988, TRENDS BIOCHEM SCI, V13, P23, DOI 10.1016/0968-0004(88)90014-X; EDWARDS JC, 1987, ANIM BEHAV, V35, P533, DOI 10.1016/S0003-3472(87)80278-6; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; FORBES MRL, 1990, OIKOS, V58, P61, DOI 10.2307/3565361; FORBES MRL, 1991, OIKOS, V60, P336, DOI 10.2307/3545076; FORBES MRL, 1991, OECOLOGIA, V86, P335, DOI 10.1007/BF00317598; HAMILTON WD, 1980, OIKOS, V35, P282, DOI 10.2307/3544435; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; HOWARD RD, 1990, OIKOS, V58, P120, DOI 10.2307/3565368; Hudson P. J., 1985, Ecology and genetics of host-parasite interactions. International symposium, Keele University, 12-13 July 1984, P77; LANCIANI CA, 1983, U CALIFORNIA AGR EXP, V3304, P86; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LOZANO GA, 1991, OIKOS, V60, P391, DOI 10.2307/3545084; MARGOLIS L, 1982, J PARASITOL, V68, P131, DOI 10.2307/3281335; MCALLISTER MK, 1990, ANIM BEHAV, V40, P167, DOI 10.1016/S0003-3472(05)80676-1; MCALLISTER MK, 1987, NATURE, V328, P797, DOI 10.1038/328797b0; Milinski M., 1990, P95; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PIANKA ER, 1976, AM ZOOL, V16, P775; PIANKA ER, 1988, EVOLUTIONARY ECOLOGY; PRICE DJ, 1985, J FISH BIOL, V26, P509, DOI 10.1111/j.1095-8649.1985.tb04291.x; Price PW, 1980, EVOLUTIONARY BIOL PA; PUGESEK BH, 1981, SCIENCE, V212, P822, DOI 10.1126/science.212.4496.822; RATCLIFFE NA, 1989, DEV COMP IMMUNOL, V13, P273, DOI 10.1016/0145-305X(89)90038-4; RAU ME, 1983, PARASITOLOGY, V86, P319, DOI 10.1017/S0031182000050484; Read A.F., 1990, P117; READ AF, 1988, TRENDS ECOL EVOL, V3, P97, DOI 10.1016/0169-5347(88)90115-2; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHALL JJ, 1983, LIZARD ECOLOGY STUDI; SIMMONS LW, 1987, J ANIM ECOL, V56, P1015, DOI 10.2307/4963; SMITH BP, 1988, ANNU REV ENTOMOL, V33, P487, DOI 10.1146/annurev.en.33.010188.002415; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TOFT CA, 1990, TRENDS ECOL EVOL, V5, P326, DOI 10.1016/0169-5347(90)90179-H; WAKELIN D, 1987, MAMMAL REV, V17, P135, DOI 10.1111/j.1365-2907.1987.tb00059.x; Weatherhead PJ, 1990, BEHAV ECOL, V1, P125, DOI 10.1093/beheco/1.2.125; WELCH HE, 1965, ANNU REV ENTOMOL, V10, P275, DOI 10.1146/annurev.en.10.010165.001423; Williams GC, 1966, ADAPTATION NATURAL S; WULKER W, 1964, EXP PARASITOL, V15, P561, DOI 10.1016/0014-4894(64)90047-5; YUILL TM, 1987, CAN J ZOOL, V65, P1061, DOI 10.1139/z87-170; ZUK M, 1992, ADV STUD BEHAV, V24, P39 60 190 192 3 59 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos SEP 1993 67 3 444 450 10.2307/3545356 7 Ecology Environmental Sciences & Ecology LN449 WOS:A1993LN44900006 2019-02-26 J SYRJANEN, K; LEHTILA, K SYRJANEN, K; LEHTILA, K THE COST OF REPRODUCTION IN PRIMULA-VERIS - DIFFERENCES BETWEEN 2 ADJACENT POPULATIONS OIKOS English Article LIFE-HISTORY EVOLUTION; SEEDLING ESTABLISHMENT; PERENNIAL HERBS; PLANTS; SURVIVAL; PATTERNS; NECTAR; FLOWER The effect of flower and leaf removal on Primula veris was studied in two populations close to each other. Removal of both flowers and leaves resulted in decreased growth, flowering and reproduction in the next two years in both populations; there was no change in survival. In one population, removal of all flowers increased the flower number, the flower stalk length and the leaf area, and doubled the seed set in the year following the treatment. In the other population flower removal slightly decreased the seed set in the next year, while plant size did not differ from the control group. There were no significant differences in seed germinability between any of the experimental groups. In a field test of seed germination the seedlings of highly reproducing individuals showed density-dependent mortality. Two adjacent populations of the same species responded differently to the manipulation of reproduction, We conclude that the manipulation of reproduction may reveal the cost of reproduction in perennial plants, and that within-species variability offers an opportunity to search for environmental conditions controlling trade-offs. SYRJANEN, K (reprint author), UNIV TURKU,DEPT BIOL,SF-20500 TURKU 50,FINLAND. Lehtila, Kari/0000-0002-0260-3978 ABRAHAMSON WG, 1982, ECOLOGY, V63, P982, DOI 10.2307/1937238; AUGSPURGER CK, 1992, ECOLOGY, V73, P1270, DOI 10.2307/1940675; Begon M, 1986, ECOLOGY INDIVIDUALS; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BIERZYCHUDEK P, 1981, AM NAT, V117, P838, DOI 10.1086/283773; CHEPLICK GP, 1992, J ECOL, V80, P567, DOI 10.2307/2260699; FLIGNER MA, 1984, J AM STAT ASSOC, V79, P208, DOI 10.2307/2288358; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; GANESHAIAH KN, 1991, OIKOS, V60, P3, DOI 10.2307/3544984; HORVITZ CC, 1988, ECOLOGY, V69, P1741, DOI 10.2307/1941152; INGHE O, 1988, OIKOS, V51, P203, DOI 10.2307/3565644; INGHE O, 1989, THESIS U STOCKHOLM S; JENNERSTEN O, 1991, OIKOS, V61, P197, DOI 10.2307/3545337; LUBBERS AE, 1989, ECOLOGY, V70, P85, DOI 10.2307/1938415; PIERSON EA, 1990, OECOLOGIA, V84, P526, DOI 10.1007/BF00328170; PYKE GH, 1991, NATURE, V350, P58, DOI 10.1038/350058a0; Richards A. J., 1986, PLANT BREEDING SYSTE; RICHARDS AJ, 1978, LINN SOC S SER, V6, P165; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SMITH BH, 1983, J ECOL, V71, P413, DOI 10.2307/2259724; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; SOHN JJ, 1977, ECOLOGY, V58, P1366, DOI 10.2307/1935088; SOKAL R., 1981, BIOMETRY; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SUTHERLAND S, 1986, EVOLUTION, V40, P117, DOI 10.1111/j.1558-5646.1986.tb05723.x; TAMM CO, 1972, OIKOS, V23, P159, DOI 10.2307/3543401; TUOMI J, 1983, AM ZOOL, V23, P25; Waller D. M., 1988, Plant reproductive ecology: patterns and strategies, P203; WEDDERBURN F, 1990, NEW PHYTOL, V116, P149, DOI 10.1111/j.1469-8137.1990.tb00520.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; ZIMMERMAN M, 1988, J ECOL, V76, P777, DOI 10.2307/2260573; 1989, SAS STAT USERS GUIDE 34 41 42 1 11 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos SEP 1993 67 3 465 472 10.2307/3545358 8 Ecology Environmental Sciences & Ecology LN449 WOS:A1993LN44900008 2019-02-26 J DELOPE, F; MOLLER, AP DELOPE, F; MOLLER, AP EFFECTS OF ECTOPARASITES ON REPRODUCTION OF THEIR SWALLOW HOSTS - A COST OF BEING MULTI-BROODED OIKOS English Article LIFE-HISTORY EVOLUTION; CLUTCH SIZE; BARN SWALLOW; COLONIALITY; PARASITISM; BIRDS Many birds are negatively affected in terms of reproductive success by the presence of ectoparasites in their nests. We hypothesized that the negative effects of ectoparasitism on reproductive success would be a direct function of the number of clutches laid because of a seasonal increase in ectoparasite populations. Ectoparasites would negatively affect each clutch and the total effect of parasitism on annual reproductive success should therefore be relatively larger with an increasing number of clutches. This prediction was tested by fumigation of nests of swallows Hirundo rustica either following completion of the first clutch, completion of all clutches or by keeping nests as controls. Reproductive success measured in terms of quantity and quality of offspring was larger among pairs with nests which were all fumigated, than among pairs with first clutch nests fumigated, and which were larger than among control nests. A larger number of subsequent clutches were laid and they were also laid earlier if all nests were fumigated rather than if only the first nests or none of the nests were fumigated. Ectoparasites are therefore hypothesized to affect the trade-off between clutch size and the number of clutches laid per season. UNIV UPPSALA,DEPT ZOOL,BOX 561,S-75122 UPPSALA,SWEDEN; UNIV EXTREMADURA,DEPT BIOL ANIM,E-06071 BADAJOZ,SPAIN Alexander R. D., 1974, ANNU REV ECOL SYST, V5, P324; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bishop YM, 1975, DISCRETE MULTIVARIAT; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BROWN CR, 1986, ECOLOGY, V67, P1206, DOI 10.2307/1938676; de Lope F., 1983, Donana Acta Vertebrata, V10, P91; GAINES SD, 1990, AM NAT, V135, P310, DOI 10.1086/285047; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LOYE JE, 1991, BIRD PARASITE INTERA, P222; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MOLLER AP, 1990, ECOLOGY, V71, P2345, DOI 10.2307/1938645; MOLLER AP, 1989, OIKOS, V56, P421, DOI 10.2307/3565628; MOLLER AP, 1991, FUNCT ECOL, V5, P351, DOI 10.2307/2389806; MOLLER AP, 1991, BIRD PARASITE INTERA, P328; MOLLER AP, 1990, POPULATION BIOL PASS, P269; MOLLER AP, 1993, SEX LIFE BARN SWALLO; MOLLER AP, 1993, IN PRESS J ANIM ECOL; MOSS WW, 1970, SCIENCE, V168, P1000, DOI 10.1126/science.168.3934.1000; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Partridge L., 1989, P421; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Rothschild M., 1952, FLEAS FLUKES CUCKOOS; SHIELDS WM, 1987, ECOLOGY, V68, P1373, DOI 10.2307/1939221; SIKES RK, 1954, J PARASITOL, V40, P691, DOI 10.2307/3273713; SOKAL R., 1981, BIOMETRY; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 30 35 38 0 4 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos SEP 1993 67 3 557 562 10.2307/3545368 6 Ecology Environmental Sciences & Ecology LN449 WOS:A1993LN44900018 2019-02-26 J CLARK, C CLARK, C DYNAMIC-MODELS OF BEHAVIOR - AN EXTENSION OF LIFE-HISTORY THEORY (VOL 8, PG 205, 1993) TRENDS IN ECOLOGY & EVOLUTION English Correction, Addition CLARK CW, 1993, TRENDS ECOL EVOL, V8, P205, DOI 10.1016/0169-5347(93)90100-4 1 0 0 1 2 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. SEP 1993 8 9 338 338 1 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity LT681 WOS:A1993LT68100013 2019-02-26 J WERNER, EE; ANHOLT, BR WERNER, EE; ANHOLT, BR ECOLOGICAL CONSEQUENCES OF THE TRADE-OFF BETWEEN GROWTH AND MORTALITY-RATES MEDIATED BY FORAGING ACTIVITY AMERICAN NATURALIST English Article LIFE-HISTORY STRATEGIES; DESERT ANURAN COMMUNITY; PREDATION RISK; PREY DENSITY; COMPETITIVE INTERACTIONS; SPECIES INTERACTIONS; FUNCTIONAL-RESPONSE; OPTIMAL FORAGERS; BEHAVIOR; LARVAE Animals are frequently faced with trade-offs created by the fact that both resource acquisition and risk of mortality increase with activity, for example, with foraging speed or time spent foraging. We develop models predicting adaptive responses for both foraging speed and proportion of time active when individual growth rate and mortality fisk are functions of these variables. Using the criterion that animals should minimize the ratio of mortality to growth rates, we show that, when both growth and mortality rates are linear with activity levels, the latter should be either maximal or minimal depending on resource level. If growth rate is a decelerating function of activity, then speed or time active should decrease with increases in resources, handling time, or the effect of activity on mortality rate. By contrast, if mortality rate unrelated to activity increases, then activity rate also should increase. We also develop predictions for cases in which time horizon is critical using a dynamic programming framework. The general patterns of predicted activity responses are similar to the time-invariant analytical solutions, but foraging speed is reduced relative to the analytical solutions when time remaining is long or when accumulated reserves are high. This effect is ameliorated when accumulated reserves (size) increase resource capture efficiency or reduce mortality fisk. If resources decline with time (e.g., because of competition) optimal foraging speeds are also higher than predicted by the analytical solutions. We discuss the relation of our predictions to previous models and the available empirical evidence. The majority of available data appear to be consistent with our models, and in some cases quantitative comparisons are quite close. Finally, we discuss the implications of our results for ontogenetic changes in behavior and for population- and community-level phenomena, particularly the role of activity responses in competitive interactions and indirect effects and patterns of coexistence among competitors. QUEENS UNIV, DEPT BIOL, KINGSTON K7L 3N6, ONTARIO, CANADA WERNER, EE (reprint author), UNIV MICHIGAN, DEPT BIOL, ANN ARBOR, MI 48109 USA. ABRAHAMS MV, 1989, ECOLOGY, V70, P999, DOI 10.2307/1941368; ABRAMS P, 1983, THEOR POPUL BIOL, V24, P22, DOI 10.1016/0040-5809(83)90044-8; ABRAMS PA, 1990, ECOLOGY, V71, P877, DOI 10.2307/1937359; ABRAMS PA, 1984, AM NAT, V124, P80, DOI 10.1086/284253; ABRAMS PA, 1982, AM NAT, V120, P382, DOI 10.1086/283996; ABRAMS PA, 1991, ECOLOGY, V72, P1242, DOI 10.2307/1941098; Bellman R. E, 1957, DYNAMIC PROGRAMMING; BURGHARDT GM, 1964, COPEIA, P576; Corbet PS, 1962, BIOL DRAGONFLIES; DUNBRACK RL, 1987, AM NAT, V130, P147, DOI 10.1086/284702; EGGERS DM, 1977, ECOLOGY, V58, P46, DOI 10.2307/1935107; FORMANOWICZ DR, 1988, J KANSAS ENTOMOL SOC, V61, P420; FORMANOWICZ DR, 1987, ANIM BEHAV, V35, P453, DOI 10.1016/S0003-3472(87)80270-1; FORMANOWICZ DR, 1989, HERPETOLOGICA, V45, P61; FORMANOWICZ DR, 1982, J ANIM ECOL, V51, P757, DOI 10.2307/4003; FORMANOWICZ DR, 1991, ETHOL ECOL EVOL, V3, P317, DOI 10.1080/08927014.1991.9525360; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; GENDRON RP, 1984, AM NAT, V124, P407, DOI 10.1086/284281; GERRITSEN J, 1977, J FISH RES BOARD CAN, V34, P73, DOI 10.1139/f77-008; GILLIAM JF, 1982, THESIS MICHIGAN STAT; GRANT JWA, 1987, J ANIM ECOL, V56, P1001, DOI 10.2307/4962; HALL DJ, 1970, LIMNOL OCEANOGR, V15, P839, DOI 10.4319/lo.1970.15.6.0839; HERZOG H A JR, 1974, Herpetologica, V30, P285; Holling C. S., 1959, Canadian Entomologist, V91, P385; HUEY RB, 1981, ECOLOGY, V62, P991, DOI 10.2307/1936998; JOHANSSON F, 1991, HYDROBIOLOGIA, V209, P79, DOI 10.1007/BF00006721; KATS LB, 1988, ECOLOGY, V69, P1865, DOI 10.2307/1941163; KOHLER SL, 1989, ECOLOGY, V70, P1811, DOI 10.2307/1938114; KUSANO T, 1981, RES POPUL ECOL, V23, P360, DOI 10.1007/BF02515637; LAWLER SP, 1989, ANIM BEHAV, V38, P1039, DOI 10.1016/S0003-3472(89)80142-3; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LUBCHENCO J, 1978, AM NAT, V112, P23, DOI 10.1086/283250; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MACCHIUSI F, 1991, FRESHWATER BIOL, V25, P533, DOI 10.1111/j.1365-2427.1991.tb01396.x; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Mangel M, 1988, DYNAMIC MODELING BEH; MCLAUGHLIN RL, 1991, THESIS MCGILL U MONT; MCNAMARA JM, 1987, ECOLOGY, V68, P1515, DOI 10.2307/1939235; MCPEEK MA, 1990, ECOLOGY, V71, P1714, DOI 10.2307/1937580; MCPEEK MA, 1990, ECOLOGY, V71, P83, DOI 10.2307/1940249; Miller T.E., 1987, P33; MORIN PJ, 1983, ECOL MONOGR, V53, P119, DOI 10.2307/1942491; MORIN PJ, 1988, OIKOS, V53, P398, DOI 10.2307/3565542; NORBERG RA, 1981, J ANIM ECOL, V50, P473, DOI 10.2307/4068; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Peters R.H., 1983, P1; POUGH FH, 1990, ANIM BEHAV, V39, P145, DOI 10.1016/S0003-3472(05)80734-1; Press W. H., 1988, NUMERICAL RECIPES C; PRITCHARD G, 1965, CAN J ZOOLOG, V43, P271, DOI 10.1139/z65-026; PYKE GH, 1981, AM NAT, V118, P475, DOI 10.1086/283842; REYNOLDSON TB, 1981, ARCH HYDROBIOL, V92, P71; RICHARDS LJ, 1984, ECOL ENTOMOL, V9, P189, DOI 10.1111/j.1365-2311.1984.tb00714.x; SEBENS KP, 1987, ANNU REV ECOL SYST, V18, P371, DOI 10.1146/annurev.ecolsys.18.1.371; SIH A, 1982, ECOLOGY, V63, P786, DOI 10.2307/1936799; SIH A, 1989, BEHAV MECH FOOD SELE, P771; Sinclair A.R.E., 1989, P197; SJOBERG S, 1980, ECOL MODEL, V10, P215, DOI 10.1016/0304-3800(80)90060-5; SKELLAM JG, 1958, BIOMETRICS, V14, P385, DOI 10.2307/2527881; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; SPEAKMAN JR, 1986, J THEOR BIOL, V122, P401, DOI 10.1016/S0022-5193(86)80181-3; STEIN RA, 1976, ECOLOGY, V57, P751, DOI 10.2307/1936188; STEPHENS DW, 1985, ANIM BEHAV, V33, P667, DOI 10.1016/S0003-3472(85)80092-0; Stephens DW, 1986, FORAGING THEORY; TAYLOR CR, 1982, J EXP BIOL, V97, P1; Taylor R.J., 1984, PREDATION; TOWNSEND CR, 1981, PHYSL ECOLOGY EVOLUT; VANCE RR, 1978, AM NAT, V112, P797, DOI 10.1086/283324; WALDE SJ, 1984, CAN J ZOOL, V62, P2221, DOI 10.1139/z84-323; WARE DM, 1973, J FISH RES BOARD CAN, V30, P787, DOI 10.1139/f73-134; WARE DM, 1978, J FISH RES BOARD CAN, V35, P220, DOI 10.1139/f78-036; WEIHS D, 1973, NATURE, V245, P48, DOI 10.1038/245048a0; WERNER EE, 1992, AM NAT, V140, pS5, DOI 10.1086/285395; WERNER EE, 1991, ECOLOGY, V72, P1709, DOI 10.2307/1940970; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WERNER EE, 1992, COPEIA, P26, DOI 10.2307/1446532; Wilbur H.M., 1984, P195; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WODINSKY J, 1971, NATURE, V229, P493, DOI 10.1038/229493a0; WOODWARD BD, 1983, ECOLOGY, V64, P1549, DOI 10.2307/1937509; WOODWARD BD, 1982, OECOLOGIA, V54, P96, DOI 10.1007/BF00541115; WRIGHT DI, 1984, ECOL MONOGR, V54, P65, DOI 10.2307/1942456; WRIGHT DI, 1982, AM MIDL NAT, V108, P68, DOI 10.2307/2425293 82 712 730 18 283 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. AUG 1993 142 2 242 272 10.1086/285537 31 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology LU633 WOS:A1993LU63300004 19425978 2019-02-26 J MUELLER, LD; GRAVES, JL; ROSE, MR MUELLER, LD; GRAVES, JL; ROSE, MR INTERACTIONS BETWEEN DENSITY-DEPENDENT AND AGE-SPECIFIC SELECTION IN DROSOPHILA-MELANOGASTER FUNCTIONAL ECOLOGY English Article AGING; EVOLUTIONARY PHYSIOLOGY; FRUIT FLIES; LIFE-HISTORY EVOLUTION; R-SELECTION AND K-SELECTION 1. Density-dependent natural selection and age-specific natural selection are important determinants of life-history evolution. A variety of laboratory populations of Drosophila melanogaster have been created to study the effects of these selection mechanisms. 2. Two types of populations have been selected for reproduction early (B) and late (O) in life. These have exhibited changes in life span and resistance to stresses, such as desiccation, starvation, ethanol vapours and flying to exhaustion. 3. Similarly, two types of populations have been selected at high adult and larval densities (K) and low adult and larval densities (r). These have exhibited changes in characters like larval feeding rates, pupation height and minimum food required for successful pupation. 4. To study whether age-specific and density-dependent selection act on the same traits either directly or through indirect effects, such as pleiotropy or linkage, we have examined the B and O populations for the traits that have become differentiated in the r and K populations and vice versa. 5. In general, there is a lack of similar response, except for starvation resistance which is greater in the K populations than the r populations. 6. We have tested, for the first time, longevity in all four types of populations as a function of adult density. The O populations show greater longevity than the B populations at all densities and this difference does not depend on density. In contrast, the K populations are able to resist the decline in longevity caused by increasing density much more effectively than are the r populations. 7. Lastly, a new set of populations, called CU, has been derived from the B populations and is maintained by crowding the larval life stage but raising adults under low densities. The CU populations have evolved increased feeding rates, pupation height and larval viability at high density relative to the B populations. These changes parallel the changes seen in the r and K populations and demonstrate the importance of crowding in the larval stages for much of the evolution seen in the r and K populations. MUELLER, LD (reprint author), UNIV CALIF IRVINE,DEPT ECOL & EVOLUTIONARY BIOL,IRVINE,CA 92717, USA. 0 44 45 0 9 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. AUG 1993 7 4 469 479 10.2307/2390034 11 Ecology Environmental Sciences & Ecology LU560 WOS:A1993LU56000010 2019-02-26 J WINEMILLER, KO WINEMILLER, KO SEASONALITY OF REPRODUCTION BY LIVEBEARING FISHES IN TROPICAL RAIN-FOREST STREAMS OECOLOGIA English Article COSTA-RICA; POECILIID FISHES; REPRODUCTIVE SEASONALITY MOSQUITOFISH GAMBUSIA-AFFINIS; LIFE-HISTORY EVOLUTION; POECILIA-RETICULATA; NATURAL-POPULATIONS; COLOR PATTERNS; OFFSPRING SIZE; GROWTH; ENVIRONMENTS; FECUNDITY; LATIPINNA Reproductive ecology, population structure, and diets of three common livebearing poeciliid fishes (Alfaro cultratus, Phallichthys amates, Poecilia gilli) from rainforest streams in Costa Rica were investigated over ten continuous months. The region experiences little annual temperature variation, and although monthly rainfall is continuous each year, two brief dry seasons typically occur. Monthly changes in indices of ovarian condition, percentages of females with developing embryos, and population size structure revealed that reproductive output by females of all three species varied seasonally. Based on testicular condition, males were reproductively active year-round, however the mean gonadal index for males of two algivorous species showed low levels of seasonal cycling that largely coincided with female variation in reproductive effort. All three species had seasonal differences in the female size-brood size relationship, whereby larger females tended to carry more embryos during the wet season. Several important adult and neonate food resources are more available in the flooded forest during the wet season, which is also the period when conspecifics and predators are at their lowest per-area densities. Three hypotheses are discussed: (1) brood size in relation to conspecific density-mating frequency, (2) reproductive allocation in response to variation in adult food resources, and (3) selection for greater reproductive effort during conditions optimal for juvenile growth and survival. Data for Alfaro were consistent with the latter two hypotheses. In Phallichthys and Poecilia, diets were poorer during wet seasons, indicating that reproductive effort does not coincide with availability of adult food resources, and that selection probably favors greater reproductive effort during periods optimal for juvenile growth and survival. WINEMILLER, KO (reprint author), TEXAS A&M UNIV SYST,DEPT WILDLIFE & FISHERIES SCI,COLL STN,TX 77843, USA. Langerhans, R./A-7205-2009 Winemiller, Kirk/0000-0003-0236-5129 ANDERSSON M, 1986, THESIS N ILLINOIS U; BALSANO JS, 1981, ENVIRON BIOL FISH, V6, P39, DOI 10.1007/BF00001798; BOROWSKY R, 1976, EVOLUTION, V30, P693, DOI 10.1111/j.1558-5646.1976.tb00949.x; BOTSFORD LW, 1987, ENVIRON BIOL FISH, V20, P143, DOI 10.1007/BF00005293; BURNS JR, 1985, COPEIA, P961, DOI 10.2307/1445248; BURT A, 1988, ENVIRON BIOL FISH, V22, P15, DOI 10.1007/BF00000541; CHAPMAN LJ, 1991, OECOLOGIA, V87, P299, DOI 10.1007/BF00325270; Constantz G.D., 1989, P33; CONSTANTZ GD, 1979, OECOLOGIA, V40, P189, DOI 10.1007/BF00347936; DAHLGREN BT, 1979, J FISH BIOL, V15, P71, DOI 10.1111/j.1095-8649.1979.tb03573.x; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; ENDLER JA, 1982, EVOLUTION, V36, P178, DOI 10.1111/j.1558-5646.1982.tb05022.x; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; GOTELLI NJ, 1991, OIKOS, V62, P30, DOI 10.2307/3545443; HEINS DC, 1986, J FISH BIOL, V28, P343, DOI 10.1111/j.1095-8649.1986.tb05171.x; HESTER FJ, 1964, J FISH RES BOARD CAN, V21, P757, DOI 10.1139/f64-068; HIRTH HF, 1963, ECOL MONOGR, V33, P83, DOI 10.2307/1948557; HUBBS C, 1982, AM MIDL NAT, V107, P1, DOI 10.2307/2425184; HUBBS C, 1985, COPEIA, P56, DOI 10.2307/1444790; HUBBS C, 1957, ECOLOGY, V38, P596, DOI 10.2307/1943125; HUGHES AL, 1985, AM MIDL NAT, V114, P30, DOI 10.2307/2425237; HUGHES AL, 1986, COPEIA, P534, DOI 10.2307/1445016; Janzen D.H., 1979, Brenesia, V16, P213; JANZEN DH, 1967, EVOLUTION, V21, P620, DOI 10.1111/j.1558-5646.1967.tb03416.x; JOHANNES R E, 1978, Environmental Biology of Fishes, V3, P65, DOI 10.1007/BF00006309; Kallman K.D., 1984, P95; KRAMER DL, 1978, ECOLOGY, V59, P976, DOI 10.2307/1938549; Lowe McConnell R. H., 1964, Journal of the Linnean Society London, V45, P103; Lowe-McConnell R.H., 1979, S ZOOL SOC LOND, V44, P219; MAHON R, 1984, CAN J FISH AQUAT SCI, V41, P330, DOI 10.1139/f84-037; MEFFE GK, 1990, COPEIA, P10, DOI 10.2307/1445816; MEFFE GK, 1985, COPEIA, P898; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; MORRIS MR, 1992, COPEIA, P1074; POWER ME, 1984, ENVIRON BIOL FISH, V10, P173, DOI 10.1007/BF00001124; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; Reznick D.N., 1989, P125; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1987, OECOLOGIA, V73, P401, DOI 10.1007/BF00385257; RIDLEY M, 1988, BIOL REV, V63, P509, DOI 10.1111/j.1469-185X.1988.tb00669.x; SCHOENHERR AA, 1977, ECOLOGY, V58, P438, DOI 10.2307/1935619; Schwassmann H.O., 1978, P187; SNELSON FF, 1985, ENVIRON BIOL FISH, V13, P35, DOI 10.1007/BF00004854; SNELSON FF, 1984, COPEIA, P252, DOI 10.2307/1445071; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; TRAVIS J, 1989, ENVIRON BIOL FISH, V26, P119, DOI 10.1007/BF00001028; Turner CL, 1938, BIOL BULL-US, V75, P56, DOI 10.2307/1537672; WARREN EW, 1973, J FISH BIOL, V5, P737, DOI 10.1111/j.1095-8649.1973.tb04507.x; Welcomme R. L, 1979, FISHERIES ECOLOGY FL; WINEMILLER KO, 1990, ECOL MONOGR, V60, P331, DOI 10.2307/1943061; WINEMILLER KO, 1992, ENVIRON BIOL FISH, V34, P29, DOI 10.1007/BF00004783; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; Wootton R.J., 1984, P1; YAN HY, 1987, J FISH BIOL, V30, P731, DOI 10.1111/j.1095-8649.1987.tb05802.x 57 43 45 3 25 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia AUG 1993 95 2 266 276 10.1007/BF00323499 11 Ecology Environmental Sciences & Ecology LV564 WOS:A1993LV56400015 28312951 2019-02-26 J NYLIN, S; WIKLUND, C; WICKMAN, PO; GARCIABARROS, E NYLIN, S; WIKLUND, C; WICKMAN, PO; GARCIABARROS, E ABSENCE OF TRADE-OFFS BETWEEN SEXUAL SIZE DIMORPHISM AND EARLY MALE EMERGENCE IN A BUTTERFLY ECOLOGY English Article COADAPTATION; LEPIDOPTERA; LIFE HISTORIES; PARARGE-AEGERIA; PROTANDRY; SATYRINAE; SEASONALITY; SEXUAL SELECTION; SEXUAL SIZE DIMORPHISM; TRADE-OFFS PARARGE-AEGERIA; GROWTH RATES; PROTANDRY; EVOLUTION; SELECTION; FEMALES; MODELS; HYPOTHESIS; SATYRIDAE Protandry, here defined as the earlier emergence of males, is a common feature in life histories and could be the result of sexual selection on males to maximize matings, or alternatively an incidental by-product of other selection pressures on the sexes. If protandry is selected for per se, theory predicts that it should be associated with seasonal environments where there is little overlap between generations. The degree of protandry should be insensitive to environmental conditions. Moreover, on the assumption that males and females grow at the same rate as larvae, a trade-off between development time and size is expected to result in a strong association between protandry and female-biased sexual size dimorphism. These predictions were tested by a combination of comparative and experimental studies on five populations of the speckled wood butterfly, Pararge aegeria, from central and south Sweden, England, Spain, and the island of Madeira. Protandry was associated with seasonal environments, as it was only exhibited in the three northernmost populations. Protandry in these populations remained largely constant in a variety of temperatures, both under direct development, when protandry results from a sex difference in development time through the egg, larval, and pupal stages, and under diapause development, when it results from a sex difference in pupal development time only. These results indicate that protandry is selected for per se through sexual selection in seasonal environments. Similar female-biased size dimorphism occurred in protandrous and non-protandrous populations alike, and hence sexual size dimorphism in P. aegeria is not a result of selection for protandry, nor the causal factor behind protandry. Protandry and sexual size dimorphism appear to be largely decoupled traits in the life history evolution of P. aegeria. This is achieved by means of variation in pupal developmental time and variation in the relative growth rates of the sexes. Variation in growth rates is likely to be a general phenomenon and may make possible independent optimization of size and development time (age at sexual maturity), and accordingly influence expected patterns of size-related trade-offs. UNIV AUTONOMA MADRID,DEPT BIOL,SECC ZOOL,E-28094 MADRID,SPAIN NYLIN, S (reprint author), UNIV STOCKHOLM,DEPT ZOOL,S-10691 STOCKHOLM,SWEDEN. Nylin, Soren/B-7375-2008 Nylin, Soren/0000-0003-4195-8920; Garcia-Barros, Enrique/0000-0003-2804-9626 ARAK A, 1988, EVOLUTION, V42, P820, DOI 10.1111/j.1558-5646.1988.tb02501.x; BAUGHMAN JF, 1991, AM NAT, V138, P536, DOI 10.1086/285233; BULMER MG, 1983, THEOR POPUL BIOL, V23, P314, DOI 10.1016/0040-5809(83)90021-7; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Darwin C., 1981, DESCENT MAN SELECTIO, V1; FAGERSTROM T, 1982, OECOLOGIA, V52, P164, DOI 10.1007/BF00363830; FAIRBAIRN DJ, 1990, AM NAT, V136, P61, DOI 10.1086/285082; GUNNARSSON B, 1990, OIKOS, V59, P205, DOI 10.2307/3545536; Hargreaves B, 1983, BUTTERFLIES BRITAIN; Higgins L. G., 1977, Entomologist's Record and Journal of Variation, V89, P22; HORN HS, 1978, BEHAVIOURAL ECOLOGY, P411; IWASA Y, 1983, THEOR POPUL BIOL, V23, P363, DOI 10.1016/0040-5809(83)90024-2; Lees E., 1962, Entomologist's Gazette, V13, P101; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1992, BIOL J LINN SOC, V47, P301, DOI 10.1111/j.1095-8312.1992.tb00672.x; OWEN DF, 1986, ECOL ENTOMOL, V11, P349, DOI 10.1111/j.1365-2311.1986.tb00312.x; PARKER GA, 1983, J THEOR BIOL, V105, P147, DOI 10.1016/0022-5193(83)90430-7; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; RALLS K, 1976, Q REV BIOL, V51, P245, DOI 10.1086/409310; RICKLEFS RE, 1969, ECOLOGY, V50, P1031, DOI 10.2307/1936894; SHREEVE TG, 1986, ECOL ENTOMOL, V11, P325, DOI 10.1111/j.1365-2311.1986.tb00309.x; SINGER MC, 1982, AM NAT, V119, P440, DOI 10.1086/283924; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Thomas JA, 1986, RSNC GUIDE BUTTERFLI; Thornhill R, 1983, EVOLUTION INSECT MAT; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WICKMAN PO, 1983, ANIM BEHAV, V31, P1206, DOI 10.1016/S0003-3472(83)80027-X; WIKLUND C, 1991, OIKOS, V60, P373, DOI 10.2307/3545080; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; WIKLUND C, 1992, EVOLUTION, V46, P519, DOI 10.1111/j.1558-5646.1992.tb02055.x; Wiklund C., 1982, EVOLUTION, V36, P55; ZONNEVELD C, 1992, B MATH BIOL, V54, P957 38 122 129 7 25 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology JUL 1993 74 5 1414 1427 10.2307/1940071 14 Ecology Environmental Sciences & Ecology LK429 WOS:A1993LK42900012 2019-02-26 J YEATES, GW; WARDLE, DA; WATSON, RN YEATES, GW; WARDLE, DA; WATSON, RN RELATIONSHIPS BETWEEN NEMATODES, SOIL MICROBIAL BIOMASS AND WEED-MANAGEMENT STRATEGIES IN MAIZE AND ASPARAGUS CROPPING SYSTEMS SOIL BIOLOGY & BIOCHEMISTRY English Article PASTURE Five weed-management strategies (sawdust mulching, repeated spring-summer cultivation, hand-hoeing, two herbicide treatments) were applied to asparagus and maize cropping systems near Hamilton, New Zealand. Assessments of 27 nematode populations on four sampling occasions over an entire cropping cycle are related to published microbial, arthropod and environmental data. Under asparagus cropping abundance of 11 nematode populations (at genus or family level) in 0-5 cm soil showed significant treatment effects on at least two sampling occasions; under maize 6 populations showed treatment effects. Overall, the most obvious trends were for some taxa of bacterial feeding nematodes to have their greatest abundances under different treatments. The ratio of bacterial feeding to fungal feeding nematodes varied significantly with time and treatment, and indicates shifts in trophic structure of the nematode fauna. Canonical correspondence analysis demonstrated that nematode populations were more strongly related to environmental factors at the prior sampling than those at the contemporary sampling time. Under asparagus cropping the sawdust mulch was the predominant factor affecting ordinations; bacterial and fungal feeding nematodes were most abundant or showed greatest treatment responses, but the increase in populations of predacious nematodes (Nygolaimus, Mononchidae, Aporcelaimidae) may be responsible for absence of marked increases in these other groups. Under maize, effects were similar but less significant. Helicotylenchus and Pralylenchus were present under the maize crop but not under the asparagus crop. The responses of nematode taxa to weed management practices were very variable but, given the range of life history strategies within trophic groups, responses follow a predictable pattern. Detailed correlation of management-induced changes in nematode populations and biological environmental factors is confounded by the effect of nematode feeding activity on the microbial populations. Overall, the results confirm the important influence of microfaunal grazing on microfloral populations and the cycling of plant nutrients in the soil. RUAKURA AGR RES CTR, AGRES, HAMILTON, NEW ZEALAND YEATES, GW (reprint author), LANDCARE RES, PRIVATE BAG 31902, LOWER HUTT, NEW ZEALAND. Wardle, David/F-6031-2011 Wardle, David/0000-0002-0476-7335 Brown R. H., 1987, PRINCIPLES PRACTICE; Ennis W. B., 1979, INTRO CROP PROTECTIO; Gaur H. S., 1991, Nematological Abstracts, V60, P153; HILL MO, 1980, VEGETATIO, V42, P47, DOI 10.1007/BF00048870; INGHAM ER, 1986, J APPL ECOL, V23, P615, DOI 10.2307/2404040; Nicholas W.L., 1984, BIOL FREE LIVING NEM; Southey J. F., 1986, 402 MIN AGR FISH FOO; Swift MJ, 1979, DECOMPOSITION TERRES; ter Braak C.J.F., 1987, P91; TERBRAAK CJF, 1988, ADV ECOL RES, V18, P271; WARDLE DA, 1993, SOIL BIOL BIOCHEM, V25, P857, DOI 10.1016/0038-0717(93)90088-S; WARDLE DA, 1993, IN PRESS PEDOBIOLOGI; WARDLE DA, 1993, IN PRESS OECOLOGIA; Yeates G.W., 1987, Advances in Ecological Research, V17, P61, DOI 10.1016/S0065-2504(08)60244-5; YEATES GW, 1984, SOIL BIOL BIOCHEM, V16, P95, DOI 10.1016/0038-0717(84)90098-1; YEATES GW, 1982, PEDOBIOLOGIA, V24, P329; YEATES GW, 1993, IN PRESS J NEMATOLOG 17 101 106 2 17 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0038-0717 SOIL BIOL BIOCHEM Soil Biol. Biochem. JUL 1993 25 7 869 876 10.1016/0038-0717(93)90089-T 8 Soil Science Agriculture LK327 WOS:A1993LK32700010 2019-02-26 J DELPH, LF; LU, Y; JAYNE, LD DELPH, LF; LU, Y; JAYNE, LD PATTERNS OF RESOURCE-ALLOCATION IN A DIOECIOUS CAREX (CYPERACEAE) AMERICAN JOURNAL OF BOTANY English Article SEXUAL DIMORPHISM; BIOMASS ALLOCATION; LIFE-HISTORY; POPULATION BIOLOGY; RUBUS-CHAMAEMORUS; FEMALE FUNCTIONS; CLONAL GROWTH; PLANTS; RATIOS; COSTS Allocation to vegetative growth and sexual reproduction was investigated throughout the growing season in the dioecious sedge, Carex picta, under natural conditions and following experimental manipulations. Measurements taken on unmanipulated plants showed that the sexes did not differ in the total amount of biomass they allocated to either growth or reproduction. The relatively equal investment in reproduction by the two sexes is contrary to other studies, the majority of which show greater investment in reproduction by females. Two features of the reproductive biology of C. picta may account for the equal investment: the fruit are relatively inexpensive because they are uniovulate and nonfleshy, and the stamens are relatively expensive because C. picta is wind pollinated. In contrast to the lack of differences in the amount of allocation, there were differences between the sexes in the timing of allocation to growth and reproduction: males allocated more to reproduction and less to growth up to the time of flowering, whereas females showed this pattern during the time of fruit maturation. Defoliation and inflorescence removal experiments showed that a trade-off within plants between growth and reproduction does exist. In addition, the defoliation experiment revealed a difference in the response of the two sexes: defoliated tillers on males showed a reduction in growth, whereas defoliated tillers on females did not. Overall, the data support the idea that differences in the timing of reproductive expenditure are as important as the amount of expenditure in determining many aspects of the life history strategies of the two sexes. DELPH, LF (reprint author), INDIANA UNIV, DEPT BIOL, BLOOMINGTON, IN 47401 USA. AGREN J, 1987, OECOLOGIA, V72, P161, DOI 10.1007/BF00379262; AGREN J, 1988, ECOLOGY, V69, P962, DOI 10.2307/1941251; ALLEN GA, 1988, OECOLOGIA, V76, P111, DOI 10.1007/BF00379608; Antonovics J., 1980, LIMITS ACTION ALLOCA, P1; BARRETT SCH, 1981, EVOLUTION, V35, P752, DOI 10.1111/j.1558-5646.1981.tb04935.x; BAWA KS, 1982, EVOLUTION, V36, P371, DOI 10.1111/j.1558-5646.1982.tb05053.x; BELL G, 1985, PROC R SOC SER B-BIO, V224, P223, DOI 10.1098/rspb.1985.0031; BURD M, 1992, AM NAT, V140, P305, DOI 10.1086/285414; CHARLESWORTH D, 1981, BIOL J LINN SOC, V15, P57, DOI 10.1111/j.1095-8312.1981.tb00748.x; CIPOLLINI ML, 1991, OECOLOGIA, V86, P585, DOI 10.1007/BF00318326; CONN JS, 1981, B TORREY BOT CLUB, V108, P374, DOI 10.2307/2484717; CRUDEN RW, 1985, OECOLOGIA, V66, P299, DOI 10.1007/BF00379868; DELPH LF, 1990, ECOLOGY, V71, P1342, DOI 10.2307/1938271; ELMQVIST T, 1988, OECOLOGIA, V77, P225, DOI 10.1007/BF00379190; ESCARRE J, 1991, J ECOL, V79, P379, DOI 10.2307/2260720; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GOLDMAN DA, 1986, BOT REV, V52, P157, DOI 10.1007/BF02861000; GRANT MC, 1979, EVOLUTION, V33, P914, DOI 10.1111/j.1558-5646.1979.tb04744.x; GROSS KL, 1981, AM J BOT, V68, P801, DOI 10.2307/2443186; HANCOCK JF, 1980, EVOLUTION, V34, P762, DOI 10.1111/j.1558-5646.1980.tb04015.x; HOFFMANN AJ, 1981, ACTA OECOL-OEC PLANT, V2, P31; KORPELAINEN H, 1992, OECOLOGIA, V89, P133, DOI 10.1007/BF00319025; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; LLOYD DG, 1973, HEREDITY, V31, P239, DOI 10.1038/hdy.1973.79; LLOYD DG, 1977, BOT REV, V43, P177, DOI 10.1007/BF02860717; MARTENS J. LOUIS, 1939, AMER JOUR BOT, V26, P78; MAZE KM, 1990, AUST J ECOL, V15, P145, DOI 10.1111/j.1442-9993.1990.tb01523.x; MEAGHER TR, 1984, ANN MO BOT GARD, V71, P254, DOI 10.2307/2399069; MEAGHER TR, 1982, ECOLOGY, V63, P1690, DOI 10.2307/1940111; MICHAELS HJ, 1986, ECOLOGY, V67, P27, DOI 10.2307/1938500; OPLER PA, 1978, EVOLUTION, V32, P812, DOI 10.1111/j.1558-5646.1978.tb04636.x; OYAMA K, 1988, Plant Species Biology, V3, P27, DOI 10.1111/j.1442-1984.1988.tb00168.x; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PITELKA LF, 1985, J ECOL, V73, P169, DOI 10.2307/2259776; POPP JW, 1988, AM J BOT, V75, P1732, DOI 10.2307/2444688; PUTWAIN PD, 1972, J ECOL, V60, P113, DOI 10.2307/2258045; QUINN JA, 1986, AM J BOT, V73, P874, DOI 10.2307/2444298; SAKAI AK, 1988, ECOLOGY, V69, P2031, DOI 10.2307/1941181; SAKAI AK, 1985, ECOLOGY, V66, P1921, DOI 10.2307/2937388; SILVERTOWN J, 1987, OECOLOGIA, V72, P157, DOI 10.1007/BF00385060; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; SOHN JJ, 1977, ECOLOGY, V58, P1366, DOI 10.2307/1935088; VITALE JJ, 1987, AM J BOT, V74, P1049, DOI 10.2307/2443944; WALLACE CS, 1979, OECOLOGIA, V44, P34, DOI 10.1007/BF00346394; WATSON MA, 1984, AM NAT, V123, P411, DOI 10.1086/284212; WATSON MA, 1984, ANNU REV ECOL SYST, V15, P233, DOI 10.1146/annurev.es.15.110184.001313; WILLSON MF, 1986, AM MIDL NAT, V115, P204, DOI 10.2307/2425852 47 57 59 1 12 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. JUN 1993 80 6 607 615 10.2307/2445429 9 Plant Sciences Plant Sciences LH407 WOS:A1993LH40700001 2019-02-26 J CALVO, RN CALVO, RN EVOLUTIONARY DEMOGRAPHY OF ORCHIDS - INTENSITY AND FREQUENCY OF POLLINATION AND THE COST OF FRUITING ECOLOGY English Article ASYMPTOTIC POPULATION GROWTH RATE; AVERAGE FITNESS; COST OF FRUITING; MATRIX MODEL; ORCHIDACEAE; POLLINATION FREQUENCY AND INTENSITY; POPULATION DYNAMICS; SEEDLING PRODUCTION PER FRUIT; TOLUMNIA-VARIEGATA TIPULARIA-DISCOLOR ORCHIDACEAE; NEOTROPICAL ORCHID; REPRODUCTION; PLANTS; LIMITATION; FITNESS; SELECTION; PATTERNS; BIOLOGY; BULBOSA Life history theory assumes that there is a trade-off between current reproduction and future growth or reproduction or both; therefore, natural selection is expected to result in the maximization of reproduction within the limits imposed by the trade-offs. Accordingly, it has been predicted that fruit and seed production in perennial plants should be resource limited. Many orchid species seem to be pollinator limited, but this hypothesis has been recently challenged by experimental studies that show a cost of increased fruit set in some orchids. In this study, I combined the results of a 2-yr pollination experiment and a 3-yr demographic assessment of a population of the orchid Tolumnia variegata in a matrix model of population dynamics, and by means of simulations I evaluated the effect of pollination intensity and frequency, fruit production, and cost of fruiting on the asymptotic population growth rate. Mean natural fruit set in this population was < 1%, whereas intermediate and high pollination intensity resulted in mean fruit set of 35 and 72%, respectively. In any given year, almost-equal-to 98% of all flowering individuals fail to set fruit under natural conditions. Despite the dramatic increase in fruit set after hand-pollination, only plants in the high pollination intensity treatment showed a statistically significant reduction in future growth and flowering. The simulations showed that a small seedling production per fruit would be enough to overcome the cost of fruiting; therefore, plants in this population should experience strong selection for increased pollination. This conclusion does not seem to explain the widespread occurrence of low fruit set and high proportion of fruiting failure among nonautogamous orchids. The results of this study suggest an alternative explanation: pollinator limitation could be evolutionarily stable if the correlation between fruit or seed production and seedling recruitment is sufficiently low. If an increase in fruit or seed production does not translate into an increase in fitness, then selection for increased pollination would not occur or would be too weak. To evaluate this alternative, quantitative studies on the transition from seed to seedling in natural orchid populations are required. UNIV MIAMI, DEPT BIOL, CORAL GABLES, FL 33124 USA Ackerman J.D., 1981, Madrono, V28, P101; ACKERMAN JD, 1990, ECOLOGY, V71, P263, DOI 10.2307/1940265; ACKERMAN JD, 1989, SYST BOT, V14, P101, DOI 10.2307/2419054; ACKERMAN JD, 1991, SYST BOT, V16, P182, DOI 10.2307/2418982; Ackermann J. D., 1985, American Orchid Society Bulletin, V54, P326; BERRY PE, 1991, PLANT SYSTEMATIC EVO, V174, P92; BOYDEN TC, 1982, OECOLOGIA, V55, P178, DOI 10.1007/BF00384485; CALVO RN, 1990, AM J BOT, V77, P1378, DOI 10.2307/2444598; CALVO RN, 1990, AM NAT, V136, P499, DOI 10.1086/285110; CALVO RN, 1990, AM J BOT, V77, P736, DOI 10.2307/2444365; CALVO RN, 1990, THESIS U MIAMI CORAL; CASWELL H, 1980, ECOLOGY, V61, P19, DOI 10.2307/1937149; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV E L, 1982; COHEN D, 1990, AM NAT, V135, P218, DOI 10.1086/285040; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DARWIN C, 1977, VARIOUS CONTRIVANCES; DIERINGER G, 1982, OHIO J SCI, V82, P218; Fisher R. A, 1958, GENETICAL THEORY NAT; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; HAIG D, 1988, AM NAT, V131, P757, DOI 10.1086/284817; Harper J.L., 1977, POPULATION BIOL PLAN; HORVITZ CC, 1988, ECOLOGY, V69, P200, DOI 10.2307/1943175; JANZEN DH, 1977, AM NAT, V111, P365, DOI 10.1086/283166; JANZEN DH, 1980, BIOTROPICA, V12, P72, DOI 10.2307/2387776; JENNERSTEN O, 1991, OIKOS, V61, P197, DOI 10.2307/3545337; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; Lee T. D., 1988, Plant reproductive ecology: patterns and strategies, P179; LLOYD DG, 1980, NEW PHYTOL, V86, P81, DOI 10.1111/j.1469-8137.1980.tb00781.x; LUBBERS AE, 1989, ECOLOGY, V70, P85, DOI 10.2307/1938415; MEAGHER TR, 1987, ECOLOGY, V68, P803, DOI 10.2307/1938351; MELENDEZ EJ, 1990, THESIS U PUERTO RICO; MONTALVO AM, 1987, BIOTROPICA, V19, P24, DOI 10.2307/2388456; NILSSON LA, 1980, BOT NOTISER, V133, P367; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PRIMACK RB, 1989, ANNU REV ECOL SYST, V20, P367, DOI 10.1146/annurev.es.20.110189.002055; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHEMSKE DW, 1980, EVOLUTION, V34, P489, DOI 10.1111/j.1558-5646.1980.tb04838.x; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; SOHN JJ, 1977, ECOLOGY, V58, P1366, DOI 10.2307/1935088; SOKAL R., 1981, BIOMETRY; STEPHENSON AG, 1981, ANNU REV ECOL SYST, V12, P253, DOI 10.1146/annurev.es.12.110181.001345; SUTHERLAND S, 1984, ECOLOGY, V65, P1093, DOI 10.2307/1938317; THIEN LB, 1972, CAN J BOTANY, V50, P2319, DOI 10.1139/b72-300; WASER PM, 1991, ECOLOGY, V72, P771, DOI 10.2307/1940579; WHIGHAM DF, 1980, AM J BOT, V67, P550, DOI 10.2307/2442295; Williams GC, 1966, ADAPTATION NATURAL S; WILLSON MF, 1983, MATE CHOICE PLANTS; ZIMMERMAN JK, 1989, ECOLOGY, V70, P1192, DOI 10.2307/1941389; ZIMMERMAN JK, 1989, AM J BOT, V76, P67, DOI 10.2307/2444775; ZIMMERMAN M, 1988, AM NAT, V131, P723, DOI 10.1086/284815 53 144 151 0 41 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology JUN 1993 74 4 1033 1042 10.2307/1940473 10 Ecology Environmental Sciences & Ecology LD022 WOS:A1993LD02200007 2019-02-26 J ETGES, WJ ETGES, WJ GENETICS OF HOST-CACTUS RESPONSE AND LIFE-HISTORY EVOLUTION AMONG ANCESTRAL AND DERIVED POPULATIONS OF CACTOPHILIC DROSOPHILA-MOJAVENSIS EVOLUTION English Article ADAPTATION; CACTUS; DROSOPHILA-MOJAVENSIS; GENETIC CORRELATION; HERITABILITY; HOST RACE; LIFE HISTORY; REACTION NORM; STENOCEREUS GENOTYPE-ENVIRONMENT INTERACTION; QUANTITATIVE GENETICS; VARIABLE ENVIRONMENTS; COMMUNITY STRUCTURE; LARVAL PERFORMANCE; INSECT HERBIVORE; SEXUAL ISOLATION; DECAYING STEMS; FITNESS; COVARIATION The extent of host-specific genetic variation for two life-history traits, egg to adult developmental time and viability, and one morphological trait closely tied to fitness, adult thorax size, was exposed by employing a nested half-sib/full-sib breeding design with Baja and mainland populations of Drosophila mojavensis recently extracted from nature. This study was motivated by the presence of substantial variation in life histories among populations of D. mojavensis that use the fermenting tissues of particular species of columnar cacti for feeding and breeding in the Sonoran Desert. Full-sib progeny from all sire-dam crosses were split into cultures of agria cactus, Stenocereus gummosus, and organ pipe cactus, S. thurberi, to examine patterns of genotype-by-environment interaction for these fitness components. Baja flies expressed shorter egg-to-adult developmental times, higher viabilities, and smaller body sizes than mainland flies consistent with previous studies. Significant sire and dam components of variance were exposed for developmental time and thorax size. Genotype-by-environment interactions were significant at the level of dams for developmental time and nearly significant for viability (P = 0.09). Narrow- and broad-sense heritabilities were influenced by host cactus, sex, and population. No strong pattern of genetic correlation emerged among fitness components suggesting that host-range expansion has not been accompanied by formation of coadapted life histories, yet the ability to estimate genetic correlations and their standard errors was compromised by the unbalanced nature of the data set. Genetic correlations in performance across cacti were slightly positive, evidence for ecological generalism among populations explaining the observed pattern of multiple host cactus use within the species range of D. mojavensis. ETGES, WJ (reprint author), UNIV ARKANSAS, DEPT BIOL SCI, FAYETTEVILLE, AR 72701 USA. Etges, William/C-1389-2010 Etges, William/0000-0003-3651-5199 ARVESEN JN, 1970, BIOMETRICS, V26, P677, DOI 10.2307/2528715; AYRES MP, 1990, EVOLUTION, V44, P221, DOI 10.1111/j.1558-5646.1990.tb04295.x; Becker W, 1984, MANUAL QUANTITATIVE; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charlesworth B., 1984, EVOLUTIONARY ECOLOGY, P117; Clausen J., 1940, CARNEGIE I WASHINGTO, V520; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DELAGUERIE P, 1991, EVOL ECOL, V5, P361, DOI 10.1007/BF02214153; Dingle H., 1982, EVOLUTION GENETICS L; Downing RJ, 1985, THESIS U DENVER DENV; EHRMAN L, 1987, EVOL BIOL, V21, P1; Etges W.J., 1990, P37; ETGES WJ, 1992, HEREDITY, V68, P515, DOI 10.1038/hdy.1992.74; ETGES WJ, 1989, PHYSIOL ZOOL, V62, P170, DOI 10.1086/physzool.62.1.30160004; ETGES WJ, 1989, EVOLUTION, V43, P1316, DOI 10.1111/j.1558-5646.1989.tb02579.x; ETGES WJ, 1987, OECOLOGIA, V71, P375, DOI 10.1007/BF00378710; ETGES WJ, 1989, EVOL ECOL, V3, P189, DOI 10.1007/BF02270720; ETGES WJ, 1982, OIKOS, V38, P118, DOI 10.2307/3544573; Falconer D.S., 1981, INTRO QUANTITATIVE G; FELLOWS DP, 1972, ECOLOGY, V53, P850, DOI 10.2307/1934300; Fisher R.A., 1930, GENETICAL THEORY NAT; FOGLEMAN JC, 1985, MICROBIAL ECOL, V11, P165, DOI 10.1007/BF02010488; FUTUYMA DJ, 1980, SYST ZOOL, V29, P254, DOI 10.2307/2412661; FUTUYMA DJ, 1987, EVOLUTION, V41, P269, DOI 10.1111/j.1558-5646.1987.tb05796.x; Gibson A. C., 1986, CACTUS PRIMER; GOODNIGHT JH, 1978, SAS R102 SAS I TECHN; GOULD F, 1979, EVOLUTION, V33, P791, DOI 10.1111/j.1558-5646.1979.tb04735.x; GROETERS FR, 1988, EVOLUTION, V42, P631, DOI 10.1111/j.1558-5646.1988.tb04167.x; GUPTA AP, 1982, EVOLUTION, V36, P934, DOI 10.1111/j.1558-5646.1982.tb05464.x; HARE JD, 1986, EVOLUTION, V40, P1031, DOI 10.1111/j.1558-5646.1986.tb00570.x; HARTLEY HO, 1978, BIOMETRICS, V34, P233, DOI 10.2307/2530013; Heed W.B., 1989, P253; Heed W.B., 1982, P65; Heed W.B., 1986, Genetics and Biology of Drosophila, V3e, P311; Heed WB, 1981, DROS INFORM SERV, V56, P60; HEED WB, 1978, P LIFE SCI ECOLOGICA, P109; HOLLOWAY GJ, 1990, HEREDITY, V64, P323, DOI 10.1038/hdy.1990.40; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HSIAO TH, 1978, ENTOMOL EXP APPL, V24, P437, DOI 10.1111/j.1570-7458.1978.tb02804.x; Istock C.A., 1984, P143; Istock C.A., 1982, P7; ISTOCK CA, 1976, EVOLUTION, V30, P535, DOI 10.1111/j.1558-5646.1976.tb00931.x; JAENIKE J, 1981, AM NAT, V117, P830, DOI 10.1086/283771; JAENIKE J, 1989, EVOLUTION, V43, P1467, DOI 10.1111/j.1558-5646.1989.tb02597.x; JAENIKE J, 1986, P NATL ACAD SCI USA, V83, P2148, DOI 10.1073/pnas.83.7.2148; JAMES AC, 1988, EVOLUTION, V42, P626, DOI 10.1111/j.1558-5646.1988.tb04166.x; JOHNSON WR, 1980, THESIS U ARIZONA TUC; JOHNSTON JS, 1976, AM NAT, V110, P629, DOI 10.1086/283095; JOHNSTON JS, 1977, GENETICS, V77, pS32; KLEIN TW, 1974, BEHAV GENET, V4, P171; KREBS RA, 1989, EVOLUTION, V43, P908, DOI 10.1111/j.1558-5646.1989.tb05189.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1980, GENETICS, V94, P203; Lewontin R.C., 1981, pi; Mangan R.L., 1982, P257; Markow T.A., 1982, P273; MITCHELLOLDS T, 1986, EVOLUTION, V40, P107, DOI 10.1111/j.1558-5646.1986.tb05722.x; NEWMAN RA, 1988, EVOLUTION, V42, P763, DOI 10.1111/j.1558-5646.1988.tb02494.x; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; OSTLE B, 1975, STATISTICS RES; PARKER ED, 1984, EVOLUTION, V38, P1186, DOI 10.1111/j.1558-5646.1984.tb05642.x; PERRINS CM, 1974, CONDOR, V76, P225, DOI 10.2307/1366744; PROUT T, 1989, GENETICS, V123, P803; QUEZADADIAZ JE, 1992, HEREDITY, V68, P373, DOI 10.1038/hdy.1992.53; RAUSHER MD, 1984, EVOLUTION, V38, P582, DOI 10.1111/j.1558-5646.1984.tb00324.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROBERTSON A, 1959, BIOMETRICS, V15, P469, DOI 10.2307/2527750; ROBERTSON A, 1955, COLD SPRING HARB SYM, V20, P225, DOI 10.1101/SQB.1955.020.01.021; ROFF D, 1977, J ANIM ECOL, V46, P443, DOI 10.2307/3822; ROFF DA, 1987, HEREDITY, V58, P103, DOI 10.1038/hdy.1987.15; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; RUIZ A, 1988, J ANIM ECOL, V57, P237, DOI 10.2307/4775; RUIZ A, 1990, J HERED, V81, P30, DOI 10.1093/oxfordjournals.jhered.a110922; Scheffe H., 1959, ANAL VARIANCE; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SHAW RG, 1986, EVOLUTION, V40, P492, DOI 10.1111/j.1558-5646.1986.tb00502.x; SIMMONS MJ, 1977, ANNU REV GENET, V11, P49, DOI 10.1146/annurev.ge.11.120177.000405; SOKAL R., 1981, BIOMETRY; STAMLER J, 1993, DIABETES CARE, V16, P434, DOI 10.2337/diacare.16.2.434; STARMER WT, 1977, P NATL ACAD SCI USA, V74, P387, DOI 10.1073/pnas.74.1.387; STARMER WT, 1982, MICROBIAL ECOL, V8, P71, DOI 10.1007/BF02011463; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VIA S, 1984, EVOLUTION, V38, P881, DOI 10.1111/j.1558-5646.1984.tb00359.x; VIA S, 1984, EVOLUTION, V38, P896, DOI 10.1111/j.1558-5646.1984.tb00360.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; VIA S, 1990, ANNU REV ENTOMOL, V35, P421, DOI 10.1146/annurev.en.35.010190.002225; VIA S, 1991, EVOLUTION, V45, P827, DOI 10.1111/j.1558-5646.1991.tb04353.x; WASSERMAN M, 1977, EVOLUTION, V31, P812, DOI 10.1111/j.1558-5646.1977.tb01073.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; YAMADA Y, 1962, JPN J GENET, V37, P498, DOI 10.1266/jjg.37.498; 1985, SAS USERS GUIDE STAT 96 47 47 1 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 1993 47 3 750 767 10.2307/2410181 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity MA416 WOS:A1993MA41600004 28567893 Bronze 2019-02-26 J DIXON, AFG; KUNDU, R; KINDLMANN, P DIXON, AFG; KUNDU, R; KINDLMANN, P REPRODUCTIVE EFFORT AND MATERNAL AGE IN ITEROPAROUS INSECTS USING APHIDS AS A MODEL GROUP FUNCTIONAL ECOLOGY English Article LIFE-HISTORY THEORY; OFFSPRING SIZE; OPTIMAL ENERGY ALLOCATION MODEL 1. Life-history theory predicts that as the residual reproductive value of an organism declines its current investment in reproduction should increase. This hypothesis has not been previously tested for insects. 2. The results of a laboratory study on the reproductive investment of the willow-carrot aphid, Cavariella aegopodii and the vetch aphid, Megoura viciae were compared with the predictions of the aphid optimal energy partitioning model. 3. The model's assumption that the fecundity function in aphids is triangular was supported. 4. As predicted by the model, the sizes of gonads decrease and those of the offspring increase with the age of the mother. 5. The large offspring born towards the end of a mother's life achieve a greater adult weight, mean relative growth rate and potential intrinsic rate of increase than the small offspring born early in a mother's life. The better performance of the last born is a consequence of their large birth size. 6. The size of the offspring varies inversely and the reproductive investment positively with residual reproductive value. The increase in offspring size towards the end of a mother's life is a consequence of the time lag between ovulation and birth and the cessation of ovulation well before a mother dies. The excess of energy produced by the soma in old mothers is used to accelerate the growth rate of the remaining offspring. This result can be extended to other groups that conform to the aphid model's assumptions. DIXON, AFG (reprint author), UNIV E ANGLIA,SCH BIOL SCI,NORWICH NR4 7TJ,NORFOLK,ENGLAND. Kindlmann, Pavel/H-7718-2014 0 23 24 0 6 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. JUN 1993 7 3 267 272 10.2307/2390204 6 Ecology Environmental Sciences & Ecology LH022 WOS:A1993LH02200003 2019-02-26 J TILLEY, SG; BERNARDO, J TILLEY, SG; BERNARDO, J LIFE-HISTORY EVOLUTION IN PLETHODONTID SALAMANDERS HERPETOLOGICA English Article DESMOGNATHUS-OCHROPHAEUS; LARVAL PERIODS; EURYCEA-BISLINEATA; NATURAL-SELECTION; COASTAL-PLAIN; BODY SIZE; METAMORPHOSIS; POPULATIONS; FUSCUS; GROWTH DUKE UNIV, DEPT ZOOL, DURHAM, NC 27708 USA TILLEY, SG (reprint author), SMITH COLL, DEPT BIOL SCI, NORTHAMPTON, MA 01063 USA. Bernardo, Joseph/C-2403-2008 Bernardo, Joseph/0000-0002-5516-4710 AUSTIN RM, 1992, HERPETOLOGICA, V48, P313; Bernardo J., 1991, THESIS DUKE U DURHAM; BERNARDO J, 1993, IN PRESS AM NAT; BERNARDO J, 1993, IN PRESS TRENDS ECOL; Brandon R.A., 1982, Herpetological Review, V13, P46; BRANDON RA, 1965, COPEIA, P67; BRUCE R C, 1972, Herpetologica, V28, P230; BRUCE R C, 1991, Herpetological Review, V22, P44; BRUCE RC, 1990, COPEIA, P1; BRUCE RC, 1978, HERPETOLOGICA, V34, P53; BRUCE RC, 1985, COPEIA, P847; BRUCE RC, 1988, HERPETOLOGICA, V44, P218; BRUCE RC, 1989, HERPETOLOGICA, V45, P144; BRUCE RC, 1974, AM MIDL NAT, V92, P173, DOI 10.2307/2424210; BRUCE RC, 1978, HERPETOLOGICA, V34, P325; BRUCE RC, 1990, J HERPETOL, V24, P126, DOI 10.2307/1564219; BRUCE RC, 1982, COPEIA, P117; BRUCE RC, 1982, COPEIA, P755; BRUCE RC, 1978, COPEIA, P417; BRUCE RC, 1969, EVOLUTION, V23, P50, DOI 10.1111/j.1558-5646.1969.tb03492.x; BRUCE RC, 1985, HERPETOLOGICA, V41, P19; BRUCE RC, 1975, COPEIA, P129; BRUCE RC, 1988, COPEIA, P15, DOI 10.2307/1445917; COLLAZO A, 1989, AM ZOOL, V29, pA86; DANSTEDT RT, 1975, ECOLOGY, V56, P1054, DOI 10.2307/1936146; Dunn E. R., 1926, SALAMANDERS FAMILY P; DUNN ER, 1917, P US NATL MUS, V53, P393; Hairston N. G, 1987, COMMUNITY ECOLOGY SA; HAIRSTON NG, 1949, ECOL MONOGR, V19, P49, DOI 10.2307/1943584; HAIRSTON NG, 1983, COPEIA, P1024; HALL R J, 1977, Herpetologica, V33, P109; HARRISON JR, 1967, AM MIDL NAT, V77, P356, DOI 10.2307/2423347; HIGHTON R, 1976, EVOLUTION, V30, P33, DOI 10.1111/j.1558-5646.1976.tb00879.x; Highton R., 1989, Illinois Biological Monographs, V57, P1; HIGHTON R, 1962, COPEIA, P597; Houck L.D., 1977, P43; HOUCK LD, 1977, COPEIA, P70; JACOBS JF, 1987, HERPETOLOGICA, V43, P423; JONES RL, 1986, HERPETOLOGICA, V42, P323; JUTERBOCK JE, 1990, HERPETOLOGICA, V46, P291; JUTERBOCK JE, 1984, J HERPETOL, V18, P240, DOI 10.2307/1564077; JUTERBOCK JE, 1978, J HERPETOL, V12, P217, DOI 10.2307/1563410; KARLIN AA, 1989, OHIO BIOL SURV B, V7, P174; KEEN WH, 1980, J HERPETOL, V14, P7, DOI 10.2307/1563868; LARSON A, 1984, GENETICS, V106, P293; LARSON A, 1984, EVOL BIOL, V17, P119; MAROF BS, 1962, AM MIDL NAT, V67, P1; MEANS D B, 1974, Bulletin of the Florida State Museum Biological Sciences, V18, P1; MEANS DB, 1989, HERPETOLOGICA, V45, P37; NAGEL J W, 1977, Herpetologica, V33, P13; ORGAN JA, 1961, ECOL MONOGR, V31, P189, DOI 10.2307/1950754; ORGAN JAMES A., 1961, AMER MIDLAND NAT, V66, P384, DOI 10.2307/2423037; ORR LP, 1989, OHIO BIOL SURV B, V7, P181; PFINGSTEN RA, 1989, OHIO BIOL SURV B, V7, P229; PFINGSTEN RA, 1989, OHIO BIOL SURV B, V7, P253; Ricklefs R.E., 1973, P1; SCHWANER TD, 1970, COPEIA, P571; SEMLITSCH RD, 1980, HERPETOLOGICA, V36, P6; SEMLITSCH RD, 1983, HERPETOLOGICA, V39, P48; TAYLOR CL, 1990, SOUTHWEST NAT, V35, P468, DOI 10.2307/3672054; Tilley S.G., 1977, P1; Tilley S.G., 1981, OCC PAPERS MUS ZOOL, V695, P1; TILLEY SG, 1974, ECOLOGY, V55, P808, DOI 10.2307/1934416; TILLEY SG, 1990, P NATL ACAD SCI USA, V87, P2715, DOI 10.1073/pnas.87.7.2715; TILLEY SG, 1980, COPEIA, P806, DOI 10.2307/1444460; TILLEY SG, 1973, ECOLOGY, V54, P3, DOI 10.2307/1934370; TILLEY SG, 1978, EVOLUTION, V32, P93, DOI 10.1111/j.1558-5646.1978.tb01101.x; TILLEY SG, 1968, EVOLUTION, V22, P806, DOI 10.1111/j.1558-5646.1968.tb03479.x; TRAUTH SE, 1988, SOUTHWEST NAT, V33, P234, DOI 10.2307/3671902; TRAUTH SE, 1990, P ARKANSAS ACAD SCI, V44, P107; Vial J. L., 1968, Revista de Biologia Tropicale, V15, P13; VOSS SR, 1993, IN PRESS COPEIA; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; WAKE DB, 1991, AM NAT, V138, P543, DOI 10.1086/285234; WAKE DB, 1987, ANN MO BOT GARD, V74, P242, DOI 10.2307/2399397; Wilder IW, 1913, BIOL BULL-US, V24, P251, DOI 10.2307/1536169; WILDER IW, 1920, COPEIA, V84, P63; YANEV KP, 1980, CALIFORNIA ISLANDS, P531 78 62 64 1 13 ALLEN PRESS INC LAWRENCE 810 E 10TH ST, LAWRENCE, KS 66044 USA 0018-0831 1938-5099 HERPETOLOGICA Herpetologica JUN 1993 49 2 154 163 10 Zoology Zoology LL087 WOS:A1993LL08700002 2019-02-26 J LIVEZEY, BC LIVEZEY, BC AN ECOMORPHOLOGICAL REVIEW OF THE DODO (RAPHUS-CUCULLATUS) AND SOLITAIRE (PEZOPHAPS-SOLITARIA), FLIGHTLESS COLUMBIFORMES OF THE MASCARENE ISLANDS JOURNAL OF ZOOLOGY English Review PIGEON COLUMBA-LIVIA; PRINCIPAL COMPONENTS-ANALYSIS; BODY SIZE; SEXUAL DIMORPHISM; STEAMER-DUCKS; TERRESTRIAL VERTEBRATES; QUANTITATIVE GENETICS; BROOD AMALGAMATION; ALTRICIAL BIRDS; COOLING POWER This paper describes a morphological study of the dodo Raphus cucullatus and solitaire Pezophaps solitaria-extinct, flightless Columbiformes of the Mascarene Islands, Indian Ocean--based on mensural data from 387 skeletal elements, comparative data from four flighted species of Columbidae, ancillary mensural data from other Columbiformes, and the literature. Raphus cucullatus and P. solitaria are characterized by great body size and substantially reduced pectoral limbs. Sexual size dimorphism is unusually great in both R. cucullatus and P. solitaria, and sexual dimorphism of P. solitaria may be the greatest of any carinate bird. Estimates of body mass (kg), based on femur lengths of flighted columbids and adjusted for flightlessness and seasonal deposition of fat, were: 21 and 17 for male and female R. cucullatus. and 28 and 17 for male and female P. solitaria, respectively. Pectoral reduction is greater in R. cucullatus than in P. solitaria, but both species are characterized by differential shortening of wing elements, changes in the sternum and scapulocoracoidal angle. R. cucullatus has disproportionately long femora, short tarsometatarsi and long digits, whereas P. solitaria has disproportionately long tibiotarsi, short tarsometatarsi and short digits; relative shaft widths of leg elements are substantially greater in both R. cucullatus and P. solitaria than in flighted columbids. As is typical of other birds, giantism of R. cucullatus and P. solitaria probably was associated with physiological changes, increased longevity, enhanced thermodynamic efficiency and improved capacity for fasting. Evidently both R. cucullatus and P. solitaria were primarily frugivorous, and foraging-related morphological peculiarities include an enlarged crop and the retention of 'gizzard stones'. Both species had clutch sizes of one, and egg masses of the flightless species approximated that predicted for a flighted columbid of equal size. Extreme sexual dimorphism and territoriality of P. solitaria suggest that the species may have been polygynous and perhaps lek-breeding. The description of 'gigantic immaturity' in R. cucullatus by Strickland & Melville (1848) probably represents the first recognition of paedomorphosis in any species of bird. Pectoral underdevelopment and (in at least R. Cucullatus) comparatively 'juvenile' plumage in adults substantiate the role of paedomorphosis in the ontogeny of flightlessness in R. cucullatus and P. solitaria; both species also were characterized by peramorphic skulls, trunks and pelvic appendages. The common assumption of monophyly of the flightless species (i.e. Raphidae) lacks rigorous analytical support. In spite of the anthropogenous extinction of both species, both R. cucullatus and P. solitaria were evolutionarily innovative in ontogeny, morphological characters and life-history strategies. LIVEZEY, BC (reprint author), UNIV KANSAS, MUSEUM NAT HIST, LAWRENCE, KS 66045 USA. Abbott I., 1980, Advances in Ecological Research, V11, P329, DOI 10.1016/S0065-2504(08)60269-X; Abs M., 1983, P3; ALBERCH P, 1979, PALEOBIOLOGY, V5, P296; ALBERCH P, 1989, GEOBIOS, V12, P21, DOI DOI 10.1016/S0016-6995(89)80006-3; Alberch P., 1982, EVOL DEV, P313, DOI DOI 10.1007/978-3-642-45532-2-15; ALEXANDER RM, 1983, J ZOOL, V201, P363; ALEXANDER RM, 1983, J ZOOL, V200, P215; ALEXANDER RMN, 1984, J THEOR BIOL, V109, P621, DOI 10.1016/S0022-5193(84)80162-9; AMADON D, 1977, WILSON BULL, V89, P619; AMADON DEAN, 1959, PROC AMER PHIL SOC, V103, P531; AMADON DEAN, 1966, P18; Anderson AJ, 1989, PRODIGIOUS BIRDS MOA; AR A, 1978, EVOLUTION, V32, P655, DOI 10.1111/j.1558-5646.1978.tb04610.x; Archey G., 1941, Bull Aukland Inst Mus, Vno. 1, P1; ATCHLEY WR, 1987, EVOLUTION, V41, P316, DOI 10.1111/j.1558-5646.1987.tb05800.x; Aulie A., 1983, P117; Ayala FJ, 1974, STUDIES PHILOS BIOL, P339; Baker R. H., 1951, University of Kansas Publications of the Museum of Natural History, V3, P1; BALDWIN S. PRENTISS, 1938, AUK, V55, P416; BARTHOLOMEW GEORGE A., 1963, AUK, V80, P504; BARTLETT AD, 1951, P ZOOL SOC LOND, V1851, P280; BARTON NH, 1984, ANNU REV ECOL SYST, V15, P133, DOI 10.1146/annurev.es.15.110184.001025; Baumel J.J., 1979, P53; BAUMEL JJ, 1990, J EXP BIOL, V151, P263; BAUMEL JJ, 1988, ADV ANAT EMBRYOL CEL, V110, P1; BEAMS H. W., 1931, PHYSIOL ZOOL, V4, P486; BENNETT PM, 1987, J ZOOL, V213, P327, DOI 10.1111/j.1469-7998.1987.tb03708.x; BOAG PT, 1988, 19 ACT C INT ORN OTT, V2, P1550; BONNER J T, 1968, Journal of Paleontology, V42, P1; Bonner J. T., 1982, EVOL DEV, P259; BONNER JT, 1974, DEVELOPMENT; BRACE CL, 1963, AM NAT, V97, P39, DOI 10.1086/282252; Bradbury J.W., 1981, P138; BRADBURY JW, 1987, SEXUAL SELECTION TES, P143; BRANDT JF, 1867, MELANG BIOL B ACAD S, V6, P233; BRANDT JF, 1848, VERH RUSS KAISER MIN, P201; BRODERIP WJ, 1859, T ZOOL SOC LONDON, V4, P197; BRODERIP WJ, 1859, T ZOOL SOC LONDON, V4, P183; Brodkorb P., 1971, Bull Fla St Mus Biol Sci, V15, P163; BROM TG, 1989, J ZOOL, V218, P233, DOI 10.1111/j.1469-7998.1989.tb02535.x; Brooks DR, 1991, PHYLOGENY ECOLOGY BE; Brown J. L., 1964, Wilson Bulletin, V76, P160; BROWN JH, 1986, NATURE, V324, P248, DOI 10.1038/324248a0; BROWN JL, 1969, WILSON BULL, V81, P293; BRY JT, 1601, INDIAN ORIENTALIS 4; BUFFON GLL, 1772, HIST NATURELLE OISEA, V2; BURLEY N, 1980, AM NAT, V115, P223, DOI 10.1086/283556; BURTON PJK, 1974, J ZOOL, V174, P255; Butendieck E., 1982, Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, V107, P153; CABANA G, 1982, AM NAT, V120, P17, DOI 10.1086/283966; Calder W. A, 1984, SIZE FUNCTION LIFE H; Calder W.A. III., 1974, Publications Nuttall Orn Club, VNo. 15, P86; CALDER WA, 1978, COMP BIOCHEM PHYS A, V60, P479, DOI 10.1016/0300-9629(78)90020-8; CALDER WA, 1983, J THEOR BIOL, V102, P135, DOI 10.1016/0022-5193(83)90266-7; Calder WA, 1974, AVIAN BIOL, V4, P259; Caldwell J., 1875, Proceedings of the Zoological Society, P644; Calow P., 1977, Advances in Ecological Research, V10, P1, DOI 10.1016/S0065-2504(08)60233-0; CAREY C, 1980, CONDOR, V82, P335, DOI 10.2307/1367405; CARLQUIS.S, 1966, Q REV BIOL, V41, P247, DOI 10.1086/405054; Carlquist S., 1965, ISLAND LIFE NATURAL; Carlquist S.J., 1974, ISLAND BIOL; CARRIER D, 1990, J ZOOL, V222, P375, DOI 10.1111/j.1469-7998.1990.tb04039.x; CARSON HL, 1984, ANNU REV ECOL SYST, V15, P97, DOI 10.1146/annurev.es.15.110184.000525; CASE TJ, 1978, ECOLOGY, V59, P1, DOI 10.2307/1936628; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CAUCHE F, 1651, RELATIONS VERITABLES; Chadwick A., 1983, P55; Cheke A.S., 1987, P5, DOI 10.1017/CBO9780511735769.003; CHEVERUD JM, 1984, J THEOR BIOL, V110, P155, DOI 10.1016/S0022-5193(84)80050-8; CLARK G, 1966, J THEOR BIOL, V8, P141; CLARK GA, 1979, CONDOR, V81, P193, DOI 10.2307/1367288; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Cowles G.S., 1987, P90, DOI 10.1017/CBO9780511735769.004; CRACRAFT J, 1976, J MORPHOL, V150, P495; CRACRAFT J, 1976, Paleobiology, V2, P166; CRACRAFT J, 1981, AUK, V98, P681; Cracraft J., 1971, B AM MUS NAT HIST, V144, P171; CRAIG A, 1991, J EXP BIOL, V155, P193; CUPPY W, 1951, BECOME EXTINCT; CURIO E, 1973, EXPERIENTIA, V29, P1045, DOI 10.1007/BF01946716; CURREY JD, 1985, J ZOOL, V206, P453; Darwin C, 1859, ORIGIN SPECIES; DAVISON GWH, 1985, J ZOOL, V206, P353; De Beer G, 1937, DEV VERTEBRATE SKULL; De Beer G.R., 1951, EMBRYOS ANCESTORS; DEBLAINVILLE HD, 1930, B SCI NAT GEOL, V22, P122; DIAL KP, 1987, ANAT RECORD, V218, P284, DOI 10.1002/ar.1092180309; Diamond J.M., 1984, P191; DIAMOND JM, 1981, NATURE, V293, P507, DOI 10.1038/293507a0; DIAMOND JM, 1970, P NATL ACAD SCI USA, V67, P529, DOI 10.1073/pnas.67.2.529; DIAMOND JM, 1979, B AM MUS NAT HIST, V164, P467; DIXON WJ, 1988, BMDP STATISTICAL SOF; Dobzhansky T, 1970, GENETICS EVOLUTIONAR; Draper N., 1981, APPLIED REGRESSION A; Duncan JS, 1828, ZOOL J, V3, P554; EADIE JM, 1988, CAN J ZOOL, V66, P1709, DOI 10.1139/z88-247; Feduccia A., 1980, AGE BIRDS; FENCHEL T, 1974, OECOLOGIA, V14, P317, DOI 10.1007/BF00384576; FERNS PN, 1992, J FIELD ORNITHOL, V63, P57; Fiirbringer M., 1888, UNTERSUCHUNGEN MORPH; FISHER DC, 1986, LIFE SCI RES REP, V36, P99; Flury B., 1988, COMMON PRINCIPAL COM; FRIEDMANN H, 1956, REP SMITHSON INSTN, P475; Fuller E., 1987, EXTINCT BIRDS; Furbringer M, 1902, JENA Z NATURW, V36, P289; Gadow H., 1892, Proceedings of the Zoological Society, P229; Gadow H., 1888, Proceedings of the Zoological Society, P655; GATESY SM, 1991, J MORPHOL, V209, P83, DOI 10.1002/jmor.1052090107; GEOFFROYSTHILAI.I, 1830, B SCI NAT GEOL, V22, P122; GILLIARD E. THOMAS, 1961, BULL AMER MUS NAT HIST, V123, P1; GLENNY FRED H., 1954, OHIO JOUR SCI, V54, P111; GOLDSCHMIDT RB, 1940, MATERIAL BASIS EVOLU; GOODMAN SM, 1990, FIELDIANA ZOOL, V60, P1; GOODWIN D, 1983, PHYSL BEHAVIOUR PIGE, P286; GOODWIN D, 1974, PUBLS BR MUS NAT HIS, V745, P78; Goodwin D, 1983, PIGEONS DOVES WORLD; Gould S. J, 1977, ONTOGENY PHYLOGENY; Gould S. J., 1988, EVOLUTIONARY PROGR, P319; GOULD SJ, 1971, AM NAT, V105, P113, DOI 10.1086/282710; GOULD SJ, 1966, BIOL REV, V41, P587, DOI 10.1111/j.1469-185X.1966.tb01624.x; GRAJAL A, 1989, SCIENCE, V245, P1236, DOI 10.1126/science.245.4923.1236; GRANT PR, 1966, AM NAT, V100, P451, DOI 10.1086/282438; GRANT PR, 1965, EVOLUTION, V19, P355, DOI 10.2307/2406446; GRANT PR, 1968, SYST ZOOL, V17, P319, DOI 10.2307/2412010; GRANT PR, 1965, SCIENCE, V107, P350; Grasse P. P., 1977, EVOLUTION LIVING ORG; Greenewalt C. H., 1962, SMITHSON MISC COLLNS, V144, P1, DOI DOI 10.1007/S00360-016-1016-Y; Griminger P., 1983, P19; Hachisuka M, 1953, DODO KINDRED BIRDS E; HACKISUKA M, 1937, P BIOL SOC WASH, V50, P69; HAGEN YNGVAR, 1952, RES NORWEGIAN SCI EXPED TRISTAN DE CUNHA 1927 1928, V20, P1; Halliday Tim R., 1978, VANISHING BIRDS THEI; HALLIDAY TR, 1987, SEXUAL SELECTION TES, P247; Hardy A. C., 1954, P122; HARTMAN FRANK A., 1961, SMITHSONIAN MISC COLL, V143, P1; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HECTOR J, 1873, T NZ I, V6, P76; HECTOR J, 1873, P ZOOL SOC LOND, P763; Herbert T., 1677, SOME YEARS TRAVELS D; Herbert T., 1634, RELATION SOME YEARES; HOGLUND J, 1989, AM NAT, V134, P72, DOI 10.1086/284966; HOOGERWERF A, 1971, Emu, V71, P1; HUMPHREY PS, 1987, BIRD BEHAV, V7, P67, DOI 10.3727/015613887791918114; HUTCHINSON GE, 1954, AM SCI, V42, P300; Huxley Julian, 1953, EVOLUTION ACTION; Jackson JE, 1991, USERS GUIDE PRINCIPA; JACOB F, 1977, SCIENCE, V196, P1161, DOI 10.1126/science.860134; Jacob F., 1982, POSSIBLE ACTUAL; JAMES HF, 1983, NAT HIST, V92, P30; JANIGA M, 1985, Biologia (Bratislava), V40, P189; JCJr Greenway, 1967, EXTINCT VANISHING BI; JOHNSTONE R E, 1981, Records of the Western Australian Museum, V9, P7; JOHST GEORG, 1961, JOUR ORNITHOL, V102, P88, DOI 10.1007/BF01671118; Jolliffe I., 1986, PRINCIPAL COMPONENT; KARASOV WH, 1990, STUD AVIAN BIOL, V13, P391; KAUFMANN JH, 1983, BIOL REV, V58, P1, DOI 10.1111/j.1469-185X.1983.tb00379.x; KAUFMANN L, 1990, FINDING GROUPS DATA; KENDEIGH SC, 1972, AM NAT, V106, P79, DOI 10.1086/282753; KING JR, 1972, 15TH P INT ORN C, P200; KLIMA M, 1962, PRACE BRNENSKE ZAKLA, V34, P151; KNOPFLI W, 1918, JENA Z NATURW, V55, P577; Kosswig C., 1963, Zeitschrift fuer Zoologische Systematik und Evolutionsforschung, V1, P205; LABARBERA M, 1986, 36 LIF SCI RES REP, P69; Lack D, 1968, ECOLOGICAL ADAPTATIO; LACK D, 1976, STUD ECOL, V3, P1; Lambrecht K, 1933, HDB PALAEORNITHOLOGI; LANDE R, 1978, EVOLUTION, V32, P73, DOI 10.1111/j.1558-5646.1978.tb01099.x; LANDE R, 1987, SEXUAL SELECTION TES, P83; LEGAUT F, 1708, VOYAGE ADVENTURES F; Levinton J, 1988, GENETICS PALAEONTOLO; Lewontin RC, 1966, SYST ZOOL, V15, P141, DOI [10.2307/2411632, DOI 10.2307/2411632]; LINDSTEDT SL, 1976, CONDOR, V78, P91, DOI 10.2307/1366920; Linnaeus C, 1758, SYSTEMA NATURAE REGN, V1; LIVEZEY BC, 1985, CONDOR, V87, P154, DOI 10.2307/1367152; LIVEZEY BC, 1984, CONDOR, V86, P368, DOI 10.2307/1366809; LIVEZEY BC, 1990, CONDOR, V92, P639, DOI 10.2307/1368685; LIVEZEY BC, 1988, AUK, V105, P681; LIVEZEY BC, 1992, ZOOL J LINN SOC-LOND, V105, P155, DOI 10.1111/j.1096-3642.1992.tb01229.x; LIVEZEY BC, 1989, WILSON BULL, V101, P410; LIVEZEY BC, 1989, EVOLUTION, V43, P29, DOI 10.1111/j.1558-5646.1989.tb04205.x; LIVEZEY BC, 1986, EVOLUTION, V40, P540, DOI 10.1111/j.1558-5646.1986.tb00506.x; LIVEZEY BC, 1992, J MORPHOL, V213, P105, DOI 10.1002/jmor.1052130108; LIVEZEY BC, 1989, J ZOOL, V219, P269, DOI 10.1111/j.1469-7998.1989.tb02582.x; LIVEZEY BC, IN PRESS J VERT PALE; LOWE PR, 1928, EVOLUTION, V70, P99; LOWE PR, 1926, EVOLUTION LAWRENCE K, V68, P152; Lucas F. A., 1895, Report of the United States National Museum, P653; LUTTSCHWAGER J, 1961, DRONTEVOGEL; Luttschwager J., 1959, PEZOPHAPS ZOOL ANZ, V162, P127; LYDEKKER R, 1991, CATALOGUE FOSSIL BIR; MAC ARTHUR ROBERT H., 1967; MACE GM, 1983, AM NAT, V121, P120, DOI 10.1086/284043; MAGNAN A, 1922, SCI NAT ZOOL, V5, P125; MAGNAN A, 1913, B MUS HIST NAT PARIS, V19, P45; MALOIY GMO, 1979, J ZOOL, V187, P161; Marsh O. C., 1880, REPORT GEOLOGICAL EX, V7, P1; Martin R., 1904, ZOOL JB, V20, P167; MARTINEAU L, 1988, J EXP BIOL, V136, P193; Mayo O., 1983, NATURAL SELECTION IT; MAYR E, 1954, B AM MUS NAT HIST, V103, P317; Mayr E., 1951, AM MUS NOVIT, P1; MCGOWAN C, 1989, J ZOOL, V218, P537, DOI 10.1111/j.1469-7998.1989.tb04997.x; McKinney M.L., 1988, Topics in Geobiology, V7, P17; McKinney M.L., 1990, P28; McKinney M.L., 1990, P75; McKinney M.L., 1988, Topics in Geobiology, V7, P327; McKinney ML, 1991, HETEROCHRONY EVOLUTI; MCKINNEY ML, 1988, TOPICS GEOBIOL, V7, P1; McLachlan G. J., 1988, MIXTURE MODELS INFER; MCNAB BK, 1988, OECOLOGIA, V77, P343, DOI 10.1007/BF00378040; MCNAB BK, 1966, CONDOR, V68, P47, DOI 10.2307/1365174; MCNAB BK, 1983, J ZOOL, V199, P1; McNamara K.J., 1990, P59; MCNAMARA KJ, 1986, J PALEONTOL, V60, P4, DOI 10.1017/S0022336000021454; MILNEEDWARDS A, 1866, ANN SCI NAT, V5, P355; MLIKOVSKY J, 1985, 18 ACT C INT ORN IL, V2, P1145; MLIKOVSKY J, 1982, EVOLUTION ENV, V2, P693; MORSE DH, 1975, BIOL REV, V50, P167, DOI 10.1111/j.1469-185X.1975.tb01056.x; Morton E.S., 1978, P123; MOSELEY HN, 1885, REP BR ASS ADVMT SCI, V54, P782; Moseley HN, 1885, P AM ASS ADVMT SCI, V33, P542; Mullenhoff K., 1885, PFLUGERS ARCH GES PH, V35, P407; MULLER GB, 1991, ANNU REV ECOL SYST, V22, P229, DOI 10.1146/annurev.ecolsys.22.1.229; Nauck E. T., 1930, Gegenbaurs Morphologisches Jahrbuch, V64, P541; NAUCK E. TH, 1930, ANAT ANZ, V68, P416; Newton A., 1869, PHILOS T ROY SOC LON, V159, P327, DOI DOI 10.1098/RSTL.1869.0011; Newton A, 1893, DICT BIRDS 1; Newton Alfred, 1865, Proceedings of the Zoological Society, P715; Newton Alfred, 1865, Proceedings of the Zoological Society, P199; Newton E, 1893, T ZOOL SOC LONDON, VXIII, P281; NEWTON E, 1879, PHILOS T ROY SOC LON, V168, P438; NICE MARGARET M., 1941, AMER MIDLAND NAT, V26, P441, DOI 10.2307/2420732; NITECKI MH, 1988, EVOLUTIONARY PROGR, P3; Oliver W. R. B., 1949, Dominion Mus. Bull. Wellington N.Z., V15, P1; Olson S.L., 1985, Avian Biology, V8, P79; Olson S. L., 1991, ORNITHOL MONOGR, V45, P1, DOI [10. 2307/40166794, DOI 10.2307/40166794]; OLSON SL, 1971, BIRD BANDING, V42, P70; OTTOW B., 1950, K SVENSKA VETENSKAPSAKAD HANDL, V1, P1; OUDEMANS AC, 1917, VERHAND KONINKL AKAD, V19, P1; OWADALLY AW, 1979, SCIENCE, V203, P1363, DOI 10.1126/science.203.4387.1363; Owen R., 1879, MEMOIRS EXTINCT WING; Owen R., 1872, T ZOOLOGICAL SOC LON, V7, P513; OWEN R, 1866, T ZOOL SOC LONDON, V6, P49; Owen R, 1875, T ZOOLOGICAL SOC LON, V9, P253; OWEN R, 1866, MEMOIR DODO; OWEN R, 1846, T ZOOL SOC LONDON, V3, P331; Partridge L., 1989, P421; PARTRIDGE L, 1987, SEXUAL SELECTION TES, P265; PAYNE RB, 1984, ORNITHOL MONOGR, V33, P1, DOI DOI 10.2307/40166729; PENNYCUICK CJ, 1967, J EXP BIOL, V46, P219; Pennycuick CJ, 1975, AVIAN BIOL, P1; PERSSON L, 1985, AM NAT, V126, P261, DOI 10.1086/284413; PETERS JL, 1937, CHECKLIST BIRDS WORL, V3; PETERS N, 1988, Z ZOOL SYST EVOL, V26, P430; PETERS N, 1968, Zeitschrift fuer Morphologie und Oekologie der Tiere, V62, P211, DOI 10.1007/BF00401485; Peters R.H., 1983, P1; PETERS RH, 1983, OECOLOGIA, V60, P89, DOI 10.1007/BF00379325; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIMM SL, 1988, AM NAT, V132, P757, DOI 10.1086/284889; POND CM, 1978, ANNU REV ECOL SYST, V9, P519, DOI 10.1146/annurev.es.09.110178.002511; POPLIN F, 1985, GEOBIOS-LYON, V18, P73, DOI 10.1016/S0016-6995(85)80182-0; Portmann A., 1938, Revue Suisse de Zoologie, V45, P273; PRANGE HD, 1979, AM NAT, V113, P103, DOI 10.1086/283367; Provine W.B., 1989, P43; RAHN H, 1975, AUK, V92, P750, DOI 10.2307/4084786; RAHN H, 1974, CONDOR, V76, P147, DOI 10.2307/1366724; Raikow R.J., 1985, P57; RALLS K, 1976, WILSON BULL, V88, P149; RAND A. L., 1954, WILSON BULL, V66, P127; Reinhardt JT, 1842, NATURH TIDSSKR, V4, P71; Reiss M. J, 1989, ALLOMETRY GROWTH REP; REISS MJ, 1986, J THEOR BIOL, V121, P163, DOI 10.1016/S0022-5193(86)80090-X; Rensch B., 1950, Bonner Zoologische Beitraege, V1, P58; Rensch B, 1959, EVOLUTION SPECIES LE; RENSHAW G, 1938, BIRD NOTES NEWS, V18, P85; RICKLEFS RE, 1984, ECOLOGY, V65, P1602, DOI 10.2307/1939139; RICKLEFS RE, 1979, BIOL REV, V54, P269, DOI 10.1111/j.1469-185X.1979.tb01013.x; RICKLEFS RE, 1973, IBIS, V115, P177, DOI 10.1111/j.1474-919X.1973.tb02636.x; RICKLEFS RE, 1969, ECOLOGY, V50, P1031, DOI 10.2307/1936894; RICKLEFS RE, 1968, IBIS, V110, P419, DOI 10.1111/j.1474-919X.1968.tb00058.x; RICKLEFS RE, 1974, PUBLICATIONS NUTTALL, V15, P152; RIEDMAN ML, 1982, Q REV BIOL, V57, P405, DOI 10.1086/412936; ROBERTSON HA, 1988, J ZOOL, V215, P217, DOI 10.1111/j.1469-7998.1988.tb04896.x; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; ROFSTAD G, 1986, J ZOOL, V208, P299; ROHWER FC, 1988, AUK, V105, P161; ROHWER S, 1982, AM ZOOL, V22, P531; ROMANOFF AL, 1960, AVIAN EMBRYO; Rothschild W., 1907, Ornis London, V14; Rothschild Walter, 1907, EXTINCT BIRDS ATTEMP; RYAN PG, 1989, CONDOR, V91, P465, DOI 10.2307/1368325; SALVADORI T, 1893, CATALOGUE BIRDS BRIT, V21; SAUNDERS DA, 1984, AUST J ZOOL, V32, P57, DOI 10.1071/ZO9840057; SAUNDERS JW, 1948, J EXP ZOOL, V108, P363, DOI 10.1002/jez.1401080304; SAVARD JPL, 1987, CAN J ZOOL, V65, P1548, DOI 10.1139/z87-239; Schinz H. R., 1937, Denkschriften der Schweizerischen Naturforschenden Gesellschaft, V72, P113; SCHMIDTNELSON K, 1984, SCALING ANIMAL SIZE; SCHMIDTNIELSEN K, 1972, SCIENCE, V177, P222, DOI 10.1126/science.177.4045.222; SCHOENER TW, 1968, ECOLOGY, V49, P123, DOI 10.2307/1933567; SCHONWETTER M, 1960, HDB OOLOGIE 2; SCHONWETTER M, 1963, HDB OOLOGIE 8; SELANDER RK, 1966, CONDOR, V68, P113, DOI 10.2307/1365712; SELANDER RK, 1972, SEXUAL SELECTION DES, P180; SHERRY TW, 1990, STUDIES AVIAN BIOL, V13, P337; SHINE R, 1989, Q REV BIOL, V64, P419, DOI 10.1086/416458; Sibley CG, 1990, DISTRIBUTION TAXONOM; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; Simberloff D., 1983, P404; Simberloff D., 1986, PATTERNS PROCESSES H, P259; SIMONETTA AM, 1960, Q REV BIOL, V35, P206, DOI 10.1086/403106; Simpson G. G, 1949, MEANING EVOLUTION; SOMERS KM, 1989, SYST ZOOL, V38, P169, DOI 10.2307/2992386; STANLEY SM, 1973, EVOLUTION, V27, P1, DOI 10.1111/j.1558-5646.1973.tb05912.x; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEBBINS GL, 1953, BASIS PROGR EVOLUTIO; STOLPE M, 1932, J ORN BERL, V80, P16; Storer R. W., 1971, AVIAN BIOL, V1, P149; STORER RW, 1970, AUK, V87, P369, DOI 10.2307/4083934; Stresemann E., 1958, Journal fuer Ornithologie, V99, P441, DOI 10.1007/BF01671615; STRESEMANN ERWIN, 1963, CONDOR, V65, P449, DOI 10.2307/1365506; Strickland HE, 1848, DODO ITS KINDRED HIS; STRICKLAND HE, 1859, T ZOOL SOC LONDON, V4, P187; STRICKLAND HE, 1844, P ZOOL SOC LOND, P77; SUNDBERG P, 1989, SYST ZOOL, V38, P166, DOI 10.2307/2992385; TEMPLE SA, 1977, SCIENCE, V197, P885, DOI 10.1126/science.197.4306.885; TEMPLE SA, 1979, SCIENCE, V203, P1364, DOI 10.1126/science.424762; Tinbergen N., 1957, Bird Study, V4, P14; TREVELYAN R, 1990, FUNCT ECOL, V4, P135, DOI 10.2307/2389332; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TUCKER VA, 1970, COMP BIOCHEM PHYSIOL, V34, P841, DOI 10.1016/0010-406X(70)91006-6; TUCKER VA, 1973, PUBLS NUTTALL ORN CL, V15, P298; TUCKER VA, 1974, NOMINA ANATOMICA AVI, P175; Vaughan RE, 1941, J ECOL, V29, P127, DOI 10.2307/2256223; Verheyen R, 1957, B I R SCI NAT BELG, V33, P1; Vermeij GJ, 1987, EVOLUTION ESCALATION; VERNER J, 1977, AM NAT, V111, P769, DOI 10.1086/283204; VIGORS NA, 1825, T LINN SOC LOND, V14, P395, DOI DOI 10.1111/J.1095-8339.1823.TB00098.X; VONLEDENFELD R, 1904, REP SMITHSON I, P127; WALLEN P, 1978, PROGR CHEM FIBRINOLY, V3, P167; WEATHERS WW, 1981, PHYSIOL ZOOL, V54, P345, DOI 10.1086/physzool.54.3.30159949; WELLER MW, 1980, ISLAND WATERFOWL; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WETMORE ALEXANDER, 1960, SMITHSONIAN MISC COLL, V139, P1; WIGLESWORTH J, P T LPOOL BIOL SOC, V14, P1; WILEY EO, 1981, PHYLOGENETICS; WILEY RH, 1991, ADV STUD BEHAV, V20, P201, DOI 10.1016/S0065-3454(08)60322-8; WILKIE DR, 1977, SCALE EFFECTS ANIMAL, P23; WILLIAMSON M, 1989, PHILOS T ROY SOC B, V325, P457, DOI 10.1098/rstb.1989.0099; Williamson M. H., 1981, ISLAND POPULATIONS; WILSON DS, 1975, AM NAT, V109, P769, DOI 10.1086/283042; Wilson R.T., 1979, Bulletin of the British Ornithologists' Club, V99, P15; WOLTERS HE, 1975, VOGELARTEN ERDE, V1, P1; ZANN RA, 1990, PHILOS T ROY SOC B, V328, P95, DOI 10.1098/rstb.1990.0110; Zusi R., 1984, Smithsonian Contributions to Zoology, P1; ZWEERS G, 1982, ADV ANAT EMBRYOL CEL, V73, P1; ZWEERS GA, 1982, BEHAVIOUR, V80, P274, DOI 10.1163/156853982X00391; ZWEERS GA, 1982, BEHAVIOUR, V81, P173, DOI 10.1163/156853982X00148; ZWEERS GA, 1981, ZOOMORPHOLOGY, V99, P37, DOI 10.1007/BF00310353 359 46 47 1 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. JUN 1993 230 2 247 292 10.1111/j.1469-7998.1993.tb02686.x 46 Zoology Zoology LH247 WOS:A1993LH24700007 2019-02-26 J FORMANOWICZ, DR; SHAFFER, LR FORMANOWICZ, DR; SHAFFER, LR REPRODUCTIVE INVESTMENT IN THE SCORPION CENTRUROIDES-VITTATUS OECOLOGIA English Article REPRODUCTION; OFFSPRING SIZE; LITTER SIZE; SCORPIONS; CENTRUROIDES-VITTATUS LIFE-HISTORY EVOLUTION; PROPAGULE SIZE; EGG SIZE; NUMBER; COSTS; PLASTICITY Among invertebrates, scorpions possess a relatively unique set of reproductive traits. The interrelationships of these traits may have important implications for life history theory, yet there have been few studies of these traits in scorpions. Our data indicate that larger female Centruroides vittatus produce more offspring and have a higher total litter mass than smaller females. There was, however, no significant relationship between offspring size and female or litter size. Mean offspring mass increased with increases in total litter mass and within litter variation in offspring size (coefficients of variation) decreased with increasing total litter mass. These results suggest that large female scorpions with a larger investment in reproduction produced more offspring that were more uniform in size, but not significantly larger, than small females with less investment. The fractional clutch principle and physiological and functional constraints on size and number of offspring are suggested as possible explanations for the relationships we found among offspring size, variation in offspring size and total investment in offspring in C. vittatus. FORMANOWICZ, DR (reprint author), UNIV TEXAS,DEPT BIOL,BOX 19498,ARLINGTON,TX 76019, USA. Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BRADLEY RA, 1984, OECOLOGIA, V62, P53, DOI 10.1007/BF00377372; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BRODIE ED, 1989, AM MIDL NAT, V122, P51; CALOW P, 1983, BIOL J LINN SOC, V20, P153, DOI 10.1111/j.1095-8312.1983.tb00359.x; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; CRUMP ML, 1981, AM NAT, V117, P724, DOI 10.1086/283755; CRUMP ML, 1984, COPEIA, P302, DOI 10.2307/1445185; Endler JA, 1986, NATURAL SELECTION WI; FRANCKE O F, 1981, Southwestern Naturalist, V25, P517, DOI 10.2307/3670851; GODFRAY HCJ, 1991, OXFORD SURVEYS EVOLU, V4, P177; GODFRAY HCJ, 1991, TRE EVOLUTION REPROD; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; Lack D., 1947, IBIS, V89, P309; LACK D, 1954, NATURAL REGULATION A; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; NUSSBAUM RA, 1981, OECOLOGIA, V49, P14; Packard G.C., 1987, P216; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; Polis G.A., 1990, P161; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; POLIS GA, 1983, INFANTICIDE EVOLUTIO, P87; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; RICKLEFS RE, 1968, P NATL ACAD SCI USA, V61, P847, DOI 10.1073/pnas.61.3.847; SHINE R, 1991, EVOLUTION, V45, P1696, DOI 10.1111/j.1558-5646.1991.tb02675.x; Siegel S., 1988, NONPARAMETRIC STATIS; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STAMP NE, 1980, AM NAT, V115, P367, DOI 10.1086/283567; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WILKINSON L, 1987, SYSTAT SYSTEMS STATI 39 17 17 0 6 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia JUN 1993 94 3 368 372 10.1007/BF00317111 5 Ecology Environmental Sciences & Ecology LJ041 WOS:A1993LJ04100010 28313673 2019-02-26 J POSTHUMA, L; VERWEIJ, RA; WIDIANARKO, B; ZONNEVELD, C POSTHUMA, L; VERWEIJ, RA; WIDIANARKO, B; ZONNEVELD, C LIFE-HISTORY PATTERNS IN METAL-ADAPTED COLLEMBOLA OIKOS English Article ONYCHIURUS-ARMATUS COLLEMBOLA; ORCHESELLA-CINCTA COLLEMBOLA; HEAVY-METALS; POPULATION; MORTALITY; EVOLUTION; GROWTH; TOLERANCE; SOIL; LEAD Life-history theory predicts that pollutants can be selective agents which mould life-history patterns. Pollution-mediated decreased adult survival and reproductive success was expected to induce earlier maturation and an increased reproductive allocation per clutch. Divergence of life-history patterns in relation to metal exposure was studied in reference and metal-tolerant natural populations of the springtail species Orchesella cincta. Mortality, growth and reproduction were analysed in laboratory generation animals originating from six sites. The dose-effect relationship for mortality was similar for all populations, except for the control and the lowest exposure concentration. For animals from highly polluted sites, control mortality was higher than mortality in the low exposed group. Inter-population differences with regard to growth and reproduction were studied using two cadmium exposure levels. Body growth was analysed using Von Bertalanffy' s growth model. Inter-population differences for asymptotic weight and growth rate were small. Asymptotic weight depended on sex and treatment, growth rate also depended on population. Inter-population differences were highest for post-hatching body weight. Juvenile body weight was highest and least affected by cadmium in animals from metal-contaminated sites. Female weight at first reproduction depended on population and exposure. Age at first reproduction was lowest in the most exposed populations. Clutch size differences were not found, but realized fertility was higher in exposed populations, since more clutches per female were produced. It is concluded that life-history patterns in 0. cincta differ between populations which have experienced a different duration and intensity of metal exposure. As the differences were found in laboratory generation animals, there is evidence for genetic differences between populations. FREE UNIV AMSTERDAM,FAC BIOL,1081 HV AMSTERDAM,NETHERLANDS; UNIV KRISTEN SATYA WACANA,FAK BIOL,SALATIGA,INDONESIA Posthuma, Leo/0000-0003-0399-5499 BAJRAKTARI I, 1987, Acta Biologiae et Medicinae Experimentalis, V12, P57; BENGTSSON G, 1985, OECOLOGIA, V68, P63, DOI 10.1007/BF00379475; BENGTSSON G, 1985, J APPL ECOL, V22, P967, DOI 10.2307/2403244; BENGTSSON G, 1983, OIKOS, V40, P216, DOI 10.2307/3544585; Brandon R, 1991, ADAPTATION ENV; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CORP N, 1991, ENVIRON POLLUT, V74, P39, DOI 10.1016/0269-7491(91)90025-R; Cox DR, 1974, THEORETICAL STATISTI; DONKER MH, 1992, IN PRESS OECOLOGIA; DONKER MH, 1992, ECOTOXICOLOGY METALS; Endler JA, 1986, NATURAL SELECTION WI; ERNSTING G, 1993, IN PRESS OIKOS; Falconer D.S., 1981, INTRO QUANTITATIVE G; HAGVAR S, 1990, ENVIRON ENTOMOL, V19, P1263, DOI 10.1093/ee/19.5.1263; Hoffmann AA, 1991, EVOLUTIONARY GENETIC; JANSSEN GM, 1988, EVOLUTION, V42, P828, DOI 10.1111/j.1558-5646.1988.tb02503.x; JANSSEN GM, 1987, PEDOBIOLOGIA, V30, P1; JANSSEN GM, 1985, THESIS VRIJE U AMSTE; JOOSSE ENG, 1983, PEDOBIOLOGIA, V25, P11; Klerks P. L., 1989, ECOTOXICOLOGY PROBLE, P41; KLERKS PL, 1989, BIOL BULL, V176, P135, DOI 10.2307/1541580; Kooijman S.A.L.M., 1988, P3; KOOIJMAN SALM, 1981, WATER RES, V15, P107; Levitt J., 1980, RESPONSES PLANTS ENV; MALTBY L, 1991, OIKOS, V61, P11, DOI 10.2307/3545402; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; POSTHUMA L, 1990, J APPL ECOL, V27, P609, DOI 10.2307/2404306; POSTHUMA L, 1992, ARCH ENVIRON CON TOX, V22, P146, DOI 10.1007/BF00213314; POSTHUMA L, 1992, IN PRESS EVOLUTION; READ HJ, 1987, ENVIRON POLLUT, V48, P61, DOI 10.1016/0269-7491(87)90086-8; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; ROD FH, 1991, OIKOS, V62, P13; ROD FH, 1989, BIOL J LINN SOC, V37, P101; SHAW J, 1988, NEW PHYTOL, V109, P211, DOI 10.1111/j.1469-8137.1988.tb03710.x; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SOKAL RR, 1969, BIOMETRY; STROJAN CL, 1978, OIKOS, V31, P41, DOI 10.2307/3543382; TESTERINK GJ, 1982, ECOL ENTOMOL, V7, P341, DOI 10.1111/j.1365-2311.1982.tb00675.x; TRANVIK L, 1992, IN PRESS J APPL ECOL; VANSTRAALEN NM, 1987, J APPL ECOL, V24, P953, DOI 10.2307/2403992; VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V17, P190, DOI 10.1016/0147-6513(89)90038-9; VANSTRAALEN NM, 1985, OECOLOGIA, V67, P220, DOI 10.1007/BF00384288; VEGTER JJ, 1983, PEDOBIOLOGIA, V25, P253; WEIS JS, 1989, BIOSCIENCE, V39, P89, DOI 10.2307/1310907; WILK MB, 1968, TECHNOMETRICS, V10, P825, DOI 10.2307/1267462; WILLIAMS ST, 1977, SOIL BIOL BIOCHEM, V9, P271, DOI 10.1016/0038-0717(77)90034-7; WILSON JB, 1988, EVOLUTION, V42, P408, DOI 10.1111/j.1558-5646.1988.tb04146.x 48 49 49 0 13 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos JUN 1993 67 2 235 249 10.2307/3545468 15 Ecology Environmental Sciences & Ecology LF016 WOS:A1993LF01600006 2019-02-26 J CLARK, CW CLARK, CW DYNAMIC-MODELS OF BEHAVIOR - AN EXTENSION OF LIFE-HISTORY THEORY TRENDS IN ECOLOGY & EVOLUTION English Review PARENT-OFFSPRING CONFLICT; GROWTH Life history theory and behavioral ecology, two branches in the study of adaptation, have relied extensively on mathematical models, but have tended to employ different types of models, and different currencies of fitness. Recently, a new approach based on dynamic, state-variable models has been increasingly applied to the study of behavioral adaptations. In fact, this approach amounts to a unification of life history theory and behavioral ecology, to the extent that the line separating the two fields is virtually obliterated. Dynamic models (usually solved by computer) can yield both general principles and testable, quantitative or qualitative predictions about specific behavioral and life history phenomena. CLARK, CW (reprint author), UNIV BRITISH COLUMBIA,INST APPL MATH,VANCOUVER V6T 1Z2,BC,CANADA. Bellman R. E, 1957, DYNAMIC PROGRAMMING; CLARK CW, 1990, EVOL ECOL, V4, P312, DOI 10.1007/BF02270930; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; Fisher R.A., 1930, GENETICAL THEORY NAT; HOUSTON AI, 1987, J THEOR BIOL, V129, P57, DOI 10.1016/S0022-5193(87)80203-5; KOZLOWSKI J, 1988, THEOR POPUL BIOL, V34, P118, DOI 10.1016/0040-5809(88)90037-8; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Lessells C.M., 1991, P32; Levins R., 1968, EVOLUTION CHANGING E; Lewontin R.C., 1987, P151; LUCAS JR, 1991, ANIM BEHAV, V41, P579, DOI 10.1016/S0003-3472(05)80898-X; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; Mangel M, 1988, DYNAMIC MODELING BEH; MCFARLAND DJ, 1981, QUANTITATIVE ETHOLOG; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; PRICE K, 1992, B MATH BIOL, V54, P335, DOI 10.1016/S0092-8240(05)80030-8; ROITBERG BD, 1991, B MATH BIOL, V54, P401; Stearns SC., 1992, EVOLUTION LIFE HIST; TRIVERS RL, 1974, AM ZOOL, V14, P249; Williams GC, 1966, ADAPTATION NATURAL S; YDENBERG RC, 1989, J THEOR BIOL, V139, P437, DOI 10.1016/S0022-5193(89)80064-5; YDENBERG RC, 1989, ECOLOGY, V70, P1494, DOI 10.2307/1938208; YOSHIMURA J, 1991, EVOL ECOL, V5, P173, DOI 10.1007/BF02270833; YOSHIMURA J, IN PRESS ADAPTTION S 24 41 43 1 12 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. JUN 1993 8 6 205 209 10.1016/0169-5347(93)90100-4 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity LE563 WOS:A1993LE56300006 21236149 2019-02-26 J WETHINGTON, AR; DILLON, RT WETHINGTON, AR; DILLON, RT REPRODUCTIVE DEVELOPMENT IN THE HERMAPHRODITIC FRESH-WATER SNAIL PHYSA MONITORED WITH COMPLEMENTING ALBINO LINES PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article WATER SNAIL; SELF-FERTILIZATION; LYMNAEA-STAGNALIS; BULINUS-GLOBOSUS; GASTROPODA; PLANORBIDAE We estimated age and size at onset of functional outcross- and self-fertility in three isofemale lines of Physa heterostropha carrying the recessive, non-allelic genes, alb1 and alb2. 'Experimental' snails of these lines were reared from 2 weeks of age to adulthood and periodically introduced to mature, complementing 'challenge' snails. The three lines differed significantly in the size at which they matured, but not the age, under our culture conditions. Male reproductive maturity was reached at a mean of 5.7 weeks and female reproductive maturity at 7.3 weeks (n = 50). These ages correspond to mean shell lengths of 5.3-6.2 mm as male and 6.9-7.6 mm as female. Over all three lines, first production of viable offspring by self-fertilization occurred at a mean age of 22 weeks (n = 113). Again a significant line effect on size at reproduction was detected, with mean size at onset of self-fertilization ranging from 8.1 mm to 8.7 mm. Autosterility in the three lines ranged from negligible to 44%. Among autofertile snails, we identified cases of outcross male-sterility, outcross female-sterility, and outcross double-sterility. Of 46 individuals demonstrating male function before female, two passed through brief periods of self-fertilization before outcrossing as females. We also identified three individuals maturing simultaneously in both capacities and one individual that matured as female before male. So, although the situation is complex, we suggest that 'simultaneous hermaphroditism' provides the best description of the reproductive biology of Physa. The great diversity of reproductive allocation described here implies considerable potential for life-history evolution in these snails. COLL CHARLESTON, DEPT BIOL, CHARLESTON, SC 29424 USA BAYNE CJ, 1974, VELIGER, V16, P169; Colton HS, 1918, BIOL BULL-US, V35, P48, DOI 10.2307/1536402; Crabb ED, 1927, BIOL BULL-US, V53, P67, DOI 10.2307/1537031; De WITT R. M., 1959, ANIMAL BEHAVIOR, V7, P81, DOI 10.1016/0003-3472(59)90035-1; DELARAMBERGUE M, 1939, B BIOL FR BELG, V73, P19; DEWITT RM, 1954, AM NAT, V88, P159, DOI 10.1086/281826; DEWITT TJ, 1991, AM MALACOL BULL, V9, P81; DILLON RT, 1992, J HERED, V83, P208, DOI 10.1093/oxfordjournals.jhered.a111194; DUNCAN C. J., 1960, PROC ZOOL SOC LONDON, V135, P339; Duncan C.J., 1975, P309; DUNCAN C. J., 1958, PROC ZOOL SOC LONDON, V131, P55; DUNCAN CJ, 1959, J ANIM ECOL, V28, P97, DOI 10.2307/2017; FRETTER V, 1978, PULMONATES, V2; Fretter V., 1975, PULMONATES, V1; GERAERTS WPM, 1984, MOLLUSCA, V7, P141; Hoagland K. E., 1984, AM MALACOL B, V3, P85; JARNE P, 1992, AM NAT, V139, P424, DOI 10.1086/285335; JARNE P, 1991, EVOLUTION, V45, P1136, DOI 10.1111/j.1558-5646.1991.tb04380.x; JARNE P, 1990, HEREDITY, V64, P169, DOI 10.1038/hdy.1990.21; Jennings A. C, 1970, Wet. Bydraes van die P.U. vir C.H.O. (B. Natuurwet), V29, P1; MALEK EA, 1975, MED EC MALACOLOGY; NOLAND LE, 1946, AM MIDL NAT, V36, P467, DOI 10.2307/2421516; PARAENSE W L, 1988, Memorias do Instituto Oswaldo Cruz, V83, P405; PARAENSE W L, 1976, Revista Brasileira de Biologia, V36, P535; PARAENSE W. LOBATO, 1955, MEM INST OSWALDO CRUZ, V53, P277; RICHARDS C S, 1973, Malacological Review, V6, P199; RICHARDS CHARLES S., 1962, TRANS AMER MICROSCOP SOC, V81, P347, DOI 10.2307/3223785; ROLLINSON D, 1989, J ZOOL, V217, P295, DOI 10.1111/j.1469-7998.1989.tb02489.x; RUDOLPH PH, 1983, J MOLLUS STUD, V49, P125; RUDOLPH PH, 1979, MALACOLOGIA, V18, P381; RUDOLPH PH, 1979, MALACOLOGIA, V19, P147; RUSSELLHUNTER WD, 1976, T AM MICROSC SOC, V95, P174, DOI 10.2307/3225061; SCHRAG SJ, 1992, EVOLUTION, V46, P1698, DOI 10.1111/j.1558-5646.1992.tb01162.x; SMITH G, 1981, J MOLLUS STUD, V47, P108, DOI 10.1093/oxfordjournals.mollus.a065549; VANDUIVENBODEN YA, 1988, MALACOLOGIA, V28, P53; VANDUIVENBODEN YA, 1985, ANIM BEHAV, V33, P1184, DOI 10.1016/S0003-3472(85)80179-2; VANDUIVENBODEN YA, 1983, INT J INVER REP DEV, V6, P249, DOI 10.1080/01651269.1983.10510049; VIANEY-LIAUD M, 1976, Bulletin Biologique de la France et de la Belgique, V110, P5; WETHIGNTON AR, 1991, PHYSA AM MALAC B, V9, P99; WETHINGTON AR, 1993, UNPUB PHYSA; WILKINSON L, 1988, SYSTAT SYSTEM STATIS 41 43 43 0 3 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAY 22 1993 252 1334 109 114 10.1098/rspb.1993.0053 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology LE555 WOS:A1993LE55500005 2019-02-26 J EDWARDS, SV; NAEEM, S EDWARDS, SV; NAEEM, S THE PHYLOGENETIC COMPONENT OF COOPERATIVE BREEDING IN PERCHING BIRDS AMERICAN NATURALIST English Review LIFE-HISTORY EVOLUTION; WHITE-WINGED CHOUGHS; FRONTED BEE-EATERS; DNA HYBRIDIZATION; CORRELATED EVOLUTION; SEXUAL DIMORPHISM; MITOCHONDRIAL-DNA; AUSTRALIAN BIRDS; HELPING-BEHAVIOR; PARENTAL CARE The appreciation by earlier workers of the importance of studying avian cooperative breeding (CB) in an explicitly phylogenetic context has waned in most recent studies of the subject. Newer statistical and conceptual methods correct for correlations among species inherent in their phylogenetic relationships and are used to study the evolution and adaptive status of CB in the context of phylogenetic trees. Statistical, simulation, and phylogenetic analyses of the taxonomic distribution of CB among passerine genera confirm the suspicion that CB is nonrandomly distributed among genera and extend the conclusion of E. Russell that CB may be ancient in some lineages, many of which include well-studied species. Phylogenetic reconstruction of ancestral states of ecological factors hypothesized to have promoted CB revealed a variety of temporal relationships between the inferred invasion of selective environments and the origin of CB that were not immediately apparent from nonphylogenetic analyses and that clarified the mechanistic relationship between these events. In some lineages the persistence of CB after substantial change in the selective environments presumed responsible for its origin suggests that ''phylogenetic inertia'' may partly explain the observed taxonomic distribution of CB. Phylogenetic effects cannot explain the observed plasticity and context-specific variation in many aspects of CB and helping; the joint effects of phylogeny and ecology for explaining such variation are illustrated. The data suggest that many lineages experience evolutionary forces promoting long-term stasis in life histories conducive to CB in addition to the better-characterized environmental responses modifying its short-term expression. UNIV CALIF BERKELEY, DEPT INTEGRAT BIOL, BERKELEY, CA 94720 USA; UNIV CALIF BERKELEY, MUSEUM VERTEBRATE ZOOL, BERKELEY, CA 94720 USA Edwards, Scott/D-9071-2018 Edwards, Scott/0000-0003-2535-6217 ALLARD MW, 1992, MOL BIOL EVOL, V9, P27; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Atz J. W., 1970, P53; AUSTAD SN, 1985, BEHAV ECOL SOCIOBIOL, V17, P19, DOI 10.1007/BF00299423; BAUM DA, 1991, SYST ZOOL, V40, P1, DOI 10.2307/2992218; Beehler B. M. P., 1986, BIRDS NEW GUINEA; BELL HL, 1982, EMU, V82, P7, DOI 10.1071/MU9820007; BERTHOLD P, 1991, TRENDS ECOL EVOL, V6, P254, DOI 10.1016/0169-5347(91)90072-6; BERTHOLD P, 1989, EXPERIENTIA, V46, P1407; BJORKLUND M, 1991, EVOLUTION, V45, P608, DOI 10.1111/j.1558-5646.1991.tb04332.x; Blakers M, 1984, ATLAS AUSTR BIRDS; Boehm E.F., 1974, Australian Bird Bander, V12, P76; BROOKS DR, 1985, ANN MO BOT GARD, V72, P660, DOI 10.2307/2399219; BROOKS DR, 1990, PHYLOGENY ECOLOGY BE; BROWN JL, 1978, BIOSCIENCE, V28, P750, DOI 10.2307/1307242; BROWN JL, 1974, AM ZOOL, V14, P63; BROWN JL, 1983, BEHAV ECOL SOCIOBIOL, V13, P115, DOI 10.1007/BF00293801; BROWN JL, 1989, AUK, V106, P124, DOI 10.2307/4087766; BROWN JL, 1977, CONDOR, V79, P312, DOI 10.2307/1368008; Brown JL, 1987, HELPING COMMUNAL BRE; BULL JJ, 1985, EVOLUTION, V39, P1149, DOI 10.1111/j.1558-5646.1985.tb00455.x; BURKE T, 1989, NATURE, V338, P249, DOI 10.1038/338249a0; BURT A, 1989, P33; CARMEN WJ, 1993, IN PRESS STUDIES AVI; CARPENTER JM, 1989, CLADISTICS, V5, P131, DOI 10.1111/j.1096-0031.1989.tb00560.x; CHARLESWORTH B, 1982, EVOLUTION, V36, P474, DOI 10.1111/j.1558-5646.1982.tb05068.x; CHEVERUD JM, 1985, EVOLUTION, V39, P1335, DOI 10.1111/j.1558-5646.1985.tb05699.x; CLUTTONBROCK TH, 1979, PROC R SOC SER B-BIO, V205, P547, DOI 10.1098/rspb.1979.0084; CODDINGTON JA, 1988, CLADISTICS, V4, P3, DOI 10.1111/j.1096-0031.1988.tb00465.x; COOPER RP, 1969, AUST BIRD WATCHER, V3, P145; Counsilman J.J., 1977, Bird Behav., V1, P43; CRACRAFT J, 1987, EVOL BIOL, V21, P47; CRACRAFT J, 1986, EVOLUTION, V40, P977, DOI 10.1111/j.1558-5646.1986.tb00566.x; Curry R. L., 1990, COOPERATIVE BREEDING, P291; Davis DE, 1942, Q REV BIOL, V17, P115, DOI 10.1086/394650; DIAMOND JM, 1990, NATURE, V345, P769, DOI 10.1038/345769a0; DONOGHUE MJ, 1989, EVOLUTION, V43, P1137, DOI 10.1111/j.1558-5646.1989.tb02565.x; DOW DD, 1980, EMU, V80, P121, DOI 10.1071/MU9800121; EDWARDS SV, 1991, P ROY SOC B-BIOL SCI, V243, P99, DOI 10.1098/rspb.1991.0017; EDWARDS SV, 1990, GENETICS, V126, P695; Eldredge N., 1972, P82; Emlen S.T., 1991, P301; EMLEN ST, 1988, BEHAV ECOL SOCIOBIOL, V23, P305, DOI 10.1007/BF00300577; EMLEN ST, 1982, AM NAT, V119, P29, DOI 10.1086/283888; EMLEN ST, 1991, AM NAT, V138, P259, DOI 10.1086/285216; EMLEN ST, 1989, BEHAV ECOL SOCIOBIOL, V25, P303, DOI 10.1007/BF00302988; FAIRBAIRN DJ, 1990, EVOLUTION, V44, P1787, DOI 10.1111/j.1558-5646.1990.tb05249.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Ford H. A., 1989, ECOLOGY BIRDS AUSTR; FORD HA, 1988, BEHAV ECOL SOCIOBIOL, V22, P239, DOI 10.1007/BF00299838; FORD J, 1979, EMU, V79, P103, DOI 10.1071/MU9790103; Fry C.H., 1977, P127; GITTLEMAN JL, 1990, SYST ZOOL, V39, P227, DOI 10.2307/2992183; GOODWIN D, 1976, CROWS WORLD; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; GRAY R, 1989, NEW ZEAL J ZOOL, V16, P787, DOI 10.1080/03014223.1989.10422935; GREENE HW, 1978, SCIENCE, V200, P74, DOI 10.1126/science.635575; Hahn M.E., 1990, DEV BEHAVIOR GENETIC, P167; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARDY JW, 1974, BIRD BANDING, V45, P253, DOI 10.2307/4512047; HARDY JW, 1969, CONDOR, V71, P360, DOI 10.2307/1365735; HARDY JW, 1961, U KANSAS SCI B, V42, P13; HARRISON C J O, 1969, Emu, V69, P30; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HEINSOHN RG, 1990, TRENDS ECOL EVOL, V5, P403, DOI 10.1016/0169-5347(90)90024-8; HEINSOHN RG, 1991, AM NAT, V137, P864, DOI 10.1086/285198; HELBIG AJ, 1990, TRENDS ECOL EVOL, V5, P365, DOI 10.1016/0169-5347(90)90096-V; HELMBYCHOWSKI KM, 1986, P NATL ACAD SCI USA, V83, P688, DOI 10.1073/pnas.83.3.688; HOGLUND J, 1989, AM NAT, V134, P72, DOI 10.1086/284966; Honeycutt R.L., 1991, P45; HONEYCUTT RL, 1987, SYST ZOOL, V36, P280, DOI 10.2307/2413067; HOWARD R, 1984, COMPLETE CHECKLIST B; Huey R.B., 1987, P76; HUEY RB, 1987, EVOLUTION, V41, P1098, DOI 10.1111/j.1558-5646.1987.tb05879.x; JAMIESON I, 1991, AM NAT, V138, P271, DOI 10.1086/285217; JAMIESON I, 1989, AM NAT, V127, P195; Jamieson I.G., 1987, Perspectives in Ethology, V7, P79; JANZEN DH, 1982, SCIENCE, V215, P19, DOI 10.1126/science.215.4528.19; KEAST ALLEN, 1961, BULL MUS COMP ZOOL HARVARD UNIV, V123, P303; KIRKPATRICK M, 1991, NATURE, V350, P33, DOI 10.1038/350033a0; Koenig W.D., 1981, P261; Koenig WD, 1990, INTERPRETATION EXPLA, V2, P268; LALAND KN, 1992, ETHOL SOCIOBIOL, V13, P87, DOI 10.1016/0162-3095(92)90020-5; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1978, EVOLUTION, V32, P73, DOI 10.1111/j.1558-5646.1978.tb01099.x; LEQUESNE WJ, 1974, SYST ZOOL, V23, P513, DOI 10.1093/sysbio/23.4.513; LEWONTIN RC, 1974, AM J HUM GENET, V26, P400; LIGON JD, 1992, IN PRESS CURRENT ORN; LORENZ KZ, 1950, SYM SOC EXP BIOL, V4, P221; LOSOS JB, 1990, ECOL MONOGR, V60, P369, DOI 10.2307/1943062; LYNCH M, 1991, EVOLUTION, V45, P1065, DOI 10.1111/j.1558-5646.1991.tb04375.x; MADDISON W, 1989, CLADISTICS, V5, P365, DOI 10.1111/j.1096-0031.1989.tb00569.x; MADDISON WP, 1984, SYST ZOOL, V33, P83, DOI 10.2307/2413134; MADDISON WP, 1990, EVOLUTION, V44, P539, DOI 10.1111/j.1558-5646.1990.tb05937.x; MARTINS EP, 1991, EVOLUTION, V45, P534, DOI 10.1111/j.1558-5646.1991.tb04328.x; MARZLUFF JM, 1990, COOPERATIVE BREEDING, P197; Mayr E., 1958, P341; MCLENNAN DA, 1988, CAN J ZOOL, V66, P2177, DOI 10.1139/z88-325; MICHENER CD, 1988, P NATL ACAD SCI USA, V85, P6424, DOI 10.1073/pnas.85.17.6424; Morony JJ, 1975, REFERENCE LIST BIRDS; NIX HA, 1976, P INT ORNITHOLOGICAL, V16, P275; NORRIS ROBERT A., 1958, UNIV CALIFORNIA PUBL ZOOL, V56, P119; NOSKE RA, 1991, EMU, V91, P73, DOI 10.1071/MU9910073; NOSKE RA, 1980, EMU, V80, P35, DOI 10.1071/MU9800035; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Payne R.B., 1986, Current Ornithology, V3, P87; PETERSON AT, 1991, WILSON BULL, V103, P59; PETERSON AT, 1992, AUK, V109, P133, DOI 10.2307/4088274; PITELKA FRANK A., 1951, UNIV CALIFORNIA PUBL ZOOL, V50, P195; POTTS WK, 1991, NATURE, V352, P619, DOI 10.1038/352619a0; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; PRUETTJONES SG, 1990, NATURE, V348, P541, DOI 10.1038/348541a0; PRUM RO, 1990, ETHOLOGY, V84, P202; Rabenold K.N., 1990, COOPERATIVE BREEDING, P159; Rand AL, 1967, HDB NEW GUINEA BIRDS; Ridley M., 1983, EXPLANATION ORGANIC; RIEDL R, 1978, ORDER LIVING SYSTEMS; ROSS KG, 1991, J EVOLUTION BIOL, V4, P117, DOI 10.1046/j.1420-9101.1991.4010117.x; ROWLEY I, 1989, ETHOLOGY, V83, P229; Rowley I., 1968, Bonner Zoologische Beitraege, V19, P362; ROWLEY I, 1978, IBIS, V120, P178, DOI 10.1111/j.1474-919X.1978.tb06774.x; ROWLEY I, 1976, P INT ORNITHOL C, V16, P657; Rowley Ian, 1965, Emu, V64, P251; RUSSELL EM, 1989, EMU, V89, P61, DOI 10.1071/MU9890061; SARICH VM, 1989, CLADISTICS, V5, P3, DOI 10.1111/j.1096-0031.1989.tb00480.x; Schodde R., 1982, P191; SCHODDE R, 1982, FAIRY WRENS; SCHODDE R, 1986, READERS DIGEST COMPL; SELANDER ROBERT K., 1964, UNIV CALIF PUBLICATIONS ZOOL, V74, P1; SHERMAN PW, 1988, ANIM BEHAV, V36, P616, DOI 10.1016/S0003-3472(88)80039-3; Short L. L., 1970, Am. Mus. Novit., VNo. 2413, P1; Short LL., 1982, WOODPECKERS WORLD; SIBLEY CG, 1985, EMU, V85, P1, DOI 10.1071/MU9850001; SIBLEY CG, 1988, AUK, V105, P409; SILLENTULLBERG B, 1988, EVOLUTION, V42, P293, DOI 10.1111/j.1558-5646.1988.tb04133.x; SKUTCH ALEXANDER F., 1961, CONDOR, V63, P198, DOI 10.2307/1365683; SKUTCH ALEXANDER F., 1935, AUK, V52, P257; Slatkin M., 1983, P14; SMITH JM, 1983, ANNU REV GENET, V17, P11, DOI 10.1146/annurev.ge.17.120183.000303; STACEY PB, 1978, SCIENCE, V202, P1298, DOI 10.1126/science.202.4374.1298; SWOFFORD DL, 1990, PAUP PHYLOGENETIC AN; TIDEMANN SC, 1986, EMU, V86, P131, DOI 10.1071/MU9860131; URBANI CB, 1989, ETHOL ECOL EVOL, V1, P137, DOI 10.1080/08927014.1989.9525520; VANNOORDWIJK AJ, 1989, BIOSCIENCE, V39, P453, DOI 10.2307/1311137; WAKE DB, 1983, J THEOR BIOL, V101, P211, DOI 10.1016/0022-5193(83)90335-1; WCISLO WT, 1989, ANNU REV ECOL SYST, V20, P137, DOI 10.1146/annurev.es.20.110189.001033; West-Eberhard M.J., 1987, P369; Williams GC, 1966, ADAPTATION NATURAL S; WILSON AC, 1991, SYST ZOOL, V40, P363, DOI 10.2307/2992328; WILSON AC, 1989, P INT ORNITHOL C, V19, P1912; Wilson E.O., 1975, P1; WILSON EO, 1971, INSECT SOCIETIES; Woolfenden GE, 1984, FLORIDA SCRUB JAY DE; Wright S, 1968, EVOLUTION GENETICS P, V1; YAMASHINA M, 1938, P INT ORNITHOL C, V9, P453; YOMTOV Y, 1987, AUST WILDLIFE RES, V14, P319, DOI 10.1071/WR9870319; ZACK S, 1985, AUK, V102, P766 159 100 102 0 32 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAY 1993 141 5 754 789 10.1086/285504 36 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology LR254 WOS:A1993LR25400006 19426009 2019-02-26 J PEKKARINEN, M PEKKARINEN, M REPRODUCTION AND CONDITION OF UNIONID MUSSELS IN THE VANTAA RIVER, SOUTH FINLAND ARCHIV FUR HYDROBIOLOGIE English Article ANODONTA-PISCINALIS MOLLUSCA; LIFE-HISTORY EVOLUTION; PELECYPODA; GLOCHIDIA; GROWTH Gravidity, seasonal courses of condition indices and health were studied in Anodonta anatina (L.), Pseudanodonta complanata (ROSSM.), Unio pictorum (L.) and U. tumidus PHILIPSSON. Notes on U. crassus PHILIPSSON are also included. Females of A. anatina were gravid (bearing embryos or glochidia) from July to April or May. Gravid U. pictorum and U. tumidus were encountered from April to July and two gravid U. crassus in June. The non-gravid interval of P. complanata in June was very short. A. anatina matured fairly early, the youngest gravid females being 1 + year old. The marsupial gills of gravid mussels were not always full. All species fattened in proportion to shell volume in spring and early summer when water temperature was rising. This fattening partially preceded the rapid shell growth. Gravid females of A. anatina were fatter than males, but during the non-gravid interval of females and the normal spermatogenesis of males, males tended to be fatter. Interannual differences were noticed in the condition and gravidity period of the Vantaa mussels. All species included occasional hermaphrodites. Developing mites were common in P. complanata and the Unio spp. and less common in A. anatina. Seasonal prevalences of bucephalid trematode sporocysts and a pustular disease in A. anatina, with notes on some other diseases in the Vantaa mussels are reported. PEKKARINEN, M (reprint author), UNIV HELSINKI,DEPT ZOOL,DIV PHYSIOL,POB 17,SF-00014 HELSINKI,FINLAND. BAGGE P, 1989, Fauna Norvegica Series B, V36, P45; BAKER FC, 1928, B U WISCONSIN, V1527; BEDNARCZUK J, 1986, THESIS TH HANNOVER; BRANDER T, 1954, ARCH MOLLUSKENKD, V83, P163; CHERNYSHEVA NB, 1991, SYST PARASITOL, V20, P165, DOI 10.1007/BF00009778; DARTNALL HJG, 1979, J ZOOL, V189, P31; DUDGEON D, 1983, J ZOOL, V201, P161, DOI 10.1111/j.1469-7998.1983.tb04268.x; ENGLUND V, 1992, Luonnon Tutkija, V96, P23; HAAPARANTA A, 1991, U JOENSUU FACULTY MA, V30, P17; Haka P., 1974, Luonnon Tutkija, V78, P157; HAKALA T, 1979, ABO AKADEMI I PARASI, V15, P41; Harms W., 1909, Zoologische Jahrbuecher Jena Abteilungen fur Anatomie, V28; HAUKIOJA E, 1974, Annales Zoologici Fennici, V11, P127; HAUKIOJA E, 1978, OECOLOGIA, V35, P253, DOI 10.1007/BF00345134; HAUKIOJA E, 1978, ANN ZOOL FENN, V15, P60; HAUKIOJA E, 1979, ANN ZOOL FENN, V16, P115; HEARD W H, 1975, Malacologia, V15, P81; HERVE S, 1991, 36 U JYV DEP CHEM RE; HEVERS J, 1980, Archiv fuer Hydrobiologie Supplement, V57, P324; HUEBNER JD, 1980, CAN J ZOOL, V58, P1980, DOI 10.1139/z80-272; JOKELA J, 1991, ARCH HYDROBIOL, V120, P345; KOLI L, 1961, ANN ZOOL SOC VANAMO, V22; KOLI L, 1958, THESIS U HELSINKI; KORHONEN M, 1987, VESI JA YMPARISTOHAL, V7; Lefevre G, 1910, J EXP ZOOL, V9, P79, DOI 10.1002/jez.1400090105; Levanto Tellervo, 1940, ANN ZOOL SOC ZOOL BOT FENNICAE VAN AMO", V8, P1; Lillie FR, 1895, J MORPHOL, V10, P1, DOI DOI 10.1002/JMOR.1050100102; MAASS S, 1987, THESIS TH HANNOVER; MIX MC, 1986, MAR ENVIRON RES, V20, P141; MOLLER H, 1933, JENA Z NATURWISS 66, V59, P481; NEGUS CL, 1966, J ANIM ECOL, V35, P513, DOI 10.2307/2489; NORDENSKIOLD AE, 1856, FINLANDS MOLLUSKER; PEKKARINEN M, 1983, ANN ZOOL FENN, V20, P311; PEKKARINEN M, 1993, IN PRESS J INVERTEBR; PEKKARINEN M, 1991, U JOENSUU REP SER, V30, P48; Pekkarinen Marketta, 1991, Bivalve Studies in Finland, V1, P10; Pekkarinen Marketta, 1991, Bivalve Studies in Finland, V1, P20; Pekkarinen Marketta, 1991, Bivalve Studies in Finland, V1, P4; Pekkarinen Marketta, 1991, Bivalve Studies in Finland, V1, P1; PYNNONEN K, 1991, THESIS U HELSINKI; SENIUS KEO, 1978, 7 U TURK DEP ZOOL RE; SMITH DG, 1979, J MOLLUS STUD, V45, P39; TASKINEN J, 1991, SYST PARASITOL, V19, P81, DOI 10.1007/BF00009906; TASKINEN J, 1991, U JOENSUU REP SER, V30, P16; TUDORANCEA C, 1969, Ekologia Polska Seria A, V17, P185; TUOMI J, 1983, AM ZOOL, V23, P25; Utterback WI., 1915, AM MIDL NAT, V4, P97; Weisensee H, 1916, Z WISS ZOOL ABT A, V115, P262; WOOD EM, 1974, J ZOOL, V173, P1; Zhadin V. I., 1965, MOLLUSKS FRESH BRACK; 1985, KOMITEANMIETINTO KOM, P31 51 20 21 4 32 E SCHWEIZERBART'SCHE VERLAGS STUTTGART NAEGELE U OBERMILLER JOHANNESSTRASSE 3A, D 70176 STUTTGART, GERMANY 0003-9136 ARCH HYDROBIOL Arch. Hydrobiol. MAY 1993 127 3 357 375 19 Limnology; Marine & Freshwater Biology Marine & Freshwater Biology LK752 WOS:A1993LK75200008 2019-02-26 J NAIMAN, RJ; DECAMPS, H; POLLOCK, M NAIMAN, RJ; DECAMPS, H; POLLOCK, M THE ROLE OF RIPARIAN CORRIDORS IN MAINTAINING REGIONAL BIODIVERSITY ECOLOGICAL APPLICATIONS English Article BIODIVERSITY; FLUVIAL ECOSYSTEMS; HYDROLOGIC CONNECTIVITY; LANDSCAPE; POLICY; RIPARIAN CORRIDOR RIVER DYNAMICS; PERSPECTIVE; VEGETATION; DIVERSITY; PATTERNS Riparian corridors possess an unusually diverse array of species and environmental processes. This ''ecological'' diversity is related to variable flood regimes, geomorphic channel processes, altitudinal climate shifts, and upland influences on the fluvial corridor. This dynamic environment results in a variety of life history strategies, and a diversity of biogeochemical cycles and rates, as organisms adapt to disturbance regimes over broad spatio-temporal scales. These facts suggest that effective riparian management could ameliorate many ecological issues related to land use and environmental quality. We contend that riparian corridors should play an essential role in water and landscape planning, in the restoration of aquatic systems. and in catalyzing institutional and societal cooperation for these efforts. CNRS,CTR ECOL RESSOURCES RENOUVELABLES,F-31055 TOULOUSE,FRANCE NAIMAN, RJ (reprint author), UNIV WASHINGTON,CTR STREAMSIDE STUDIES,AR-10,SEATTLE,WA 98195, USA. Naiman, Robert/K-3113-2012 [Anonymous], 1980, WORLD CONSERVATION S; BENKE AC, 1990, J N AM BENTHOL SOC, V9, P77, DOI 10.2307/1467936; DECAMPS H, 1989, RECHERCHE, V20, P310; DECAMPS H, 1993, IN PRESS AQUATIC ECO; GREGORY SV, 1991, BIOSCIENCE, V41, P540, DOI 10.2307/1311607; HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366; JUNK WJ, 1989, TROPICAL FORESTS BOT, P47; KALLIOLA R, 1988, J BIOGEOGR, V15, P703, DOI 10.2307/2845334; KALLIOLA RJ, 1992, J ECOL, V79, P877; LEE RG, 1992, WATERSHED MANAGEMENT, P497; LEE RG, 1992, WATERSHED MANAGEMENT, P73; NAIMAN RJ, 1988, J N AM BENTHOL SOC, V7, P289, DOI 10.2307/1467295; NAIMAN RJ, 1989, MAB DIGEST, V4, P1; NAIMAN RJ, 1992, WATERSHED MANAGEMENT, P127; NAIMAN RJ, 1992, WATERSHED MANAGEMENT, P3; NAIMAN RJ, 1990, ECOLOGY MANAGEMENT A; NILSSON C, 1989, ECOLOGY, V70, P77, DOI 10.2307/1938414; NILSSON C, 1986, CAN J BOT, V64, P589, DOI 10.1139/b86-076; NILSSON C., 1992, ECOLOGICAL PRINCIPLE, P352; PASTOR J, 1992, WATERSHED MANAGEMENT, P324; Petts G. E, 1989, HIST CHANGE LARGE AL; Petts G. E, 1984, IMPOUNDED RIVERS PER; RAEDEKE K, 1989, 59 U WASH I FOR RES; SALO J, 1986, NATURE, V322, P254, DOI 10.1038/322254a0; SOLBRIG OT, 1991, GNES ECOSYSTEMS RES; SWANSON FJ, 1988, BIOSCIENCE, V38, P92, DOI 10.2307/1310614; SWANSON FJ, 1992, WATERSHED MANAGEMENT, P307; TABACCHI E, 1990, LANDSCAPE ECOL, V5, P9, DOI 10.1007/BF00153800; Turner B. L., 1990, EARTH TRANSFORMED HU 29 769 872 25 359 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 1051-0761 ECOL APPL Ecol. Appl. MAY 1993 3 2 209 212 10.2307/1941822 4 Ecology; Environmental Sciences Environmental Sciences & Ecology LG199 WOS:A1993LG19900004 27759328 2019-02-26 J WELTER, SC; STEGGALL, JW WELTER, SC; STEGGALL, JW CONTRASTING THE TOLERANCE OF WILD AND DOMESTICATED TOMATOES TO HERBIVORY - AGROECOLOGICAL IMPLICATIONS ECOLOGICAL APPLICATIONS English Article AGROECOLOGY; COST OF REPRODUCTION; CROP BREEDING; DEFOLIATION; DOMESTICATION; HERBIVORY; LIFE-HISTORY TRADE-OFFS; LYCOPERSICON-ESCULENTUM; RESOURCE ALLOCATION; TOLERANCE; TOMATO PLANTS; DEFOLIATION; RESPONSES; PHOTOSYNTHESIS; ALLOCATION; TOBACCO; YIELD Application of plant life-history theory to strategies for breeding crop plants for sustainable agriculture remains relatively unexplored. We determined the relative tolerance of wild and domesticated tomatoes to simulated herbivory and evaluated plant characteristics that may contribute to tolerance. Wild and domesticated tomatoes were subjected to different levels of defoliation ranging from 0 to 70%. Single defoliation events at lower levels (15-30%) did not significantly affect total fruit mass produced in either wild or domesticated tomatoes. Increased defoliation resulted in significant reductions in total fruit mass per plant and mean mass per fruit. Reduction in fruit output by the cultivar was almost-equal-to 3 times greater than the wild tomato for the first 8 wk of fruit production, whereas the loss in seasonal fruit production by the cultivar was 1.7 times greater than the wild tomato. We concluded that domestication of tomatoes may have decreased their relative tolerance to herbivory. Possible mechanisms for decreased tolerance include differences in leaf area index, light capture curves, and the relative allocation pattern to vegetative growth vs. reproductive structures. Optimization of potential life-history trade-offs between tolerance to herbivory and maximum fruiting abilities are proposed for cultivars of sustainable agriculture. WELTER, SC (reprint author), UNIV CALIF BERKELEY,DEPT ENTOMOL,BERKELEY,CA 94720, USA. BALDWIN IT, 1990, TRENDS ECOL EVOL, V5, P91, DOI 10.1016/0169-5347(90)90237-8; BALDWIN IT, 1988, OECOLOGIA, V77, P378, DOI 10.1007/BF00378046; BAZAZZ FA, 1987, BIOSCIENCE, V37, P58; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; Bloom AJ, 1985, OECOLOGIA, V65, P555, DOI 10.1007/BF00379672; CALDWELL MM, 1981, OECOLOGIA, V50, P14, DOI 10.1007/BF00378790; CHAPIN FS, 1980, ARCTIC ALPINE RES, V12, P553; CHAPIN FS, 1991, BIOSCIENCE, V41, P29, DOI 10.2307/1311538; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; CRAWLEY MJ, 1989, ANNU REV ENTOMOL, V34, P531, DOI 10.1146/annurev.en.34.010189.002531; FERY RL, 1987, J AM SOC HORTIC SCI, V112, P886; FLINT M, 1982, U CALIFORNIA DIVISIO, V3274; GHIDIU GM, 1989, J ECON ENTOMOL, V82, P891, DOI 10.1093/jee/82.3.891; GIFFORD RM, 1981, ANNU REV PLANT PHYS, V32, P485, DOI 10.1146/annurev.pp.32.060181.002413; GOLDBERG DE, 1983, AM J BOT, V70, P1098, DOI 10.2307/2442821; JACKSON W, 1989, ECOLOGY, V70, P1591, DOI 10.2307/1938090; JANSSENS MJJ, 1990, ECOL STUD, V78, P130; POLLEY HW, 1988, OECOLOGIA, V77, P261, DOI 10.1007/BF00379196; POSTON FL, 1976, J ECON ENTOMOL, V69, P109, DOI 10.1093/jee/69.1.109; Rick C. M., 1976, Evolution of crop plants., P268; SMITH CM, 1989, PLANT RESISTANCE INS, P75; STACEY DL, 1983, J HORTIC SCI, V58, P117, DOI 10.1080/00221589.1983.11515098; WELTER SC, 1991, ENVIRON ENTOMOL, V20, P1537, DOI 10.1093/ee/20.6.1537; WELTER SC, 1989, J ECON ENTOMOL, V82, P935, DOI 10.1093/jee/82.3.935; Welter SC, 1989, PLANT INSECT INTERAC, P135; WIENER J, 1990, AGROECOLOGY, P235; WILKINSON L, 1986, SYSTAT SYSTEM STATIS 27 37 39 0 18 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 1051-0761 ECOL APPL Ecol. Appl. MAY 1993 3 2 271 278 10.2307/1941830 8 Ecology; Environmental Sciences Environmental Sciences & Ecology LG199 WOS:A1993LG19900012 27759317 2019-02-26 J BERRIGAN, D; CHARNOV, EL; PURVIS, A; HARVEY, PH BERRIGAN, D; CHARNOV, EL; PURVIS, A; HARVEY, PH PHYLOGENETIC CONTRASTS AND THE EVOLUTION OF MAMMALIAN LIFE-HISTORIES EVOLUTIONARY ECOLOGY English Article MAMMAL LIFE HISTORIES; COMPARATIVE METHOD; DIMENSIONLESS NUMBERS A recent synthetic model of mammalian life history evolution predicts that alphaM = 3(1-delta0.25), where alphaM is the product of age at maturity and the average adult instantaneous mortality rate, and delta is the ratio of weight at independence to average adult female weight. Previous studies have tested this prediction by fitting a non-linear regression to data collected for several species of mammals. However, this procedure suffers from non-independence of data points and may have led to incorrect estimates of regression parameters. We test the same life history prediction using phylogenetically independent contrasts with a phylogeny and data for 23 species of mammals. The results accord with the predicted relationship. Our study is one of the few examples where phylogenctic information has been used to improve the statistical power of a quantitative, model-based prediction of how life history variables should co-evolve. BERRIGAN, D (reprint author), UNIV UTAH,DEPT BIOL,SALT LAKE CITY,UT 84112, USA. Purvis, Andy/A-7529-2008 Purvis, Andy/0000-0002-8609-6204 0 22 23 0 10 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAY 1993 7 3 270 278 10.1007/BF01237744 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity LC043 WOS:A1993LC04300005 2019-02-26 J CHIPPINDALE, AK; LEROI, AM; KIM, SB; ROSE, MR CHIPPINDALE, AK; LEROI, AM; KIM, SB; ROSE, MR PHENOTYPIC PLASTICITY AND SELECTION IN DROSOPHILA LIFE-HISTORY EVOLUTION .1. NUTRITION AND THE COST OF REPRODUCTION JOURNAL OF EVOLUTIONARY BIOLOGY English Article LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; DROSOPHILA; DIETARY RESTRICTION; TRADE-OFFS Earlier experiments have shown that the evolution of postponed senescent populations can be achieved by selection on either demographic or stress resistance characters. Both types of selection have produced results in which survival characters (stress resistance and longevity) have apparently traded-off against early-life fecundity. Here we present the results of a series of experiments in which an environmental variable - the level of live yeast inoculate applied to the substrate - produces a qualitatively similar phenotypic response: longevity and starvation resistance are enhanced by lower yeast levels, at the expense of fecundity. For the starvation resistance versus fecundity experiments we show a negative and linear relationship between the norms of reaction for each character across a gradient of yeast levels. This phenotypic trade-off is stable across the 20 populations and 4 selection treatments reported on here, and its general agreement with earlier selection results suggests that the evolutionary response and the phenotypically plastic response may share a common physiological basis. However, an important discrepancy in the lifetime fecundity data between the selection response and the dietary manipulations preclude strict analogy. The results broadly conform to a simple ''Y-model'' of allocation, in which a limited resource is divided between survival and reproduction, here the characters are starvation resistance and longevity versus fecundity. UNIV CALIF IRVINE,DEPT ECOL & EVOLUT BIOL,IRVINE,CA 92717 0 308 318 2 62 BIRKHAUSER VERLAG AG BASEL PO BOX 133 KLOSTERBERG 23, CH-4010 BASEL, SWITZERLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAY 1993 6 2 171 193 10.1046/j.1420-9101.1993.6020171.x 23 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity LE640 WOS:A1993LE64000002 Bronze 2019-02-26 J BENGTSSON, J; BAUR, B BENGTSSON, J; BAUR, B DO PIONEERS HAVE R-SELECTED TRAITS - LIFE-HISTORY PATTERNS AMONG COLONIZING TERRESTRIAL GASTROPODS OECOLOGIA English Article MOLLUSCA; PIONEERS; LIFE HISTORY; COLONIZING ABILITY; R-SELECTION BODY SIZE; REPRODUCTIVE STRATEGIES; K-SELECTION; COLONIZATION; PHYLOGENY; ISLANDS We examine whether pioneer species of terrestrial gastropods (snails and slugs) possess particular life history traits commonly associated with r-selection, using data on gastropod colonization in four areas in north-west Europe (the Kvarken and Tvarminne archipelagos in the Baltic, polder woods in IJsselmeer, and a rehabilitated quarry near Maastricht). Data on age at first reproduction, longevity, clutch size, egg size and lifetime fecundity were gathered from the literature. In order to control for potentially confounding effects of body size on life history traits, we compared the residuals from the allometric relations between life history traits and body size for pioneers and non-pioneers. In snails, all life history traits examined were related to body size. In slugs, all traits except age at first reproduction scaled with body size. Body sizes did not differ between pioneers and non-pioneers in any area. In all four areas, there were no significant differences between pioneers and non-pioneers in any of the life history traits examined, after body size had been taken into account. This indicates that pioneer terrestrial gastropods generally cannot be regarded as r-selected. Pioneer species may possess any of several life history strategies, and the combinations of traits shown by them may have little in common with the r-K selection concept. UNIV BASEL,INST ZOOL,CH-4051 BASEL,SWITZERLAND BENGTSSON, J (reprint author), SWEDISH UNIV AGR SCI,DEPT ECOL & ENVIRONM RES,BOX 7072,S-75007 UPPSALA,SWEDEN. ASHTON PJ, 1989, BIOL INVASIONS GLOBA, P111; ATKINSON WD, 1979, J ANIM ECOL, V48, P53, DOI 10.2307/4099; Baker H. G., 1965, GENETICS COLONIZING; BAUR B, 1988, J ANIM ECOL, V57, P71, DOI 10.2307/4764; BAUR B, 1987, J BIOGEOGR, V14, P329, DOI 10.2307/2844941; BENGTSSON AS, 1992, ECOLOGICAL PRINCIPLE, P201; BENGTSSON J, 1986, J ANIM ECOL, V55, P641, DOI 10.2307/4745; BLUEWEISS L, 1978, OECOLOGIA, V37, P252; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; Brown A. H. D, 1981, EVOLUTION TODAY, P351; BROWN VK, 1992, TRENDS ECOL EVOL, V7, P143, DOI 10.1016/0169-5347(92)90204-O; BROWN VK, 1987, COLONIZATION SUCCESS, P315; CALOW P, 1983, MOLLUSCA, V6, P649; Castri F. di, 1990, Biological invasions in Europe and the Mediterranean Basin., P3; Crawley MJ, 1987, COLONIZATION SUCCESS, P429; DECASTRI F, 1990, BIOL INVASIONS EUROP; DEQIN X, 1859, ORIGIN SPECIES MEANS; DIAMOND JM, 1974, SCIENCE, V184, P803, DOI 10.1126/science.184.4138.803; Drake J. A, 1989, BIOL INVASIONS GLOBA; DUNDEE DEE S., 1967, NAUTILUS, V80, P89; EBENHARD T, 1991, BIOL J LINN SOC, V42, P105, DOI 10.1111/j.1095-8312.1991.tb00554.x; EBENHARD T, 1990, ECOLOGY, V71, P1833, DOI 10.2307/1937592; GITTLEMAN JL, 1988, PERSPECTIVES ETHOLOG, V8, P55; GRAY AJ, 1986, PHILOS T ROY SOC B, V314, P655, DOI 10.1098/rstb.1986.0079; GRUBB PJ, 1987, COLONIZATION SUCCESS, P81; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Kerney M. P., 1979, FIELD GUIDE LAND SNA; LAWTON JH, 1986, PHILOS T ROY SOC B, V314, P607, DOI 10.1098/rstb.1986.0076; LEVER A J, 1986, Basteria, V50, P3; Lewontin R. C., 1965, P77; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; MAC ARTHUR ROBERT H., 1967; MASON CF, 1970, OECOLOGIA, V5, P215, DOI 10.1007/BF00344885; MILLAR JS, 1991, FUNCT ECOL, V5, P588, DOI 10.2307/2389476; Mooney HA, 1986, ECOLOGICAL STUDIES, V58; Newsome A.E., 1986, P1; NOBLE IR, 1989, BIOL INVASIONS GLOBA, P301; OCONNOR RJ, 1986, PHILOS T ROY SOC B, V314, P583, DOI 10.1098/rstb.1986.0074; PAGEL MD, 1988, Q REV BIOL, V63, P413, DOI 10.1086/416027; PARSONS PA, 1982, BIOL REV, V57, P117, DOI 10.1111/j.1469-185X.1982.tb00366.x; PARSONS PA, 1987, COLONIZATION SUCCESS, P133; Peake J., 1978, P429; PETERS RH, 1983, ECOLOGICALIMPLICATIO; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1978, EVOLUTIONARY ECOLOGY; Rees W. J., 1965, Proceedings of the Malacological Society of London, V36, P269; REININK K, 1979, Basteria, V43, P33; ROLLO CD, 1991, CAN J ZOOL, V69, P978, DOI 10.1139/z91-142; ROY J, 1990, BIOL INVASIONS EUROP, P335; RYDIN H, 1991, ECOLOGY, V72, P1089, DOI 10.2307/1940608; SAFRIEL UN, 1980, BIOL J LINN SOC, V13, P287, DOI 10.1111/j.1095-8312.1980.tb00088.x; SIMBERLOFF D, 1989, BIOL INVASIONS GLOBA, P61; SOUTHWOOD TRE, 1981, THEORETICAL ECOLOGY, P30; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TUOMI J, 1980, OECOLOGIA, V45, P39, DOI 10.1007/BF00346705; VAGVOLGYI J, 1975, SYST ZOOL, V24, P465, DOI 10.2307/2412906; VALOVIRTA I, 1977, Malacologia, V16, P271; VALOVIRTA I, 1979, MALACOLOGIA, V18, P169; Valovirta I., 1984, P224; WAY CM, 1988, CAN J ZOOL, V66, P1179, DOI 10.1139/z88-172; Williamson M, 1989, BIOL INVASIONS GLOBA, P329; WOOTTON JT, 1987, EVOLUTION, V41, P732, DOI 10.1111/j.1558-5646.1987.tb05849.x 64 26 27 0 18 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia MAY 1993 94 1 17 22 10.1007/BF00317295 6 Ecology Environmental Sciences & Ecology LA839 WOS:A1993LA83900003 28313852 2019-02-26 J VANWINKLE, W; ROSE, KA; WINEMILLER, KO; DEANGELIS, DL; CHRISTENSEN, SW; OTTO, RG; SHUTER, BJ VANWINKLE, W; ROSE, KA; WINEMILLER, KO; DEANGELIS, DL; CHRISTENSEN, SW; OTTO, RG; SHUTER, BJ LINKING LIFE-HISTORY THEORY, ENVIRONMENTAL SETTING, AND INDIVIDUAL-BASED MODELING TO COMPARE RESPONSES OF DIFFERENT FISH SPECIES TO ENVIRONMENTAL-CHANGE TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article SMALLMOUTH BASS; AMERICAN FISHES; POPULATIONS; PATTERNS; EXPLOITATION; RECRUITMENT; MANAGEMENT; BEHAVIOR; STYLES; SIZE We link life history theory, environmental setting, and individual-based modeling to compare the responses of two fish species to environmental change. Life history theory provides the framework for selecting representative species, and in combination with information on important environmental characteristics, it provides the framework for predicting the results of model simulations. Individual-based modeling offers a promising tool for integrating and extrapolating our mechanistic understanding of reproduction, growth, and mortality at the individual level to population-level responses such as size-frequency distributions and indices of year-class strength. Based on the trade-offs between life history characteristics of striped bass Morone saxatilis and smallmouth bass Micropterus dolomieu and differences in their respective environments, we predicted that young-of-year smallmouth bass are likely to demonstrate a greater compensatory change in growth and mortality than young-of-year striped bass in response to changes in density of early life stages and turnover rates of zooplankton prey. We tested this prediction with a simulation experiment. The pattern of model results was consistent with our expectations: by the end of the first growing season, compensatory changes in length and abundance of juveniles were more pronounced for smallmouth bass than for striped bass. The results also highlighted the dependence of model predictions on the interplay between density of larvae and juveniles and characteristics of their zooplankton prey. RG OTTO & ASSOCIATES,VIENNA,MD 21869; ONTARIO MINIST NAT RESOURCES,FISHERIES RES SECT,MAPLE L6A 1S9,ON,CANADA VANWINKLE, W (reprint author), OAK RIDGE NATL LAB,DIV ENVIRONM SCI,POB 2008,MS-6038,OAK RIDGE,TN 37831, USA. Shuter, Brian/A-3991-2008 ADAMS PB, 1980, FISH B-NOAA, V78, P1; ARMSTRONG MJ, 1990, ENVIRON BIOL FISH, V28, P77, DOI 10.1007/BF00751028; BARNTHOUSE LW, 1990, ENVIRON TOXICOL CHEM, V9, P297, DOI 10.1897/1552-8618(1990)9[297:ROTCTE]2.0.CO;2; BLAXTER JHS, 1986, T AM FISH SOC, V115, P98; Carlander K. D., 1977, HDB FRESHWATER FISHE, V2; COWAN JH, 1993, T AM FISH SOC, V122, P439, DOI 10.1577/1548-8659(1993)122<0439:IBMOYO>2.3.CO;2; DEANGELIS D. L., 1992, INDIVIDUAL BASED MOD; DEANGELIS DL, 1990, J GREAT LAKES RES, V16, P576, DOI 10.1016/S0380-1330(90)71446-3; DEANGELIS DL, 1991, ECOL MODEL, V57, P91, DOI 10.1016/0304-3800(91)90056-7; JAGER HI, IN PRESS RIVERS, V4; KAWASAKI T, 1980, B JPN SOC SCI FISH, V46, P289; LEAMAN BM, 1991, ENVIRON BIOL FISH, V30, P253, DOI 10.1007/BF02296893; LOMNICKI A, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P3; OTTO RG, 1987, EPRI EA5404 EL POW R; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P1820, DOI 10.1139/f91-215; RIDGWAY MS, 1991, J ANIM ECOL, V60, P665, DOI 10.2307/5304; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROSE KA, 1993, T AM FISH SOC, V122, P415, DOI 10.1577/1548-8659(1993)122<0415:IBMOYO>2.3.CO;2; Rothschild B. J., 1986, DYNAMICS MARINE FISH; SALE PF, 1990, TRENDS ECOL EVOL, V5, P25, DOI 10.1016/0169-5347(90)90009-3; SCHAAF WE, 1987, ESTUARIES, V10, P267, DOI 10.2307/1351854; SETZLER EM, 1980, NOAA NMFS433 NAT OC; SHEPHERD JG, 1990, PHILOS T ROY SOC B, V330, P151, DOI 10.1098/rstb.1990.0189; VANWINKLE W, 1993, T AM FISH SOC, V122, P397, DOI 10.1577/1548-8659(1993)122<0397:IBATFP>2.3.CO;2; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1991, OIKOS, V63, P318 27 30 30 0 20 AMER FISHERIES SOC BETHESDA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 0002-8487 T AM FISH SOC Trans. Am. Fish. Soc. MAY 1993 122 3 459 466 10.1577/1548-8659(1993)122<0459:LLHTES>2.3.CO;2 8 Fisheries Fisheries LR876 WOS:A1993LR87600015 2019-02-26 J BERNARDO, J BERNARDO, J DETERMINANTS OF MATURATION IN ANIMALS TRENDS IN ECOLOGY & EVOLUTION English Review LIFE-HISTORY EVOLUTION; BODY SIZE; REACTION NORMS; GROWTH-RATE; AGE; MATURITY; POPULATIONS; CHARACTERS; PREDICTIONS; DEMOGRAPHY Maturation is a critical transition in the life cycle. Recent models have used retrospective analyses of patterns of variation in age and size at maturity in an attempt to understand the mechanisms responsible for generating phenotypic variation in maturation. Empirical work has revealed greater complexity in the biology of maturation than has been incorporated in current models, and has cast doubt on some of the assumptions and conclusions of the models. Recent insights from experimental work, coupled with theoretical advances for the analysis of growth, size and other complex characters, have great potential to elucidate evolution of maturation and how adaptive maturation phenotypes are achieved by real organisms. BERNARDO, J (reprint author), DUKE UNIV, DEPT ZOOL, BOX 90325, DURHAM, NC 27708 USA. Bernardo, Joseph/C-2403-2008 Bernardo, Joseph/0000-0002-5516-4710 ALM G, 1959, 40 I FRESHW RES REPT; BARTHOLOMEW GA, 1978, J EXP BIOL, V76, P11; BERNADO IJ, IN PRESS J AM NAT; BERVEN KA, 1990, ECOLOGY, V71, P1599, DOI 10.2307/1938295; BULME RMG, 1977, AM NAT, V11, P1099; Bulmer M. G., 1980, MATH THEORY QUANTITA; CASEY TM, 1976, J EXP BIOL, V64, P529; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Congdon J.D., 1990, P45; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONSTANTZ GD, 1979, OECOLOGIA, V40, P189, DOI 10.1007/BF00347936; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DUNHAM AE, 1989, PHYSIOL ZOOL, V62, P335, DOI 10.1086/physzool.62.2.30156174; Falconer D. S., 1989, INTRO QUANTITATIVE G; FALCONER DS, 1984, GENET RES, V44, P47, DOI 10.1017/S0016672300026240; Fisher R.A., 1930, GENETICAL THEORY NAT; GILL DE, 1985, ECOLOGY GENETICS HOS, P175; HOM CL, 1992, EVOL ECOL, V6, P458, DOI 10.1007/BF02270692; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; Janzen D.H., 1984, Oxford Surveys in Evolutionary Biology, V1, P85; Kallman K.D., 1989, P163; KIRKPATRICK M, 1989, GENOME, V31, P778, DOI 10.1139/g89-137; Kirkpatrick M., 1988, P13; KIRKPATRICK M, 1989, J MATH BIOL, V27, P429, DOI 10.1007/BF00290638; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LACEY EP, 1986, TRENDS ECOL EVOL, V1, P72, DOI 10.1016/0169-5347(86)90021-2; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lewontin R. C., 1965, P77; LLOYD M, 1983, EVOLUTION, V37, P1162, DOI 10.1111/j.1558-5646.1983.tb00231.x; Lynch M., 1988, P47; Lynch M., 1988, P29; MILLAR JS, 1991, FUNCT ECOL, V5, P588, DOI 10.2307/2389476; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; NIJHOUT HF, 1981, AM ZOOL, V21, P631; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; POLICANSKY D, 1983, AM ZOOL, V23, P57; RAWSON PD, 1991, EVOLUTION, V45, P1924, DOI 10.1111/j.1558-5646.1991.tb02697.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff Derek A., 1992; RPICE T, 1992, TRENDS ECOL EVOL, V7, P307; SIMPSON AL, 1992, CAN J ZOOL, V70, P1737, DOI 10.1139/z92-241; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; Stearns S.C., 1984, P13; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; Stearns SC., 1992, EVOLUTION LIFE HIST; TILLEY SG, 1980, COPEIA, P806, DOI 10.2307/1444460; TRAVIS J, 1980, GROWTH, V44, P167; Vandenbergh J.G., 1983, P95; VERRELL PA, 1989, HERPETOLOGICA, V45, P265; Williams GC, 1966, ADAPTATION NATURAL S; YODZIS OP, 1989, INTROP THEORETICAL E 59 139 143 0 22 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 1872-8383 TRENDS ECOL EVOL Trends Ecol. Evol. MAY 1993 8 5 166 173 10.1016/0169-5347(93)90142-C 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity KZ041 WOS:A1993KZ04100006 21236138 2019-02-26 J MOLVAR, EM MOLVAR, EM NURSING BY A YEARLING MOOSE, ALCES-ALCES GIGAS, IN ALASKA CANADIAN FIELD-NATURALIST English Note MOOSE; ALCES-ALCES GIGAS; LACTION; PARTURITION; LIFE HISTORY STRATEGIES; ALASKA Suckling of a yearling moose was observed on two occasions in Denali National Park, Alaska. Although other cervids may occasionally suckle their yearling offspring, this event has never before been recorded for Moose. The prolonging of lactation in Moose may result in increased calf survivorship through greater protection of the offspring from predators. UNIV ALASKA,INST ARCTIC BIOL,FAIRBANKS,AK 99775 0 0 0 0 0 OTTAWA FIELD-NATURALISTS CLUB OTTAWA BOX 3264 POSTAL STATION C, OTTAWA ON K1Y 4J5, CANADA 0008-3550 CAN FIELD NAT Can. Field-Nat. APR-JUN 1993 107 2 233 235 3 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology NQ376 WOS:A1993NQ37600018 2019-02-26 J ERIKSEN, B; MOLAU, U; SVENSSON, M ERIKSEN, B; MOLAU, U; SVENSSON, M REPRODUCTIVE STRATEGIES IN 2 ARCTIC PEDICULARIS SPECIES (SCROPHULARIACEAE) ECOGRAPHY English Article ST-JOHN-RIVER; BARTSIA-ALPINA; BREEDING SYSTEMS; SEED PREDATION; LIFE-HISTORY; R-SELECTION; K-SELECTION; PLANTS; FURBISHIAE; MAINE A study of a number of reproductive traits in two sympatric species of Pedicularis in northern Swedish Lapland, the subarctic-alpine P. lapponica and the artic P. hirsuta, revealed that the life-history strategies of the two species differ profoundly. High fruit set and low seed abortion rate, as in P. hirsuta, is common in arctic plants in late-thawing habitats and represents a case of extreme adversity selection rather than an indication of a ruderal life-history strategy. Pedicularis lapponica, on the other hand, is a typical K-strategist (or stress-tolerator) requiring a longer period of growth for optimal reproduction. Occurring at both low and high altitudes in the area, P. lapponica tends to increase in self-compatibility with altitude, which is interpreted as an adaptation to lower pollinator visitation frequency in arctic environments. The variation in length of the protruding part of the style in P. lapponica is shown to be correlated with exposure to light. Predispersal seed predation is severe in P. lapponica at low altitudes, where the capsules are attacked by fly and moth larvae. At high altitudes, a minor proportion of the capsules of P. lapponica experience predation and only from flies, while P. hirsuta is completely unpredated. GOTHENBURG UNIV,DEPT ZOOL,S-40031 GOTHENBURG,SWEDEN ERIKSEN, B (reprint author), UNIV GOTEBORG,DEPT SYSTEMAT BOT,CARL SKOTTBERGS GATA 22,S-41319 GOTHENBURG,SWEDEN. BAKER HG, 1955, EVOLUTION, V9, P347, DOI 10.1111/j.1558-5646.1955.tb01544.x; BELL KL, 1980, ARCTIC ALPINE RES, V12, P1, DOI 10.2307/1550585; BEST LS, 1982, EVOLUTION, V36, P70, DOI 10.1111/j.1558-5646.1982.tb05011.x; Cleve A, 1901, BIHANG KUNGLIGA SVEN, V26, P1; CRUDEN RW, 1977, EVOLUTION, V31, P32, DOI 10.1111/j.1558-5646.1977.tb00979.x; EKSTAM O, 1897, TROMSO MUSEUMS AARSH, V20, P1; ESKTAM O, 1895, TROMSO MUSEUMS AARSH, V18, P109; FRIDRIKSSON S, 1987, ARCTIC ALPINE RES, V19, P425, DOI 10.2307/1551407; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; GAUSLAA Y, 1990, HOLARCTIC ECOL, V13, P112; GAWLER SC, 1987, B TORREY BOT CLUB, V114, P280, DOI 10.2307/2996466; Grime J. P, 1979, PLANT STRATEGIES VEG; Heinrich B., 1983, P187; LEVIN DA, 1986, PLANT ECOL, P217; Lovett Doust J., 1988, PLANT REPRODUCTIVE E, P5; MACINNES KL, 1972, THESIS W ONTARIO LON; MACINNES KL, 1973, DISS ABSTR INT B, V34, P1402; MATHIESEN FJ, 1921, MEDD GRONLAND, V375, P359; MENGES ES, 1986, AM J BOT, V73, P1168, DOI 10.2307/2443796; MOLAU U, 1992, J ECOL, V80, P149, DOI 10.2307/2261072; MOLAU U, 1991, AM J BOT, V78, P326, DOI 10.2307/2444955; MOLAU U, 1989, OECOLOGIA, V81, P181, DOI 10.1007/BF00379803; MOLAU U, 1989, OIKOS, V55, P409, DOI 10.2307/3565602; MOLAU U, 1990, OPERA BOT, V102, P1; NEFF SE, 1968, CAN ENTOMOL, V100, P74, DOI 10.4039/Ent10074-1; ODASZ AM, 1991, NORSK GEOL TIDSKR, V71, P219; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; POLUNIN N, 1951, J ECOL, V39, P308, DOI 10.2307/2257914; Rathcke B., 1983, P305; Richards A. J., 1986, PLANT BREEDING SYSTE; RYDEN NS, 1933, ENTOMOL TIDSKR, V54, P49; RYVARDEN L, 1974, Blyttia, V32, P139; Savile D. B. O., 1972, CAN DEP AGR MONOGR, V6, P1; Sorensen Thorvald, 1941, MEDDELSER OM GRONLAND, V125, P1; STENSTROM M, 1992, IN PRESS ARCTIC ALPI, V24; TAYLOR DR, 1990, OIKOS, V58, P239, DOI 10.2307/3545432; THOMSON JD, 1981, J ANIM ECOL, V50, P49, DOI 10.2307/4030; TIKHMENEV EA, 1984, SOV J ECOL+, V15, P166; WARMING E, 1990, BOT TIDSKR, V17, P202; WARMING E, 1986, OVERSIGT K DANSKE VI, V3, P101; Webb D. A., 1989, SAXIFRAGES EUROPE; WIENS D, 1984, OECOLOGIA, V64, P47, DOI 10.1007/BF00377542; WILLIAMS JB, 1982, ARCTIC ALPINE RES, V14, P59, DOI 10.2307/1550816 43 46 48 0 26 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0906-7590 ECOGRAPHY Ecography APR-JUN 1993 16 2 154 166 10.1111/j.1600-0587.1993.tb00067.x 13 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology LG771 WOS:A1993LG77100006 2019-02-26 J HUTCHINGS, JA HUTCHINGS, JA ADAPTIVE LIFE HISTORIES EFFECTED BY AGE-SPECIFIC SURVIVAL AND GROWTH-RATE ECOLOGY English Article ADAPTATION; BROOK TROUT; COST OF REPRODUCTION; FECUNDITY; FITNESS; GROWTH RATE; LIFE HISTORY; NEWFOUNDLAND; REPRODUCTIVE EFFORT; SALVELINUS-FONTINALIS; SURVIVAL SALMO-SALAR L; ATLANTIC SALMON; GENETIC-VARIATION; BROWN TROUT; EVOLUTION; REPRODUCTION; POPULATIONS; SELECTION; FISH; CONSEQUENCES Life history data for three unexploited populations of brook trout, Salvelinus fontinalis, were used to test the predictions of life history theory that, relative to juveniles, (1) high adult survival favors low reproductive effort and delayed reproduction, and (2) increased juvenile growth rate favors high effort and early reproduction. Field data supported both predictions. The population having the highest adult-to-juvenile survival ratio expended the least effort, reproduced latest in life, and experienced the lowest survival cost of reproduction. Among populations a high juvenile-to-adult growth rate was associated with early reproduction, high reproductive effort, and high reproductive cost. Early reproduction was also associated with increased growth within populations. The adaptive significance of interpopulation variation in life history was assessed by comparing the fitness, r, of observed life histories with those of potentially alternative strategies. Empirically derived fitness functions supported the hypothesis that population differences in life history were adaptive. Observed combinations of age-specific survival and fecundity were those that maximized fitness. Within populations the fitness advantages associated with reproducing early in life favored reduced age at reproduction for the fastest-growing individuals. The results are consistent with the predictions of life history theory and demonstrate empirically how survival and growth rate can independently and interactively influence life history evolution. HUTCHINGS, JA (reprint author), MEM UNIV NEWFOUNDLAND, DEPT BIOL, ST JOHNS A1B 3X9, NEWFOUNDLAND, CANADA. ALM G, 1959, I FRESHWATER RES DRO, V40, P1; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BERGLUND I, 1992, J FISH BIOL, V40, P281, DOI 10.1111/j.1095-8649.1992.tb02573.x; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; BRETT JR, 1969, J FISH RES BOARD CAN, V26, P2363, DOI 10.1139/f69-230; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CUNJAK RA, 1988, CAN J FISH AQUAT SCI, V45, P443, DOI 10.1139/f88-053; Doyle R.W., 1982, P157; ELLIOTT JM, 1976, J ANIM ECOL, V45, P273, DOI 10.2307/3779; FERGUSON MM, 1991, J FISH BIOL, V39, P79, DOI 10.1111/j.1095-8649.1991.tb05070.x; Fisher R.A., 1930, GENETICAL THEORY NAT; FOX MG, 1991, CAN J FISH AQUAT SCI, V48, P1792, DOI 10.1139/f91-211; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GJEDREM T, 1983, AQUACULTURE, V33, P51, DOI 10.1016/0044-8486(83)90386-1; GJERDE B, 1984, AQUACULTURE, V38, P229, DOI 10.1016/0044-8486(84)90147-9; GJERDE B, 1986, AQUACULTURE, V57, P37, DOI 10.1016/0044-8486(86)90179-1; Gross M.R., 1987, AM FISH SOC S, V1, P14; Hutchings J. A., 1990, THESIS MEMORIAL U NE; HUTCHINGS JA, 1991, OIKOS, V45, P1162; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; LEGGETT WC, 1969, J FISH RES BOARD CAN, V26, P1585, DOI 10.1139/f69-142; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Levins R., 1968, EVOLUTION CHANGING E; MAC ARTHUR ROBERT H., 1967; MCLAREN IA, 1974, BIOL BULL, V151, P200; MORRIS DW, 1992, EVOL ECOL, V6, P1, DOI 10.1007/BF02285330; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; MYERS RA, 1986, CAN J FISH AQUAT SCI, V43, P1242, DOI 10.1139/f86-154; MYERS RA, 1987, ECOLOGY, V68, P1839, DOI 10.2307/1939875; MYERS RA, 1983, MAR ECOL PROG SER, V11, P189, DOI 10.3354/meps011189; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PARTRIDGE L, 1989, MORE EXACT ECOLOGY, P231; PAULY D, 1980, J CONSEIL, V39, P175; Peters R.H., 1983, P1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PINHORN AT, 1969, J FISH RES BOARD CAN, V26, P3133, DOI 10.1139/f69-298; POWER G, 1980, CHARRS SALMONID FISH, P141; Prout T., 1980, Evolutionary Biology (New York), V13, P1; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROBERTSON FW, 1963, GENET RES, V4, P74, DOI 10.1017/S001667230000344X; ROBISON OW, 1984, AQUACULTURE, V38, P155, DOI 10.1016/0044-8486(84)90227-8; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Rogerson R. J., 1981, NATURAL ENV NEWFOUND, P24; ROWE DK, 1990, J FISH BIOL, V36, P643, DOI 10.1111/j.1095-8649.1990.tb04319.x; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; SCHAFFER WM, 1979, S ZOOL SOC LOND, V44, P307; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Thorpe J.E., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P7; THORPE JE, 1983, AQUACULTURE, V33, P119, DOI 10.1016/0044-8486(83)90392-7; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; WARE DM, 1980, CAN J FISH AQUAT SCI, V37, P1012, DOI 10.1139/f80-129; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 63 194 195 3 55 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology APR 1993 74 3 673 684 10.2307/1940795 12 Ecology Environmental Sciences & Ecology KU399 WOS:A1993KU39900003 2019-02-26 J SCHLUTER, D; GUSTAFSSON, L SCHLUTER, D; GUSTAFSSON, L MATERNAL INHERITANCE OF CONDITION AND CLUTCH SIZE IN THE COLLARED FLYCATCHER EVOLUTION English Article CLUTCH SIZE; CONDITION; HERITABILITY; LIFE-HISTORY EVOLUTION; MATERNAL EFFECTS FICEDULA-ALBICOLLIS; EVOLUTION; HERITABILITY; CONSEQUENCES; SELECTION; FINCHES; COSTS Maternal effects may strongly influence evolutionary response to natural selection but they have been little studied in the wild. We use a novel combination of experimental and statistical methods to estimate maternal effects on condition and clutch size in the collared flycatcher, where we define ''condition'' to be the nongenetic component of clutch size. We found evidence of two maternal effects. The first (m) was the negative effect of mother's clutch size on daughter's condition, when mother's condition was held constant. The second (M) was the positive effect of mother's condition on daughter's condition, when mother clutch size was held constant. These two effects oppose one another because mothers in good condition also lay many eggs. The maternal effects were large: Experimentally adding an egg to a mother's nest reduced clutch sizes of her daughters by 1/4 egg (i.e., m = -0.25). Measured degree of resemblance between mother and daughter clutch sizes yielded M = 0.43. The results weakly support the presence of heritable genetic variation in clutch size: additive genetic variance/total phenotypic variance = 0.33. This estimate was highly variable probably because, as we show, mother-daughter resemblance may depend hardly at all on the amount of genetic variance when maternal effects are present. Daughter-mother regression (a standard method for estimating heritability) is consequently a poor guide to the amount of genetic variance in clutch size. Our results emphasize the value of combining field experiments with observations for studying inheritance. UNIV UPPSALA,DEPT ZOOL,S-75122 UPPSALA,SWEDEN SCHLUTER, D (reprint author), UNIV BRITISH COLUMBIA,DEPT ZOOL,ECOL GRP,VANCOUVER V6T 1Z4,BC,CANADA. Gustafsson, Lars/A-7634-2012 Gustafsson, Lars/0000-0001-6566-2863 ATCHLEY WR, 1991, EVOLUTION, V45, P891, DOI 10.1111/j.1558-5646.1991.tb04358.x; BICKEL PJ, 1977, MATH STATISTICS; BOAG PT, 1897, AVIAN GENETICS, P45; CHEVERUD JM, 1984, EVOLUTION, V38, P766, DOI 10.1111/j.1558-5646.1984.tb00349.x; COWLEY DE, 1992, EVOLUTION, V46, P495, DOI 10.1111/j.1558-5646.1992.tb02054.x; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; DRENT RH, 1980, ARDEA, V76, P127; Falconer D.S., 1981, INTRO QUANTITATIVE G; GIBBS HL, 1988, EVOLUTION, V42, P750, DOI 10.1111/j.1558-5646.1988.tb02493.x; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; Gustafsson L., 1989, P75; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; GUSTAFSSON L, 1986, AM NAT, V128, P761, DOI 10.1086/284601; GUSTAFSSON L, 1985, THESIS UPPSALA U SWE; JANSSEN GM, 1988, EVOLUTION, V42, P828, DOI 10.1111/j.1558-5646.1988.tb02503.x; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; LACK D, 1966, POPULATION STUDIES B; LANDE R, 1989, GENETICS, V122, P915; LARSSON K, 1992, EVOLUTION, V46, P235, DOI 10.1111/j.1558-5646.1992.tb01998.x; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; PART T, 1989, J ANIM ECOL, V58, P305, DOI 10.2307/5002; PRICE T, 1991, OECOLOGIA, V86, P535, DOI 10.1007/BF00318320; PRICE TD, 1985, AM NAT, V125, P169, DOI 10.1086/284336; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.ecolsys.18.1.209; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; VANNOORDWIJK AJ, 1981, NETH J ZOOL, V31, P342 28 103 103 1 31 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution APR 1993 47 2 658 667 10.2307/2410077 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity KZ712 WOS:A1993KZ71200022 28568739 Bronze 2019-02-26 J PARTRIDGE, L; BARTON, NH PARTRIDGE, L; BARTON, NH OPTIMALITY, MUTATION AND THE EVOLUTION OF AGING NATURE English Review LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; QUANTITATIVE GENETICS; ANTAGONISTIC PLEIOTROPY; SENESCENCE; REPRODUCTION; SELECTION; COVARIATION; DOMINANCE; TRAITS Evolutionary explanations of ageing fall into two classes. Organisms might have evolved the optimal life history, in which survival and fertility late in life are sacrificed for the sake of early reproduction and survival. Alternatively, the life history might be depressed below this optimal compromise by deleterious mutations: because selection against late-acting mutations is weaker, these will impose a greater load on late life. Evidence for the importance of both is emerging, and unravelling their relative importance presents experimentalists with a major challenge. PARTRIDGE, L (reprint author), UNIV EDINBURGH, DIV BIOL SCI, ICAPB, W MAINS RD, EDINBURGH EH9 3JT, MIDLOTHIAN, SCOTLAND. Partridge, Linda/A-5501-2010 AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; BARRETT SCH, 1989, EVOLUTION, V43, P1398, DOI 10.1111/j.1558-5646.1989.tb02591.x; BARTON NH, 1990, GENETICS, V124, P773; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.genet.23.1.337; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1988, J EVOLUTION BIOL, V1, P67, DOI 10.1046/j.1420-9101.1988.1010067.x; BELL G, 1988, SEX DEATH PROTOZOA; BERNSTEIN C, 1991, AGEING SEX DNA REPAI; BULMER M, 1991, GENETICS, V129, P897; CHARLESWORTH B, 1979, NATURE, V278, P848, DOI 10.1038/278848a0; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charlesworth B., 1984, EVOLUTIONARY ECOLOGY, P117; CHARLESWORTH D, 1990, EVOLUTION, V44, P1469, DOI 10.1111/j.1558-5646.1990.tb03839.x; CHARNOV EL, 1989, HEREDITY, V62, P113, DOI 10.1038/hdy.1989.15; CLARK AG, 1987, AM NAT, V129, P933; Comfort A., 1979, BIOL SENESCENCE; CROW J F, 1970, P591; Crow J.F., 1983, Genetics and Biology of Drosophila, V3c, P1; EDNEY EB, 1968, NATURE, V220, P281, DOI 10.1038/220281a0; Finch C. E., 1990, LONGEVITY SENESCENCE; Fisher RA, 1928, AM NAT, V62, P571, DOI 10.1086/280234; GIESEL JT, 1986, AM NAT, V128, P593, DOI 10.1086/284590; GIESEL JT, 1982, AM NAT, V119, P464, DOI 10.1086/283926; GOLDSTEIN S, 1990, SCIENCE, V249, P1129, DOI 10.1126/science.2204114; HAIGH J, 1978, THEOR POPUL BIOL, V14, P251, DOI 10.1016/0040-5809(78)90027-8; Haldane JBS, 1937, AM NAT, V71, P337, DOI 10.1086/280722; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HEDGES SB, 1992, NATURE, V356, P708, DOI 10.1038/356708a0; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1992, NATURE, V359, P58, DOI 10.1038/359058a0; HOULE D, 1992, GENETICS, V130, P195; HUGHES DM, 1988, EVOLUTION, V42, P1309, DOI 10.1111/j.1558-5646.1988.tb04190.x; HUTCHINSON EW, 1991, GENETICS, V127, P729; HUTCHINSON EW, 1991, GENETICS, V127, P719; KIMURA M, 1966, GENETICS, V54, P1337; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1988, MUTAT RES, P7; KIRKWOOD TBL, 1981, PHYSL ECOLOGY EVOLUT; KONDRASHOV AS, 1992, GENETICS, V132, P603; KONDRASHOV AS, 1988, NATURE, V336, P435, DOI 10.1038/336435a0; LAMB MJ, 1964, J INSECT PHYSIOL, V10, P487, DOI 10.1016/0022-1910(64)90072-1; LANDE R, 1980, GENETICS, V94, P203; Lessells C.M., 1991, P32; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; LUCKINBILL LS, 1988, HEREDITY, V60, P367, DOI 10.1038/hdy.1988.54; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MARTINEZ DE, 1992, P NATL ACAD SCI USA, V89, P9920, DOI 10.1073/pnas.89.20.9920; Medawar P. B., 1946, MODERN Q, V1, P30; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; MULLER H, AM J HUM GENET, V2, P111; NESSE RM, 1988, EXP GERONTOL, V23, P445, DOI 10.1016/0531-5565(88)90056-3; ORGEL LE, 1963, P NATL ACAD SCI USA, V49, P517, DOI 10.1073/pnas.49.4.517; ORR HA, 1991, P NATL ACAD SCI USA, V88, P11413, DOI 10.1073/pnas.88.24.11413; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; Partridge L., 1989, P421; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; POMEROY D, 1990, BIOL J LINN SOC, V40, P53, DOI 10.1111/j.1095-8312.1990.tb00534.x; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; QUATTRO JM, 1992, P NATL ACAD SCI USA, V89, P348, DOI 10.1073/pnas.89.1.348; RAFF MC, 1992, NATURE, V356, P397, DOI 10.1038/356397a0; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROPER C, IN PRESS EVOLUTION; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1987, GENETIC CONSTRAINTS; SCHEINER SM, 1989, EVOL ECOL, V3, P51, DOI 10.1007/BF02147931; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; SHAW RG, 1987, EVOLUTION, V41, P812, DOI 10.1111/j.1558-5646.1987.tb05855.x; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; SMITH JM, 1976, AM NAT, V110, P325, DOI 10.1086/283070; SMITH JM, 1958, J EXP BIOL, V35, P832; SPOLSKY CM, 1992, NATURE, V356, P706, DOI 10.1038/356706a0; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; STENSETH NC, 1984, EVOLUTION, V38, P870, DOI 10.1111/j.1558-5646.1984.tb00358.x; TUCIC N, 1988, HEREDITY, V60, P55, DOI 10.1038/hdy.1988.9; TURELLI M, 1985, GENETICS, V111, P165; TURNER JRG, 1981, ANNU REV ECOL SYST, V12, P99, DOI 10.1146/annurev.es.12.110181.000531; TYNDALEBISCOE M, 1984, B ENTOMOL RES, V74, P341, DOI 10.1017/S0007485300015637; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; WAGNER G, 1987, GENETICS, V122, P223; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 95 437 445 4 114 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0028-0836 1476-4687 NATURE Nature MAR 25 1993 362 6418 305 311 10.1038/362305a0 7 Multidisciplinary Sciences Science & Technology - Other Topics KU176 WOS:A1993KU17600049 8455716 2019-02-26 J MCNAMARA, JM MCNAMARA, JM EVOLUTIONARY PATHS IN STRATEGY SPACE - AN IMPROVEMENT ALGORITHM FOR LIFE-HISTORY STRATEGIES JOURNAL OF THEORETICAL BIOLOGY English Article RUGGED LANDSCAPES; SELECTION; WALKS; AGE MCNAMARA, JM (reprint author), UNIV BRISTOL,DEPT MATH,UNIV WALK,BRISTOL BS8 1TW,AVON,ENGLAND. AGUR Z, 1987, AM NAT, V129, P862, DOI 10.1086/284680; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; GILLESPIE JH, 1984, EVOLUTION, V38, P1116, DOI 10.1111/j.1558-5646.1984.tb00380.x; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; KARLIN S, 1966, 1ST COURSE STOCHASTI; KAUFFMAN S, 1987, J THEOR BIOL, V128, P11, DOI 10.1016/S0022-5193(87)80029-2; KAWECKI TJ, IN PRESS EVOL ECOL; KOSLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15; MACKEN CA, 1991, SIAM J APPL MATH, V51, P799, DOI 10.1137/0151040; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MCNAMARA JM, 1991, THEOR POPUL BIOL, V147, P59; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HIST; Whittle P., 1983, OPTIMIZATION TIME, V2; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wright S, 1969, EVOLUTION GENETICS P, V2 19 10 10 0 3 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-5193 J THEOR BIOL J. Theor. Biol. MAR 7 1993 161 1 23 37 10.1006/jtbi.1993.1037 15 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology KY492 WOS:A1993KY49200003 8501927 2019-02-26 J CHAMBERS, JC CHAMBERS, JC SEED AND VEGETATION DYNAMICS IN AN ALPINE HERB FIELD - EFFECTS OF DISTURBANCE TYPE CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE English Article ALPINE; HERB FIELD; GEUM TURF; DISTURBANCE; VEGETATION COVER; SEED RAIN; SEED BANK; COLONIZATION; ESTABLISHMENT; SUCCESSION TUNDRA DISTURBANCE; ALASKAN TUNDRA; BURIED SEED; SOIL; ESTABLISHMENT; COMMUNITIES; GERMINATION; SUBALPINE; PATTERNS; GROWTH Relationships among the aboveground vegetation, seed rain, and seed bank were examined on a late seral herb field characterized by pocket gopher disturbance and on an early seral gravel borrow that had been severely disturbed 35 years ago on the Beartooth Plateau, Montana. Aboveground vegetation cover was assessed by species in twelve 5-M2 plots. Seed rain was sampled during the 1988, 1989, and 1990 growing seasons with pitfall traps, and the soil seed bank was sampled in fall 1989, spring 1990, and fall 1990. The seed rain (filled seeds) on the borrow area ranged from 7730 to 14 009 seeds/m2 and was higher than that found on other alpine sites; that on the Geum turf ranged from 3375 to 6179 seeds/m2 and was similar to that for other alpine sites. Although highly variable among dates on the borrow area, the seed banks were similar to those of comparable alpine sites. Seed bank density ranged from 1980 to 6003 seeds/M2 on the borrow area and from 3202 to 4647 seeds/m2 on the Geum turf area. The Geum turf area had higher vegetation cover than the borrow area (87 vs. 25%) and higher numbers of species in the aboveground vegetation, seed rain, and seed bank. Relationships among the aboveground vegetation, seed rain, and seed bank were largely determined by the disturbance characteristics of the different sites and the life-history strategies of the dominant species. Medium-lived species, primarily grasses, with high production of small and compact seeds had colonized the borrow area. Despite establishment of other species, 35 years after disturbance the medium-lived species still dominated the aboveground vegetation, seed rain, and seed bank. Species abundances in the three different components were all highly correlated. In contrast, on the Geum turf area there were no correlations among the aboveground vegetation, seed rain, or seed bank. Long-lived forbs that produced low numbers of relatively large seeds dominated the aboveground vegetation and persisted on the area primarily in the vegetative state. The same medium-lived species that dominated the borrow area had the highest abundance in the seed rain on the Geum turf area and appeared to persist by colonizing small-scale disturbances caused by gopher burrowing. Short-lived species with small, long-lived seeds existed on the site primarily through a highly persistent seed bank. The relationships among the aboveground vegetation, seed rain, and seed bank on the Geum turf and borrow areas are compared with those observed for more temperate systems following disturbance. CHAMBERS, JC (reprint author), US FOREST SERV,INTERMT RES STN,920 VALLEY RD,RENO,NV 89512, USA. ARCHIBOLD OW, 1984, CAN FIELD NAT, V98, P337; BILLINGS WD, 1974, ARCTIC ALPINE ENV, P403; BRAY J. ROGER, 1957, ECOL MONOGR, V27, P325, DOI 10.2307/1942268; CHAMBERS JC, 1989, J RANGE MANAGE, V42, P304, DOI 10.2307/3899499; CHAMBERS JC, 1991, ECOLOGY, V72, P1668, DOI 10.2307/1940966; CHAMBERS JC, 1987, RECLAM REVEG RES, V6, P219; CHAMBERS JC, 1990, ECOLOGY, V71, P1323, DOI 10.2307/1938270; CHAMBERS JC, 1991, CAN J BOT, V69, P1977, DOI 10.1139/b91-248; CHAMBERS JC, 1984, COLORADO STATE U INF, V53, P215; DELMORAL R, 1985, CAN J BOT, V63, P1444; EBERSOLE JJ, 1989, CAN J BOT, V67, P466, DOI 10.1139/b89-065; FOX JF, 1981, NATURE, V293, P564, DOI 10.1038/293564a0; FOX JF, 1983, ARCTIC ALPINE RES, V15, P405, DOI 10.2307/1550835; FREEDMAN B, 1982, CAN J BOT, V60, P2112, DOI 10.1139/b82-259; GARTNER BL, 1983, J APPL ECOL, V20, P965, DOI 10.2307/2403140; Grime J. P, 1979, PLANT STRATEGIES VEG; GRIME JP, 1981, J ECOL, V69, P1017, DOI 10.2307/2259651; GROSS KL, 1990, J ECOL, V78, P1079, DOI 10.2307/2260953; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; Hatt M, 1991, BERICHTE GEOBOTANISC, V57, P41; HITCHCOCK CL, 1973, FLORA PACIFIC NW; JOHNSON CK, 1988, CAN J BOT, V66, P346, DOI 10.1139/b88-055; JOHNSON PL, 1962, ECOL MONOGR, V32, P102; LECK MA, 1980, ARCTIC ALPINE RES, V12, P343, DOI 10.2307/1550720; Leck MA, 1989, ECOLOGY SOIL SEED BA; MacMahon J A, 1980, FORESTS FRESH PERSPE, P27; MARCHAND PJ, 1980, ARCTIC ALPINE RES, V12, P137, DOI 10.2307/1550511; MCGRAW JB, 1980, CAN J BOT, V58, P1607, DOI 10.1139/b80-195; McGraw JB, 1989, ECOLOGY SOIL SEED BA, P91, DOI 10.1016/B978-0-12-440405-2.50011-7; MORIN H, 1988, CAN J BOT, V66, P101, DOI 10.1139/b88-015; Mueller-Dombois D, 1974, AIMS METHODS VEGETAT; Muller C. H., 1952, B TORREY BOT CLUB, V79, P296; PARKER VT, 1989, ECOLOGY SOIL SEED BA, P367; Pickett S. T. A., 1989, ECOLOGY SOIL SEED BA, P123; ROACH DA, 1983, OECOLOGIA, V60, P359, DOI 10.1007/BF00376852; SOKAL R., 1981, BIOMETRY; SPENCE JR, 1990, NEW ZEAL J BOT, V28, P439, DOI 10.1080/0028825X.1990.10412327; THOMPSON K, 1987, NEW PHYTOL, V106, P23; THORN CE, 1982, ARCTIC ALPINE RES, V14, P45, DOI 10.2307/1550814; WEBBER PJ, 1978, ENVIRON CONSERV, V5, P171, DOI 10.1017/S0376892900005889 40 85 92 2 15 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4026 CAN J BOT Can. J. Bot.-Rev. Can. Bot. MAR 1993 71 3 471 485 10.1139/b93-052 15 Plant Sciences Plant Sciences LC504 WOS:A1993LC50400013 2019-02-26 J JANZEN, FJ JANZEN, FJ AN EXPERIMENTAL-ANALYSIS OF NATURAL-SELECTION ON BODY SIZE OF HATCHLING TURTLES ECOLOGY English Article BODY SIZE; CHELYDRA-SERPENTINA; EXPERIMENTAL MANIPULATION; HATCHLINGS; NATURAL SELECTION; PHENOTYPIC VARIATION; PREDATION; SURVIVORSHIP; TURTLES LIZARD UTA-STANSBURIANA; SIDE-BLOTCHED LIZARDS; SNAPPING TURTLES; EGG SIZE; CHELYDRA-SERPENTINA; LOCOMOTOR PERFORMANCE; HYDRIC CONDITIONS; SEXUAL SELECTION; CARETTA-CARETTA; EVOLUTION A complete understanding of life history evolution requires an appreciation for the influence of natural selection and genetic variation on intrapopulational phenotypic variation in key life history traits. Experimental manipulation provides particularly useful insight into the biological importance of this variation. Consequently, I undertook a field experiment in which I manipulated body size and evaluated selective predation in order to investigate the ecological and evolutionary significance of phenotypic variation in hatchling turtles. I incubated eggs from 17 clutches of common snapping turtles (Chelydra serpentina) on wet and dry substrates, producing ''large'' and ''small'' hatchlings, respectively. Hatchlings were individually marked, measured, and then released simultaneously at a typical nest site in a National Wildlife Refuge area, Whiteside County, Illinois from which the eggs were collected originally. Subsequently, hatchlings were recaptured in drift fences erected along the edge of the Mississippi River. Sixty-six of 112 hatchling C serpentina were recaptured. Survivorship was not related to clutch, incubation conditions, or locomotor performance, but was significantly size dependent. Natural selection favored larger hatchlings. The strength of selection acting directly on three size traits, as measured by standardized selection gradients (beta'), was 0.327 (PC1 [principal component 1] = overall size and mass), 0.282 (PC3 = plastron length), and 0.162 (PC4 = trade-off between hatchling mass and width). The opportunity for selection was moderate (I = 0.703), but did not constrain selection. Full-sib heritabilities of body size of hatchling turtles were variable (h2wet = 0.72 +/- 0.34 and h2dry = 0.17 +/- 0.28), but were not significantly different between the two moisture treatments. These results provide support for the ''bigger is better'' hypothesis. Larger hatchling Chelydra serpentina exhibited significantly greater survivorship than smaller individuals during movement from the nest site to water. However, larger body size of hatchling turtles may not evolve rapidly because the strength of selection was moderate in magnitude and the heritability was relatively low. These results emphasize the need for more detailed ecological investigations of the early life history of these organisms. Furthermore, this study highlights the utility of experimental manipulations of phenotypic variation for evaluating the potential impact of natural selection on life history evolution. UNIV CHICAGO,DEPT ECOL & EVOLUT,CHICAGO,IL 60637 Anderson P. K., 1958, Copeia, P211; ANDREN C, 1981, BIOL J LINN SOC, V15, P235, DOI 10.1111/j.1095-8312.1981.tb00761.x; ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; ARNOLD SJ, 1983, AM ZOOL, V23, P347; ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; BALDWIN J, 1989, COMP BIOCHEM PHYS A, V94, P663, DOI 10.1016/0300-9629(89)90613-0; BARROWS WB, 1895, USDA DIVISION ORNITH, V6; BERNARDO J, 1991, TRENDS ECOL EVOL, V6, P1, DOI 10.1016/0169-5347(91)90137-M; BURGER J, 1976, COPEIA, P742; BURGER J, 1977, AM MIDL NAT, V97, P444, DOI 10.2307/2425108; Bustard H.R., 1979, P523; BUSTARD HR, 1967, NATURE, V214, P317, DOI 10.1038/214317a0; CAGLE FRED R., 1939, COPEIA, V1939, P170, DOI 10.2307/1436818; CHARLAND MB, 1989, CAN J ZOOL, V67, P1620, DOI 10.1139/z89-231; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CONGDON JD, 1987, HERPETOLOGICA, V43, P39; DIAL BE, 1987, HERPETOLOGICA, V43, P307; Dunham A.E., 1988, Biology of Reptilia, V16, P331; Endler JA, 1986, NATURAL SELECTION WI; Ernst CH, 1989, TURTLES WORLD; Falconer D. S., 1989, INTRO QUANTITATIVE G; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; FERGUSON GW, 1982, HERPETOLOGICA, V38, P178; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; FORESE AD, 1974, ANIMAL BEHAVIOR, V22, P735; FOX SF, 1975, EVOLUTION, V29, P95, DOI 10.1111/j.1558-5646.1975.tb00818.x; FOX SF, 1978, ECOLOGY, V59, P834, DOI 10.2307/1938787; GARLAND T, 1988, EVOLUTION, V42, P335, DOI 10.1111/j.1558-5646.1988.tb04137.x; HAMILTON WJ, 1940, COPEIA, P124; HAMMER DA, 1969, J WILDLIFE MANAGE, V33, P995, DOI 10.2307/3799337; HARRY JL, 1988, J HERED, V79, P96, DOI 10.1093/oxfordjournals.jhered.a110480; IVERSON JB, 1991, CAN J ZOOL, V69, P385, DOI 10.1139/z91-060; JANZEN FJ, 1992, J HERPETOL, V26, P217, DOI 10.2307/1564866; JANZEN FJ, 1990, J EXP ZOOL, V255, P155, DOI 10.1002/jez.1402550204; JANZEN FJ, 1992, GENETICS, V131, P155; JANZEN FJ, 1991, Q REV BIOL, V66, P149, DOI 10.1086/417143; JAYNE BC, 1990, EVOLUTION, V44, P1204, DOI 10.1111/j.1558-5646.1990.tb05226.x; KING RB, 1987, EVOLUTION, V41, P241, DOI 10.1111/j.1558-5646.1987.tb05794.x; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1990, GENET RES, V55, P189, DOI 10.1017/S0016672300025520; LAURIE WA, 1990, J ANIM ECOL, V59, P529, DOI 10.2307/4879; MCGEHEE MA, 1990, HERPETOLOGICA, V46, P251; MILLER K, 1987, J EXP BIOL, V127, P401; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; MROSOVSKY N, 1968, NATURE, V220, P1338, DOI 10.1038/2201338a0; Noble GK, 1938, J COMP PSYCHOL, V25, P175, DOI 10.1037/h0061074; Packard G.C., 1988, Biology of Reptilia, V16, P523; PACKARD GC, 1985, CAN J ZOOL, V63, P2422, DOI 10.1139/z85-358; PACKARD GC, 1987, ECOLOGY, V68, P983, DOI 10.2307/1938369; PACKARD MJ, 1982, HERPETOLOGICA, V38, P136; PETOKAS PJ, 1980, J HERPETOL, V14, P239, DOI 10.2307/1563545; PHILLIPS PC, 1989, EVOLUTION, V43, P1209, DOI 10.1111/j.1558-5646.1989.tb02569.x; SAINTGIRONS H, 1981, REV ECOL, V35, P597; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; Stancyk S.E., 1981, P139; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEBBINS RC, 1985, FIELD GUIDE W REPTIL; SWINGLAND IR, 1979, PHILOS T ROY SOC B, V286, P177, DOI 10.1098/rstb.1979.0025; Wilbur H.M., 1988, Biology of Reptilia, V16, P387; WILHOFT DC, 1979, J HERPETOL, V13, P435, DOI 10.2307/1563478 65 195 200 4 127 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology MAR 1993 74 2 332 341 10.2307/1939296 10 Ecology Environmental Sciences & Ecology KN556 WOS:A1993KN55600005 2019-02-26 J ROGERS, CM; SMITH, JNM ROGERS, CM; SMITH, JNM LIFE-HISTORY THEORY IN THE NONBREEDING PERIOD - TRADE-OFFS IN AVIAN FAT RESERVES ECOLOGY English Article AVIAN GUILD; BIRDS; ENERGY STORAGE STRATEGY; FAT STORAGE VS PREDICTABILITY OF RESOURCES; LIFE HISTORY; NONBREEDING PERIOD; OPTIMAL FAT HYPOTHESIS; POPULATION LIMITATION; PREDATION RISK; STARVATION RISK; TRADE-OFF; WINTER BREEDING BLUE TITS; PREDATION RISK; EYED JUNCOS; BROOD SIZE; CONSEQUENCES; SURVIVAL; WEIGHT; COST; REPRODUCTION; ADAPTATION We tested the hypothesis of optimal winter fat storage in birds. The hypothesis predicts that when the survivorship benefits (fasting capacity) but not the survivorship costs (higher cost of flight, lowered agility, increased exposure to predators) of fat are eliminated by predictable resources (e.g., tree- and shrub-borne food), species will be leaner than species exploiting unpredictable resources (e.g., ground-borne food subject to sudden covering by snow). The predicted pattern was found in an earlier study of avian communities in central North America, where snowfall is frequent. Here we tested the predictions of the hypothesis that (1) when ground- and tree-feeding guilds are compared between geographic regions of harsh and mild winter climate, only ground-feeders will have relatively high fat reserves, resulting in a significant guild x climate interaction term in a two-way analysis of variance, and (2) ground- and tree-foraging guilds will both show low fat reserves in a mild winter environment. To test these predictions, visible subcutaneous fat class was measured in both guilds in Wisconsin and Michigan (harsh winter environments) and southwestern British Columbia, northwestern Washington, and Tennessee (mild winter environments). Both predictions were supported. We suggest that small birds wintering in North America approach local optima in energy storage strategy and winter survivorship. The energy storage strategy thus appears to be a major life-history trait in the nonbreeding period. The trade-off between the costs and benefits of winter fat has two potential implications for understanding population limitation. First, trade-offs that reduce reserves can lead to lower survival in severe winter weather than would occur at maximum fat levels. Second, our study suggests that individual birds are sensitive to, and can control, both predation and starvation risks. Recent theory of population limitation indicates that as food abundance declines, birds feed to avoid starvation, but at the expense of increased mortality from predation. Together these studies suggest that populations are limited by interacting (predation, food supply) instead of single (food supply) factors. Study of trade-offs used by individuals to maximize survival can provide unique perspectives on population limitation. UNIV IOWA,CTR SCI EDUC,IOWA CITY,IA 52242; UNIV BRITISH COLUMBIA,ECOL GRP,VANCOUVER V6T 1Z4,BC,CANADA; UNIV BRITISH COLUMBIA,DEPT ZOOL,VANCOUVER V6T 1Z4,BC,CANADA; INDIANA UNIV,DEPT BIOL,BLOOMINGTON,IN 47405 Blem C.R., 1990, Current Ornithology, V7, P59; BLEM CR, 1975, WILSON BULL, V87, P543; BLEM CR, 1984, AUK, V101, P153; BRITTINGHAM MC, 1988, ECOLOGY, V69, P581, DOI 10.2307/1941007; BROWN KM, 1985, EVOLUTION, V39, P387, DOI 10.1111/j.1558-5646.1985.tb05675.x; BUTTEMER WA, 1985, OECOLOGIA, V68, P126, DOI 10.1007/BF00379484; CARACO T, 1979, ECOLOGY, V60, P611, DOI 10.2307/1936081; DILL LM, 1987, CAN J ZOOL, V65, P803, DOI 10.1139/z87-128; Ekman JB, 1990, BEHAV ECOL, V1, P62, DOI 10.1093/beheco/1.1.62; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; GRUBB TC, 1982, ANIM BEHAV, V30, P637, DOI 10.1016/S0003-3472(82)80133-4; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; LACK D, 1966, POPULATION STUDIES B; LEHIKOINEN E, 1987, ORNIS SCAND, V18, P216, DOI 10.2307/3676769; LEHIKOINEN E, 1986, 14 U TURK DEP BIOL R; Lima S. L., 1986, ECOLOGY, V67, P366; LIMA SL, 1991, OECOLOGIA, V86, P105, DOI 10.1007/BF00317396; LIMA SL, 1985, OECOLOGIA, V66, P60, DOI 10.1007/BF00378552; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; MCNAMARA JM, 1987, ECOLOGY, V68, P1515, DOI 10.2307/1939235; MCNAMARA JM, 1982, FUNCTIONAL ONTOGENY, P60; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; PACKARD CC, 1988, NEW DIRECTIONS ECOLO, P216; ROGERS CM, 1991, J FIELD ORNITHOL, V62, P349; ROGERS CM, 1990, ORNIS SCAND, V21, P105, DOI 10.2307/3676805; ROGERS CM, 1987, ECOLOGY, V68, P1051, DOI 10.2307/1938377; ROGERS CM, 1991, ORNIS SCAND, V22, P387, DOI 10.2307/3676513; ROGERS CM, 1993, IN PRESS ECOLOGY, V74; SIH A, 1980, SCIENCE, V210, P1041, DOI 10.1126/science.210.4473.1041; SIH A, 1982, ECOLOGY, V63, P786, DOI 10.2307/1936799; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; SNELL TW, 1977, EVOLUTION, V31, P882, DOI 10.1111/j.1558-5646.1977.tb01082.x; SOKAL R., 1981, BIOMETRY; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SULLIVAN KA, 1988, ECOLOGY, V69, P118, DOI 10.2307/1943166; SZEKELY T, 1991, BEHAV ECOL SOCIOBIOL, V28, P203; WEBB DR, 1988, CONDOR, V90, P107, DOI 10.2307/1368439; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; Williams GC, 1966, ADAPTATION NATURAL S; 1985, SAS USERS GUIDE STAT 42 91 92 0 36 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology MAR 1993 74 2 419 426 10.2307/1939303 8 Ecology Environmental Sciences & Ecology KN556 WOS:A1993KN55600012 2019-02-26 J KAWECKI, TJ; STEARNS, SC KAWECKI, TJ; STEARNS, SC THE EVOLUTION OF LIFE HISTORIES IN SPATIALLY HETEROGENEOUS ENVIRONMENTS - OPTIMAL REACTION NORMS REVISITED EVOLUTIONARY ECOLOGY English Article REACTION NORMS; PHENOTYPIC PLASTICITY; LIFE HISTORY EVOLUTION; AGE AT MATURITY; SPATIAL HETEROGENEITY; FITNESS MEASURES; FITNESS SENSITIVITY Natural populations live in heterogeneous environments, where habitat variation drives the evolution of phenotypic plasticity. The key feature of population structure addressed in this paper is the net flow of individuals from source (good) to sink (poor) habitats. These movements make it necessary to calculate fitness across the full range of habitats encountered by the population, rather than independently for each habitat. As a consequence, the optimal phenotype in a given habitat not only depends on conditions there but is linked to the performance of individuals in other habitats. We generalize the Euler-Lotka equation to define fitness in a spatially heterogeneous environment in which individuals disperse among habitats as newborn and then stay in a given habitat for life. In this case, maximizing fitness (the rate of increase over all habitats) is equivalent to maximizing the reproductive value of newborn in each habitat but not to maximizing the rate of increase that would result if individuals in each habitat were an isolated population. The new equation can be used to find optimal reaction norms for life history traits, and examples are calculated for age at maturity and clutch size. In contrast to previous results, the optimal reaction norm differs from the line connecting local adaptations of isolated populations each living in only one habitat. Selection pressure is higher in good and frequent habitats than in poor and rare ones. A formula for the relative importance of these two factors allows predictions of the habitat in which the genetic variance about the optimal reaction norm should be smallest. KAWECKI, TJ (reprint author), UNIV BASEL,INST ZOOL,RHEINSPRUNG 9,CH-4051 BASEL,SWITZERLAND. Kawecki, Tadeusz/K-5466-2015; Stearns, Stephen/F-4099-2012 Kawecki, Tadeusz/0000-0002-9244-1991; Stearns, Stephen/0000-0002-6621-4373 0 141 144 3 64 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAR 1993 7 2 155 174 10.1007/BF01239386 20 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity KQ264 WOS:A1993KQ26400003 2019-02-26 J VOLLESTAD, LA; LABEELUND, JH; SAEGROV, H VOLLESTAD, LA; LABEELUND, JH; SAEGROV, H DIMENSIONLESS NUMBERS AND LIFE-HISTORY VARIATION IN BROWN TROUT EVOLUTIONARY ECOLOGY English Article MORTALITY; AGE AT MATURITY; GROWTH; LIFE HISTORY THEORY Dimensionless numbers, made up from components of life history as defined by growth, mortality and maturation, may provide fresh insights into life history evolution. Most studies have previously shown that these numbers are more or less constants within taxa. The variation between taxa may clarify the evolution of different life histories. We examine the variation in three dimensionless numbers using data from 29 populations of Brown Trout Salmo trutta from Norway, and find that the dimensionless numbers are not constants for the Brown Trout populations. We find that the relationship between K of the von Bertalanffy growth equation and the mortality rate (M) increased with increasing growth rate. Also, relative length at maturity (L(alpha)/L(inf)) increased with increasing asymptotic length (L(inf)). We suggest that more such data should be collected from a large number of species and taxonomic groups, to allow a more detailed assessment of why these dimensionless numbers appear to be constants in some taxa and not in others. VOLLESTAD, LA (reprint author), UNIV OSLO,DEPT BIOL,DIV ZOOL,POB 1050 BLINDERN,N-0316 OSLO 3,NORWAY. Vollestad, Leif Asbjorn/0000-0002-9389-7982 0 19 21 0 8 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAR 1993 7 2 207 218 10.1007/BF01239389 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity KQ264 WOS:A1993KQ26400006 2019-02-26 J FAHRIG, L; HAYDEN, B; DOLAN, R FAHRIG, L; HAYDEN, B; DOLAN, R DISTRIBUTION OF BARRIER-ISLAND PLANTS IN RELATION TO OVERWASH DISTURBANCE - A TEST OF LIFE-HISTORY THEORY JOURNAL OF COASTAL RESEARCH English Article LIFE HISTORY; ANNUAL; BIENNIAL; PERENNIAL; HERBACEOUS; WOODY; CLONAL; STORM; WASHOVERFHOG ISLAND; DELMARVA PENINSULA POPULATION BIOLOGY; DUNE SYSTEM; SAND; SUCCESSION; VEGETATION; ECOLOGY; ANNUALS We document the relationships between the distributions of species and the pattern of ''overwash'' disturbance for plant species on Hog Island, a barrier island off the southern part of the Delmarva Peninsula (Virginis, U.S.A.). Overwash disturbance is the mortality of plants due to sand deposition during storms that create high waves that wash over the island. We analyzed the distribution of each of 95 species in relation to the pattern of overwash disturbance. We then ud the results to test the hypotheses that, as one moves from areas of low overwash disturbance frequency to areas of high overwash disturbance frequency, (1) the number of annual and biennial plant species increases relative to perennial species and (2) the number of woody plant species decreases relative to herbaceous species. These hypotheses are derived from life history theory which predicts that early maturation and short lifespan are advantageous in highly disturbed environments. There were large differences among the plant species in their tolerances to overwash disturbance. As expected, there were fewer woody plant species than expected at random in areas of high overwash disturbance frequency. However, the hypothesis that annual plant species would be more common than expected at random in frequently disturbed areas was not supported. This result may be explained by advantages of clonal growth and reproduction in perennial plants, in areas of high overwash probability. UNIV VIRGINIA,DEPT ENVIRONM SCI,CHARLOTTESVILLE,VA 22903 FAHRIG, L (reprint author), CARLETON UNIV,DEPT BIOL,OTTAWA K1S 5B6,ONTARIO,CANADA. Fahrig, Lenore/C-6494-2012 Fahrig, Lenore/0000-0002-3841-0342 CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COLLINS SL, 1987, ECOLOGY, V68, P1243, DOI 10.2307/1939208; DENBOER PJ, 1981, OECOLOGIA, V50, P39, DOI 10.1007/BF00378792; DOLAN R, 1981, J SEDIMENT PETROL, V51, P737; DOLAN R, 1978, COAST ENG, V2, P21, DOI 10.1016/0378-3839(78)90003-0; DOLAN R, 1979, SCIENCE, V204, P401, DOI 10.1126/science.204.4391.401-a; Dolan R., 1987, J COASTAL RES, V3, P245; DYRNESS CT, 1973, ECOLOGY, V54, P57, DOI 10.2307/1934374; EHRENFELD JG, 1990, REV AQUAT SCI, V2, P437; ELLISON AM, 1987, ECOLOGY, V68, P576, DOI 10.2307/1938463; HALPERN CB, 1988, ECOLOGY, V69, P1703, DOI 10.2307/1941148; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; JOENJE W, 1985, VEGETATIO, V62, P399, DOI 10.1007/BF00044767; LEE JA, 1985, VEGETATIO, V62, P319, DOI 10.1007/BF00044759; MAUN MA, 1985, CAN J BOT, V63, P113, DOI 10.1139/b85-014; MCCAFFREY CA, 1975, VIRGINIA COAST RESER, P385; PAYNE AM, 1984, AM MIDL NAT, V111, P86, DOI 10.2307/2425546; PEMADASA MA, 1974, J ECOL, V62, P379, DOI 10.2307/2258986; ROMAN CT, 1988, ESTUAR COAST SHELF S, V26, P233, DOI 10.1016/0272-7714(88)90062-5; SCHROEDER PM, 1979, ENVIRON MANAGE, V3, P331, DOI 10.1007/BF01867440; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SYMONIDES E, 1979, EKOL POL-POL J ECOL, V27, P191; VANDERMEIJDEN E, 1979, J ECOL, V67, P131, DOI 10.2307/2259341; WATKINSON AR, 1985, VEGETATIO, V62, P487, DOI 10.1007/BF00044776; WATKINSON AR, 1978, J ECOL, V66, P483, DOI 10.2307/2259147; ZAREMBA RE, 1986, ENVIRON GEOL WATER S, V8, P193, DOI 10.1007/BF02524947 27 30 30 0 3 COASTAL EDUCATION & RESEARCH FOUNDATION LAWRENCE 810 EAST 10TH STREET, LAWRENCE, KS 66044 0749-0208 J COASTAL RES J. Coast. Res. SPR 1993 9 2 403 412 10 Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary Environmental Sciences & Ecology; Physical Geography; Geology KW243 WOS:A1993KW24300008 2019-02-26 J GIGA, DP; CANHAO, J GIGA, DP; CANHAO, J COMPETITION BETWEEN PROSTEPHANUS-TRUNCATUS (HORN) AND SITOPHILUS-ZEAMAIS (MOTSCH) IN MAIZE AT 2 TEMPERATURES JOURNAL OF STORED PRODUCTS RESEARCH English Article ECOLOGY; POPULATION DYNAMICS; LIFE HISTORY EVOLUTION; SITOPHILUS; PROSTEPHANUS LIFE-HISTORY; BOSTRICHIDAE; COLEOPTERA; POPULATIONS; HUMIDITY The effects of intraspecific and interspecific competition were studied experimentally in Prostephanus truncatus (Horn) and Sitophilus zeamais (Motsch.) in order to predict the outcome of competition. The replacement series (substitutive) approach was used to qualitatively predict the outcome of competitive interactions between the two species bred at 25 and 30-degrees-C on loose maize. The reproduction curves of S. zeamais and P. truncatus were of the ''scramble'' type (humped), though different in form. Both species were adversely affected by competitive interactions. The intensity of competition was dependent on the density of parent populations and temperature. S. zeamais was the dominant competitor at 25-degrees-C and had a significant suppressant effect on P. truncatus at this temperature. This study predicts that S. zeamais would outcompete P. truncatus on loose maize at 25-degrees-C. However, the predictions on the outcome of competition after one generation were uncertain at 30-degrees-C. UNIV READING,DEPT PURE & APPL ZOOL,READING RG6 2AJ,BERKS,ENGLAND GIGA, DP (reprint author), UNIV ZIMBABWE,DEPT CROP SCI,POB MP 167,HARARE,ZIMBABWE. BELL RJ, 1982, J STORED PROD RES, V18, P131, DOI 10.1016/0022-474X(82)90013-3; COWLEY RJ, 1980, J STORED PROD RES, V16, P75, DOI 10.1016/0022-474X(80)90041-7; DEWIT CT, 1960, 66 VERSL LANDB OND, P1; DICK K, 1988, OVERSEAS DEV NATURAL, V18, P42; DICK KM, 1989, P IITA FAO COORDINAT, P5; GIGA DP, 1982, THESIS U READING; GILES PH, 1975, 1ST P INT WKG C STOR, P68; GOLOB P, 1990, J STORED PROD RES, V26, P187, DOI 10.1016/0022-474X(90)90021-J; GOLOB P, 1985, J STORED PROD RES, V21, P141, DOI 10.1016/0022-474X(85)90008-6; GOLOB P, 1982, G164 TROP DEV RES I, P1; Hodges R. J., 1982, TROPICAL STORED PROD, V43, P3; HODGES RJ, 1986, J STORED PROD RES, V22, P1, DOI 10.1016/0022-474X(86)90040-8; HODGES RJ, 1983, PROT ECOL, V15, P183; HOWARD DC, 1983, THESIS U READING; KREBS C J, 1978, P678; MAY RM, 1976, NATURE, V261, P459, DOI 10.1038/261459a0; Nicholson AJ, 1954, AUST J ZOOL, V2, P695; REES DP, 1985, J STORED PROD RES, V21, P115, DOI 10.1016/0022-474X(85)90002-5; SHAZALI MEH, 1982, THESIS U READING; SHIRES SW, 1980, J STORED PROD RES, V16, P147, DOI 10.1016/0022-474X(80)90012-0; SHIRES SW, 1979, J STORED PROD RES, V15, P5, DOI 10.1016/0022-474X(79)90018-3; Smith R.H., 1985, P423; SMITH RH, 1973, J ANIM ECOL, V42, P611, DOI 10.2307/3127; SMITH RH, 1983, 3RD P INT WKING C ST, P54; Varley G., 1973, INSECT POPULATION EC 25 17 23 0 1 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0022-474X J STORED PROD RES J. Stored Prod. Res. MAR 1993 29 1 63 70 10.1016/0022-474X(93)90023-W 8 Entomology Entomology KJ326 WOS:A1993KJ32600011 2019-02-26 J ZHANG, L; KING, CE ZHANG, L; KING, CE LIFE-HISTORY DIVERGENCE OF SYMPATRIC DIPLOID AND POLYPLOID POPULATIONS OF BRINE SHRIMP ARTEMIA-PARTHENOGENETICA OECOLOGIA English Article ARTEMIA; POLYPLOIDY; POPULATION DYNAMICS; LIFE HISTORY EVOLUTION DAPHNIA-PULEX; TEMPERATURE In order to study how polyploidy affects life history patterns in animals, we have examined sympatric diploid and polyploid brine shrimp (Artemia parthenogenetica) from China, Italy and Spain under laboratory conditions. At optimal temperature and salinity (25-degrees-C and 90 ppt), diploids from the three populations had much higher intrinsic rates of increase, higher fecundity, faster developmental rates, and larger brood sizes than their sympatric polyploids. The Chinese and Italian populations were selected for further analysis to determine the life history responses of diploids and polyploids to temperature and salinity changes. Under intermediate and high salinities, Chinese and Italian polyploids produced most of their offspring as dormant cysts while their sympatric diploids produced most of their offspring as nauplii. This relationship is reversed in the Spanish diploid-polyploid complex. For the Chinese population at 25-degrees-C, pentaploid clones had higher developmental rates than diploid clones at 35 ppt; at 90 ppt, diploid clones had higher developmental rates than the pentaploids. Italian diploids and tetraploids had different responses to variation in both temperature (25-degrees-C and 31-degrees-C) and salinity (30 ppt and 180 ppt). Our results demonstrate that relative fitness of the two cytotypes is a function of environmental conditions and that sympatric diploids and polyploids respond differently to environmental changes. Chinese and Italian polyploids are expected to have lower fitness than their sympatric diploids when the physical environment is not stressful and when intraspecific competition is important. However, polyploids may have advantages over sympatric diploids in stressful habitats or when they encounter short-term lethal temperatures. These results suggest that polyploid Artemia have evolved a suite of life-history characteristics adapting them to environments that contrast to those of their sympatric diploids. ZHANG, L (reprint author), OREGON STATE UNIV,DEPT ZOOL,CORVALLIS,OR 97331, USA. ABREUGROBOIS FA, 1982, MECH SPECIATION, P221; BEATON MJ, 1988, AM NAT, V132, P837, DOI 10.1086/284892; BIERZYCHUDEK P, 1985, EXPERIENTIA, V41, P1255, DOI 10.1007/BF01952068; BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605; BOWEN ST, 1978, COMP BIOCHEM PHYS B, V61, P593, DOI 10.1016/0305-0491(78)90055-X; Browne R.A., 1991, P221; BROWNE RA, 1984, ECOLOGY, V65, P949, DOI 10.2307/1938067; BROWNE RA, 1988, J EXP MAR BIOL ECOL, V124, P1, DOI 10.1016/0022-0981(88)90201-8; Cavalier-Smith T., 1985, P105; Dewey D. R., 1980, Polyploidy. Biological relevance. Part IV. Polyploidy in agriculture., P445; DOMENECH FA, 1980, BRINE SHRIMP ARTEMIA, V1, P19; GAJARDO GM, 1989, MAR ECOL PROG SER, V55, P191, DOI 10.3354/meps055191; GOIN OB, 1968, CAPIEA, V3, P532; HEBERT PDN, 1990, FUNCT ECOL, V4, P703; KING C E, 1988, Chinese Journal of Oceanology and Limnology, V6, P179, DOI 10.1007/BF02847837; Lenz P.H., 1991, P237; LEVIN DA, 1983, AM NAT, V122, P1, DOI 10.1086/284115; Lewis W. H., 1980, Polyploidy. Biological relevance. Part I. Polyploidy and plant evolution., P103; LUMARET R, 1987, OECOLOGIA, V73, P436, DOI 10.1007/BF00385262; MACISAAC HJ, 1985, PHYSIOL ZOOL, V58, P350, DOI 10.1086/physzool.58.3.30156006; Suomalainen E, 1987, CYTOLOGY EVOLUTION P, P71; Tackaert W., 1991, P287; VANDIJK P, 1990, HEREDITY, V65, P349, DOI 10.1038/hdy.1990.104; VANHAECKE P, 1984, J EXP MAR BIOL ECOL, V80, P259, DOI 10.1016/0022-0981(84)90154-0; WALSH EJ, 1992, J EVOLUTION BIOL, V5, P345, DOI 10.1046/j.1420-9101.1992.5020345.x; Wang Renxue, 1991, Oceanologia et Limnologia Sinica, V22, P1; WEIDER LJ, 1987, OECOLOGIA, V73, P251, DOI 10.1007/BF00377515; ZHANG L, 1992, GENETICA, V85, P211, DOI 10.1007/BF00132273; ZHANG L, 1991, HEREDITY, V66, P445, DOI 10.1038/hdy.1991.54 29 18 19 0 9 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia MAR 1993 93 2 177 183 10.1007/BF00317668 7 Ecology Environmental Sciences & Ecology KR753 WOS:A1993KR75300006 28313604 2019-02-26 J ARONSON, J; KIGEL, J; SHMIDA, A ARONSON, J; KIGEL, J; SHMIDA, A REPRODUCTIVE ALLOCATION STRATEGIES IN DESERT AND MEDITERRANEAN POPULATIONS OF ANNUAL PLANTS GROWN WITH AND WITHOUT WATER-STRESS OECOLOGIA English Article ANNUALS; DESERT; MEDITERRANEAN; REPRODUCTIVE EFFORT; PLASTICITY PHENOTYPIC PLASTICITY; ENERGY ALLOCATION; YIELD COMPONENTS; EVOLUTION; SIZE; ENVIRONMENTS; LEGUMINOSAE; POLYGONUM; SESBANIA; NUMBER Reproductive effort (relative allocation of biomass to diaspore production) was compared in matched pairs of Mediterranean and desert populations of three unrelated annual species, Erucaria hispanica (L.) Druce, Bromus fasciculatus C. Presl. and Brachypodium distachyon (L.) Beauv., grown under high and low levels of water availability in a common-environment experiment. Desert populations in all three species showed higher reproductive effort than corresponding Mediterranean populations, as expressed by both a reproductive index (RI = reproductive biomass/vegetative biomass), and a reproductive efficiency index (REI = number of diaspores/total plant biomass). Moreover, in E. hispanica and Brachypodium distachyon, inter-populational differences in reproductive effort were greater under water stress, the main limiting factor for plant growth in the desert. These results indicate that variability in reproductive effort in response to drought is a critical and dynamic component of life history strategies in annual species in heterogeneous, unpredictable xeric environments. When subjected to water stress the Mediterranean populations of E. hispanica and B. distachyon showed greater plasticity (e.g. had a greater reduction) in reproductive effort than the desert populations, while in Bromus fasciculatus both populations showed similar amounts of plasticity. HEBREW UNIV JERUSALEM, DEPT AGR BOT, IL-76100 REHOVOT, ISRAEL; HEBREW UNIV JERUSALEM, DEPT BOT, JERUSALEM, ISRAEL ARONSON, J (reprint author), CTR L EMBERGER, CNRS, BP 5051, F-34033 MONTPELLIER, FRANCE. ABRAHAMSON WG, 1979, AM J BOT, V66, P71, DOI 10.2307/2442627; ARONSON J, 1992, OECOLOGIA, V89, P17, DOI 10.1007/BF00319010; ARONSON JA, 1990, ISRAEL J BOT, V39, P413; BABBEL GR, 1974, EVOLUTION, V28, P619, DOI 10.1111/j.1558-5646.1974.tb00794.x; BAKER HG, 1972, ECOLOGY, V53, P997, DOI 10.2307/1935413; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; CHIARIELLO N, 1984, ECOLOGY, V65, P1290, DOI 10.2307/1938334; DUNN CP, 1991, AM J BOT, V78, P1712, DOI 10.2307/2444850; Feinbrun- Dothan N, 1986, FLORA PALAESTINA, V4; FOX GA, 1990, AM J BOT, V77, P1508, DOI 10.2307/2444763; GAINES MS, 1974, AM NAT, V108, P889, DOI 10.1086/282967; HANCOCK JF, 1987, B TORREY BOT CLUB, V114, P53, DOI 10.2307/2996389; HARPER J. L., 1970, Annual review of ecology and systematics., V1, P327, DOI 10.1146/annurev.es.01.110170.001551; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; HICKMAN JC, 1975, J ECOL, V63, P689, DOI 10.2307/2258745; HICKMAN JC, 1977, J ECOL, V65, P317, DOI 10.2307/2259080; Jain S., 1979, Topics in plant population biology., P160; JAIN SK, 1978, EXPERIENTIA, V34, P835, DOI 10.1007/BF01939649; JEFFERIES RL, 1984, PERSPECTIVES PLANT P, P347; KAWANO S, 1983, OECOLOGIA, V57, P6, DOI 10.1007/BF00379554; KELLY D, 1984, NEW PHYTOL, V96, P103, DOI 10.1111/j.1469-8137.1984.tb03547.x; KRANNITZ PG, 1991, AM J BOT, V78, P446, DOI 10.2307/2444967; KUTIEL P, 1986, ISRAEL J BOT, V35, P233; LEVINS R, 1963, AM NAT, V97, P75, DOI 10.1086/282258; Levins R., 1968, EVOLUTION CHANGING E; Lewontin RC, 1966, SYST ZOOL, V15, P141, DOI [10.2307/2411632, DOI 10.2307/2411632]; MACDONALD SE, 1988, EVOLUTION, V42, P1036, DOI 10.1111/j.1558-5646.1988.tb02522.x; MARSHALL DL, 1986, AM NAT, V127, P508, DOI 10.1086/284499; MARSHALL DL, 1985, ECOLOGY, V66, P753, DOI 10.2307/1940536; MCWILLIAMS EL, 1968, ECOLOGY, V49, P290, DOI 10.2307/1934458; MONSON RK, 1981, OECOLOGIA, V49, P50, DOI 10.1007/BF00376897; MULROY TW, 1977, BIOSCIENCE, V27, P109, DOI 10.2307/1297607; NEWELL SJ, 1978, ECOLOGY, V59, P228, DOI 10.2307/1936367; PITELKA LF, 1977, ECOLOGY, V58, P1055, DOI 10.2307/1936925; PRIMACK RB, 1978, J ECOL, V66, P835, DOI 10.2307/2259299; RITLAND K, 1984, OECOLOGIA, V63, P243, DOI 10.1007/BF00379884; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SCHAFFER WM, 1975, ECOLOGY EVOLUTION CO; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; SCHLICHTING CD, 1984, AM J BOT, V71, P252, DOI 10.2307/2443753; Shmida A., 1986, HOT DESERTS ARID SHR, P379; SHMIDA A, 1988, PLANT FORM VEGETATIO, P211; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STANTON ML, 1984, ECOLOGY, V65, P1105, DOI 10.2307/1938318; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEBBINS GL, 1952, AM NAT, V86, P33, DOI 10.1086/281699; SULTAN SE, 1987, EVOL BIOL, V21, P127; SYMONIDES E, 1988, VEGETATIO, V77, P21, DOI 10.1007/BF00045746; THOMPSON JD, 1991, TRENDS ECOL EVOL, V6, P246, DOI 10.1016/0169-5347(91)90070-E; THOMPSON K, 1981, AM NAT, V117, P205, DOI 10.1086/283700; VANANDEL J, 1977, J ECOL, V65, P747, DOI 10.2307/2259377; VENABLE DL, 1989, ECOLOGY SOIL SEED BA, P67; Weiner J., 1988, Plant reproductive ecology: patterns and strategies, P228; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WILKEN DH, 1977, SYST BOT, V2, P99, DOI 10.2307/2418577; ZOHARY M, 1966, FLORA PALESTINA, V1 56 68 72 1 38 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia MAR 1993 93 3 336 342 10.1007/BF00317875 7 Ecology Environmental Sciences & Ecology KT665 WOS:A1993KT66500005 28313432 2019-02-26 J KAWECKI, TJ KAWECKI, TJ AGE AND SIZE AT MATURITY IN A PATCHY ENVIRONMENT - FITNESS MAXIMIZATION VERSUS EVOLUTIONARY STABILITY OIKOS English Article LIFE-HISTORY STRATEGIES; DEPENDENT SELECTION; COMPETITION; REPRODUCTION; COEVOLUTION; POPULATIONS; HEIGHT; GROWTH The evolution of age at maturity under exploitation competition in a patchy environment is modelled using both an analytical approach and computer simulations. Maturity is defined as the switch from allocating resources to growth to allocating them to reproduction, and fitness is measured as lifetime energy allocation to reproduction. Explicit consideration of resources and their exploitation brings about frequency dependence. As a consequence, whenever two or more individuals jointly exploit a patch, the ESS is to mature later and at larger size than at the age and size maximizing the fitness measure. An adaptive response to the presence of competitors thus aggravates the depression of fecundity resulting from competitive resource depletion. In some cases two individuals in a patch should grow larger and mature later than a single individual in a patch of the same size, even though in the first case the individual resource share is halved. The effects of patch size, number of competitors, within-patch mortality and whole-patch destruction rate on the predicted age and size at maturity are discussed. KAWECKI, TJ (reprint author), UNIV BASEL,INST ZOOL,RHEINSPRUNG 9,CH-4051 BASEL,SWITZERLAND. Kawecki, Tadeusz/K-5466-2015 Kawecki, Tadeusz/0000-0002-9244-1991 ABRAMS P, 1983, THEOR POPUL BIOL, V24, P22, DOI 10.1016/0040-5809(83)90044-8; ABRAMS PA, 1989, EVOL ECOL, V3, P215, DOI 10.1007/BF02270722; ABRAMS PA, 1984, AM NAT, V124, P80, DOI 10.1086/284253; BELL G, 1976, AM NAT, V110, P57, DOI 10.1086/283048; BROWN JS, 1987, EVOLUTION, V41, P66, DOI 10.1111/j.1558-5646.1987.tb05771.x; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1989, EVOL ECOL, V3, P236, DOI 10.1007/BF02270724; COHEN D, 1976, AM NAT, V110, P801, DOI 10.1086/283103; EGGLETON P, 1990, OIKOS, V59, P417, DOI 10.2307/3545155; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GROSS MR, 1980, P NATL ACAD SCI-BIOL, V77, P6937, DOI 10.1073/pnas.77.11.6937; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; HARDIN G, 1968, SCIENCE, V162, P1243; KING DA, 1990, AM NAT, V135, P809, DOI 10.1086/285075; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; MAKELA A, 1985, THEOR POPUL BIOL, V27, P239, DOI 10.1016/0040-5809(85)90001-2; MATESSI C, 1984, THEOR POPUL BIOL, V25, P347, DOI 10.1016/0040-5809(84)90014-5; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; SLATKIN M, 1979, GENETICS, V93, P755; Smith J.M., 1982, EVOLUTION THEORY GAM; SMITH JM, 1986, THEOR POPUL BIOL, V30, P166, DOI 10.1016/0040-5809(86)90031-6; Stearns S. C, 1981, EVOLUTION TODAY, P371; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; Stearns SC., 1992, EVOLUTION LIFE HIST; VINCENT TL, 1980, THEOR POPUL BIOL, V17, P215, DOI 10.1016/0040-5809(80)90007-6; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360; WEINER J, 1990, TRENDS ECOL EVOL, V5, P360, DOI 10.1016/0169-5347(90)90095-U 32 39 39 0 9 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos MAR 1993 66 2 309 317 10.2307/3544819 9 Ecology Environmental Sciences & Ecology KJ535 WOS:A1993KJ53500017 2019-02-26 J SIBLY, RM; CURNOW, RN SIBLY, RM; CURNOW, RN AN ALLELOCENTRIC VIEW OF LIFE-HISTORY EVOLUTION JOURNAL OF THEORETICAL BIOLOGY English Article POPULATION-GROWTH RATE; COMPUTER-SIMULATION; CYCLE THEORY; FITNESS UNIV READING, DEPT APPL STAT, READING RG6 2AJ, BERKS, ENGLAND SIBLY, RM (reprint author), UNIV READING, DEPT PURE & APPL ZOOL, READING RG6 2AJ, BERKS, ENGLAND. Sibly, Richard/0000-0001-6828-3543 Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Crow J, 1986, BASIC CONCEPTS POPUL; CROW J F, 1970, P591; Fisher R.A., 1930, GENETICAL THEORY NAT; Haldane JBS, 1927, P CAMB PHILOS SOC, V23, P607; KEMPTHORNE O, 1970, GENETICS, V64, P125; LINTON L, 1991, COMPUT BIOL MED, V21, P345, DOI 10.1016/0010-4825(91)90015-2; MURRAY BG, 1985, OIKOS, V44, P509, DOI 10.2307/3565794; Norton HTJ, 1928, P LOND MATH SOC, V28, P1; NUR N, 1984, OIKOS, V42, P413, DOI 10.2307/3544416; NUR N, 1987, OIKOS, V48, P338, DOI 10.2307/3565523; POLLAK E, 1971, Theoretical Population Biology, V2, P357, DOI 10.1016/0040-5809(71)90027-X; POLLAK E, 1970, Theoretical Population Biology, V1, P315, DOI 10.1016/0040-5809(70)90049-3; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SIBLY RM, 1991, COMPUT BIOL MED, V21, P357, DOI 10.1016/0010-4825(91)90016-3; SIBLY RM, 1989, FUNCT ECOL, V3, P129, DOI 10.2307/2389293; STENSETH NC, 1983, OIKOS, V41, P152, DOI 10.2307/3544364; STENSETH NC, 1984, OIKOS, V42, P414, DOI 10.2307/3544417; Tuljapurkar S., 1990, POPULATION DYNAMICS 21 13 13 0 3 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. FEB 21 1993 160 4 533 546 10.1006/jtbi.1993.1034 14 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology KW289 WOS:A1993KW28900008 8501922 2019-02-26 J BERCOVITCH, FB; BERARD, JD BERCOVITCH, FB; BERARD, JD LIFE-HISTORY COSTS AND CONSEQUENCES OF RAPID REPRODUCTIVE MATURATION IN FEMALE RHESUS MACAQUES BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article DROSOPHILA-MELANOGASTER; MATERNAL INVESTMENT; SEX-RATIO; EVOLUTION; PRIMATES; SURVIVAL; MONKEYS; SUCCESS; SENESCENCE; DOMINANCE Life history theory suggests that reproduction at one point in time involves costs in terms of energy, reduced survival, or probability of reproduction at a future point in time. In long-lived iteroparous organisms, initiating reproduction at a relatively young age may exact a cost in terms of reduced survivorship, but an early age of first reproduction could be beneficial if it lengthens the breeding lifespan. Data collected over 30 years from one population of rhesus macaques, Macaca mulatta, were analyzed to determine the fertility and survivorship costs of initiating reproduction at a relatively young age. Low population density and high social status increased the chances of accelerating age at first parturition, but high dominance rank was not associated with greater lifetime reproductive success. Rapid reproductive maturation neither reduced short-term survivorship nor decreased lifespan. Fertility costs arose if young females reared a male, but not female, offspring. The fitness consequences of rapid reproductive maturation depend upon longevity, with age at death having a significantly greater impact on lifetime reproductive success than age at first parturition. BERCOVITCH, FB (reprint author), UNIV PUERTO RICO, MED SCI CAMPUS, CARIBBEAN PRIMATE RES CTR, POB 1053, SABANA SECA, PR 00952 USA. Altmann J., 1988, P403; ALTMANN SA, 1962, ANN NY ACAD SCI, V102, P338, DOI 10.1111/j.1749-6632.1962.tb13650.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Berard J, 1990, THESIS U OREGON; BERCOVITCH FB, 1991, SOCIOENDOCRINOLOGY P, V12, P315; BERMAN CM, 1988, AM NAT, V131, P307, DOI 10.1086/284792; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; CHAPAIS B, 1980, J THEOR BIOL, V82, P47, DOI 10.1016/0022-5193(80)90090-9; Cheney D.L., 1988, P384; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; CLUTTONBROCK TH, 1988, REPRODUCTIVE SUCCESS; CLUTTONBROCK TH, 1982, REPRODUCTIVE SUCCESS; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; DATTA S, 1988, ANIM BEHAV, V36, P754, DOI 10.1016/S0003-3472(88)80159-3; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DRICKAMER LC, 1974, FOLIA PRIMATOL, V21, P61, DOI 10.1159/000155596; Duggleby C.R., 1986, P269; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; Endler JA, 1986, NATURAL SELECTION WI; Falconer D. S., 1960, INTRO QUANTITATIVE G; FEDIGAN LM, 1986, FOLIA PRIMATOL, V47, P143, DOI 10.1159/000156271; FEDIGAN LM, 1983, YEARB PHYS ANTHROPOL, V26, P91; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GREEN WCH, 1990, BEHAV ECOL SOCIOBIOL, V27, P99, DOI 10.1007/BF00168452; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HARCOURT AH, 1987, J ZOOL, V213, P471, DOI 10.1111/j.1469-7998.1987.tb03721.x; Harvey P.H., 1987, P181; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; HORN HS, 1984, BEHAVIORAL ECOLOGY E, P279; KOYAMA N, 1992, PRIMATES, V33, P33, DOI 10.1007/BF02382761; LEE PC, 1986, BEHAV ECOL SOCIOBIOL, V18, P353, DOI 10.1007/BF00299666; LOY J, 1988, ECOLOGY BEHAVIOR FOO, P153; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MAC ARTHUR ROBERT H., 1967; Marriot BM, 1988, ECOLOGY BEHAV FOOD E, P125; MEIKLE DB, 1988, BEHAV ECOL SOCIOBIOL, V22, P379, DOI 10.1007/BF00294974; NEWTON I, 1989, LIFETIME REPRODUCTIV; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PAUL A, 1984, FOLIA PRIMATOL, V42, P2, DOI 10.1159/000156140; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PIANKA ER, 1978, EVOLUTIONARY ECOLOGY; Rawlins R.G., 1986, P47; Rawlins R.G., 1986, P13; RAWLINS RG, 1985, AM J PRIMATOL, V9, P87, DOI 10.1002/ajp.1350090203; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROBERTS MS, 1978, FOLIA PRIMATOL, V29, P229, DOI 10.1159/000155842; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; Sade D.S., 1967, P99; SADE DS, 1991, PRIMATE LIFE HIST EV, P181; SADE DS, 1985, BASIC DEMOGRAPHIC OB; SIMPSON MJA, 1981, NATURE, V290, P49, DOI 10.1038/290049a0; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; SOKAL R., 1981, BIOMETRY; SOUMAH AG, 1991, FOLIA PRIMATOL, V57, P191, DOI 10.1159/000156586; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SUGIYAMA Y, 1982, FOLIA PRIMATOL, V39, P238, DOI 10.1159/000156080; TUOMI J, 1983, AM ZOOL, V23, P25; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; WILSON ME, 1983, AM J PHYS ANTHROPOL, V61, P103, DOI 10.1002/ajpa.1330610111; WOLFF JO, 1988, BEHAV ECOL SOCIOBIOL, V23, P127, DOI 10.1007/BF00299896; Zar J. H, 1974, BIOSTATISTICAL ANAL 68 67 68 0 21 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. FEB 1993 32 2 103 109 10.1007/BF00164042 7 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology KL513 WOS:A1993KL51300005 2019-02-26 J CHISHOLM, JS CHISHOLM, JS DEATH, HOPE, AND SEX - LIFE-HISTORY THEORY AND THE DEVELOPMENT OF REPRODUCTIVE STRATEGIES CURRENT ANTHROPOLOGY English Article WITHIN-GENERATION VARIANCE; NATURAL-SELECTION; EVOLUTIONARY PSYCHOLOGY; ECONOMIC HARDSHIP; MENSTRUAL CYCLES; OFFSPRING NUMBER; CHILDREN; ATTACHMENT; AGE; MENARCHE ManY social scientists reject evolutionary views of human behavior because of their supposed genetic determinism. To establish that not all evolutionary models are inherently deterministic, I first review the perennial adaptationist-mechanist controversy in evolutionary biology. I then outline life-history theory, a burgeoning field of biology devoted to the study of reproduction, growth and development, and ecology in an evolutionary context. I undertake next to show how life-history theory can provide a satisfactory resolution to the adaptationist-mechanist debate. Combining Promislow and Harvey's arguments about the role of mortality rates in the evolution of life-history traits with Belsky, Steinberg, and Draper's attachment-theory model of the development of alternative reproductive strategies in humans, I propose that the allocation of reproductive (''mating'' and ''parenting'') effort in adults may be partially contingent on their early experience with the causes and correlates of local high death rates. I conclude with a discussion of some implications of this proposal for the emerging field of evolutionary psychology. CHISHOLM, JS (reprint author), UNIV CALIF DAVIS, DEPT APPL BEHAV SCI, DAVIS, CA 95616 USA. ALBERCH P, 1990, PRIMATE LIFE HIST EV; ALEXANDER RD, 1990, ETHOL SOCIOBIOL, V11, P241, DOI 10.1016/0162-3095(90)90012-U; APTER D, 1983, J CLIN ENDOCR METAB, V57, P82, DOI 10.1210/jcem-57-1-82; BANE MJ, 1989, SCIENCE, V245, P1047, DOI 10.1126/science.245.4922.1047; BARKOW J, IN PRESS ADAPTED MIN; BATESON P, 1982, CURRENT PROBLEMS SOC; Bateson P. P. G, 1983, MATE CHOICE; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; BERNARD J, 1975, ADOLESCENCE LIFE CYC; BETZIG L, 1988, HUMAN REPRODUCTIVE B; Betzig Laura L., 1986, DESPOTISM DIFFERENTI; Bleier Ruth, 1986, FEMINIST APPROACHES; Bowlby J, 1973, ATTACHMENT LOSS, V2; Bowlby J., 1980, ATTACHMENT AND LOSS, V3; Bowlby J., 1969, ATTACHMENT LOSS, V1; Boyce M.S., 1988, EVOLUTION LIFE HIST; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Boyd R., 1985, CULTURE EVOLUTIONARY; BRETHERTON I, 1985, MONOGRAPHS SOC RES C, V209, P66; BROUDE GJ, 1990, ETHOS, V18, P103, DOI 10.1525/eth.1990.18.1.02a00040; BURBANK V, 1992, FATHER CHILD RELATIO; CAIN M, 1985, GENDER LIFE COURSE; Caldwell J. C., 1982, THEORY FERTILITY DEC; CALLAN H, 1984, MAN, V19, P404, DOI 10.2307/2802179; CAMPBELL B, 1992, 4TH BIENN M SOC RES; CARLISLE TR, 1982, ANIM BEHAV, V30, P824, DOI 10.1016/S0003-3472(82)80156-5; CARO TM, 1986, ANIM BEHAV, V34, P1483, DOI 10.1016/S0003-3472(86)80219-6; CASPI A, 1988, RELATIONSHIPS FAMILI; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARLESWORTH WR, 1986, HUM DEV, V29, P1, DOI 10.1159/000272991; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHERLIN AJ, 1991, SCIENCE, V252, P1386, DOI 10.1126/science.2047851; CHISHOLM J, 1992, NEW DIRECTIONS PSYCH; Chisholm JS., 1988, SOCIOBIOLOGICAL PERS; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; COHN JF, 1983, CHILD DEV, V54, P185, DOI 10.2307/1129876; CONGER RD, 1984, CHILD DEV, V55, P2234, DOI 10.1111/j.1467-8624.1984.tb03918.x; COSMIDES L, 1987, LATEST BEST ESSAYS E; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; CROCKENBERG SB, 1981, CHILD DEV, V52, P857, DOI 10.2307/1129087; CUTLER WB, 1979, J BIOSOC SCI, V11, P425; CUTLER WB, 1985, PHYSIOL BEHAV, V34, P805, DOI 10.1016/0031-9384(85)90381-6; CUTRIGHT P, 1972, FAM PLANN PERSPECT, V4, P24, DOI 10.2307/2133672; CVETKOVICH G, 1978, ADOLESCENCE, V13, P231; Daly M., 1988, HOMICIDE; DEROUSSEAU CJ, 1990, PRIMATE LIFE HIST EV; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; DROTAR D, 1991, AM J ORTHOPSYCHIAT, V61, P23, DOI 10.1037/h0079231; DUNBAR R, 1982, PERSPECTIVES ETHOLOG, V5; EASTERBROOKS MA, 1984, CHILD DEV, V55, P740, DOI 10.2307/1130126; EATON JOSEPH W., 1953, HUMAN BIOL, V25, P206; EGELAND B, 1987, CHILD ABUSE NEGLECT; Elder G. H, 1974, CHILDREN GREAT DEPRE; ELLISON PT, 1981, HUM BIOL, V53, P635; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; FAGEN R, 1982, PERSPECTIVES ETHOLOG, V5; Fisher S., 1973, FEMALE ORGASM PSYCHO; FRISCH RE, 1974, SCIENCE, V185, P949, DOI 10.1126/science.185.4155.949; FRISCH RE, 1978, SCIENCE, V199, P22, DOI 10.1126/science.199.4324.22; FRISCH RE, 1988, SCI AM, V258, P88, DOI 10.1038/scientificamerican0388-88; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARN S, 1986, SCH AGE PREGNANCY PA; GHISELIN MT, 1986, HUM DEV, V29, P12; GILLESPIE JH, 1974, GENETICS, V76, P601; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GILLESPIE JH, 1975, GENETICS, V81, P403; Gould S. J, 1977, ONTOGENY PHYLOGENY; GOULD SJ, 1991, J SOC ISSUES, V47, P43, DOI 10.1111/j.1540-4560.1991.tb01822.x; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; HALL F, 1979, 1ST YEAR LIFE; Harris M, 1987, DEATH SEX FERTILITY; Harvey P., 1987, PRIMATE SOC; HARVEY P, 1991, EVOLUTION REPRODUCTI; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; HAUSER MD, 1988, AM NAT, V131, P573, DOI 10.1086/284807; HAWKES K, 1989, COMP SOCIOECOLOGY; HAYDEN B, 1986, CULTURE REPRODUCTION; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HILL K, 1988, HUMAN REPRODUCTIVE B; Hinde R., 1987, INDIVIDUALS RELATION; HINDE R, 1990, CAUSES DEV INTERDISC; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HORN H, 1984, BEHAVIOURAL ECOLOGY; IRONS W, 1983, SOCIAL BEHAVIOR FEMA; Johnson M, 1987, BODY MIND; JOHNSTON T, 1982, ADV STUDY BEHAVIOR, V12; JONES B, 1972, MED J AUSTRALIA, V2, P533; JONES NB, 1989, SOCIOBIOLOGY SEXUAL; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; Kitcher P, 1985, VAULTING AMBITION; Kleiman D. G, 1981, PARENTAL CARE MAMMAL; KOBAK RR, 1991, J PERS SOC PSYCHOL, V60, P861, DOI 10.1037//0022-3514.60.6.861; KRAEMER GW, 1992, BEHAV BRAIN SCI, V15, P493, DOI 10.1017/S0140525X00069752; LANCASTER JB, 1987, PARENTING LIFE SPAN; LEE PC, 1986, BEHAV ECOL SOCIOBIOL, V18, P353, DOI 10.1007/BF00299666; LEMPERS JD, 1989, CHILD DEV, V60, P25, DOI 10.2307/1131068; LESSELLS CM, 1991, BEHAVIOURAL ECOLOGY; LEVINE R, 1977, CULTURE INFANCY; LEVINE R, 1983, NEW DIRECTIONS CHILD, V20; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; LOW B, IN PRESS ETHOLOGY SO; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; MAC ARTHUR ROBERT H., 1967; MACDONALD KB, 1988, SOCIOBIOLOGICAL PERS; MAIN M, 1985, MONOGR SOC RES CHILD, V50, P66, DOI 10.2307/3333827; MAIN M, 1984, CHILD ABUSE NEGLECT, V8, P203, DOI 10.1016/0145-2134(84)90009-7; MAIN M, 1990, HUM DEV, V33, P48, DOI 10.1159/000276502; MAIN M, 1991, ATTACHMENT LIFE CYCL; MARSHALL WA, 1986, HUMAN GROWTH COMPREH, V2; Martin RD., 1989, PRIMATE ORIGINS EVOL; MASTERS WH, 1988, HUMAN SEXUAL INADEQU; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.2307/1131096; MEALEY L, 1990, PSYCHOL SCI, V1, P385, DOI 10.1111/j.1467-9280.1990.tb00247.x; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MUELLER U, 1991, 1991 M HUM BEH EV SO; MULDER MB, 1989, J BIOSOC SCI, V21, P179; MULDER MB, 1988, REPRODUCTIVE SUCCESS; MULDER MB, 1991, BEHAVIOURAL ECOLOGY; OFFIT A, 1981, NIGHT THOUGHTS CONFE; Ogden T., 1986, MATRIX MIND; Ollman B., 1979, SOCIAL SEXUAL REVOLU; OYAMA S, 1985, ONTOGENY INFORMATION; OYAMA S, 1982, PERSPECTIVES ETHOLOG, V5, P101; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PARKES CM, 1991, ATTACHMENT LIFE CYCL; PEACOCK NR, 1990, PRIMATE LIFE HIST EV; PEBLEY AR, 1979, STUD FAMILY PLANN, V10, P129, DOI 10.2307/1965691; PEREIRA ME, IN PRESS JUVENILE PR; Pianka ER, 1974, EVOLUTIONARY ECOLOGY; PIRKE KM, 1986, FERTIL STERIL, V46, P1083; Plotkin H., 1982, LEARNING DEV CULTURE; PRESSER HB, 1978, SOC BIOL, V25, P94, DOI 10.1080/19485565.1978.9988327; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RADKEYARROW M, 1991, ATTACHMENT LIFE CYCL; RICKS M, 1985, GROWING POINTS ATTAC, P221; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; Rohner R. P., 1975, THEY LOVE ME THEY LO; RUSHTON JP, 1987, J RES PERS, V21, P529, DOI 10.1016/0092-6566(87)90038-9; RUTTER M, 1976, CYCLES DISADVANTAGE; RYDER NB, 1971, REPRODUCTION US 1965; SAMEROFF A, 1975, REV CHILD DEV RES, V4; SCARR S, 1983, CHILD DEV, V54, P424, DOI 10.2307/1129703; SCHEPERHUGHES N, 1987, CHILD SURVIVAL; SEGER J, 1987, OXFORD SURVEYS EVOLU, V4; SHAVER P, 1992, ADV PERSONAL RELATIO, V4; SHERIF M, 1990, SOCIAL PSYCHOL; SHORT RV, 1984, SCI AM, V250, P35, DOI 10.1038/scientificamerican0484-35; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037/0022-3514.60.6.870; SKOLNICK A, 1986, LIFE-SPAN DEV BEHAV, V7, P173; SKOLNICK A, 1981, PRESENT PAST MIDDLE; SLOBODKIN LB, 1974, Q REV BIOL, V49, P181, DOI 10.1086/408082; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH E, 1987, LATEST BEST ESSAYS E; SMITHGILL SJ, 1983, AM ZOOL, V23, P47; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Smuts B.B., 1992, FATHER CHILD RELATIO; SOEFER EF, 1985, J ADOLESCENT HEALTH, V6, P383, DOI 10.1016/S0197-0070(85)80007-3; STANFORD JL, 1987, J CHRON DIS, V40, P995, DOI 10.1016/0021-9681(87)90113-5; STEARNS S, 1982, EVOLUTION DEV; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STUART FM, 1987, ARCH SEX BEHAV, V16, P91, DOI 10.1007/BF01542064; SUPER CM, 1986, INT J BEHAV DEV, V9, P545, DOI 10.1177/016502548600900409; Symons D., 1987, SOCIOBIOLOGY PSYCHOL; THOMPSON D, 1966, GROWTH FORM; THORNTON A, 1991, AM J SOCIOL, V96, P868, DOI 10.1086/229611; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; TOOBY J, 1989, ETHOL SOCIOBIOL, V10, P29, DOI 10.1016/0162-3095(89)90012-5; TOOBY J, 1990, ETHOL SOCIOBIOL, V11, P375, DOI 10.1016/0162-3095(90)90017-Z; TRINKAUS E, 1990, PRIMATE LIFE HIST EV; Trivers R, 1972, SEXUAL SELECTION DES, p136e; TRONICK EZ, 1986, MATERNAL DEPRESSION; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; UDDENBERG N, 1974, J PSYCHOSOM RES, V18, P33, DOI 10.1016/0022-3999(74)90082-8; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; VALENZUELA M, 1990, CHILD DEV, V61, P1984, DOI 10.1111/j.1467-8624.1990.tb03580.x; VANSCHAIK CP, 1990, BEHAVIOUR, V115, P30, DOI 10.1163/156853990X00284; Varela F. J., 1991, EMBODIED MIND; WARE H, 1977, P INT POPULATION C, V1; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360; WERNER EE, 1989, SCI AM, V260, P106, DOI 10.1038/scientificamerican0489-106; WERNER EE, 1989, AM J ORTHOPSYCHIAT, V59, P72, DOI 10.1111/j.1939-0025.1989.tb01636.x; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; WHELAN EA, 1990, AM J EPIDEMIOL, V131, P625, DOI 10.1093/oxfordjournals.aje.a115546; Whiting John, 1975, ETHOS, V3, P183; Williams GC, 1966, ADAPTATION NATURAL S; Wilson E.O., 1975, P1; WINKLER D, 1988, OXFORD SURVEYS EVOLU, V5; WITTENBERG JF, 1979, HDB BEHAVIORAL NEURO; WITTENBERGER JF, 1980, ANNU REV ECOL SYST, V11, P197, DOI 10.1146/annurev.es.11.110180.001213; WOLKIND S, 1985, CHILD ADOLESCENT PSY; WORTHMAN C, JUVENILE PRIMATES LI; WORTHMAN C, 1992, NEW DIRECTIONS PSYCH; WYATT G, 1990, KINSEY I SERIES, V3; ZABIN LS, 1986, DEMOGRAPHY, V23, P595, DOI 10.2307/2061353 198 283 288 6 126 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0011-3204 1537-5382 CURR ANTHROPOL Curr. Anthropol. FEB 1993 34 1 1 24 10.1086/204131 24 Anthropology Anthropology KJ162 WOS:A1993KJ16200001 2019-02-26 J PAUL, A; KUESTER, J; PODZUWEIT, D PAUL, A; KUESTER, J; PODZUWEIT, D REPRODUCTIVE SENESCENCE AND TERMINAL INVESTMENT IN FEMALE BARBARY MACAQUES (MACACA-SYLVANUS) AT SALEM INTERNATIONAL JOURNAL OF PRIMATOLOGY English Article BARBARY MACAQUES; FECUNDITY; REPRODUCTIVE SENESCENCE; MATERNAL INVESTMENT; MENOPAUSE PRESBYTIS-ENTELLUS; JAPANESE MONKEYS; LANGUR MONKEYS; OLIVE BABOONS; SAGUINUS SP; AGE; BEHAVIOR; DOMINANCE; SUCCESS; MENOPAUSE The reproductive history of 207 female Barbary macaques, living in a large outdoor enclosure in Southwest Germany, was studied during an 11-year period. The results yielded a significant relationship between female age and fecundity, with fertility rates lower than expected among young and old females. Analysis of the reproductive history of individual females revealed a significant decline in fertility from prime age (7-12 years) to mid age (13-19 years), and from mid age to old age (20-25 years). The proportion of long interbirth intervals increased steadily among aging females. Infant survival was not significantly related to maternal age, but offspring of old females showed the highest survivorship. Behavioral observations revealed that old mothers weaned their offspring significantly later than younger mothers, suggesting that prolongation of interbirth intervals is due not only to deteriorating physical condition but also to increased maternal investment, as life history theory predicts. Reproduction ceased during the middle of the third decade of life. Final cessation of estrous cycling invariably occurred 3 or 4 years after the birth of the last offspring, but a postreproductive life span of greater-than-or-equal-to 5 years appears to be common in this population. Available data suggest that reproductive senescence and menopause are more common among nonhuman primates than widely believed and that both traits are part of an adaptive life history strategy. PAUL, A (reprint author), UNIV GOTTINGEN,INST ANTHROPOL,BURGERSTR 50,W-3400 GOTTINGEN,GERMANY. Alexander R. D., 1988, HERAUSFORDERUNG EVOL, P129; ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; Altmann J., 1988, P403; ANDERSON CM, 1986, INT J PRIMATOL, V7, P305, DOI 10.1007/BF02736394; Angst W., 1975, Primate Behav, V4, P325; BORRIES C, 1991, INT J PRIMATOL, V12, P231, DOI 10.1007/BF02547586; Borries C, 1988, HUM EVOL, V3, P239, DOI DOI 10.1007/BF02435856; BOWDEN DM, AGING NONHUMAN PRIMA, P1; Catchpole HR, 1975, RHESUS MONKEY, V2, P117; Cheney D.L., 1988, P384; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; de Turckheim G., 1984, P241; DEAG JM, 1985, J ZOOL, V206, P403; DEAG JM, 1984, BARBARY MACAQUE CASE, P241; Dittus W.P.J., 1980, P263; Dittus WPJ, 1975, SOCIOECOLOGY PSYCHOL, P125; DOLHINOW P, 1979, AGGRESSIVE BEHAV, V5, P19, DOI 10.1002/1098-2337(1979)5:1<19::AID-AB2480050104>3.0.CO;2-7; DRICKAMER LC, 1974, FOLIA PRIMATOL, V21, P61, DOI 10.1159/000155596; DUNBAR RIM, 1980, J ANIM ECOL, V49, P485, DOI 10.2307/4259; DYKE B, 1986, AM J PRIMATOL, V10, P257, DOI 10.1002/ajp.1350100306; Fa J.E., 1984, P263; FAIRBANKS LA, 1986, ANIM BEHAV, V34, P1710, DOI 10.1016/S0003-3472(86)80258-5; FAIRBANKS LA, 1988, BEHAVIOUR, V104, P176, DOI 10.1163/156853988X00665; Fisher R.A., 1930, GENETICAL THEORY NAT; GAULIN SJC, 1980, J HUM EVOL, V9, P227, DOI 10.1016/0047-2484(80)90024-X; Goodall J, 1986, CHIMPANZEES GOMBE PA; GOULD KG, 1981, MATURITAS, V3, P157, DOI 10.1016/0378-5122(81)90007-4; GOUZOULES H, 1984, J MAMMAL, V65, P341, DOI 10.2307/1381178; GOUZOULES H, 1982, ANIM BEHAV, V30, P1138, DOI 10.1016/S0003-3472(82)80204-2; Graham C.E., 1979, P183; GRAHAM CE, 1979, AM J PHYS ANTHROPOL, V50, P291, DOI 10.1002/ajpa.1330500302; Graham CE, 1986, COMP PRIMATE BIOL, V3, P93; GRIEGER M, 1984, THESIS U GOTTINGEN G; HAMILTON WJ, 1982, ANIM BEHAV, V30, P29, DOI 10.1016/S0003-3472(82)80233-9; HARLEY D, 1990, AM J PHYS ANTHROPOL, V83, P253, DOI 10.1002/ajpa.1330830213; HASEGAWA T, 1980, FOLIA PRIMATOL, V33, P129, DOI 10.1159/000155930; HAUSER MD, 1984, FOLIA PRIMATOL, V43, P24, DOI 10.1159/000156168; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; HIRAIWA-HASEGAWA M, 1984, Primates, V25, P401, DOI 10.1007/BF02381663; HODGEN GD, 1977, AM J OBSTET GYNECOL, V127, P581, DOI 10.1016/0002-9378(77)90352-0; HRDY SB, 1976, SCIENCE, V193, P913, DOI 10.1126/science.193.4256.913; HRDY SB, 1981, OTHER WAYS GROWING O, P59; Huffman M.A., 1990, P237; JENSEN GD, 1980, EXP GERONTOL, V15, P399, DOI 10.1016/0531-5565(80)90048-0; JOHNSON RL, 1989, PRIMATES, V30, P433, DOI 10.1007/BF02381265; Jolly A., 1985, EVOLUTION PRIMATE BE; JONES EC, 1979, PSYCHOSOMATICS PERIM, P13; JONES ML, 1982, ZOOLOGICAL GARTEN, V52, P113; KOYAMA N, 1975, CONT PRIMATOLOGY, P411; Lancaster J. B., 1985, HER PRIME, P13; Lancaster Jane B., 1983, HUMANS ADAPT BIOCULT, P33; Lapin B.A., 1979, P14; Laws R. M., 1975, ELEPHANTS THEIR HABI; MAYER PJ, 1982, HUM ECOL, V10, P477, DOI 10.1007/BF01531168; MEHLMAN PT, 1989, INT J PRIMATOL, V10, P269, DOI 10.1007/BF02737418; MORI A, 1989, PRIMATES, V30, P147, DOI 10.1007/BF02381301; MOSS CJ, 1988, ELEPHANT MEMORIES; NAKAMICHI M, 1988, RES REPORTS ARASHIYA, P87; Nicolson N. A., 1987, PRIMATE SOC, P330, DOI DOI 10.1017/S0952836903004576; Nishida T., 1990, P63; PARTCH J, 1978, AM J PHYS ANTHROPOL, V48, P425; PAUL A, 1988, ECOLOGY BEHAV FOOD E, P199; PAVELKA MSM, 1990, PRIMATES, V31, P363, DOI 10.1007/BF02381107; Rhine R.J., 1980, International Journal of Primatology, V1, P401, DOI 10.1007/BF02692282; Sade DS, 1972, FUNCTIONAL EVOLUTION, P378; SADE DS, 1976, YEARB PHYS ANTHROPOL, V20, P253; SIGG H, 1982, Primates, V23, P473, DOI 10.1007/BF02373959; SMALL MF, 1982, AM J PRIMATOL, V2, P137, DOI 10.1002/ajp.1350020202; Small MF, 1984, FEMALE PRIMATES STUD, P249; SMUTS B, 1989, AM J PRIMATOL, V19, P229, DOI 10.1002/ajp.1350190405; SOMMER V, 1992, IN PRESS AM J PRIMAT; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stewart K.J., 1988, P22; STRUM SC, 1982, AM J PRIMATOL, V3, P61, DOI 10.1002/ajp.1350030106; SUGIYAMA Y, 1982, FOLIA PRIMATOL, V39, P238, DOI 10.1159/000156080; TAKAHASHI H, 1980, PLANT CELL PHYSIOL, V21, P303, DOI 10.1093/oxfordjournals.pcp.a076003; TARDIF SD, 1985, BIOL REPROD, V33, P993, DOI 10.1095/biolreprod33.4.993; TARDIF SD, 1984, LAB ANIM SCI, V34, P504; TARDIF SD, 1986, PRIMATE REP, V14, P146; TILFORD B, 1981, J MAMMAL, V62, P638, DOI 10.2307/1380415; TRIVERS RL, 1974, AM ZOOL, V14, P249; Turke P. W., 1988, HUMAN REPROD BEHAV D, P173; VANNOORDWIJK MA, 1987, ANIM BEHAV, V35, P577, DOI 10.1016/S0003-3472(87)80284-1; VANWAGENEN G, 1972, J MED PRIMATOL, V1, P3; VOGEL C, 1975, HOMINISATION VERHALT, P1; Voland E, 1986, Anthropol Anz, V44, P19; WASER PM, 1978, FOLIA PRIMATOL, V29, P142, DOI 10.1159/000155836; Washburn SL, 1981, AGING BIOL BEHAV, P11; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; Williams GC, 1966, ADAPTATION NATURAL S; WILSON ME, 1978, J MED PRIMATOL, V7, P202; WOLFE LD, 1981, J MAMMAL, V62, P698, DOI 10.2307/1380591 92 44 45 1 20 PLENUM PUBL CORP NEW YORK 233 SPRING ST, NEW YORK, NY 10013 0164-0291 INT J PRIMATOL Int. J. Primatol. FEB 1993 14 1 105 124 10.1007/BF02196506 20 Zoology Zoology KL808 WOS:A1993KL80800007 2019-02-26 J MOLE, S; ZERA, AJ MOLE, S; ZERA, AJ DIFFERENTIAL ALLOCATION OF RESOURCES UNDERLIES THE DISPERSAL-REPRODUCTION TRADE-OFF IN THE WING-DIMORPHIC CRICKET, GRYLLUS-RUBENS OECOLOGIA English Article GRYLLUS-RUBENS; TRADE-OFF; RESOURCE ALLOCATION; WING POLYMORPHISM; FLIGHT-OOGENESIS SYNDROME LIFE-HISTORY EVOLUTION; JUVENILE HORMONE-III; INSECTS The cricket, Gryllus rubens (Orthoptera, Gryllidae), exists in natural populations as either a fully-winged (LW), flight-capable morph or as a short-winged (SW) morph that cannot fly. The SW morph is substantially more fecund than the LW morph. In this study we report on the physiological basis of this trade-off between flight capability and fecundity. Results from gravimetric feeding trials indicate that LW and SW morphs are equivalent in their consumption and digestion of food. However, during the adult stage, the LW morph is less efficient in converting assimilated nutrients into biomass. This may be a consequence of the respired loss of assimilated nutrients due to the maintenance of functional flight muscles in the LW morph. In both morphs the gross biomass devoted to flight muscles does not change significantly during the first 14 days of adult growth while there is a significant biomass gain in ovarian tissue mass during the same period. SW morphs have vestigial flight muscles and gain substantially more ovarian mass relative to the LW morphs. These data are consistent with a trade-off between flight muscle maintenance in the LW morph and ovarian growth in the SW form. This is the first evidence for a life-history trade-off that has a physiological basis which is limited to the allocation of acquired and assimilated nutrients within the organism. MOLE, S (reprint author), UNIV NEBRASKA,SCH BIOL SCI,348 MANTER HALL,LINCOLN,NE 68588, USA. ANDERSEN N M, 1973, Entomologica Scandinavica, V4, P1; BALLINGER RE, 1981, AM MIDL NAT, V106, P157, DOI 10.2307/2425145; BEENAKKERS AMT, 1981, ENERGY METABOLISM IN; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Fisher R.A., 1930, GENETICAL THEORY NAT; HARDIE J, 1985, COMPREHENSIVE INSECT, V8; HARRISON RG, 1980, ANNU REV ECOL SYST, V11, P95, DOI 10.1146/annurev.es.11.110180.000523; HAUKIOJA E, 1986, OECOLOGIA, V35, P253; Johnson C. G., 1969, MIGRATION DISPERSAL; KARLSSON B, 1990, FUNCT ECOL, V4, P609, DOI 10.2307/2389728; KOEPPE JK, 1985, COMPREHENSIVE INSECT, V8; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Penner M, 1985, COMPREHENSIVE INSECT, V8; PIANKA ER, 1981, PHYSL ECOLOGY EVOLUT; RAUBENHEIMER D, 1992, ENTOMOL EXP APPL, V62, P221, DOI 10.1111/j.1570-7458.1992.tb00662.x; REEKIE EG, 1987, AM NAT, V129, P887; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; SLANSKY F, 1977, ECOL MONOGR, V47, P209, DOI 10.2307/1942617; SRIHARI T, 1975, J INSECT PHYSIOL, V21, P1, DOI 10.1016/0022-1910(75)90062-1; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TUOMI J, 1983, ECOLOGY, V56, P427; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; Waldbauer G. P., 1968, P229, DOI 10.1016/S0065-2806(08)60230-1; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; ZERA AJ, 1988, J INSECT PHYSIOL, V34, P489, DOI 10.1016/0022-1910(88)90190-4; ZERA AJ, 1989, OECOLOGIA, V80, P249, DOI 10.1007/BF00380159; ZERA AJ, 1990, J INSECT PHYSIOL, V36, P271, DOI 10.1016/0022-1910(90)90111-R; ZERA AJ, 1989, J INSECT PHYSIOL, V35, P7, DOI 10.1016/0022-1910(89)90031-0 30 96 100 3 28 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia FEB 1993 93 1 121 127 10.1007/BF00321201 7 Ecology Environmental Sciences & Ecology KL512 WOS:A1993KL51200019 28313784 Green Published 2019-02-26 J CHARLESWORTH, B CHARLESWORTH, B NATURAL-SELECTION ON MULTIVARIATE TRAITS IN AGE-STRUCTURED POPULATIONS PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article QUANTITATIVE GENETICS; EVOLUTION The theory of selection on multivariate traits in age-structured populations has important implications for empirical and theoretical studies of life-history evolution. A model of natural selection on a set of correlated quantitative traits with age structure is derived here, using an extension of previous work on selection at a single locus. This formulation provides an equation for the change of the mean of a vector of traits that is accurate is selection is weak, and does not require the population always to be in demographic equilibrium as selection proceeds. The treatment is extended to density-dependent populations, and to equilibrium populations under frequency-dependent selection. In addition, further approximations are derived that produce evolutionary equilibria equivalent to those predicted by optimization and evolutionarily stable strategy (ESS) theory. It is shown that the conditions for equilibrium are valid even if selection is strong. CHARLESWORTH, B (reprint author), UNIV CHICAGO, DEPT ECOL & EVOLUT, 1101 E 57TH ST, CHICAGO, IL 60637 USA. ABRAMS PA, 1993, UNPUB EVOLUTION; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1989, HEREDITY, V62, P97; DICKERSON GE, 1955, COLD SPRING HARB SYM, V20, P213, DOI 10.1101/SQB.1955.020.01.020; Falconer D. S., 1989, INTRO QUANTITATIVE G; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; KIRKPATRICK M, 1990, GENETICS, V124, P979; KIRKPATRICK M, 1992, EVOLUTION, V46, P954, DOI 10.1111/j.1558-5646.1992.tb00612.x; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LAW R, 1991, PHILOS T ROY SOC B, V331, P213, DOI 10.1098/rstb.1991.0010; LINDGREN BW, 1976, STATISTICAL THEORY; NAGYLAKI T, 1979, P NATL ACAD SCI USA, V76, P438, DOI 10.1073/pnas.76.1.438; Nagylaki T, 1992, INTRO THEORETICAL PO; ROBERTSON A, 1955, COLD SPRING HARB SYM, V20, P225, DOI 10.1101/SQB.1955.020.01.021; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Stearns SC., 1992, EVOLUTION LIFE HIST; TAPER ML, 1992, EVOLUTION, V46, P317, DOI 10.1111/j.1558-5646.1992.tb02040.x; TURELLI M, 1988, 2ND P INT C QUANT GE, P601 22 29 32 0 16 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JAN 22 1993 251 1330 47 52 10.1098/rspb.1993.0007 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology KK190 WOS:A1993KK19000007 8094565 2019-02-26 J PERRIN, N; SIBLY, RM PERRIN, N; SIBLY, RM DYNAMIC-MODELS OF ENERGY ALLOCATION AND INVESTMENT ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS English Review LIFE-HISTORY THEORY; INDETERMINATE GROWTH; ALLOMETRY; STORAGE; OPTIMAL RESOURCE ALLOCATION OPTIMAL RESOURCE-ALLOCATION; OPTIMAL LIFE HISTORIES; REPRODUCTIVE EFFORT; NATURAL-SELECTION; OPTIMAL-GROWTH; ANNUAL PLANTS; OPTIMAL SIZE; STORAGE-ALLOCATION; VEGETATIVE PLANTS; PERENNIAL PLANTS In dynamic models of energy allocation, assimilated energy is allocated to reproduction, somatic growth, maintenance or storage, and the allocation pattern can change with age. The expected evolutionary outcome is an optimal allocation pattern, but this depends on the environment experienced during the evolutionary process and on the fitness costs and benefits incurred by allocating resources in different ways. Here we review existing treatments which encompass some of the possibilities as regards constant or variable environments and their predictability or unpredictability, and the ways in which production rates and mortality rates depend on body size and composition and age and on the pattern of energy allocation. The optimal policy is to allocate resources where selection pressures are highest, and simultaneous allocation to several body subsystems and reproduction can be optimal if these pressures are equal. This may explain balanced growth commonly observed during ontogeny. Growth ceases at maturity in many models; factors favouring growth after maturity include non-linear trade-offs, variable season length, and production and mortality rates both increasing (or decreasing) functions of body size. We cannot yet say whether these are sufficient to account for the many known cases of growth after maturity and not all reasonable models have yet been explored. Factors favouring storage are also reviewed. UNIV READING,DEPT PURE & APPL ZOOL,READING RG6 2AJ,BERKS,ENGLAND PERRIN, N (reprint author), BERN UNIV,DEPT BEHAV ECOL,ETHOL STN HASLI,CH-3032 HINTERKAPPELEN,SWITZERLAND. Sibly, Richard/0000-0001-6828-3543 ALEXANDER RM, 1982, OPTIMA ANIMALS; AMIR S, 1990, J THEOR BIOL, V147, P17, DOI 10.1016/S0022-5193(05)80250-4; BANKS S, 1986, CONTROL SYSTEMS ENG; BAZZAZ FA, 1979, NEW PHYTOL, V82, P223, DOI 10.1111/j.1469-8137.1979.tb07577.x; Bell D. J., 1975, SINGULAR OPTIMAL CON; BELL G, 1976, AM NAT, V110, P57, DOI 10.1086/283048; Bellman R. E, 1957, DYNAMIC PROGRAMMING; Berkovitz L. D., 1974, OPTIMAL CONTROL THEO; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; BRYSON AE, 1969, APPLIED OPTIMAL CONT; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CHIARIELLO N, 1984, ECOLOGY, V65, P1290, DOI 10.2307/1938334; Clark CW, 1976, MATH BIOECONOMICS; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; COHEN D, 1976, J THEOR BIOL, V56, P1, DOI 10.1016/S0022-5193(76)80043-4; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DENHOLM JV, 1975, J THEOR BIOL, V52, P251, DOI 10.1016/0022-5193(75)90056-9; FAGEN RM, 1972, AM NAT, V106, P258, DOI 10.1086/282766; Fisher R. A, 1958, GENETICAL THEORY NAT; GABRIEL W, 1982, ARCH HYDROBIOL, V95, P69; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GLEESON SK, 1992, AM NAT, V139, P1322, DOI 10.1086/285389; GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Huxley J. S, 1932, PROBLEMS RELATIVE GR; Intriligator Michael D, 1971, MATH OPTIMIZATION EC; ITO Y, 1980, COMP ECOLOGY; IWASA Y, 1984, THEOR POPUL BIOL, V25, P78, DOI 10.1016/0040-5809(84)90007-8; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; JOHNSON IR, 1987, ANN BOT-LONDON, V60, P133, DOI 10.1093/oxfordjournals.aob.a087429; JOHNSON IR, 1985, ANN BOT-LONDON, V55, P421, DOI 10.1093/oxfordjournals.aob.a086921; KING D, 1982, THEOR POPUL BIOL, V21, P194, DOI 10.1016/0040-5809(82)90013-2; KING D, 1983, ECOLOGY, V64, P16, DOI 10.2307/1937324; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; KOZLOWSKI J, 1988, THEOR POPUL BIOL, V34, P118, DOI 10.1016/0040-5809(88)90037-8; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LACEY EP, 1986, TRENDS ECOL EVOL, V1, P72, DOI 10.1016/0169-5347(86)90021-2; Leitmann G, 1966, INTRO OPTIMAL CONTRO; LEON JA, 1976, J THEOR BIOL, V60, P301, DOI 10.1016/0022-5193(76)90062-X; MACEVICZ S, 1976, BEHAV ECOL SOCIOBIOL, V1, P265, DOI 10.1007/BF00300068; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; PALTRIDGE GW, 1974, J THEOR BIOL, V44, P23, DOI 10.1016/S0022-5193(74)80027-5; PARNAS H, 1976, J THEOR BIOL, V56, P19, DOI 10.1016/S0022-5193(76)80044-6; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PERRIN N, 1992, AM NAT, V139, P1344, DOI 10.1086/285390; PERRIN N, 1989, FUNCT ECOL, V3, P279, DOI 10.2307/2389366; PERRIN N, 1990, OIKOS, V59, P70, DOI 10.2307/3545124; Perrin N, 1987, FUNCT ECOL, V1, P223, DOI 10.2307/2389424; PERRIN N, 1993, IN PRESS EVOL ECOL; PIANKA ER, 1976, AM ZOOL, V16, P775; Pontryagin L. S., 1964, MATH THEORY OPTIMAL; PUGLIESE A, 1987, J THEOR BIOL, V126, P33, DOI 10.1016/S0022-5193(87)80099-1; PUGLIESE A, 1988, THEOR POPUL BIOL, V34, P215, DOI 10.1016/0040-5809(88)90022-6; PUGLIESE A, 1990, EVOL ECOL, V4, P75, DOI 10.1007/BF02270717; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHAFFER WM, 1982, AM NAT, V120, P787, DOI 10.1086/284030; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; SEBENS KP, 1982, ECOLOGY, V63, P209, DOI 10.2307/1937045; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SIBLY RM, 1991, FUNCT ECOL, V5, P184, DOI 10.2307/2389256; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; SIBLY RM, 1989, FUNCT ECOL, V3, P129, DOI 10.2307/2389293; SIBLY RM, 1986, EVOLUTIONARY PHYSL E, P37; SIBLY RM, 1992, GENES ECOLOGY, P87; Taylor B.E., 1985, Advances in Limnology, V21, P285; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; TAYLOR PD, 1984, CAN J ZOOL, V62, P2264, DOI 10.1139/z84-329; THORNLEY JH, 1972, ANN BOT-LONDON, V36, P419, DOI 10.1093/oxfordjournals.aob.a084601; THORNLEY JH, 1972, ANN BOT-LONDON, V36, P431, DOI 10.1093/oxfordjournals.aob.a084602; Tilman D, 1982, RESOURCE COMPETITION; Tilman D., 1988, PLANT STRATEGIES DYN; VINCENT TL, 1980, THEOR POPUL BIOL, V17, P215, DOI 10.1016/0040-5809(80)90007-6; VONBERTALANFFY L, 1960, FUNDAMENTAL ASPECTS, P137; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; YODZIS P, 1981, ECOLOGY, V62, P1681, DOI 10.2307/1941522; ZIOLKO M, 1983, MATH BIOSCI, V64, P127, DOI 10.1016/0025-5564(83)90032-9 90 176 184 6 64 ANNUAL REVIEWS INC PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 0066-4162 ANNU REV ECOL SYST Annu. Rev. Ecol. Syst. 1993 24 379 410 10.1146/annurev.es.24.110193.002115 32 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology MJ371 WOS:A1993MJ37100014 2019-02-26 J ROITBERG, BD ROITBERG, BD TOWARDS A GENERAL-THEORY OF HOST ACCEPTANCE BY APHID PARASITOIDS EUROPEAN JOURNAL OF ENTOMOLOGY English Review APHIDOPHAGOUS; OVIPOSITION; THEORY; SUPERPARASITISM; HOST DISCRIMINATION; EGG STAGE; DYNAMIC MODELS; LIFE HISTORY I present the thesis that the most effective means of developing a unified theory of host exploitation by aphidophagous insects would be through a rational, first-principles approach. This approach entails the use of life history theory wherein host acceptance ''decisions'' are evaluated on the basis of contribution to current and future lifetime reproductive success wherein future success is discounted by life expectancy. A simple example involving egg load and host discrimination demonstrates the value of dynamic life history theory as a means of structuring experimental and empirically based research programs. Finally, I argue that a unified theory of host acceptance for aphidophagous insects must consider: (1) spatial distribution of hosts (2) hyperparasitoids and (3) population dynamics of telescoping generations of hosts. ROITBERG, BD (reprint author), SIMON FRASER UNIV,DEPT BIOL SCI,BEHAV ECOL RES GRP,BURNABY V5A 1S6,BC,CANADA. 0 4 5 0 4 CZECH ACAD SCI, INST ENTOMOLOGY CESKE BUDEJOVICE BRANISOVSKA 31, CESKE BUDEJOVICE, CZECH REPUBLIC 370 05 1210-5759 EUR J ENTOMOL Eur. J. Entomol. 1993 90 4 369 376 8 Entomology Entomology MT031 WOS:A1993MT03100001 2019-02-26 J FOX, GA FOX, GA LIFE-HISTORY EVOLUTION AND DEMOGRAPHIC STOCHASTICITY EVOLUTIONARY ECOLOGY English Article ANNUAL; PERENNIAL; NEUTRAL MODELS; VARIANCE Can demographic stochasticity bias the evolution of life history traits? Under a neutral version of the Cole-Charnov-Schaffer model, variance in offspring number for both annuals and perennials depends on the precise values of fitness components. Either annuals or perennials may have the larger variance (for equal lambda), depending on the importance of random survival versus fixed reproduction. By extension, the variance in offspring number should generally depend on whether lambda is mainly composed of highly variable elements or elements with limited variation. Thus, data about the variability of demographic parameters may be as important as data about their mean values. This result concerns only one source of demographic stochasticity, the probabilistic nature of demographic processes like survival. The other source of demographic stochasticity is the fact that populations are composed of whole numbers of individuals (integer arithmetic). Integer arithmetic without probabilistic demography (or environmental variation) can make it difficult for rare invaders to persist in populations even when selection would favour the invaders in a deterministic model. Integer arithmetic can also cause population coexistence when the equivalent deterministic model leads to exclusion. This effect disappears when demography is probabilistic, and probably also when there is environmental variation. Thus probabilistic demography and environmental variation may make some population patterns more, rather than less, understandable. FOX, GA (reprint author), UNIV ARIZONA,DEPT ECOL & EVOLUT BIOL,TUCSON,AZ 85721, USA. Fox, Gordon/0000-0003-0595-1385 0 22 23 0 5 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. JAN 1993 7 1 1 14 10.1007/BF01237731 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity KH132 WOS:A1993KH13200001 2019-02-26 J BELSKY, AJ; CARSON, WP; JENSEN, CL; FOX, GA BELSKY, AJ; CARSON, WP; JENSEN, CL; FOX, GA OVERCOMPENSATION BY PLANTS - HERBIVORE OPTIMIZATION OR RED HERRING EVOLUTIONARY ECOLOGY English Article COMPENSATORY GROWTH; DYNAMIC MODELS; GRAZING TOLERANCE; HERBIVORE OPTIMIZATION; OVERCOMPENSATION; PLANT ANTIHERBIVORE STRATEGIES; PLANT HERBIVORE MUTUALISM The increased growth rates, higher total biomass, and increased seed production occasionally found in grazed or clipped plants are more accurately interpreted as the results of growth at one end of a spectrum of normal plant regrowth patterns, rather than as overcompensation, herbivore-stimulated growth, plant-herbivore mutualisms, or herbivore enhanced fitness. Plants experience injury from a wide variety of sources besides herbivory, including fire, wind, freezing, heat, and trampling; rapid regrowth may have been selected for by any one of the many types of physical disturbance or extreme conditions that damage plant tissues, or by a combination of all of them. Rapid plant regrowth is more likely to have evolved as a strategy to reduce the negative impacts of all types of damage than as a strategy to increase fitness following herbivory above ungrazed levels. There is no evolutionary justification and little evidence to support the idea that plant-herbivore mutualisms are likely to evolve. Neither life history theory nor recent theoretical models provide plausible explanations for the benefits of herbivory. Several assumptions underlie all discussions of the benefits of herbivory: that plant species are able to evolve a strategy of depending on herbivores to increase their productivity and fitness; that herbivores do not preferentially regraze the overcompensating plants; that resources will be sufficient for regrowth; and that being larger is always 'better' than being smaller. None of these assumptions is necessarily correct. BELSKY, AJ (reprint author), CORNELL UNIV,CTR ENVIRONM,HOLLISTER HALL,ITHACA,NY 14853, USA. Carson, Walter/A-2569-2013 Fox, Gordon/0000-0003-0595-1385 0 248 300 3 104 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. JAN 1993 7 1 109 121 10.1007/BF01237737 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity KH132 WOS:A1993KH13200007 2019-02-26 J CHARLESWORTH, B CHARLESWORTH, B EVOLUTIONARY MECHANISMS OF SENESCENCE GENETICA English Article SENESCENCE; LIFE-HISTORY; POPULATION GENETICS; QUANTITATIVE GENETICS; MUTATION LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; ANTAGONISTIC PLEIOTROPY; GENETIC COVARIATION; REPRODUCTION; ENVIRONMENTS; MUTATION; FITNESS This paper reviews theories of the evolution of senescence. The population genetic basis for the decline with age in sensitivity of fitness to changes in survival and fecundity is discussed. It is shown that this creates a pressure of selection that disproportionately favors performance early in life. The extent of this bias is greater when there is a high level of extrinsic mortality; this accounts for much the diversity in life-history patterns among different taxa. The implications of quantitative genetic theory for experimental tests of alternative population genetic models of senescence are discussed. Ln particular, the negative genetic correlations between traits predicted by the antagonistic pleiotropy model may be obscured by positive correlations that are inevitable in a multivariate system, or by the effects of variation due to deleterious mutations. The status of the genetic evidence relevant to these theories is discussed. CHARLESWORTH, B (reprint author), UNIV CHICAGO, DEPT ECOL & EVOLUT, 1101 E 57TH ST, CHICAGO, IL 60637 USA. Becker W, 1984, MANUAL QUANTITATIVE; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; Caughley G, 1977, ANAL VERTEBRATE POPU; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHARLESWORTH B, 1973, ANN HUM GENET, V37, P175, DOI 10.1111/j.1469-1809.1973.tb01825.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARLESWORTH B, 1990, GENETIC EFFECTS AGIN, P21; CHARNOV EL, 1989, HEREDITY, V62, P113, DOI 10.1038/hdy.1989.15; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Comfort A., 1979, BIOL SENESCENCE; Crow J.F., 1983, Genetics and Biology of Drosophila, V3c, P1; DICKERSON GE, 1955, COLD SPRING HARB SYM, V20, P213, DOI 10.1101/SQB.1955.020.01.020; Dingle H., 1982, EVOLUTION GENETICS L; EDNEY EB, 1968, NATURE, V220, P281, DOI 10.1038/220281a0; Falconer D. S., 1989, INTRO QUANTITATIVE G; Finch Caleb F., 1991, LONGEVITY SENESCENCE; Fisher R.A., 1930, GENETICAL THEORY NAT; HALDANE JBS, 1941, NEW PATHS GENETICS; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1992, NATURE, V359, P58, DOI 10.1038/359058a0; KEMPTHORNE O, 1957, INTRO GENETIC STATIS; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Kirkwood TBL, 1990, GENETIC EFFECTS AGIN, P9; KONDRASHOV AS, 1988, NATURE, V336, P435, DOI 10.1038/336435a0; KOSUDA K, 1985, BEHAV GENET, V15, P297, DOI 10.1007/BF01065984; Lack D, 1954, NATURAL REGULATION A; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Medawar P. B., 1946, MODERN Q, V1, P30; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROBERTSON A, 1955, COLD SPRING HARB SYM, V20, P225, DOI 10.1101/SQB.1955.020.01.021; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; Stearns SC., 1992, EVOLUTION LIFE HIST; TEMPLETON AR, 1980, THEOR POPUL BIOL, V18, P279, DOI 10.1016/0040-5809(80)90053-2; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x 49 44 44 1 12 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0016-6707 1573-6857 GENETICA Genetica 1993 91 1-3 11 19 10.1007/BF01435984 9 Genetics & Heredity Genetics & Heredity MT350 WOS:A1993MT35000003 8125262 2019-02-26 J REZNICK, D REZNICK, D NEW MODEL SYSTEMS FOR STUDYING THE EVOLUTIONARY BIOLOGY OF AGING - CRUSTACEA GENETICA English Article MESOCYCLOPS-EDAX CRUSTACEA; LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; POSTPONED SENESCENCE; DAPHNIA-PULEX; FAIRY SHRIMP; POPULATIONS; ANOSTRACA; PREDATION; SIZE Progress in any area of biology has generally required work on a variety of organisms. This is true because particular species often have characteristics that make them especially useful for addressing specific questions. Recent progress in studying the evolutionary biology of senescence has been made through the use of new species, such as Caenorhabditis elegans and Drosophila melanogaster, because of the ease of working with them in the laboratory and because investigators have used theories for the evolution of aging as a basis for discovering the underlying mechanisms. I describe ways of finding new model systems for studying the evolutionary mechanisms of aging by combining the predictions of theory with existing information about the natural history of organisms that are well-suited to laboratory studies. Properties that make organisms favorable for laboratory studies include having a short generation time, high fecundity, small body size, and being easily cultured in a laboratory environment. It is also desirable to begin with natural populations that differ in their rate of aging. I present three scenarios and four groups of organisms which fulfill these requirements. The first two scenarios apply to well-documented differences in age/size specific predation among populations of guppies and microcrustacea. The third is differences among populations of fairy shrimp (Anostraca) in habitat permanence. In all cases, there is an environmental factor that is likely to select for changes in the life history, including aging, plus a target organism which is well-suited for laboratory studies of aging. REZNICK, D (reprint author), UNIV CALIF RIVERSIDE, DEPT BIOL, RIVERSIDE, CA 92521 USA. reznick, david/0000-0002-1144-0568 ABRAMS PA, 1993, IN PRESS EVOLUTION; Allan J. D., 1980, EVOLUTION ECOLOGY ZO, P388; ALTIKRITY MR, 1990, J THERM BIOL, V15, P87, DOI 10.1016/0306-4565(90)90053-K; ANDERSON G, 1990, FRESHWATER BIOL, V24, P429, DOI 10.1111/j.1365-2427.1990.tb00722.x; BELK D, 1977, Southwestern Naturalist, V22, P99, DOI 10.2307/3670467; Belk D., 1975, P207; BELK D, 1990, J CRUSTACEAN BIOL, V10, P128, DOI 10.2307/1548675; Belk D, 1991, STUDIES LARGE BRANCH; BERNICE R, 1972, HYDROBIOLOGIA, V40, P251; Broch ES, 1965, CORNELL U AGR EXPT S, V392, P1; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; BROWN LR, 1970, ECOLOGY, V52, P41; BROWNE RA, 1984, ECOLOGY, V65, P949, DOI 10.2307/1938067; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COMFORT A, 1963, GERONTOLOGY, V8, P150, DOI 10.1159/000211216; DODSON SI, 1970, LIMNOL OCEANOGR, V15, P131; DUNHAM H. HOWARD, 1938, PHYSIOL ZOOL, V11, P399; Falconer D. S., 1989, INTRO QUANTITATIVE G; FINCH CE, 1991, NEUROBIOL AGING, V12, P625, DOI 10.1016/0197-4580(91)90112-W; Fugate M. L., 1992, THESIS U CALIFORNIA; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GOULDEN CE, 1982, ASTM STP, V766, P139; HALL DJ, 1970, LIMNOL OCEANOGR, V15, P839, DOI 10.4319/lo.1970.15.6.0839; HARTLANDROWE R, 1972, ESSAYS HYDROBIOLOGY, P15; HILDREW AG, 1985, J ANIM ECOL, V54, P99, DOI 10.2307/4623; Ingle L, 1937, J EXP ZOOL, V76, P325, DOI 10.1002/jez.1400760206; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; LYNCH M, 1983, EXP GERONTOL, V18, P147, DOI 10.1016/0531-5565(83)90008-6; LYNCH M, 1989, ECOLOGY, V70, P246, DOI 10.2307/1938430; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MOORE J, 1985, AM ZOOL, V25, P15; MOORE WG, 1955, ECOLOGY, V36, P176, DOI 10.2307/1933223; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; NEILL WE, 1992, NATURE, V356, P54, DOI 10.1038/356054a0; NEWMAN RA, 1987, OECOLOGIA, V71, P301, DOI 10.1007/BF00377299; PROPHET CW, 1963, ECOLOGY, V44, P798, DOI 10.2307/1933034; REZNICK DN, 1993, IN PRESS EXPT GERONT; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1981, GENETICS, V97, P187; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; TESSIER AJ, 1986, FRESHWATER BIOL, V16, P279, DOI 10.1111/j.1365-2427.1986.tb00971.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WYNGAARD GA, 1983, FRESHWATER BIOL, V13, P275, DOI 10.1111/j.1365-2427.1983.tb00677.x; WYNGAARD GA, 1986, BIOL BULL, V170, P296, DOI 10.2307/1541810; WYNGAARD GA, 1986, BIOL BULL-US, V170, P279, DOI 10.2307/1541809 53 19 20 0 3 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0016-6707 1573-6857 GENETICA Genetica 1993 91 1-3 79 88 10.1007/BF01435989 10 Genetics & Heredity Genetics & Heredity MT350 WOS:A1993MT35000008 8125280 2019-02-26 J PARTRIDGE, L; BARTON, NH PARTRIDGE, L; BARTON, NH EVOLUTION OF AGING - TESTING THE THEORY USING DROSOPHILA GENETICA English Article AGING; SENESCENCE; LIFE-SPAN; SURVIVAL; DROSOPHILA; EVOLUTION; FERTILITY LIFE-HISTORY EVOLUTION; MEASURING REPRODUCTIVE COSTS; MUTATION-SELECTION BALANCE; QUANTITATIVE GENETICS; ANTAGONISTIC PLEIOTROPY; PHENOTYPIC EVOLUTION; POSTPONED SENESCENCE; EGG-PRODUCTION; MELANOGASTER; POPULATIONS Evolutionary explanations of aging (or senescence) fall into two classes. First, organisms might have evolved the optimal life history, in which survival and fertility late in life are sacrificed for the sake of early reproduction or high pre-adult survival. Second, the life history might be depressed below this optimal compromise by the influx of deleterious mutations; since selection against late-acting mutations is weaker, deleterious mutations will impose a greater load on late life. We discuss ways in which these theories might be investigated and distinguished, with reference to experimental work with Drosophila. While genetic correlations between life history traits determine the immediate response to selection, they are hard to measure, and may not reflect the fundamental constraints on life history. Long term selection experiments are more likely to be informative. The third approach of using experimental manipulations suffers from some of the same problems as measures of genetic correlations; however, these two approaches may be fruitful when used together. The experimental results so far suggest that aging in Drosophila has evolved in part as a consequence of selection for an optimal life history, and in part as a result of accumulation of predominantly late-acting deleterious mutations. Quantification of these effects presents a major challenge for the future. PARTRIDGE, L (reprint author), UNIV EDINBURGH, ICAPB, DIV BIOL SCI, ZOOL BLDG, W MAINS RD, EDINBURGH EH9 3JT, SCOTLAND. Partridge, Linda/A-5501-2010 BARTON NH, 1990, GENETICS, V124, P773; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.genet.23.1.337; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; Bulmer M. G., 1980, MATH THEORY QUANTITA; CABALLERO A, 1991, GENETICS, V128, P89; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CAREY JR, 1992, SCIENCE, V258, P457; CHAPMAN T, 1992, J INSECT PHYSIOL, V38, P223, DOI 10.1016/0022-1910(92)90070-T; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1989, HEREDITY, V62, P113, DOI 10.1038/hdy.1989.15; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CLARK AG, 1987, AM NAT, V129, P933; CURTSINGER JW, 1992, SCIENCE, V258, P461, DOI 10.1126/science.1411541; EDNEY EB, 1968, NATURE, V220, P281, DOI 10.1038/220281a0; Finch C. E., 1990, LONGEVITY SENESCENCE; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARSHMAN LG, 1988, EVOLUTION, V42, P312, DOI 10.1111/j.1558-5646.1988.tb04135.x; HILL WG, 1982, P NATL ACAD SCI-BIOL, V79, P142, DOI 10.1073/pnas.79.1.142; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1992, NATURE, V359, P58, DOI 10.1038/359058a0; HUTCHINSON EW, 1991, GENETICS, V127, P729; HUTCHINSON EW, 1991, GENETICS, V127, P719; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; LAMB MJ, 1964, J INSECT PHYSIOL, V10, P487, DOI 10.1016/0022-1910(64)90072-1; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1980, GENETICS, V94, P203; Lessells C.M., 1991, P32; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; LUCKINBILL LS, 1988, HEREDITY, V60, P367, DOI 10.1038/hdy.1988.54; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MACKAY TFC, 1992, GENETICS, V130, P315; MCKENZIE JA, 1988, GENETICS, V120, P213; Medawar P. B., 1946, MODERN Q, V1, P30; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MODI RI, 1991, EVOLUTION, V45, P656, DOI 10.1111/j.1558-5646.1991.tb04336.x; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; NEWPORT MEA, 1984, EVOLUTION, V38, P1261, DOI 10.1111/j.1558-5646.1984.tb05648.x; PARKER GA, NATURE, V348, P17; Partridge L, 1987, FUNCT ECOL, V1, P317, DOI 10.2307/2389786; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1986, J INSECT PHYSIOL, V32, P925, DOI 10.1016/0022-1910(86)90140-X; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1990, J INSECT PHYSIOL, V36, P419, DOI 10.1016/0022-1910(90)90059-O; PARTRIDGE L, 1985, J INSECT PHYSIOL, V31, P393, DOI 10.1016/0022-1910(85)90084-8; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PARTRIDGE L, 1988, REPRODUCTIVE SUCCESS; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; REES M, 1992, AM NAT, V139, P484, DOI 10.1086/285340; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P134, DOI 10.1016/0169-5347(92)90150-A; ROPER C, 1993, EVOLUTION, V47, P445, DOI 10.1111/j.1558-5646.1993.tb02105.x; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1987, GENETIC CONSTRAINTS, P91; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; SHAW RG, 1987, EVOLUTION, V41, P812, DOI 10.1111/j.1558-5646.1987.tb05855.x; SMITH JM, 1958, J EXP BIOL, V35, P832; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; TREVITT S, 1988, J INSECT PHYSIOL, V34, P821, DOI 10.1016/0022-1910(88)90157-6; TREVITT S, 1989, THESIS U EDINBURGH; TURELLI M, 1985, GENETICS, V111, P165; TURELLI M, 1988, EVOLUTION, V42, P1342, DOI 10.1111/j.1558-5646.1988.tb04193.x; VAUPEL WV, 1983, RR831 INT I APPL SYS; WAGNER GP, 1989, GENETICS, V122, P223; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 82 33 33 0 18 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0016-6707 1573-6857 GENETICA Genetica 1993 91 1-3 89 98 10.1007/BF01435990 10 Genetics & Heredity Genetics & Heredity MT350 WOS:A1993MT35000009 8125281 2019-02-26 J GRAVES, JL; MUELLER, LD GRAVES, JL; MUELLER, LD POPULATION-DENSITY EFFECTS ON LONGEVITY GENETICA English Article LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; POSTPONED SENESCENCE; DIETARY RESTRICTION; STRESS RESISTANCE; K-SELECTION; GROWTH; REPRODUCTION; ENVIRONMENTS; COMPETITION Population density, or the number of adults in an environment relative to the limiting resources, may have important long and short term consequences for the longevity of organisms. In this paper we summarize the way in which crowding may have an immediate impact on longevity, either through the phenomenon known as dietary restriction or through alterations in the quality of the environment brought on by the presence of large numbers of individuals. We also consider the possible long term consequences of population density on longevity by the process of natural selection. There has been much theoretical speculation about the possible impact of population density on the evolution of longevity but little experimental evidence has been gathered to test these ideas. We discuss some of the theory and empirical evidence that exists and show that population density is an important factor in determining both the immediate chances of survival and the course of natural selection. GRAVES, JL (reprint author), UNIV CALIF IRVINE,DEPT ECOL & EVOLUTIONARY BIOL,IRVINE,CA 92717, USA. NIA NIH HHS [AG09970] Andrewartha H.G., 1954, DISTRIBUTION ABUNDAN, pII; AUSTAD SN, 1989, EXP GERONTOL, V24, P83, DOI 10.1016/0531-5565(89)90037-5; Beverton R. J. H., 1962, P242; CAREY JR, 1992, SCIENCE, V258, P457; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHIANG HC, 1954, ECOL MONOGR, V20, P173; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Darwin C, 1859, ORIGIN SPECIES; DAVID J, 1971, EXP GERONTOL, V6, P249, DOI 10.1016/0531-5565(71)90037-4; DAVIS MB, 1945, ECOLOGY, V26, P353, DOI 10.2307/1931657; DE GRIMALDO E. P., 1960, REV IBERICA PARASITOL, V20, P163; DEGRIMALDO E, 1960, REV IBERICA PARASITO, V20, P39; EDNEY EB, 1968, NATURE, V220, P281, DOI 10.1038/220281a0; EISENBER.RM, 1966, ECOLOGY, V47, P889, DOI 10.2307/1935637; EISENBERG JF, 1981, MAMMALIAN RAD; ERNSTING G, 1991, FUNCT ECOL, V5, P299, DOI 10.2307/2389268; FLANAGAN JR, 1980, MECH AGEING DEV, V13, P41, DOI 10.1016/0047-6374(80)90129-3; FRANK PW, 1957, PHYSIOL ZOOL, V4, P287; GIBB JA, 1960, IBIS, V102, P16; GORDON RM, 1988, J ANIM ECOL, V57, P627; GRAVES JL, 1992, PHYSIOL ZOOL, V65, P268, DOI 10.1086/physzool.65.2.30158253; GRAVES JL, 1990, GENETIC EFFECTS AGIN, V2, pCH5; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARRISON DE, 1988, GROWTH DEVELOP AGING, V52, P207; HASSELL MP, 1989, PERSPECTIVES ECOLOGI, pCH22; Hoffmann R. S., 1958, Ecological Monographs, V28, P79, DOI 10.2307/1942276; HOLEHAN AM, 1985, MECH AGEING DEV, V32, P63, DOI 10.1016/0047-6374(85)90036-3; HOLEHAN AM, 1986, BIOL REV, V61, P329, DOI 10.1111/j.1469-185X.1986.tb00658.x; HOLEHAN AM, 1985, MECH AGEING DEV, V32, P179, DOI 10.1016/0047-6374(85)90078-8; HOLIDAY R, 1989, BIOESSAYS, V10, P125; INGRAM DK, 1987, J GERONTOL, V42, P78, DOI 10.1093/geronj/42.1.78; LUCKINBILL LS, 1985, HEREDITY, V55, P9, DOI 10.1038/hdy.1985.66; MAC ARTHUR ROBERT H., 1967; Malthus T, 1798, ESSAY PRINCIPLE POPU; MCKAY CM, 1939, J NUTR, V18, P1; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MILLER RS, 1958, ECOLOGY, V39, P118, DOI 10.2307/1929973; Mitchell B., 1973, Journal Reprod Fert, V19, P271; MORRIS JG, 1991, NUTRITION ENV METABO; MUELLER LD, 1988, AM NAT, V132, P786, DOI 10.1086/284890; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1991, PHILOS T ROY SOC B, V332, P25, DOI 10.1098/rstb.1991.0029; MUELLER LD, 1981, GENETICS, V97, P667; MUELLER LD, 1993, IN PRESS FUNCTIONAL; MUELLER LD, 1991, AM NAT, V137, P547; NUSBAUM TJ, 1993, SCIENCE, V260, P1567, DOI 10.1126/science.8503001; Partridge L, 1987, FUNCT ECOL, V1, P317, DOI 10.2307/2389786; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; Pearl R, 1927, AM NAT, V61, P289, DOI 10.1086/280154; Pearl R, 1922, AM NAT, V56, P312, DOI 10.1086/279870; PHELAN JP, 1989, GROWTH DEV AGING; PIANKA ER, 1972, AM NAT, V106, P581, DOI 10.1086/282798; PROUT T, 1985, AM NAT, V126, P521, DOI 10.1086/284436; ROBERTSON JR, 1981, ECOLOGY, V62, P1585, DOI 10.2307/1941514; ROSE M, 1984, NEW SCI, V103, P15; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1990, INSECT LIFE CYCLES G, pCH2; SCHOENER TW, 1973, THEOR POPUL BIOL, V4, P56, DOI 10.1016/0040-5809(73)90006-3; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; SLOB AK, 1979, BRIT J NUTR, V41, P231, DOI 10.1079/BJN19790032; SLOBODKIN LB, 1954, ECOL MONOGR, V24, P69, DOI 10.2307/1943511; TANNER JT, 1966, ECOLOGY, V45, P733; WIGGLESWORTH VB, 1949, J EXP BIOL, V26, P150; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x 72 36 36 0 3 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0016-6707 GENETICA Genetica 1993 91 1-3 99 109 10.1007/BF01435991 11 Genetics & Heredity Genetics & Heredity MT350 WOS:A1993MT35000010 8125282 2019-02-26 J STEARNS, SC; KAISER, M STEARNS, SC; KAISER, M THE EFFECTS OF ENHANCED EXPRESSION OF ELONGATION-FACTOR EF-1-ALPHA ON LIFE-SPAN IN DROSOPHILA-MELANOGASTER .4. A SUMMARY OF 3 EXPERIMENTS GENETICA English Article LIFE-SPAN; ELONGATION FACTOR; DROSOPHILA; LIFE HISTORY EVOLUTION; GENETIC MANIPULATION; TRADEOFFS; GENETIC CORRELATIONS CORRELATED RESPONSES; SELECTION; SENESCENCE; AGE; EVOLUTION; HISTORY; PROTEIN This paper summarizes three experiments on the genetic manipulation of fitness components involved in the evolution of lifespan through the introduction of an additional copy of the gene for elongation factor EF-1 alpha into the genome of Drosophila melanogaster. The first experiment checked a prior claim that enhanced expression of elongation factor increased the lifespan of virgin male fruitflies. It used inbred stocks; three treatment and three control lines were available. The second experiment put one treatment and one control insert into different positions on the third chromosome, then measured the influence of six genetic backgrounds on treatment effects in healthier flies. The third experiment put six treatment and six control inserts into the genetic background whose lifespan was most sensitive to the effects of treatment in the second experiment, then measured the influence of insert positions on treatment effects in healthy flies. The treatment never increased the lifespan of virgin males. It increased the lifespan of mated females in inbred flies reared to eclosion at 25 degrees, reduced it in the positions experiment, and made no difference to lifespan in the backgrounds experiment. When it increased lifespan, it reduced fecundity. In inbred flies and in the positions experiment, the treatment reduced dry weight at eclosion of females. Marginal effects of gene substitutions on tradeoffs were measured directly. The results suggest that enhanced expression of elongation factor makes local changes within the bounds of tradeoffs that are given by a pre-existing physiological structure whose basic nature is not changed by the treatment. STEARNS, SC (reprint author), ZOOL INST,RHEINSPRUNG 9,CH-4051 BASEL,SWITZERLAND. Stearns, Stephen/F-4099-2012 Kaiser, Marcel/0000-0003-1785-7302; Stearns, Stephen/0000-0002-6621-4373 BELLEN HJ, 1989, GENE DEV, V3, P1288, DOI 10.1101/gad.3.9.1288; CHARLESWORTH B, 1975, GENET RES, V26, P1, DOI 10.1017/S0016672300015792; COOLEY L, 1988, SCIENCE, V239, P1121, DOI 10.1126/science.2830671; COX DR, 1972, J R STAT SOC B, V34, P187; Darnell J, 1990, MOL CELL BIOL; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HOVEMANN B, 1988, NUCLEIC ACIDS RES, V16, P3175, DOI 10.1093/nar/16.8.3175; JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681; KAISER M, 1993, DROSOPHILA MELANOGAS, V2; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; ROBERTSON HM, 1988, GENETICS, V118, P61; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; SHEPHERD JCW, 1989, P NATL ACAD SCI USA, V86, P7520, DOI 10.1073/pnas.86.19.7520; SOKOL RR, 1981, BIOMETRY; STEARNS SC, 1993, DROSOPHILA MELANOGAS, V3; STEARNS SC, 1993, IN PRESS AM NAT; Stearns SC., 1992, EVOLUTION LIFE HIST; WEBSTER GC, 1982, MECH AGEING DEV, V18, P369, DOI 10.1016/0047-6374(82)90039-2; WEBSTER GC, 1983, MECH AGEING DEV, V22, P121, DOI 10.1016/0047-6374(83)90105-7; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; 1985, SAS USERS GUIDE STAT; 1991, SAS P127 TECHN REP 27 40 40 0 5 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0016-6707 GENETICA Genetica 1993 91 1-3 167 182 10.1007/BF01435996 16 Genetics & Heredity Genetics & Heredity MT350 WOS:A1993MT35000015 8125267 2019-02-26 J CLARKE, AL CLARKE, AL WOMEN, RESOURCES, AND DISPERSAL IN 19TH-CENTURY SWEDEN HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article LIFE-HISTORY STRATEGIES; FEMALE BEHAVIOR; DISPERSAL; MIGRATION SEX-BIASED PHILOPATRY; REPRODUCTIVE SUCCESS; OCCUPATIONAL-STATUS; FAMILY LIMITATION; MAMMALS; KIPSIGIS; PATTERNS; BIRDS In a recent study, female dispersal in nineteenth-century Sweden has been found to correlate negatively with access to resources: women with limited access to local resources tended to migrate more frequently. In this paper I review the literature to explore whether this observed correlation was derived from a relationship in which a woman's limited access to resources worsened her position in the marriage market and led to migration, as a strategy to improve resources and this position. Many studies within a variety of disciplines indicate that a woman's propensity to disperse from her parish of birth varied inversely with her propensity to inherit resources. My review of the literature suggests that the less likely a woman was to inherit resources, the lower her probability of marriage, the later her expected age at marriage, and the earlier she left home, presumably to improve her resource base for marriage. UNIV MICHIGAN,SCH NAT RESOURCES & ENVIRONM,ANN ARBOR,MI 48109 Alexander R.D., 1979, EVOLUTIONARY BIOL HU, P402; Anderson P. K., 1989, DISPERSAL RODENTS RE, V9; Baker RR, 1978, EVOLUTIONARY ECOLOGY; BAKER RR, 1981, ANIMAL MIGRATION, P241; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Betzig Laura L., 1986, DESPOTISM DIFFERENTI; BLOM I, 1985, NORDIC FAMILY PERSPE, P94; BRANSTROM A, 1986, 4 UM U REP; CARLSSON S, 1978, CHANCE CHANGE, P220; CLARKE AL, 1992, ANIM BEHAV, V44, P677, DOI 10.1016/S0003-3472(05)80295-7; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1986, ANIM BEHAV, V34, P460, DOI 10.1016/S0003-3472(86)80115-4; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; CRONK L, 1991, ANNU REV ANTHROPOL, V20, P25, DOI 10.1146/annurev.an.20.100191.000325; DARROCH AG, 1981, J FAMILY HIST FAL, P257; DICKEMANN M, 1979, SOC SCI INFORM, V18, P63; DOBSON FS, 1982, ANIM BEHAV, V30, P1183; Drake M., 1969, POPULATION SOC NORWA; EGERBLADH I, 1989, J FAM HIST, V14, P241, DOI 10.1177/036319908901400305; ERIKSSON I, 1978, STUDIA HIST UPSALIEN, V100; Fisher R. A, 1958, GENETICAL THEORY NAT; Flinn MV, 1986, ECOLOGICAL ASPECTS S, P217; GAUNT D, 1980, BASTARDY ITS COMP HI; GERGER T, 1983, PATTERNS JOBS GEOGRA; Greenwood P.J., 1983, P116; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; Hajnal J., 1965, POPULATION HIST ESSA, P101; Hames R., 1988, HUMAN REPROD BEHAV, P237; Harbison S.F., 1981, MIGRATION DECISION M, p[225, 225]; HARTUNG J, 1982, CURR ANTHROPOL, V23, P1, DOI 10.1086/202775; HILL J, 1984, ETHOL SOCIOBIOL, V5, P77, DOI 10.1016/0162-3095(84)90011-6; Hofsten E., 1976, SWEDISH POPULATION H; HORSELL A, 1982, ESSAYS SOCIAL DEMOGR, V3, P27; Hrdy S. B., 1983, SOCIAL BEHAV FEMALE, P3; Inger G., 1980, SVENSK RATTSHISTORIA; JOHNSON CN, 1986, OECOLOGIA, V69, P626, DOI 10.1007/BF00410373; Jorberg L., 1975, SWEDENS DEV POVERTY, P92; KNODEL J, 1977, POP STUD-J DEMOG, V31, P219, DOI 10.1080/00324728.1977.10410428; Koenig W. D., 1987, POPULATION ECOLOGY C; LANCASTER JB, 1991, YEARB PHYS ANTHROPOL, V34, P1; LANCASTER JB, 1989, GENDER ANTHR CRITICA, P95; le Boeuf B.J., 1988, P344; LEWIS J, 1988, J SOC HIST, V22, P5, DOI 10.1353/jsh/22.1.5; LIBERG O, 1985, AM NAT, V126, P129, DOI 10.1086/284402; Lo-Johannsson F. A. I., 1981, SVERIGES RIKES LAG G; LOCKRIDGE KA, 1983, 3 UM U DEM DAT REP; LOFGREN O, 1978, CHANCE CHANGE SOCIAL, P95; Low B S, 1993, Evol Anthropol, P177, DOI 10.1002/evan.1360010507; LOW BS, 1989, SOC BIOL, V36, P82; LOW BS, 1992, ETHOL SOCIOBIOL, V13, P463, DOI 10.1016/0162-3095(92)90013-T; LOW BS, 1991, J FAM HIST, V16, P117, DOI 10.1177/036319909101600202; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; LOW BS, 1992, POPUL DEV REV, V18, P1, DOI 10.2307/1971857; LOW BS, 1990, INT J CONT SOCIOLOGY, V27, P45; LOW BS, 1990, AM ANTHROPOL, V92, P115; MARTINIUS S, 1967, BEFOLNINGSRORLIGHET; MITCHELL JC, 1969, MIGRATION, P151; MODRZEWSKA K, 1979, TIME SPACE MAN ESSAY, P45; Mosk C., 1983, PATRIARCHY FERTILITY; MULDER MB, 1985, J ANTHROPOL RES, V41, P231, DOI 10.1086/jar.41.3.3630593; MULDER MB, 1987, AM ANTHROPOL, V89, P617, DOI 10.1525/aa.1987.89.3.02a00050; NILSSON T, 1980, FAMILY BUILDING FAMI, P32; NORBERG A, 1973, ARISTOCRATS FARMERS, P88; NORBERG A, 1979, TIME SPACE MAN ESSAY, P133; NORBERG A, 1980, SAGARNAS ALNO IND 18; NORMAN H, 1985, ESSAYS SOCIAL DEMOGR, V4, P43; Norman Hans, 1988, TRANSATLANTIC CONNEC; NORTON S, 1979, STUDIES AM HIST DEMO, P147; OSTERGREN RC, 1988, COMMUNTY TRANSPLANTE; OVRELID A, 1982, ESSAYS SOCIAL DEMOGR, V3, P1; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; Pusey A.E., 1987, P250; ROSKAFT E, 1992, ETHOL SOCIOBIOL, V13, P443, DOI 10.1016/0162-3095(92)90012-S; SAUGSTAD LF, 1978, CHANCE CHANGE, P84; SHIELDS SA, 1980, SOCIOBIOLOGY NATURE, P489; Shields W.M., 1987, P3; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; SOGNER S, 1985, ESSAYS SOCIAL DEMOGR, V5, P21; Stacey P. B, 1990, COOPERATIVE BREEDING; STROMHOLM S, 1981, INTRO SWEDISH LAW; SUNDIN J, 1989, J FAM HIST, V14, P265, DOI 10.1177/036319908901400306; SUNDIN J, 1981, TRADITION TRANSITION, P161; SUNDIN J, 1990, SOC ENV HLTH LOW INC, P55; SUNDT E, 1980, MARRIAGE NORWAY; Thomas Dorothy Swaine, 1941, SOCIAL EC ASPECTS SW; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Turke P. W., 1988, HUMAN REPROD BEHAV D, P173; Utterstrom G., 1957, JORDBRUKETS ARBETARE; WASSER SK, 1983, SOCIAL BEHAV FEMALE, P19; WESTER H, 1977, INNOVATIONER BEFOLKN; Williams GC, 1966, ADAPTATION NATURAL S 91 9 9 1 1 ALDINE DE GRUYTER DIVISION WALTER DE GRUYTER INC HAWTHORNE 200 SAW MILL RIVER, HAWTHORNE, NY 10532 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1993 4 2 109 135 10.1007/BF02734113 27 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences MU518 WOS:A1993MU51800001 24214319 2019-02-26 J MOLLER, AP MOLLER, AP ECTOPARASITES INCREASE THE COST OF REPRODUCTION IN THEIR HOSTS JOURNAL OF ANIMAL ECOLOGY English Article CLUTCH SIZE; COST OF REPRODUCTION; PARASITE LOAD; REPRODUCTIVE EFFORT; SWALLOWS LIFE-HISTORY EVOLUTION; CLUTCH-SIZE; GREAT TIT; BROOD SIZE; PHENOTYPIC PLASTICITY; BARN SWALLOW; SURVIVAL; CONSEQUENCES; ENVIRONMENT; BIRDS 1. Parasites are hypothesized to increase the cost of reproduction in their hosts due to their time and energy drain. I experimentally studied the effects of the haematophagous tropical fowl mite (Ornithonyssus bursa, Berlese (Macronyssidae, Gamasida)) on the within-season costs of reproduction in their swallow (Hirundo rustica L.) hosts by simultaneously manipulating (i) the size of first clutches (which were either increased by one egg, kept as a control, or decreased by one egg), and (ii) the mite loads of first clutch nests (nests were either sprayed with a pesticide or kept as controls). 2. The experimental treatments were successful as evidenced from the effect of the clutch size manipulation on clutch and subsequent brood size, and from the effect of the parasite manipulation on subsequent mite loads. 3. Experimental treatments also affected the reproductive effort during the first reproductive event of the season as evidenced from the effects of both treatments on (i) brood size at fledging, (ii) the duration of the incubation period, and (iii) the body mass of offspring. 4. The cost of reproduction was measured as the effect of experimental treatment during first clutches on reproductive events during second clutches. Presence of mites increased the cost of reproduction as evidenced from statistically significant interactions between clutch size treatment and mite treatment for (i) the time of egg laying, (ii) clutch size and brood size at hatching and fledging, and (iii) the body mass of offspring. 5. The increased costs of reproduction due to the parasite treatment of first clutches remained when the effects of the number of mites in second clutch nests were controlled statistically. The tropical fowl mite, therefore, increases the within-season costs of reproduction in its swallow hosts. MOLLER, AP (reprint author), UNIV UPPSALA, DEPT ZOOL, BOX 561, S-75122 UPPSALA, SWEDEN. Alexander R. D., 1974, ANNU REV ECOL SYST, V5, P324; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bishop YM, 1975, DISCRETE MULTIVARIAT; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BROWN CR, 1986, ECOLOGY, V67, P1206, DOI 10.2307/1938676; CASWELL H, 1983, AM ZOOL, V23, P35; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; DHONDTT AA, 1990, NATURE, V348, P720; Dobzhansky T., 1951, GENETICS ORIGIN SPEC; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HOGSTEDT G, 1981, AM NAT, V118, P568, DOI 10.1086/283850; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LINDEN M, 1988, OIKOS, V51, P285, DOI 10.2307/3565309; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MOLLER AP, 1989, J ANIM ECOL, V58, P1051, DOI 10.2307/5141; MOLLER AP, 1991, ECOLOGY, V72, P1336, DOI 10.2307/1941106; MOLLER AP, 1990, ECOLOGY, V71, P2345, DOI 10.2307/1938645; MOLLER AP, 1988, NATURE, V332, P640, DOI 10.1038/332640a0; MOLLER AP, 1987, ANIM BEHAV, V35, P819, DOI 10.1016/S0003-3472(87)80118-5; MOLLER AP, 1989, OIKOS, V56, P421, DOI 10.2307/3565628; MOLLER AP, 1991, FUNCT ECOL, V5, P351, DOI 10.2307/2389806; MOLLER AP, 1992, OIKOS, V63, P309, DOI 10.2307/3545393; MOLLER AP, 1991, BIRD PARASITE INTERA, P328; MOLLER AP, 1990, POPULATION BIOL PASS, P269; MOSS WW, 1970, SCIENCE, V168, P1000, DOI 10.1126/science.168.3934.1000; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1988, ARDEA, V76, P155; NUR N, 1986, J ANIM ECOL, V55, P983, DOI 10.2307/4428; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PATRIDGE L, 1989, LIFETIME REPRODUCTIO, P421; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Rothschild M., 1952, FLEAS FLUKES CUCKOOS; SHIELDS WM, 1987, ECOLOGY, V68, P1373, DOI 10.2307/1939221; SIKES RK, 1954, J PARASITOL, V40, P691, DOI 10.2307/3273713; SMITH HG, 1987, AUK, V104, P700; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; SOKAL R., 1981, BIOMETRY; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TINBERGEN JM, 1987, ARDEA, V75, P111; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 49 136 139 1 27 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. 1993 62 2 309 322 10.2307/5362 14 Ecology; Zoology Environmental Sciences & Ecology; Zoology KV362 WOS:A1993KV36200010 2019-02-26 J OWENSMITH, N OWENSMITH, N COMPARATIVE MORTALITY-RATES OF MALE AND FEMALE KUDUS - THE COSTS OF SEXUAL SIZE DIMORPHISM JOURNAL OF ANIMAL ECOLOGY English Article MORTALITY; PREDATION; SEXUAL DIMORPHISM; SEX RATIO; TRAGELAPHUS-STREPSICEROS LIFE-HISTORY VARIATION; POPULATION-DYNAMICS; RED DEER; DALL SHEEP; DEMOGRAPHY; ECOLOGY; REPRODUCTION; EVOLUTION; RUMINANTS; PATTERNS 1. The aim of this study was to document the difference in age-specific mortality rates of male and female kudus, and to relate this difference to possible causes, in particular the influence of sexual size dimorphism. 2. The study was conducted over 10 years in the Kruger National Park, South Africa. Female survival was estimated by following cohorts of individually recognizable animals in closed social units. Male survival was estimated from year-class ratios, adjusted for population change. 3. Male mortality rate remained similar to that of females up to 3 years of age. Thereafter, male mortality accelerated sharply with age. A male reaching full weight at 6 years of age had only a 0.5 chance of surviving a further year. Female mortality started rising only after 6 years of age. Males lived up to 9 years, but females up to about 15 years. 4. The excess male mortality could not be explained by energetic expenditures in mate competition, increased hazards resulting from male dispersal, or the smaller group sizes typical of males. 5. Male kudus appeared more susceptible to malnutrition than females, possibly because of increased food demands resulting in accelerated tooth wear. However, male kudus showed higher mortality than females during periods of high rainfall when food shortages were less likely to be influential. 6. Male kudus are potentially less agile, and hence more susceptible to being caught by predators, than females. Loss of condition due to malnutrition may increase vulnerability to predation. Lions preferentially killed male kudus, especially large males. But the population sex ratio of kudus seemed to be equally female-biased in areas where lions were less abundant or absent. 7. Hence, the excess mortality incurred by male kudus could not be related primarily to any single cause. Males grow to a larger than optimal size for survival, relative to females, because of reproductive benefits, and thereby incur multiple costs. Nevertheless, predation is clearly an important factor amplifying the mortality predisposition due to large size. 8. Among African bovids there is no clear relation between sexual size dimorphism and the population sex ratio. Where a size difference between the sexes is less of an influence, other mortality factors arising from male competition come into play. In environments lacking large predators, mortality rates of both sexes may be atypically low, with implications for life-history theory. OWENSMITH, N (reprint author), UNIV WITWATERSRAND,CTR AFRICAN ECOL,DEPT ZOOL,WITWATERSRAND 2050,SOUTH AFRICA. Owen-Smith, Norman/0000-0001-8429-1201 ALLENROWLANDSON TS, 1980, THESIS RHODES U GRAH; ANDERSON JL, 1978, THESIS U LONDON; BELL RHV, 1971, SCI AM, V225, P86, DOI 10.1038/scientificamerican0771-86; BELL RHV, 1981, NOTES NYALA SITUATIO; BERGERUD AT, 1971, WILDLIFE MONOGR, V25, P1; BERRY H H, 1981, Madoqua, V12, P255; BIGALKE R C, 1970, Zoologica Africana, V5, P59; BOBEK B, 1990, J MAMMAL, V71, P230, DOI 10.2307/1382171; BOOTH VR, 1985, S AFR J ZOOL, V20, P57; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHILD G, 1968, BEHAVIOUR LARGE MAMM; CLUTTONBROCK TH, 1987, J ZOOL, V211, P275, DOI 10.1111/j.1469-7998.1987.tb01534.x; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; Dasmann R. F., 1962, Journal of Wildlife Management, V26, P262, DOI 10.2307/3798701; ERRINGTON PL, 1956, SCIENCE, V124, P304, DOI 10.1126/science.124.3216.304; FAIRALL N, 1968, Zoologica Africana, V3, P189; Flook D. R., 1970, CANADIAN WILDLIFE SE, V11; Gasaway W. C., 1992, WILDL MONOGR, V120; GAVIN TA, 1984, WILDLIFE MONOGRAPHS, V91; GEIST V, 1974, AM ZOOL, V14, P205; GEIST V, 1986, CAN J ZOOL, V64, P380, DOI 10.1139/z86-059; Geist V., 1971, MOUNTAIN SHEEP STUDY; GEORGIADIS N, 1985, AFR J ECOL, V23, P75, DOI 10.1111/j.1365-2028.1985.tb00718.x; GREENE CH, 1986, AM NAT, V128, P824, DOI 10.1086/284608; GRUBB P, 1974, ISLAND SURVIVORS ECO, P242; Hillman J. C., 1979, THESIS U NAIROBI NAI; HILLMAN JC, 1986, BIOL CONSERV, V38, P255, DOI 10.1016/0006-3207(86)90125-4; HOEFS M, 1983, CAN J ZOOL, V61, P1346, DOI 10.1139/z83-181; Houston D. B., 1982, NO YELLOWSTONE ELK E; HUNTLEY BJ, 1971, J S AFR WILDL MANAGE, V1, P17; HVIDBERG-HANSEN H, 1971, Mammalia, V35, P1, DOI 10.1515/mamm.1971.35.1.1; ILLIUS AW, 1987, J ANIM ECOL, V56, P989, DOI 10.2307/4961; IRBY LR, 1977, S AFR J WILDL RES, V7, P73; JARMAN P J, 1973, East African Wildlife Journal, V11, P329; JARMAN PJ, 1974, BEHAVIOUR, V48, P215, DOI 10.1163/156853974X00345; Joubert S. C. J, 1977, Koedoe, VNo. 20, P125; JOUBERT SC, 1976, THESIS U PRETORIA PR; KLEIN DAVID R., 1960, JOUR WILDLIFE MANAGEMENT, V24, P80, DOI 10.2307/3797359; KLEIN DR, 1968, J WILDLIFE MANAGE, V32, P350, DOI 10.2307/3798981; LEADERWILLIAMS N, 1980, J WILDLIFE MANAGE, V44, P640, DOI 10.2307/3808011; LEUTHOLD W, 1978, J ANIM ECOL, V47, P561, DOI 10.2307/3801; LEUTHOLD W, 1979, Saeugetierkundliche Mitteilungen, V27, P1; Martin PS, 1984, QUARTERNARY EXTINCTI; MASON D R, 1990, Koedoe, V33, P19; MASON DR, 1983, UNPUB MONITORING UNG; MELTON DA, 1983, AFR J ECOL, V21, P77, DOI 10.1111/j.1365-2028.1983.tb00313.x; MODHA KL, 1976, J APPL ECOL, V13, P453, DOI 10.2307/2401795; OLIVER MDN, 1978, S AFR J WILDL RES, V8, P95; Owen-Smith N., 1988, MEGAHERBIVORES INFLU; OWENSMITH N, 1990, J ANIM ECOL, V59, P893, DOI 10.2307/5021; OWENSMITH N, 1984, ANIM BEHAV, V32, P321, DOI 10.1016/S0003-3472(84)80264-X; OWENSMITH N, 1977, Q REV BIOL, V52, P1, DOI 10.1086/409720; OWENSMITH N, 1993, BEHAVIORAL ECOLOGY S; Pienaar U. de V., 1969, Koedoe, VNo. 12, P108; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; ROBINETTE W. L., 1957, JOUR WILD LIFE MANAGEMENT, V21, P1, DOI 10.2307/3797671; Schaller George B., 1977, MOUNTAIN MONARCHS WI; SIMMONS NM, 1984, J WILDLIFE MANAGE, V48, P156, DOI 10.2307/3808463; SIMPSON CD, 1968, J WILDLIFE MANAGE, V32, P149, DOI 10.2307/3798249; SIMPSON CD, 1974, THESIS TEXAS A M U C; Simpson CD., 1966, ARNOLDIA, V2, P1; SINCLAIR ARE, 1977, AFRICAN BUFFALO; Skinner J. D, 1990, MAMMALS SO AFRICAN S; SKOGLAND T, 1985, J ANIM ECOL, V54, P359, DOI 10.2307/4484; SMUTS GL, 1978, BIOSCIENCE, V28, P316, DOI 10.2307/1307372; SPINAGE CA, 1970, J ANIM ECOL, V39, P51, DOI 10.2307/2889; SPINAGE CA, 1972, ECOLOGY, V53, P645, DOI 10.2307/1934778; TABER RD, 1957, ECOLOGY, V38, P233, DOI 10.2307/1931682; UNDERWOOD R, 1978, S AFR J WILDL RES, V8, P43; WALTHER F R, 1972, Zeitschrift fuer Tierpsychologie, V31, P348; WILSON V. J., 1962, PROC ZOOL SOC LONDON, V138, P487; WILSON V J, 1970, Arnoldia (Rhodesia), V4, P1; WILSON VIVIAN J., 1965, EAST AFR WILDLIFE J, V3, P27; WOOLF A, 1979, WILDLIFE MONOGR, V67, P1 76 113 116 3 29 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. 1993 62 3 428 440 10.2307/5192 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology LK282 WOS:A1993LK28200003 2019-02-26 J FORSMAN, A FORSMAN, A SURVIVAL IN RELATION TO BODY-SIZE AND GROWTH-RATE IN THE ADDER, VIPERA-BERUS JOURNAL OF ANIMAL ECOLOGY English Article FLUCTUATING SELECTION; LIFE HISTORY; SIZE-DEPENDENT SURVIVAL; SNAKE LIFE-HISTORY EVOLUTION; REPRODUCTIVE SUCCESS; NATURAL-POPULATION; GARTER SNAKES; COLOR MORPHS; SELECTION; PERFORMANCE; DIMORPHISM; MORTALITY; REPTILES 1. Life-history theory suggests that it may pay an individual to trade present reproductive investment for growth, if this increases future reproductive capacity and/or longevity. Whether or not growth will increase longevity depends on the relationship between body size and survivorship. Here I examine the relationship between snout-vent length and survivorship in a natural population of adders, Vipera berus, using recapture data collected during 1986-92. and test for an associaton between relative growth rate and survival. 2. The proportion of individuals recaptured differed significantly among years in females but not in males. More males than females were recaptured, but the relationship between body size and survivorship did not differ between sexes. 3. The relationship between body size and survivorship varied among years. In 1987 survivorship decreased significantly with increasing snout-vent length. The pattern was significantly reversed the following year when survivorship increased with increasing size. In 1990 individuals intermediate in size survived better than small or large individuals. No significant relationship between survivorship and size was detected in 1986 and 1989. The explanation of this variability is suggested to be that food availability fluctuated over time. 4. There was no significant relationship between relative growth rate (a size-independent measure of growth rate relative to other individuals in the population) and subsequent survival. 5. It is concluded that, in temporally heterogeneous environments, allocating resources to growth will influence future reproductive success differently in different years, and that this may select for plasticity in life-history traits. FORSMAN, A (reprint author), UPPSALA UNIV,DEPT ZOOL,VILLAVAGEN 9,S-75236 UPPSALA,SWEDEN. Forsman, Anders/0000-0001-9598-7618 ANDREN C, 1981, BIOL J LINN SOC, V15, P235, DOI 10.1111/j.1095-8312.1981.tb00761.x; ANHOLT BR, 1991, EVOLUTION, V45, P1091, DOI 10.1111/j.1558-5646.1991.tb04377.x; BERNSTROM J, 1958, NATUR VASTMANLAND, P193; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1988, REPRODUCTIVE SUCCESS; Ebenman B., 1988, SIZE STRUCTURED POPU; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; FORSMAN A, 1993, OIKOS, V66, P279, DOI 10.2307/3544815; FORSMAN A, 1991, J ANIM ECOL, V60, P253, DOI 10.2307/5458; FORSMAN A, 1987, OIKOS, V50, P13, DOI 10.2307/3565396; FORSMAN A, 1991, FUNCT ECOL, V5, P717, DOI 10.2307/2389533; FORSMAN A, 1993, IN PRESS FUNCTIONAL, V7; GARLAND T, 1983, COPEIA, P1092, DOI 10.2307/1445117; GIBBS HL, 1987, NATURE, V327, P511, DOI 10.1038/327511a0; HAIRSTON NG, 1990, EVOLUTION, V44, P1796, DOI 10.1111/j.1558-5646.1990.tb05250.x; HALLIDAY TR, 1988, J HERPETOL, V22, P253, DOI 10.2307/1564148; HEATVOLE H, 1976, REPTILE ECOLOGY; HOSMER DW, 1989, APPLIED LOGISTIC REG; Huey R.B., 1982, Biology of Reptilia, V12, P25; JAYNE BC, 1990, EVOLUTION, V44, P1204, DOI 10.1111/j.1558-5646.1990.tb05226.x; KALISZ S, 1986, EVOLUTION, V40, P479, DOI 10.1111/j.1558-5646.1986.tb00501.x; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LARSEN KW, 1989, HOLARCTIC ECOL, V12, P81; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; MADSEN T, 1988, OIKOS, V52, P73, DOI 10.2307/3565984; MADSEN T, 1988, HOLARCTIC ECOL, V11, P77; MILLAR JS, 1990, FUNCT ECOL, V4, P5, DOI 10.2307/2389646; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; PARKER W S, 1987, P253; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; POKKI J, 1981, ACTA ZOOL FENN, V164, P1; POUGH FH, 1977, J COMP PHYSIOL B, V116, P327; Pough FH, 1983, AM ZOOL, V23, P442; PRESTT I, 1971, J ZOOL, V164, P373; Reiss M. J, 1989, ALLOMETRY GROWTH REP; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; SAUER JR, 1987, ANNU REV ECOL SYST, V18, P71; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SIBLY RM, 1986, PHYSL ECOLOG ANIMALS; SOKAL R., 1981, BIOMETRY; Turner F.B., 1977, P157; WADE MJ, 1990, EVOLUTION, V44, P1947, DOI 10.1111/j.1558-5646.1990.tb04301.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; 1988, SAS STAT USERS GUIDE 46 51 51 3 45 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. 1993 62 4 647 655 10.2307/5385 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology MA346 WOS:A1993MA34600005 2019-02-26 J DICKEMANN, M DICKEMANN, M REPRODUCTIVE STRATEGIES AND GENDER CONSTRUCTION - AN EVOLUTIONARY VIEW OF HOMOSEXUALITIES JOURNAL OF HOMOSEXUALITY English Article COMPETITION; ATTITUDES In this chapter the author addresses the following question: Can the historical occurrence of various forms of homosexuality and bisexuality be explained as part of the management of reproduction in response to environmental conditions? She believes that explanations for the occurrence and forms of homosexuality appealing to genetics are biologically indefensible and historically inadequate. However, Darwinian behavioral theory, and specifically that subset termed life history theory, provides an explanatory framework. An individual's life course consists of behaviors coerced by parents and chosen by the individual in response to environmental conditions, forming a coherent reproductive strategy. In the process, alternate male and female genders, such as cadet sons, spinsters, and religious celibates are explained and the normative male bisexuality of Classical Athens and modem Mediterranean/Latin societies is elucidated. The rise of modern homosexuality in industrial nations results from the demographic transition to low mortality and low fertility, relaxing the reproductive management of children by parents and permitting a greater role for temperament in individual sexual and gender choices. DICKEMANN, M (reprint author), SONOMA STATE UNIV, ROHNERT PK, CA 94928 USA. ADAM BD, 1985, J HOMOSEXUAL, V11, P19; Alcock J., 1979, P381; ANDERSON WW, 1970, JUL P NAT AC SCI, V66, P780; BLACKWOOD E, 1985, J HOMOSEXUAL, V11, P1; Boone James L, 1983, RETHINKING HUMAN ADA, P79; BOONE JL, 1986, AM ANTHROPOL, V88, P859; BROWN JC, 1986, IMMODEST ACTS; Cade W., 1979, P343; CALLENDER C, 1985, J HOMOSEXUAL, V11, P165; CHARNOV E L, 1982; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CROMPTON L, 1981, J HOMOSEXUAL, V6, P11, DOI 10.1300/J082v06n01_03; CUMMINGS P, 1986, ADVOCATE 1104, P28; DEMETRIUS L, 1975, AM NAT, V109, P243, DOI 10.1086/282994; Dickeman Mildred, 1979, EVOLUTIONARY BIOL HU, P321; DICKEMANN M, 1979, SOC SCI INFORM, V18, P163, DOI 10.1177/053901847901800201; Dickemann M, 1981, NATURAL SELECTION SO, P417; DICKEMANN M, 1987, 1986 ANTHR C EV HUM; Dover K, 1978, GREEK HOMOSEXUALITY; DUBY G, 1978, MEDIEVAL MARRIAGE; DUBY G, 1977, CHIVALROUS SOC; DUBY G, 1980, 3 ORDERS FEUDAL SOC; Dunbar R, 1984, REPRODUCTIVE DECISIO; Emlen S.T., 1981, P217; Emlen S.T., 1978, P245; EMLEN ST, 1976, BEHAV ECOL SOCIOBIOL, V1, P283, DOI 10.1007/BF00300069; EMLEN ST, 1984, BEHAVIOURAL ECOLOGY, P305; FRY P, 1985, J HOMOSEXUAL, V11, P137; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GRAY JP, 1985, J HOMOSEXUAL, V11, P55; HAMILTON WD, 1959, ANNU REV ECOL SYST, V5, P193; HERDT G, 1984, RITUALIZED HOMOSEXUA; HOGG JT, 1984, SCIENCE, V225, P526, DOI 10.1126/science.6539948; HORN HS, 1978, BEHAVIOURAL ECOLOGY, P411; HUMPHREYS RAL, 1970, TEAROOM TRADE IMPERS; Kirsch J. A. W., 1982, HOMOSEXUALITY SOCIAL, P183; KUTSCHE P, 1986, DEC ANN M AM ANTHR A; Lack D, 1954, NATURAL REGULATION A; LEBOEUF BJ, 1974, AM ZOOL, V14, P163; LEBOEUF BJ, 1969, SCIENCE, V163, P91, DOI 10.1126/science.163.3862.91; LEVITT EE, 1974, J HOMOSEXUAL, V1, P29, DOI 10.1300/J082v01n01_03; LICHT H, 1969, SEXUAL LIFE ANCIENT; Ligon J.D., 1981, P231; MAC ARTHUR ROBERT H., 1967; MACDONALD AP, 1974, J HOMOSEXUAL, V1, P9, DOI 10.1300/J082v01n01_02; Otte D., 1979, P259; PARKER R, 1985, J HOMOSEXUAL, V11, P155; PITHARAS L, 1986, ADVOCATE 1014, P28; ROBERTSON DR, 1972, SCIENCE, V177, P1007, DOI 10.1126/science.177.4053.1007; Ross M. W., 1983, MARRIED HOMOSEXUAL M; SOLOMON BM, 1985, COMPANY EDUCATED WOM; STACEY PB, 1978, SCIENCE, V202, P1298, DOI 10.1126/science.202.4374.1298; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; TAYLOR CL, 1985, J HOMOSEXUAL, V11, P117; Thornhill R, 1983, EVOLUTION INSECT MAT; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; TRANIELLO JFA, 1978, SCIENCE, V202, P770, DOI 10.1126/science.202.4369.770; TRIVERS RL, 1974, AM ZOOL, V14, P249; Trivers Robert, 1985, SOCIAL EVOLUTION; TURNER J, 1986, ADVOCATE 1209, P6; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360; Weinrich J. D., 1982, HOMOSEXUALITY SOCIAL, P197; WEINRICH JD, 1977, THESIS HARVARD U ANN; West Eberhard M.J., 1975, Quarterly Review of Biology, V50, P1; West-Eberhard M.J., 1981, P3; WESTEBERHARD MJ, 1979, P AM PHILOS SOC, V123, P222; WESTEBERHARD MJ, 1978, SCIENCE, V200, P441, DOI 10.1126/science.200.4340.441; WESTEBERHARD MJ, 1982, 1982 C INT UIEIS SEC; WHITEHEAD H, 1981, SEXUAL MEANINGS CULT, P80; Wilson E.O., 1975, P1; Wilson E. O., 1978, HUMAN NATURE; Woolfenden G.E., 1981, P257; WOOLFENDEN GE, 1984, MONOGRAPHS POPULATIO, V20 74 13 14 0 11 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 0091-8369 1540-3602 J HOMOSEXUAL J. Homosex. 1993 24 3-4 55 71 10.1300/J082v24n03_04 17 Psychology, Multidisciplinary; Social Sciences, Interdisciplinary Psychology; Social Sciences - Other Topics KZ567 WOS:A1993KZ56700005 8505541 2019-02-26 J MAGURRAN, AE; SEGHERS, BH; CARVALHO, GR; SHAW, PW MAGURRAN, AE; SEGHERS, BH; CARVALHO, GR; SHAW, PW EVOLUTION OF ADAPTIVE VARIATION IN ANTIPREDATOR BEHAVIOR MARINE BEHAVIOUR AND PHYSIOLOGY English Article; Proceedings Paper Conference on Behavioural Ecology of Fishes SEP 30-OCT 05, 1991 ETTORE MAJORANA CTR SCI CULTURE, ERICE, ITALY ETTORE MAJORANA FDN ETTORE MAJORANA CTR SCI CULTURE GUPPY POECILIA-RETICULATA; GASTEROSTEUS-ACULEATUS L; LIFE-HISTORY EVOLUTION; MALE PREDATION RISK; GEOGRAPHIC-VARIATION; TRINIDAD GUPPY; COLOR PATTERNS; 3-SPINED STICKLEBACK; FEMALE PREFERENCE; SEXUAL SELECTION In many species of fish, behaviour varies adaptively amongst populations in response to predation risk. One of the best examples is provided by the guppy, Poecilia reticulata, in Trinidad. Although separated by distances of a few km, or less, guppy populations vary in terms of predator assessment and avoidance, schooling, foraging behaviour, resource defence, female choice and mating tactics. We show that there are behavioural costs (such as lower levels of individual aggression and reduced female choice) associated with selection for a heightened antipredator response. In the majority of cases population variation in guppy behaviour can be clearly linked to the predation regime. Nevertheless, we have begun to uncover situations where there is behavioural divergence amongst populations apparently experiencing equivalent risk. We consider explanations for these differences including the possibility that they may be related to high levels of genetic divergence. UNIV COLL SWANSEA,SCH BIOL SCI,SWANSEA SA2 8PP,W GLAM,WALES MAGURRAN, AE (reprint author), UNIV OXFORD,DEPT ZOOL,S PARKS RD,OXFORD OX1 3PS,ENGLAND. Magurran, Anne/D-7463-2013 BAKKER TCM, 1988, ANIM BEHAV, V36, P1556, DOI 10.1016/S0003-3472(88)80233-1; BALLIN PJ, 1973, THESIS BRIT COLUMBIA; BREDEN F, 1987, NATURE, V329, P831, DOI 10.1038/329831a0; BREDEN F, 1987, ANIM BEHAV, V35, P618, DOI 10.1016/S0003-3472(87)80297-X; BUTH DG, 1991, CYPRINID FISHES SYST, P83; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; DOUGLAS ME, 1982, J THEOR BIOL, V99, P777, DOI 10.1016/0022-5193(82)90197-7; DUGATKIN LA, 1991, BEHAV ECOL SOCIOBIOL, V28, P243; Endler J.A., 1991, P169; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1991, VISION RES, V31, P587, DOI 10.1016/0042-6989(91)90109-I; ENDLER JA, 1985, NATURAL SELECTION WI; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; GILES N, 1984, ANIM BEHAV, V32, P264, DOI 10.1016/S0003-3472(84)80346-2; HASKINS CP, 1991, VERTEBRATE SPECIATIO, P320; HOUDE AE, 1988, ANIM BEHAV, V36, P510, DOI 10.1016/S0003-3472(88)80022-8; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HUNTINGFORD FA, 1989, J FISH BIOL, V35, P153, DOI 10.1111/j.1095-8649.1989.tb03401.x; HUNTINGFORD FA, 1982, ANIM BEHAV, V30, P909, DOI 10.1016/S0003-3472(82)80165-6; HUNTINGFORD FA, 1989, BEHAV PROCESS, V19, P181, DOI 10.1016/0376-6357(89)90040-5; LEVESLEY PB, 1988, J FISH BIOL, V32, P699, DOI 10.1111/j.1095-8649.1988.tb05410.x; LICHT T, 1989, ETHOLOGY, V82, P238; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; LUYTEN PH, 1991, BEHAV ECOL SOCIOBIOL, V28, P329, DOI 10.1007/BF00164382; MAGURRAN AE, 1991, P ROY SOC B-BIOL SCI, V246, P31, DOI 10.1098/rspb.1991.0121; MAGURRAN AE, 1986, BEHAV ECOL SOCIOBIOL, V19, P267, DOI 10.1007/BF00300641; MAGURRAN AE, 1990, ANIM BEHAV, V39, P834, DOI 10.1016/S0003-3472(05)80947-9; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1990, ANIM BEHAV, V40, P443, DOI 10.1016/S0003-3472(05)80524-X; MAGURRAN AE, 1987, PROC R SOC SER B-BIO, V229, P439, DOI 10.1098/rspb.1987.0004; MAGURRAN AE, 1990, ANN ZOOL FENN, V27, P51; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1974, OECOLOGIA, V14, P93, DOI 10.1007/BF00344900; SEGHERS BH, 1973, THESIS U BRIT COLUMB; Seghers BH, 1978, VERH INT VEREIN LIMN, V20, P2055; STONER G, 1988, BEHAV ECOL SOCIOBIOL, V22, P285, DOI 10.1007/BF00299844; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; TULLEY JJ, 1987, ANIM BEHAV, V35, P1570, DOI 10.1016/S0003-3472(87)80034-9 44 33 33 0 17 GORDON BREACH SCI PUBL LTD READING C/O STBS LTD PO BOX 90, READING, BERKS, ENGLAND RG1 8JL 0091-181X MAR BEHAV PHYSIOL Mar. Behav. Physiol. 1993 23 1-4 29 44 10.1080/10236249309378855 16 Marine & Freshwater Biology Marine & Freshwater Biology MN225 WOS:A1993MN22500006 2019-02-26 J THEAKER, AJ; BRIGGS, D THEAKER, AJ; BRIGGS, D GENECOLOGICAL STUDIES OF GROUNDSEL (SENECIO-VULGARIS L) .4. RATE OF DEVELOPMENT IN PLANTS FROM DIFFERENT HABITAT TYPES NEW PHYTOLOGIST English Article GROUNDSEL (SENECIO-VULGARIS); PRECOCITY; RATE OF DEVELOPMENT; TRADE-OFFS; SENESCENCE 3 CONTRASTING HABITATS; LIFE-HISTORY VARIATION; GENETIC DIFFERENTIATION; HERBICIDE RESISTANCE; POPULATION GENETICS; STEADY WINDS; CONVECTION; LANCEOLATA; THALIANA; BIOLOGY In order to test the hypothesis that precocious variants might be at a selective advantage in well-weeded sites, open pollinated achenes of Senecio vulgaris L. were collected in eastern Britain from three populations representative of each of five habitat types (botanic gardens, field margins, inland and coastal sandy areas and shingle beaches) some subject to weeding and others not. Progenies of a number of seed-parents (families) were grown in a garden trial, and life-history and reproductive characteristics were recorded, in particular the rate of development from sowing, with synchronous germination, to first fruiting. Populations from botanic gardens were characterized by families exhibiting precocious reproduction, a finding which supports our initial hypothesis. However, a degree of variation was detected in samples from all three botanic gardens - Oxford, Kew and Cambridge - confirming the results of an earlier study of groundsel in the University Botanic Garden, Cambridge. In contrast, samples from maritime shingle beaches had a slower rate of development. There was no evidence of population variation, suggesting that genetic drift or founder effects might be important or that there may be selection for a narrow range of phenotypes, in such areas. Furthermore, at Shingle Street, Suffolk, there was evidence of sharp local differentiation between plants from the shingle beach and from an arable field margin, 50 m away, located behind sea defences. The characteristics of plants from other habitat types are discussed in relation to the apparent selection pressures imposed by different land use. Our results provide evidence of trade-offs in life-history evolution, e.g. the precocious variants were comparatively dwarf at first fruiting and shorter-lived. UNIV CAMBRIDGE, DEPT PLANT SCI, CAMBRIDGE CB2 3EA, ENGLAND THEAKER, AJ (reprint author), UNIV READING, SCH PLANT SCI, 2 EARLEY GATE, POB 239, READING RG6 2AU, ENGLAND. ABBOTT RJ, 1976, NEW PHYTOL, V76, P153, DOI 10.1111/j.1469-8137.1976.tb01447.x; ASTON JL, 1966, HEREDITY, V21, P649, DOI 10.1038/hdy.1966.64; BOCHER T.W, 1958, BOT NOTISER, V111, P289; BOCHER TW, 1949, NEW PHYTOL, V48, P285; Bradshaw A. D., 1984, PERSPECTIVES PLANT P, P213; BRADSHAW AD, 1991, ECOLOGICAL GENETICS AND AIR POLLUTION, P11; BRIGGS D, 1992, NEW PHYTOL, V121, P267, DOI 10.1111/j.1469-8137.1992.tb01113.x; BRIGGS D, 1992, NEW PHYTOL, V121, P257, DOI 10.1111/j.1469-8137.1992.tb01112.x; BRIGGS D, 1991, NEW PHYTOL, V117, P153, DOI 10.1111/j.1469-8137.1991.tb00954.x; Briggs D, 1984, PLANT VARIATION EVOL; BURROWS FM, 1973, NEW PHYTOL, V72, P647, DOI 10.1111/j.1469-8137.1973.tb04414.x; HALLETT SG, 1990, NEW PHYTOL, V114, P105, DOI 10.1111/j.1469-8137.1990.tb00380.x; HARBERD D. J., 1961, NEW PHYTOL, V60, P325, DOI 10.1111/j.1469-8137.1961.tb06259.x; HEPPER JN, 1982, ROYAL BOTANIC GARDEN; HURKA H, 1990, BIOL APPROACHES EVOL, V5, P19; HYAMS ES, 1969, GREAT BOTANICAL GARD; JONES ME, 1971, HEREDITY, V27, P39, DOI 10.1038/hdy.1971.69; JONES ME, 1971, HEREDITY, V27, P59, DOI 10.1038/hdy.1971.71; JONES ME, 1971, HEREDITY, V27, P51, DOI 10.1038/hdy.1971.70; KADEREIT JW, 1985, NEW PHYTOL, V99, P155, DOI 10.1111/j.1469-8137.1985.tb03645.x; KADEREIT JW, 1984, NEW PHYTOL, V97, P681, DOI 10.1111/j.1469-8137.1984.tb03631.x; LACEY EP, 1988, ECOLOGY, V69, P220, DOI 10.2307/1943178; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; LAWRENCE MJ, 1984, EVOLUTIONARY ECOLOGY, P27; LEBARON HM, 1990, ACS SYM SER, V421, P336; Nooden LD, 1988, SENESCENCE AGING PLA, P1; PRESTON FG, 1940, J ROYAL HORTICULTURA, V65, P171; PUTWAIN PD, 1989, SOC EXP BIOL SEM SER, V38, P211; REINARTZ JA, 1984, J ECOL, V72, P897, DOI 10.2307/2259539; REN Z, 1991, NEW PHYTOL, V117, P673, DOI 10.1111/j.1469-8137.1991.tb00972.x; SALISBURY E, 1961, WEEDS ALIENS; SHELDON JC, 1973, NEW PHYTOL, V72, P665, DOI 10.1111/j.1469-8137.1973.tb04415.x; SOBEY DG, 1987, ANN BOT-LONDON, V59, P543, DOI 10.1093/oxfordjournals.aob.a087348; Sorensen T., 1954, BOT TIDSSKR, V51, P339; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1992, FUNCTIONAL ECOLOGY; THEAKER AJ, 1992, NEW PHYTOL, V121, P281, DOI 10.1111/j.1469-8137.1992.tb01114.x; Trist P. J. O., 1979, ECOLOGICAL FLORA BRE; VANTIENDEREN PH, 1991, J ECOL, V79, P43, DOI 10.2307/2260783; VANTIENDEREN PH, 1991, J ECOL, V79, P27; VENABLE DL, 1984, PERSPECTIVES PLANT P, P1661; Walters Stuart Max, 1981, SHAPING CAMBRIDGE BO; WARWICK SI, 1991, ANNU REV ECOL SYST, V22, P95; Zar J., 1984, BIOSTATISTICAL ANAL; 1979, ROYAL BOTANIC GARDEN 46 17 18 0 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X 1469-8137 NEW PHYTOL New Phytol. JAN 1993 123 1 185 194 10 Plant Sciences Plant Sciences KQ718 WOS:A1993KQ71800021 2019-02-26 J MOLAU, U MOLAU, U REPRODUCTIVE ECOLOGY OF THE 3 NORDIC PINGUICULA SPECIES (LENTIBULARIACEAE) NORDIC JOURNAL OF BOTANY English Article BREEDING SYSTEMS; PLANTS Reproductive ecology (pollination biology, breeding systems. and reproductive effort and success) of the three Nordic species of Pinguicula, P. alpina, P. villosa, and P. vulgaris (Lentibulariaceae), was investigated in a subarctic-subalpine area at Abisko, N Swedish Lapland. Additional studies were carried out at Latnjajaure Field Station, a subarctic-alpine tundra site in the Abisko mountains (P. alpina, P. vulgaris), and in W Greenland (P. vulgaris). At Abisko the species are sympatric and large populations of all three were found within a 50 x 50 m area. The three species are reproductively isolated by internal barriers by occupying different ploidy levels. Pinguicula alpina and P. vulgaris thrive in base-rich habitats, whereas P. villosa is restricted to nutrient-poor Sphagnum bogs, but habitat separation alone is probably not sufficient to prevent illegitimate pollen flow among the species. However, results showed that there are large and consistent differences in pollination biology, flowering phenology, and breeding systems, and these factors interact to create a highly efficient reproductive isolation at all levels, pre-zygotic as well as post-zygotic. Pinguicula alpina is an early-flowering outbreeder, P. vulgaris is an opportunistic late-flowering inbreeder, and P. villosa is quite intermediate between the two extremes. The phenology-based life history strategies of the Pinguicula species were in accordance with a general model developed for arctic flowering plants, predicting maximized fitness through pollen or seed in early- and late-flowering species, respectively. UNIV GOTEBORG,DEPT SYSTEMAT BOT,S-41319 GOTHENBURG,SWEDEN BRUNDIN L, 1931, KUNGL SVENSKA VET AK, V16, P37; CRUDEN RW, 1977, EVOLUTION, V31, P32, DOI 10.1111/j.1558-5646.1977.tb00979.x; ESTABROOK GF, 1982, BOT GAZ, V143, P374, DOI 10.1086/337312; FUTUYMA DJ, 1979, EVOLUTIONARY BIOL; Grant V, 1981, PLANT SPECIATION; HEIDE F, 1912, MEDDELELSER GRONLAND, V36, P441; Hulten E., 1986, ATLAS N EUROPEAN VAS, VII; Karlsson PS, 1988, FUNCT ECOL, V2, P203, DOI 10.2307/2389696; KARLSSON PS, 1986, CAN J BOT, V64, P2872, DOI 10.1139/b86-379; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; LEVIN D A, 1971, Taxon, V20, P91, DOI 10.2307/1218538; LEVIN DA, 1970, AM J BOT, V57, P1, DOI 10.2307/2440373; LOVELESS MD, 1984, ANNU REV ECOL SYST, V15, P65, DOI 10.1146/annurev.es.15.110184.000433; MOLAU U, 1992, J ECOL, V80, P149, DOI 10.2307/2261072; MOLAU U, 1991, AM J BOT, V78, P326, DOI 10.2307/2444955; MOLAU U, 1988, FLORA NEOTROPICA MON, V42, P1; MOLAU U, IN PRESS ARCT ALP RE; MOLAU U, 1991, OPERA BOT, V102, P1; MOORE D.M, 1982, FLORA EUROPAEA CHECK; Muller H, 1881, ALPENBLUMEN IHRE BEF; POPPIUS BR, 1903, ACTA SOC FAUNA FLORA, V25, P1; ROBERTSON C, 1895, AM NAT, V29, P97; SILEN F, 1906, MEDD SOC FAUNA FLORA, V30, P80; SOKAL R., 1981, BIOMETRY; Sorensen Thorvald, 1941, MEDDELSER OM GRONLAND, V125, P1; STACE CA, 1984, PLANT TAXONOMY BIOSY; WARMING E, 1886, BIH K SVENSKA VET AK, V12, P1; WASER NM, 1978, OECOLOGIA, V36, P223, DOI 10.1007/BF00349811; WHALEN MD, 1978, SYST BOT, V3, P77, DOI 10.2307/2418533; WIENS D, 1984, OECOLOGIA, V64, P47, DOI 10.1007/BF00377542; Willis JC, 1903, ANN BOT-LONDON, V17, P539, DOI 10.1093/oxfordjournals.aob.a088931 31 20 20 1 21 NORDIC JOURNAL OF BOTANY COPENHAGEN K THE SECRETARY BOTANICAL MUSEUM GOTHERSGADE 130, DK-1123 COPENHAGEN K, DENMARK 0107-055X NORD J BOT Nord. J. Bot. 1993 13 2 149 157 10.1111/j.1756-1051.1993.tb00025.x 9 Plant Sciences Plant Sciences LN400 WOS:A1993LN40000003 2019-02-26 J STAMOU, GP; ASIKIDIS, MD; ARGYROPOULOU, MD; SGARDELIS, SP STAMOU, GP; ASIKIDIS, MD; ARGYROPOULOU, MD; SGARDELIS, SP ECOLOGICAL TIME VERSUS STANDARD CLOCK TIME - THE ASYMMETRY OF PHENOLOGIES AND THE LIFE-HISTORY STRATEGIES OF SOME SOIL ARTHROPODS FROM MEDITERRANEAN ECOSYSTEMS OIKOS English Article ORIBATID MITES; PATTERNS; ACARI A model is formulated aiming to describe census data for populations changing non-symmetrically with time. The model is based on the concept of ecological time. conceived as an environmental gradient. A method of changing time scales, by using a periodic equation relating ecological to standard clock time unit, is presented. The model has been applied to simulate phenological curves of population abundance for oribatid mites and Collembola from a Mediterranean ecosystem. The concept of ''phase difference continuum'' is introduced and the life history strategies of oribatids and Collembola are discussed. Asymmetries as well as synchronizations in population development, annual periodicity and inter-annual stability, are common features for almost all populations studied, summer drought being the adverse period for the majority of them. Precocity, iteroparity and high rate of juvenile development into successive stages during the favourable period, hold for all phenological patterns. Adults' demographic parameters and the animals' ability for altering their physiological status are the characteristics discriminating between various strategies. Most Collembola display left-skewed phenology, while most oribatids display a right-skewed one. STAMOU, GP (reprint author), UNIV THESSALONIKI,SCH BIOL,DEPT ECOL,UPB 119,GR-54006 SALONIKA,GREECE. Asikidis M., 1989, THESIS U THESSALONIK; ASIKIDIS MD, 1991, PEDOBIOLOGIA, V35, P53; ASIKIDIS MD, 1992, IN PRESS PEDOBIOLOGI, V36; BLOCK W, 1966, J ANIM ECOL, V35, P487, DOI 10.2307/2487; Cancela da Fonseca J.P., 1983, B SOC ZOOL FRANCE, V108, P371; DAFONSECA JPC, 1958, BROTERIA CN, V27, P145; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; IATROU GD, 1989, THESIS U THESSALONIK; KANEKO N, 1988, ACAROLOGIA, V29, P215; LEBRUN P, 1971, ACAROLOGIA, V13, P179; LEBRUN P, 1971, I R SCI NAT BELGIQUE, V164, P203; LUXTON M, 1981, PEDOBIOLOGIA, V21, P312; LUXTON M, 1981, PEDOBIOLOGIA, V21, P387; MITCHELL MJ, 1977, PEDOBIOLOGIA, V17, P305; PANTIS JD, 1988, PEDOBIOLOGIA, V32, P81; POINSOTBALAGUER N, 1978, B SOC ECOPHYSIOL, V3, P56; Sgardelis S., 1983, P31; SGARDELIS SP, 1988, THESIS U THESSALONIK; STAMOU GP, 1986, REV ECOL BIOL SOL, V23, P453; STAMOU GP, 1989, ACAROLOGIA, V30, P171; STAMOU GP, 1989, J ANIM ECOL, V58, P893, DOI 10.2307/5131; STAMOU GP, 1992, IN PRESS PEDOBIOLOGI, V36; VANSTRAALEN NM, 1985, OIKOS, V45, P253, DOI 10.2307/3565712; WHITTAKER RH, 1956, ECOL MONOGR, V26, P1, DOI 10.2307/1943577; WOLDA H, 1988, ANNU REV ECOL SYST, V19, P1, DOI 10.1146/annurev.es.19.110188.000245 25 22 23 0 5 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos JAN 1993 66 1 27 35 10.2307/3545191 9 Ecology Environmental Sciences & Ecology KG564 WOS:A1993KG56400004 2019-02-26 J CONRAN, JG; DOWD, JM CONRAN, JG; DOWD, JM THE PHYLOGENETIC-RELATIONSHIPS OF BYBLIS AND RORIDULA (BYBLIDACEAE-RORIDULACEAE) INFERRED FROM PARTIAL 18S RIBOSOMAL-RNA SEQUENCES PLANT SYSTEMATICS AND EVOLUTION English Article ASTERIDAE, BYBLIS, BYBLIDACEAE, CORNALES, ERICALES, RORIDULA, RORIDULAEAE, ROSIDAE, SARRACENIACEAE; PHYLOGENY, 18S RIBOSOMAL-RNA SEQUENCES ANGIOSPERM PHYLOGENY; NUCLEOTIDE-SEQUENCE; GENE TREES; EVOLUTION; ROSIDAE; PLANTS The phylogenetic relationships of the angiosperm genera Byblis and Roridula have been the subject of ongoing taxonomic controversy. Twenty-eight taxa of varying degrees of alleged relationship, including 3 members of the Winteraceae (as an outgroup), were investigated using partial sequences of 18S rRNA (small subunit) and also compared against the morphological data set from HUFFORD'S (1992) cladistic treatment of 80 members of the Rosidae-Asteridae. The morphological analysis placed the two genera in a clade with the Sarraceniaceae in the Corniflorae-Asterid group as a sister taxon to an Ericales-Hydrangeales clade. The 18S rRNA analysis supports the recently published rbcL DNA analysis of ALBERT & al. (1992), with Roridula joined to taxa in the lower Rosidae, but Byblis joining instead to members of the Asteridae near the Solanaceae. Comparisons for congruence between the three analyses place Byblis in the higher Asterid group near the Solanaceae, and Roridula possibly nearer the Sarraceniaceae and Ericales. These results imply that the traditional morphological characters used to relate the two genera are possibly the result of convergence towards similar ecological and life-history strategies rather than synapomorphies. CONRAN, JG (reprint author), UNIV ADELAIDE,DEPT BOT,ADELAIDE,SA 5005,AUSTRALIA. ALBERT VA, 1992, SCIENCE, V257, P1491, DOI 10.1126/science.1523408; ANDERBERG AA, 1993, PLANT SYST EVOL, V184, P207, DOI 10.1007/BF00937436; BAUM BR, 1992, TAXON, V41, P3, DOI 10.2307/1222480; BAVERSTOCK P R, 1990, Australian Systematic Botany, V3, P101, DOI 10.1071/SB9900101; BENTHAM G, 1864, FLORA AUSTRALIENSIS, V2; Bentham G, 1865, GENERA PLANTARUM, V1; Bruce A. N., 1907, NOTES R BOT GARD EDI, V17, P83; CARLQUIST S, 1976, AM J BOT, V63, P1003, DOI 10.2307/2441759; CARLQUIST S, 1976, BOT GAZ, V137, P35, DOI 10.1086/336838; CHRTEK J, 1989, Preslia (Prague), V61, P107; CRONQUIST A, 1983, Nordic Journal of Botany, V3, P75, DOI 10.1111/j.1756-1051.1983.tb01446.x; CRONQUIST A, 1981, INTEGRATED SYSTEM CL; Cronquist A., 1988, EVOLUTION CLASSIFICA; DAHLGREN R, 1983, PROTEIN NUCLEIC ACID, P371; DAHLGREN RMT, 1988, MODERN SYSTEMATIC ST, P1; DIELS L, 1930, NATURLICHEN PFLANZ A, V13, P286; Diels L, 1930, NATURLICHEN PFLANZ A, V18a, P346; Diels L., 1906, PFLANZENREICH, P1; Domin K., 1922, ACTA BOT BOHEM, V1, P3; DONAGHUE MJ, 1992, MOL SYSTEMATICS PLAN, P340; DOYLE JJ, 1992, SYST BOT, V17, P144, DOI 10.2307/2419070; DUCKETT JG, 1988, BOT J LINN SOC, V98, P225, DOI 10.1111/j.1095-8339.1988.tb02426.x; ECKENRODE VK, 1985, J MOL EVOL, V21, P259, DOI 10.1007/BF02102358; ENDRESS PK, 1991, BOT J LINN SOC, V107, P217, DOI 10.1111/j.1095-8339.1991.tb00225a.x; Engler A., 1907, SYLLABUS PFLANZENFAM; Erdtman G, 1952, POLLEN MORPHOLOGY PL; FITCH WM, 1971, SYST ZOOL, V20, P406, DOI 10.2307/2412116; GRUND C, 1981, PLANT SYST EVOL, V137, P1, DOI 10.1007/BF00983200; Hallier H., 1912, ARCH NEERL SCI EX B3, V1, P146; HAMBY RK, 1992, MOL SYSTEMATICS PLAN, P50; HAMBY RK, 1988, PLANT MOL BIOL REP, V6, P179; HEDGES SB, 1992, MOL BIOL EVOL, V9, P366; HIDEUX MJ, 1976, LINNEAN SOC S SERIES, V1, P327; HILLIS DM, 1991, Q REV BIOL, V66, P411, DOI 10.1086/417338; HUFFORD L, 1992, ANN MO BOT GARD, V79, P218, DOI 10.2307/2399767; Hutchinson J., 1959, FAMILIES FLOWERING P, V2; JENSEN SR, 1975, BOT NOTISER, V128, P148; KISS T, 1989, NUCLEIC ACIDS RES, V17, P2127, DOI 10.1093/nar/17.5.2127; KONDO K, 1973, B TORREY BOT CLUB, V100, P367, DOI 10.2307/2484106; KRESS A, 1970, BER DEUT BOT GES, V83, P55; LANG FX, 2001, FLORA, V88, P149; LLOYD FE, 1942, CARNIVOROUS PLANTS; LLOYD FRANCIS E., 1934, CANADIAN JOUR RES, V10, P780; MADDISON WP, 1987, MACCLADE VERSION 2 1; Marloth R, 1903, ANN BOT-LONDON, V17, P151, DOI 10.1093/oxfordjournals.aob.a088908; Marloth R., 1925, FLORA S AFRICA 1, V2, P2630; MARTIN PG, 1991, ANN MO BOT GARD, V78, P296, DOI 10.2307/2399564; MARTIN PG, 1985, TAXON, V34, P393, DOI 10.2307/1221206; MARTIN PG, 1991, J MOL EVOL, V33, P274, DOI 10.1007/BF02100679; MARTIN PG, 1993, IN PRESS PHYTOCHEMIS, V32; NETOLITZKY F, 1926, HDB PFLANZENANTOMIE, V10; NICKRENT DL, 1990, J MOL EVOL, V31, P294, DOI 10.1007/BF02101124; PENNY D, 1990, Australian Systematic Botany, V3, P21, DOI 10.1071/SB9900021; PLANCHON JE, 1948, ANN SCI NAT, V9, P79; REZAIAN MA, 1987, J VIROL METHODS, V17, P277, DOI 10.1016/0166-0934(87)90137-6; SIMOVIC N, 1991, UNPUB; SWOFFORD DL, 1991, PAUP PHYLOGENETIC AN; TAKHTAJAN AL, 1980, BOT REV, V46, P225, DOI 10.1007/BF02861558; TAKHTAJAN AL, 1987, SYSTEMA MAGNOLIOFITO; Takhtajan AL, 1969, FLOWERING PLANTS ORI; TAKIAWA F, 1984, NUCLEIC ACIDS RES, V12, P5441; THORNE R F, 1983, Nordic Journal of Botany, V3, P85; TRIOTSKY AV, 1991, J MOL EVOL, V32, P253; Vani-Hardev A, 1972, BEITR BIOL PFLANZ, V48, P339; VONSTEENIS CGG, 1971, FLOR MALES B 1 S, V7, P135; WEST J G, 1990, Australian Systematic Botany, V3, P9, DOI 10.1071/SB9900009; ZENK MH, 1969, PHYTOCHEMISTRY, V8, P2199, DOI 10.1016/S0031-9422(00)88181-9; ZIMMER EA, 1989, HIERARCHY LIFE 68 11 11 0 4 SPRINGER-VERLAG WIEN VIENNA SACHSENPLATZ 4-6, PO BOX 89, A-1201 VIENNA, AUSTRIA 0378-2697 PLANT SYST EVOL Plant Syst. Evol. 1993 188 1-2 73 86 14 Plant Sciences; Evolutionary Biology Plant Sciences; Evolutionary Biology MJ561 WOS:A1993MJ56100006 2019-02-26 J NELSON, JA; MAGNUSON, JJ NELSON, JA; MAGNUSON, JJ METABOLIC STORES OF YELLOW PERCH (PERCA-FLAVESCENS) - COMPARISON OF POPULATIONS FROM AN ACIDIC, DYSTROPHIC LAKE AND CIRCUMNEUTRAL, MESOTROPHIC LAKES CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article SUNFISH ENNEACANTHUS-OBESUS; FISH ASSEMBLAGES; LOW PH; MUSCLE; BALANCE; WATER; RESPONSES; CAPACITY; TROUT Little is known about the animals that occupy naturally acidic habitats. To better understand the physiological state of animals from temperate, naturally acidic systems, we compared metabolite stores and meristics of two yellow perch (Perca flavescens) populations in northern Wisconsin. One population originated from a naturally acidic, dystrophic lake (Acid-Lake-Perch, ALP) and had previously been shown to have enhanced tolerance to low pH. The second population came from two nearby interconnected circumneutral, mesotrophic lakes (Neutral-Lake-Perch, NLP). Perch were collected throughout the year to account for seasonal effects and to discern whether patterns of metabolite utilization differed between populations. ALP had smaller livers containing less glycogen and greater muscle glycogen content than NLP. The ALP also had significantly greater liver and visceral lipid contents, and females from this population committed a greater fraction of their body mass to egg production. We interpret these results as indicative of physiological divergence at the population level in yellow perch. These results are discussed as possible products of H+-driven changes in metabolism and as possible products of different life history strategies between populations. Our results also show that perch living in acidic, dystrophic Wharton Lake are not acid stressed. UNIV WISCONSIN,CTR LIMNOL,MADISON,WI 53706; UNIV WISCONSIN,DEPT ZOOL,MADISON,WI 53706 [Anonymous], 1982, SAS USERS GUIDE STAT; BERGMEYER HU, 1984, METHODS ENZYMATIC AN, V3; BHASKAR M, 1985, AMBIO, V13, P349; BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3; BROWN HAROLD W., 1926, TRANS AMER MICROSC SOC, V45, P20, DOI 10.2307/3221861; CARROLL NV, 1956, J BIOL CHEM, V220, P583; CLYMO RS, 1984, PHIL T R SOC LOND B, V305, P229; DEDEREN LHT, 1986, J FISH BIOL, V28, P307, DOI 10.1111/j.1095-8649.1986.tb05168.x; DHEER JMS, 1987, J FISH BIOL, V30, P577, DOI 10.1111/j.1095-8649.1987.tb05785.x; DUNSON WA, 1977, J EXP ZOOL, V201, P157, DOI 10.1002/jez.1402010202; EASTERBY JS, 1982, METHOD ENZYMOL, V90, P11; Freund R. J, 1981, SAS LINEAR MODELS GU; GONZALEZ RJ, 1989, PHYSIOL ZOOL, V62, P977, DOI 10.1086/physzool.62.4.30157941; GONZALEZ RJ, 1987, J COMP PHYSIOL B, V157, P555, DOI 10.1007/BF00700975; Harvey H.H., 1982, P227; HELMREICH E, 1964, P NATL ACAD SCI USA, V51, P131, DOI 10.1073/pnas.51.1.131; HOCHACHKA PW, 1983, SCIENCE, V219, P1391, DOI 10.1126/science.6298937; Huey R.B., 1986, P82; JANSEN WA, 1990, B CAN SOC ZOOL, V21, P57; JOHNSTON IA, 1982, COMP BIOCHEM PHYS B, V73, P105, DOI 10.1016/0305-0491(82)90204-8; LEE RM, 1983, ENVIRON BIOL FISH, V8, P115, DOI 10.1007/BF00005178; Magnuson J. J., 1989, DOE S SERIES, V61, P487; MCWILLIAMS PG, 1982, COMP BIOCHEM PHYS A, V72, P515, DOI 10.1016/0300-9629(82)90116-5; MURTHY VK, 1981, CAN J ZOOL, V59, P400, DOI 10.1139/z81-058; NELSON JA, 1988, CAN J FISH AQUAT SCI, V45, P1699, DOI 10.1139/f88-201; NELSON JA, 1989, J EXP BIOL, V145, P239; NELSON JA, 1990, PHYSIOL ZOOL, V63, P886, DOI 10.1086/physzool.63.5.30152619; NELSON JA, 1987, FISH PHYSIOL BIOCHEM, V3, P7, DOI 10.1007/BF02183989; NELSON JA, 1992, PHYSL ZOOL, V65; PORTNER HO, 1987, J EXP BIOL, V131, P69; Radin N S, 1981, Methods Enzymol, V72, P5; RAHEL FJ, 1983, CAN J ZOOL, V61, P147, DOI 10.1139/z83-018; RAHEL FJ, 1984, ECOLOGY, V65, P1276, DOI 10.2307/1938333; RASK M, 1986, WATER AIR SOIL POLL, V30, P537, DOI 10.1007/BF00303316; RYAN PM, 1980, ENVIRON BIOL FISH, V5, P97, DOI 10.1007/BF02391617; TONN WM, 1990, AM NAT, V136, P345, DOI 10.1086/285102; VALTONEN T, 1988, ENVIRON BIOL FISH, V22, P147, DOI 10.1007/BF00001544; VINOGRADOV GA, 1985, VOPR IKHTIOL, V1, P137 38 6 6 0 6 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0706-652X CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. DEC 1992 49 12 2474 2482 10.1139/f92-273 9 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology KL532 WOS:A1992KL53200005 2019-02-26 J BARKER, DM BARKER, DM EVOLUTION OF SPERM SHORTAGE IN A SELFING HERMAPHORODITE EVOLUTION English Note CAENORHABDITIS-ELEGANS; HERMAPHRODITE; LIFE-HISTORY EVOLUTION; SELF-FERTILIZATION CAENORHABDITIS-ELEGANS; NEMATODE BARKER, DM (reprint author), UNIV TEXAS,DEPT ZOOL,AUSTIN,TX 78712, USA. B Wood William, 1988, NEMATODE CAENORHABDI; Charlesworth B., 1980, EVOLUTION AGE STRUCT; FRIEDMAN DB, 1988, GENETICS, V118, P75; HIRSH D, 1976, DEV BIOL, V49, P200, DOI 10.1016/0012-1606(76)90267-0; HODGKIN J, 1991, P ROY SOC B-BIOL SCI, V246, P19, DOI 10.1098/rspb.1991.0119; JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681; KIMBLE J, 1988, NEMATODE CAENORHABDI, P101; KIMBLE JE, 1981, DEV BIOL, V81, P208, DOI 10.1016/0012-1606(81)90284-0; MAUPAS E, 1900, ARCH ZOOL EXP GEN, V8, P463; Potts FA, 1910, Q J MICROSC SCI, V55, P433; Sudhaus W., 1976, Zoologica Stuttg, V43, P1; WARD S, 1979, DEV BIOL, V73, P304, DOI 10.1016/0012-1606(79)90069-1 12 22 22 1 4 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution DEC 1992 46 6 1951 1955 10.2307/2410043 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity KG897 WOS:A1992KG89700025 28567744 Bronze 2019-02-26 J OLIVE, PJW OLIVE, PJW THE ADAPTIVE SIGNIFICANCE OF SEASONAL REPRODUCTION IN MARINE-INVERTEBRATES - THE IMPORTANCE OF DISTINGUISHING BETWEEN MODELS INVERTEBRATE REPRODUCTION & DEVELOPMENT English Article; Proceedings Paper 6TH INTERNATIONAL CONGRESS ON INVERTEBRATE REPRODUCTION ( 6TH ICIR ) JUN 28-JUL 03, 1992 UNIV DUBLIN, TRINITY COLL, DUBLIN, IRELAND INT SOC INVERTEBRATE REPROD UNIV DUBLIN, TRINITY COLL SEASONAL REPRODUCTION; LIFE-HISTORY THEORY; SPAWNING; NATURAL SELECTION HARMOTHOE-IMBRICATA L; GREAT BARRIER-REEF; L POLYCHAETA; CYCLE; POPULATION; POLYNOIDAE; SEA Seasonal reproduction is a dominant characteristic of the reproduction of major groups of marine invertebrates. The seasonality may be extreme culminating in very synchronised mass spawning events. Hypotheses to explain strongly seasonal reproduction are appraised in relation to demographic theory of life history which supposes that a limited resource (e.g., energy) may be allocated to (a) maintenance and defense against the environment (respiration, excretion, ionic regulation, etc.); (b) growth; or (c) propagule production and present reproduction. Allocation to each contributes to fitness through demographic components that can be defined by the Euler-Lotka equation. Hypotheses to account for strongly seasonal reproduction must explain the mechanism that confers selective advantage to highly seasonal non-random deployment of limited resources to reproduction. The various hypotheses proposed can be classified as (I) non-functional and (II) functional. Functional hypotheses suppose that a selective advantage accrues as a consequence of energy storage prior to allocation to reproductive function. There are costs associated with this energy storage that must be compensated by the selective advantage accruing from delayed deployment of resources. A number of different functional hypotheses can be identified which may be allocated to two sets of related hypotheses: (A) Synchronisation maximises offspring survival - the optimum larval survival strategy; and (B) Synchronisation maximises fitness independently of offspring survival - the optimum fertilisation strategy. Several versions of each can be identified; their predictions are examined and discussed in relation to possible consequences of enhanced rates of environmental change (global warming). OLIVE, PJW (reprint author), UNIV NEWCASTLE UPON TYNE,DEPT MARINE SCI & COASTAL MANAGEMENT,NEWCASTLE TYNE NE1 7RU,TYNE & WEAR,ENGLAND. BABCOCK RC, 1986, MAR BIOL, V90, P379, DOI 10.1007/BF00428562; BABCOCK RC, 1993, INV REPROD DEV, V22, P213; BARNES H, 1975, PUBBL STA ZOOL NAP S, V1, P1; BELL G, 1982, MASTERPIECE NATURE; CALOW P, 1990, FUNCT ECOL, V4, P283, DOI 10.2307/2389587; CASPERS H, 1984, MAR BIOL, V79, P229, DOI 10.1007/BF00393254; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLARK RB, 1961, BIOL REV, V36, P199, DOI 10.1111/j.1469-185X.1961.tb01584.x; CLARK S, 1988, INT J INVER REP DEV, V14, P245, DOI 10.1080/01688170.1988.10510383; CLARKE A, 1993, INVERTEBR REPROD DEV, V22, P176; DALY J M, 1972, Marine Behaviour and Physiology, V1, P49; GARWOOD PR, 1982, INT J INVER REP DEV, V5, P161; GARWOOD PR, 1980, J EXP MAR BIOL ECOL, V47, P35, DOI 10.1016/0022-0981(80)90136-7; GIBBS PE, 1968, J MAR BIOL ASSOC UK, V48, P225, DOI 10.1017/S0025315400032550; HAMNER WM, 1988, B MAR SCI, V42, P459; HARRISON PL, 1984, SCIENCE, V223, P229; HOLLAND ND, 1975, BIOL BULL, V148, P219, DOI 10.2307/1540544; Kubota H., 1981, Developments in Endocrinology, V11, P69; LINDLEY JA, 1987, J MAR BIOL ASSOC UK, V67, P145, DOI 10.1017/S0025315400026424; LINDLEY JA, IN PRESS ANOMALOUS S; MINCHIN D, 1993, INV REPROD DEV, V22, P229; OLIVE PJW, 1970, MAR BIOL, V5, P259, DOI 10.1007/BF00346914; Olive PJW., 1985, ORIGINS RELATIONSHIP, P42; OLIVER MW, 1990, SYNAPSE, V5, P265, DOI 10.1002/syn.890050403; ORTON JH, 1920, J MAR BIOL ASSOC UK, V12, P339, DOI DOI 10.1017/S0025315400000102; Pearse J.S., 1990, Advances in Invertebrate Reproduction, V5, P311; PLATE S, IN PRESS B MUS NAT H; SACH G, 1975, MAR BIOL, V31, P157, DOI 10.1007/BF00391627; SIBLY RM, 1991, FUNCT ECOL, V5, P184, DOI 10.2307/2389256; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; STARR M, 1990, SCIENCE, V247, P1071, DOI 10.1126/science.247.4946.1071; THORSON G, 1947, MEDDR KOMMN DANM FIS, V4, P1; TYLER PA, 1982, NATURE, V300, P747, DOI 10.1038/300747a0; TYLER PA, 1993, INV REP DEV, V22, P185; TYLER PA, 1988, OC MAR BIOL ANN REV, V26, P125 35 44 44 0 13 INT SCIENCE SERVICES/BALABAN PUBLISHERS REHOVOT PO BOX 2039, REHOVOT, ISRAEL 0168-8170 INVERTEBR REPROD DEV Invertebr. Reprod. Dev. DEC 1992 22 1-3 165 174 10.1080/07924259.1992.9672269 10 Reproductive Biology; Zoology Reproductive Biology; Zoology LK668 WOS:A1992LK66800022 2019-02-26 J PARKER, GA PARKER, GA THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN FISH JOURNAL OF FISH BIOLOGY English Article; Proceedings Paper 25TH ANNIVERSARY SYMP OF THE FISHERIES SOC OF THE BRITISH ISLES : FISH LIFE HISTORY STRATEGIES JUL 13-17, 1992 UNIV LIVERPOOL, LIVERPOOL, ENGLAND FISHERIES SOC BRIT ISLES UNIV LIVERPOOL SEXUAL SIZE DIMORPHISM; LIFE HISTORY STRATEGIES; SPERM COMPETITION SPERM COMPETITION GAMES; BODY SIZE; STRATEGIES; SELECTION PARKER, GA (reprint author), UNIV LIVERPOOL,DEPT ENVIRONM & EVOLUT BIOL,POPULAT BIOL RES GRP,LIVERPOOL L69 3BX,ENGLAND. Parker, Geoff/C-4337-2008 Parker, Geoff/0000-0003-4795-6352 BALON EK, 1975, J FISH RES BOARD CAN, V32, P822; Beverton R. J. H., 1963, Rapport Conseil Exploration Mer, V154, P44; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; BEVERTON RJH, 1987, EVOLUTION LONGEVITY, P161; BREDER CM, 1966, MODES REPRODUCTION F; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; CHARNOV EL, 1991, EVOLUTIONARY ECOLOGY, V4, P273; CLUTTONBROCK TH, 1992, IN PRESS Q REV BIOL; Constantz G.D., 1984, P465; CUSHING DH, 1968, FISHERIES BIOL; DARWIN CR, 1971, DESCENT MAN SELECTIO; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Fisher R.A., 1930, GENETICAL THEORY NAT; Fryer G, 1972, CICHLID FISHES GREAT; Ghiselin MT, 1974, EC NATURE EVOLUTION; Greenwood P.J., 1985, P287; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; Harvey P.H., 1985, P155; Harvey P.H., 1991, COMP METHOD EVOLUTIO; JONES JW, 1959, SALMON; NIKOLSKY GB, 1961, SPECIAL ICHTHYOLOGY; Parker G.A., 1985, P33; PARKER GA, 1982, J THEOR BIOL, V96, P281, DOI 10.1016/0022-5193(82)90225-9; PARKER GA, 1990, P ROY SOC B-BIOL SCI, V242, P120, DOI 10.1098/rspb.1990.0114; PARKER GA, 1990, P ROY SOC B-BIOL SCI, V242, P127, DOI 10.1098/rspb.1990.0115; PARKER GA, 1976, AM NAT, V110, P1055, DOI 10.1086/283126; PAULY D, 1980, J CONSEIL, V39, P175; POTTS GW, 1984, FISH REPRODUCTION ST; Raat AJP, 1988, FAO FISHERIES SYNOPS, V30, P1; Reiss M. J, 1989, ALLOMETRY GROWTH REP; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Sargent R.C., 1986, P275; SHINE R, 1978, OECOLOGIA, V33, P269, DOI 10.1007/BF00348113; SHINE R, 1990, AM NAT, V135, P278, DOI 10.1086/285043; SHINE R, 1989, Q REV BIOL, V64, P419, DOI 10.1086/416458; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; SIGURJONSDOTTIR H, 1980, THESIS U LIVERPOOL; Smith J.M., 1982, EVOLUTION THEORY GAM; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; SMITH JM, 1986, THEOR POPUL BIOL, V30, P166, DOI 10.1016/0040-5809(86)90031-6; Stearns S.C., 1984, P13; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Turner G., 1986, P253; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; WALKER EP, 1964, MAMMALS WORLD; Wootton R. J., 1990, ECOLOGY TELEOST FISH 47 119 142 7 48 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-1112 J FISH BIOL J. Fish Biol. DEC 1992 41 B 1 20 10.1111/j.1095-8649.1992.tb03864.x 20 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology KF205 WOS:A1992KF20500002 2019-02-26 J DARWALL, WRT; COSTELLO, MJ; DONNELLY, R; LYSAGHT, S DARWALL, WRT; COSTELLO, MJ; DONNELLY, R; LYSAGHT, S IMPLICATIONS OF LIFE-HISTORY STRATEGIES FOR A NEW WRASSE FISHERY JOURNAL OF FISH BIOLOGY English Article; Proceedings Paper 25TH ANNIVERSARY SYMP OF THE FISHERIES SOC OF THE BRITISH ISLES : FISH LIFE HISTORY STRATEGIES JUL 13-17, 1992 UNIV LIVERPOOL, LIVERPOOL, ENGLAND FISHERIES SOC BRIT ISLES UNIV LIVERPOOL WRASSE; NORTHERN EUROPE; FISHING IMPACT; LIFE-HISTORY STRATEGIES LABRIDAE UNIV DUBLIN TRINITY COLL,ENVIRONM SCI UNIT,DUBLIN 2,IRELAND Costello, Mark/C-9267-2013 Costello, Mark/0000-0003-2362-0328 ADAMS PB, 1980, FISH B-NOAA, V78, P1; BRANDER K, 1981, NATURE, V290, P48, DOI 10.1038/290048a0; CHAPMAN PW, 1978, METHODS ASSESSMENT F; Costello M., 1990, FISH FARMER, V13, P44; Couch J., 1868, HIST FISHES BRIT ISL, V3; Darwall W., 1992, AQUACULT IRELAND, V50, P26; DEMIR M, 1965, FAO FISHERIES SYNOPS, V26; DIPPER FA, 1979, J ZOOL, V187, P97; DIPPER FA, 1977, J FISH BIOL, V11, P105, DOI 10.1111/j.1095-8649.1977.tb04103.x; DIPPER FA, 1976, THESIS U LIVERPOOL; FIVES JM, 1970, P ROY IRISH ACAD B, V70, P15; Ford E., 1922, Journal of the Marine Biological Association Plymouth, V12, P693; Garrod D.J., 1984, P367; Hagstrom B. E., 1964, Sarsia, VNo. 17, P47; HEINCKE F, 1900, WISSENSCHAFTLIDE MEE, V3, P127; HILLDEN N, 1981, Memoranda Societatis pro Fauna et Flora Fennica, V57, P7; HILLDEN NO, 1978, OPHELIA, V17, P195, DOI 10.1080/00785326.1978.10425482; HILLDEN NO, 1981, BEHAVIOURAL PROCESSE, V8, P87; HILLDEN NO, 1987, J CONSEIL INT EXPLOR, V38, P270; HOLT EWL, 1893, SCI T ROYAL DUBLIN S, V5, P5; HOLT EWL, 1892, SCI P ROYAL DUBLIN S, V7, P395; HOLT EWL, 1898, J MAR BIOL ASSOC UK, V5, P107; HOLT EWL, 1891, SCI T ROYAL DUBLIN S, V4, P435; KENNEDY M, 1973, IRISH FISHERIES IN B, V8, P1; KENNEDY M, 1969, IRISH FISHERIES IN B, V5, P5; Le Danois E., 1913, ANN I OCEANOGR MONAC, V5, P1; LEDANOIS E, 1949, VIE MOEURS POISSONS; LIE U, 1978, SARSIA, V63, P163; LOPED P D C, 1979, Sarsia, V64, P199; LYTHGOE J, 1971, FISHES SEA; Moss B., 1988, ECOLOGY FRESHWATERS; Pianka ER, 1974, EVOLUTIONARY ECOLOGY; POTTS GW, 1985, J MAR BIOL ASSOC UK, V65, P531, DOI 10.1017/S002531540005058X; POTTS GW, 1984, FISH REPRODUCTION ST, P54; Quignard J. P., 1967, Revue Trav Inst Pech marit, V31, P355; Quignard J.-P., 1986, FISHES NE ATLANTIC M, V2, P919; Quignard JP, 1966, NAT MONSPEL, V5, P1; ROSS RM, 1983, SCIENCE, V221, P574, DOI 10.1126/science.221.4610.574; Russell F. S, 1976, EGGS PLANKTONIC STAG; Sjolander S., 1972, Revue Comport Anim, V6, P43; VILLEGAS ML, 1986, REV BIOL U OVIEDO, V4, P124; VONFIEDLER K, 1964, Z TIERPSYCHOL, V21, P521; WHEELER A, 1969, FISHES BRIT ISLES NW; WILSON DP, 1958, J MAR BIOL ASSOC UK, V37, P299, DOI 10.1017/S0025315400023699 44 49 49 2 13 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-1112 J FISH BIOL J. Fish Biol. DEC 1992 41 B 111 123 10.1111/j.1095-8649.1992.tb03873.x 13 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology KF205 WOS:A1992KF20500011 2019-02-26 J CONOVER, DO CONOVER, DO SEASONALITY AND THE SCHEDULING OF LIFE-HISTORY AT DIFFERENT LATITUDES JOURNAL OF FISH BIOLOGY English Article LIFE-HISTORY EVOLUTION; REPRODUCTIVE STRATEGIES; GROWTH RATE; COUNTERGRADIENT VARIATION; SEX DETERMINATION; SIZE-DEPENDENT WINTER SURVIVAL; RECRUITMENT MENIDIA-MENIDIA PISCES; ENVIRONMENTAL SEX DETERMINATION; PERCH PERCA-FLAVESCENS; ATHERINA-BOYERI RISSO; ATLANTIC SILVERSIDE; LARGEMOUTH BASS; COUNTERGRADIENT VARIATION; SPAWNING PERIODICITY; OVERWINTER MORTALITY; CYNOSCION-REGALIS CONOVER, DO (reprint author), SUNY STONY BROOK, MARINE SCI RES CTR, STONY BROOK, NY 11794 USA. ADAMS J, 1987, INT J INVER REP DEV, V11, P123, DOI 10.1080/01688170.1987.10510273; ADAMS SM, 1982, CAN J FISH AQUAT SCI, V39, P1175, DOI 10.1139/f82-155; AMENT AS, 1979, REPRODUCTIVE ECOLOGY, P61; BARKMAN R C, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P324; BENGTSON DA, 1987, J FISH BIOL, V31, P697, DOI 10.1111/j.1095-8649.1987.tb05272.x; BOEHLERT GW, 1980, MAR ECOL PROG SER, V3, P1, DOI 10.3354/meps003001; BOYCE MS, 1979, AM NAT, V114, P569, DOI 10.1086/283503; Bull J. J., 1983, EVOLUTION SEX DETERM; Calder W. A, 1984, SIZE FUNCTION LIFE H; Calow P., 1981, P220; CALOW P, 1982, AM NAT, V120, P416, DOI 10.1086/284001; CASTRO LR, 1991, MAR ECOL PROG SER, V76, P235, DOI 10.3354/meps076235; CHARNOV EL, 1977, NATURE, V266, P828, DOI 10.1038/266828a0; CONOVER DO, 1987, COPEIA, P732, DOI 10.2307/1445667; CONOVER DO, 1985, FISH B-NOAA, V83, P331; CONOVER DO, 1984, AM NAT, V123, P297, DOI 10.1086/284205; CONOVER DO, 1981, SCIENCE, V213, P577, DOI 10.1126/science.213.4507.577; CONOVER DO, 1982, ESTUARIES, V5, P275, DOI 10.2307/1351750; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONOVER DO, 1990, T AM FISH SOC, V119, P416, DOI 10.1577/1548-8659(1990)119<0416:TRBCFG>2.3.CO;2; CONOVER DO, 1984, ENVIRON BIOL FISH, V11, P161, DOI 10.1007/BF00000462; Cossins A. R., 1987, TEMPERATURE BIOL ANI; COWELL B C, 1975, Florida Scientist, V38, P113; CUNJAK RA, 1988, CAN J FISH AQUAT SCI, V45, P443, DOI 10.1139/f88-053; Cushing D. H., 1975, MARINE ECOLOGY FISHE; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; DAHLBERG MD, 1973, FISH B-NOAA, V71, P279; DAMOURS D, 1990, CAN J FISH AQUAT SCI, V47, P2212, DOI 10.1139/f90-245; DEANGELIS DL, 1982, T AM FISH SOC, V111, P384, DOI 10.1577/1548-8659(1982)111<384:GOBSDI>2.0.CO;2; DEHNEL PAUL A., 1955, PHYSIOL ZOOL, V28, P115; DOWNHOWER JF, 1976, NATURE, V263, P558, DOI 10.1038/263558a0; GETTER CD, 1981, THESIS U MIAMI FLORI; GRAHAM JJ, 1990, T AM FISH SOC, V119, P730, DOI 10.1577/1548-8659(1990)119<0730:RBWTAS>2.3.CO;2; HENDERSON PA, 1987, BIOL J LINN SOC, V32, P395, DOI 10.1111/j.1095-8312.1987.tb00440.x; HENDERSON PA, 1988, J FISH BIOL, V33, P221, DOI 10.1111/j.1095-8649.1988.tb05465.x; Hontela A., 1990, P53; HOUDE ED, 1989, FISH B-NOAA, V87, P471; HOUDE ED, 1987, AM FISH SOC S, V2, P17; HUBBS C, 1985, COPEIA, P56, DOI 10.2307/1444790; HUNT RL, 1969, J FISH RES BOARD CAN, V26, P1473, DOI 10.1139/f69-138; JENSEN AJ, 1990, J ANIM ECOL, V59, P603, DOI 10.2307/4883; JESSOP BM, 1983, 1639 FISH AQ SCI CAN; JOHANNES R E, 1978, Environmental Biology of Fishes, V3, P65, DOI 10.1007/BF00006309; JOHNSON TB, 1990, T AM FISH SOC, V119, P301, DOI 10.1577/1548-8659(1990)119<0301:SWMOYW>2.3.CO;2; JOHNSON TB, 1991, CAN J FISH AQUAT SCI, V48, P672, DOI 10.1139/f91-084; KEAST A, 1984, CAN J ZOOL, V62, P1242, DOI 10.1139/z84-180; KEAST A, 1985, T AM FISH SOC, V114, P204, DOI 10.1577/1548-8659(1985)114<204:GDIYLB>2.0.CO;2; KNEIB RT, 1986, COPEIA, P342; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; Lasker R., 1981, MARINE FISH LARVAE M; LEVINS R, 1969, AM NAT, V103, P483, DOI 10.1086/282616; LEVINTON JS, 1983, BIOL BULL, V165, P686, DOI 10.2307/1541471; LONSDALE DJ, 1985, ECOLOGY, V66, P1397, DOI 10.2307/1938002; Lowe-McConnell R.H., 1979, S ZOOL SOC LOND, V44, P219; May R. C, 1974, EARLY LIFE HIST FISH, P3, DOI DOI 10.1007/978-3-642-65852-5_1; MIDDAUGH DP, 1992, COPEIA, P53; MIDDAUGH DP, 1981, COPEIA, P766, DOI 10.2307/1444176; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; MUNRO AD, 1990, REPRODUCTIVE SEASONA; NAYLOR C, 1988, J EVOLUTION BIOL, V1, P355, DOI 10.1046/j.1420-9101.1988.1040355.x; OLIVER JD, 1979, T AM FISH SOC, V108, P130, DOI 10.1577/1548-8659(1979)108<130:OMOFSB>2.0.CO;2; PARR A. E., 1933, BULL BINGLIAM OCEANOGR COLL, V4, P1; PARRISH RH, 1985, FISH B-NOAA, V83, P483; PHILIPP DP, 1991, T AM FISH SOC, V120, P58, DOI 10.1577/1548-8659(1991)120<0058:SAGONF>2.3.CO;2; POST JR, 1989, CAN J FISH AQUAT SCI, V46, P1958, DOI 10.1139/f89-246; Powers D.A., 1987, P102; PRESENT TMC, 1992, FUNCT ECOL, V6, P23, DOI 10.2307/2389767; REZNICK DN, 1987, OECOLOGIA, V73, P401, DOI 10.1007/BF00385257; SCHROEDER EH, 1966, B MAR SCI, V16, P302; SCHULTZ ET, 1991, AM NAT, V138, P1408, DOI 10.1086/285294; SHEPHERD G, 1983, FISH B-NOAA, V81, P803; SHEPHERD GR, 1984, FISH B-NOAA, V82, P501; SHULMAN GE, 1974, LIFE CYCLES FISHES; SHUTER BJ, 1990, T AM FISH SOC, V119, P314, DOI 10.1577/1548-8659(1990)119<0314:CPVATZ>2.3.CO;2; SHUTER BJ, 1980, T AM FISH SOC, V109, P1, DOI 10.1577/1548-8659(1980)109<1:SSOTEO>2.0.CO;2; SINCLAIR M, 1984, CANADIAN J FISHERIES, V41, P1054; SOSEBEE KA, 1991, THESIS STATE U NEW Y; SULLIVAN JA, 1986, EVOLUTION, V40, P152, DOI 10.1111/j.1558-5646.1986.tb05726.x; SULLIVAN KM, 1986, CONT STUDIES FISH FE, P259; Sumpter J.P., 1990, P13; SZEDLMAYER ST, 1992, COPEIA, P120, DOI 10.2307/1446543; THOMPSON JM, 1991, T AM FISH SOC, V120, P346, DOI 10.1577/1548-8659(1991)120<0346:ROSCAL>2.3.CO;2; TONEYS ML, 1979, T AM FISH SOC, V108, P415, DOI 10.1577/1548-8659(1979)108<415:SFWMOF>2.0.CO;2; Trewartha G. T., 1968, INTRO CLIMATE; VOUGLITOIS JJ, 1987, T AM FISH SOC, V116, P141, DOI 10.1577/1548-8659(1987)116<141:LHAPDO>2.0.CO;2; WILLIAMSON JH, 1990, AQUACULTURE, V85, P247, DOI 10.1016/0044-8486(90)90024-H; Wootton R. J., 1990, ECOLOGY TELEOST FISH 87 219 221 3 51 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 1095-8649 J FISH BIOL J. Fish Biol. DEC 1992 41 B 161 178 10.1111/j.1095-8649.1992.tb03876.x 18 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology KF205 WOS:A1992KF20500014 2019-02-26 J LUNING, J LUNING, J PHENOTYPIC PLASTICITY OF DAPHNIA-PULEX IN THE PRESENCE OF INVERTEBRATE PREDATORS - MORPHOLOGICAL AND LIFE-HISTORY RESPONSES OECOLOGIA English Article DAPHNIA-PULEX; CHAOBORUS; NOTONECTA; PHENOTYPIC PLASTICITY; INDUCIBLE DEFENSE DEMOGRAPHIC COSTS; SELECTIVE PREDATION; INDUCIBLE DEFENSES; SPINED MORPHS; ZOOPLANKTON; CYCLOMORPHOSIS; NOTONECTA; INDUCTION; EVOLUTION; ECOLOGY Morphological and life history traits of two clones of the cladoceran Daphnia pulex were measured in the presence and absence,of size-selective insect predators, the midge larva Chaoborus flavicans, which preys on small Daphnia, and the water bug Notonecta glauca, which preys on large Daphnia. The aim was to detect predator-induced phenotypic changes, particularly the effect of simultaneous exposure to both types of predators. Other work has shown that in the presence of Chaoborus americanus, Daphnia pulex produce a so-called neck spine which may carry several teeth. The morphological modifications are supposed to serve as an anti-predator device. Furthermore, females exposed to Chaoborus often delay their maturation; this has been interpreted as a cost that balances the benefits of the neck teeth. In this investigation, females of both clones produced fewer but larger offspring than control animals when reared in the presence of Chaoborus flavicans. The offspring showed the typical neck spine and delayed first reproduction. In the presence of Notonecta glauca, one of the clones produced more and smaller offspring, and maturation occurred at earlier instars. The other clone also produced more offspring than the control but there was no size difference. When both predators were present, in most cases the reactions of the daphnids were similar to those in the Notonecta experiment. The response to Chaoborus appeared to be suppressed. The observed modifications are interpreted as evolved strategies that reduce the impact of size-selective predation. They are consistent with predictions of life-history theory. LUNING, J (reprint author), UNIV MUNICH,INST ZOOL,SEIDLSTR 25,W-8000 MUNICH 2,GERMANY. ADLER FR, 1990, TRENDS ECOL EVOL, V5, P407, DOI 10.1016/0169-5347(90)90025-9; BLACK AR, 1990, OECOLOGIA, V83, P117, DOI 10.1007/BF00324642; DODSON S, 1989, BIOSCIENCE, V39, P447, DOI 10.2307/1311136; DODSON SI, 1974, LIMNOL OCEANOGR, V19, P721, DOI 10.4319/lo.1974.19.5.0721; DODSON SI, 1989, OECOLOGIA, V78, P361, DOI 10.1007/BF00379110; DODSON SI, 1988, LIMNOL OCEANOGR, V33, P1274, DOI 10.4319/lo.1988.33.6.1274; ELSER MM, 1987, CAN J ZOOL, V65, P2846, DOI 10.1139/z87-433; GIESSLER S, 1982, THESIS LMU MUNCHEN; GRANT JWG, 1981, LIMNOL OCEANOGR, V26, P201, DOI 10.4319/lo.1981.26.2.0201; HANAZATO T, 1989, OECOLOGIA, V81, P450, DOI 10.1007/BF00378951; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; HAVEL JE, 1984, LIMNOL OCEANOGR, V29, P487, DOI 10.4319/lo.1984.29.3.0487; HAVEL JE, 1985, LIMNOL OCEANOGR, V30, P853, DOI 10.4319/lo.1985.30.4.0853; JACOBS J, 1967, ARCH HYDROBIOL, V62, P467; KRUEGER DA, 1981, LIMNOL OCEANOGR, V26, P219, DOI 10.4319/lo.1981.26.2.0219; LYNCH M, 1979, LIMNOL OCEANOGR, V24, P353; Lynch M., 1980, EVOLUTION ECOLOGY ZO, P367; MCARDLE BH, 1979, ECOL ENTOMOL, V4, P267, DOI 10.1111/j.1365-2311.1979.tb00584.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RIESSEN HP, 1990, ECOLOGY, V71, P1536, DOI 10.2307/1938290; SCOTT MA, 1983, LIMNOL OCEANOGR, V28, P352, DOI 10.4319/lo.1983.28.2.0352; SWIFT MC, 1975, LIMNOL OCEANOGR, V20, P418, DOI 10.4319/lo.1975.20.3.0418; SWIFT MC, 1981, LIMNOL OCEANOGR, V26, P461, DOI 10.4319/lo.1981.26.3.0461; Threlkeld S.T., 1987, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V45, P353; VUORINEN I, 1989, LIMNOL OCEANOGR, V34, P243; WALLS M, 1989, LIMNOL OCEANOGR, V34, P390, DOI 10.4319/lo.1989.34.2.0390; WALLS M, 1991, OECOLOGIA, V87, P43, DOI 10.1007/BF00323778 28 90 90 1 37 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia DEC 1992 92 3 383 390 10.1007/BF00317464 8 Ecology Environmental Sciences & Ecology KC357 WOS:A1992KC35700010 28312604 2019-02-26 J MEERTS, P MEERTS, P AN EXPERIMENTAL INVESTIGATION OF LIFE-HISTORY AND PLASTICITY IN 2 CYTOTYPES OF POLYGONUM-AVICULARE L SUBSP AVICULARE THAT COEXIST IN AN ABANDONED ARABLE FIELD OECOLOGIA English Article ANNUAL WEEDS; POLYPLOIDY; REACTION NORMS; GENETIC DIFFERENTIATION; POLYGONUM-AVICULARE PHENOTYPIC PLASTICITY; HABITAT DIFFERENTIATION; POPULATION; POLYPLOIDY; COMPLEX; PLANTS; COST Polygonum aviculare subsp. aviculare is an annual selfing weed common in abandoned arable fields where it occurs as a widespread hexaploid cytotype (6x = 60) and a rarer tetraploid cytotype (4x = 40). The basis of phenological differentiation between the two cytotypes observed in a natural population where they coexist was examined in a greenhouse experiment comprising six soil conditions consisting of factorial combinations of two levels of fertility and three pot sizes. The environmental and genetic component of variation in 11 life history and morphological traits was quantified. Even though all traits except life span were plastic the two cytotypes appear to have evolved contrasting life history strategies and it is inferred that this can account for the temporal niche differentiation observed in the abandoned field during the first year of dereliction. Tetraploids are short-lived plants allocating a high proportion of their biomass to reproduction and completing their life cycle before July when the plant cover is sparse. Hexaploids are larger, later flowering, longer lived, plants with a lower reproductive effort and a higher final seed yield; it is inferred that these traits enable the hexaploids to compete successfully with the dense herbaceous layer of summer annuals that develops in the course of the first year of secondary succession. Differentiation in phenotypic plasticity between the two cytotypes was interpreted as indicative of higher opportunism and lower tolerance of poor soils and restricted rooting space in the hexaploid compared to the tetraploid cytotype. MEERTS, P (reprint author), UNIV LIBRE BRUXELLES,GENET & ECOL VEGETALES LAB,CHAUSSEE WAVRE 1850,B-1160 BRUSSELS,BELGIUM. BAKER H. G., 1965, The genetics of colonizing species: Proc. 1st Internat, Union biol Sci., Asilomar, California., P147; Baker H. G., 1974, ANNU REV ECOL SYST, V5, P1, DOI DOI 10.1146/ANNUREV.ES.05.110174.000245; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; COQUILLAT M., 1951, BULL MENS SOC LINN LYON, V20, P165; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; GASQUEZ J, 1978, ANN AMELIOR PLANT, V28, P567; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; GRANT WILLIAM F., 1967, TAXON, V16, P283, DOI 10.2307/1216376; Grime J. P, 1979, PLANT STRATEGIES VEG; GRIME JP, 1981, J ECOL, V69, P1017, DOI 10.2307/2259651; GROGER T, 1988, FLORA, V181, P71; HICKMAN JC, 1975, J ECOL, V63, P689, DOI 10.2307/2258745; JONES ME, 1971, HEREDITY, V27, P51, DOI 10.1038/hdy.1971.70; KADEREIT JW, 1985, NEW PHYTOL, V99, P155, DOI 10.1111/j.1469-8137.1985.tb03645.x; KRZAK J, 1982, ACTA BIOL CRACOV BOT, V24, P1; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; Lewis W. H., 1980, Polyploidy. Biological relevance. Part I. Polyploidy and plant evolution., P103; LEWIS W H, 1976, Systematic Botany, V1, P340, DOI 10.2307/2418701; LEWIS WH, 1976, J HERED, V67, P391, DOI 10.1093/oxfordjournals.jhered.a108760; LOVE AKSELL, 1956, CANADIAN JOUR BOT, V34, P501; LUMARET R, 1987, OECOLOGIA, V73, P436, DOI 10.1007/BF00385262; LUMARET R, 1988, OECOLOG PLANTAR, V9, P83; MACDONALD SE, 1988, EVOLUTION, V42, P1036, DOI 10.1111/j.1558-5646.1988.tb02522.x; MEERTS P, 1990, PLANT SYST EVOL, V173, P71, DOI 10.1007/BF00937764; MEERTS P, 1991, ACTA OECOL, V12, P203; MEERTS P, 1990, THESIS U LIBRE BRUSS; MEERTS P, 1988, OECOLOG PLANTAR, V9, P105; OKA HI, 1983, AM ZOOL, V23, P99; PAUWELS LUC, 1959, BULL SOC ROY BOT BELGIQUE, V91, P291; Quinn JA, 1987, DIFFERENTIATION PATT, P95; ROTHERA SL, 1986, NEW PHYTOL, V102, P449, DOI 10.1111/j.1469-8137.1986.tb00822.x; SCHLICHTING CD, 1986, THEOR APPL GENET, V72, P114, DOI 10.1007/BF00261465; SEMPLE JC, 1978, CAN J BOT, V56, P1274, DOI 10.1139/b78-142; Sorensen T., 1954, BOT TIDSSKR, V51, P339; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STYLES B. T., 1962, WATSONIA, V5, P177; THOMPSON JD, 1991, TRENDS ECOL EVOL, V6, P246, DOI 10.1016/0169-5347(91)90070-E; WOLF SJ, 1987, CAN J BOT, V65, P647, DOI 10.1139/b87-085; ZANGERL AR, 1983, OECOLOGIA, V56, P397, DOI 10.1007/BF00379719 40 14 14 0 7 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia DEC 1992 92 3 442 449 10.1007/BF00317471 8 Ecology Environmental Sciences & Ecology KC357 WOS:A1992KC35700017 28312611 2019-02-26 J LADLE, M; LADLE, RJ LADLE, M; LADLE, RJ LIFE-HISTORY PATTERNS OF RIVER INVERTEBRATES HYDROBIOLOGIA English Article LIFE HISTORY; DISTRIBUTION; NATURAL SELECTION; SEASONAL CHANGE EXPERIMENTAL RECIRCULATING STREAM; GAMMARUS-PULEX; DORSET; GROWTH; CHIRONOMIDAE; REPRODUCTION; SIMULIIDAE; SELECTION; EVOLUTION; AMPHIPOD The initiation of invertebrate distribution patterns in rivers occurs by choice of oviposition sites and is influenced by the evolved reproductive strategies of the individual species. Subsequent redistribution by migration or drifting establishes patterns which are then modified by environmental influences on growth and mortality. Continuity of life cycles is sustained by variations on a number of defined life history strategies combined with evolved behavioural responses. UNIV OXFORD,DEPT ZOOL,OXFORD,ENGLAND LADLE, M (reprint author), INST FRESHWATER ECOL,RIVER LAB,WAREHAM,DORSET,ENGLAND. Ladle, Richard/E-4228-2014 Ladle, Richard/0000-0003-3200-3946 ADAMS J, 1987, FRESHWATER BIOL, V17, P307, DOI 10.1111/j.1365-2427.1987.tb01050.x; CUMMINS KW, 1981, VERH INT VEREIN LIMN, V21, P841; FRID CLJ, 1989, OIKOS, V56, P1; GUNN RJM, 1985, HYDROBIOLOGIA, V120, P133, DOI 10.1007/BF00032134; HAM SF, 1982, J CONCHOL, V31, P45; HANSFORD RG, 1979, B ENTOMOL RES, V69, P33, DOI 10.1017/S0007485300017867; JOHNSON P, 1989, Annales de Limnologie, V25, P121; LADLE M, 1969, J ANIM ECOL, V38, P407, DOI 10.2307/2780; Ladle M., 1985, Entomologist's Gazette, V36, P147; LADLE M, 1984, ARCH HYDROBIOL, V102, P201; LADLE M, 1977, ECOL ENTOMOL, V2, P197, DOI 10.1111/j.1365-2311.1977.tb00882.x; LADLE M, 1985, FRESHWATER BIOL, V15, P243, DOI 10.1111/j.1365-2427.1985.tb00197.x; Ladle M., 1971, Freshwat Freshwat Biol, V1, P83, DOI 10.1111/j.1365-2427.1971.tb01547.x; LADLE M, 1975, HYDROBIOLOGIA, V47, P193; LADLE M, 1984, ANN REP FRESHWAT BIO, V52, P63; Ladle M., 1980, AQUATIC OLIGOCHAETE, P165; LITTERICK MR, 1973, THESIS U HULL; MACARTHUR RH, 1987, THEORY ISLAND BIOGEO; MACLACHLAN AJ, 1989, FUNCT ECOL, V3, P633; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; ROSILLON D, 1988, CAN J ZOOL, V66, P1474, DOI 10.1139/z88-214; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STOREY AW, 1986, THESIS U READING; TUOMI J, 1983, AM ZOOL, V23, P25; WELTON JS, 1980, ECOL ENTOMOL, V5, P87, DOI 10.1111/j.1365-2311.1980.tb01126.x; WELTON JS, 1980, J ANIM ECOL, V49, P581, DOI 10.2307/4265; WELTON JS, 1987, J APPL ECOL, V24, P865, DOI 10.2307/2403986; WELTON JS, 1979, FRESHWATER BIOL, V9, P263, DOI 10.1111/j.1365-2427.1979.tb01508.x 28 6 7 0 7 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia NOV 27 1992 248 1 31 37 10.1007/BF00008883 7 Marine & Freshwater Biology Marine & Freshwater Biology KJ419 WOS:A1992KJ41900004 2019-02-26 J VOLLRATH, F; PARKER, GA VOLLRATH, F; PARKER, GA SEXUAL DIMORPHISM AND DISTORTED SEX-RATIOS IN SPIDERS NATURE English Article SEXUAL dimorphism in body size is widespread in the animal kingdom. Whereas male giantism has been studied and explained extensively1,2, male dwarfism has not. Yet it is neither rare3-7 nor without theoretical interest8,9. Here we provide experimental and comparative data on spiders to support the theory that dwarf males are associated with high differential adult mortality, with males at much greater risk. Species with sedentary (low-risk) females have dwarf, roving (high-risk) males. Life-history theory could readily explain dwarfing if juvenile, but not adult, male mortality were large. We present a new model in which high mortality of searching mature males reduces the adult sex ratio (males: females), relaxing male-male competition and reducing the importance of male body size to favour dwarfing by early maturation. Early maturity also reduces male juvenile mortality and thus opposes adult mortality. This provides a mechanism that buffers skews in adult sex ratio and which is quite distinct from Fisher's principle10 and allied mechanisms9,11 for the primary sex ratio. ZOOL INST,CH-4051 BASEL,SWITZERLAND; SMITHSONIAN TROP RES INST,BALBOA,PANAMA; UNIV LIVERPOOL,DEPT ENVIRONM & EVOLUTIONARY BIOL,LIVERPOOL L69 3BX,ENGLAND VOLLRATH, F (reprint author), UNIV OXFORD,DEPT ZOOL,OXFORD OX1 3PS,ENGLAND. Parker, Geoff/C-4337-2008 Parker, Geoff/0000-0003-4795-6352 BEEBE W, 1934, ZOOLOGIKCA, V6, P149; Bertelsen E., 1951, Dana Reports, VNo. 39, P1; Caullery Maurice, 1908, Mitteilungen aus der Zoologischen Station zu Neapel Berlin, V18; CHRISTENSON TE, 1990, CONT ISSUES COMP PSY, P149; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK T, IN PRESS Q REV BIOL; CUNNINGHAM JT, 1900, SEXUAL DIMORPHISM AN; DARWIN C, 1851, MONOGRAPH CIRRIPEDIA; DARWIN C, 1894, DESCENT MAN SELECTIO; ELGAR MA, 1990, J ZOOL, V222, P455, DOI 10.1111/j.1469-7998.1990.tb04044.x; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Fisher R.A., 1930, GENETICAL THEORY NAT; GERHARDT U, 1930, ZOOL ANZ, V86, P80; Gertsch W. J., 1949, AM SPIDERS; Ghiselin MT, 1974, EC NATURE EVOLUTION; GUNNARSSON B, 1989, J ZOOL, V217, P1, DOI 10.1111/j.1469-7998.1989.tb02470.x; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; HENDRICK AV, 1989, TRENDS ECOL EVOL, V4, P136; KAESTNER A, 1967, INVERTEBRATE ZOOLOGY, V2; Koh JKH, 1989, GUIDE COMMON SINGAPO; LEVI HW, 1955, J NY ENT SOC, V58, P59; LOCKETT GH, 1951, BRIT SPIDERS, V1; LOCKETT GH, 1953, BRIT SPIDERS; MASCORD R, 1970, AUSTR SPIDERS; NEWMAN JA, 1991, AM NAT, V138, P1372, DOI 10.1086/285292; PAGEL MD, 1988, Q REV BIOL, V63, P413, DOI 10.1086/416027; PARKER GA, IN PRESS J FISH BIOL; Regan CT, 1925, P R SOC LOND B-CONTA, V97, P386, DOI 10.1098/rspb.1925.0006; SHINKAI E, 1984, SPIDERS JAPAN; Smith Geoffrey, 1906, Fauna Neapel Berlin, V29, P1; Smith J.M., 1982, EVOLUTION THEORY GAM; VOLLRATH F, 1980, Z TIERPSYCHOL, V53, P61; Vollrath F., 1987, P357; WATSON PJ, 1990, BEHAV ECOL SOCIOBIOL, V26, P77 34 185 186 1 58 MACMILLAN MAGAZINES LTD LONDON PORTERS SOUTH, 4 CRINAN ST, LONDON, ENGLAND N1 9XW 0028-0836 NATURE Nature NOV 12 1992 360 6400 156 159 10.1038/360156a0 4 Multidisciplinary Sciences Science & Technology - Other Topics JX752 WOS:A1992JX75200058 2019-02-26 J PART, T; GUSTAFSSON, L; MORENO, J PART, T; GUSTAFSSON, L; MORENO, J TERMINAL INVESTMENT AND A SEXUAL CONFLICT IN THE COLLARED FLYCATCHER (FICEDULA-ALBICOLLIS) AMERICAN NATURALIST English Article LIFE-HISTORY TRAITS; CALIFORNIA GULL; PARENTAL CARE; REPRODUCTIVE TACTICS; ENERGY-EXPENDITURE; AGE; EVOLUTION; ANIMALS; COSTS; BIRDS When the expectation of future reproduction is reduced by senescence, life-history theory predicts that reproductive effort will increase with increasing age. This idea was examined in the collared flycatcher by estimating whether reproductive costs increase with female age, comparing feeding rates and weight losses of old, "senescent" females (i.e., greater-than-or-equal-to 5 yr old) and middle-aged females (2-3 yr old) with the same breeding phenology and the same brood size, and testing whether feeding rate was correlated with daily energy expenditure and with weight loss of females during the nestling period. There was a negative relationship between fledgling production and subsequent survival among old females (greater-than-or-equal-to 5 yr old), but not among younger age classes, which suggests that reproductive effort increases with age. Also, old females fed their nestlings more often and lost more weight during the nestling period than did middle-aged females. Observed feeding rates were positively correlated with daily energy expenditure and weight loss. Since there was no evidence that individuals that survived to old ages were better at all ages, the results strongly suggest that old collared flycatcher females increase their reproductive effort at the cost of a decreased probability of surviving to the next year. However, the payoff of the increased reproductive effort of old females seemed to be small. We suggest that this is a consequence of a conflict between the sexes over the division of work, because old females generally are mated to younger males that probably have better future prospects. Data on male feeding rates in relation to female feeding rates support this idea. UNIV UPPSALA,DEPT ZOOL,S-75007 UPPSALA,SWEDEN Gustafsson, Lars/A-7634-2012 Gustafsson, Lars/0000-0001-6566-2863; Part, Tomas/0000-0001-7388-6672 ALATALO RV, 1986, NATURE, V323, P152, DOI 10.1038/323152a0; BROWN JL, 1978, BEHAV ECOL SOCIOBIOL, V4, P43, DOI 10.1007/BF00302560; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GROSS MR, 1985, AM ZOOL, V25, P807; Gustafsson L., 1989, P75; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Houston A.I., 1985, P471; Karlsson L., 1986, Var Fagelvarld, V45, P131; LIFSON N, 1966, J THEOR BIOL, V12, P46, DOI 10.1016/0022-5193(66)90185-8; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; Moreno J, 1988, FUNCT ECOL, V2, P163, DOI 10.2307/2389691; MORENO J, 1989, AUK, V106, P18, DOI 10.2307/4087752; MORENO J, 1991, FUNCTIONAL ECOLOGY, V133, P186; NAGY KA, 1980, AM J PHYSIOL, V238, pR466; NUR N, 1988, ARDEA, V76, P155; NUR N, 1984, OIKOS, V43, P407, DOI 10.2307/3544163; PART T, 1990, ORNIS SCAND, V21, P83, DOI 10.2307/3676802; PART T, 1991, THESIS UPPSALA U UPP; PART T, 1989, J ANIM ECOL, V58, P307; PARTRIDGE L, 1989, SCIENCE, P421; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PUGESEK BH, 1981, SCIENCE, V212, P822, DOI 10.1126/science.212.4496.822; PUGESEK BH, 1984, OIKOS, V43, P409, DOI 10.2307/3544164; REID WV, 1988, ECOLOGY, V69, P1454, DOI 10.2307/1941642; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Sargent R.C., 1986, P275; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SPEAKMAN JR, 1988, SCI PROG, V72, P227; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Svensson L., 1984, IDENTIFICATION GUIDE; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINKLER DW, 1987, AM NAT, V130, P526, DOI 10.1086/284729; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916; 1987, SAS STAT GUIDE PERSO 41 104 104 0 40 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. NOV 1992 140 5 868 882 10.1086/285445 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology JU114 WOS:A1992JU11400009 19426046 2019-02-26 J JENNINGS, MJ; PHILIPP, DP JENNINGS, MJ; PHILIPP, DP REPRODUCTIVE INVESTMENT AND SOMATIC GROWTH-RATES IN LONGEAR SUNFISH ENVIRONMENTAL BIOLOGY OF FISHES English Article LIFE HISTORY; LEPOMIS-MEGALOTIS; REPRODUCTIVE INVESTMENT THALASSOMA-BIFASCIATUM PISCES; LIFE-HISTORY TRAITS; PHENOTYPIC PLASTICITY; STREAM; POPULATIONS; LABRIDAE; FISHES Allocation of energy to current reproduction at the expense of other functions, such as growth, can limit future reproductive potential. This cost of reproduction is a central concept of life history theory but has been difficult to verify in comparative field studies. Three levels of comparison of growth rates and reproductive investments were evaluated within and among populations of longear sunfish, Lepomis megalotis. All three demonstrated high levels of reproductive investment associated with reduced somatic growth. Within populations of central longear sunfish there are precociously mature sneaker males and later maturing parental males; sneakers have greater gonadosomatic index (GSI) values and slower somatic growth rates than parental males. Between subspecies of longear sunfish grown under common conditions, there are differences in age at maturity and in the level of physiological reproductive investment that are associated with distinct differences in growth rates. Between populations of central longear sunfish inhabiting different sites, there are differences in the level of reproductive investment that are also associated with differences in somatic growth. Each comparison produced evidence that trade-offs occur between these life history traits, supporting the hypothesis that there is a cost of reproduction among male sunfish and suggesting that differences in strategies of reproductive investment contribute to variation in somatic growth. ILLINOIS NAT HIST SURVEY,CTR AQUAT ECOL,CHAMPAIGN,IL 61820; UNIV ILLINOIS,DEPT ECOL ETHOL & EVOLUT,URBANA,IL 61801 Bagenal T.B., 1978, P75; Becker GC, 1983, FISHES OF WISCONSIN; BENNET G, 1971, MANAGEMENT ARTIFICIA; BERRA TM, 1970, T AM FISH SOC, V99, P776, DOI 10.1577/1548-8659(1970)99<776:ROEDSO>2.0.CO;2; Carlander K. D., 1977, HDB FRESHWATER FISHE, V2; CARLANDER KD, 1982, T AM FISH SOC, V111, P332, DOI 10.1577/1548-8659(1982)111<332:SIFCLF>2.0.CO;2; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; DUPUIS HMC, 1988, BEHAV ECOL SOCIOBIOL, V23, P109, DOI 10.1007/BF00299894; FOX MG, 1991, CAN J FISH AQUAT SCI, V48, P1792, DOI 10.1139/f91-211; GROSS MR, 1980, P NATL ACAD SCI-BIOL, V77, P6937, DOI 10.1073/pnas.77.11.6937; GROSS MR, 1982, Z TIERPSYCHOL, V60, P1; GROSS MR, 1980, THESIS U UTAH SALT L; GROSSMAN GD, 1982, AM NAT, V120, P423, DOI 10.1086/284004; HORN HS, 1984, BEHAVIORAL ECOLOGY E, P279; HORWITZ RJ, 1978, ECOL MONOGR, V48, P307, DOI 10.2307/2937233; Hubbs C. L., 1935, Papers from the Michigan Academy of Science, V20, P669; Jennings M. J., 1991, THESIS U ILLINOIS UR; JENNINGS MJ, 1992, IN PRESS BEHAV ECOL; KEENLEYSIDE MH, 1972, COPEIA, P272; LARIMORE WR, 1959, T AM FISH SOC, V88, P261; SCHLOSSER IJ, 1982, ECOL MONOGR, V52, P395, DOI 10.2307/2937352; SCHULTZ ET, 1989, EVOLUTION, V43, P1497, DOI 10.1111/j.1558-5646.1989.tb02599.x; SCHULTZ ET, 1991, ENVIRON BIOL FISH, V30, P333, DOI 10.1007/BF02028849; Smith P. W., 1979, FISHES ILLINOIS; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Trautman M. B., 1957, FISHES OHIO 27 32 34 0 11 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0378-1909 ENVIRON BIOL FISH Environ. Biol. Fishes NOV 1992 35 3 257 271 10.1007/BF00001892 15 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology JW383 WOS:A1992JW38300006 2019-02-26 J HOM, CL HOM, CL MODELING REPRODUCTIVE ALLOCATION OF DUSKY SALAMANDERS USING OPTIMAL-CONTROL THEORY - PROS, CONS AND CAVEATS EVOLUTIONARY ECOLOGY English Article OPTIMAL CONTROL THEORY; LIFE HISTORY THEORY; REPRODUCTION ALLOCATION; DESMOGNATHUS Optimal control theory has been used to examine the evolution of life history characters in a variety of plant and animal species. In this paper, I examine control theoretic models of reproductive allocation in female dusky salamanders and consider some practical aspects of modelling, including the appropriateness of nonlinear formulations, methods for describing semelparous reproduction, and data needed to parameterize models. The model analysed includes state variables for somatic and reproductive tissue, energy intake and requirements for, physiological maintenance, and iteroparous reproduction. It predicts that female salamanders should spend the first part of their lives growing. After reaching sexual maturity, females should either spend the remainder of their lives reproducing at the expense of decreasing body size, possibly resulting in death by starvation, or maintain approximately constant body size at the expense of low reproductive output. This lack of correspondence to the observed biology of dusky salamanders suggests that not all the appropriate biology has been described. In particular, inclusion of a storage variable may be necessary in future modelling efforts. HOM, CL (reprint author), UNIV CALIF DAVIS,DEPT MATH,DAVIS,CA 95616, USA. 0 4 4 0 1 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. NOV 1992 6 6 458 481 10.1007/BF02270692 24 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity JV221 WOS:A1992JV22100002 2019-02-26 J FOX, GA FOX, GA ANNUAL PLANT LIFE HISTORIES AND THE PARADIGM OF RESOURCE-ALLOCATION EVOLUTIONARY ECOLOGY English Article LIFE HISTORY EVOLUTION; PHENOLOGY; OPTIMAL CONTROL THEORY; MODULARITY Much of life history theory follows from the idea that natural selection acts on the allocation of resources to competing and independent demographic functions. This paradigm has stimulated much research on the life histories of annual plants. Models of whole-plant resource budgets that use optimal control theory predict periods of 100% vegetative and 100% reproductive growth, sometimes with periods of mixed growth. I show here that this prediction follows from the assumption of independence of the competing 'vegetative' and 'reproductive' compartments. The prediction is qualitatively unchanged even after relaxing important simplifying assumptions used in most models. Although it follows naturally from the assumptions of the models, this kind of allocation pattern is unlikely to occur in many plants, because it requires that (1) leaf and flower buds can never simultaneously be carbon sinks; and (2) organs that accompany flowers, such as internodes and bracts, can never be net sources of photosynthate. Thus while resources are doubtless important for annual plants, an exclusively resource-based perspective may be inadequate to understand the evolution of their life histories. Progress in research may require models that incorporate, or are at least phenomenologically consistent with, the basic developmental rules of angiosperms. FOX, GA (reprint author), UNIV ARIZONA,DEPT ECOL & EVOLUT BIOL,TUCSON,AZ 85721, USA. Fox, Gordon/0000-0003-0595-1385 0 16 18 0 7 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. NOV 1992 6 6 482 499 10.1007/BF02270693 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity JV221 WOS:A1992JV22100003 2019-02-26 J FOX, GA FOX, GA THE EFFECT OF TIME-VARYING MORTALITY AND CARBON ASSIMILATION ON MODELS OF CARBON ALLOCATION IN ANNUAL PLANTS EVOLUTIONARY ECOLOGY English Article LIFE HISTORY EVOLUTION; MODELS; OPTIMAL CONTROL THEORY; PHENOLOGY Models of optimal carbon allocation schedules have influenced the way plant ecologists think about life history evolution, particularly for annual plants. The present study asks (1) how, within the framework of these models, are their predictions affected by within-season variation in mortality and carbon assimilation rates?; and (2) what are the consequences of these prediction changes for empirical tests of the models? A companion paper examines the basic assumptions of the models themselves. I conducted a series of numerical experiments with a simple carbon allocation model. Results suggest that both qualitative and quantitative predictions can sometimes be sensitive to parameter values for net assimilation rate and mortality: for some parameter values, both the time and size at onset of reproduction, as well as the number of reproductive intervals, vary considerably as a result of small variations in these parameters. For other parameter values, small variations in the parameters result in only small changes in predicted phenotype, but these have very large fitness consequences. Satisfactory empirical tests are thus likely to require much accuracy in parameter estimates. The effort required for parameter estimation imposes a practical constraint on empirical tests, making large multipopulation comparisons impractical. It may be most practical to compare the predicted and observed fitness consequences of variation in the timing of onset of reproduction. FOX, GA (reprint author), UNIV ARIZONA,DEPT ECOL & EVOLUT BIOL,TUCSON,AZ 85721, USA. Fox, Gordon/0000-0003-0595-1385 0 4 4 0 4 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. NOV 1992 6 6 500 518 10.1007/BF02270694 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity JV221 WOS:A1992JV22100004 2019-02-26 J TAKADA, T; NAKAJIMA, H TAKADA, T; NAKAJIMA, H AN ANALYSIS OF LIFE-HISTORY EVOLUTION IN TERMS OF THE DENSITY-DEPENDENT LEFKOVITCH MATRIX MODEL MATHEMATICAL BIOSCIENCES English Article POPULATION BIOLOGY; NATURAL-SELECTION; DEMOGRAPHY; AGE; VIOLA The evolution of demographic characteristics is considered in terms of the density-dependent Lefkovitch matrix model, which describes a species' population dynamics with a stage-specific pattern of reproduction and mortality. We obtain the invadability condition of a mutant-type into the wild-type population at the equilibrium state. The condition depends on the left and right eigenvectors at the equilibrium state and the difference, between wild-type and mutant-type populations, of the values of elements in the Lefkovitch matrix at the equilibrium state. It is also shown that if elements of the density-dependent Lefkovitch matrix are decreasing functions of population density, then the equilibrium population density increases in the process of natural selection; that is, K-selection acts even on the stage-structured population. The evolution of life history in perennial plants is discussed through two models as an application of the above results. The evolution of perennial plants with no vegetative reproduction is analyzed in the first example. It is shown that whether monocarpic perennials (which reproduce once and die) or polycarpic perennial plants (which reproduce more than once) are favored depends on the cost of a produced seed. The second example concerns perennial plants that reproduce vegetatively. It is shown that whether monocarpic or polycarpic perennial plants are favored depends on the cost of a seed and that where vegetative reproduction is common, polycarpic perennials with no seed reproduction are favored. RITSUMEIKAN UNIV,DEPT PHYS,KYOTO 603,JAPAN TAKADA, T (reprint author), HOKKAIDO TOKAI UNIV,DEPT INT CULTURAL RELAT,SAPPORO 005,JAPAN. ALLEN LJS, 1989, MATH BIOSCI, V95, P179, DOI 10.1016/0025-5564(89)90031-X; BIERZYCHUDEK P, 1982, ECOL MONOGR, V52, P335, DOI 10.2307/2937350; BRYANT EH, 1971, AM NAT, V105, P75, DOI 10.1086/282703; BURNS BR, 1985, AUST J ECOL, V10, P125, DOI 10.1111/j.1442-9993.1985.tb00874.x; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; CHARLESWORTH B, 1980, EVOLUTION AGE STRUCT, P204; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; COLE LC, 1954, Q REV BIOL, V28, P219; DEANGELIS DL, 1980, ECOL MODEL, V8, P149, DOI 10.1016/0304-3800(80)90034-4; GANTMACHER FR, 1960, THEORY MATRICES, V2, P64; GUCKENHEIMER J, 1977, J MATH BIOL, V4, P101, DOI 10.1007/BF00275980; Hartshorn G. S., 1975, Tropical ecological systems., P41; HORST TJ, 1977, T AM FISH SOC, V106, P253, DOI 10.1577/1548-8659(1977)106<253:UOTLMF>2.0.CO;2; HORWOOD JW, 1981, MATH BIOSCI, V57, P59, DOI 10.1016/0025-5564(81)90005-5; KAWANO S, UNPUB ERYTHRONIUM JA; KAWANO S, 1988, DIFFERENTIATION PATT, P153; KINOSHITA E, 1987, PLANT SPEC BIOL, V2, P15; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; Leslie PH, 1945, BIOMETRIKA, V33, P183, DOI 10.1093/biomet/33.3.183; Lewis EG, 1942, SANKHYA, V6, P93; MEAGHER TR, 1982, ECOLOGY, V63, P1701, DOI 10.2307/1940112; PIANKA ER, 1976, AM ZOOL, V16, P775; SARUKHAN J, 1974, J ECOL, V62, P921, DOI 10.2307/2258962; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHELLNER RA, 1982, J ECOL, V70, P273, DOI 10.2307/2259878; SILVERTOWN JW, 1983, AM NAT, V121, P448, DOI 10.1086/284074; SILVERTOWN JW, 1987, INTRO PLANT POPULATI, P16; SOLBRIG OT, 1988, AM NAT, V131, P385, DOI 10.1086/284796; USHER MB, 1966, J APPL ECOL, V3, P355, DOI 10.2307/2401258; WERNER PA, 1977, ECOLOGY, V58, P1103, DOI 10.2307/1936930 30 25 25 0 5 ELSEVIER SCIENCE INC NEW YORK 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 0025-5564 MATH BIOSCI Math. Biosci. NOV 1992 112 1 155 176 10.1016/0025-5564(92)90091-A 22 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology JY503 WOS:A1992JY50300006 1421771 2019-02-26 J STIBOR, H STIBOR, H PREDATOR INDUCED LIFE-HISTORY SHIFTS IN A FRESH-WATER CLADOCERAN OECOLOGIA English Article DAPHNIA; PREDATOR INDUCTION; LIFE-HISTORY STRATEGY; RESOURCE ALLOCATION; PHENOTYPIC PLASTICITY DAPHNIA-PULEX; CHEMICAL STIMULI; ECOLOGICAL ROLE; EVOLUTION; CHAOBORUS; POPULATION; PREY; AGE; CYCLOMORPHOSIS; ZOOPLANKTON Life-history theory predicts that maturity and resource allocation patterns are highly sensitive to selective predation. Under reduced adult survival, selection will favour genotypes capable of reproducing earlier, at a smaller size and with a higher reproductive effort. When exposed to water that previously held fish, (size selective predators which prefer larger Daphnia), individuals of Daphnia hyalina reproduced earlier, at a smaller size and had a higher reproductive investment. Hence the prey was able to switch its life history pattern in order to become less susceptible to predation by a specific predator. The cue that evokes the prey response is a chemical released by the predator. STIBOR, H (reprint author), MAX PLANCK INST LIMNOL,OKOPHYSIOL ABT,POSTFACH 165,W-2320 PLON,GERMANY. BRETT MT, 1992, OECOLOGIA, V89, P69, DOI 10.1007/BF00319017; BULL JJ, 1987, EVOLUTION, V41, P303, DOI 10.1111/j.1558-5646.1987.tb05799.x; CAMPBELL CE, 1991, FRESHWATER BIOL, V25, P155, DOI 10.1111/j.1365-2427.1991.tb00481.x; Caswell H., 1989, S BRIT ECOL SOC, V29, P285; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DANGERFIELD JM, 1992, OECOLOGIA, V89, P140, DOI 10.1007/BF00319026; DODSON S, 1988, LIMNOL OCEANOGR, V33, P1431, DOI 10.4319/lo.1988.33.6_part_2.1431; DODSON SI, 1989, OECOLOGIA, V78, P361, DOI 10.1007/BF00379110; DODSON SI, 1988, FRESHWATER BIOL, V19, P109, DOI 10.1111/j.1365-2427.1988.tb00332.x; EGGERS DM, 1982, ECOLOGY, V63, P381, DOI 10.2307/1938956; GABRIEL W, 1991, INT VER THEOR ANGEW, V27, P2784; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; HANAZATO T, 1991, LIMNOL OCEANOGR, V36, P165, DOI 10.4319/lo.1991.36.1.0165; Havel J.E., 1987, P263; JACHNER A, 1988, Wiadomosci Ekologiczne, V34, P143; KERFOOT WC, 1980, EVOLUTION ECOLOGY ZO, P470; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LAMPERT W, 1986, J PLANKTON RES, V8, P289, DOI 10.1093/plankt/8.2.289; LAMPERT W, 1988, VERH INT VEREIN LIMN, V23, P713; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Levins R., 1968, EVOLUTION CHANGING E; LOOSE JC, 1992, IN PRESS ARCH HYDR E; LYNCH M, 1986, LIMNOL OCEANOGR, V31, P17, DOI 10.4319/lo.1986.31.1.0017; MACHACEK J, 1991, HYDROBIOLOGIA, V225, P193, DOI 10.1007/BF00028397; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; PACE ML, 1984, OECOLOGIA, V63, P43, DOI 10.1007/BF00379783; PIJANOWSKA J, 1992, IN PRESS ARCH HYDROB; REZNIK AD, 1990, NATURE, V46, P357; RINGELBERG J, 1991, J PLANKTON RES, V13, P83, DOI 10.1093/plankt/13.1.83; SEMLITSCH RD, 1989, EVOLUTION, V43, P105, DOI 10.1111/j.1558-5646.1989.tb04210.x; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STIBOR H, 1991, THESIS U KIEL; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; TOLLRIAN R, 1990, ARCH HYDROBIOL, V119, P191; TOWNSEND CR, 1986, OIKOS, V46, P372, DOI 10.2307/3565837; Vanni M.J., 1987, P149; VUORINEN I, 1989, LIMNOL OCEANOGR, V34, P245, DOI 10.4319/lo.1989.34.1.0245; WALLS M, 1989, LIMNOL OCEANOGR, V34, P390, DOI 10.4319/lo.1989.34.2.0390; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; Zaret T. M., 1980, PREDATION FRESHWATER 42 225 229 4 74 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia NOV 1992 92 2 162 165 10.1007/BF00317358 4 Ecology Environmental Sciences & Ecology JY895 WOS:A1992JY89500002 28313045 2019-02-26 J BAILEY, RC BAILEY, RC WHY WE SHOULD STOP TRYING TO MEASURE THE COST OF REPRODUCTION CORRECTLY OIKOS English Note LIFE-HISTORY TRAITS; PHENOTYPIC PLASTICITY; COVARIATION; PHYLOGENY; PATTERNS; SIZE The Cost of Reproduction (CoR) is a basic assumption of most models of life-history evolution. CoR's "correct" measurement, such that strictly genetic correlations between traits related to present versus future reproduction are evaluated, is not a valid test of the explanatory power of life-history models. If the genotype for an optimum effort is prevalent in a population, genetic variation for reproductive effort will be near zero. It follows that genetically based correlations will also be small, and artificial selection experiments will not reveal a genetic CoR. Similarly, no particular relationship between present and future reproductive output results from considering life-history traits to be "adaptively plastic" or using the "comparative approach" at inter-specific or higher taxonomic levels. Life-history theory is difficult to test because its predictions are general and relative rather than specific and quantitative. BAILEY, RC (reprint author), UNIV WESTERN ONTARIO,DEPT ZOOL,ECOL & EVOLUT GRP,LONDON N6A 5B7,ONTARIO,CANADA. Bailey, Robert/H-6891-2012; Bailey, Robert/D-8538-2012 Bailey, Robert/0000-0003-3574-0239 Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1989, AM NAT, V133, P553, DOI 10.1086/284935; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; EMLEN JM, 1970, ECOLOGY, V51, P588, DOI 10.2307/1934039; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Harvey P.H., 1991, COMP METHOD EVOLUTIO; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; Stephens DW, 1986, FORAGING THEORY; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Williams GC, 1966, ADAPTATION NATURAL S 18 21 23 0 4 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos NOV 1992 65 2 349 352 10.2307/3545031 4 Ecology Environmental Sciences & Ecology JT280 WOS:A1992JT28000025 2019-02-26 J ASIKIDIS, MD; STAMOU, GP ASIKIDIS, MD; STAMOU, GP PHENOLOGICAL PATTERNS OF ORIBATID MITES IN AN EVERGREEN-SCLEROPHYLLOUS FORMATION (HORTIATIS, GREECE) PEDOBIOLOGIA English Article ACARI; ORIBATIDS; MEDITERRANEAN TYPE ECOSYSTEMS; PHENOLOGY; LIFE HISTORY STRATEGIES POPULATION; SOIL The phenology of oribatid mites of a Q. coccifera forest (mediterranean-type ecosystem) was studied on Mt Hortitiatis (Greece). The population density of most species displayed seasonal patterns which parallel the seasonal fluctuations of the mediterranean climate. The life cycle of three species was intensively explored and their life history characteristics are discussed. Precosity and iteroparity are traits common to each species. Nevertheless, the phenology of these species shape three patterns differing with regard to the timing of juvenile life stages development. S. cf. latipes inhabiting sheltered habitats underneath Q. coccifera shrubs lay eggs in winter-spring and the immatures can develop during summer. The eggs of A. oudemansi laid in winter-spring in mossbanks bordering Q. coccifera shrubs overcome summer drought remaining in quiescence and the immatures develop during autumn. Although two main periods with gravid females were recorded in winter and summer for P. allifera, it laid eggs the year round in open sites. They withstand the summer stress and the immatures develop during autumn. The development of immature life stages over short periods when smooth fluctuations of the environmental variables occur, coupled with precosity and iteroparity, were considered the life history strategies of the mediterranean species at Mt Hortiatis. UNIV THESSALONIKI,FAC SCI,SCH BIOL,DEPT ECOL,PUB 119,GR-54006 SALONIKA,GREECE Asikidis M., 1989, THESIS U THESSALONIK; ASIKIDIS MD, 1991, PEDOBIOLOGIA, V35, P53; Begon M., 1986, P1; BLOCK W, 1985, ANTARCTIC NUTRIENT C, P614; COURBIER F, 1985, REV ECOL BIOL SOL, V22, P57; IATROU GD, 1989, THESIS U THESSALONIK; LEBRUN P, 1971, MEM I ROY SC NAT BEL, V165, P1; LUXTON M, 1981, PEDOBIOLOGIA, V21, P312; LUXTON M, 1981, PEDOBIOLOGIA, V21, P387; MOONEY H A, 1970, Flora (Jena), V159, P480; SGARDELIS S, 1981, REV ECOL BIOL SOL, V18, P221; SGARDELIS S, 1988, THESIS U THESSAONIKI; STAMOU GP, 1986, REV ECOL BIOL SOL, V23, P453; STAMOU GP, 1981, THESIS U THESSALONIK; STAMOU GP, 1989, IN PRESS J ANIM ECOL, V58; STAMOU GP, 1989, IN PRESS REV ECOL BI, V26; THOMAS JOM, 1979, PEDOBIOLOGIA, V19, P346; USHER MB, 1975, PEDOBIOLOGIA, V15, P364 18 4 4 1 3 GUSTAV FISCHER VERLAG JENA VILLENGANG 2, D-07745 JENA, GERMANY 0031-4056 PEDOBIOLOGIA Pedobiologia NOV 1992 36 6 359 372 14 Ecology; Soil Science Environmental Sciences & Ecology; Agriculture KB563 WOS:A1992KB56300006 2019-02-26 J REYNOLDS, JD; GROSS, MR REYNOLDS, JD; GROSS, MR FEMALE MATE PREFERENCE ENHANCES OFFSPRING GROWTH AND REPRODUCTION IN A FISH, POECILIA-RETICULATA PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article LIFE-HISTORY EVOLUTION; SEXUAL SELECTION; MATING PREFERENCES; HANDICAP PRINCIPLE; COLOR PATTERNS; CHOICE; GUPPY; SIZE; SUCCESS; FITNESS Recent models of sexual selection suggest that females may prefer males that provide heritable benefits ('good genes') for offspring development or survival. We tested this possibility with a three-generation experiment using Trinidadian guppies, Poecilia reticulata, a species of livebearing freshwater fish. First, we show that female guppies were attracted to larger-bodied males. Areas of various colour pigments had no effect on female preference in this population. Second, male size had significant father-son heritability. Third, large fathers sired both sons and daughters with higher growth rates. Finally, the higher growth rates of daughters resulted in larger reproductive output, attributable to their larger body size. Female mate preferences may therefore have important effects on the inheritance of life history traits by offspring. The results are consistent with the 'good genes' theory of sexual selection but they also illustrate some of the pitfalls inherent in distinguishing among alternative theories. UNIV TORONTO, DEPT ZOOL, TORONTO M5S 1A1, ONTARIO, CANADA Reynolds, John/L-6345-2015 Reynolds, John/0000-0002-0459-0074 ANDERSSON M, 1986, EVOLUTION, V40, P804, DOI 10.1111/j.1558-5646.1986.tb00540.x; BALMFORD A, 1991, TRENDS ECOL EVOL, V6, P274, DOI 10.1016/0169-5347(91)90003-G; BISCHOFF RJ, 1985, BEHAV ECOL SOCIOBIOL, V17, P253, DOI 10.1007/BF00300143; BOAKE CRB, 1986, AM NAT, V127, P654, DOI 10.1086/284511; BOLGER T, 1989, J FISH BIOL, V34, P171, DOI 10.1111/j.1095-8649.1989.tb03300.x; Bradbury J. W., 1987, SEXUAL SELECTION TES; BURLEY N, 1988, AM NAT, V132, P611, DOI 10.1086/284877; Darwin C, 1871, DESCENT MAN SELECTIO; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Falconer D.S., 1981, INTRO QUANTITATIVE G; FARR JA, 1980, BEHAVIOUR, V74, P38, DOI 10.1163/156853980X00311; Fisher R. A, 1958, GENETICAL THEORY NAT; GRAFEN A, 1990, J THEOR BIOL, V144, P473, DOI 10.1016/S0022-5193(05)80087-6; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; HOUDE AE, 1988, ANIM BEHAV, V36, P510, DOI 10.1016/S0003-3472(88)80022-8; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HOUDE AE, 1988, ANIM BEHAV, V36, P888, DOI 10.1016/S0003-3472(88)80171-4; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; KENNEDY CEJ, 1987, BEHAV ECOL SOCIOBIOL, V21, P291, DOI 10.1007/BF00299966; KIRKPATRICK M, 1991, NATURE, V350, P33, DOI 10.1038/350033a0; KIRKPATRICK M, 1982, EVOLUTION, V36, P1, DOI 10.1111/j.1558-5646.1982.tb05003.x; KODRICBROWN A, 1984, AM NAT, V124, P309, DOI 10.1086/284275; KODRICBROWN A, 1985, BEHAV ECOL SOCIOBIOL, V17, P199, DOI 10.1007/BF00300137; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; Liley N. R., 1966, Behaviour Suppl, V13, P1; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; MOLLER AP, 1990, EVOLUTION, V44, P771, DOI 10.1111/j.1558-5646.1990.tb03804.x; MOLLER AP, 1992, NATURE, V357, P238, DOI 10.1038/357238a0; NICOLETTO PF, 1991, BEHAV ECOL SOCIOBIOL, V28, P365, DOI 10.1007/BF00164386; NUR N, 1984, J THEOR BIOL, V110, P275, DOI 10.1016/S0022-5193(84)80059-4; PARTRIDGE L, 1980, NATURE, V283, P290, DOI 10.1038/283290a0; POMIANKOWSKI A, 1991, EVOLUTION, V45, P1422, DOI 10.1111/j.1558-5646.1991.tb02645.x; Pomiankowski A.N., 1988, Oxford Surveys in Evolutionary Biology, V5, P136; REIST JD, 1985, CAN J ZOOL, V63, P1429, DOI 10.1139/z85-213; REYNOLDS JD, 1990, AM NAT, V136, P230, DOI 10.1086/285093; REYNOLDS JD, 1993, IN PRESS AM NAT; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1982, AM NAT, V120, P181, DOI 10.1086/283981; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Ryan M.J., 1990, Oxford Surveys in Evolutionary Biology, V7, P157; RYAN MJ, 1992, AM NAT, V139, P21, DOI 10.1086/285311; RYAN MJ, 1990, BEHAV ECOL SOCIOBIOL, V26, P231; SIMMONS LW, 1987, BEHAV ECOL SOCIOBIOL, V21, P313, DOI 10.1007/BF00299969; SMITH JM, 1991, TRENDS ECOL EVOL, V6, P146, DOI 10.1016/0169-5347(91)90055-3; STONER G, 1988, BEHAV ECOL SOCIOBIOL, V22, P285, DOI 10.1007/BF00299844; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; THORNHILL R, 1992, ANIM BEHAV, V43, P255, DOI 10.1016/S0003-3472(05)80221-0; TRAVIS J, 1987, EVOLUTION, V41, P145, DOI 10.1111/j.1558-5646.1987.tb05777.x; WATT WB, 1986, SCIENCE, V233, P1187, DOI 10.1126/science.3738528; WOODWARD BD, 1986, AM NAT, V128, P58, DOI 10.1086/284539; ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3 57 224 227 7 146 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. OCT 22 1992 250 1327 57 62 10.1098/rspb.1992.0130 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology JW056 WOS:A1992JW05600008 2019-02-26 J WINEMILLER, KO; ROSE, KA WINEMILLER, KO; ROSE, KA PATTERNS OF LIFE-HISTORY DIVERSIFICATION IN NORTH-AMERICAN FISHES - IMPLICATIONS FOR POPULATION REGULATION CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Review OPTIMAL REPRODUCTIVE EFFORT; MARINE PELAGIC FISH; NATURAL-SELECTION; FLUCTUATING ENVIRONMENTS; ECOLOGICAL STRATEGIES; PARENTAL CARE; LARVAL SIZE; EGG SIZE; EVOLUTION; PARAMETERS Interspecific patterns of fish life histories were evaluated in relation to several theoretical models of life-history evolution. Data were gathered for 216 North American fish species (57 families) to explore relationships among variables and to ordinate species. Multivariate tests, performed on freshwater, marine, and combined data matrices, repeatedly identified a gradient associating later-maturing fishes with higher fecundity, small eggs, and few bouts of reproduction during a short spawning season and the opposite suite of traits with small fishes. A second strong gradient indicated positive associations between parental care, egg size, and extended breeding seasons. Phylogeny affected each variable, and some higher taxonomic groupings were associated with particular life-history strategies. High-fecundity characteristics tended to be associated with large species ranges in the marine environment. Age at maturation, adult growth rate, life span, and egg size positively correlated with anadromy. Parental care was inversely correlated with median latitude. A trilateral continuum based on essential trade-offs among three demographic variables predicts many of the correlations among life-history traits. This framework has implications for predicting population responses to diverse natural and anthropogenic disturbances and provides a basis for comparing responses of different species to the same disturbance. OAK RIDGE NATL LAB,DIV ENVIRONM SCI,OAK RIDGE,TN 37831 Winemiller, Kirk/0000-0003-0236-5129 ADAMS PB, 1980, FISH B-NOAA, V78, P1; ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; ARMSTRONG MJ, 1990, ENVIRON BIOL FISH, V28, P77, DOI 10.1007/BF00751028; BALON EK, 1977, J FISH RES BOARD CAN, V34, P1910, DOI 10.1139/f77-257; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; BALTZ DM, 1984, ENVIRON BIOL FISH, V10, P159, DOI 10.1007/BF00001123; BARNTHOUSE LW, 1990, ENVIRON TOXICOL CHEM, V9, P297, DOI 10.1897/1552-8618(1990)9[297:ROTCTE]2.0.CO;2; BEVERTON RJH, 1990, J FISH BIOL, V37, P5, DOI 10.1111/j.1095-8649.1990.tb05015.x; BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605; BOYCE MS, 1979, AM NAT, V114, P569, DOI 10.1086/283503; BRANDER K, 1992, CAN J FISH AQUAT SCI, V49, P238, DOI 10.1139/f92-028; BURT A, 1988, ENVIRON BIOL FISH, V22, P15, DOI 10.1007/BF00000541; Carlander K. D., 1977, HDB FRESHWATER FISHE, V2; Carlander K. D., 1969, HDB FRESHWATER FISHE, V1; COHEN D, 1967, J THEOR BIOL, V16, P1, DOI 10.1016/0022-5193(67)90050-1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DUARTE CM, 1989, OECOLOGIA, V80, P401, DOI 10.1007/BF00379043; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; DUTIL JD, 1986, COPEIA, P945, DOI 10.2307/1445291; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Fisher R. A, 1958, GENETICAL THEORY NAT; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Fletcher R.I., 1988, AM FISH SOC MONOGR, V4, P232; FORTIER L, 1990, CAN J FISH AQUAT SCI, V47, P1898, DOI 10.1139/f90-214; FRASER DF, 1982, ECOLOGY, V63, P307, DOI 10.2307/1938947; Garrod D.J., 1984, P367; GARROD DJ, 1983, J CONSEIL, V41, P63; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; GOTELLI NJ, 1991, OIKOS, V62, P30, DOI 10.2307/3545443; GREEN R, 1975, AM NAT, V109, P1, DOI 10.1086/282969; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; Grime J. P, 1979, PLANT STRATEGIES VEG; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hart J. L., 1973, B FISH RES BOARD CAN, V180; HEINS DC, 1986, J FISH BIOL, V28, P343, DOI 10.1111/j.1095-8649.1986.tb05171.x; HEINS DC, 1988, COPEIA, P238, DOI 10.2307/1445942; HOUDE ED, 1989, FISH B-NOAA, V87, P471; HOUDE ED, 1987, AM FISH SOC S, V2, P17; HUBBS C, 1985, COPEIA, P56, DOI 10.2307/1444790; HUBBS C, 1976, COPEIA, P386; HUTCHINGS JA, 1985, OIKOS, V45, P118, DOI 10.2307/3565229; Ito Y, 1978, COMP ECOLOGY; JAMES PW, 1991, AM MIDL NAT, V125, P173, DOI 10.2307/2426220; KAWASAKI T, 1980, B JPN SOC SCI FISH, V46, P289; Kawasaki T, 1983, FAO FISH REP, V291, P1065; KOSLOW JA, 1992, CAN J FISH AQUAT SCI, V49, P210, DOI 10.1139/f92-025; LACK D, 1954, NATURAL REGULATION A; LEAMAN BM, 1991, ENVIRON BIOL FISH, V30, P253, DOI 10.1007/BF02296893; Lee D. S., 1980, ATLAS N AM FRESHWATE; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LEWONTIN RC, 1965, GENETICS COLONIZING, P79; MacCall A.D., 1990, DYNAMIC GEOGRAPHY MA; MAHON R, 1984, CAN J FISH AQUAT SCI, V41, P330, DOI 10.1139/f84-037; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Miller P. J., 1979, S ZOOLOGICAL SOC LON, V44, P263; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; Morton T., 1989, 82 US FISH WILDL SER; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; MYERS RA, 1992, IN PRESS J ANIM ECOL; Nelson J.S., 1984, FISHES WORLD; NUSSBAUM RA, 1989, AM NAT, V133, P591, DOI 10.1086/284939; PAGEL MD, 1988, Q REV BIOL, V63, P413, DOI 10.1086/416027; PAINE MD, 1990, J FISH BIOL, V37, P473, DOI 10.1111/j.1095-8649.1990.tb05877.x; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P1820, DOI 10.1139/f91-215; PIANKA ER, 1976, AM ZOOL, V16, P775; POULSON THOMAS L., 1963, AMER MIDLAND NAT, V70, P257, DOI 10.2307/2423056; RAGO PJ, 1987, AM FISHERIES SOC S, V1, P402; RIDLEY M, 1989, J THEOR BIOL, V136, P361, DOI 10.1016/S0022-5193(89)80171-7; ROFF DA, 1981, CAN J FISH AQUAT SCI, V38, P968, DOI 10.1139/f81-130; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Rothschild B. J., 1987, AM FISH SOC S, V1, P531; ROUGHGARDEN J, 1971, ECOLOGY, V52, P453, DOI 10.2307/1937628; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SAUNDERS WP, 1983, ANAL ECOLOGICAL SYST, P345; SCHAAF WE, 1987, ESTUARIES, V10, P267, DOI 10.2307/1351854; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCOTT WB, 1973, 184 B FISH RES BOARD; SHEPHERD JG, 1990, PHILOS T ROY SOC B, V330, P151, DOI 10.1098/rstb.1990.0189; SHERMAN K, 1984, MAR ECOL PROG SER, V18, P1, DOI 10.3354/meps018001; Sibly R., 1985, P75; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; Sinclair M., 1988, MARINE POPULATIONS E; SISSENWINE MP, 1984, EXPLOITATION MARINE, P59, DOI DOI 10.1007/978-3-642-70157-3_3; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith F. E., 1954, DYNAMICS GROWTH PROC, P277; SMITH PE, 1989, CAL COOP OCEAN FISH, V30, P88; SNYDER RJ, 1990, CAN J ZOOL, V68, P2027, DOI 10.1139/z90-287; SOUTHWOOD TR, 1974, AM NAT, V108, P791, DOI 10.1086/282955; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Stearns S.C., 1984, P13; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; TAYLOR PD, 1984, CAN J ZOOL, V62, P2264, DOI 10.1139/z84-329; TAYLOR PD, 1983, LECTURE NOTES BIOMAT, V52, P91; WALTERS CJ, 1975, ECOSYSTEM ANAL PREDI, P68; WARE DM, 1982, CAN J FISH AQUAT SCI, V39, P3, DOI 10.1139/f82-002; WARE DM, 1984, FISH REPRODUCTION, P1349; WHITTAKER RH, 1979, AM NAT, V113, P185, DOI 10.1086/283378; Winemiller K.O., 1989, BIOLLANIA, V6, P77; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, IN PRESS OIKOS; Wootton R.J., 1984, P1; WOOTTON RJ, 1973, J FISH BIOL, V5, P683, DOI 10.1111/j.1095-8649.1973.tb04504.x; 1987, SAS STAT GUIDE PERSO 108 796 819 14 262 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0706-652X CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. OCT 1992 49 10 2196 2218 10.1139/f92-242 23 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology JY881 WOS:A1992JY88100024 2019-02-26 J LYNCH, M LYNCH, M THE LIFE-HISTORY CONSEQUENCES OF RESOURCE DEPRESSION IN CERIODAPHNIA-QUADRANGULA AND DAPHNIA-AMBIGUA ECOLOGY English Article CERIODAPHNIA; CLADOCERA; COST OF MOLTING; DAPHNIA; ENERGETICS; LIFE HISTORY EVOLUTION; REPRODUCTIVE EFFORT; RESOURCE DEPRESSION SIZE; ZOOPLANKTON; CHARACTERS An analysis of the life history and energetics responses of two small planktonic cladocerans, Daphnia ambigua and Ceriodaphnia quadrangula, to food limitation is presented. The results are consistent with an earlier study of D. pulex in that the size-specific instar durations and proportional investments in reproduction are independent of the food level. Compared to D. pulex, these smaller species spend more time in early instars but less time in adult instars. Of the energy available for (growth + reproduction), a much greater fraction is allocated to reproduction than in the case of similar-sized D. pulex, and it quickly reaches an asymptote of 94-97%. As in the case of D. pulex, the net rate of energy intake reaches a plateau shortly after maturity. This, combined with the increased cost of molting as the animal grows, causes age-specific reproduction to level off and eventually decline. The maximum rate of net energy intake is much lower and the cost of molting much higher for D. ambigua and C. quadrangula than for the larger D. pulex. This puts an upper limit on body size for the two smaller species that is much lower than that attainable in D. pulex. The data suggest the possibility that the sizes of planktonic cladocerans may be less a direct consequence of size-selective mortality than a correlated response to selection operating on energy-related traits. LYNCH, M (reprint author), UNIV OREGON,DEPT BIOL,EUGENE,OR 97403, USA. BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; BURNS CW, 1968, LIMNOL OCEANOGR, V13, P675, DOI 10.4319/lo.1968.13.4.0675; BURNS CW, 1969, LIMNOL OCEANOGR, V14, P693, DOI 10.4319/lo.1969.14.5.0693; DODSON SI, 1984, ECOLOGY, V65, P1249, DOI 10.2307/1938331; DORAZIO RM, 1983, FRESHWATER BIOL, V13, P157, DOI 10.1111/j.1365-2427.1983.tb00668.x; GABRIEL W, 1982, ARCH HYDROBIOL, V95, P69; GLIWICZ ZM, 1990, NATURE, V343, P638, DOI 10.1038/343638a0; HALL DJ, 1976, ANNU REV ECOL SYST, V7, P177, DOI 10.1146/annurev.es.07.110176.001141; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; LYNCH M, 1986, LIMNOL OCEANOGR, V31, P17, DOI 10.4319/lo.1986.31.1.0017; LYNCH M, 1989, ECOLOGY, V70, P246, DOI 10.2307/1938430; Lynch M., 1988, P47; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; LYNCH M, 1988, SIZE STRUCTURED POPU, P30; Lynch M., 1980, EVOLUTION ECOLOGY ZO, P367; TESSIER AJ, 1989, OIKOS, V56, P269, DOI 10.2307/3565347 17 33 33 0 4 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology OCT 1992 73 5 1620 1629 10.2307/1940015 10 Ecology Environmental Sciences & Ecology JP740 WOS:A1992JP74000012 2019-02-26 J DASILVA, J; BELL, G DASILVA, J; BELL, G THE ECOLOGY AND GENETICS OF FITNESS IN CHLAMYDOMONAS .6. ANTAGONISM BETWEEN NATURAL-SELECTION AND SEXUAL SELECTION PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article REPRODUCTION; EVOLUTION; GROWTH; CHOICE; CYCLE Antagonism between the sexual and vegetative life cycles of eukaryotes is the most fundamental assumption of the theory of sexual selection. A trade-off between sexual competence and vegetative growth rate is expected from life-history theory, which predicts a negative genetic correlation between any two components of fitness that together define total fitness. Alternatively, intra-sexual competition or mate choice may create a positive correlation between vegetative growth and mating success. We have described the nature of the genetic correlation between mating efficiency and vegetative growth rate in the unicellular, facultatively sexual, chlorophyte alga Chlamydomonas reinhardtii. By selecting for mating efficiency and measuring the correlated response in vegetative growth rate, we found a negative genetic correlation between fitness components, as predicted by life-history theory. This is the first demonstration of a net viability cost of sexual selection. DASILVA, J (reprint author), MCGILL UNIV, DEPT BIOL, 1205 DOCTEUR PENFIELD AVE, MONTREAL H3A 1B1, QUEBEC, CANADA. BELL G, 1991, EVOLUTION, V45, P668, DOI 10.1111/j.1558-5646.1991.tb04337.x; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1991, PHILOS T ROY SOC B, V332, P81, DOI 10.1098/rstb.1991.0035; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CUNNINGHAM A, 1978, J GEN MICROBIOL, V104, P227, DOI 10.1099/00221287-104-2-227; Darwin C, 1859, ORIGIN SPECIES; DARWIN CR, 1971, DESCENT MAN SELECTIO; Fisher R.A., 1930, GENETICAL THEORY NAT; FVCARLEY J, 1982, GAMETES SPORES IDEAS; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Harris E., 1989, CHLAMYDOMONAS SOURCE; HODGKIN J, 1991, P ROY SOC B-BIOL SCI, V246, P19, DOI 10.1098/rspb.1991.0119; KATES JR, 1964, J CELL COMPAR PHYSL, V63, P157, DOI 10.1002/jcp.1030630204; KIRKPATRICK M, 1982, EVOLUTION, V36, P1, DOI 10.1111/j.1558-5646.1982.tb05003.x; KONDRASHOV AS, 1988, NATURE, V336, P435, DOI 10.1038/336435a0; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; NICHOLS WH, 1973, HDB PHYCOLOGICAL MET, P1; ODONALD P, 1980, GENETIC MODELS SEXUA; PARTRIDGE L, 1980, NATURE, V283, P290, DOI 10.1038/283290a0; Pomiankowski A.N., 1988, Oxford Surveys in Evolutionary Biology, V5, P136; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICE WR, 1988, EVOLUTION, V42, P17; SCHMEISSER ET, 1973, DEV BIOL, V31, P31, DOI 10.1016/0012-1606(73)90318-7; SMITH JM, 1971, J THEOR BIOL, V30, P319; TAYLOR CE, 1987, AM NAT, V129, P721, DOI 10.1086/284668; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; 1988, SAS STAT USERS GUIDE 27 17 17 0 16 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. SEP 22 1992 249 1326 227 233 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology JQ914 WOS:A1992JQ91400002 2019-02-26 J HERMS, DA; MATTSON, WJ HERMS, DA; MATTSON, WJ THE DILEMMA OF PLANTS - TO GROW OR DEFEND QUARTERLY REVIEW OF BIOLOGY English Review CARBON-NUTRIENT BALANCE; CYNOGLOSSUM-OFFICINALE L; LOTUS-CORNICULATUS L; LIFE-HISTORY EVOLUTION; LOW NUTRITIVE QUALITY; SENECIO-JACOBAEA L; INSECT HERBIVORE INTERACTIONS; TISSUE-SPECIFIC DISTRIBUTION; SHRUB OEMLERIA-CERASIFORMIS; PHENYLALANINE AMMONIA-LYASE Physiological and ecological constraints play key roles in the evolution of plant growth patterns, especially in relation to defenses against herbivores. Phenotypic and life history theories are unified within the growth-differentiation balance (GDB) framework, forming an integrated system Of theories explaining and predicting patterns of plant defense and competitive interactions in ecological and evolutionary time. Plant activity at the cellular level can be classified as growth (cell division and enlargement) of differentiation (chemical and morphological changes leading to cell maturation and specialization). The GDB hypothesis of plant defense is premised upon a physiological trade-off between growth and differentiation processes. The trade-off between growth and defense exists because secondary metabolism and structural reinforcement are physiologically constrained in dividing and enlarging cells, and because they divert resources from the production of new leaf area. Hence the dilemma of plants: They must grow fast enough to compete, yet maintain the defenses necessary to survive in the presence of pathogens and herbivores. The physiological trade-off between growth and differentiation processes interacts with herbivory and plant-plant competition to manifest itself as a genetic trade-off between growth and defense in the evolution of plant life history strategies. Evolutionary theories of plant defense are reviewed. We also extend a standard growth rate model by separating its ecological and evolutionary components, and formalizing the role of competition in the evolution of plant defense. We conclude with a conceptual model of the evolution of plant defense in which plant physiological trade-offs interact with the abiotic environment, competition and herbivory. MICHIGAN STATE UNIV,PESTICIDE RES CTR,DEPT ENTOMOL,E LANSING,MI 48824; USDA,N CENT FOREST EXPT STN,E LANSING,MI 48823 HERMS, DA (reprint author), DOW GARDENS,1018 W MAIN ST,MIDLAND,MI 48640, USA. ABE T, 1991, OIKOS, V60, P127, DOI 10.2307/3545003; AERTS RJ, 1991, PHYTOCHEMISTRY, V30, P3571, DOI 10.1016/0031-9422(91)80068-C; AGREN GI, 1985, J THEOR BIOL, V113, P89, DOI 10.1016/S0022-5193(85)80078-3; AGREN GI, 1988, PLANT CELL ENVIRON, V11, P613; AGREN GI, 1987, PLANT CELL ENVIRON, V10, P579, DOI 10.1111/j.1365-3040.1987.tb01838.x; AGREN GI, 1985, PHYSIOL PLANTARUM, V64, P17, DOI 10.1111/j.1399-3054.1985.tb01207.x; AGREN J, 1987, OECOLOGIA, V72, P161, DOI 10.1007/BF00379262; AIDE TM, 1989, OIKOS, V55, P66, DOI 10.2307/3565873; ALLEN GA, 1988, OECOLOGIA, V76, P111, DOI 10.1007/BF00379608; ALLEN SG, 1987, AGRON J, V79, P1030, DOI 10.2134/agronj1987.00021962007900060016x; ALLIENDE MC, 1989, J ECOL, V77, P1048, DOI 10.2307/2260822; ALPERT P, 1985, OECOLOGIA, V66, P309, DOI 10.1007/BF00378291; ALTMAN DW, 1986, CROP SCI, V29, P1451; ANTOLIN MF, 1985, AM NAT, V126, P52, DOI 10.1086/284395; ANTOS JA, 1990, AM MIDL NAT, V124, P254, DOI 10.2307/2426174; APOSTOL I, 1989, PLANT CELL REP, V7, P692, DOI 10.1007/BF00272063; APPLETON MR, 1989, J PLANT PHYSIOL, V134, P524, DOI 10.1016/S0176-1617(89)80142-7; ASHMUN JW, 1982, ANN BOT-LONDON, V49, P403, DOI 10.1093/oxfordjournals.aob.a086264; AUGNER M, 1991, BEHAV ECOL SOCIOBIOL, V29, P231, DOI 10.1007/BF00163979; AYRES MP, 1987, ECOLOGY, V68, P558, DOI 10.2307/1938461; BAAS WJ, 1990, CAUSES AND CONSEQUENCES OF VARIATION IN GROWTH RATE AND PRODUCTIVITY OF HIGHER PLANTS, P313; BALDWIN IT, 1987, J CHEM ECOL, V13, P1069, DOI 10.1007/BF01020538; BALDWIN IT, 1990, ECOLOGY, V71, P252, DOI 10.2307/1940264; BALDWIN IT, 1988, J CHEM ECOL, V14, P1113, DOI 10.1007/BF01019339; BALL DM, 1978, AGRON J, V70, P977, DOI 10.2134/agronj1978.00021962007000060021x; BANTHORPE DV, 1989, PHYTOCHEMISTRY, V28, P3003, DOI 10.1016/0031-9422(89)80268-7; Barbosa P., 1985, Recent Advances in Phytochemistry, V19, P107; BARISKA M, 1986, HOLZFORSCHUNG, V40, P299, DOI 10.1515/hfsg.1986.40.5.299; BARLOW PW, 1989, BOT J LINN SOC, V100, P255, DOI 10.1111/j.1095-8339.1989.tb01721.x; BATESMITH EC, 1984, PHYTOCHEMISTRY, V23, P945, DOI 10.1016/S0031-9422(00)82588-1; Bazzaz F. A., 1985, STUDIES PLANT DEMOGR, P373; BAZZAZ FA, 1979, ANNU REV ECOL SYST, V10, P351, DOI 10.1146/annurev.es.10.110179.002031; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; BAZZAZ FA, 1990, ANNU REV ECOL SYST, V21, P167, DOI 10.1146/annurev.es.21.110190.001123; Beattie AJ, 1985, EVOLUTIONARY ECOLOGY; BELSKY AJ, 1986, AM NAT, V127, P870, DOI 10.1086/284531; BENTLEY BL, 1977, ANNU REV ECOL SYST, V8, P407, DOI 10.1146/annurev.es.08.110177.002203; BENTLEY S, 1979, J ECOL, V67, P79, DOI 10.2307/2259338; BERENBAUM M, 1978, SCIENCE, V201, P532, DOI 10.1126/science.201.4355.532; BERENBAUM M, 1981, SCIENCE, V212, P927, DOI 10.1126/science.212.4497.927; BERENBAUM M, 1983, EVOLUTION, V37, P163, DOI 10.1111/j.1558-5646.1983.tb05524.x; Berenbaum M., 1985, Recent Advances in Phytochemistry, V19, P139; Berenbaum M.R., 1988, P113; BERENBAUM MR, 1991, J CHEM ECOL, V17, P207, DOI 10.1007/BF00994434; BERENBAUM MR, 1986, EVOLUTION, V40, P1215, DOI 10.1111/j.1558-5646.1986.tb05746.x; BERENBAUM MR, 1989, OECOLOGIA, V80, P501, DOI 10.1007/BF00380073; BERENDSE F, 1990, CAUSES AND CONSEQUENCES OF VARIATION IN GROWTH RATE AND PRODUCTIVITY OF HIGHER PLANTS, P269; Berendse F., 1990, Perspectives on plant competition., P93; BERGELSON J, 1986, ECOL ENTOMOL, V11, P241, DOI 10.1111/j.1365-2311.1986.tb00300.x; BERGELSON JM, 1988, ECOLOGY, V69, P434, DOI 10.2307/1940442; BERNAYS E, 1988, ECOLOGY, V69, P886, DOI 10.2307/1941237; BERNAYS EA, 1982, SCIENCE, V216, P201, DOI 10.1126/science.216.4542.201; BERNAYS EA, 1983, J INSECT PHYSIOL, V29, P535, DOI 10.1016/0022-1910(83)90085-9; BERNAYS EA, 1987, MOL ENTOMOLOGY, V49, P108; BERNAYS EA, 1983, NITROGEN ECOLOGICAL, P321; BJORKMAN C, 1991, ECOL ENTOMOL, V16, P283, DOI 10.1111/j.1365-2311.1991.tb00219.x; BJORKMAN C, 1991, OECOLOGIA, V86, P202, DOI 10.1007/BF00317532; BJORKMAN C, 1990, OECOLOGIA, V85, P247, DOI 10.1007/BF00319409; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; BODNARYK RP, 1990, J CHEM ECOL, V16, P2735, DOI 10.1007/BF00988082; BOECKLEN WJ, 1990, ECOLOGY, V71, P581, DOI 10.2307/1940311; BOHM H, 1977, SECONDARY METABOLISM, P104; BOND WJ, 1989, BIOL J LINN SOC, V36, P227, DOI 10.1111/j.1095-8312.1989.tb00492.x; BOPRE M, 1990, J CHEM ECOL, V16, P165; BOWERS MD, 1988, J CHEM ECOL, V14, P319, DOI 10.1007/BF01022549; BOYER JS, 1988, PHYSIOL PLANTARUM, V73, P311, DOI 10.1111/j.1399-3054.1988.tb00603.x; BOYER RF, 1989, J PLANT NUTR, V12, P581, DOI 10.1080/01904168909363975; Bradford K.J., 1982, PHYSL PLANT ECOLOGY, VII, P263; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRAGA MR, 1986, BIOCHEM SYST ECOL, V14, P507, DOI 10.1016/0305-1978(86)90010-4; BRAGA MR, 1991, J CHEM ECOL, V17, P1079, DOI 10.1007/BF01402935; BRATTSTEN LB, 1988, J CHEM ECOL, V14, P1919, DOI 10.1007/BF01013486; BREHM BG, 1975, SCIENCE, V190, P1221, DOI 10.1126/science.190.4220.1221; BRIGGS MA, 1990, OECOLOGIA, V83, P32, DOI 10.1007/BF00324630; BRISKE DD, 1982, WEED SCI, V30, P106; BROWER LP, 1975, SCIENCE, V188, P19, DOI 10.1126/science.188.4183.19; BROWN BJ, 1988, OECOLOGIA, V75, P12, DOI 10.1007/BF00378808; BROWN DG, 1988, OECOLOGIA, V76, P467, DOI 10.1007/BF00377044; Bryant J.P., 1985, Recent Advances in Phytochemistry, V19, P219; BRYANT JP, 1980, ANNU REV ECOL SYST, V11, P261, DOI 10.1146/annurev.es.11.110180.001401; BRYANT JP, 1987, OECOLOGIA, V73, P513, DOI 10.1007/BF00379408; BRYANT JP, 1991, AM NAT, V137, P50, DOI 10.1086/285145; BRYANT JP, 1987, ECOLOGY, V68, P1319, DOI 10.2307/1939216; BRYANT JP, 1989, NATURE, V340, P227, DOI 10.1038/340227a0; BRYANT JP, 1987, OECOLOGIA, V72, P510, DOI 10.1007/BF00378975; BRYANT JP, 1983, OIKOS, V40, P357, DOI 10.2307/3544308; BRYANT JP, 1988, CHEM MEDIATION COEVO, P367, DOI DOI 10.1016/B978-0-12-656855-4.50016-4; BULLOCK SH, 1984, OECOLOGIA, V63, P426, DOI 10.1007/BF00390677; BURGESS RSL, 1987, OECOLOGIA, V73, P432, DOI 10.1007/BF00385261; BUSS LW, 1983, P NATL ACAD SCI-BIOL, V80, P1387, DOI 10.1073/pnas.80.5.1387; CALDWELL MM, 1983, PHYSIOL PLANTARUM, V58, P445, DOI 10.1111/j.1399-3054.1983.tb04206.x; CAMPBELL BM, 1986, OIKOS, V47, P168, DOI 10.2307/3566041; CARROLL CR, 1980, SCIENCE, V209, P414, DOI 10.1126/science.209.4454.414; CARROLL G, 1988, ECOLOGY, V69, P2, DOI 10.2307/1943154; CASWELL H, 1983, AM ZOOL, V23, P35; CATES RG, 1975, ECOLOGY, V56, P391, DOI 10.2307/1934969; CATES RG, 1975, ECOLOGY, V56, P410, DOI 10.2307/1934971; CATES RG, 1977, BIOCHEM SYST ECOL, V5, P185, DOI 10.1016/0305-1978(77)90003-5; CATES RG, 1987, INSECTS PLANTS, P175; CHABOT BF, 1982, ANNU REV ECOL SYST, V13, P229, DOI 10.1146/annurev.es.13.110182.001305; CHALKERSCOTT L, 1989, CHEM SIGNIFICANCE CO, P345; CHAPIN FS, 1989, OECOLOGIA, V79, P96, DOI 10.1007/BF00378245; CHAPIN FS, 1989, AM NAT, V133, P1, DOI 10.1086/284898; CHAPIN FS, 1986, J ECOL, V74, P167; CHAPIN FS, 1989, OECOLOGIA, V79, P551, DOI 10.1007/BF00378674; CHAPIN FS, 1980, ARCTIC ALPINE RES, V12, P553; CHAPIN FS, 1991, BIOSCIENCE, V41, P29, DOI 10.2307/1311538; CHAPIN FS, 1990, ANNU REV ECOL SYST, V21, P423, DOI 10.1146/annurev.es.21.110190.002231; CHAPIN FS, 1986, AM NAT, V127, P48, DOI 10.1086/284466; CHAPIN FS, 1987, BIOSCIENCE, V37, P49, DOI 10.2307/1310177; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; CHAPIN FS, 1989, OECOLOGIA, V79, P412, DOI 10.1007/BF00384322; CHAPIN FS, 1988, ADV PLANT NUTRITION, V3; CHARLES DJ, 1990, PHYTOCHEMISTRY, V29, P2837, DOI 10.1016/0031-9422(90)87087-B; CHEW FS, 1991, AM NAT, V138, P729, DOI 10.1086/285246; Chew FS, 1979, HERBIVORES THEIR INT, P271; CHRISTIANSEN E, 1987, FOREST ECOL MANAG, V22, P89, DOI 10.1016/0378-1127(87)90098-3; CHUNG H-H, 1977, Canadian Journal of Forest Research, V7, P106, DOI 10.1139/x77-015; CHUNG HH, 1980, CAN J FOREST RES, V10, P348, DOI 10.1139/x80-058; CHUNG HH, 1980, CAN J FOREST RES, V10, P338, DOI 10.1139/x80-057; CIPOLLINI ML, 1991, OECOLOGIA, V86, P585, DOI 10.1007/BF00318326; CIPOLLINI ML, 1991, OECOLOGIA, V88, P371, DOI 10.1007/BF00317581; CLANCY KM, 1987, ECOLOGY, V68, P733, DOI 10.2307/1938479; CLARK DB, 1988, J ECOL, V76, P1153, DOI 10.2307/2260640; CLARK RJ, 1980, J AGR RES, V31, P489; CLAUSEN JJ, 1965, NATURE, V205, P1030, DOI 10.1038/2051030a0; CLAY K, 1990, ANNU REV ECOL SYST, V21, P275, DOI 10.1146/annurev.es.21.110190.001423; CLAY K, 1988, ECOLOGY, V69, P10, DOI 10.2307/1943155; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Coleman JS, 1986, TREE PHYSIOL, V2, P289, DOI 10.1093/treephys/2.1-2-3.289; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; COLEY PD, 1988, OECOLOGIA, V74, P531, DOI 10.1007/BF00380050; COLEY PD, 1987, NEW PHYTOL, V106, P251; COLEY PD, 1980, NATURE, V284, P545, DOI 10.1038/284545a0; COLEY PD, 1986, OECOLOGIA, V70, P238, DOI 10.1007/BF00379246; COLEY PD, 1983, ECOL MONOGR, V53, P209, DOI 10.2307/1942495; COLLIN HA, 1987, ADV BOT RES, V3, P145; COMPTON SG, 1983, OECOLOGIA, V60, P353, DOI 10.1007/BF00376851; COMPTON SG, 1985, BIOL J LINN SOC, V26, P21, DOI 10.1111/j.1095-8312.1985.tb01550.x; COMPTON SG, 1987, ECOL ENTOMOL, V12, P115, DOI 10.1111/j.1365-2311.1987.tb00990.x; COOPER SM, 1986, OECOLOGIA, V68, P446, DOI 10.1007/BF01036753; COTTAM DA, 1986, OECOLOGIA, V70, P452, DOI 10.1007/BF00379511; COTTON CM, 1991, J EXP BOT, V42, P365, DOI 10.1093/jxb/42.3.365; COUGHENOUR MB, 1985, OECOLOGIA, V68, P80, DOI 10.1007/BF00379478; CRANKSHAW DR, 1981, BIOCHEM SYST ECOL, V9, P115, DOI 10.1016/0305-1978(81)90029-6; CRAWLEY MJ, 1989, ANNU REV ENTOMOL, V34, P531, DOI 10.1146/annurev.en.34.010189.002531; CRAWLEY MJ, 1985, NATURE, V314, P163, DOI 10.1038/314163a0; CRAWLEY MJ, 1989, INSECT PLANT INTERAC, V1, P45; CRICK JC, 1987, NEW PHYTOL, V107, P403, DOI 10.1111/j.1469-8137.1987.tb00192.x; CROTEAU R, 1972, PHYTOCHEMISTRY, V11, P2937, DOI 10.1016/0031-9422(72)80083-9; CROXFORD AC, 1989, OECOLOGIA, V79, P520, DOI 10.1007/BF00378670; CURTIS JD, 1974, AM J BOT, V61, P835, DOI 10.2307/2441620; DACUNHA A, 1987, PHYTOCHEMISTRY, V26, P2723, DOI 10.1016/S0031-9422(00)83579-7; DAIE J, 1988, CRIT REV PLANT SCI, V7, P117, DOI 10.1080/07352688809382261; DALE JE, 1988, ANNU REV PLANT PHYS, V39, P267, DOI 10.1146/annurev.arplant.39.1.267; DALE JE, 1976, CELL DIVISION HIGHER, P314; DANELL K, 1991, OIKOS, V62, P145, DOI 10.2307/3545259; DANELL K, 1985, OIKOS, V44, P82, DOI 10.2307/3544047; DAWRA RK, 1988, J AGR FOOD CHEM, V36, P951, DOI 10.1021/jf00083a013; Dell B., 1978, Advances in Botanical Research, V6, P278; DELMORAL R, 1972, OECOLOGIA, V9, P289, DOI 10.1007/BF00345238; DEMENT WA, 1974, OECOLOGIA, V15, P65, DOI 10.1007/BF00345228; DENSLOW JS, 1987, OECOLOGIA, V74, P370, DOI 10.1007/BF00378932; DENSLOW JS, 1990, ECOLOGY, V71, P165, DOI 10.2307/1940257; DETHIER VG, 1980, AM NAT, V115, P45, DOI 10.1086/283545; DICKE M, 1990, CAUSES AND CONSEQUENCES OF VARIATION IN GROWTH RATE AND PRODUCTIVITY OF HIGHER PLANTS, P341; DICKE M, 1990, J CHEM ECOL, V16, P381, DOI 10.1007/BF01021772; DICKSON RE, 1989, ANN SCI FOREST, V46, pS631, DOI 10.1051/forest:198905ART0142; DICKSON RE, 1991, INTEGRATED RESPONSE, P3; DiCosmo F, 1984, RECENT ADV PHYTOCHEM, V18, P97; DIETZ KJ, 1989, J PLANT PHYSIOL, V134, P544, DOI 10.1016/S0176-1617(89)80145-2; DILLON PM, 1983, BIOTROPICA, V15, P112, DOI 10.2307/2387953; DIRZO R, 1982, J ECOL, V70, P119, DOI 10.2307/2259868; Dirzo R., 1984, PERSPECTIVES PLANT P, P141; DITOMMASO A, 1989, VEGETATIO, V84, P9, DOI 10.1007/BF00054662; DIXON RA, 1986, BIOL REV, V61, P239, DOI 10.1111/j.1469-185X.1986.tb00719.x; DOBERSKI J, 1986, J BIOL EDUC, V20, P96, DOI 10.1080/00219266.1986.9654793; DOUST JL, 1980, BIOL J LINN SOC, V13, P155; DOUST JL, 1985, STUDIES PLANT DEMOGR, P327; DOWD PF, 1983, INSECT BIOCHEM, V13, P453, DOI 10.1016/0020-1790(83)90002-1; DOWNHOWER J F, 1975, Biotropica, V7, P59, DOI 10.2307/2989801; DUCHESNE LC, 1989, BIOSCIENCE, V39, P238, DOI 10.2307/1311160; DUSSOURD DE, 1987, SCIENCE, V237, P898, DOI 10.1126/science.3616620; DUSSOURD DE, 1991, ECOLOGY, V72, P1383, DOI 10.2307/1941110; EBEL J, 1986, ANNU REV PHYTOPATHOL, V24, P235; EDWARDS PJ, 1983, OECOLOGIA, V59, P88, DOI 10.1007/BF00388079; EDWARDS PJ, 1987, INSECTS PLANTS, P213; EHRLICH PR, 1964, EVOLUTION, V18, P586, DOI 10.2307/2406212; EILERT U, 1987, CELL CULTURE SOMATIC, V4, P153; EISNER T, 1974, SCIENCE, V184, P996, DOI 10.1126/science.184.4140.996; ELLIS WM, 1977, EXPERIENTIA, V33, P309, DOI 10.1007/BF02002797; ELLIS WM, 1977, HEREDITY, V39, P45, DOI 10.1038/hdy.1977.41; ELMQVIST T, 1987, ECOLOGY, V68, P1623, DOI 10.2307/1939854; ELMQVIST T, 1988, OIKOS, V51, P259, DOI 10.2307/3565306; ENGLISHLOEB GM, 1990, ECOLOGY, V71, P1401, DOI 10.2307/1938277; ENGLISHLOEB GM, 1989, ECOL ENTOMOL, V14, P45, DOI 10.1111/j.1365-2311.1989.tb00752.x; ENTRY JA, 1986, FOREST ECOL MANAG, V17, P189, DOI 10.1016/0378-1127(86)90111-8; ERICSSON A, 1980, J APPL ECOL, V17, P747, DOI 10.2307/2402653; ERNEST KA, 1989, BIOTROPICA, V21, P194, DOI 10.2307/2388642; FAGERSTROM T, 1989, AM NAT, V133, P281, DOI 10.1086/284918; Fagerstrom T, 1987, FUNCT ECOL, V1, P73, DOI 10.2307/2389708; FAHN A, 1988, NEW PHYTOL, V108, P229, DOI 10.1111/j.1469-8137.1988.tb04159.x; FAJER ED, 1989, OECOLOGIA, V81, P514, DOI 10.1007/BF00378962; FAJER ED, 1989, SCIENCE, V243, P1198, DOI 10.1126/science.243.4895.1198; FARRAR JF, 1991, PLANT CELL ENVIRON, V14, P819, DOI 10.1111/j.1365-3040.1991.tb01445.x; Feeny P, 1976, RECENT ADV PHYTOCHEM, P1, DOI DOI 10.1007/978-1-4684-2646-5_1; FERNANDES GW, 1990, ENVIRON ENTOMOL, V19, P1173, DOI 10.1093/ee/19.5.1173; FIRMAGE DH, 1981, BIOCHEM SYST ECOL, V9, P53, DOI 10.1016/0305-1978(81)90059-4; FOULDS W, 1972, HEREDITY, V28, P181, DOI 10.1038/hdy.1972.23; FOWLER N, 1986, ANNU REV ECOL SYST, V17, P89, DOI 10.1146/annurev.es.17.110186.000513; FOWLER NL, 1985, ECOLOGY, V66, P1580, DOI 10.2307/1938020; FOWLER SV, 1985, AM NAT, V126, P181, DOI 10.1086/284408; FOYER CH, 1987, PLANT PHYSIOL BIOCH, V25, P649; FOYER CH, 1988, PLANT PHYSIOL BIOCH, V26, P483; FRAENKEL GS, 1959, SCIENCE, V129, P1466, DOI 10.1126/science.129.3361.1466; FRISCHKNECHT PM, 1986, PHYTOCHEMISTRY, V25, P613, DOI 10.1016/0031-9422(86)88009-8; FRISCHKNECHT PM, 1987, PHYTOCHEMISTRY, V26, P707, DOI 10.1016/S0031-9422(00)84769-X; FRITZ RS, 1990, OECOLOGIA, V82, P325, DOI 10.1007/BF00317479; FRITZ RS, 1988, ECOLOGY, V69, P8145; FUJIMORI N, 1991, PHYTOCHEMISTRY, V30, P2245, DOI 10.1016/0031-9422(91)83622-R; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; GALE J, 1985, PLANT SOIL, V89, P57, DOI 10.1007/BF02182233; GARTLAN JS, 1980, BIOCHEM SYST ECOL, V8, P401, DOI 10.1016/0305-1978(80)90044-7; GAUDET CL, 1988, NATURE, V334, P242, DOI 10.1038/334242a0; GEORGIADIS NJ, 1989, OECOLOGIA, V81, P316, DOI 10.1007/BF00377077; Gershenzon J, 1984, PHYTOCHEMICAL ADAPTA; GIBBERD R, 1988, OIKOS, V51, P43, DOI 10.2307/3565805; GIFFORD RM, 1984, SCIENCE, V225, P801, DOI 10.1126/science.225.4664.801; GIFFORD RM, 1981, ANNU REV PLANT PHYS, V32, P485, DOI 10.1146/annurev.pp.32.060181.002413; Gill D. E, 1986, PLANT ECOL, P321; GILLILAND MG, 1988, ANN BOT-LONDON, V61, P55, DOI 10.1093/oxfordjournals.aob.a087527; GILMORE AR, 1977, J CHEM ECOL, V3, P667, DOI 10.1007/BF00988066; GIRME JP, 1986, PLASTICITY PLANTS, P5; GLYPHIS JP, 1989, OECOLOGIA, V78, P259, DOI 10.1007/BF00377164; Goldberg D. E., 1990, Perspectives on plant competition., P27; GOTTLIEB OR, 1989, PHYTOCHEMISTRY, V28, P2545, DOI 10.1016/S0031-9422(00)98039-7; GOTTLIEB OR, 1990, PHYTOCHEMISTRY, V29, P1715, DOI 10.1016/0031-9422(90)85002-W; GRAY JC, 1987, ADV BOT RES, V14, P25; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; Grime J. P, 1979, PLANT STRATEGIES VEG; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; Grubb P.J., 1986, P137; Gulmon S. L., 1986, On the economy of plant form and function, P681; GUTSCHICK VP, 1981, AM NAT, V118, P607, DOI 10.1086/283858; HALLE F, 1986, PHILOS T ROY SOC B, V313, P77, DOI 10.1098/rstb.1986.0026; HANOVER JW, 1966, PHYTOCHEMISTRY, V5, P713, DOI 10.1016/S0031-9422(00)83651-1; HANOVER JW, 1966, HEREDITY, V21, P73, DOI 10.1038/hdy.1966.5; HARBORNE JB, 1990, BIOL J LINN SOC, V39, P135, DOI 10.1111/j.1095-8312.1990.tb00508.x; HARDWICK RC, 1986, PHILOS T ROY SOC B, V313, P161, DOI 10.1098/rstb.1986.0031; Harper J. L., 1974, Annual Review of Ecology and Systematics, V5, P419, DOI 10.1146/annurev.es.05.110174.002223; HARPER JL, 1989, OECOLOGIA, V80, P53, DOI 10.1007/BF00789931; HARPER JL, 1979, POPULATION DYNAMICS, P29; HARTWIG UA, 1990, PLANT PHYSIOL, V92, P116, DOI 10.1104/pp.92.1.116; HASLAM E, 1988, J CHEM ECOL, V14, P1789, DOI 10.1007/BF01013477; HASLAM E, 1986, NAT PROD REP, V3, P217, DOI 10.1039/np9860300217; HATCHER PE, 1990, OECOLOGIA, V85, P200, DOI 10.1007/BF00319402; HAUKIOJA E, 1985, OECOLOGIA, V65, P363, DOI 10.1007/BF00378910; HAUKIOJA E, 1990, OECOLOGIA, V82, P238, DOI 10.1007/BF00323540; HAUKIOJA E, 1980, OIKOS, V35, P202, DOI 10.2307/3544428; HAUKIOJA E, 1991, FOREST ECOL MANAG, V39, P237, DOI 10.1016/0378-1127(91)90179-Y; HAUKIOJA E, 1985, ECOLOGY, V66, P1303, DOI 10.2307/1939183; HAUKIOJA E, 1979, OECOLOGIA, V39, P151, DOI 10.1007/BF00348065; HAUKIOJA E, 1990, ANNU REV ENTOMOL, V36, P25; Haukioja E., 1982, 5TH P INT S INS PLAN, P199; HAY ME, 1988, ANNU REV ECOL SYST, V19, P111, DOI 10.1146/annurev.es.19.110188.000551; HEGERHORST DF, 1988, GREAT BASIN NAT, V48, P1; HEGNAUER R, 1988, PHYTOCHEMISTRY, V27, P2423, DOI 10.1016/0031-9422(88)87006-7; HEICHEL GH, 1983, OECOLOGIA, V57, P14, DOI 10.1007/BF00379555; Hendrix S. D., 1988, Plant reproductive ecology: patterns and strategies, P246; HENDRY G, 1986, NEW PHYTOL, V102, P239, DOI 10.1111/j.1469-8137.1986.tb00578.x; HILBERT DW, 1991, ANN BOT-LONDON, V68, P365, DOI 10.1093/oxfordjournals.aob.a088265; HILBERT DW, 1990, ANN BOT-LONDON, V66, P91, DOI 10.1093/oxfordjournals.aob.a088005; HIROSE T, 1988, PHYSIOL PLANTARUM, V72, P185, DOI 10.1111/j.1399-3054.1988.tb06641.x; HIROSE T, 1988, PLANT FORM VEGETATIO, P135; HO LC, 1988, ANNU REV PLANT PHYS, V39, P355, DOI 10.1146/annurev.pp.39.060188.002035; HOFFMANN AJ, 1984, OECOLOGIA, V61, P109, DOI 10.1007/BF00379095; HOFFMANN P, 1985, PHOTOSYNTH RES, V7, P3, DOI 10.1007/BF00032918; HORNER JD, 1988, J CHEM ECOL, V14, P1227, DOI 10.1007/BF01019348; HORNER JD, 1990, BIOCHEM SYST ECOL, V18, P211, DOI 10.1016/0305-1978(90)90062-K; HOSNER JOHN F., 1965, SOIL SCI SOC AMER PROC, V29, P313; HRAZDINA G, 1985, ANN P PHYTOCHEM SOC, V25, P119; HRUTFIORD BF, 1989, J APPL ENTOMOL, V108, P21, DOI 10.1111/j.1439-0418.1989.tb00427.x; HSIAO TC, 1973, ANNU REV PLANT PHYS, V24, P519, DOI 10.1146/annurev.pp.24.060173.002511; HUGHES MA, 1991, HEREDITY, V66, P105, DOI 10.1038/hdy.1991.13; HUGHES PR, 1974, J INSECT PHYSIOL, V20, P1271, DOI 10.1016/0022-1910(74)90232-7; Hunt R, 1978, PLANT GROWTH ANAL; HUSTON M, 1987, AM NAT, V130, P168, DOI 10.1086/284704; IDSO SB, 1988, AGR FOREST METEOROL, V43, P171, DOI 10.1016/0168-1923(88)90090-1; JACOBS M, 1988, SCIENCE, V241, P246; JAHNEN W, 1988, PLANTA, V173, P453, DOI 10.1007/BF00958957; JALAL MAF, 1977, PHYTOCHEMISTRY, V16, P1377, DOI 10.1016/S0031-9422(00)88786-5; JANZEN D H, 1974, Biotropica, V6, P69, DOI 10.2307/2989823; Janzen D. H., 1971, A Rev Ecol Syst, V2, P465, DOI 10.1146/annurev.es.02.110171.002341; Janzen D. H., 1979, HERBIVORES THEIR INT, P331; JANZEN DH, 1966, EVOLUTION, V20, P249, DOI 10.1111/j.1558-5646.1966.tb03364.x; JANZEN DH, 1972, ECOLOGY, V53, P885, DOI 10.2307/1934304; JENSEN RA, 1986, PHYSIOL PLANTARUM, V66, P164, DOI 10.1111/j.1399-3054.1986.tb01251.x; JERLING L, 1985, OIKOS, V45, P150, DOI 10.2307/3565233; JERMY T, 1984, AM NAT, V124, P609, DOI 10.1086/284302; JING SW, 1990, OIKOS, V58, P369, DOI 10.2307/3545228; JOHNSON ND, 1985, OECOLOGIA, V66, P106, DOI 10.1007/BF00378560; JOHNSON ND, 1984, OECOLOGIA, V61, P398, DOI 10.1007/BF00379642; JOHNSON RH, 1990, OECOLOGIA, V84, P103, DOI 10.1007/BF00665602; JONES CG, 1991, PHILOS T ROY SOC B, V333, P273, DOI 10.1098/rstb.1991.0077; Jones DA, 1978, BIOCH ASPECTS PLANT, P21; JUVIK JA, 1982, J AM SOC HORTIC SCI, V107, P1061; KADMON R, 1990, ISRAEL J BOT, V39, P403; KAKES P, 1989, THEOR APPL GENET, V77, P111, DOI 10.1007/BF00292324; KAKES P, 1990, EUPHYTICA, V48, P25; KATO M, 1978, ENTOMOL EXP APPL, V24, P285; Keddy P. A., 1989, COMPETITION; KIM ES, 1991, AM J BOT, V78, P220, DOI 10.2307/2445245; KIMBERLING DN, 1990, OECOLOGIA, V84, P1, DOI 10.1007/BF00665587; KIMURA M, 1989, SOIL SCI PLANT NUTR, V35, P101, DOI 10.1080/00380768.1989.10434741; KOLODNYHIRSCH DM, 1986, ENVIRON ENTOMOL, V15, P1137, DOI 10.1093/ee/15.6.1137; KOOPS AJ, 1991, J PLANT PHYSIOL, V138, P142, DOI 10.1016/S0176-1617(11)80260-9; KOPTUR S, 1985, ECOLOGY, V66, P1639, DOI 10.2307/1938026; KORNER C, 1991, FUNCT ECOL, V5, P162, DOI 10.2307/2389254; KOZLOWSKI TT, 1966, CAN J BOTANY, V44, P827, DOI 10.1139/b66-097; Krischik V.A., 1983, P463; KRISCHIK VA, 1990, OECOLOGIA, V83, P182, DOI 10.1007/BF00317750; Kubo I, 1985, RECENT ADV PHYTOCHEM, V19, P171; KURSAR TA, 1991, BIOTROPICA, V23, P141, DOI 10.2307/2388299; LAINE KM, 1987, OIKOS, V50, P339; LAMBERS H, 1990, CAUSES AND CONSEQUENCES OF VARIATION IN GROWTH RATE AND PRODUCTIVITY OF HIGHER PLANTS, P199; LAMBERS H, 1987, NETH J AGR SCI, V35, P505; LANGENHEIM JH, 1981, HYMENAEA COPAIFERA B, V9, P27; LAPINJOKI SP, 1991, NEW PHYTOL, V117, P219, DOI 10.1111/j.1469-8137.1991.tb04902.x; LARSSON S, 1986, OIKOS, V47, P205, DOI 10.2307/3566047; LEE DW, 1980, BIOTROPICA, V1220, P7523; LEE JA, 1981, NITROGEN ECOLOGICAL, P95; LES DH, 1990, AM J BOT, V77, P453, DOI 10.2307/2444379; LETOURNEAU DK, 1983, OECOLOGIA, V60, P122, DOI 10.1007/BF00379331; LEVIN DA, 1976, ANNU REV ECOL SYST, V7, P121, DOI 10.1146/annurev.es.07.110176.001005; LEVIN DA, 1973, Q REV BIOL, V48, P3, DOI 10.1086/407484; LEVIN DA, 1976, AM NAT, V110, P261, DOI 10.1086/283063; LEWINSOHN E, 1991, PLANT PHYSIOL, V96, P38, DOI 10.1104/pp.96.1.38; LEWINSOHN E, 1991, PLANT PHYSIOL, V96, P44, DOI 10.1104/pp.96.1.44; LIGHTFOOT DC, 1989, OECOLOGIA, V81, P166, DOI 10.1007/BF00379801; LIGHTFOOT DC, 1987, ECOLOGY, V68, P547, DOI 10.2307/1938460; LIJNDROTH RL, 1991, INSECT PLANT INTERAC, V3, P2; LINCOLN DE, 1986, OECOLOGIA, V69, P556, DOI 10.1007/BF00410362; LINCOLN DE, 1984, OECOLOGIA, V64, P173, DOI 10.1007/BF00376867; LINCOLN DE, 1979, BIOCHEM SYST ECOL, V7, P289, DOI 10.1016/0305-1978(79)90006-1; LINCOLN DE, 1978, BIOCHEM SYST ECOL, V6, P21, DOI 10.1016/0305-1978(78)90021-2; LINCOLN DE, 1989, OECOLOGIA, V78, P112, DOI 10.1007/BF00377205; LINDSEY K, 1983, J EXP BOT, V34, P1055, DOI 10.1093/jxb/34.8.1055; LLOYD DG, 1977, BOT REV, V43, P177, DOI 10.1007/BF02860717; LOADER C, 1991, ECOLOGY, V72, P1586, DOI 10.2307/1940958; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Lokar L. C., 1987, Biochemical Systematics and Ecology, V15, P327, DOI 10.1016/0305-1978(87)90007-X; LOOMIS RS, 1990, THEORETICAL PRODUCTI, P105; Loomis W. E., 1953, GROWTH DIFFERENTIATI, P1; Loomis W. E., 1932, P AM SOC HORTIC SCI, V29, P240; LORIO P L JR, 1988, P73; Lorio PL, 1986, TREE PHYSIOL, V2, P301, DOI 10.1093/treephys/2.1-2-3.301; LORIO PL, 1986, FOREST ECOL MANAG, V14, P259, DOI 10.1016/0378-1127(86)90172-6; Louda S. M., 1990, Perspectives on plant competition., P413; LOUDA SM, 1984, ECOLOGY, V65, P1379, DOI 10.2307/1939118; LOVELESS AR, 1962, ANN BOT-LONDON, V26, P551, DOI 10.1093/oxfordjournals.aob.a083814; LUCKNER M, 1977, SECONDARY METABOLISM, P2; LUCKNER M, 1980, ENCYCLOPEDIA PLANT P, V8, P23; LUNDBERG P, 1990, AM NAT, V135, P547, DOI 10.1086/285061; LUXMOORE RJ, 1991, TREE PHYSIOL, V9, P267, DOI 10.1093/treephys/9.1-2.267; LYNN DG, 1990, ANNU REV PLANT PHYS, V41, P497, DOI 10.1146/annurev.pp.41.060190.002433; MACLEAN SF, 1985, OIKOS, V44, P211, DOI 10.2307/3544063; MADDOX GD, 1987, OECOLOGIA, V72, P8, DOI 10.1007/BF00385037; MAFFEI M, 1990, BIOCHEM SYST ECOL, V18, P493, DOI 10.1016/0305-1978(90)90121-U; MAHMOUD A, 1976, NEW PHYTOL, V77, P431, DOI 10.1111/j.1469-8137.1976.tb01532.x; MARGNA U, 1989, J PLANT PHYSIOL, V134, P697, DOI 10.1016/S0176-1617(89)80030-6; MARGNA U, 1977, PHYTOCHEMISTRY, V16, P419, DOI 10.1016/S0031-9422(00)94321-8; MARQUIS RJ, 1991, EVOL TREND PLANT, V5, P23; MARQUIS RJ, 1984, SCIENCE, V226, P537, DOI 10.1126/science.226.4674.537; MARQUIS RJ, 1990, EVOLUTION, V44, P104, DOI 10.1111/j.1558-5646.1990.tb04282.x; MARQUIS RJ, 1992, ECOLOGY, V73, P143, DOI 10.2307/1938727; MARQUIS RJ, 1988, OECOLOGIA, V77, P51, DOI 10.1007/BF00380924; MARSHALL C, 1965, ANN BOT-LONDON, V29, P365, DOI 10.1093/oxfordjournals.aob.a083958; MASCHINSKI J, 1989, AM NAT, V134, P1, DOI 10.1086/284962; MATSON PA, 1984, ECOLOGY, V65, P1517, DOI 10.2307/1939131; Mattson W.J., 1987, P105; Mattson W.J., 1987, P365; MATTSON W J, 1988, P3; Mattson W.J., 1982, RESISTANCE DISEASES, P295; MATTSON WJ, 1980, ANNU REV ECOL SYST, V11, P119, DOI 10.1146/annurev.es.11.110180.001003; MATTSON WJ, 1975, SCIENCE, V190, P515, DOI 10.1126/science.190.4214.515; MATTSON WJ, 1987, BIOSCIENCE, V37, P110, DOI 10.2307/1310365; MATTSON WJ, 1991, FOREST INSECT GUILDS, P53; MATZINGER DF, 1989, CROP SCI, V29, P74, DOI 10.2135/cropsci1989.0011183X002900010018x; MAUFFETTE Y, 1989, OECOLOGIA, V79, P439, DOI 10.1007/BF00378658; McClure JW, 1979, RECENT ADV PHYTOCHEM, V12, P525; MCDERMITT DK, 1981, ANN BOT-LONDON, V48, P275, DOI 10.1093/oxfordjournals.aob.a086125; McDonald AJS, 1986, TREE PHYSIOL, V2, P61, DOI 10.1093/treephys/2.1-2-3.61; MCDOUGAL KM, 1986, BIOCHEM SYST ECOL, V14, P291, DOI 10.1016/0305-1978(86)90104-3; MCGRAW JB, 1989, ECOLOGY, V70, P736, DOI 10.2307/1940224; MCGRAW JB, 1990, TREE PHYSIOL, V7, P247, DOI 10.1093/treephys/7.1-2-3-4.247; MCINTYRE GI, 1987, CAN J BOT, V65, P1287, DOI 10.1139/b87-181; MCKEY D, 1978, SCIENCE, V202, P61; MCKEY D, 1984, BIOTROPICA, V16, P81, DOI 10.2307/2387840; MCKEY D, 1974, AM NAT, V108, P305, DOI 10.1086/282909; MCKEY D, 1979, HERBIVORES THEIR INT, P56; MCLAUGHLIN SB, 1979, FOREST SCI, V25, P361; MCLAUGHLIN SB, 1980, CAN J FOREST RES, V10, P379, DOI 10.1139/x80-063; MCLAUGHLIN SB, 1979, CAN J BOT, V57, P1407, DOI 10.1139/b79-175; MCNAUGHTON SJ, 1988, BIOSCIENCE, V38, P794, DOI 10.2307/1310789; MCNAUGHTON SJ, 1983, OIKOS, V40, P329, DOI 10.2307/3544305; MCNAUGHTON SJ, 1984, AM NAT, V124, P863, DOI 10.1086/284321; MCNAUGHTON SJ, 1985, ECOLOGY, V66, P1617, DOI 10.2307/1938024; MEINZER FC, 1990, FUNCT ECOL, V4, P579, DOI 10.2307/2389325; MERSEY BG, 1986, CAN J BOT, V64, P1039, DOI 10.1139/b86-141; MEYER GA, 1987, OECOLOGIA, V72, P527, DOI 10.1007/BF00378978; MIHALIAK CA, 1985, OECOLOGIA, V66, P423, DOI 10.1007/BF00378309; MIHALIAK CA, 1987, J CHEM ECOL, V13, P2059, DOI 10.1007/BF01012871; MIHALIAK CA, 1989, BIOCHEM SYST ECOL, V17, P529, DOI 10.1016/0305-1978(89)90095-1; MIHALIAK CA, 1989, J CHEM ECOL, V15, P1579, DOI 10.1007/BF01012385; MIHALIAK CA, 1991, OECOLOGIA, V87, P373, DOI 10.1007/BF00634594; MIHALIAK CA, 1989, OECOLOGIA, V80, P122, DOI 10.1007/BF00789940; MOLE S, 1988, J CHEM ECOL, V14, P1, DOI 10.1007/BF01022527; Mooney H. A., 1972, Annual Review of Ecology and Systematics, V3, P315, DOI 10.1146/annurev.es.03.110172.001531; MOONEY HA, 1974, OECOLOGIA, V14, P295, DOI 10.1007/BF00384574; MOONEY HA, 1982, BIOSCIENCE, V32, P198, DOI 10.2307/1308943; MOONEY HA, 1970, EVOLUTION, V24, P292, DOI 10.1111/j.1558-5646.1970.tb01762.x; MOONEY HA, 1983, PLANT RESISTANCE INS; MORAN N, 1980, J THEOR BIOL, V86, P247, DOI 10.1016/0022-5193(80)90004-1; MORELAND DE, 1988, PHYTOCHEMISTRY, V27, P3359, DOI 10.1016/0031-9422(88)80732-5; MORROW PA, 1978, SCIENCE, V201, P1244, DOI 10.1126/science.201.4362.1244; MULLER RN, 1989, OECOLOGIA, V79, P563, DOI 10.1007/BF00378676; MULLER RN, 1987, OECOLOGIA, V72, P211, DOI 10.1007/BF00379270; MUZIKA RM, 1989, OECOLOGIA, V80, P485, DOI 10.1007/BF00380070; MYSTER RW, 1989, OIKOS, V56, P145, DOI 10.2307/3565329; NEALES TF, 1968, BOT REV, V34, P107, DOI 10.1007/BF02872604; NEUMANN G, 1991, J PLANT PHYSIOL, V138, P263, DOI 10.1016/S0176-1617(11)80285-3; NEUVONEN S, 1987, OECOLOGIA, V74, P363, DOI 10.1007/BF00378931; NEUVONEN S, 1984, OECOLOGIA, V63, P71, DOI 10.1007/BF00379787; NICHOLSORIANS CM, 1991, OECOLOGIA, V86, P552, DOI 10.1007/BF00318322; NIEMELA P, 1984, Z ANGEW ENTOMOL, V98, P33; NIEMELA P, 1991, J ANIM ECOL, V60, P683, DOI 10.2307/5305; NITAO JK, 1987, ECOLOGY, V68, P521, DOI 10.2307/1938457; NOITSAKIS B, 1992, THEOR APPL GENET, V83, P443, DOI 10.1007/BF00226532; NOWACKI E, 1976, BIOCH PHYSL PFLANZ B, V169, pS231; NUNEZFARFAN J, 1989, OIKOS, V54, P71; ODOWD DJ, 1991, TRENDS ECOL EVOL, V6, P179, DOI 10.1016/0169-5347(91)90209-G; ODOWD DJ, 1989, BIOL J LINN SOC, V37, P191, DOI 10.1111/j.1095-8312.1989.tb01901.x; OERTLI JJ, 1990, ACTA OECOL, V11, P281; OESTERHELD M, 1988, OECOLOGIA, V77, P181, DOI 10.1007/BF00379184; OKSANEN L, 1990, PERSPECTIVES PLANT C; ORIANS GH, 1974, AM NAT, V108, P581, DOI 10.1086/282937; Osterheld M, 1991, OECOLOGIA, V85, P305; OWENSMITH N, 1987, ECOLOGY, V68, P319, DOI 10.2307/1939263; PAIGE KN, 1987, AM NAT, V129, P407, DOI 10.1086/284645; PALO RT, 1984, J CHEM ECOL, V10, P499, DOI 10.1007/BF00988096; Pasteels J.M., 1988, P235; PATRICK JW, 1988, HORTSCIENCE, V23, P33; PAULISSEN MA, 1987, AM MIDL NAT, V117, P439, DOI 10.2307/2425987; PEARCY RW, 1987, BIOSCIENCE, V37, P21, DOI 10.2307/1310174; PEARSON DL, 1989, OIKOS, V54, P251, DOI 10.2307/3565277; PEET RK, 1987, BIOSCIENCE, V37, P586, DOI 10.2307/1310669; PETERS NK, 1986, SCIENCE, V233, P977, DOI 10.1126/science.3738520; PETERSON SC, 1987, ECOLOGY, V68, P1268, DOI 10.2307/1939211; PHILLIPS R, 1977, J EXP BOT, V28, P785, DOI 10.1093/jxb/28.4.785; PIENE H, 1984, CAN J FOREST RES, V14, P238, DOI 10.1139/x84-046; PIENE H, 1980, FOREST SCI, V26, P665; PIMENTEL D, 1988, OIKOS, V53, P289, DOI 10.2307/3565527; PIZZI A, 1986, WOOD SCI TECHNOL, V20, P119; PODSTOLSKI A, 1981, BIOL PLANTARUM, V23, P120, DOI 10.1007/BF02878418; POLLARD AJ, 1984, NEW PHYTOL, V97, P507, DOI 10.1111/j.1469-8137.1984.tb03615.x; POLLOCK CJ, 1990, J AGR SCI, V115, P1, DOI 10.1017/S0021859600073834; POORTER H, 1990, CAUSES AND CONSEQUENCES OF VARIATION IN GROWTH RATE AND PRODUCTIVITY OF HIGHER PLANTS, P45; POORTER H, 1990, OECOLOGIA, V83, P553, DOI 10.1007/BF00317209; POORTER H, 1990, PLANT PHYSIOL, V94, P621, DOI 10.1104/pp.94.2.621; PORTER AJR, 1991, ANN APPL BIOL, V118, P461, DOI 10.1111/j.1744-7348.1991.tb05647.x; POTTER DA, 1986, OECOLOGIA, V69, P217, DOI 10.1007/BF00377625; POTTER JR, 1977, PLANT PHYSIOL, V59, P10, DOI 10.1104/pp.59.1.10; POULTON JE, 1990, PLANT PHYSIOL, V94, P401, DOI 10.1104/pp.94.2.401; PREMACHANDRA GS, 1991, J EXP BOT, V42, P167, DOI 10.1093/jxb/42.2.167; PRICE PW, 1991, OIKOS, V62, P244, DOI 10.2307/3545270; PRICE PW, 1980, ANNU REV ECOL SYST, V11, P41, DOI 10.1146/annurev.es.11.110180.000353; PRICE PW, 1989, J CHEM ECOL, V15, P1117, DOI 10.1007/BF01014816; PRINS AH, 1990, ACTA BOT NEERL, V39, P275, DOI 10.1111/j.1438-8677.1990.tb01397.x; PRINS AH, 1989, NEW PHYTOL, V111, P725, DOI 10.1111/j.1469-8137.1989.tb02368.x; PRINS AH, 1990, OECOLOGIA, V83, P325, DOI 10.1007/BF00317555; PUTTICK GM, 1986, OECOLOGIA, V68, P589, DOI 10.1007/BF00378776; RABE E, 1990, J HORTIC SCI, V65, P231; RAMP PF, 1988, AM MIDL NAT, V119, P420, DOI 10.2307/2425825; RAO KS, 1988, ANN BOT-LONDON, V62, P575, DOI 10.1093/oxfordjournals.aob.a087696; Raupp M.J., 1983, P91; RAUPP MJ, 1989, OECOLOGIA, V80, P154, DOI 10.1007/BF00380144; RAUPP MJ, 1986, SCIENCE, V232, P1408, DOI 10.1126/science.232.4756.1408; RAUSHER MD, 1980, ECOLOGY, V61, P905, DOI 10.2307/1936760; RAUSHER MD, 1989, EVOLUTION, V43, P563, DOI 10.1111/j.1558-5646.1989.tb04252.x; READER RJ, 1990, FUNCT ECOL, V4, P573, DOI 10.2307/2389324; READER RJ, 1989, J ECOL, V77, P673, DOI 10.2307/2260977; REDDY AR, 1988, J PLANT PHYSIOL, V133, P152; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; REEKIE EG, 1987, AM NAT, V129, P897, DOI 10.1086/284682; REGO TJ, 1986, AUST J PLANT PHYSIOL, V13, P499, DOI 10.1071/PP9860499; REHR SS, 1973, J ANIM ECOL, V42, P405, DOI 10.2307/3294; REICHARDT PB, 1984, OECOLOGIA, V65, P58, DOI 10.1007/BF00384463; REICHARDT PB, 1990, J CHEM ECOL, V16, P1961, DOI 10.1007/BF01020508; REICHARDT PB, 1991, OECOLOGIA, V88, P401, DOI 10.1007/BF00317585; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DN, 1986, EVOLUTION, V40, P1338, DOI 10.1111/j.1558-5646.1986.tb05757.x; RHIZOPOULOU S, 1991, J HORTIC SCI, V66, P119, DOI 10.1080/00221589.1991.11516133; RHOADES DF, 1977, BIOCHEM SYST ECOL, V5, P281, DOI 10.1016/0305-1978(77)90027-8; RHOADES DF, 1985, AM NAT, V125, P205, DOI 10.1086/284338; Rhoades DF, 1976, RECENT ADV PHYTOCHEM, V10, P168, DOI DOI 10.1007/978-1-4684-2646-54; RHOADES DF, 1979, HERBIVORES THEIR INT, P3; RHODES MJC, 1985, ANN P PHYTOCHEM SOC, V25, P99; RISCH SJ, 1981, NATURE, V291, P149, DOI 10.1038/291149a0; ROBINSON D, 1986, ANN BOT-LONDON, V58, P841, DOI 10.1093/oxfordjournals.aob.a087266; ROBINSON T, 1974, SCIENCE, V184, P430, DOI 10.1126/science.184.4135.430; ROCKWOOD LL, 1973, ECOLOGY, V54, P1363, DOI 10.2307/1934200; ROOM PM, 1989, OIKOS, V54, P92, DOI 10.2307/3565901; ROSS DW, 1990, FOREST SCI, V36, P719; ROUSI M, 1987, HOLARCTIC ECOL, V10, P60; ROUSI M, 1991, AM NAT, V137, P64, DOI 10.1086/285146; ROY J, 1990, J CHEM ECOL, V16, P735, DOI 10.1007/BF01016484; SACCHI CF, 1988, ECOLOGY, V69, P2021, DOI 10.2307/1941180; Sakuta M, 1987, CELL CULTURE SOMATIC, P97; SANLAVILLE C, 1988, BIOCHEM SYST ECOL, V16, P269, DOI 10.1016/0305-1978(88)90006-3; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; SCHLICHTING CD, 1986, BIOL J LINN SOC, V29, P37, DOI 10.1111/j.1095-8312.1986.tb01769.x; SCHLICHTING CD, 1989, BIOSCIENCE, V39, P460, DOI 10.2307/1311138; SCHMID B, 1990, OECOLOGIA, V84, P9, DOI 10.1007/BF00665588; SCHOENER TW, 1988, OIKOS, V53, P253, DOI 10.2307/3566071; Schultz J. C., 1983, Plant resistance to insects. Proceedings of a symposium held at the 183rd Meeting of the American Chemical Society at Las Vegas, Nevada, from 28 March to 2 April 1982, P37; Schultz J.C., 1983, P61; SCHULTZ JC, 1982, SCIENCE, V217, P149, DOI 10.1126/science.217.4555.149; SCRIBER JM, 1988, ISI ATL SCI-ANIM PL, V1, P117; SEIGLER D, 1976, AM NAT, V110, P101, DOI 10.1086/283050; SEIGLER DS, 1977, BIOCHEM SYST ECOL, V5, P195, DOI 10.1016/0305-1978(77)90004-7; SELMAR D, 1988, PLANT PHYSIOL, V86, P711, DOI 10.1104/pp.86.3.711; SHAIN L, 1982, PHYTOPATHOLOGY, V72, P877; SHELDON SP, 1987, ECOLOGY, V68, P1920, DOI 10.2307/1939883; SHIPLEY B, 1988, J ECOL, V76, P1101, DOI 10.2307/2260637; SIBLY RM, 1986, J THEOR BIOL, V118, P247, DOI 10.1016/S0022-5193(86)80137-0; SILKSTONE BE, 1987, OECOLOGIA, V74, P149, DOI 10.1007/BF00377360; SIMMS EL, 1987, AM NAT, V130, P570, DOI 10.1086/284731; SIMMS EL, 1990, TRENDS ECOL EVOL, V5, P356, DOI 10.1016/0169-5347(90)90094-T; SIMMS EL, 1989, EVOLUTION, V43, P573, DOI 10.1111/j.1558-5646.1989.tb04253.x; Simpson S. J., 1990, INSECT PLANT INTERAC, VII; SINCLAIR TR, 1975, SCIENCE, V189, P565, DOI 10.1126/science.189.4202.565; SINGH N, 1991, PLANT CELL PHYSIOL, V32, P803; SLANSKY F, 1977, ECOL MONOGR, V47, P209, DOI 10.2307/1942617; SLANSKY F, IN PRESS HERBIVORES, V2; Slansky F. Jr, 1985, P87; SMITH LL, 1990, ECOLOGY, V71, P107, DOI 10.2307/1940251; SMITH T, 1989, VEGETATIO, V83, P489; SMITHGILL SJ, 1983, AM ZOOL, V23, P47; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; SOLBRIG OT, 1981, EVOLUTION, V35, P1080, DOI 10.1111/j.1558-5646.1981.tb04977.x; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1986, OECOLOGIA, V70, P544, DOI 10.1007/BF00379901; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Southwood TRE, 1973, INSECT PLANT RELATIO, P3; SPRUGEL DG, 1989, AM NAT, V133, P465, DOI 10.1086/284930; STAFFORD RA, 1989, AM MIDL NAT, V121, P225, DOI 10.2307/2426026; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEPHENSON AG, 1980, ECOLOGY, V61, P57, DOI 10.2307/1937155; STRAIN BR, 1985, BIOGEOCHEMISTRY, V1, P219, DOI 10.1007/BF02187200; STRAUSS SY, 1991, ECOLOGY, V72, P543, DOI 10.2307/2937195; STUHLFAUTH T, 1987, PHYTOCHEMISTRY, V26, P2735, DOI 10.1016/S0031-9422(00)83581-5; SWAIN T, 1977, ANNU REV PLANT PHYS, V28, P479, DOI 10.1146/annurev.pp.28.060177.002403; SZANIAWSKI R K, 1987, Plant Physiology and Biochemistry (Paris), V25, P63; TALLAMY DW, 1989, AM NAT, V133, P766, DOI 10.1086/284952; TALLAMY DW, 1985, ECOLOGY, V66, P1574, DOI 10.2307/1938019; TAYLOR DR, 1990, OIKOS, V58, P239, DOI 10.2307/3545432; TAYLOR GJ, 1989, PLANT PHYSIOL BIOCH, V27, P605; TAYLOR MFJ, 1989, FUNCT ECOL, V3, P407, DOI 10.2307/2389614; THOMPSON K, 1981, AM NAT, V117, P205, DOI 10.1086/283700; THRELFALL DR, 1988, PHYTOCHEMISTRY, V27, P2567, DOI 10.1016/0031-9422(88)87028-6; TILMAN D, 1985, AM NAT, V125, P827, DOI 10.1086/284382; TILMAN D, 1989, FUNCT ECOL, V3, P215, DOI 10.2307/2389303; TILMAN D, 1990, OIKOS, V58, P3, DOI 10.2307/3565355; TILMAN D, 1978, ECOLOGY, V59, P686, DOI 10.2307/1938771; TILMAN D, 1989, FUNCT ECOL, V3, P425, DOI 10.2307/2389616; TILMAN D, 1986, PLANT ECOLOGY; Tilman D., 1988, PLANT STRATEGIES DYN; Torssell K. B. G., 1983, NATURAL PRODUCT CHEM; TUOMI J, 1989, TRENDS ECOL EVOL, V4, P209, DOI 10.1016/0169-5347(89)90075-X; TUOMI J, 1988, P57; TUOMI J, 1988, AM NAT, V132, P602, DOI 10.1086/284875; TUOMI J, 1990, OIKOS, V59, P399, DOI 10.2307/3545152; TUOMI J, 1983, AM ZOOL, V23, P25; TUOMI J, 1989, OIKOS, V54, P227, DOI 10.2307/3565271; TUOMI J, 1984, OECOLOGIA, V61, P208, DOI 10.1007/BF00396762; TURLINGS TCJ, 1990, SCIENCE, V250, P1251, DOI 10.1126/science.250.4985.1251; TURNER NC, 1977, NEW PHYTOL, V78, P71, DOI 10.1111/j.1469-8137.1977.tb01544.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANANDEL J, 1977, J ECOL, V65, P747, DOI 10.2307/2259377; VANDERMEIJDEN E, 1988, OIKOS, V51, P355, DOI 10.2307/3565318; VANHORNE B, 1988, CAN J FOREST RES, V18, P90; VANNOORDWIJK AJ, 1989, BIOSCIENCE, V39, P453, DOI 10.2307/1311137; VERKAAR HJ, 1986, NEW PHYTOL, V104, P121, DOI 10.1111/j.1469-8137.1986.tb00640.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; VIETS FG, 1972, WATER DEFICITS PLANT, V3, P217, DOI DOI 10.1139/CGJ-2014-0090; VITOUSEK P, 1982, AM NAT, V119, P553, DOI 10.1086/283931; VOGELMANN AF, 1987, BOT GAZ, V148, P468, DOI 10.1086/337678; WAGNER GJ, 1991, PLANT PHYSIOL, V96, P675, DOI 10.1104/pp.96.3.675; WAGNER M R, 1988, P141; WALLACE CS, 1979, OECOLOGIA, V44, P34, DOI 10.1007/BF00346394; WALLNER WE, 1979, ANN ENTOMOL SOC AM, V72, P62, DOI 10.1093/aesa/72.1.62; WARDLAW IF, 1990, NEW PHYTOL, V116, P341, DOI 10.1111/j.1469-8137.1990.tb00524.x; Wareing P. F., 1981, GROWTH DIFFERENTIATI; WAREING PF, 1968, NATURE, V220, P453, DOI 10.1038/220453a0; WAREING PF, 1975, PHOTOSYNTHESIS PRODU, P481; WARGO PM, 1977, FOREST SCI, V23, P485; WARING RH, 1985, OECOLOGIA, V66, P157, DOI 10.1007/BF00379849; WARING RH, 1985, ECOLOGY, V66, P889, DOI 10.2307/1940551; Waterman P.G., 1989, P107; WATERMAN PG, 1984, J CHEM ECOL, V10, P387, DOI 10.1007/BF00988087; WATSON MA, 1984, ANNU REV ECOL SYST, V15, P233, DOI 10.1146/annurev.es.15.110184.001313; WELDEN CW, 1986, Q REV BIOL, V61, P23, DOI 10.1086/414724; WELKER JM, 1987, OECOLOGIA, V74, P330, DOI 10.1007/BF00378925; WELKER JM, 1985, OECOLOGIA, V67, P209, DOI 10.1007/BF00384285; Welter S.C., 1989, P135; WERNER PA, 1975, OECOLOGIA, V20, P197, DOI 10.1007/BF00347472; WERNER RA, 1979, CAN ENTOMOL, V111, P317, DOI 10.4039/Ent111317-3; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WESTOBY M, 1984, ADV ECOL RES, V14, P167, DOI 10.1016/S0065-2504(08)60171-3; WESTOBY M, 1989, TRENDS ECOL EVOL, V4, P115, DOI 10.1016/0169-5347(89)90062-1; WHITE J, 1979, ANNU REV ECOL SYST, V10, P109, DOI 10.1146/annurev.es.10.110179.000545; White J., 1984, PERSPECTIVES PLANT P, P15; WHITE TCR, 1984, OECOLOGIA, V63, P90, DOI 10.1007/BF00379790; WHITE TCR, 1978, OECOLOGIA, V33, P71, DOI 10.1007/BF00376997; WHITHAM TG, 1981, OECOLOGIA, V49, P287, DOI 10.1007/BF00347587; WHITHAM TG, 1984, NEW ECOLOGY NOVEL AP, P15; Whitman D.W., 1990, Chemoecology, V1, P69, DOI 10.1007/BF01325231; WHITTAKER RH, 1971, SCIENCE, V171, P757, DOI 10.1126/science.171.3973.757; Wiermann R, 1981, BIOCH PLANTS, V7, P85; WILLIAMS DH, 1989, J NAT PROD, V52, P1189, DOI 10.1021/np50066a001; WILLIAMS K, 1987, PLANT CELL ENVIRON, V10, P725; WILLIAMS KS, 1983, OECOLOGIA, V56, P323, DOI 10.1007/BF00379707; WILLIAMS RB, 1981, OECOLOGIA, V48, P145, DOI 10.1007/BF00347956; WILLIAMS RD, 1989, PHYTOCHEMISTRY, V28, P2085, DOI 10.1016/S0031-9422(00)97924-X; WILSON MF, 1991, AM MIDL NAT, V126, P111; WILSON SD, 1986, ECOLOGY, V67, P1236, DOI 10.2307/1938679; WILSON SD, 1986, AM NAT, V127, P862, DOI 10.1086/284530; WINK M, 1985, Z NATURFORSCH C, V40, P767; WISDOM CS, 1989, J ECOL, V77, P685, DOI 10.2307/2260978; WISDOM CS, 1985, J CHEM ECOL, V11, P1553, DOI 10.1007/BF01012201; WONG M, 1990, J ECOL, V78, P579, DOI 10.2307/2260885; WOODHEAD S, 1981, J CHEM ECOL, V7, P1035, DOI 10.1007/BF00987625; WRATTEN SD, 1984, OECOLOGIA, V61, P372, DOI 10.1007/BF00379637; WRATTEN SD, 1988, BIOL J LINN SOC, V35, P339, DOI 10.1111/j.1095-8312.1988.tb00475.x; WRIGHT LC, 1984, CAN ENTOMOL, V116, P293, DOI 10.4039/Ent116293-3; WRUBEL RP, 1990, ENTOMOL EXP APPL, V54, P125, DOI 10.1111/j.1570-7458.1990.tb01321.x; ZANGERL AR, 1987, ECOLOGY, V68, P516, DOI 10.2307/1938456; ZANGERL AR, 1990, ECOLOGY, V71, P1933, DOI 10.2307/1937601; ZOBEL AM, 1990, J CHEM ECOL, V16, P693, DOI 10.1007/BF01016480; ZOBEL AM, 1990, J CHEM ECOL, V16, P1623, DOI 10.1007/BF01014095 655 2303 2408 39 957 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0033-5770 Q REV BIOL Q. Rev. Biol. SEP 1992 67 3 283 335 10.1086/417659 53 Biology Life Sciences & Biomedicine - Other Topics JR525 WOS:A1992JR52500002 2019-02-26 J REAL, LA; ELLNER, S REAL, LA; ELLNER, S LIFE-HISTORY EVOLUTION IN STOCHASTIC ENVIRONMENTS - A GRAPHICAL MEAN-VARIANCE APPROACH ECOLOGY English Article ENVIRONMENTAL VARIABILITY; ITEROPARITY; LIFE HISTORY EVOLUTION; REPRODUCTIVE EFFORT; RISK; STOCHASTICITY NATURAL-SELECTION; VARIABILITY; STRATEGIES; DISPERSAL; BEHAVIOR; RISK A small-variance approximation technique for examining the evolution of reproductive effort is developed, using a decomposition of fitness into arithmetic mean and variance components. Trait values often translate nonlinearly into fitness components such as offspring number or growth rate. A nonlinear relationship between phenotypic traits and fitness implies that the expected value of the fitness component will be a function of the arithmetic mean and variance in the traits influencing a given fitness component. The maximum expression of traits is often, however, a function of reproductive effort. Reproductive effort then influences the mean and variance in traits that affect fitness. Consequently, we can use these techniques to determine the optimal allocation of resources to current reproduction via their effects on the distribution of trait values. The optimal pattern of allocation is influenced by the quality and variability of the habitat and by the curvature of the trait-fitness relationship. The full range of adaptive responses, from semelparity to different degrees of iteroparity, can be predicted from the model. We extend the model to cases where reproductive effort can be partitioned into different offspring types, for example, offspring produced through chasmogamous and cleistogamous flowers. When more than one type of offspring is produced, then reproductive risks can be spread across offspring types and the conditions favoring semelparity are less restrictive. Semelparity is especially favored if the offspring types exhibit negative covariance in their contributions to growth rate. This new technique appears generally consistent with traditional life history theory, but can lead to some new insights that result from the explicit partitioning of the effects of central tendency and variability in trait-fitness relationships. N CAROLINA STATE UNIV,DEPT STAT,BIOMATH PROGRAM,RALEIGH,NC 27695 REAL, LA (reprint author), UNIV N CAROLINA,DEPT BIOL,CHAPEL HILL,NC 27599, USA. BELL G, 1982, MASTERPIECE NATURE; CARACO T, 1980, ECOLOGY, V61, P119, DOI 10.2307/1937162; CARACO T, 1985, ANIM BEHAV, V33, P216, DOI 10.1016/S0003-3472(85)80135-4; CASWELL H, 1987, ECOLOGY, V68, P1045, DOI 10.2307/1938376; CHANG WW, 1983, AM ECON REV, V73, P420; COHEN D, 1968, J ECOL, V56, P219, DOI 10.2307/2258075; COHEN D, 1966, J THEOR BIOL, V12, P110; EKBOHM G, 1980, AM NAT, V115, P445, DOI 10.1086/283572; Ellner S., 1989, Comments on Theoretical Biology, V1, P129; FRANK SA, 1990, AM NAT, V136, P244, DOI 10.1086/285094; GILLESPIE JH, 1974, GENETICS, V76, P601; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; HASTINGS A, 1979, P NATL ACAD SCI USA, V76, P4700, DOI 10.1073/pnas.76.9.4700; HENDERSON JM, 1980, MICROECONOMIC THEORY; Intriligator Michael D, 1971, MATH OPTIMIZATION EC; JANZEN DH, 1977, ANN MO BOT GARD, V64, P706, DOI 10.2307/2395296; KAITALA V, 1989, EVOL ECOL, V3, P283, DOI 10.1007/BF02285260; LACEY EP, 1983, AM NAT, V122, P114, DOI 10.1086/284122; LEVIN SA, 1984, THEOR POPUL BIOL, V26, P165, DOI 10.1016/0040-5809(84)90028-5; Levins R., 1968, EVOLUTION CHANGING E; REAL L, 1982, ECOLOGY, V63, P1617, DOI 10.2307/1940101; REAL L, 1986, ANNU REV ECOL SYST, V17, P371, DOI 10.1146/annurev.es.17.110186.002103; REAL L, 1980, LIMITS ACTION, P34; REAL LA, 1980, AM NAT, V115, P623, DOI 10.1086/283588; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; SOUTHWOOD TRE, 1962, BIOL REV, V37, P171, DOI 10.1111/j.1469-185X.1962.tb01609.x; Stephens D, 1987, FORAGING THEORY; Tobin James, 1958, REV ECON STUD, V67, P65, DOI [DOI 10.2307/2296205, 10.2307/2296205]; VENABLE DL, 1985, AM NAT, V126, P577, DOI 10.1086/284440; Williams GC, 1975, SEX EVOLUTION 32 32 32 0 16 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology AUG 1992 73 4 1227 1236 10.2307/1940671 10 Ecology Environmental Sciences & Ecology JE984 WOS:A1992JE98400008 2019-02-26 J FERRIERE, R; CLOBERT, J FERRIERE, R; CLOBERT, J EVOLUTIONARILY STABLE AGE AT 1ST REPRODUCTION IN A DENSITY-DEPENDENT MODEL JOURNAL OF THEORETICAL BIOLOGY English Article LIFE-HISTORY EVOLUTION; EBENMAN MODEL; POPULATION; MATURITY; COMPETITION; MAMMALS; PREDICTIONS; MORTALITY; STABILITY; DYNAMICS ECOLE NORM SUPER,CTR MATH & APPLICAT,DEPT MATH,F-94235 CACHAN,FRANCE FERRIERE, R (reprint author), ECOLE NORM SUPER,ECOL LAB,CNRS,URA 258,46 RUE ULM,F-75230 PARIS 05,FRANCE. Ferriere, Regis/S-8050-2017 Ferriere, Regis/0000-0002-5806-5566 BEGON M, 1984, EVOLUTIONARY ECOLOGY, P175; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BERRYMAN AA, 1989, TRENDS ECOL EVOL, V4, P26, DOI 10.1016/0169-5347(89)90014-1; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; Clobert J., 1990, POPULATION BIOL PASS, P199; CUSHING JM, 1989, B MATH BIOL, V51, P687, DOI 10.1007/BF02459656; CUSHING JM, 1991, J MATH BIOL, V29, P457, DOI 10.1007/BF00160472; DEJONG HG, 1990, ORG CONSTRAINTS DYNA, P293; EBENMAN B, 1988, J THEOR BIOL, V131, P389, DOI 10.1016/S0022-5193(88)80036-5; FERRIERE R, 1991, ACTA OECOL, V12, P697; FERRIERE R, IN PRESS P R SOC L B; Fowler C.W., 1981, P437; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; GATTO M, IN PRESS THEOR POP B; GATTO M, IN PRESS 1ST P EUR C; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HARVEY PH, 1989, OXFORD SURVEYS EVOLU, V6, pCH13; HASSELL MP, 1976, J ANIM ECOL, V45, P471, DOI 10.2307/3886; HASTINGS A, 1978, J THEOR BIOL, V75, P527, DOI 10.1016/0022-5193(78)90361-2; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LAURIE WA, 1990, J ANIM ECOL, V59, P529, DOI 10.2307/4879; LEBRETON JD, 1990, POPULATION BIOL PASS, P89; LOREAU M, 1990, J THEOR BIOL, V144, P567, DOI 10.1016/S0022-5193(05)80090-6; MASSOT M, IN PRESS ECOLOGY; MAY RM, 1976, AM NAT, V110, P573, DOI 10.1086/283092; METZ JAJ, 1992, TRENDS ECOL EVOL; METZ JAJ, 1990, DYNAMISCHE SYSTEMEN, P320; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; NAULLEAU G, 1981, Amphibia-Reptilia, V2, P51, DOI 10.1163/156853881X00285; ORZACK SH, 1989, AM NAT, V125, P901; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; SAINTGIRONS H, 1957, B BIOL FR BELG, V151, P284; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; Stearns SC., 1992, EVOLUTION LIFE HIST; SUGIHARA G, 1990, NATURE, V344, P734, DOI 10.1038/344734a0; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; THOMAS WR, 1980, ECOLOGY, V61, P1312, DOI 10.2307/1939039; TULJAPURKAR SD, 1990, LECTURE NOTES BIOMAT, V85; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435 47 28 28 0 9 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-5193 J THEOR BIOL J. Theor. Biol. JUL 21 1992 157 2 253 267 10.1016/S0022-5193(05)80624-1 15 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology JF114 WOS:A1992JF11400007 1434675 2019-02-26 J VANCE, RR VANCE, RR OPTIMAL SOMATIC GROWTH AND REPRODUCTION IN A LIMITED, CONSTANT ENVIRONMENT - ORGANISMS WITH DETERMINATE GROWTH JOURNAL OF THEORETICAL BIOLOGY English Article OPTIMAL RESOURCE-ALLOCATION; LIFE-HISTORY STRATEGIES; STABLE STRATEGIES; ANNUAL PLANTS; EVOLUTION; MODEL; SELECTION; ENERGY; TIME; SIZE VANCE, RR (reprint author), UNIV CALIF LOS ANGELES,LOS ANGELES,CA 90024, USA. Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHIARIELLO N, 1984, ECOLOGY, V65, P1290, DOI 10.2307/1938334; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Ehrlich PR, 1987, SCI ECOLOGY; ENGEN S, 1988, J THEOR BIOL, V130, P229, DOI 10.1016/S0022-5193(88)80098-5; HASTINGS A, 1978, J THEOR BIOL, V75, P527, DOI 10.1016/0022-5193(78)90361-2; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; KING D, 1982, THEOR POPUL BIOL, V21, P194, DOI 10.1016/0040-5809(82)90013-2; KING D, 1983, ECOLOGY, V64, P16, DOI 10.2307/1937324; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; KOSLOWSKI J, 1987, EVOL ECOL, V1, P214; KOZLOWSKI J, 1988, THEOR POPUL BIOL, V34, P118, DOI 10.1016/0040-5809(88)90037-8; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LAWLOR LR, 1976, AM NAT, V110, P79, DOI 10.1086/283049; LEON JA, 1976, J THEOR BIOL, V60, P301, DOI 10.1016/0022-5193(76)90062-X; MAC ARTHUR ROBERT H., 1967; METZ JAJ, 1968, LECTURE NOTES BIOMAT, V68; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pollard J. H., 1973, MATH MODELS GROWTH H; PRICE G, 1973, NATURE, V246, P15; PUGLIESE A, 1987, J THEOR BIOL, V126, P33, DOI 10.1016/S0022-5193(87)80099-1; PUGLIESE A, 1988, THEOR POPUL BIOL, V34, P215, DOI 10.1016/0040-5809(88)90022-6; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; VANCE RR, 1992, J THEOR BIOL, V157, P51, DOI 10.1016/S0022-5193(05)80756-8; VANCE RR, 1988, THEOR POPUL BIOL, V33, P199, DOI 10.1016/0040-5809(88)90013-5; VINCENT TL, 1980, THEOR POPUL BIOL, V17, P215, DOI 10.1016/0040-5809(80)90007-6; ZIOLKO M, 1983, MATH BIOSCI, V64, P127, DOI 10.1016/0025-5564(83)90032-9 31 4 4 1 3 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-5193 J THEOR BIOL J. Theor. Biol. JUL 7 1992 157 1 31 50 10.1016/S0022-5193(05)80755-6 20 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology JD703 WOS:A1992JD70300003 2019-02-26 J VANCE, RR VANCE, RR OPTIMAL SOMATIC GROWTH AND REPRODUCTION IN A LIMITED, CONSTANT ENVIRONMENT - THE GENERAL-CASE JOURNAL OF THEORETICAL BIOLOGY English Article LIFE-HISTORY STRATEGIES; STABLE STRATEGIES; ANNUAL PLANTS; ALLOCATION; EVOLUTION; MODEL; ENERGY; TIME VANCE, RR (reprint author), UNIV CALIF LOS ANGELES,DEPT BIOL,LOS ANGELES,CA 90024, USA. CHIARIELLO N, 1984, ECOLOGY, V65, P1290, DOI 10.2307/1938334; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; HASTINGS A, 1978, J THEOR BIOL, V75, P527, DOI 10.1016/0022-5193(78)90361-2; Intriligator Michael D, 1971, MATH OPTIMIZATION EC; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; KING D, 1982, THEOR POPUL BIOL, V21, P194, DOI 10.1016/0040-5809(82)90013-2; KING D, 1983, ECOLOGY, V64, P16, DOI 10.2307/1937324; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; KOZLOWSKI J, 1988, THEOR POPUL BIOL, V34, P118, DOI 10.1016/0040-5809(88)90037-8; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LEON JA, 1976, J THEOR BIOL, V60, P301, DOI 10.1016/0022-5193(76)90062-X; METZ JAJ, 1986, LECTURE NOTES BIOMAT, V68; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; PRICE G, 1973, NATURE, V246, P15; PUGLIESE A, 1988, THEOR POPUL BIOL, V34, P215, DOI 10.1016/0040-5809(88)90022-6; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; VANCE RR, 1992, J THEOR BIOL, V157, P31, DOI 10.1016/S0022-5193(05)80755-6; VANCE RR, 1988, THEOR POPUL BIOL, V33, P199, DOI 10.1016/0040-5809(88)90013-5; VINCENT TL, 1980, THEOR POPUL BIOL, V17, P215, DOI 10.1016/0040-5809(80)90007-6; ZIOLKO M, 1983, MATH BIOSCI, V64, P127, DOI 10.1016/0025-5564(83)90032-9 21 10 10 0 2 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-5193 J THEOR BIOL J. Theor. Biol. JUL 7 1992 157 1 51 70 10.1016/S0022-5193(05)80756-8 20 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology JD703 WOS:A1992JD70300004 2019-02-26 J ELKASSABY, YA; BARCLAY, HJ ELKASSABY, YA; BARCLAY, HJ COST OF REPRODUCTION IN DOUGLAS-FIR CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE English Article PSEUDOTSUGA-MENZIESII; CONE PRODUCTION; ANNUAL RING WIDTH; GENETIC CORRELATION SEED ORCHARD; GROWTH; CONSTRAINTS; STRATEGIES; EVOLUTION; PATTERNS; PLANTS The balance between allocating energy resources to reproduction or growth has considerable theoretical interest. Conflicting ecological requirements and evolutionary pressures often necessitate a trade-off in energy allocation. We obtained measurements on seed-cone production and annual ring width of 365 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees from 29 open-pollinated families for 8 years. Phenotypic, genetic, and environmental correlations were computed for seed-cone production and ring width for each year. Five of the eight environmental correlations were negative (range -0.077 to -0.305), reflecting the reality of the trade-off in physiological terms. Six of the eight genetic correlations were negative (range -0. 199 to -0.776), indicating that a trade-off exists at the genetic level between energy allocation to reproduction and to somatic growth. These findings agree with the current theory of life-history evolution. UNIV BRITISH COLUMBIA,FAC FORESTRY,VANCOUVER V6T 1W5,BC,CANADA; FORESTRY CANADA,PACIFIC FORESTRY CTR,VICTORIA V8Z 1M5,BC,CANADA ELKASSABY, YA (reprint author), CANADIAN PACIFIC FOREST PROD LTD,SAANICH FORESTRY CTR,8067 E SAANICH RD,RR 1,SAANICHTON V0S 1M0,BC,CANADA. El-Kassaby, Yousry/K-9856-2016 El-Kassaby, Yousry/0000-0002-4887-8977 ABRAHAMSON WG, 1973, AM NAT, V107, P651, DOI 10.1086/282864; ASSMANN E., 1970, PRINCIPLES FOREST YI; Becker W, 1984, MANUAL QUANTITATIVE; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; DICK JM, 1990, TREE PHYSIOL, V6, P105, DOI 10.1093/treephys/6.1.105; EFRON B, 1979, ANN STAT, V7, P1, DOI 10.1214/aos/1176344552; EIS S, 1965, CAN J BOTANY, V43, P1553, DOI 10.1139/b65-165; EKLUND BO, 1957, MEDDEL SKOGSFORSKN INST STOCKHOLM, V47, P1; ELKASSABY YA, 1989, SILVAE GENET, V38, P113; GAINES MS, 1974, AM NAT, V108, P889, DOI 10.1086/282967; GROSS HL, 1972, CAN J BOT, V50, P2431, DOI 10.1139/b72-312; HARPER J. L., 1970, Annual review of ecology and systematics., V1, P327, DOI 10.1146/annurev.es.01.110170.001551; HOLMSGAARD E, 1956, DETERMINATION INCREM; JOHNSON NL, 1970, DISTRIBUTIONS STATIS, V2; LINDER S, 1981, FOREST SCI, V27, P267; LINHART YB, 1985, AM J BOT, V72, P181, DOI 10.2307/2443545; LINHART YB, 1979, GENET RES, V33, P237, DOI 10.1017/S0016672300018371; LOEHLE C, 1987, FOREST SCI, V33, P1089; Messer H., 1956, Allg. Forst- u. Jagdztg., V127, P8; MORRIS R. F., 1951, FOREST CHRON, V27, P40; PUKKALA T, 1987, Silva Fennica, V21, P145; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; Rodin L. E., 1967, PRODUCTION MINERAL C; ROOK DA, 1970, CAN J BOT, V49, P13; SCHOEN DJ, 1986, SILVAE GENET, V35, P201; SEARLE SR, 1961, BIOMETRICS, V17, P474, DOI 10.2307/2527838; SMITH RC, 1977, PSYCHOPHARMACOLOGY, V53, P1, DOI 10.1007/BF00426687; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TAPPEINER JC, 1969, FOREST SCI, V15, P171; WATSON MA, 1984, ANNU REV ECOL SYST, V15, P233, DOI 10.1146/annurev.es.15.110184.001313; Williams GC, 1966, ADAPTATION NATURAL S 33 40 42 0 9 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4026 CAN J BOT Can. J. Bot.-Rev. Can. Bot. JUL 1992 70 7 1429 1432 10.1139/b92-179 4 Plant Sciences Plant Sciences JP248 WOS:A1992JP24800016 2019-02-26 J YAP, HT; ALINO, PM; GOMEZ, ED YAP, HT; ALINO, PM; GOMEZ, ED TRENDS IN GROWTH AND MORTALITY OF 3 CORAL SPECIES (ANTHOZOA, SCLERACTINIA), INCLUDING EFFECTS OF TRANSPLANTATION MARINE ECOLOGY PROGRESS SERIES English Article PACIFIC REEF CORALS; ACROPORA-PULCHRA; TEMPERATURE; HAWAIIAN Three ecologically dominant coral species in a northern Philippine reef were compared in terms of growth and mortality, and responses to transplantation. The purpose of this study was to examine the feasibility of using the species concerned in establishing new coral populations through deliberate fragmentation. The species, Acropora hyacinthus, Pocillopora damicornis and Pavona frondifera, displayed distinct differences which could be related to their respective life-history strategies. A. hyacinthus showed tendencies towards an r-mode, with rapid linear growth but also high mortality rates. Response to transplantation was poor. Pocillopora damicornis had intermediate linear growth rates and relatively high mortality. Transplants fared poorly in the initial part of the experiment, though they showed successful adaptation after a year. Mortality rates of both A. hyacinthus and P. damicornis were increased by high temperatures during certain times of the year. Pavona frondifera had the highest linear growth rates and no mortality, tending towards a K-mode of life history strategy. It showed the best response to transplantation. This species is thus a suitable candidate for large-scale reef restoration. YAP, HT (reprint author), UNIV PHILIPPINES, INST MARINE SCI, QUEZON CITY, PHILIPPINES. ALINO PM, 1985, NAT APPL SCI B, V37, P225; BIRKLAND C, 1976, Micronesica, V12, P319; BROWN BE, 1990, CORAL REEFS, V8, P163, DOI 10.1007/BF00265007; Buddemeier R.W., 1976, Oceanography and Marine Biology an Annual Review, V14, P183; COLES SL, 1975, PAC SCI, V29, P15; COLES SL, 1976, PAC SCI, V30, P159; CONNELL JH, 1973, BIOLOGY GEOLOGY CORA, V2, P205; GOMEZ ED, 1985, 5TH P INT COR REEF S, V6, P199; HARRIOTT VJ, 1985, MAR ECOL PROG SER, V21, P81, DOI 10.3354/meps021081; HARRIOTT VJ, 1988, 6TH P INT COR REEF S, V2, P375; HARRISON PL, 1984, SCIENCE, V223, P1186, DOI 10.1126/science.223.4641.1186; HUDSON JH, 1981, 4TH P INT COR REEF S, V2, P233; JAAP WC, 1979, B MAR SCI, V29, P414; JOKIEL PL, 1977, MAR BIOL, V43, P201, DOI 10.1007/BF00402312; JOKIEL PL, 1990, CORAL REEFS, V8, P155, DOI 10.1007/BF00265006; JORDAN WR, 1987, RESTORATION ECOLOGY; KINZIE RA, 1986, CORAL REEFS, V4, P177, DOI 10.1007/BF00427939; Maragos JE., 1974, UNIHISEAGRANTAR7403, VUNIHI-SEAGRANT AR-74-03; MAYOR AG, 1924, CARNEGIE I WASHINGTO, V340, P51; Ravera O., 1989, ECOLOGICAL ASSESSMEN; RICHMOND RH, 1988, 6TH P INT COR REEF S, V2, P827; SHINN E. A., 1966, J PALEONTOL, V40, P233; SOKAL R., 1981, BIOMETRY; Willis BL, 1985, OECOLOGIA, V65, P516, DOI 10.1007/BF00379666; YAP HT, 1985, MAR BIOL, V87, P203, DOI 10.1007/BF00539430; YAP HT, 1984, MAR BIOL, V81, P209, DOI 10.1007/BF00393119; YAP HT, 1990, UNEP REGIONAL SEAS R, V116, P117; YAP HT, 1981, THESIS U PHILIPPINES; Zar J. H., 1984, BIOSTATISTICAL ANAL; 1984, UNESCO REP MAR SCI, V21, P109 30 76 77 1 10 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. JUL 1992 83 1 91 101 10.3354/meps083091 11 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography JD043 WOS:A1992JD04300010 Bronze 2019-02-26 J KOZLOWSKI, J KOZLOWSKI, J PLEIOTROPIC PARASITES AND LIFE-HISTORY THEORY TRENDS IN ECOLOGY & EVOLUTION English Letter KOZLOWSKI, J (reprint author), JAGIELLONIAN UNIV,INST ENVIRONM BIOL,OLEANDRY 2A,PL-30063 KRAKOW,POLAND. Kozlowski, Jan/K-5549-2012 Kozlowski, Jan/0000-0002-7084-2030 KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; MICHALAKIS Y, 1992, TRENDS ECOL EVOL, V7, P59, DOI 10.1016/0169-5347(92)90108-N; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J 4 0 0 0 5 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. JUL 1992 7 7 241 241 10.1016/0169-5347(92)90053-E 1 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity JB870 WOS:A1992JB87000010 21236019 2019-02-26 J LYNCH, CB LYNCH, CB CLINAL VARIATION IN COLD ADAPTATION IN MUS-DOMESTICUS - VERIFICATION OF PREDICTIONS FROM LABORATORY POPULATIONS AMERICAN NATURALIST English Article QUANTITATIVE-GENETIC-ANALYSIS; GROUND FINCHES GEOSPIZA; LIFE-HISTORY EVOLUTION; WILD HOUSE MICE; TEMPERATURE REGULATION; DARWIN FINCHES; REPRODUCTIVE RESPONSES; EXTERNAL MORPHOLOGY; NATURAL-POPULATIONS; SELECTION The aim of this study was to test whether heritabilities of traits contributing to cold adaptation and genetic correlations among those traits, all obtained from laboratory populations, could predict adaptive evolution in natural populations. Body weight and nesting scores had substantial heritabilities and were expected to respond to selection, whereas body temperature and weight of brown adipose tissue had negligible heritabilities and should not be easily modified. In laboratory-reared mice originating from five geographical populations forming a cline along the east coast of the United States, body weight and nesting did exhibit adaptive variation: more northern mice were heavier and built larger nests. These traits may have been shaped by selection acting through ambient temperature differences. Body temperature and brown adipose tissue did not vary clinally, although there were some differences among the populations. Reaction norms for nesting at warm and cold temperatures were similar for laboratory and natural populations; genotypic rank order rarely changed across temperatures. The similar responses to natural and artificial selection were expected from the high genetic correlation between nesting scores at the two temperatures seen in laboratory populations. The heritability of plasticity predicted the observation that mice most strongly selected for nesting would show the greatest response to cold. LYNCH, CB (reprint author), WESLEYAN UNIV,DEPT BIOL,MIDDLETOWN,CT 06459, USA. ATCHLEY WR, 1984, AM NAT, V123, P519, DOI 10.1086/284220; ATCHLEY WR, 1984, EVOLUTION, V38, P1165, DOI 10.1111/j.1558-5646.1984.tb05640.x; BARKER JSF, 1988, 2ND P INT C QUANT GE, P596; BARNETT SA, 1975, J ZOOL, V177, P153; BARNETT SA, 1984, J ZOOL, V203, P163; BATCHELDER P, 1982, BEHAV GENET, V12, P149, DOI 10.1007/BF01065762; BERRY RJ, 1979, J ZOOL, V189, P385; BOAG PT, 1978, NATURE, V274, P793, DOI 10.1038/274793a0; BOAG PT, 1981, SCIENCE, V214, P82, DOI 10.1126/science.214.4516.82; BOAG PT, 1983, EVOLUTION, V37, P877, DOI 10.1111/j.1558-5646.1983.tb05618.x; BOUCHARD PR, 1989, BEHAV GENET, V19, P447, DOI 10.1007/BF01066170; BRONSON FH, 1979, Q REV BIOL, V54, P265, DOI 10.1086/411295; CABANAC M, 1975, ANNU REV PHYSIOL, V37, P415, DOI 10.1146/annurev.ph.37.030175.002215; CASPARI E, 1958, BEHAVIOR EVOLUTION, P103; CHAFFEE RRJ, 1971, ANNU REV PHYSIOL, V33, P155, DOI 10.1146/annurev.ph.33.030171.001103; DINGLE H, 1977, AM NAT, V111, P1047, DOI 10.1086/283237; Falconer D.S., 1981, INTRO QUANTITATIVE G; FALCONER DS, 1973, GENET RES, V22, P291, DOI 10.1017/S0016672300013094; FALCONER DS, 1990, GENET RES, V56, P57, DOI 10.1017/S0016672300028883; FALCONER DS, 1971, GENET RES, V17, P215, DOI 10.1017/S0016672300012246; FALCONER DS, 1952, AM NAT, V86, P293, DOI 10.1086/281736; FALCONEX RDS, 1965, 11 P INT C GEN OXF, V3, P763; Fisher R.A., 1930, GENETICAL THEORY NAT; GIBBS HL, 1988, EVOLUTION, V42, P750, DOI 10.1111/j.1558-5646.1988.tb02493.x; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GRANT BR, 1989, AM NAT, V133, P377, DOI 10.1086/284924; GRANT BR, 1985, EVOLUTION, V39, P523, DOI 10.1111/j.1558-5646.1985.tb00392.x; GRANT PR, 1981, AM ZOOL, V21, P795; GRANT PR, 1983, PROC R SOC SER B-BIO, V220, P219, DOI 10.1098/rspb.1983.0096; GUPTA AP, 1982, EVOLUTION, V36, P934, DOI 10.1111/j.1558-5646.1982.tb05464.x; Haldane J. B. S, 1932, CAUSES EVOLUTION; HART JS, 1971, COMPARATIVE PHYSIOLO, V2, P1; HARTL DL, 1980, PRINCIPLES POPULATIO; ISTOCK CA, 1976, EVOLUTION, V30, P535, DOI 10.1111/j.1558-5646.1976.tb00931.x; KING JA, 1964, EVOLUTION, V18, P230, DOI 10.2307/2406395; LACY RC, 1979, GENETICS, V91, P743; LACY RC, 1978, J COMP PHYSIOL, V123, P185, DOI 10.1007/BF00687848; LAFFAN EA, 1989, THESIS WESLEYAN U MI; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LAURIE EMO, 1946, PROC R SOC SER B-BIO, V133, P248, DOI 10.1098/rspb.1946.0012; LERNER IM, 1948, EVOLUTION, V2, P19, DOI 10.1111/j.1558-5646.1948.tb02728.x; Lush J. L., 1945, ANIMAL BREEDING PLAN; LYNCH CB, 1973, BEHAV GENET, V3, P145, DOI 10.1007/BF01067654; LYNCH CB, 1988, AM NAT, V132, P521, DOI 10.1086/284869; LYNCH CB, 1984, EVOLUTION, V38, P527, DOI 10.1111/j.1558-5646.1984.tb00318.x; LYNCH CB, 1978, ANIM BEHAV, V26, P1136, DOI 10.1016/0003-3472(78)90103-3; LYNCH CB, 1980, GENETICS, V96, P757; LYNCH CB, 1984, GENET RES, V43, P299, DOI 10.1017/S0016672300026082; LYNCH CB, 1975, BEHAV GENET, V5, P100; LYNCH GR, 1976, PHYSIOL ZOOL, V49, P191, DOI 10.1086/physzool.49.2.30152539; MARSTELLER FA, 1983, BEHAV GENET, V13, P397, DOI 10.1007/BF01065777; MARSTELLER FA, 1987, BIOL REPROD, V37, P844, DOI 10.1095/biolreprod37.4.844; MARSTELLER FA, 1987, BIOL REPROD, V37, P838, DOI 10.1095/biolreprod37.4.838; Mather K., 1949, BIOMETRICAL GENETICS; MATHER K, 1943, BIOL REV, V18, P18; Mayr E., 1963, ANIMAL SPECIES EVOLU; PANZER HA, 1987, THESI SWESLEYAN U MI; PLOMIN RJ, 1974, BEHAV GENET, V4, P145; ROBERTS RC, 1967, CAN J GENET CYTOL, V9, P419, DOI 10.1139/g67-047; Schmalhausen I.I., 1949, FACTORS OF EVOLUTION; SCHOLANDER PF, 1950, BIOL BULL, V99, P259, DOI 10.2307/1538742; SELANDER RK, 1970, AM ZOOL, V10, P53; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Travis J., 1989, P101; Via S., 1987, GENETIC CONSTRAINTS, P47; Wright S, 1931, GENETICS, V16, P0097; Wright S, 1970, MATH TOPICS POPULATI, P1, DOI DOI 10.1007/978-3-642-46244-3_1; 1985, SAS USERS GUIDE STAT 69 51 51 0 12 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. JUN 1992 139 6 1219 1236 10.1086/285383 18 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology HY089 WOS:A1992HY08900005 2019-02-26 J SHINE, R; CHARNOV, EL SHINE, R; CHARNOV, EL PATTERNS OF SURVIVAL, GROWTH, AND MATURATION IN SNAKES AND LIZARDS AMERICAN NATURALIST English Article LIFE-HISTORY EVOLUTION; NATURAL-SELECTION; MATURITY; AGE; MORTALITY; MAMMALS; REPRODUCTION; SHRIMP; MODELS; SPAN We review published data to determine whether squamate reptiles show a specific series of quantitative relationships among life-history characteristics, as predicted by mathematical models and observed in other vertebrate and invertebrate groups. We focus on growth rates, adult survival rates, and ages at sexual maturation. In general, snakes and lizards show patterns similar to those expected. The body size at maturation is a relatively constant proportion of maximum size, and adult survival rate is proportional to age at maturity. The von Bertalanffy growth constant (K) is positively correlated with the adult instantaneous mortality rate (M) such that the ratio of the two variables is generally close to 1.0. Phylogenetically based analyses show that these results are not artifacts due to phylogenetic conservatism. The constants of proportionality linking age at maturity to rates of mortality are higher than those of endothermic vertebrates but lower than those of previously studied invertebrates. Although snakes differ from lizards in mean values of several life-history traits, the relationships among these variables are usually similar in the two suborders. These analyses show that squamate reptiles exhibit interspecific and intraspecific patterns of growth, survival rate, and maturation that are of the same qualitative (and, often, quantitative) form as those seen in other types of organisms in which growth continues after maturity. UNIV UTAH,DEPT BIOL,SALT LAKE CITY,UT 84112 SHINE, R (reprint author), UNIV SYDNEY,DEPT ZOOL,SYDNEY,NSW 2006,AUSTRALIA. Shine, Richard/B-8711-2008 Andrews R.M., 1982, Biology of Reptilia, V13, P273; Beverton R. J. H., 1963, Rapport Conseil Exploration Mer, V154, P44; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; CHARNOV EL, 1989, EVOL ECOL, V3, P236, DOI 10.1007/BF02270724; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; CHARNOV EL, 1990, CRUSTACEANA, V59, P108, DOI 10.1163/156854090X00381; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; CHARNOV EL, 1979, AM NAT, V113, P715, DOI 10.1086/283428; CLUTTONBROCK TH, 1984, BEHAVIOURAL ECOLOGY, P7; DOWLING HG, 1983, J ZOOL, V201, P309; Dunham A.E., 1988, Biology of Reptilia, V16, P441; EBERT TA, 1975, AM ZOOL, V15, P755; ESTES R, 1988, PHYLOGENETIC RELATIO; Fisher R.A., 1930, GENETICAL THEORY NAT; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; PAGEL MD, 1989, FOLIA PRIMATOL, V53, P203, DOI 10.1159/000156417; PARKER W S, 1987, P253; PAULY D, 1981, MEERESFORSCHUNG, V28, P251; Ricker W. E, 1975, B FISH RES BOARD CAN, V191, P1; RICKER WE, 1973, J FISH RES BOARD CAN, V30, P409, DOI 10.1139/f73-072; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; SCHOENER TW, 1978, COPEIA, P390, DOI 10.2307/1443602; SHINE R, IN PRESS EVOLUTION; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TAYLOR CLYDE C., 1962, JOUR CONS CONS PERM INTERNATL EXPLOR MER, V27, P270; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; Williams GC, 1966, ADAPTATION NATURAL S 35 169 177 3 57 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. JUN 1992 139 6 1257 1269 10.1086/285385 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology HY089 WOS:A1992HY08900007 2019-02-26 J KINNAIRD, MF KINNAIRD, MF PHENOLOGY OF FLOWERING AND FRUITING OF AN EAST-AFRICAN RIVERINE FOREST ECOSYSTEM BIOTROPICA English Article Flowering and fruiting phenologies of important primate food species in three East African riverine forests of the Tana flood plain (1-degrees-55'S, 40-degrees-5'E) are highly variable over time, resulting in community-wide periods of relative resource abundance and scarcity. The phenological state of 240 individuals in 16 species within 3 forests was assessed at approximately 30 day intervals over a period of 17 months. The presence of flowers and fruits was visually assessed using a 0-5 scale that ranked the percent of an estimated maximum flower or fruit production. Unlike other tropical forests, flowering appears to be triggered primarily by dry conditions created by low river levels rather than low rainfall. Fruiting phenologies may be dictated more by rates of fruit maturation and plant life history strategies than by environmental cues. Altered river flow due to recent construction of upstream dams may affect flowering phenologies and potentially reduce fruit and seed production. Shifts in flowering and fruiting phenologies could, in tum, influence some pollinators and seed dispersers that presumably have evolved with the plant species of the Tana riverine forests. UNIV FLORIDA,DEPT WILDLIFE & RANGE SCI,GAINESVILLE,FL 32611; INST PRIMATE RES,KAREN,KENYA BORCHERT R, 1983, BIOTROPICA, V15, P81, DOI 10.2307/2387949; Chivers D. J., 1980, MALAYAN FOREST PRIMA; FOSTER RB, 1974, THESIS DUKE U DURHAM; GAUTIERHION A, 1985, REV ECOL-TERRE VIE, V40, P405; GUREVITCH J, 1986, ECOLOGY, V67, P251, DOI 10.2307/1938525; HEIDEMAN PD, 1989, J ECOL, V77, P1059, DOI 10.2307/2260823; HILTY SL, 1980, BIOTROPICA, V12, P292, DOI 10.2307/2387701; HOMEWOOD KM, 1976, THESIS U LONDON LOND; HOWE HF, 1982, ANNU REV ECOL SYST, V13, P201, DOI 10.1146/annurev.es.13.110182.001221; HUGHES FMR, 1990, J APPL ECOL, V27, P475, DOI 10.2307/2404295; HUGHES FMR, 1985, THESIS U CAMBRIDGE C; KINNAID MF, IN PRESS CONSERV BIO; KINNAIRD M, 1990, THESIS U FLORIDA GAI; KOELMEYER K, 1960, CEYLON FOR, V4, P308; LEIGHTON M, 1983, TROPICAL RAIN FOREST; LEVEY DJ, 1988, ECOL MONOGR, V58, P251, DOI 10.2307/1942539; MEDLEY KEM, 1990, THESIS MICHIGAN STAT; MEDWAY L, 1972, Biological Journal of the Linnean Society, V4, P117, DOI 10.1111/j.1095-8312.1972.tb00692.x; MONASTERIO M, 1976, J BIOGEOGR, V3, P325; MORRISON DF, 1976, MULTIVARIATE STATIST; Putz F. E., 1979, Malaysian Forester, V42, P1; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; ROBINSON JG, 1986, SMITHSONIAN CONTRIBU, V431; Terborgh J, 1983, 5 NEW WORLD PRIMATES; Van Schaik C. P., 1986, J TROP ECOL, V2, P327; Winer B. J., 1971, STATISTICAL PRINCIPL; 1985, SAS USERS GUIDE 27 44 50 0 13 ASSN TROP BIOL ST LOUIS MISSOURI BOTANICAL GARDEN 2345 TOWER GROVE AVE, ST LOUIS, MO 63110 0006-3606 BIOTROPICA Biotropica JUN 1992 24 2 A 187 194 10.2307/2388672 8 Ecology Environmental Sciences & Ecology JB549 WOS:A1992JB54900010 2019-02-26 J SEQUEIRA, R; MACKAUER, M SEQUEIRA, R; MACKAUER, M QUANTITATIVE GENETICS OF BODY SIZE AND DEVELOPMENT TIME IN THE PARASITOID WASP APHIDIUS-ERVI (HYMENOPTERA, APHIDIIDAE) CANADIAN JOURNAL OF ZOOLOGY English Article LIFE-HISTORY TRAITS; GENOTYPE-ENVIRONMENT INTERACTION; PHENOTYPIC PLASTICITY; FITNESS COMPONENTS; HOST SIZE; EVOLUTION; SELECTION; HERITABILITY; FECUNDITY; VARIABILITY Body size and development time are key components of life-history strategies and fitness in parasitoid wasps. To assess the relative importance of phenotypic variability for fitness, we determined the heritabilities and reaction norms of body size (= dry mass) and development time in Aphidius ervi, a solitary parasitoid of the pea aphid. We estimated the variance components for body size from an ANOVA model for haplodiploidy, using a half-sib design, with each of 18 sires mated to 2 or 3 dams. Phenotypic expression of body size was strongly influenced by host size (= instar) at the time of parasitization. Heritability for body size in female A. ervi, averaged over sire and dam components, was 0.38. Although the heritability for development time could not be estimated precisely, a larger dam than sire component suggests that development time has lower heritability than body size. Differences between the heritability estimates for body size in males and females indicate that the mode of inheritance and phenotypic expression may be asymmetrical. These results suggest that, in a stochastic environment, aphid parasitoids experience strong selection for rapid development; however, host-size effects are likely to mask differences in genetically determined body size. Genotype-environment interactions may play an important role in maintaining genetic variability in body size in natural populations of A. ervi. SEQUEIRA, R (reprint author), SIMON FRASER UNIV, DEPT BIOL SCI, BURNABY V5A 1S6, BC, CANADA. ALATALO RV, 1990, AM NAT, V135, P464, DOI 10.1086/285056; BIRCH LC, 1963, EVOLUTION, V17, P72, DOI 10.2307/2406336; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRUCKNER D, 1976, EVOLUTION, V30, P100, DOI 10.1111/j.1558-5646.1976.tb00886.x; Bulmer M. G., 1980, MATH THEORY QUANTITA; CAMPBELL A, 1974, J APPL ECOL, V11, P431, DOI 10.2307/2402197; CHARNOV EL, 1981, NATURE, V289, P27, DOI 10.1038/289027a0; CLOUTIER C, 1981, CAN ENTOMOL, V113, P193, DOI 10.4039/Ent113193-3; COLLINS AM, 1984, J HERED, V75, P135, DOI 10.1093/oxfordjournals.jhered.a109888; CROZIER RH, 1977, ANNU REV ENTOMOL, V22, P263, DOI 10.1146/annurev.en.22.010177.001403; DAWSON PS, 1977, EVOLUTION, V31, P226, DOI 10.1111/j.1558-5646.1977.tb01001.x; DERR JA, 1980, EVOLUTION, V34, P548, DOI 10.1111/j.1558-5646.1980.tb04843.x; Dixon A.F.G., 1987, World Crop Pests, V2A, P269; Dixon AFG, 1985, APHID ECOLOGY; DOBZHANSKY T, 1964, HEREDITY, V19, P597, DOI 10.1038/hdy.1964.73; EFRON B, 1982, SIAM MONOGR SOC IND, V38; EICKWORT KR, 1969, EVOLUTION, V23, P391, DOI 10.1111/j.1558-5646.1969.tb03523.x; EWENS WJ, 1976, GENETICS, V83, P601; Falconer D. S., 1989, INTRO QUANTITATIVE G; Fisher R.A., 1930, GENETICAL THEORY NAT; GILBERT N, 1973, J ANIM ECOL, V42, P323, DOI 10.2307/3288; Gilbert N., 1976, ECOLOGICAL RELATIONS; GRANT B, 1980, EVOLUTION, V34, P983, DOI 10.1111/j.1558-5646.1980.tb04036.x; HAZEL W, 1987, HEREDITY, V59, P449, DOI 10.1038/hdy.1987.155; HENKELMAN DH, 1979, THESIS S FRASER U BU; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HUME L, 1982, CAN J BOT, V60, P1928, DOI 10.1139/b82-241; ISTOCK CA, 1976, EVOLUTION, V30, P535, DOI 10.1111/j.1558-5646.1976.tb00931.x; KING BH, 1987, Q REV BIOL, V62, P367, DOI 10.1086/415618; KNAPP SJ, 1989, GENETICS, V121, P891; LEVINS R, 1963, AM NAT, V97, P75, DOI 10.1086/282258; Lewontin R. C., 1965, P77; LEWONTIN RC, 1974, AM J HUM GENET, V26, P400; LIU SS, 1985, ENTOMOL EXP APPL, V37, P41; MACKAUER M, 1988, ENTOMOL EXP APPL, V49, P167, DOI 10.1111/j.1570-7458.1988.tb02487.x; MACKAUER M, 1983, CAN ENTOMOL, V115, P399, DOI 10.4039/Ent115399-4; MACKAUER M, 1988, WORLD CROP PESTS B, V2, P205; MACKAUER M, 1986, PLANT VIRUS EPIDEMIC, P95; MARSHALL DR, 1968, AM NAT, V102, P457, DOI 10.1086/282558; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MUKAI T, 1971, GENETICS, V69, P385; OPP SB, 1986, ANN ENTOMOL SOC AM, V79, P700, DOI 10.1093/aesa/79.4.700; OWEN RE, 1989, J HERED, V80, P39, DOI 10.1093/oxfordjournals.jhered.a110786; POLHEMUS MS, 1950, J HERED, V41, P151, DOI 10.1093/oxfordjournals.jhered.a106115; RINDERER TE, 1977, J APICULT RES, V16, P95, DOI 10.1080/00218839.1977.11099867; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; ROFF DA, 1987, HEREDITY, V58, P103, DOI 10.1038/hdy.1987.15; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1981, GENETICS, V97, P187; ROTHERAY GE, 1984, ENVIRON ENTOMOL, V13, P243, DOI 10.1093/ee/13.1.243; SCHEINER SM, 1984, EVOLUTION, V38, P845, DOI 10.1111/j.1558-5646.1984.tb00356.x; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; SEQUEIRA R, 1992, EVOL ECOL, V6, P34, DOI 10.1007/BF02285332; SEQUEIRA R, 1992, ECOLOGY, V73, P183, DOI 10.2307/1938730; SOKAL RR, BIOMETRY; Stary P, 1970, BIOL APHID PARASITES; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1983, AM ZOOL, V23, P65; STEARNS SC, 1982, EVOL DEV, P237; Stine It, 1990, MODERN METHODS DATA, P325; SULTAN SE, 1987, EVOL BIOL, V21, P127; TEPEDINO VJ, 1984, APIDOLOGIE, V15, P83, DOI 10.1051/apido:19840108; TRAVIS J, 1987, EVOLUTION, V41, P145, DOI 10.1111/j.1558-5646.1987.tb05777.x; VIA S, 1984, EVOLUTION, V38, P881, DOI 10.1111/j.1558-5646.1984.tb00359.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Waage JK, 1986, INSECT PARASITOIDS; White M. J., 1973, ANIMAL CYTOLOGY EVOL; Wright S, 1968, EVOLUTION GENETICS P, V1; 1985, SAS USERS GUIDE STAT 69 17 17 1 8 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. JUN 1992 70 6 1102 1108 10.1139/z92-154 7 Zoology Zoology JG563 WOS:A1992JG56300005 2019-02-26 J FRASER, DF; GILLIAM, JF FRASER, DF; GILLIAM, JF NONLETHAL IMPACTS OF PREDATOR INVASION - FACULTATIVE SUPPRESSION OF GROWTH AND REPRODUCTION ECOLOGY English Article ARTIFICIAL STREAM; GROWTH; HABITAT USE; HOPLIAS; PATCHES; PATCHY HABITAT; POECILIA; PREDATION; REPRODUCTION; RIVULUS; TROPICAL STREAM LIFE-HISTORY EVOLUTION; HABITAT USE; POECILIA-RETICULATA; PATCHY ENVIRONMENT; FORAGING MINNOWS; LIGHT-INTENSITY; STREAM; RISK; PREY; FISH We asked whether invasions by a predator in a patchy environment altered only the death rate of the prey, or whether there were also nonlethal effects, i.e., alterations in three other vital rates: net emigration, reproduction, and individual growth rates. Field studies documented the patch use of the guppy Poecilia reticulata and the killifish Rivulus hartii in pools of a second-order forest stream in Trinidad, before and after invasion by the piscivorous fish Hoplias malabaricus. Experiments revealed that the predator altered the within-pool use of space by Poecilia and Rivulus, and caused significant emigration of the prey from pools in which it was present. Further, intimidation by the predator in an experimental stream suppressed total egg production in Rivulus by approximately 50%, and created spatial patchiness (more eggs laid in safer pools) and temporal patchiness (pulses of eggs) in egg production. The presence of the predator also induced shifts to shallow riffle areas and significantly reduced the growth rate of adult but not juvenile Rivulus. In contrast to the familiar paradigm that increased predation rates result in compensatory increases in per capita reproductive rates and/or growth rates as the population is thinned, we found that the threat of predation suppressed rates of reproduction and growth in predator-occupied patches. N CAROLINA STATE UNIV,DEPT ZOOL,RALEIGH,NC 27695 FRASER, DF (reprint author), SIENA COLL,DEPT BIOL,LOUDONVILLE,NY 12211, USA. Gilliam, James/D-5605-2013 BAERENDS G. P., 1955, BEHAVIOUR, V8, P249, DOI 10.1163/156853955X00238; BREDEN F, 1987, NATURE, V329, P831, DOI 10.1038/329831a0; CALOW P, 1989, BIOL J LINN SOC, V37, P173, DOI 10.1111/j.1095-8312.1989.tb02101.x; CERRI RD, 1983, ANIM BEHAV, V31, P736, DOI 10.1016/S0003-3472(83)80230-9; COOPER SD, 1990, ECOLOGY, V71, P1503, DOI 10.2307/1938287; COSTA WJEM, 1987, STUD NEOTROP FAUNA E, V22, P145, DOI 10.1080/01650528709360728; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; FAHRIG L, 1985, ECOLOGY, V66, P1762, DOI 10.2307/2937372; Fraser D.F., 1987, P121; FRASER DF, 1980, ECOLOGY, V61, P790, DOI 10.2307/1936749; FRASER DF, 1982, ECOLOGY, V63, P307, DOI 10.2307/1938947; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Gilliam J.F., 1988, P173; GILLIAM JF, 1989, ECOLOGY, V70, P445, DOI 10.2307/1937549; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; HARVEY BC, 1988, J FISH BIOL, V33, P481, DOI 10.1111/j.1095-8649.1988.tb05489.x; HELFMAN GS, 1979, J FISH RES BOARD CAN, V36, P173, DOI 10.1139/f79-027; HOLBROOK SJ, 1988, ECOLOGY, V69, P125, DOI 10.2307/1943167; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; IWASA Y, 1982, AM NAT, V120, P171, DOI 10.1086/283980; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LIVELY CM, 1986, EVOLUTION, V40, P232, DOI 10.1111/j.1558-5646.1986.tb00466.x; MAGNHAGEN C, 1990, BEHAV ECOL SOCIOBIOL, V26, P331; MORIN PJ, 1986, ECOLOGY, V67, P713, DOI 10.2307/1937694; Pielou E. C., 1977, MATH ECOLOGY; Power M.E., 1987, P333; POWER ME, 1985, ECOLOGY, V66, P1448, DOI 10.2307/1938007; PREJS A, 1987, OECOLOGIA, V72, P259, DOI 10.1007/BF00379276; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; RESETARITS WJ, 1989, ECOLOGY, V70, P220, DOI 10.2307/1938428; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; SCHLOSSER IJ, 1987, ECOLOGY, V68, P651, DOI 10.2307/1938470; SCHLOSSER IJ, 1989, ECOL MONOGR, V59, P41, DOI 10.2307/2937291; SCHLOSSER IJ, 1988, COPEIA, P691, DOI 10.2307/1445389; Seghers B.H., 1978, Internationale Vereinigung fuer Theoretische und Angewandte Limnologie Verhandlungen, V20, P2055; SEGHERS BH, 1973, THESIS U BRIT COLUMB; SEMLITSCH RD, 1987, OECOLOGIA, V72, P481, DOI 10.1007/BF00378972; SIH A, 1984, AM NAT, V123, P143, DOI 10.1086/284193; SIH A, 1988, ANIM BEHAV, V36, P1846, DOI 10.1016/S0003-3472(88)80129-5; SIH A, 1982, ECOLOGY, V63, P786, DOI 10.2307/1936799; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TAYLOR AD, 1990, ECOLOGY, V71, P429, DOI 10.2307/1940297; TUTTLE MD, 1981, SCIENCE, V214, P677, DOI 10.1126/science.214.4521.677; UNDERWOOD AJ, 1989, BIOL J LINN SOC, V37, P51, DOI 10.1111/j.1095-8312.1989.tb02005.x; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; WINEMILLER KO, 1990, ECOL MONOGR, V60, P331, DOI 10.2307/1943061; YOSHIOKA PM, 1982, J EXP MAR BIOL ECOL, V61, P233, DOI 10.1016/0022-0981(82)90071-5 52 196 199 4 35 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology JUN 1992 73 3 959 970 10.2307/1940172 12 Ecology Environmental Sciences & Ecology HU767 WOS:A1992HU76700022 2019-02-26 J HARD, JJ; BRADSHAW, WE; HOLZAPFEL, CM HARD, JJ; BRADSHAW, WE; HOLZAPFEL, CM EPISTASIS AND THE GENETIC-DIVERGENCE OF PHOTOPERIODISM BETWEEN POPULATIONS OF THE PITCHER-PLANT MOSQUITO, WYEOMYIA-SMITHII GENETICS English Article LIFE-HISTORY EVOLUTION; QUANTITATIVE GENETICS; FOUNDER EVENTS; SELECTION; CHARACTER; VARIANCE; NUMBER; ENVIRONMENT; BOTTLENECK; DROSOPHILA Parallel crosses between each of two southern (ancestral) and one northern (derived) population of the pitcher-plant mosquito, Wyeomyia smithii, were made to determine the genetic components of population divergence in critical photoperiod, a phenological trait that measures adaptation to seasonality along a climatic gradient. Joint scaling tests were used to analyze means and variances of first- and second-generation hybrids in order to determine whether nonadditive genetic variance, especially epistatic variance, contributed to divergence in critical photoperiod. In both crosses, digenic epistatic effects were highly significant, indicating that genetic divergence cannot have resulted solely from differences in additively acting loci. For one cross that could be tested directly for such effects, higher order epistasis and/or linkage did not contribute to the divergence of critical photoperiod between the constituent populations. HARD, JJ (reprint author), UNIV OREGON,DEPT BIOL,EUGENE,OR 97403, USA. NIGMS NIH HHS [5 T32 GM 07413-15] BARKER JSF, 1979, THEOR POPUL BIOL, V16, P323, DOI 10.1016/0040-5809(79)90021-2; Bradshaw W.E., 1990, P47; BRADSHAW WE, 1986, EVOLUTION, V40, P471, DOI 10.1111/j.1558-5646.1986.tb00500.x; BRADSHAW WE, 1976, NATURE, V262, P384, DOI 10.1038/262384b0; BRADSHAW WE, 1989, AM NAT, V133, P869, DOI 10.1086/284957; BRADSHAW WE, 1977, EVOLUTION, V31, P546, DOI 10.1111/j.1558-5646.1977.tb01044.x; BRADSHAW WE, 1980, OECOLOGIA, V46, P13, DOI 10.1007/BF00346959; BRADSHAW WE, 1972, CAN J ZOOLOG, V50, P713, DOI 10.1139/z72-098; BRYANT EH, 1986, GENETICS, V114, P1191; BRYANT EH, 1986, GENETICS, V114, P1213; Carson H, 1968, POPULATION BIOL EVOL, P123; CARSON HL, 1984, P NATL ACAD SCI-BIOL, V81, P6904, DOI 10.1073/pnas.81.21.6904; Cavalli L. L., 1952, Quantitative inheritance. Papers read at a colloquium held at the Institute of Animal Genetics Edinburgh University under the auspices of the Agricultural Research Council April 4th to 6th, 1950., P135; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHEVERUD JM, 1984, J THEOR BIOL, V110, P155, DOI 10.1016/S0022-5193(84)80050-8; COCKERHAM CC, 1984, GENETICS, V108, P487; COCKERHAM CC, 1986, GENETICS, V114, P659; COCKERHAM CC, 1980, THEOR APPL GENET, V56, P119, DOI 10.1007/BF00265082; Darlington CD, 1937, NATURE, V140, P759, DOI 10.1038/140759a0; Falconer D.S., 1981, INTRO QUANTITATIVE G; Fisher R. A, 1958, GENETICAL THEORY NAT; GILLESPIE JH, 1989, GENETICS, V121, P124; GOODNIGHT CJ, 1987, EVOLUTION, V41, P80, DOI 10.1111/j.1558-5646.1987.tb05772.x; GOODNIGHT CJ, 1988, EVOLUTION, V42, P441, DOI 10.1111/j.1558-5646.1988.tb04151.x; Griffing B., 1960, Australian Journal of Biological Sciences, V13, P307; HAYMAN B I, 1960, Genetica, V31, P133, DOI 10.1007/BF01984430; HAYMAN B. I., 1958, Heredity, V12, P371, DOI 10.1038/hdy.1958.36; HAYMAN BI, 1960, BIOMETRICS, V16, P369, DOI 10.2307/2527688; Hedrick P. W., 1978, EVOL BIOL, V11, P101; Hegmann J.P., 1982, P177; HILL WG, 1982, Z TIERZ ZUCHTUNGSBIO, V99, P161; IQBAL MP, 1973, J HERED, V64, P133, DOI 10.1093/oxfordjournals.jhered.a108370; Istock C.A., 1983, PROCEEDINGS OF THE ANNUAL BIOLOGY COLLOQUIUM (OREGON STATE UNIVERSITY), P61; Istock CA, 1987, EVOL ECOL, V1, P348, DOI 10.1007/BF02071558; KEARSEY MJ, 1967, GENETICS, V56, P23; KLECZKOWSKI A, 1949, ANN APPL BIOL, V36, P139, DOI 10.1111/j.1744-7348.1949.tb06404.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1980, AM NAT, V116, P463, DOI 10.1086/283642; LANDE R, 1981, GENETICS, V99, P541; LANDE R, 1980, GENETICS, V94, P203; Mather K, 1982, BIOMETRICAL GENETICS; Mayr E., 1954, EVOLUTION PROCESS, P157; MOEUR JE, 1982, CHROMOSOMA, V84, P623, DOI 10.1007/BF00286330; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MUNSTERMANN LE, 1986, J HERED, V77, P241, DOI 10.1093/oxfordjournals.jhered.a110229; RAI K. S., 1963, ANN ENTOMOL SOC AMER, V56, P160; ROBERTSON ALAN, 1952, GENETICS, V37, P189; Roff D.A., 1990, P5; ROFF DA, 1987, HEREDITY, V58, P103, DOI 10.1038/hdy.1987.15; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; TEMPLETON AR, 1980, GENETICS, V94, P1011; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Wright S, 1935, J GENET, V30, P257, DOI 10.1007/BF02982240; Wright S, 1968, EVOLUTION GENETICS P, V1; Wright S, 1969, EVOLUTION GENETICS P, V2; Wright S, 1977, EVOLUTION GENETICS P; ZENG ZB, 1990, GENETICS, V126, P235 57 55 55 0 1 GENETICS BALTIMORE 428 EAST PRESTON ST, BALTIMORE, MD 21202 0016-6731 GENETICS Genetics JUN 1992 131 2 389 396 8 Genetics & Heredity Genetics & Heredity HW759 WOS:A1992HW75900014 1353737 2019-02-26 J HASSON, E; FANARA, JJ; RODRIGUEZ, C; VILARDI, JC; REIG, OA; FONTDEVILA, A HASSON, E; FANARA, JJ; RODRIGUEZ, C; VILARDI, JC; REIG, OA; FONTDEVILA, A THE EVOLUTIONARY HISTORY OF DROSOPHILA-BUZZATII .24. 2ND CHROMOSOME INVERSIONS HAVE DIFFERENT AVERAGE EFFECTS ON THORAX LENGTH HEREDITY English Article BODY SIZE; CHROMOSOMAL INVERSIONS; DROSOPHILA-BUZZATII; FITNESS; SELECTION; LIFE-HISTORY TRAITS MALE MATING SUCCESS; NATURAL-POPULATION; MELANOGASTER; SIZE; PSEUDOOBSCURA; POLYMORPHISM; SELECTION; HERITABILITY We demonstrate a genetic correlation between rearrangements of the second chromosome of 1). buzzatii and thorax length, as a measure of body size. The results indicate that 2j and 2jz3 arrangements are correlated with large size, whereas 2st arrangement is correlated with small size. Some inversions (2st and 2jz3) show dominant effects and others (2j/j(z)3) exhibit over-dominance, These results show that at least 25 per cent of body size variation may be accounted for by the studied karyotypes. The possible integration of the genotypic, phenotypic and fitness levels, and also the possible implications to life-history evolution theories are discussed. These results suggest that, under moderate to high heritability values, some kinds of chromosomal endocyclic and/or balancing selection may be valuable mechanisms for maintenance of body size variation. UNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,GIBE DEPT CIENCIAS BIOL,RA-1428 BUENOS AIRES,ARGENTINA; UNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT CIENCIAS BIOL,GENET LAB,RA-1428 BUENOS AIRES,ARGENTINA; UNIV AUTONOMA BARCELONA,DEPT GENET & MICROBIOL,E-08193 BARCELONA,SPAIN Fontdevila, Antonio/A-4765-2009 Fontdevila, Antonio/0000-0003-2531-915X ANDERSON WW, 1979, P NATL ACAD SCI USA, V76, P1519, DOI 10.1073/pnas.76.3.1519; BARBADILLA A, 1988, GENETICS, V119, P465; Barker J.S.F., 1982, P209; BUTLIN RK, 1982, HEREDITY, V49, P51, DOI 10.1038/hdy.1982.64; COLOMBO PC, 1989, HEREDITY, V62, P289, DOI 10.1038/hdy.1989.42; COYNE JA, 1987, GENETICS, V117, P727; DAVID J, 1962, DROS INF SERV, V36, P128; DRUGER M, 1962, GENETICS, V47, P209; Endler JA, 1986, NATURAL SELECTION WI; FANARA JJ, 1988, PARAMETROS VIDA DROS; FONTDEVILA A, 1981, EVOLUTION, V35, P148, DOI 10.1111/j.1558-5646.1981.tb04867.x; FONTDEVILA A, 1982, EVOLUTION, V36, P843, DOI 10.1111/j.1558-5646.1982.tb05450.x; FONTDEVILA A, 1989, EVOLUTIONARY BIOLOGY OF TRANSIENT UNSTABLE POPULATIONS, P74; HASSON E, 1991, J EVOLUTION BIOL, V4, P209, DOI 10.1046/j.1420-9101.1991.4020209.x; JOHN B, 1983, CHROMOSOMES EVOLUTIO, V1, P1; KRIMBAS CB, 1967, MOL GEN GENET, V99, P133, DOI 10.1007/BF00426158; LANDE R, 1979, EVOLUTION, V33, P324; Mather K, 1982, BIOMETRICAL GENETICS; MISRA RK, 1964, GENET RES, V5, P240, DOI 10.1017/S0016672300001208; PARTRIDGE L, 1987, ANIM BEHAV, V35, P468, DOI 10.1016/S0003-3472(87)80272-5; PFRIEM P, 1983, GENETICA, V61, P221, DOI 10.1007/BF00123727; PREVOSTI A, 1967, GENET RES, V10, P81, DOI 10.1017/S0016672300010788; PREVOSTI A, 1955, COLD SPRING HARB SYM, V20, P294, DOI 10.1101/SQB.1955.020.01.028; PREVOSTI A., 1960, GENETICA IBERICA, V12, P27; PROUT T, 1989, GENETICS, V123, P803; ROBERTSON F. W., 1957, JOUR GENETICS, V55, P410, DOI 10.1007/BF02984060; ROBERTSON FW, 1957, J GENET, V55, P428, DOI DOI 10.1007/BF02984061; RUIZ A, 1989, EVOLUTIONARY BIOLOGY OF TRANSIENT UNSTABLE POPULATIONS, P96; RUIZ A, 1991, GENETICS, V128, P739; RUIZ A, 1986, EVOLUTION, V40, P740, DOI 10.1111/j.1558-5646.1986.tb00534.x; RUIZ A, 1985, GENET IBER, V36, P13; SALCEDA VM, 1988, P NATL ACAD SCI USA, V85, P9870, DOI 10.1073/pnas.85.24.9870; SANTOS M, 1989, AM NAT, V133, P183, DOI 10.1086/284909; SANTOS M, 1988, HEREDITY, V61, P255, DOI 10.1038/hdy.1988.113; SOKAL R., 1981, BIOMETRY; Sperlich D., 1986, P257; TAYLOR CE, 1987, AM NAT, V129, P721, DOI 10.1086/284668; TAYLOR CE, 1988, EVOLUTION, V42, P197, DOI 10.1111/j.1558-5646.1988.tb04120.x; THOMSON JA, 1971, CAN J GENET CYTOL, V13, P63, DOI 10.1139/g71-009; WHITE MJ, 1963, EVOLUTION, V17, P147, DOI 10.2307/2406460; WHITE MJD, 1960, EVOLUTION, V14, P284, DOI 10.2307/2405971; 1988, STATISTICAL SOFTWARE 42 39 40 0 1 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0018-067X HEREDITY Heredity JUN 1992 68 6 557 563 10.1038/hdy.1992.78 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HX105 WOS:A1992HX10500008 1612928 Bronze 2019-02-26 J EBERT, D EBERT, D A FOOD-INDEPENDENT MATURATION THRESHOLD AND SIZE AT MATURITY IN DAPHNIA-MAGNA LIMNOLOGY AND OCEANOGRAPHY English Note LIFE-HISTORY; PHYSIOLOGICAL ECOLOGY; GROWTH; MODEL; REPRODUCTION; PULEX Age and size at maturity are among the key traits of life-history evolution in Daphnia. Growth data from one clone of Daphnia magna show that there is a threshold size above which maturation is initiated. This threshold mechanism regulates body length at maturity at the cost of age at maturity. A model explains how the threshold accounts for large variation in age and size at maturity. EBERT, D (reprint author), UNIV BASEL,INST ZOOL,RHEINSPRUNG 9,CH-4051 BASEL,SWITZERLAND. Ebert, Dieter/B-5502-2009 Ebert, Dieter/0000-0003-2653-3772 EBERT D, 1991, OECOLOGIA, V86, P243, DOI 10.1007/BF00317537; GREEN J., 1956, PROC ZOOL SOC LONDON, V126, P173; GURNEY WSC, 1990, ECOLOGY, V71, P716, DOI 10.2307/1940325; HALLAM TG, 1990, ECOLOGY, V71, P938, DOI 10.2307/1937364; KETOLA M, 1989, HYDROBIOLOGIA, V179, P149, DOI 10.1007/BF00007602; LYNCH M, 1989, ECOLOGY, V70, P246, DOI 10.2307/1938430; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; MCCAULEY E, 1990, ECOLOGY, V71, P703, DOI 10.2307/1940324; PALOHEIMO JE, 1982, CAN J FISH AQUAT SCI, V39, P598, DOI 10.1139/f82-084; PORTER KG, 1983, ECOLOGY, V64, P735, DOI 10.2307/1937196; SINKO JW, 1969, ECOLOGY, V50, P608, DOI 10.2307/1936249; Taylor B.E., 1985, Advances in Limnology, V21, P285; TILLMANN U, 1984, J FRESHWATER ECOL, V2, P311, DOI 10.1080/02705060.1984.9664609; URABE J, 1988, Bulletin of Plankton Society of Japan, V35, P159; Zaffagnini F., 1987, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V45, P245 15 49 49 0 7 AMER SOC LIMNOLOGY OCEANOGRAPH LAWRENCE 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 0024-3590 LIMNOL OCEANOGR Limnol. Oceanogr. JUN 1992 37 4 878 881 10.4319/lo.1992.37.4.0878 4 Limnology; Oceanography Marine & Freshwater Biology; Oceanography JR683 WOS:A1992JR68300015 Bronze 2019-02-26 J METZ, JAJ; NISBET, RM; GERITZ, SAH METZ, JAJ; NISBET, RM; GERITZ, SAH HOW SHOULD WE DEFINE FITNESS FOR GENERAL ECOLOGICAL SCENARIOS TRENDS IN ECOLOGY & EVOLUTION English Article EVOLUTIONARY STABILITY; MODEL; ENVIRONMENTS; DEMOGRAPHY; SELECTION; LIFE Beginners in life history theory or evolutionary ecology seemingly face a variety of almost unrelated approaches. Yet the biomathematical literature of the last 10-20 years reflects the implicit acceptance of a common evolutionary framework, the core idea being that there exists a unique general fitness measure that concisely summarizes the overall time course of potential invasions by initially rare mutant phenotypes. Using such an invasion criterion to characterize fitness implicitly presupposes a scenario in which, during periods of clear evolutionary change, the rate of evolution is set primarily by the random occurrence (and initial establishment) of favourable mutations. Evolutionarily stable life history strategies (ESSs) may then be regarded as traps for the evolutionary random walk. UNIV CALIF SANTA BARBARA,DEPT BIOL SCI,SANTA BARBARA,CA 93106 METZ, JAJ (reprint author), LEIDEN UNIV,INST THEORET BIOL,KAISERSTR 63,2311 GP LEIDEN,NETHERLANDS. Nisbet, Roger/B-6951-2014 Baker G, 1990, CHAOTIC DYNAMICS INT; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.genet.23.1.337; BULMER MG, 1984, THEOR POPUL BIOL, V26, P367, DOI 10.1016/0040-5809(84)90040-6; Caswell H., 1989, MATRIX POPULATION MO; CHESSON PL, 1985, COMMUNITY ECOLOGY, P240; ESHEL I, 1983, J THEOR BIOL, V103, P99, DOI 10.1016/0022-5193(83)90201-1; ESHEL I, 1981, THEOR POPUL BIOL, V19, P420, DOI 10.1016/0040-5809(81)90029-0; Eshel I, 1991, GAME EQUILIBRIUM MOD, V1, P6; FERRIERE R, LECTURE NOTES BIOMAT; HAMMERSTEIN P, IN PRESS HDB GAME TH; HASSELL MP, 1976, J ANIM ECOL, V45, P471, DOI 10.2307/3886; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 1982, P21; LESSARD S, 1990, THEOR POPUL BIOL, V37, P157; LESSARD S, 1989, MATH EVOLUTIONARY TH, P207; LESSARD S, 1990, APPL MATH COMPUT, V32, P207; Metz J.A.J., 1986, DYNAMICS PHYSIOL STR; METZ JAJ, 1990, DYNAMISCHE SYSTEMEN, P320; NISBET RM, 1989, APPL MATH ECOLOGY, P428; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Roughgarden J, 1979, THEORY POPULATION GE; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; SMITH JM, 1974, J THEOR BIOL, V47, P2509; TAYLOR PD, 1988, J THEOR BIOL, V130, P363, DOI 10.1016/S0022-5193(88)80035-3; TAYLOR PD, 1988, THEOR POPUL BIOL, V34, P145, DOI 10.1016/0040-5809(88)90039-1; TAYLOR PD, 1989, THEOR POPUL BIOL, V36, P125, DOI 10.1016/0040-5809(89)90025-7; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; Tuljapurkar S., 1990, POPULATION DYNAMICS; TURELLI M, 1988, EVOLUTION, V42, P1342, DOI 10.1111/j.1558-5646.1988.tb04193.x; VANTIENDEREN PH, 1986, J THEOR BIOL, V122, P69, DOI 10.1016/S0022-5193(86)80225-9 30 703 714 3 107 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. JUN 1992 7 6 198 202 10.1016/0169-5347(92)90073-K 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HW583 WOS:A1992HW58300009 21236007 2019-02-26 J PETERSEN, MR PETERSEN, MR REPRODUCTIVE ECOLOGY OF EMPEROR GEESE - SURVIVAL OF ADULT FEMALES CONDOR English Article REPRODUCTIVE ECOLOGY; ANNUAL SURVIVAL; FEMALE SURVIVAL; CHEN CANAGICUS; ALASKA LESSER SNOW GEESE; CANADA GEESE; BARNACLE GEESE; CLUTCH-SIZE; GOOSE; SUCCESS; EXPERIENCE; AGE; PERFORMANCE; PARASITISM Life history theory predicts a decrease in survival with increased reproductive effort of individuals. This relationship, however, is highly variable among and within species. I studied the nesting success and survival of adult female Emperor Geese during 1982-1986 and found no direct evidence that differential reproductive effort as measured by the number of eggs laid or hatching success had a significant negative effect on survival to the next breeding season. Incubated clutch size, hatched clutch size, number of parasitic eggs, nest initiation date, hatch date, and mass at hatch were not related to subsequent survival. Of the factors I examined, only an attempt to nest the previous season was related to survival of a female. I suggest that the higher probability of survival among non-nesting adult female Emperor Geese was primarily related to hunting pressure on the nesting area between spring and fall migration. The probability of survival was increased for females with larger clutches, suggesting a positive relationship between brood size and survival. UNIV CALIF DAVIS,DEPT WILDLIFE & FISHERIES BIOL,DAVIS,CA 95616 PETERSEN, MR (reprint author), US FISH & WILDLIFE SERV,ALASKA FISH & WILDLIFE RES CTR,1011 E TUDOR RD,ANCHORAGE,AK 99503, USA. ALDRICH TW, 1983, AUK, V100, P670; ANKNEY CD, 1978, AUK, V95, P459; ASKENMO C, 1979, AM NAT, V114, P748, DOI 10.1086/283523; BARRY THOMAS W., 1962, JOUR WILDLIFE MANAGEMENT, V26, P19, DOI 10.2307/3798163; BLACK JM, 1989, ANIM BEHAV, V37, P199, DOI 10.1016/0003-3472(89)90110-3; BLACK JM, 1989, ANIM BEHAV, V37, P187, DOI 10.1016/0003-3472(89)90109-7; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BOYD H, 1953, BEHAVIOUR, V5, P85, DOI 10.1163/156853953X00069; BRAKHAGE GEORGE K., 1965, J WILDLIFE MANAGE, V29, P751, DOI 10.2307/3798552; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Conover W. J., 1980, PRACTICAL NONPARAMET; COOKE F, 1981, CONDOR, V83, P322, DOI 10.2307/1367500; COOKE F, 1975, AUK, V92, P493, DOI 10.2307/4084603; COOPER JA, 1978, WILDLIFE MONO, V61; COULSON JC, 1966, J ANIM ECOL, V35, P269, DOI 10.2307/2394; EISENHAUER DI, 1976, THESIS PURDUE U W LA; EISENHAUER DI, 1977, WILDL MONO, V57; ELY CR, 1984, J WILDLIFE MANAGE, V48, P823, DOI 10.2307/3801429; FAY FRANCIS H., 1959, UNIV CALIFORNIA PUBL ZOOL, V63, P73; FINNEY G, 1978, CONDOR, V80, P147, DOI 10.2307/1367914; GABRIELSON IN, 1959, BIRDS ALASKA; GAUTHIER G, 1989, AUK, V106, P568; HANSON H. C., 1953, AUK, V70, P11; HANSON HC, 1962, 12 ARCT I TECH PAP; HARVEY JM, 1971, CAN J ZOOLOG, V49, P223, DOI 10.1139/z71-032; Harvey P.H., 1988, P189; HOLMES RT, 1973, CONDOR, V75, P150, DOI 10.2307/1365862; JACKSON MT, 1981, NAT GEOG SOC RES REP, V13, P287; Jenness A., 1970, DWELLERS TUNDRA LIFE; JONES N G B, 1972, Wildfowl, V23, P92; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; King J. G., 1986, T N AM WILDL NAT RES, V51, P464; KIRBY RE, 1986, J WILDLIFE MANAGE, V50, P29, DOI 10.2307/3801483; Kistchinski A.A., 1971, Wildfowl, V22, P29; KLEIN DR, 1966, ARCTIC, V19, P319; KRECHMAR AV, 1982, J ZOOL, V61, P254; KRUUK H, 1964, BEHAVIOUR S, V11; LAMPRECHT J, 1986, BEHAVIOUR, V97, P50, DOI 10.1163/156853986X00315; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LESSELLS CM, 1985, IBIS, V127, P31, DOI 10.1111/j.1474-919X.1985.tb05035.x; LOMAN J, 1982, OECOLOGIA, V52, P253, DOI 10.1007/BF00363845; MACWHIRTER RB, 1989, CONDOR, V91, P485, DOI 10.2307/1368333; MARTIN P, 1986, MEASURING BEHAVIOUR; McCleery R.H., 1988, P136; MICKELSON PG, 1975, WILDL MONOG, V45; Newton I., 1977, P113; Nur N., 1987, Perspectives in Ethology, V7, P49; OWEN M, 1989, J ANIM ECOL, V58, P603, DOI 10.2307/4851; Owen M., 1982, Aquila, V89, P229; PAMPLIN JR W. L., 1986, T N AM WILDL NAT RES, V51, P487; Petersen M.R., 1982, Wildfowl, V33, P31; PETERSEN MR, 1990, WILSON BULL, V102, P413; PETERSEN MR, 1992, CONDOR, V94, P383, DOI 10.2307/1369211; PETERSEN MR, IN PRESS J FIELD ORN; POLLOCK KH, 1989, J WILDLIFE MANAGE, V53, P7, DOI 10.2307/3801296; PORTENKO LA, 1981, BIRDS CHUKCHI PENINS; RAVELING D G, 1970, Behaviour, V37, P291, DOI 10.1163/156853970X00394; RAVELING DG, 1981, J WILDLIFE MANAGE, V45, P817, DOI 10.2307/3808091; RAVELING DG, 1978, AUK, V95, P294; RAVELING DG, 1984, T N AM WILDL NAT RES, V49, P555; RAVELING DG, 1989, CAN J ZOOL, V66, P2766; RAVELING DG, 1977, 98 ONT MIN NAT RES F; ROCKWELL RF, 1983, OECOLOGIA, V56, P318, DOI 10.1007/BF00379706; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; Spencer D. L., 1951, Transactions of the North American Wildlife Conference, VNo. 16, P290; SULZBACH CS, 1979, CONDOR, V81, P232; Thomas C.S., 1988, P251; TIMM DE, 1979, MANAGEMENT BIOL PACI, P280; WELLER MILTON W., 1957, JOUR WILDLIFE MANAGEMENT, V21, P456, DOI 10.2307/3796681; WHITE GC, 1983, J WILDLIFE MANAGE, V47, P716, DOI 10.2307/3808607; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; YOMTOV Y, 1980, BIOL REV, V55, P93, DOI 10.1111/j.1469-185X.1980.tb00689.x; 1986, SPSSX USERS GUIDE 73 14 14 1 4 COOPER ORNITHOLOGICAL SOC LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 0010-5422 CONDOR Condor MAY 1992 94 2 398 406 10.2307/1369212 9 Ornithology Zoology HV531 WOS:A1992HV53100008 2019-02-26 J WINKLER, DW WINKLER, DW CAUSES AND CONSEQUENCES OF VARIATION IN PARENTAL DEFENSE BEHAVIOR BY TREE SWALLOWS CONDOR English Article TREE SWALLOW; TACHYCINETA-BICOLOR; ANTIPREDATOR BEHAVIOR; PARENTAL CARE; LIFE-HISTORY EVOLUTION AVIAN NEST DEFENSE; BROOD DEFENSE; CARE; AGE; PREDATOR; SPARROWS; PATTERNS; SUCCESS In a three-year experimental study of parental defense behavior in Tree Swallows (Tachycineta bicolor), I presented live ferrets and rat snakes to parents in the vicinity of 113 nests on the 13th and 14th day after chick-hatching. Sex of the defending parent and the identity of the predator being defended against were the most significant determinants of variation in the 13 aspects of parental defense behavior measured. Males defended more aggressively than did females. This may be a correlate of stronger territorial behavior in this sex, rather than a strategic response to differing relatedness to the brood. Ferrets were defended against more strongly than were snakes. This may be a response to greater efficacy of defense behavior against ferrets. Attendance measures of the male and female parent at the nest are highly correlated, whereas intensity measures are much less so. Even those intensity measures that are significantly positively correlated have distributions with many pairs in which one parent does considerable defense and the other does none. I suggest that parents are monitoring each other in the presence of the predator and refraining from defense to get their mates to defend actively. On the basis of observations of defense against many species, I suggest that defense has three functions in Tree Swallows: Intimidation of small nest-site competitors, "moving on," and distraction of larger nest predators. There is evidence that variation in both the costs and benefits of defense are important in affecting its intensity. Despite the large number of potential determinants examined, a large proportion of the variance in parental defense behavior remained unexplained. This large residual variation may be either an adaptation to avoid predator localization of the nest or enhance distraction, or a result of relatively low selective pressures or low frequencies of encounter between predators and swallows. WINKLER, DW (reprint author), CORNELL UNIV,DIV BIOL SCI,ECOL & SYSTEMAT SECT,ITHACA,NY 14853, USA. BOURNE WRP, 1977, BRIT BIRDS, V70, P266; BUITRON D, 1983, BEHAVIOUR, V88, P209; CURIO E, 1980, Z TIERPSYCHOL, V53, P139; CURIO E, 1978, Z TIERPSYCHOL, V48, P175; CURIO E, 1975, ANIM BEHAV, V23, P1, DOI 10.1016/0003-3472(75)90056-1; CURIO E, 1978, Z TIERPSYCHOL, V48, P184; CURIO E, 1985, Z TIERPSYCHOL, V69, P3; FREER VM, 1973, WILSON BULL, V85, P231; HUSSELL DJT, 1983, J FIELD ORNITHOL, V54, P312; KNIGHT RL, 1986, ANIM BEHAV, V34, P561, DOI 10.1016/S0003-3472(86)80125-7; KNIGHT RL, 1986, AUK, V103, P318; KRUUK H, 1964, BEHAVIOUR S, V11, P1; LEVIN SA, 1977, CONDOR, V79, P395, DOI 10.2307/1368028; LIFJELD JT, IN PRESS ANIM BEHAV; MCLEAN IG, 1986, BEHAVIOUR, V96, P171, DOI 10.1163/156853986X00270; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; PATTERSON TL, 1980, BEHAV ECOL SOCIOBIOL, V7, P227, DOI 10.1007/BF00299368; Perrins CM, 1979, BRIT TITS; PUGESEK BH, 1983, BEHAV ECOL SOCIOBIOL, V13, P161, DOI 10.1007/BF00299919; REDONDO T, 1989, BEHAVIOUR, V111, P161, DOI 10.1163/156853989X00646; REGELMANN K, 1983, BEHAV ECOL SOCIOBIOL, V13, P131, DOI 10.1007/BF00293803; REGELMANN K, 1986, BEHAVIOUR, V97, P10, DOI 10.1163/156853986X00298; REID ML, 1985, CAN J ZOOL, V63, P2207, DOI 10.1139/z85-325; RENDELL WB, 1989, CONDOR, V91, P875, DOI 10.2307/1368072; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; ROBERTSON RJ, IN PRESS BIRDS N AM; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; SHIELDS WM, 1984, ANIM BEHAV, V32, P132, DOI 10.1016/S0003-3472(84)80331-0; STUTCHBURY BJ, 1988, CAN J ZOOL, V66, P827, DOI 10.1139/z88-122; Svensson L., 1984, IDENTIFICATION GUIDE; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; UHLER FM, 1939, 4TH T N AM WILDL C, P605; WALLIN K, 1987, BEHAVIOUR, V102, P213, DOI 10.1163/156853986X00135; WALTERS JR, 1990, WILSON BULL, V102, P49; WEATHERHEAD PJ, 1989, BEHAV ECOL SOCIOBIOL, V25, P129, DOI 10.1007/BF00302929; WILKINSON GS, 1982, AUK, V99, P459; WILKINSON L, 1988, SYGRAPH; WILKINSON L, 1988, SYSTAT; WINDSOR D, 1975, CONDOR, V77, P359, DOI 10.2307/1366250; Winkler D.W., 1988, Oxford Surveys in Evolutionary Biology, V5, P185; Winkler DW, 1991, BEHAV ECOL, V2, P133, DOI 10.1093/beheco/2.2.133; WINKLER DW, 1987, AM NAT, V130, P526, DOI 10.1086/284729 42 43 43 1 15 COOPER ORNITHOLOGICAL SOC LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 0010-5422 CONDOR Condor MAY 1992 94 2 502 520 10.2307/1369222 19 Ornithology Zoology HV531 WOS:A1992HV53100018 2019-02-26 J ROACH, DA ROACH, DA PARENTAL CARE AND THE ALLOCATION OF RESOURCES ACROSS GENERATIONS EVOLUTIONARY ECOLOGY English Article PARENTAL CARE; RESOURCE ALLOCATION; ESS; INCLUSIVE FITNESS; MENOPAUSE; EVOLUTION To understand the evolution of parental care behaviour, the cost of care must be evaluated in terms of lost reproductive potential. Using population genetics theory, a quantitative model of parental care is presented here to evaluate the allocation of resources between production and care of offspring, and care of grandoffspring. The results show that the evolutionarily stable investment ratio of resources to offspring versus grandoffspring is equal to 2:1. The expected investment in grandoffspring will decrease when there is a lower probability of survival of the parents to a late stage of the life cycle. These results are discussed in the context of general life history theory, inclusive fitness models, animal behaviour field studies, and the evolution of human menopause. ROACH, DA (reprint author), DUKE UNIV,DEPT ZOOL,DURHAM,NC 27706, USA. Roach, Deborah/0000-0002-5273-5370 0 2 2 0 5 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAY 1992 6 3 187 197 10.1007/BF02214161 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HT005 WOS:A1992HT00500001 2019-02-26 J HOUSTON, AI; MCNAMARA, JM HOUSTON, AI; MCNAMARA, JM PHENOTYPIC PLASTICITY AS A STATE-DEPENDENT LIFE-HISTORY DECISION EVOLUTIONARY ECOLOGY English Article PHENOTYPIC PLASTICITY; LIFE-HISTORY THEORY; CLUTCH SIZE; STATE-DEPENDENT BEHAVIOR A genotype is said to show phenotypic plasticity if it can produce a range of environmentally dependent phenotypes. Plasticity may or may not be adaptive. We consider plasticity as a genetically determined trait and thus find the optimal response of an animal to its environment. Various aspects of this optimal response are illustrated with examples based on reproductive effort. We investigate the selection pressure for plastic as opposed to fixed strategies. An example with spatial heterogeneity is used to compare our approach with that of Stearns and Koella (1986). HOUSTON, AI (reprint author), UNIV OXFORD,DEPT ZOOL,NERC,BEHAV ECOL UNIT,S PARKS RD,OXFORD OX1 3PS,ENGLAND. 0 151 153 3 57 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAY 1992 6 3 243 253 10.1007/BF02214164 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HT005 WOS:A1992HT00500004 2019-02-26 J RAIMONDI, PT RAIMONDI, PT ADULT PLASTICITY AND RAPID LARVAL EVOLUTION IN A RECENTLY ISOLATED BARNACLE POPULATION BIOLOGICAL BULLETIN English Article QUANTITATIVE-GENETIC-ANALYSIS; BALANUS-AMPHITRITE DARWIN; LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; ECOLOGY; COMPLEX; COMPETITION; DIVERSITY; DISTANCE; REEF Balanus amphitrite, a common barnacle species, was introduced into the landlocked Salton Sea in 1943 or 1944. In 1949, Balanus amphitrite from the Salton Sea was classified as the subspecies, Balanus amphitrite saltonensis, based upon morphological differences between Salton Sea and coastal individuals. This classification was maintained following an investigation of the Balanus amphitrite complex in 1975. Such a designation implies that the morphological divergence is underlain by genetic differences. Using field and laboratory transplantations, I tested the alternative hypothesis that the observed morphological divergence in the adult stage of Balanus amphitrite was the result of phenotypic plasticity. The results show that the divergence in the examined adult characters is in fact due to environmentally induced phenotypic plasticity. There were also phenotypic differences between larvae from the Salton Sea and those from coastal habitats that only became apparent during experimentation with the adult stage. Here, however, experimental results suggest that the divergence was due to an evolutionary process, probably selection. These results also provide the basis for two slightly precautionary conclusions: (1) the observation that individuals living in typical and novel habitats differ cannot even weakly indicate a cause for the difference, and (2) a consideration of the divergence of populations is incomplete if all of the life history stages of the organism are not studied. UNIV CALIF SANTA BARBARA,DEPT BIOL SCI,SANTA BARBARA,CA 93106; UNIV CALIF SANTA BARBARA,INST MARINE SCI,SANTA BARBARA,CA 93106 ATCHLEY WR, 1976, SYST ZOOL, V25, P137, DOI 10.2307/2412740; AVISE JC, 1975, EVOLUTION, V29, P411, DOI 10.1111/j.1558-5646.1975.tb00831.x; BERVEN KA, 1979, EVOLUTION, V33, P609, DOI 10.1111/j.1558-5646.1979.tb04714.x; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; CARLTON JT, 1985, OCEANOGR MAR BIOL, V23, P313; CARPELAN LH, 1961, STATE CALIFORNIA DEP, V113, P17; CARPELAN LH, 1961, STATE CALIFORNIA DEP, V113, P9; Chamberlin G.J., 1980, COLOUR ITS MEASUREME; Cockerell T. D. A., 1945, TRANS KANSAS ACAD SCI, V48, P1; CONNELL JH, 1980, OIKOS, V35, P131, DOI 10.2307/3544421; DAY RW, 1989, ECOL MONOGR, V59, P433, DOI 10.2307/1943075; DUNLAP WC, 1986, J EXP MAR BIOL ECOL, V104, P239, DOI 10.1016/0022-0981(86)90108-5; Endler JA, 1986, NATURAL SELECTION WI; Falconer D. S., 1989, INTRO QUANTITATIVE G; FLOWERDEW MW, 1985, CRUSTACEANA, V49, P7, DOI 10.1163/156854085X00143; Gould S.J., 1972, Annual Rev Ecol Syst, V3, P457, DOI 10.1146/annurev.es.03.110172.002325; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; HENRY DP, 1975, ZOOL VERH, V141, P13; HILTON J, 1945, DESERT MAG, V8, P4; IRELAND C, 1979, SCIENCE, V205, P922, DOI 10.1126/science.205.4409.922; JERLOV NG, 1950, NATURE, V166, P111, DOI 10.1038/166111a0; JOKIEL PL, 1980, SCIENCE, V207, P1069, DOI 10.1126/science.207.4435.1069; Kornerup A, 1978, METHUEN HDB COLOUR; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1980, AM NAT, V116, P463, DOI 10.1086/283642; LEWONTIN RC, 1957, COLD SPRING HARB SYM, V22, P395, DOI 10.1101/SQB.1957.022.01.037; LINSLEY RH, 1961, STATE CALIFORNIA DEP, V113, P43; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; MACDONALD SE, 1988, EVOLUTION, V42, P1036, DOI 10.1111/j.1558-5646.1988.tb02522.x; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; Newman W.A., 1980, P504; PATEL BHUPENDRA, 1961, CRUSTACEANA, V2, P89, DOI 10.1163/156854061X00275; PETRANKA JW, 1987, EVOLUTION, V41, P1347, DOI 10.1111/j.1558-5646.1987.tb02472.x; Richardson B. J, 1986, ALLOZYME ELECTROPHOR; RITTSCHOF D, 1984, J EXP MAR BIOL ECOL, V82, P131, DOI 10.1016/0022-0981(84)90099-6; ROGERS F. L., 1949, JOUR ENT AND ZOOL, V41, P23; ROUGHGARDEN J, 1983, AM NAT, V122, P583, DOI 10.1086/284160; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; Schmalhausen I, 1949, THEORY STABILIZING S; SMITHGILL SJ, 1983, AM ZOOL, V23, P47; SOKAL R., 1981, BIOMETRY; Strathmann MF, 1987, REPRODUCTION DEV MAR; TEMPLETON AR, 1981, THEOR POPUL BIOL, V18, P279; TRAVIS J, 1987, EVOLUTION, V41, P145, DOI 10.1111/j.1558-5646.1987.tb05777.x; UNDERWOOD AJ, 1990, AUST J ECOL, V15, P365, DOI 10.1111/j.1442-9993.1990.tb01464.x; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; Williams GC, 1966, ADAPTATION NATURAL S; YENTSCH CS, 1982, ROLE SOLAR ULTRAVIOL, P691; 1989, LOS ANGELES TIM 0403 51 11 12 0 6 MARINE BIOLOGICAL LABORATORY WOODS HOLE 7 MBL ST, WOODS HOLE, MA 02543 0006-3185 BIOL BULL Biol. Bull. APR 1992 182 2 210 220 10.2307/1542114 11 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology KC974 WOS:A1992KC97400009 29303663 2019-02-26 J DHINDSA, MS; BOAG, DA DHINDSA, MS; BOAG, DA PATTERNS OF NEST SITE, TERRITORY, AND MATE SWITCHING IN BLACK-BILLED MAGPIES (PICA-PICA) CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article RED-WINGED BLACKBIRDS; REPRODUCTIVE SUCCESS; MATING SYSTEMS; PARENTAL CARE; BREEDING AREA; FIDELITY; PHILOPATRY; QUALITY; CHOICE; BIRDS A colour-marked population of black-billed magpies (Pica pica) was studied in Edmonton, Alberta, from 1982 to 1988. Between years, magpies changed nest sites within their territories significantly more often than they remained in the same site. Both sexes showed equally strong territory fidelity, with 72 % of the males and 70 % of the females nesting within their territories of the previous year. Breeding success in the previous year did not determine whether magpies switched nest sites within territories or changed territories, or how far they moved between years. In 1 year (1987), breeding failure (during a snowstorm) influenced the switching of neither nest sites nor territories. Although there was remarkable mate fidelity in some pairs (paired for 5 - 7 years), other magpies changed mates up to three times over the 7 years of the study. Both sexes showed a similar tendency to switch mates; 50 % of the males and 63 % of the females changed mates at least once in 7 years. Mate switching was independent of reproductive success in the previous year. There was a positive association between mate fidelity and territory fidelity in males: males that changed territories were also likely to change mates. These results are compared with those from other studies of black-billed magpies and discussed in the context of life-history strategies. UNIV ALBERTA,CTR BIOL SCI,DEPT ZOOL,EDMONTON T6G 2E9,ALBERTA,CANADA ALVAREZ F, 1974, ACTA VERTEBR, V1, P72; BAEYENS G, 1981, ARDEA, V69, P69; BAEYENS G, 1981, ARDEA, V69, P145; Birkhead T, 1991, MAGPIES ECOLOGY BEHA; BIRKHEAD TR, 1986, ARDEA, V74, P59; BROOKE MDL, 1979, J ANIM ECOL, V48, P21, DOI 10.2307/4097; BUITRON D, 1988, CONDOR, V90, P29, DOI 10.2307/1368429; BUITRON D, 1983, ANIM BEHAV, V31, P211, DOI 10.1016/S0003-3472(83)80191-2; CATCHPOLE CK, 1972, J ZOOL, V166, P213; CLARK PJ, 1954, ECOLOGY, V35, P445, DOI 10.2307/1931034; Coulson J.C., 1983, P361; COULSON JC, 1966, J ANIM ECOL, V35, P269, DOI 10.2307/2394; DECKERT G, 1968, BEITR VOGELK, V14, P97; DHINDSA MS, 1990, IBIS, V132, P595, DOI 10.1111/j.1474-919X.1990.tb00283.x; DHINDSA MS, 1989, CAN J ZOOL, V67, P228, DOI 10.1139/z89-032; DHINDSA MS, 1989, ORNIS SCAND, V20, P193, DOI 10.2307/3676913; DONNELLY KP, 1978, SIMULATION STUDIES A, P91; DUNN PO, 1989, AUK, V106, P635; ERPINO MJ, 1968, CONDOR, V70, P154, DOI 10.2307/1365958; GRATTO CL, 1985, AUK, V102, P16, DOI 10.2307/4086818; GRAVES J, 1986, BIRD STUDY, V33, P46, DOI 10.1080/00063658609476890; GREENWOOD PJ, 1982, ANNU REV ECOL SYST, V13, P1, DOI 10.1146/annurev.es.13.110182.000245; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; HAIG SM, 1988, AUK, V105, P268, DOI 10.2307/4087489; HARVEY PH, 1979, J ANIM ECOL, V48, P305, DOI 10.2307/4115; HOCHACHKA WM, 1987, CAN J ZOOL, V65, P1270, DOI 10.1139/z87-198; HOCHACHKA WM, 1985, THESIS U ALBERTA EDM; HOGSTEDT G, 1981, J ANIM ECOL, V50, P219, DOI 10.2307/4041; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; Kavanagh B.P., 1987, Irish Birds, V3, P387; KOMERS PE, 1988, CAN J ZOOL, V66, P1679, DOI 10.1139/z88-242; KOMERS PE, 1989, ANIM BEHAV, V37, P645, DOI 10.1016/0003-3472(89)90043-2; Krebs C. J., 1989, ECOLOGICAL METHODOLO; Lack D, 1968, ECOLOGICAL ADAPTATIO; MOLLER AP, 1982, ORNIS SCAND, V13, P94, DOI 10.2307/3676195; MOLLER AP, 1986, IBIS, V128, P234, DOI 10.1111/j.1474-919X.1986.tb02671.x; NEWTON I, 1982, J ANIM ECOL, V51, P327, DOI 10.2307/4327; Newton I., 1986, SPARROWHAWK; ORING LW, 1982, BEHAV ECOL SOCIOBIOL, V10, P185, DOI 10.1007/BF00299684; PICMAN J, 1987, AUK, V104, P405, DOI 10.2307/4087537; REESE KP, 1985, CONDOR, V87, P96, DOI 10.2307/1367140; Richdale L. E., 1957, POPULATION STUDY PEN; Rowley I., 1983, P331; SCHARF CS, 1987, CAN FIELD NAT, V101, P111; SCHARF CS, 1985, THESIS U ALBERTA EDM; SCHIECK JO, 1989, OECOLOGIA, V81, P465, DOI 10.1007/BF00378953; TATNER P, 1982, BIRD STUDY, V29, P227, DOI 10.1080/00063658209476763; VINES G, 1981, IBIS, V123, P190, DOI 10.1111/j.1474-919X.1981.tb00924.x; WEATHERHEAD PJ, 1986, ANIM BEHAV, V34, P1299, DOI 10.1016/S0003-3472(86)80201-9; YASUKAWA K, 1979, CONDOR, V81, P258, DOI 10.2307/1367628; Zar J. H., 1984, BIOSTATISTICAL ANAL 51 10 10 1 3 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. APR 1992 70 4 633 640 10.1139/z92-095 8 Zoology Zoology JB043 WOS:A1992JB04300001 2019-02-26 J DERIDDER, F; DHONDT, AA DERIDDER, F; DHONDT, AA THE REPRODUCTIVE-BEHAVIOR OF A CLONAL HERBACEOUS PLANT, THE LONGLEAVED SUNDEW DROSERA-INTERMEDIA, IN DIFFERENT HEATHLAND HABITATS ECOGRAPHY English Article COMPLEX LIFE-CYCLES; RESOURCE-ALLOCATION; POPULATIONS; PATTERNS; COSTS The reproductive behaviour of the longleaved sundew Drosera intermedia Hayne was studied in three hydrologically differing heathland habitats: a pool edge, an old path through the wet heath and a seepage area. Sexual reproductive allocation (SRA) (the slope of thc regression of sexual on vegetative biomass in a given season) differed strongly between years (related to temperature and precipitation) and habitats. Averaged over years. path plants had a higher SRA than plants in the seepage area and at the pool edge. Asexual reproductive allocation. expressed as thc size-dependent probability of reproducing asexually, did not differ between habitats in most years. The observations agreed with general life history theory. SRA was high in the path habitat where adult survival chances were low and juvenile (= seed, first year seedling) survival was high. SRA was lower in the seepage area where adult survival chances were higher and juvenile survival lower. At the pool edge, a habitat with high adult mortality and low juvenile establishment, the predicted optimal reproductive behaviour, a high SRA, was not observed due to environmental constraints (inundation). DERIDDER, F (reprint author), UNIV INSTELLING ANTWERP,DEPT BIOL,UNIVERSITEITSPLEIN 1,B-2610 WILRIJK,BELGIUM. Dhondt, Andre/A-8292-2008 Dhondt, Andre/0000-0002-4946-1401 BACKEUS I, 1988, HOLARCTIC ECOL, V11, P146; Bazzaz F. A., 1985, STUDIES PLANT DEMOGR, P373; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; BROK TCM, 1989, OECOLOGIA BERL, V80, P44; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; CASWELL H, 1982, ECOLOGY, V63, P1223, DOI 10.2307/1938847; CASWELL H, 1985, POPULATION BIOL EVOL, P187; Caswell H., 1989, MATRIX POPULATION MO; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; CULLEN JM, 1978, NEW PHYTOL, V81, P443, DOI 10.1111/j.1469-8137.1978.tb02649.x; DERIDDER F, 1987, HOLARCTIC ECOL, V10, P299; DERIDDER F, 1992, ECOGRAPHY, V15, P129; DERIDDER F, 1990, THESIS U ANTWERP; DOUST JL, 1980, BIOL J LINN SOC, V13, P155; DOWDING P, 1981, ECOL B, V33, P615; FAVARD A, 1969, REV GEN BOT, V76, P157; FAVARD A, 1963, ANN SC NAT BOT E 4, V12, P265; FITTER AH, 1988, J ECOL, V76, P617, DOI 10.2307/2260563; HEILMAN PE, 1968, ECOLOGY, V49, P331, DOI 10.2307/1934463; LOTZ LAP, 1986, OECOLOGIA, V69, P25, DOI 10.1007/BF00399033; NORUSIS MJ, 1986, SPSS PC PLUS IBM PC; NORUSIS MJ, 1988, SPSS PC PLUS ADV STA; OHLSON M, 1988, J ECOL, V76, P1007, DOI 10.2307/2260629; PRIMACK RB, 1982, EVOLUTION, V36, P742, DOI 10.1111/j.1558-5646.1982.tb05440.x; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; Sokal FJ, 1981, BIOMETRY; SOULE JD, 1981, B TORREY BOT CLUB, V108, P311, DOI 10.2307/2484709; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Swift M. J., 1979, STUDIES ECOLOGY, V5; THOMPSON K, 1981, AM NAT, V117, P205, DOI 10.1086/283700; THUM M, 1988, OECOLOGIA, V75, P472, DOI 10.1007/BF00376954; THUM M, 1988, THESIS MUNICH; TUOMI J, 1983, AM ZOOL, V23, P25; VANCLEVE K, 1981, ECOL B, V33, P375; WATSON AP, 1982, AUST J ECOL, V7, P13, DOI 10.1111/j.1442-9993.1982.tb01296.x; Weiner J., 1988, Plant reproductive ecology: patterns and strategies, P228; Willson MF, 1983, PLANT REPRODUCTIVE E; Yodzis P, 1989, INTRO THEORETICAL EC 42 5 6 1 6 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0906-7590 ECOGRAPHY Ecography APR-JUN 1992 15 2 144 153 10 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology JC917 WOS:A1992JC91700002 2019-02-26 J ROSS, C ROSS, C LIFE-HISTORY PATTERNS AND ECOLOGY OF MACAQUE SPECIES PRIMATES English Article LIFE-HISTORY EVOLUTION; R-SELECTION AND K-SELECTION; EVOLUTIONARY CONSTRAINTS; MACACA SPECIES INTERBIRTH INTERVALS; POPULATION-DYNAMICS; JAPANESE MACAQUES; MACACA-RADIATA; INTRINSIC RATE; CAPTIVE GROUP; INCREASE; MONKEYS; RHESUS Macaques are found both in broadleaf evergreen forest and in more variable habitats. The former group might be expected to be subject to less variability in their environment and hence to suffer lower rates of density independent mortality. Life history evolution models predict that species in such conditions will have lower rates of development and breeding than those found in more variable habitats where density independent mortality is high. This prediction is tested here by comparing the breeding and development rates of nine species of macaque. Although measures of developmental rate are not found to vary in a predictable way with habitat, measures of breeding rate do correlate with habitat categories used. As predicted, species that are found in more variable habitats tend to have higher birth rates and a higher intrinsic rate of natural increase than do species in more stable, forest habitats. Contrary to prediction selection does not always act to produce an early age at first reproduction in macaques living in seasonal environments. This is discussed with relation to physiological and environmental constraints. ROSS, C (reprint author), UNIV DURHAM,DEPT ANTHROPOL,43 OLD ELVET,DURHAM DH1 3HN,ENGLAND. Ross, Caroline/A-1359-2010 Ross, Caroline/0000-0002-2366-143X BERKSON G, 1968, LAB ANIM CARE, V18, P352; BOURNE GH, 1975, RHESUS MONKEY, V1; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Dittus WPJ, 1975, SOCIOECOLOGY PSYCHOL, P125; FAUCHEUX B, 1978, FOLIA PRIMATOL, V30, P220, DOI 10.1159/000155865; FOODEN J, 1990, J HUM EVOL, V19, P607, DOI 10.1016/0047-2484(90)90002-S; FOODEN J, 1982, Primates, V23, P574, DOI 10.1007/BF02373969; Fooden J., 1980, P1; Groves C.P., 1980, P84; HADIDIAN J, 1979, Primates, V20, P429, DOI 10.1007/BF02373394; HARVEY N C, 1983, Primates, V24, P530, DOI 10.1007/BF02381686; Harvey P.H., 1987, P181; Harvey P.H., 1982, P343; HARVEY PH, 1977, J ZOOL LONDON, V183, P1; HAYSSEN V, 1984, OECOLOGIA, V64, P419, DOI 10.1007/BF00379142; Hennemann W.W. III, 1984, Oecologia (Berlin), V64, P421, DOI 10.1007/BF00379143; JONES ML, 1968, INT Z YB, V8, P183; LINDBURG DG, 1985, LION TAILED MACAQUE, P343; LOY J, 1988, ECOLOGY BEHAVIOR FOO, P153; MARTIN RD, 1988, S ZOOL SOC LOND, V60, P39; MASUI K, 1975, CONT PRIMATOLOGY, P401; Melnick D.J., 1987, P121; MORI A, 1979, Primates, V20, P371, DOI 10.1007/BF02373390; NIGI H, 1976, Primates, V17, P81, DOI 10.1007/BF02381568; NOMURA T, 1971, ACTA ENDOCRINOL-COP, P473; OHNO T, 1980, NUTR REP INT, V22, P935; PAUL A, 1984, FOLIA PRIMATOL, V42, P2, DOI 10.1159/000156140; RAWLINS RG, 1984, J MED PRIMATOL, V13, P247; ROBERTS MS, 1978, FOLIA PRIMATOL, V29, P229, DOI 10.1159/000155842; ROSENBLUM LA, 1980, J MED PRIMATOL, V9, P247; ROSS C, 1991, INT J PRIMATOL, V12, P481, DOI 10.1007/BF02547635; ROSS C, 1988, J ZOOL, V214, P199, DOI 10.1111/j.1469-7998.1988.tb04717.x; Ross CA, 1989, THESIS U LONDON; ROWELL TE, 1979, J MAMMAL, V60, P58, DOI 10.2307/1379758; Sackett G.P., 1979, P187; SCUCCHI S, 1984, FOLIA PRIMATOL, V42, P203, DOI 10.1159/000156163; SILK JB, 1988, AM J PRIMATOL, V14, P111, DOI 10.1002/ajp.1350140202; SILK JB, 1990, AM J PHYS ANTHROPOL, V82, P213, DOI 10.1002/ajpa.1330820210; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; SUGIYAMA Y, 1982, FOLIA PRIMATOL, V39, P238, DOI 10.1159/000156080; TAKAHATA Y, 1980, Primates, V21, P303, DOI 10.1007/BF02390462; VANWAGENEN G, 1956, AM J PHYS ANTHROPOL, V14, P245, DOI 10.1002/ajpa.1330140219; WOLFE LD, 1986, PRIMATES, V27, P95, DOI 10.1007/BF02382525 44 23 24 0 11 JAPAN MONKEY CENTRE INUYAMA AICHI PRIMATES, EDITORIAL OFFICE, INUYAMA AICHI 484, JAPAN 0032-8332 PRIMATES Primates APR 1992 33 2 207 215 10.1007/BF02382750 9 Zoology Zoology HX389 WOS:A1992HX38900005 2019-02-26 J FOURNIER, A FOURNIER, A THE GROWTH STRATEGIES OF 2 PERENNIAL GRASSES (ANDROPOGON-ASCINODIS AND SCHIZACHYRIUM-SANGUINEUM) IN THE SUDANIAN SAVANNAS OF WEST-AFRICA REVUE D ECOLOGIE-LA TERRE ET LA VIE French Article The life-history strategies of two perennial grasses Andropogon ascinodis et Schizachyrium sanguineum were compared throughout the yearly cycle in undisturbed soudanian savannas of northern Ivory Coast (Ouango-Fitini) and Burkina Faso (Nazinga), Western Africa. The morphology, growth, and reproductive habits of the two species are very similar: both belong to the << competitive type >> of life-history, as defined by Grime (1979). They nevertheless coexist at the same sites. A detailed study of their seasonal growth rythm (number of tillers and leaves; natality, mortality and life-span of leaves), and of some of their morphological traits (size and number of internodes), shows some differences in their architecture, which result from slight differences in their growth strategies. Together with the temporal heterogeneity of their environment, it is suggested that these differential traits might explain the coexistence of the two species in sudanian savannas. The possibility of differences in palatability for large herbivores and of selective herbivory is also raised. MUSEUM NATL HIST NAT,ECOL GEN,F-91800 BRUNOY,FRANCE ALSBEI MR, 1982, THESIS U MONTPELLIER; BRUZON V, 1990, THESIS U PARIS 7; BRUZON V, 1986, NOTE VALEUR ALIMENTA; CESAR J, 1982, REV ELEVAGE MED VET, V35, P435; CESAR J, 1990, THESIS U PARIS 6; CESAR J, 1984, PATURAGES FORO FORO; CESAR J, 1978, 13 CTR RECH ZOO TECH; COUPLAND RT, 1974, 55 PROJ MAT RAPP TEC; Fournier A., 1987, Bulletin d'Ecologie, V18, P409; FOURNIER A, 1984, VEGETATIO, V57, P177, DOI 10.1007/BF00047317; FOURNIER A, 1990, Mitteilungen aus dem Institut fuer Allgemeine Botanik Hamburg, V23, P823; FOURNIER A, 1991, THESIS; Fournier A., 1982, ANN U ABIDJAN E, V15, P63; FOURNIER A, 1982, THESIS U MONTPELLIER; FOURNIER A, 1983, ACTA OECOLOGICA OECO, V2, P183; FRANCOIS J, 1979, OECOLOG PLANTAR, V14, P417; GARNIER E, 1982, APPROCHE DEMOGRAPHIQ; GATSUK LE, 1980, J ECOL, V68, P675, DOI 10.2307/2259429; GILLET M., 1964, ANN AMELIOR PLANTES, V14, P309; GRANIER P, 1977, REV ELEV MED VET PAY, V29, P267; Grime J. P, 1979, PLANT STRATEGIES VEG; Halle F., 1978, TROPICAL TREES FORES; HUISKES AHL, 1979, OECOLOG PLANTAR, V14, P435; JACQUESFELIX H, 1962, GRAMINEES AFRIQUE TR, V1; LOISEAU P, 1977, ANN AGRON, V28, P185; ROBSON MJ, 1973, ANN BOT-LONDON, V37, P487, DOI 10.1093/oxfordjournals.aob.a084716; RYLE G. J. A., 1964, J BRIT GRASSLAND SOC, V19, P281; SILVA JF, 1985, ACTA OECOL-OEC PLANT, V6, P41; TAYLOR RD, 1978, J APPL ECOL, V15, P565, DOI 10.2307/2402611; TOUTAIN B, 1974, ETUDE AGROSTOLOGIQUE, V40; TOUTAIN B, 1979, ETUDE AGROSTOLOGIQUE, V53 31 0 0 0 2 SOC NATL PROTECTION NATURE ACCLIMATATION FRANCE PARIS 5 57 RUE CUVIER, 75005 PARIS 5, FRANCE 0249-7395 REV ECOL-TERRE VIE Rev. Ecol.-Terre Vie APR-JUN 1992 47 2 113 134 22 Ecology Environmental Sciences & Ecology HN599 WOS:A1992HN59900001 2019-02-26 J WHITE, FJ WHITE, FJ THE CHIMPANZEES OF THE MAHALE MOUNTAINS - SEXUAL AND LIFE-HISTORY STRATEGIES - NISHIDA,T AMERICAN ANTHROPOLOGIST English Book Review WHITE, FJ (reprint author), DUKE UNIV,DURHAM,NC 27706, USA. Nishida T., 1990, CHIMPANZEES MAHALE M 1 0 0 0 2 AMER ANTHROPOLOGICAL ASSOC ARLINGTON 4350 NORTH FAIRFAX DRIVE SUITE 640, ARLINGTON, VA 22203 0002-7294 AM ANTHROPOL Am. Anthropol. MAR 1992 94 1 242 242 10.1525/aa.1992.94.1.02a00860 1 Anthropology Anthropology HJ260 WOS:A1992HJ26000090 2019-02-26 J KENRICK, DT; KEEFE, RC KENRICK, DT; KEEFE, RC AGE PREFERENCES IN MATES REFLECT SEX-DIFFERENCES IN REPRODUCTIVE STRATEGIES BEHAVIORAL AND BRAIN SCIENCES English Article MATE SELECTION; GENDER DIFFERENCES; LIFE HISTORY STRATEGIES; EVOLUTION; SEXUAL SELECTION; SOCIAL EXCHANGE; SIMILARITY; ATTRACTION PHYSICAL ATTRACTIVENESS; SELECTION; SOCIOBIOLOGY; PSYCHOLOGY; EVOLUTION; TESTOSTERONE; SIMILARITY; HYPOTHESIS; INVESTMENT; COURTSHIP Findings that women are attracted to men older than themselves whereas men are attracted to relatively younger women have been explained by social psychologists in terms of economic exchange rooted in traditional sex-role norms. An alternative evolutionary model suggests that males and females follow different reproductive strategies, and predicts a more complex relationship between gender and age preferences. In particular, males' preferences for relatively younger females should be minimal during early mating years, but should become more pronounced as the male gets older. Young females are expected to prefer somewhat older males during their early years and to change less as they age. We briefly review relevant theory, and present results of six studies testing this prediction. Study 1 finds support for this gender-differentiated prediction in age preferences expressed in personal advertisements. Study 2 supports the prediction with marriage statistics from two U.S. cities. Study 3 examines the cross-generational robustness of the phenomenon, and finds the same pattern in marriage statistics from 1923. Study 4 replicates Study 1 using matrimonial advertisements from two European countries, and from India. Study 5 finds a consistent pattern in marriages recorded from 1913 through 1939 on a small island in the Philippines. Study 6 reveals the same pattern in singles advertisements placed by financially successful American women and men. We consider the limitations of previous normative and evolutionary explanations of age preferences, and discuss the advantages of expanding previous models to include the life history perspective. SCOTTSDALE COLL,DEPT PSYCHOL,SCOTTSDALE,AZ KENRICK, DT (reprint author), ARIZONA STATE UNIV,DEPT PSYCHOL,TEMPE,AZ 85287, USA. Henrich, Joseph/A-2403-2009 Alexander R. D., 1987, BIOL MORAL SYSTEMS; ANTILL JK, 1983, J PERS SOC PSYCHOL, V45, P145, DOI 10.1037//0022-3514.45.1.145; BANCROFT J, 1978, BIOL DETERMINANTS SE, P493; BARASH DP, 1982, SOCIOBIOLOGY BEHAVIO; BOLIG R, 1984, FAM RELAT, V33, P587, DOI 10.2307/583839; BREWER MB, 1989, SOC COGNITION, V7, P262, DOI 10.1521/soco.1989.7.3.262; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1986, J PERS SOC PSYCHOL, V50, P559, DOI 10.1037/0022-3514.50.3.559; Byrne D. E, 1971, ATTRACTION PARADIGM; CAMERON C, 1977, FAM COORD, V26, P27, DOI 10.2307/581857; CLARK MS, 1988, ANNU REV PSYCHOL, V39, P609, DOI 10.1146/annurev.psych.39.1.609; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; COHEN S, 1985, PSYCHOL BULL, V98, P310, DOI 10.1037/0033-2909.98.2.310; COOPER WS, 1987, PSYCHOL REV, V94, P395, DOI 10.1037//0033-295X.94.4.395; COSMIDES L, 1989, ETHOL SOCIOBIOL, V10, P51, DOI 10.1016/0162-3095(89)90013-7; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; CRITELLI JW, 1980, J PERS ASSESS, V44, P624, DOI 10.1207/s15327752jpa4406_10; CUNNINGHAM MR, 1986, J PERS SOC PSYCHOL, V50, P925, DOI 10.1037/0022-3514.50.5.925; CUNNINGHAM MR, 1981, REV PERSONALITY SOCI, V2, P69; DABBS JM, 1987, PSYCHOSOM MED, V49, P174, DOI 10.1097/00006842-198703000-00007; DALY M, 1988, SCIENCE, V242, P519, DOI 10.1126/science.3175672; Daly M., 1988, HOMICIDE; DALY M, 1983, SEX EVOLUTION BEHAVI; DEUTSCH FM, 1986, J APPL SOC PSYCHOL, V16, P771; FINCH CE, 1986, AGING REPRODUCTION C; Fisher R.A., 1930, GENETICAL THEORY NAT; Frank R. H, 1988, PASSIONS REASON; GHISELIN MT, 1989, BEHAV BRAIN SCI, V12, P20, DOI 10.1017/S0140525X00024079; GLENN ND, 1989, BEHAV BRAIN SCI, V12, P21, DOI 10.1017/S0140525X00024092; Goffman E, 1952, PSYCHIATR, V15, P451, DOI 10.1080/00332747.1952.11022896; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; Guttentag M., 1983, TOO MANY WOMEN SEX R; HARRISON AA, 1977, J PERS SOC PSYCHOL, V35, P257, DOI 10.1037//0022-3514.35.4.257; HENDRICK SS, 1981, J PERS SOC PSYCHOL, V40, P1150, DOI 10.1037/0022-3514.40.6.1150; HILL J, 1984, ETHOL SOCIOBIOL, V5, P77, DOI 10.1016/0162-3095(84)90011-6; Hinde R. A., 1974, BIOL BASES HUMAN SOC; HINDE RA, 1984, J SOCIAL PERSONAL RE, V1, P471; HOUSE JS, 1982, AM J EPIDEMIOL, V116, P123, DOI 10.1093/oxfordjournals.aje.a113387; HUSTON TL, 1978, ANNU REV PSYCHOL, V29, P115, DOI 10.1146/annurev.ps.29.020178.000555; James W, 1890, PRINCIPLES PSYCHOL; JAMES WH, 1974, J SEX RES, V10, P205, DOI 10.1080/00224497409550851; Jencks C., 1979, WHO GETS AHEAD; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; KENRICK DT, 1989, REV PERSONALITY SOCI, V10, P92; KENRICK DT, 1990, UNPUB EFFECTS GENDER; KENRICK DT, 1987, REV PERSONALITY SOCI, V7, P14; KENRICK DT, 1987, FEMALES MALES SEXUAL, P59; KENRICK DT, 1985, PERSPECTIVES PERSONA, V1, P201; LANGLOIS JH, 1990, PSYCHOL SCI, V1, P115, DOI 10.1111/j.1467-9280.1990.tb00079.x; LEONARD JL, 1989, BEHAV BRAIN SCI, V12, P26, DOI 10.1017/S0140525X00024134; LOCKARD JS, 1989, ETHOLOGY SOCIOLOGY; MACKEY WC, 1980, J ANTHROPOL RES, V36, P419; MARGOLIN L, 1987, J MARRIAGE FAM, V49, P21, DOI 10.2307/352666; MATHES EW, 1985, J SOC PSYCHOL, V125, P157, DOI 10.1080/00224545.1985.9922868; MAYNARDSMITH J, 1958, J EXP BIOL, V35, P832; MAZUR A, 1980, HORM BEHAV, V14, P236, DOI 10.1016/0018-506X(80)90032-X; MCDOUGALL W, 1906, SOCIAL PSYCHOL; MEALEY L, 1985, ETHOL SOCIOBIOL, V6, P249, DOI 10.1016/0162-3095(85)90017-2; MENKEN J, 1986, AGING REPROD CLIMACT, P147; NIESCHLAG E, 1986, AGING REPRODUCTION C, P59; NUR N, 1989, BEHAV BRAIN SCI, V12, P28, DOI 10.1017/S0140525X00024158; NYBORG H, 1989, BEHAV BRAIN SCI, V12, P29, DOI 10.1017/S0140525X0002416X; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Plutchik R., 1980, EMOTION THEORY RES E; PRESSLEY PH, 1981, EVOLUTION, V35, P282, DOI 10.1111/j.1558-5646.1981.tb04887.x; RESNICK R, 1986, AGING REPRODUCT CUM, P167; RUSHTON JP, 1989, BEHAV BRAIN SCI, V12, P503, DOI 10.1017/S0140525X00057320; SADALLA EK, 1987, J PERS SOC PSYCHOL, V52, P730, DOI 10.1037/0022-3514.52.4.730; SCHAFFER LS, 1983, J MIND BEHAV, V4, P275; SLOMAN S, 1988, J SOC BIOL STRUCT, V11, P457, DOI 10.1016/0140-1750(88)90083-8; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SYMONS D, 1989, BEHAV BRAIN SCI, V12, P34, DOI 10.1017/S0140525X00024225; Symons D, 1979, EVOLUTION HUMAN SEXU; THORNHILL NW, 1989, BEHAV BRAIN SCI, V12, P35, DOI 10.1017/S0140525X00024237; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; TOWNSEND JM, 1989, ETHOL SOCIOBIOL, V10, P241, DOI 10.1016/0162-3095(89)90002-2; TRIVERS RL, SEXUAL SELECTION DES; Trivers Robert, 1985, SOCIAL EVOLUTION; U.S. Bureau of the Census, 1984, STAT ABSTR US 1984; *US BUR CENS, 1930, 15TH CENS POP; Walster E. H., 1978, EQUITY THEORY RES; Williams GC, 1975, SEX EVOLUTION; Wilson E. O., 1981, GENES MIND CULTURE; WINEGAR K, 1989, ARIZONA REP BLIO SEP, pF1 86 381 387 3 117 CAMBRIDGE UNIV PRESS NEW YORK 40 WEST 20TH STREET, NEW YORK, NY 10011-4211 0140-525X BEHAV BRAIN SCI Behav. Brain Sci. MAR 1992 15 1 75 & 10.1017/S0140525X00067595 0 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology HD910 WOS:A1992HD91000036 2019-02-26 J DESTASIO, BT; HAIRSTON, NG DESTASIO, BT; HAIRSTON, NG ENVIRONMENTAL VARIABILITY AND THE PERSISTENCE OF MULTIPLE EMERGENCE STRATEGIES BULLETIN OF MATHEMATICAL BIOLOGY English Article FRESH-WATER COPEPOD; LIFE-HISTORY; POPULATION DIFFERENCES; NATURAL-POPULATION; GERMINATION DATE; SEED DORMANCY; RESTING EGGS; DIAPAUSE; EVOLUTION; SELECTION Studies of plant and animal populations have demonstrated the occurrence of multiple and mixed life history strategies such as polymodal timing of germination and emergence from dormancy. We present the results of a simulation model used to test whether between-year variance in mortality can lead to the persistence of multiple hatching strategies considered over an ecological time scale (50 years). The model is based on the general life history characteristics of a population of planktonic copepods (Diaptomus sanguineus) in Bullhead Pond, Rhode Island. Our model results demonstrate that, given a range of between-year variance in mortality, multiple strategies for timing of emergence can persist in a common environment for ecologically relevant periods of time. A qualitative test of the model comparing field estimates of mean and variance of mortality in Bullhead Pond with the region of persistence indicates that the model results are in approximate agreement with field estimates. The results suggest that variability in year-to-year selection pressures, such as predation or harsh winters, may play an important role in determining the evolution of life histories. CORNELL UNIV,ECOL & SYSTEMAT SECT,ITHACA,NY 14853 ARTHUR AE, 1973, HEREDITY, V30, P189, DOI 10.1038/hdy.1973.21; BARTOLOME JW, 1976, CALIF AGR, V30, P14; BARTOLOME JW, 1979, J ECOL, V67, P273, DOI 10.2307/2259350; BASKIN JM, 1972, AM MIDL NAT, V88, P318, DOI 10.2307/2424357; BLACK JN, 1963, AUST J AGR RES, V14, P628, DOI 10.1071/AR9630628; BRADSHAW WE, 1973, ECOLOGY, V54, P1247, DOI 10.2307/1934187; BRANER M, 1989, LECTURE NOTES STATIS, V55, P81; Braner M., 1988, THESIS CORNELL U ITH; CASWELL H, 1978, AM NAT, V112, P127, DOI 10.1086/283257; CHESSON P, 1989, TREND ECOL EVOL, V4, P303; CHESSON PL, 1982, J MATH BIOL, V15, P1, DOI 10.1007/BF00275786; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1968, J ECOL, V56, P219, DOI 10.2307/2258075; Cohen D., 1987, MATH TOPICS POPULATI, P110; DEANGELIS DL, 1987, ECOL MONOGR, V57, P1, DOI 10.2307/1942636; DEMPSTER ER, 1955, COLD SPRING HARB SYM, V20, P25, DOI 10.1101/SQB.1955.020.01.005; DESTASIO BT, 1989, ECOLOGY, V70, P1377; DESTASIO BT, 1990, LIMNOL OCEANOGR, V35, P1079, DOI 10.4319/lo.1990.35.5.1079; ELLNER S, 1985, THEOR POPUL BIOL, V28, P50, DOI 10.1016/0040-5809(85)90022-X; GARBUTT K, 1986, HEREDITY, V56, P25, DOI 10.1038/hdy.1986.5; GILLESPIE JH, 1973, GENET RES, V21, P115, DOI 10.1017/S001667230001329X; Hairston N.G. Jr, 1987, P281; HAIRSTON NG, 1990, ECOLOGY, V71, P2218, DOI 10.2307/1938634; HAIRSTON NG, 1983, LIMNOL OCEANOGR, V28, P935, DOI 10.4319/lo.1983.28.5.0935; HAIRSTON NG, 1988, NATURE, V336, P239, DOI 10.1038/336239a0; HAIRSTON NG, 1984, AM NAT, V123, P733, DOI 10.1086/284236; HAIRSTON NG, 1984, OECOLOGIA, V61, P42, DOI 10.1007/BF00379086; HAIRSTON NG, 1990, EVOLUTION, V44, P1796, DOI 10.1111/j.1558-5646.1990.tb05250.x; HAIRSTON NG, 1986, BIOL BULL, V171, P135, DOI 10.2307/1541912; HAIRSTON NG, 1987, OECOLOGIA, V71, P339, DOI 10.1007/BF00378705; HAIRSTON NG, 1988, LIMNOL OCEANOGR, V33, P1245, DOI 10.4319/lo.1988.33.6.1245; Harper J.L., 1977, POPULATION BIOL PLAN; HILDREW AG, 1985, J ANIM ECOL, V54, P99, DOI 10.2307/4623; HILU KW, 1980, SYST BOT, V5, P54, DOI 10.2307/2418735; HOWELL N, 1981, AM MIDL NAT, V105, P312, DOI 10.2307/2424749; KALISZ S, 1986, EVOLUTION, V40, P479, DOI 10.1111/j.1558-5646.1986.tb00501.x; KANKAALA P, 1983, J PLANKTON RES, V5, P53, DOI 10.1093/plankt/5.1.53; KARABIN A, 1978, EKOL POL-POL J ECOL, V26, P241; KRYLOV PI, 1988, ARCH HYDROBIOL, V113, P231; LEINAAS HP, 1983, OECOLOGIA, V58, P194, DOI 10.1007/BF00399216; LEVIN SA, 1984, THEOR POPUL BIOL, V26, P165, DOI 10.1016/0040-5809(84)90028-5; LIVDAHL TP, 1982, ECOLOGY, V63, P1751, DOI 10.2307/1940117; MARKS M, 1981, OIKOS, V36, P326, DOI 10.2307/3544630; Nisbet R., 1982, MODELLING FLUCTUATIN; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Press W. H, 1986, NUMERICAL RECIPES; RICE KJ, 1987, OECOLOGIA, V72, P589, DOI 10.1007/BF00378987; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Silvertown J, 1985, EVOLUTION ESSAYS HON, P143; SILVERTOWN JW, 1984, AM NAT, V124, P1, DOI 10.1086/284249; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Tauber MJ, 1986, SEASONAL ADAPTATIONS; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; VENABLE DL, 1980, OECOLOGIA, V46, P272, DOI 10.1007/BF00540137; VENABLE DL, 1989, ECOLOGY SOIL SEED BA, P67; Waldbauer G.P., 1978, P127; WALDBAUER GP, 1973, BIOL BULL-US, V145, P627, DOI 10.2307/1540642; WATRAS CJ, 1980, CAN J FISH AQUAT SCI, V37, P1579, DOI 10.1139/f80-204; Wilson MS, 1959, FRESHWATER BIOL, P735; YODZIS P, 1977, AM NAT, V111, P833, DOI 10.1086/283217 61 10 10 0 8 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0092-8240 B MATH BIOL Bull. Math. Biol. MAR-MAY 1992 54 2-3 313 334 10.1016/S0092-8240(05)80029-1 22 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GZ989 WOS:A1992GZ98900009 2019-02-26 J MCNAMARA, JM; HOUSTON, AI MCNAMARA, JM; HOUSTON, AI STATE-DEPENDENT LIFE-HISTORY THEORY AND ITS IMPLICATIONS FOR OPTIMAL CLUTCH SIZE EVOLUTIONARY ECOLOGY English Article LIFE-HISTORY THEORY; CLUTCH SIZE; STATE-DEPENDENT BEHAVIOR Life-history theory is usually based on an animal's age or size. McNamara describes a general technique for finding the optimal life-history when an organism's strategy is allowed to depend on other aspects of its state. In this paper we describe the technique in the context of previous work in life-history theory and discuss how it can be used to look at decisions on a finer time scale than the usual annual decisions. We show how it can be used to model optimal clutch size when there is a trade-off between number and quality of offspring. It is shown that the optimal clutch size is typically less than the most productive clutch size. Measuring the value of a clutch in terms of the number of offspring that survive to breed or even the number of grandchildren that survive to breed may give misleading results. UNIV OXFORD,DEPT ZOOL,NERC,BEHAV ECOL UNIT,S PARKS RD,OXFORD OX1 3PS,ENGLAND 0 58 59 1 10 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAR 1992 6 2 170 185 10.1007/BF02270710 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HF581 WOS:A1992HF58100006 2019-02-26 J WINEMILLER, KO WINEMILLER, KO LIFE-HISTORY STRATEGIES AND THE EFFECTIVENESS OF SEXUAL SELECTION OIKOS English Article ECOLOGICAL STRATEGIES; REPRODUCTIVE EFFORT; NATURAL-SELECTION; EVOLUTION; PATTERNS; SIZE; FISH; FLUCTUATIONS; PARAMETERS; HABITAT The hypothesized relationship between the relative strength of sexual selection and life-history strategies is reexamined. The potential effectiveness of sexual selection depends not only on the relative survivorship of immature stages, but also on other components of fitness. The effects of fecundity and timing of maturation must be evaluated together with the survivorship in order to determine the reponsiveness of alternative life-history configurations to the force of sexual selection. More-over, the r-K continuum is an inadequate model for comparisons of life-history strategies. A general three-dimensional demographic model provides a more comprehensive conceptual framework for life-history comparisons. The three-parameter demographic model is similar to several earlier two-dimensional life-history schemes and appears to describe a broad spectrum of the life-history strategies exhibited in nature. Most higher taxa tend to be dominated by only one or two of the three endpoint strategies: "equilibrium" (large investment in relatively few individual offspring), "opportunistic" (small size and rapid maturation), and "periodic" (pulsed production of large numbers of small offspring). A survey of teleost fishes and examples from several other higher taxa supports McLain's (1991) contention that the strength of sexual selection is influenced by life-history strategy. Conspicuous males are common among relative equilibrium and opportunistic strategists, but are essentially absent among species associated with the high-fecundity, periodic reproductive strategy. The absence of sexually selected traits in high-fecundity broadcast spawners implies that differential survivorship among immature life stages is nonrandom in all cases. WINEMILLER, KO (reprint author), OAK RIDGE NATL LAB, DIV ENVIRONM SCI, OAK RIDGE, TN 37831 USA. Langerhans, R./A-7205-2009 Winemiller, Kirk/0000-0003-0236-5129 ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; BALTZ DM, 1984, ENVIRON BIOL FISH, V10, P159, DOI 10.1007/BF00001123; BAYLIS JR, 1981, ENVIRON BIOL FISH, V6, P223, DOI 10.1007/BF00002788; BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605; BOYCE MS, 1979, AM NAT, V114, P569, DOI 10.1086/283503; BREDER CM, 1966, MODES REPRODUCTION F; BROWN D, 1988, REPROD SUCCESS, P439; CARLANDER KD, IN PRESS HDB FRESHWA, V3; CHANDLER M, 1991, OIKOS, V60, P322, DOI 10.2307/3545074; CLUTTONBROCK TH, 1991, NATURE, V351, P58; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DUARTE CM, 1989, OECOLOGIA, V80, P401, DOI 10.1007/BF00379043; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; EISENBERG JF, 1981, MAMMALIAN RAD; Fisher R. A, 1958, GENETICAL THEORY NAT; FRICKE HW, 1979, Z TIERPSYCHOL, V50, P313; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; Grime J. P, 1979, PLANT STRATEGIES VEG; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hart J.L., 1973, FISHERIES RES BOARD, V180, P1; Ito Y, 1978, COMP ECOLOGY; KAWASAKI T, 1980, B JPN SOC SCI FISH, V46, P289; KIRKPATRICK M, 1991, NATURE, V350, P33, DOI 10.1038/350033a0; KODRICBROWN A, 1985, BEHAV ECOL SOCIOBIOL, V17, P199, DOI 10.1007/BF00300137; KRAMER B, 1990, TRENDS ECOL EVOL, V5, P247, DOI 10.1016/0169-5347(90)90064-K; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lack D, 1954, NATURAL REGULATION A; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LEWTONTIN RC, 1965, GENETICS COLONIZING, P79; MAHON R, 1984, CAN J FISH AQUAT SCI, V41, P330, DOI 10.1139/f84-037; MARZLUFF JM, 1991, ECOLOGY, V72, P428, DOI 10.2307/2937185; MCLAIN DK, 1991, OIKOS, V60, P263, DOI 10.2307/3544875; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Page L., 1983, HDB DARTERS; PAINE MD, 1990, J FISH BIOL, V37, P473, DOI 10.1111/j.1095-8649.1990.tb05877.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Rothschild B. J., 1987, AM FISH SOC S, V1, P531; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCOTT WB, 1973, FISH RES BD CAN B, V184, P1; Smith F. E., 1954, DYNAMICS GROWTH PROC, P277; SOUTHWOOD TR, 1974, AM NAT, V108, P791, DOI 10.1086/282955; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; THRESHER RE, 1984, REPRODUCTION REEF FI; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; WARD PI, 1988, ANIM BEHAV, V36, P1210, DOI 10.1016/S0003-3472(88)80080-0; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360; WESTEBERHARD MJ, 1983, Q REV BIOL, V58, P155, DOI 10.1086/413215; WHITTAKER RH, 1979, AM NAT, V113, P185, DOI 10.1086/283378; WINEMILLER KO, 1991, J FISH BIOL, V39, P617, DOI 10.1111/j.1095-8649.1991.tb04393.x; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1989, BIOLLANIA, V6, P177 60 88 92 1 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAR 1992 63 2 318 327 10.2307/3545395 10 Ecology Environmental Sciences & Ecology HL789 WOS:A1992HL78900022 2019-02-26 J HOWLAND, JM HOWLAND, JM LIFE-HISTORY OF COPHOSAURUS-TEXANUS (SAURIA, IGUANIDAE) - ENVIRONMENTAL CORRELATES AND INTERPOPULATIONAL VARIATION COPEIA English Article LIZARD SCELOPORUS-MERRIAMI; FOOD AVAILABILITY; REPRODUCTION; SIZE; STRATEGIES; EVOLUTION; PATTERNS; REPTILES; TRAITS The life history of a population of the greater earless lizard (Cophosaurus texanus) was investigated in Big Bend National Park, in the Chihuahuan Desert of western Texas. This population had (1) smaller clutch sizes, (2) lower clutch frequencies, (3) later onset of reproduction, (4) greater size (and possibly age) at first reproduction, (5) larger adult size, (6) lower growth rates, (7) higher adult survivorship, and (8) greater density than previously studied populations in central Texas. These lizards also showed reductions in clutch size, egg lipids, and storage lipids late in the reproductive season. The observed life-history characteristics suggest energy limitation in the Big Bend population whereas central Texas populations may be limited by high adult mortality. The observed differences are consistent with the predictions of current life-history theory. UNIV CALIF LOS ANGELES,DEPT BIOL,LOS ANGELES,CA 90024 BALLINGER RE, 1972, AM MIDL NAT, V88, P419, DOI 10.2307/2424366; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; BAUWENS D, 1981, J ANIM ECOL, V50, P733, DOI 10.2307/4133; BERVEN KA, 1983, AM ZOOL, V23, P85; CAGLE FR, 1950, COPEIA, P230; COGNDON JD, 1989, HERPETOLOGICA, V45, P305; DEGENHARDT WG, 1977, NATIONAL PARK SERVIC, V3, P533; DOBSON FS, 1987, AM NAT, V129, P382, DOI 10.1086/284643; Dunham A.E., 1988, Biology of Reptilia, V16, P441; Dunham A. E., 1981, MISC PUBL MUS ZOOL, V158, P1; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; DUNHAM AE, 1982, HERPETOLOGICA, V38, P208; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; ENGELING GA, 1972, THESIS SW TEXAS STAT; GRANT BW, 1988, ECOLOGY, V69, P167, DOI 10.2307/1943171; HOWLAND JM, 1983, THESIS U GEORGIA ATH; JOHNSON C, 1960, COPEIA, P297; Packard G.C., 1988, Biology of Reptilia, V16, P523; Peters J. A., 1951, Occasional Papers of the Museum of Zoology University of Michigan Ann Arbor, VNo. 537, P1; Ramsey L. W., 1949, Herpetologica San Diego, V5, P125; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1987, OECOLOGIA, V43, P401; RUBY DE, 1987, OECOLOGIA, V71, P473, DOI 10.1007/BF00378723; SCHRANK G D, 1973, Herpetologica, V29, P289; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; VITT LJ, 1985, HERPETOLOGICA, V41, P419; VITT LJ, 1977, HERPETOLOGICA, V33, P333; WARNOCK BH, 1970, WILDFLOWERS BIG BEND; WAUER RH, 1971, SW NAT, V16, P1 32 18 20 1 5 AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS BUSINESS OFFICE CARBONDALE SOUTHERN ILLINOIS UNIV, DEPT ZOOLOGY, CARBONDALE, IL 62901-6501 0045-8511 COPEIA Copeia FEB 3 1992 1 82 93 10.2307/1446538 12 Zoology Zoology HC975 WOS:A1992HC97500009 2019-02-26 J FAIRBAIRN, DJ FAIRBAIRN, DJ THE ORIGINS OF ALLOMETRY - SIZE AND SHAPE POLYMORPHISM IN THE COMMON WATERSTRIDER, GERRIS-REMIGIS SAY (HETEROPTERA, GERRIDAE) BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article ALLOMETRY; SCALING; BODY SIZE; SHAPE; WING POLYMORPHISM; SEXUAL SIZE DIMORPHISM; GERRIS-REMIGIS ALTERNATIVE MATING STRATEGIES; LIFE-HISTORY STRATEGIES; BODY SIZE; WING DIMORPHISM; WATER STRIDER; SEXUAL SELECTION; EVOLUTION; INSECTS; HEMIPTERA; DISPERSAL FAIRBAIRN, DJ (reprint author), CONCORDIA UNIV, MONTREAL H3G 1M8, QUEBEC, CANADA. ANDERSEN N M, 1973, Entomologica Scandinavica, V4, P1; Andersen N. M., 1982, SEMIAQUATIC BUGS HEM; ARNQVIST G, 1989, OIKOS, V56, P344, DOI 10.2307/3565619; BARBAULT R, 1988, EVOL BIOL, V22, P261; BLACKITH RE, 1963, GROWTH, V27, P317; BRINKHURST RO, 1959, J ANIM ECOL, V28, P211, DOI 10.2307/2079; CALABRESE D, 1974, Entomological News, V85, P27; Calabrese D.M., 1974, P227; CALABRESE D M, 1978, Transactions of the Kansas Academy of Science, V81, P257, DOI 10.2307/3627261; CALABRESE DM, 1977, ANN ENTOMOL SOC AM, V70, P977, DOI 10.1093/aesa/70.6.977; CALABRESE DM, 1979, AM MIDL NAT, V101, P61, DOI 10.2307/2424901; Calder W. A, 1984, SIZE FUNCTION LIFE H; CASEY TM, 1985, J EXP BIOL, V116, P271; CHEVERUD JM, 1988, EVOLUTION, V42, P958, DOI 10.1111/j.1558-5646.1988.tb02514.x; COCK AG, 1966, Q REV BIOL, V41, P131, DOI 10.1086/404940; DINGLE H, 1980, EVOLUTION, V34, P371, DOI 10.1111/j.1558-5646.1980.tb04825.x; DINGLE H, 1985, COMPREHENSIVE INSECT, V9; FAIRBAIRN DJ, 1988, ECOL ENTOMOL, V13, P273, DOI 10.1111/j.1365-2311.1988.tb00357.x; FAIRBAIRN DJ, 1988, EVOLUTION, V42, P1212, DOI 10.1111/j.1558-5646.1988.tb04181.x; FAIRBAIRN DJ, 1985, CAN J ZOOL, V63, P2594, DOI 10.1139/z85-388; FAIRBAIRN DJ, 1990, AM NAT, V136, P61, DOI 10.1086/285082; FALCONEXR DS, 1981, INTRO QUANTITATIVE G; GRAD G, 1988, LIMNOL OCEANOGR, V33, P1629, DOI 10.4319/lo.1988.33.6_part_2.1629; HARRISON RG, 1980, ANNU REV ECOL SYST, V11, P95, DOI 10.1146/annurev.es.11.110180.000523; HAYASHI K, 1985, BEHAV ECOL SOCIOBIOL, V16, P301, DOI 10.1007/BF00295542; LABARBERA M, 1989, ANNU REV ECOL SYST, V20, P97, DOI 10.1146/annurev.es.20.110189.000525; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LEUTENEGGER W, 1978, NATURE, V272, P610, DOI 10.1038/272610a0; Manly B. F. J., 1986, MULTIVARIATE STATIST; MATSUDA RYUICHI, 1960, UNIV KANSAS SCI BULL, V41, P25; MATSUDA RYUICHI, 1961, JOUR KANSAS ENT SOC, V34, P5; MATTHEY W, 1974, B SOC ENTOMOL SUISSE, V47, P85; MCMAHON T, 1973, SCIENCE, V179, P1201, DOI 10.1126/science.179.4079.1201; MCMAHON TA, 1975, AM NAT, V109, P547, DOI 10.1086/283026; NUMMELIN M, 1988, ANN ENTOMOL FENN, V54, P121; Peters R.H., 1983, P1; Polhemus J.T., 1979, Bulletin of the California Insect Survey, V21, P34; PREZIOSI RF, 1990, THESIS CONCORDIA U M; PYKE GH, 1978, OECOLOGIA, V34, P255, DOI 10.1007/BF00344905; RIESS MJ, 1989, ALLOMETRY GROWTH REP; RISKA B, 1989, EVOLUTION, V43, P1172, DOI 10.1111/j.1558-5646.1989.tb02567.x; RISKA B, 1989, GENETICS, V123, P865; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; RUBENSTEIN DI, 1984, AM ZOOL, V24, P345; SCUDDER G G E, 1971, Journal of the Entomological Society of British Columbia, V68, P3; Sehnal F, 1985, COMPREHENSIVE INSECT, V2, P1; SLANSKY F, 1986, ENTOMOL EXP APPL, V40, P197, DOI 10.1111/j.1570-7458.1986.tb00502.x; SOKAL R., 1981, BIOMETRY; SOMERS KM, 1989, SYST ZOOL, V38, P169, DOI 10.2307/2992386; SPENCE JR, 1989, CAN J ZOOL, V67, P2432, DOI 10.1139/z89-344; VEPSALAINEN K, 1985, ANN ENTOMOL FENN, V51, P45; Vepsalainen K., 1974, Acta Zoologica Fennica, V141, P1; Vepsalainen K., 1978, P218; WICKMAN PO, 1989, OIKOS, V56, P209, DOI 10.2307/3565338; WIGGLESWORTH V. B., 1954, PHYSL INSECT METAMOR; WILCOX RS, 1984, BEHAV ECOL SOCIOBIOL, V15, P171, DOI 10.1007/BF00292971; WILKINSON L, 1989, SYSTAT SYSTEM STATIS; Zar J., 1984, BIOSTATISTICAL ANAL; ZENG ZB, 1988, EVOLUTION, V42, P363, DOI 10.1111/j.1558-5646.1988.tb04139.x; ZERA AJ, 1985, MIGRATION MECHANIS S, V27, P674 60 36 38 0 3 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. FEB 1992 45 2 167 186 10.1111/j.1095-8312.1992.tb00637.x 20 Evolutionary Biology Evolutionary Biology HK340 WOS:A1992HK34000004 2019-02-26 J SHINE, R; SCHWARZKOPF, L SHINE, R; SCHWARZKOPF, L THE EVOLUTION OF REPRODUCTIVE EFFORT IN LIZARDS AND SNAKES EVOLUTION English Article FECUNDITY; LIZARDS; REPRODUCTION; REPTILES; SNAKES LIFE-HISTORY EVOLUTION; RELATIVE CLUTCH MASS; LIVE-BEARING LIZARD; SCELOPORUS-UNDULATUS; NATURAL-SELECTION; COMPARATIVE DEMOGRAPHY; ITEROPAROUS ANIMALS; HOLBROOKIA-MACULATA; WESTERN NEBRASKA; COST Life history theory suggests that the optimal evolved level of reproductive effort (RE) for an organism depends upon the degree to which additional current reproductive investment reduces future reproductive output. Future reproduction can be decreased in two ways, through (i) decreases in the organism's survival rate, and/or (ii) decreases in the organism's growth (and hence subsequent fecundity). The latter tradeoff-that is, the "potential fecundity cost"-should affect the evolution of RE only in species with relatively high survival rate, a relatively high rate of fecundity increase with body size, or a relatively high reproductive frequency per annum. Unless these conditions are met, the probable benefit in future fecundity obtained from decreasing present reproductive output is too low for natural selection to favor any reduction in RE below the maximum physiologically possible. Published data on survival rate, reproductive frequency and relative clutch mass (RCM) suggest that many lizard species fall well below the level at which natural selection can be expected to influence RE through such "potential fecundity" tradeoffs. Hence, the relative allocation of resources between growth and reproduction is unlikely to be directly optimized by natural selection in these animals. Instead, energy allocation should influence the evolution of RE only indirectly, via effects on an organism's probability of survival during reproduction. Survival costs of reproduction may be the most important evolutionary determinants of RE in may reptiles, and information on the nature and extent of such costs is needed before valid measures of reptilian RE can be constructed. SHINE, R (reprint author), UNIV SYDNEY,DEPT ZOOL A08,SYDNEY,NSW 2006,AUSTRALIA. Schwarzkopf, Lin/C-1242-2012; Shine, Richard/B-8711-2008 Schwarzkopf, Lin/0000-0002-1009-670X; ANDERSSON M, 1978, AM NAT, V112, P762, DOI 10.1086/283317; ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; Andrews R.M., 1982, Biology of Reptilia, V13, P273; BALLARD KP, 1981, REG STUD, V15, P213, DOI 10.1080/09595238100185221; BALLINGER R E, 1973, Journal of Herpetology, V7, P129, DOI 10.2307/1563210; BALLINGER RE, 1973, ECOLOGY, V54, P269, DOI 10.2307/1934336; BALLINGER RE, 1983, STUDIES MODEL ORGANI; BARBAULT R, 1976, COPEIA, P483; BAUWENS D, 1981, J ANIM ECOL, V50, P733, DOI 10.2307/4133; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BEUCHAT CA, 1986, COPEIA, P971, DOI 10.2307/1445294; BIRCHARD GF, 1984, COMP BIOCHEM PHYS A, V77, P519, DOI 10.1016/0300-9629(84)90221-4; BRODIE ED, 1989, AM NAT, V134, P225, DOI 10.1086/284977; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; BURKHOLDER G L, 1974, Brigham Young University Science Bulletin Biological Series, V19, P1; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; CLARK D R JR, 1976, Journal of Herpetology, V10, P133, DOI 10.2307/1562794; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CONGDON JD, 1982, BIOL REPTILIA, V13, P223; Drent R. H., 1980, INTEGRATED STUDY BIR, P225; DROGE DL, 1982, COPEIA, P356, DOI 10.2307/1444615; Dunham A.E., 1988, Biology of Reptilia, V16, P441; DUNHAM AE, 1982, HERPETOLOGICA, V38, P208; FERGUSON GW, 1980, ECOLOGY, V61, P313, DOI 10.2307/1935190; Fisher Ronald A., 1956, GENETICAL THEORY NAT; Fitch H. S, 1970, U KANSAS MUS NAT HIS, V52, P1; FITCH HS, 1956, U KANS PUBLS MUS NAT, V8, P213; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARRICK LD, 1974, PHYSIOL BEHAV, V12, P85, DOI 10.1016/0031-9384(74)90072-9; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; GOODMAN D, 1979, AM NAT, V113, P735, DOI 10.1086/283429; GUYER C, 1985, NORTHWEST SCI, V59, P294; HAILEY A, 1987, HERPETOL J, V1, P144; HASEGAWA M, 1984, HERPETOLOGICA, V40, P194; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HULSE A C, 1981, Annals of Carnegie Museum, V50, P353; IVERSON B, 1979, B FLORIDA STATE MUS, V24, P1; JONES SM, 1987, ECOLOGY, V68, P1828, DOI 10.2307/1939874; KOUFOPANOU V, 1984, OECOLOGIA, V64, P81, DOI 10.1007/BF00377548; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; MITCHELL JC, 1976, THESIS ARIZONA STATE; Nagy K.A., 1983, P24; PARKER W S, 1987, P253; PIANKA ER, 1972, COPEIA, P493; PIANKA ER, 1975, AM NAT, V109, P437; POUGH FH, 1980, AM NAT, V115, P92, DOI 10.1086/283547; Ricklefs RE, 1974, AVIAN ENERGETICS, V15, P152; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHOENER TW, 1985, AM NAT, V126, P633, DOI 10.1086/284444; SEIGEL RA, 1987, OECOLOGIA, V73, P481, DOI 10.1007/BF00379404; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHINE R, 1977, AUST J ZOOL, V25, P655, DOI 10.1071/ZO9770655; SIEGEL RA, 1984, OECOLOGIA, V61, P293; STEWART JR, 1984, HERPETOLOGICA, V40, P349; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; TINKLE D W, 1972, Herpetologica, V28, P351; TINKLE DW, 1973, COPEIA, P284; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; TINKLE DW, 1973, COPEIA, P272; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; TINKLE DW, 1975, ECOLOGY, V56, P427, DOI 10.2307/1934973; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Turner F.B., 1977, P157; VANDEVENDER RW, 1982, HERPETOLOGICA, V38, P189; VINEGAR MB, 1975, AM MIDL NAT, V93, P388, DOI 10.2307/2424171; VINEGAR MB, 1975, ECOLOGY, V56, P172, DOI 10.2307/1935309; VITT LJ, 1982, HERPETOLOGICA, V38, P237; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; VITT LJ, 1978, J HERPETOL, V12, P65, DOI 10.2307/1563505; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; ZWEIFEL RICHARD G., 1966, AMER MUS NOVI TATES, V2247, P1 77 124 129 3 33 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution FEB 1992 46 1 62 75 10.2307/2409805 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HD993 WOS:A1992HD99300006 28564954 Bronze 2019-02-26 J REZNICK, D REZNICK, D MEASURING THE COSTS OF REPRODUCTION TRENDS IN ECOLOGY & EVOLUTION English Review LIFE-HISTORY TRAITS; DROSOPHILA-MELANOGASTER; EGG-PRODUCTION; EVOLUTION; SELECTION; PERFORMANCE; SENESCENCE; LONGEVITY; GENETICS; SURVIVAL The measurement of costs of reproduction is of interest because such costs are generally assumed by life history theory. There is some controversy concerning how to measure costs: common methods include experimental manipulations of life history, such as preventing some individuals from reproducing, or estimates of genetic correlations. These two methods often yield similar results, suggesting that one can serve as a substitute for the other. There are now experiments which demonstrate that there are different mechanisms underlying the response to an experimental manipulation versus a genetic correlation, so the two methods are not equivalent in estimating costs. REZNICK, D (reprint author), UNIV CALIF RIVERSIDE, DEPT BIOL, RIVERSIDE, CA 92521 USA. Remick, Daniel/0000-0002-2615-3713 Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BERNARDO J, 1991, TRENDS ECOL EVOL, V6, P1, DOI 10.1016/0169-5347(91)90137-M; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHARLESWORTH B, 1982, EVOLUTIONARY ECOLOGY, P117; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MONTALVO AM, 1987, BIOTROPICA, V19, P24, DOI 10.2307/2388456; PAIGE KN, 1987, ECOLOGY, V68, P1691, DOI 10.2307/1939861; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1986, J INSECT PHYSIOL, V32, P925, DOI 10.1016/0022-1910(86)90140-X; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1985, J INSECT PHYSIOL, V31, P393, DOI 10.1016/0022-1910(85)90084-8; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; PARTRIDGE L, 1989, MORE EXACT ECOLOGY, P231; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364 30 254 259 4 95 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 1872-8383 TRENDS ECOL EVOL Trends Ecol. Evol. FEB 1992 7 2 42 45 10.1016/0169-5347(92)90104-J 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HC167 WOS:A1992HC16700005 21235948 2019-02-26 J WITMAN, JD WITMAN, JD PHYSICAL DISTURBANCE AND COMMUNITY STRUCTURE OF EXPOSED AND PROTECTED REEFS - A CASE-STUDY FROM ST-JOHN, UNITED-STATES VIRGIN-ISLANDS AMERICAN ZOOLOGIST English Article DIADEMA-ANTILLARUM PHILIPPI; LIFE-HISTORY STRATEGIES; CORAL-REEF; MASS MORTALITY; POPULATION-DYNAMICS; ALGAL COMMUNITIES; COMPETITION; DIVERSITY; MILLEPORA; PACIFIC Major physical disturbances impacted fringing reefs at 4 to 12 m depth off the south coast of St. John, at intervals of 28, 14 and 12 months over a 6 year period (1985-1991). The most wave exposed habitats were dominated by the hydrocoral Millepora alcicornis and the encrusting gorgonian Erythropodium caribaeorum. Both of these species displayed high resistance stability in response to the 1987 bleaching event and to Hurricanes Gilbert (1988) and Hugo (1989). Although Hurricane Hugo was ranked as the most severe hurricane of the past century, it caused comparatively little damage to the shallow exposed reef, illustrating that the effects of physical disturbance may not a ways conform to a priori predictions based on wave exposure. This counter-intuitive result is explicable when the chronology of disturbance is considered. For example, the shallow exposed community was more heavily damaged than the protected reef by Hurricane Gilbert occurring one year prior to Hurricane Hugo. Sponges and thick mats of E. caribaeorum had accumulated on the protected reef during a 54 month period of little disturbance and were vulnerable to disturbance by virtue of their elevation above the substratum. These organisms were dislodged by extreme water motion generated by Hurricane Hugo. In contrast, the shallow exposed community was still recovering from Hurricane Gilbert when Hurricane Hugo struck. Monitored populations of two coral species, Agaricia agaricites and Tubastrea coccinea, declined over the six year period, but recruitment in 1990 partially compensated for high mortality caused by Hurricane Hugo. There were significant increases in the abundance of algal turf on three out of the four study reefs (4 m exposed and protected, 12 m protected) in response to the creation of patch space by the multiple physical disturbances. This study demonstrates the need to interpret recent disturbances in light of the history of past disturbance on the reef. WITMAN, JD (reprint author), NORTHEASTERN UNIV, CTR MARINE SCI, NAHANT, MA 01908 USA. BAK RPM, 1979, MAR BIOL, V54, P341, DOI 10.1007/BF00395440; BUSS LW, 1990, TRENDS ECOL EVOL, V5, P352, DOI 10.1016/0169-5347(90)90093-S; CARPENTER RC, 1990, MAR BIOL, V104, P67, DOI 10.1007/BF01313159; CARPENTER RC, 1986, ECOL MONOGR, V56, P345, DOI 10.2307/1942551; Conneil J.H., 1975, P460; Connell J.H., 1985, P125; Connell J.H., 1973, P205; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; COYER J, 1990, UNDERWATER CATALOG G; CROWDER MJ, 1990, ANAL REPEATED MEASUR; DAYTON PK, 1984, ECOL MONOGR, V54, P253, DOI 10.2307/1942498; DAYTON PK, 1971, ECOL MONOGR, V41, P351, DOI 10.2307/1948498; DELIA FD, 1991, WORKSHOP CORAL BLEAC; DENNY MW, 1983, LIMNOL OCEANOGR, V28, P1269, DOI 10.4319/lo.1983.28.6.1269; DENNY MW, 1988, BIOL MECHANICS WAVE; DILLON WP, 1987, OCEANUS, V30, P42; DOLLAR SJ, 1981, MAR BIOL, V65, P269, DOI 10.1007/BF00397121; DONE T, 1992, AM ZOOL, V32, P655; Done T.J., 1983, PERSPECTIVES CORAL R, P107; DONNELLY TW, 1966, GEOL SOC AM MEM, V98, P85; EDMUNDS PJ, 1991, MAR ECOL PROG SER, V78, P201, DOI 10.3354/meps078201; ENDEAN R, 1973, BIOLOGY GEOLOGY CORA, V2, P389, DOI DOI 10.1016/B978-0-12-395526-5.50020-1; GEISTER J, 1977, 3RD P INT COR REEF S, V1, P23; Glynn P.W., 1990, Elsevier Oceanography Series, V52, P55; GLYNN PW, 1976, ECOL MONOGR, V46, P431, DOI 10.2307/1942565; GLYNN PW, 1983, ENVIRON CONSERV, V10, P149, DOI 10.1017/S0376892900012248; GLYNN PW, 1991, TRENDS ECOL EVOL, V6, P175, DOI 10.1016/0169-5347(91)90208-F; GLYNN PW, 1991, SCIENCE, V253, P69, DOI 10.1126/science.253.5015.69; GLYNN PW, 1990, ECOSYSTEMS WORLD, V25, P365; GOREAU TF, 1959, ECOLOGY, V40, P67, DOI 10.2307/1929924; Grigg R.W., 1990, P439; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; HAY ME, 1984, ECOLOGY, V65, P446, DOI 10.2307/1941407; HUGHES TP, 1989, ECOLOGY, V70, P275, DOI 10.2307/1938434; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; HUGHES TP, 1985, B MAR SCI, V36, P377; HUGHES TP, 1980, SCIENCE, V209, P713, DOI 10.1126/science.209.4457.713; JACKSON JBC, 1987, SCIENCE, V235, P687, DOI 10.1126/science.235.4789.687; JACKSON JBC, 1991, BIOSCIENCE, V41, P475, DOI 10.2307/1311805; KNOWLTON N, 1992, AM ZOOL, V32, P674; KNOWLTON N, 1992, SCIENCE, V255, P330, DOI 10.1126/science.255.5042.330; LANG JC, 1992, AM ZOOL, V32, P696; LESSIOS HA, 1984, SCIENCE, V226, P335, DOI 10.1126/science.226.4672.335; LEVITAN DR, 1988, J EXP MAR BIOL ECOL, V119, P167, DOI 10.1016/0022-0981(88)90231-6; Lewis J. R, 1964, ECOLOGY ROCKY SHORES; LEWIS JB, 1991, CORAL REEFS, V9, P209, DOI 10.1007/BF00290424; LEWIS JB, 1989, CORAL REEFS, V8, P99, DOI 10.1007/BF00338264; LIDDELL WD, 1987, B MAR SCI, V40, P311; MAY RM, 1977, NATURE, V269, P471, DOI 10.1038/269471a0; MENGE BA, 1990, TRENDS ECOL EVOL, V5, P52, DOI 10.1016/0169-5347(90)90048-I; MENGE BA, 1987, AM NAT, V130, P730, DOI 10.1086/284741; MORAN PJ, 1986, OCEANOGR MAR BIOL, V24, P379; ODUM HT, 1955, ECOL MONOGR, V25, P291, DOI 10.2307/1943285; PAINE RT, 1981, ECOL MONOGR, V51, P145, DOI 10.2307/2937261; PAINE RT, 1984, ECOLOGY, V65, P1339, DOI 10.2307/1939114; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; PEARSON RG, 1981, MAR ECOL PROG SER, V4, P105, DOI 10.3354/meps004105; PORTER JW, 1992, AM ZOOL, V32, P625; PORTER JW, 1981, NATURE, V294, P249, DOI 10.1038/294249a0; ROGERS CS, 1991, MAR ECOL PROG SER, V78, P189, DOI 10.3354/meps078189; ROGERS CS, 1982, B MAR SCI, V32, P532; SHEPPARD CRC, 1982, MAR ECOL PROG SER, V7, P83, DOI 10.3354/meps007083; SMITH SR, 1992, AM ZOOL, V32, P663; SMITH SR, 1988, 6TH P INT COR REEFS, V2, P267; SOKAL R., 1981, BIOMETRY; Sousa W.P., 1985, P101; STENECK RS, 1982, MAR BIOL, V68, P299, DOI 10.1007/BF00409596; STODDART DR, 1969, BIOL REV, V44, P433, DOI 10.1111/j.1469-185X.1969.tb00609.x; SUCHANEK TH, 1981, OECOLOGIA, V50, P143, DOI 10.1007/BF00348028; SUTHERLAND JP, 1990, AM NAT, V136, P270, DOI 10.1086/285097; White PS, 1985, NATURAL DISTURBANCE; WILLIAMS EH, 1990, NATURE, V346, P225, DOI 10.1038/346225a0; WITMAN JD, 1987, ECOL MONOGR, V57, P167, DOI 10.2307/1942623; WITMAN JD, 1988, B MAR SCI, V42, P446; WOODLEY JD, 1981, SCIENCE, V214, P749, DOI 10.1126/science.214.4522.749; WOODLEY JD, 1989, UNEP REGIONAL SEAS R, V100 76 44 44 2 7 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 0003-1569 AM ZOOL Am. Zool. 1992 32 6 641 654 14 Zoology Zoology KV055 WOS:A1992KV05500003 2019-02-26 J MANGEL, M; LUDWIG, D MANGEL, M; LUDWIG, D DEFINITION AND EVALUATION OF THE FITNESS OF BEHAVIORAL AND DEVELOPMENTAL PROGRAMS ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS English Review EVOLUTION; OVIPOSITION; SEX CHANGE; ONTOGENY; LIFE HISTORY THEORY OPTIMAL FORAGING THEORY; COMPLEX LIFE-CYCLES; QUANTITATIVE GENETICS; CLUTCH SIZE; AMPHIBIAN METAMORPHOSIS; NATURAL-SELECTION; TIME CONSTRAINTS; FRUIT-FLIES; EVOLUTION; GROWTH UNIV CALIF DAVIS, CTR POPULAT BIOL, DAVIS, CA 95616 USA; UNIV BRITISH COLUMBIA, DEPT MATH, VANCOUVER V6T 1Y4, BC, CANADA; UNIV BRITISH COLUMBIA, DEPT ZOOL, VANCOUVER V6T 1Y4, BC, CANADA MANGEL, M (reprint author), UNIV CALIF DAVIS, DEPT ZOOL, DAVIS, CA 95616 USA. ABRAHAMS MV, 1989, ECOLOGY, V70, P999, DOI 10.2307/1941368; ARTHUR W, 1991, THEORY EVOLUTION DEV; BARGMANN CI, 1991, SCIENCE, V251, P1243, DOI 10.1126/science.2006412; BARTON NH, 1991, GENETICS, V127, P229; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.genet.23.1.337; BERRY RJ, 1989, J ANIM ECOL, V58, P733, DOI 10.2307/5121; BLAKLEY N, 1981, ECOLOGY, V62, P57, DOI 10.2307/1936668; BLAKLEY N, 1978, BIOL BULL, V155, P499, DOI 10.2307/1540786; BONNER JT, 1988, EVOLUTION DEV; BONNER JT, 1974, DEVELOPMENT; BOORSTIN DJ, 1985, DISCOVERERS; BOUSKILA A, 1992, AM NAT, V139, P161, DOI 10.1086/285318; BROWN GC, 1978, ENVIRON ENTOMOL, V7, P219, DOI 10.1093/ee/7.2.219; CARACO T, 1991, ECOLOGY, V72, P81, DOI 10.2307/1938904; CARO TM, 1986, ANIM BEHAV, V34, P1483, DOI 10.1016/S0003-3472(86)80219-6; CHARNOV E L, 1982; CHARNOV EL, 1984, FLA ENTOMOL, V67, P5, DOI 10.2307/3494101; CHESSON P, 1991, ECOLOGY, V72, P1187, DOI 10.2307/1941092; CLARK CW, 1990, EVOL ECOL, V4, P21, DOI 10.1007/BF02270712; CLARK CW, 1991, BEHAV BRAIN SCI, V14, P85, DOI 10.1017/S0140525X00065432; CLARK CW, 1990, EVOL ECOL, V4, P312, DOI 10.1007/BF02270930; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; Clark CW, 1976, MATH BIOECONOMICS; COLLINS MD, 1986, J APPL ENTOMOL, V102, P342, DOI 10.1111/j.1439-0418.1986.tb00932.x; COURANT R, 1962, METHODS MATH PHYSICS, V2; DHONDT AA, 1990, NATURE, V348, P723, DOI 10.1038/348723a0; DINGLE H, 1990, OECOLOGIA, V84, P199, DOI 10.1007/BF00318272; DYKHUIZEN DE, 1990, TRENDS ECOL EVOL, V5, P257, DOI 10.1016/0169-5347(90)90067-N; Endler JA, 1986, NATURAL SELECTION WI; FERNANDES DM, 1990, SEX CHANGE SEX ALLOC; FERNANDES DM, 1988, THESIS PRINCETON U; Fisher R. A, 1958, GENETICAL THEORY NAT; FITT GP, 1986, PHYSIOL ENTOMOL, V11, P133, DOI 10.1111/j.1365-3032.1986.tb00400.x; FORREST TG, 1987, OECOLOGIA, V73, P178, DOI 10.1007/BF00377505; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; GILLIAM JF, 1982, THESIS MICH STATE U; GLADSTEIN DS, 1991, OIKOS, V60, P121, DOI 10.2307/3545002; GLASSER JW, 1984, AM NAT, V124, P900, DOI 10.1086/284323; GODFRAY HCJ, 1988, THEOR POPUL BIOL, V33, P79, DOI 10.1016/0040-5809(88)90005-6; GODIN JGJ, 1990, NATO ADV SCI I G-ECO, V20, P739; GOMULKIEWICZ R, 1992, IN PRESS EVOLUTION; GOULD SJ, 1989, EVOLUTION, V43, P516, DOI 10.1111/j.1558-5646.1989.tb04249.x; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOUTIS C, 1992, B MATH BIOL, V54, P379, DOI 10.1016/S0092-8240(05)80032-1; Gray R.D., 1987, P69; HART PJB, 1986, ETHOL SOCIOBIOL, V7, P71, DOI 10.1016/0162-3095(86)90001-4; HART PJB, 1992, BEHAVIOURAL ECOLOGY; HOM CL, 1990, HERPETOLOGICA, V46, P304; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; Iwasa Y, 1991, BEHAV ECOL, V2, P56, DOI 10.1093/beheco/2.1.56; KELLY EJ, 1992, IN PRESS ECOLOGY; KIRKPATRICK M, 1990, GENETICS, V124, P979; Kirkpatrick M., 1988, P13; KIRKPATRICK M, 1989, J MATH BIOL, V27, P429, DOI 10.1007/BF00290638; Krebs J.R., 1983, P165, DOI 10.1017/CBO9780511759994.008; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MAC ARTHUR ROBERT H., 1967; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; MANGEL M, 1989, ECOL ENTOMOL, V14, P181, DOI 10.1111/j.1365-2311.1989.tb00768.x; MANGEL M, 1986, ECOLOGY, V67, P1127, DOI 10.2307/1938669; MANGEL M, 1991, EVOL ECOL, V5, P30, DOI 10.1007/BF02285243; Mangel M, 1988, DYNAMIC MODELING BEH; MANLY BFJ, 1985, STATISTICS NATURAL S; MARO PV, 1985, AENEID; MATSUDA R, 1982, CAN J ZOOL, V60, P733, DOI 10.1139/z82-103; MATSUDA R, 1987, ANIMAL EVOLUTION CHA; MCFARLAND DJ, 1977, NATURE, V269, P15, DOI 10.1038/269015a0; MCFARLAND DJ, 1981, QUANTITATIVE ETHOLOG; MCNAMARA JM, 1987, ANIM BEHAV, V35, P1084, DOI 10.1016/S0003-3472(87)80166-5; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; MCNAMARA JM, 1987, BEHAV ECOL SOCIOBIOL, V20, P399, DOI 10.1007/BF00302982; MCNAMARA JM, 1989, J THEOR BIOL, V137, P457, DOI 10.1016/S0022-5193(89)80040-2; MITCHELL WA, 1990, Q REV BIOL, V65, P43, DOI 10.1086/416584; MITCHELLOLDS T, 1986, AM NAT, V127, P379, DOI 10.1086/284490; NONACS P, 1989, EVOL ECOL, V3, P221, DOI 10.1007/BF02270723; ODENDAAL FJ, 1990, J INSECT BEHAV, V3, P183, DOI 10.1007/BF01417911; PALMER JO, 1984, ANN ENTOMOL SOC AM, V77, P188, DOI 10.1093/aesa/77.2.188; PIERCE GJ, 1987, OIKOS, V49, P111, DOI 10.2307/3565560; PLOMIN R, 1990, SCIENCE, V248, P183, DOI 10.1126/science.2183351; PRICE K, 1992, B MATH BIOL, V54, P335, DOI 10.1016/S0092-8240(05)80030-8; PYKE GH, 1977, Q REV BIOL, V52, P137, DOI 10.1086/409852; PYKE GH, 1984, ANNU REV ECOL SYST, V15, P523, DOI 10.1146/annurev.es.15.110184.002515; REAL L, 1986, ANNU REV ECOL SYST, V17, P371, DOI 10.1146/annurev.es.17.110186.002103; REAL L, 1990, AM NAT, V136, P376, DOI 10.1086/285103; RIECHERT SE, 1983, ANNU REV ECOL SYST, V14, P377, DOI 10.1146/annurev.es.14.110183.002113; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; ROE A, 1958, BEHAVIOR EVOLUTION; ROFF D, 1980, Evolutionary Theory, V4, P195; ROITBERG BD, 1992, BEHAV ECOL, V3, P156, DOI 10.1093/beheco/3.2.156; ROITBERG BD, 1990, BEHAVIOUR, V114, P65, DOI 10.1163/156853990X00059; ROITBERG BD, 1990, ECOLOGY, V71, P1871, DOI 10.2307/1937595; ROITBERG BD, 1992, B MATH BIOL, V54, P401, DOI 10.1007/BF02464840; ROSENHEIM JA, 1991, J ANIM ECOL, V60, P873, DOI 10.2307/5419; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHMALHAUSEN II, 1986, FACTORS EVOLUTION; SCHMITZ OJ, 1991, THEOR POPUL BIOL, V39, P100, DOI 10.1016/0040-5809(91)90042-E; Schoener T. W., 1971, A Rev Ecol Syst, V2, P369, DOI 10.1146/annurev.es.02.110171.002101; Schoener T.W., 1987, P5; Scott S.M., 1990, P69; SLATKIN M, 1987, EVOLUTION, V41, P799, DOI 10.1111/j.1558-5646.1987.tb05854.x; SLOBODKIN LB, 1964, AM SCI, V52, P342; Smith J.M., 1982, EVOLUTION THEORY GAM; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Stephens DW, 1986, FORAGING THEORY; SWEENEY BW, 1978, SCIENCE, V200, P444, DOI 10.1126/science.200.4340.444; SZEKELY T, 1991, BEHAV ECOL SOCIOBIOL, V28, P203; Thomson K. S., 1988, MORPHOGENESIS EVOLUT; TURELLI M, 1990, THEOR POPUL BIOL, V38, P1, DOI 10.1016/0040-5809(90)90002-D; Waage JK, 1986, INSECT PARASITOIDS; WADE MJ, 1990, EVOLUTION, V44, P1947, DOI 10.1111/j.1558-5646.1990.tb04301.x; WALTERS CJ, 1978, ANNU REV ECOL SYST, V9, P157, DOI 10.1146/annurev.es.09.110178.001105; WARNER RR, 1988, ENVIRON BIOL FISH, V22, P81, DOI 10.1007/BF00001539; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Werner EE., 1988, SIZE STRUCTURED POPU; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; Williams GC, 1966, ADAPTATION NATURAL S; YDENBERG RC, 1989, ECOLOGY, V70, P1494, DOI 10.2307/1938208 120 67 67 1 9 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA 0066-4162 ANNU REV ECOL SYST Annu. Rev. Ecol. Syst. 1992 23 507 536 30 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology JZ281 WOS:A1992JZ28100020 2019-02-26 J CHAIEB, M; FLORET, C; LEFLOCH, E; PONTANIER, R CHAIEB, M; FLORET, C; LEFLOCH, E; PONTANIER, R LIFE-HISTORY STRATEGIES AND WATER-RESOURCE ALLOCATION IN 5 PASTURE SPECIES OF THE TUNISIAN ARID ZONE ARID SOIL RESEARCH AND REHABILITATION English Article WATER USE EFFICIENCY; ARGYROLOBIUM-UNIFLORUM; CENCHRUS-CILIARIS; DIGITARIA-COMMUTATA; PLANTAGO-ALBICANS; STIPA-LAGASCAE; RESTORATION Five sympatric species of perennial pasture plants were studied in monospecific plots at an experimental site in the arid zone of southern Tunisia. For one year following establishment, irrigation was supplied monthly to test plots so as to complement natural precipitation and simulate an "optimum" rain year (250 mm of precipitation occurring, evenly distributed, between September and April). In addition to hydrometric fluctuations in the upper soil layers, growth rate and phenological activity were monitored for all species (Cenchrus ciliaris, Digitaria commutata, Stipa lagascae (Poaceae), Argyrolobium uniflorum (Fabaceae) and Plantago albicans (Plantaginaceae)). Overall growth rate and foliar extension measurements revealed differential water use efficiency, phenology, and response to water stress in the species studied. C. ciliaris and D. commutata were the most efficient in their use of water. The former, a C4 grass species of paleo-tropical origin, was primarily active in spring and autumn. D. commutata, along with the remaining three species, all of Mediterranean origin and of the C3 type, was active primarily in winter Stipa lagascae and Argyrolobium uniflorum appear to belong to the "arido-active" group of drought-tolerant plants, continuing to insure photosynthesis until soil water potential drops to below -5 MPa. However, their overall productivity was low as compared to the two arido-passive species, Cenchrus ciliaris and Plantago albicans. The five species studied were thus complementary in their utilization of soil water supplies and their response to water shortages. Such information may serve in determining appropriate species mixtures and planting densities to be used for the restoration of self-perpetuating pastoral ecosystems in the arid zones of North Africa. CHAIEB, M (reprint author), INST REG ARIDES,BP 185,GABES,TUNISIA. 0 17 18 2 8 TAYLOR & FRANCIS BRISTOL 1900 FROST ROAD, SUITE 101, BRISTOL, PA 19007-1598 0890-3069 ARID SOIL RES REHAB Arid Soil Res. Rehabil. JAN-MAR 1992 6 1 1 10 10.1080/15324989209381291 10 Environmental Sciences; Soil Science Environmental Sciences & Ecology; Agriculture HU593 WOS:A1992HU59300001 2019-02-26 J HILL, EM; LOW, BS HILL, EM; LOW, BS CONTEMPORARY ABORTION PATTERNS - A LIFE-HISTORY APPROACH ETHOLOGY AND SOCIOBIOLOGY English Article This paper applies an ecological model of reproductive choice, life history theory, to humans. It models a tension among further investment in self, in present offspring, and later investment in future offspring. Some reproductive decisions for men and women in modern societies may fit this type of "now vs later" analysis; we model the decision of a woman to have an elective abortion. This theory assumes a knowledge of the returns from parental investment (in terms of the child's future mating) and somatic investment (in terms of one's own future mating). Predictions about this decision can be made if the relevant parameters can be estimated: the probability of a child's future reproduction when reared by one or by two parents and the probabilities for each of the parents of mating again. We find evidence that abortion decisions are affected by age and previous parity of the mother, and by expectations of available investment by the father or other sources. Still, researchers are left with determining the shape of the trade-off curve between allocations to one's own mating or to a given child's, and with better specifying the effects of variations in resource parameters. UNIV MICHIGAN,SCH NAT RESOURCES,ANN ARBOR,MI 48104 HILL, EM (reprint author), UNIV MICHIGAN,ALCOHOL RES CTR,EVOLUT & HUMAN BEHAV PROGRAM,400 E EISENHOWER PKWY,ANN ARBOR,MI 48104, USA. ALCOCK J, 1979, ANIMAL BEHAVIOR EVOL; Alexander R. D., 1979, DARWINISM HUMAN AFFA; ALEXANDER RA, 1986, BIOL MORAL SYSTEMS; BETZIG L, 1988, HUMAN REPRODUCTIVE B; Bugos P., 1984, INFANTICIDE COMP EVO, P503; Chagnon N. A., 1979, EVOLUTIONARY BIOL HU; Coale AJ, 1986, DECLINE FERTILITY EU; COALE AJ, 1974, POPUL INDEX, V40, P203; DALY M, 1983, SEX EVOLUTION BEHAVI; Daly M., 1984, INFANTICIDE COMP EVO, P487; DEWSBURY DA, 1978, COMP ANIMAL BEHAVIOR; DICKEMANN M, 1986, OCT ANTHR C SERIES; DICKEMANN M, 1983, MAY WORKSH APPL LIF; Draper P, 1987, PARENTING LIFE SPAN, P207; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; Endler JA, 1986, NATURAL SELECTION WI; FISCHMAN SH, 1977, AM J ORTHOPSYCHIAT, V47, P127, DOI 10.1111/j.1939-0025.1977.tb03253.x; Fisher R. A, 1958, GENETICAL THEORY NAT; GLICK PC, 1986, J MARRIAGE FAM, V48, P737, DOI 10.2307/352566; GRAFEN A, 1978, ANIM BEHAV, V26, P645, DOI 10.1016/0003-3472(78)90131-8; HENSHAW SK, 1984, FAM PLANN PERSPECT, V16, P119, DOI 10.2307/2135001; HENSHAW SK, 1985, FAM PLANN PERSPECT, V17, P90, DOI 10.2307/2135271; KASARDA JD, 1986, STATUS ENHANCEMENT F; KREBS JR, 1984, BEHAVIOURAL ECOLOGY; Kurland J.A., 1984, P259; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; LEIBOWITZ A, 1986, DEMOGRAPHY, V23, P67, DOI 10.2307/2061408; LOW BS, 1989, SOC BIOL, V36, P82; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; LOW BS, 1990, AM ANTHROPOL, V92, P115; LOW BS, 1989, RISK UNCERTAINTY TRI; PEARSON JF, 1973, J BIOSOC SCI, V5, P453; PRITCHARD C, 1982, J BIOSOC SCI, V14, P127; RITCHIE M, 1989, OECOLOGIA, V82, P56; Scheper-Hughes N., 1987, CHILD SURVIVAL ANTHR, P1; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; STEVENS DW, 1986, FORAGING THEORY; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Williams GC, 1966, ADAPTATION NATURAL S; WINTERHALDER B., 1981, HUNTER GATHERER FORA; WITTENBERGER JF, 1981, ANIMAL SOCIAL BEHAVI; WOOLFENDEN GE, 1984, FLORIDA SCRUB JAY 43 27 28 0 4 ELSEVIER SCIENCE INC NEW YORK 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 0162-3095 ETHOL SOCIOBIOL Ethol.Sociobiol. JAN 1992 13 1 35 48 10.1016/0162-3095(92)90005-O 14 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical; Sociology; Zoology Psychology; Behavioral Sciences; Biomedical Social Sciences; Sociology; Zoology HE771 WOS:A1992HE77100004 11656141 2019-02-26 J SILVERTOWN, J; FRANCO, M; MCCONWAY, K SILVERTOWN, J; FRANCO, M; MCCONWAY, K A DEMOGRAPHIC INTERPRETATION OF GRIME TRIANGLE FUNCTIONAL ECOLOGY English Article COMPETITION; ELASTICITY ANALYSIS; FINITE RATE OF INCREASE; GROWTH; LIFE-HISTORY STRATEGIES; SURVIVAL 1. The CSR theory of life-history strategies of Grime, and demographically based theories of life history represent strongly contrasting approaches that have yet to be reconciled. 2. It is argued that there are a priori grounds for analogy between Grime's three primary strategies of the established phase in plants and the demographic processes of growth (almost-equal-to C), survival (almost-equal-to S), and fecundity (almost-equal-to R). 3. The contribution of growth, fecundity and survival to the finite rate of population increase-lambda was calculated for populations of 18 plant species that have also been classified according to Grime's CSR scheme. The match between the demographic classification of species based on these data and their CSR status was determined using a randomization test, and no significant match between the two was found. The reasons for this result are discussed, and it is concluded that it would be premature to abandon attempts to reconcile these two important approaches to plant life history. SILVERTOWN, J (reprint author), OPEN UNIV,DEPT BIOL,MILTON KEYNES MK7 6AA,BUCKS,ENGLAND. Franco, Miguel/A-4671-2008; McConway, Kevin/G-3729-2012 Franco, Miguel/0000-0002-7249-4981; McConway, Kevin/0000-0002-0236-7231 0 50 52 0 40 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. 1992 6 2 130 136 10.2307/2389746 7 Ecology Environmental Sciences & Ecology HN221 WOS:A1992HN22100002 2019-02-26 J METCALFE, NB; THORPE, JE METCALFE, NB; THORPE, JE ANOREXIA AND DEFENDED ENERGY-LEVELS IN OVER-WINTERING JUVENILE SALMON JOURNAL OF ANIMAL ECOLOGY English Article SALMON; FORAGING; APPETITE; FAT LIFE-HISTORY STRATEGIES; YOUNG ATLANTIC SALMON; SALAR L; RAINBOW-TROUT; COMPENSATORY GROWTH; COHO SALMON; SIZE; TEMPERATURE; SMOLTIFICATION; MICROHABITAT 1. Juvenile Atlantic salmon (Salmo salar L.) that do not migrate to sea within the next year spend the winter under stones in the stream bed. In a laboratory study, we show that this coincides with a loss of appetite even in the presence of excess food: an index of appetite dropped by an average of 96% between early September and late December. 2. This period of anorexia leads to the virtual cessation of growth under environmental conditions that would otherwise allow growth to occur. 3. Juvenile salmon normally exhibit a gradual loss of fat reserves during the winter. This depletion was experimentally accelerated by depriving fish of food for 3 weeks. The fish responded by increasing their appetite; appetite was negatively correlated with the estimated energy reserves of individual fish. 4. Those fish previously deprived of food regained their appetite and made up their lost fat within 4 weeks of resuming feeding; their appetite then decreased to the level of control fish. 5. The parallel changes in habitat choice and appetite in autumn may be a consequence of the decreased profitability and increased predation risk when feeding in winter. The degree and duration of anorexia in overwintering salmon is not pre-programmed but is regulated by energy reserves, the salmon effectively having a 'defended energy level' below which appetite is increased until lost energy reserves have been restored. SOAFD,FRESHWATER FISHERIES LAB,PITLOCHRY PH16 5LB,PERTH,SCOTLAND METCALFE, NB (reprint author), UNIV GLASGOW,DEPT ZOOL,FISH BEHAV & ECOL GRP,GLASGOW G12 8QQ,SCOTLAND. Metcalfe, Neil/C-5997-2009 Metcalfe, Neil/0000-0002-1970-9349 BAGLINIERE JL, 1985, AQUACULTURE, V45, P249, DOI 10.1016/0044-8486(85)90274-1; BILTON HT, 1982, CAN J FISH AQUAT SCI, V39, P426, DOI 10.1139/f82-060; CALOW P, 1973, J ZOOL, V170, P415; CASE TJ, 1978, Q REV BIOOL, V53, P43; CUNJAK RA, 1988, CAN J FISH AQUAT SCI, V45, P443, DOI 10.1139/f88-053; CUNJAK RA, 1988, CAN J FISH AQUAT SCI, V45, P2156, DOI 10.1139/f88-250; ELLIOTT JM, 1968, OIKOS, V19, P39, DOI 10.2307/3564729; ELLIOTT JM, 1968, J ANIM ECOL, V37, P615, DOI 10.2307/3078; ELLIOTT JM, 1967, J ANIM ECOL, V36, P343, DOI 10.2307/2918; ELLIOTT JM, 1976, J ANIM ECOL, V45, P923, DOI 10.2307/3590; ELLIOTT JM, 1985, J ANIM ECOL, V54, P985, DOI 10.2307/4392; FELTHAM MJ, 1990, J ZOOL, V222, P285, DOI 10.1111/j.1469-7998.1990.tb05677.x; GARDINER WR, 1980, HYDROBIOLOGIA, V154, P3; GIBSON RJ, 1978, T AM FISH SOC, V107, P703, DOI 10.1577/1548-8659(1978)107<703:TBOJAS>2.0.CO;2; Groscolas R., 1990, P269; HAGER RC, 1976, PROG FISH CULT, V38, P144, DOI 10.1577/1548-8659(1976)38[144:ROSARO]2.0.CO;2; HANSEN LP, 1982, REP I FRESHWATER RES, V60, P31; HEGGENES J, 1990, J FISH BIOL, V36, P707, DOI 10.1111/j.1095-8649.1990.tb04325.x; Higgins P. J., 1985, NUTR FEEDING FISH, P243; MAHNKEN C, 1982, AQUACULTURE, V28, P251, DOI 10.1016/0044-8486(82)90027-8; MAITLAND PETER S., 1964, PROC ROY SOC EDINB SECT B BIOL, V68, P277; METCALFE NB, 1991, CAN J ZOOL, V69, P815, DOI 10.1139/z91-121; METCALFE NB, 1988, J ANIM ECOL, V57, P463, DOI 10.2307/4918; METCALFE NB, 1990, CAN J ZOOL, V68, P2630, DOI 10.1139/z90-367; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; METCALFE NB, 1986, CAN J ZOOL, V64, P2439, DOI 10.1139/z86-364; METCALFE NB, 1990, J ANIM ECOL, V59, P135, DOI 10.2307/5163; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P21, DOI 10.1098/rspb.1989.0010; MIGLAVS I, 1989, J FISH BIOL, V34, P947; MIQUELLE DG, 1990, BEHAV ECOL SOCIOBIOL, V27, P145, DOI 10.1007/BF00168458; MROSOVSKY N, 1980, SCIENCE, V207, P837, DOI 10.1126/science.6928327; NICIEZA AG, 1991, J FISH BIOL, V38, P509, DOI 10.1111/j.1095-8649.1991.tb03138.x; QUINTON JC, 1990, J FISH BIOL, V37, P33, DOI 10.1111/j.1095-8649.1990.tb05924.x; RICKER WE, 1979, FISH PHYSIOL, V8, P766; RIDDELL BE, 1981, CAN J FISH AQUAT SCI, V38, P308, DOI 10.1139/f81-042; RIMMER DM, 1983, CAN J FISH AQUAT SCI, V40, P671, DOI 10.1139/f83-090; RIMMER DM, 1985, CAN J ZOOL, V63, P92, DOI 10.1139/z85-017; SHERRY DF, 1980, J COMP PHYSIOL PSYCH, V94, P89, DOI 10.1037/h0077647; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SIMPSON AL, IN PRESS AQUACULTURE; Thorpe J.E., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P7; Thorpe J. E., 1987, AGE GROWTH FISHES, P463; THORPE JE, 1989, J FISH BIOL, V35, P295; THORPE JE, 1977, J FISH BIOL, V11, P175, DOI 10.1111/j.1095-8649.1977.tb04111.x; THORPE JE, 1979, FINFISH NUTRITION FI, V1, P501; THORPE JE, 1979, J FISH BIOL S, P501; VILLARREAL CA, 1988, J FISH BIOL, V33, P15, DOI 10.1111/j.1095-8649.1988.tb05445.x; WANKOWSKI JWJ, 1979, J FISH BIOL, V14, P351, DOI 10.1111/j.1095-8649.1979.tb03530.x; Weatherley A. H., 1987, BIOL FISH GROWTH; WEATHERLEY AH, 1981, J FISH BIOL, V18, P195, DOI 10.1111/j.1095-8649.1981.tb02814.x; WEBB PW, 1978, J FISH RES BOARD CAN, V35, P1417, DOI 10.1139/f78-223; WEDEMEYER GA, 1980, US NMFS MAR FISH REV, V42, P1 52 163 166 2 14 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. 1992 61 1 175 181 10.2307/5520 7 Ecology; Zoology Environmental Sciences & Ecology; Zoology HG622 WOS:A1992HG62200018 2019-02-26 J METCALFE, NB; WRIGHT, PJ; THORPE, JE METCALFE, NB; WRIGHT, PJ; THORPE, JE RELATIONSHIPS BETWEEN SOCIAL-STATUS, OTOLITH SIZE AT 1ST FEEDING AND SUBSEQUENT GROWTH IN ATLANTIC SALMON (SALMO-SALAR) JOURNAL OF ANIMAL ECOLOGY English Article DOMINANCE; SAGITTA; LIFE-HISTORY STRATEGIES; COMPETITION; SMOLT YOUNG MIGRATORY TROUT; POPULATION REGULATION; TERRITORIAL BEHAVIOR; COMPETITIVE ABILITY; TRUTTA; PARR; RATES; SELECTION; AGE 1. Sibling Atlantic salmon fry show variation in early growth rates, despite being of a similar size initially and being in the same environment with excess food. This variation in early growth has a critical impact on their subsequent life-history strategies. We examined the relationships between social status, otolith size at first feeding and early growth rates. Fish were assessed for social status soon after first feeding, and their growth measured over the first 3 months. They were then killed to obtain the otoliths. 2. Surprisingly, otolith size was not related to fish size at first feeding, but was related to dominance status, dominant fish having larger otoliths. Both otolith size and dominance status at first feeding were good predictors of fish size 3 months later (which, in tum, is a good predictor of age at smolt migration). 3. It is suggested that variation in metabolic rate may influence both otolith size at first feeding and dominance; dominant individuals would have a greater potential for growth, so producing a correlation between initial otolith size and subsequent growth rates. This would result in a connection between metabolic rate and age at migration. SOAFD,MARINE LAB,ABERDEEN AB9 8DB,SCOTLAND; SOFAD,FRESHWATER FISHERIES LAB,PITLOCHRY PH16 5LB,PERTH,SCOTLAND METCALFE, NB (reprint author), UNIV GLASGOW,DEPT ZOOL,FISH BEHAV & ECOL GRP,GLASGOW G12 8QQ,SCOTLAND. WRIGHT, PETER/C-8536-2011; Metcalfe, Neil/C-5997-2009 Metcalfe, Neil/0000-0002-1970-9349 ABBOTT JC, 1989, BEHAVIOUR, V108, P104, DOI 10.1163/156853989X00079; CAMPANA SE, 1985, CAN J FISH AQUAT SCI, V42, P1014, DOI 10.1139/f85-127; ELLIOTT JM, 1990, J ANIM ECOL, V59, P803, DOI 10.2307/5015; ELLIOTT JM, 1990, J ANIM ECOL, V59, P171, DOI 10.2307/5166; ELLIOTT JM, 1989, J ANIM ECOL, V58, P987, DOI 10.2307/5137; ELLIOTT JM, 1989, J ANIM ECOL, V58, P45, DOI 10.2307/4985; FAUSCH KD, 1984, CAN J ZOOL, V62, P441, DOI 10.1139/z84-067; HUNTINGFORD FA, 1990, J FISH BIOL, V36, P877, DOI 10.1111/j.1095-8649.1990.tb05635.x; MESSIEH SN, 1972, J FISH RES BOARD CAN, V29, P1113, DOI 10.1139/f72-166; METCALFE NB, 1991, CAN J ZOOL, V69, P815, DOI 10.1139/z91-121; METCALFE NB, 1990, CAN J ZOOL, V68, P2630, DOI 10.1139/z90-367; METCALFE NB, 1986, J FISH BIOL, V28, P525, DOI 10.1111/j.1095-8649.1986.tb05190.x; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; METCALFE NB, 1990, J ANIM ECOL, V59, P135, DOI 10.2307/5163; MOSEGAARD H, 1988, CAN J FISH AQUAT SCI, V45, P1514, DOI 10.1139/f88-180; MOSEGAARD H, 1987, CANADIAN J FISHERIES, V47, P225; THORPE JE, 1989, J FISH BIOL, V35, P295; THORPE JE, 1984, AQUACULTURE, V43, P289, DOI 10.1016/0044-8486(84)90030-9; THORPE JE, 1977, J FISH BIOL, V11, P175, DOI 10.1111/j.1095-8649.1977.tb04111.x; TITUS RG, 1991, CAN J FISH AQUAT SCI, V48, P19, DOI 10.1139/f91-003; TITUS RG, 1990, ANN ZOOL FENN, V27, P119; WEST CJ, 1987, CAN J FISH AQUAT SCI, V44, P712, DOI 10.1139/f87-086; WRIGHT PJ, 1991, J FISH BIOL, V39, P103, DOI 10.1111/j.1095-8649.1991.tb04345.x; WRIGHT PJ, 1990, J FISH BIOL, V36, P241, DOI 10.1111/j.1095-8649.1990.tb05599.x; WRIGHT PJ, 1991, J FISH BIOL, V38, P929, DOI 10.1111/j.1095-8649.1991.tb03632.x 25 92 95 1 20 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. 1992 61 3 585 589 10.2307/5613 5 Ecology; Zoology Environmental Sciences & Ecology; Zoology JR167 WOS:A1992JR16700008 2019-02-26 J CLAYTON, DH; GREGORY, RD; PRICE, RD CLAYTON, DH; GREGORY, RD; PRICE, RD COMPARATIVE ECOLOGY OF NEOTROPICAL BIRD LICE (INSECTA, PHTHIRAPTERA) JOURNAL OF ANIMAL ECOLOGY English Article BIRDS; COMPARATIVE; ECOLOGY; LICE; TROPICAL GENETIC DIFFERENTIATION; PHILOPTERIDAE; MALLOPHAGA; TRICHODECTIDAE; ISCHNOCERA 1. Data are presented comprising the first quantitative survey lice from Neotropical birds. The data were collected in the Andean foothills of south-eastern Peru using a novel scheme for quantitative sampling of ectoparasites from freshly killed hosts. 2. In total, 685 birds representing 127 species in 26 families were sampled for lice; 327 (47.7%) birds were parasitized, with a mean intensity of 6.6 lice per bird and a mean richness of 1.1 louse species per host species. 3. The bulk of variation in louse load was among host species nested within genera, although some variation occurred at higher taxonomic levels. 4. Lice were extremely host-specific; nearly all species were restricted to a single species of host (monoxenous). 5. Thirteen metapopulations of lice (10%) had significantly skewed sex ratios, of which four were skewed toward males, representing the first male-biased sex ratios reported for chewing lice. Thirty-four metapopulations (27%) had significantly skewed age ratios and showed an overall bias toward adults. 6. Results are discussed in relation to current life-history theory and are compared with the findings of a recent survey of lice from temperate-zone birds. Tropical lice are neither more speciose nor more abundant than temperate-zone lice, which is consistent with the view that the environment for chewing lice is delimited by the body of the host rather than by 'external' conditions. 7. Non-quantitative host-parasite records are reported for lice collected from an additional 75 birds representing 45 species in 20 families. UNIV MINNESOTA,DEPT ENTOMOL,ST PAUL,MN 55108 CLAYTON, DH (reprint author), UNIV OXFORD,DEPT ZOOL,SOUTH PARKS RD,OXFORD OX1 3PS,ENGLAND. Gregory, Richard/0000-0002-7419-5053 ASH J. S., 1960, IBIS, V102, P93, DOI 10.1111/j.1474-919X.1960.tb05095.x; CHARNOV E L, 1982; Clayton D.H., 1991, BIRD PARASITE INTERA, P258; CLAYTON DH, 1990, J MED ENTOMOL, V27, P257, DOI 10.1093/jmedent/27.3.257; CLAYTON DH, 1984, ANN ENTOMOL SOC AM, V77, P340, DOI 10.1093/aesa/77.4.340; CLAYTON DH, 1990, AM ZOOL, V30, P251; CLAYTON DH, 1989, THESIS U CHICAGO; DEVANEY JA, 1976, POULTRY SCI, V55, P430, DOI 10.3382/ps.0550430; Dobzhansky T., 1950, American Scientist, V38, P209; Dogiel VA, 1964, GENERAL PARASITOLOGY; EICHLER W, 1972, ANGEWANDTE PARASITOL, V13, P1; Fisher R.A., 1930, GENETICAL THEORY NAT; GEIST ROBERT M., 1935, OHIO JOUR SCI, V35, P93; HAFNER MS, 1990, SYST ZOOL, V39, P192, DOI 10.2307/2992181; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Holmes J.C., 1986, P187; KIERANS JE, 1967, MALLOPHAGA NEW ENGLA; MARGOLIS L, 1982, J PARASITOL, V68, P131, DOI 10.2307/3281335; MARSHALL AG, 1981, ECOL ENTOMOL, V6, P155, DOI 10.1111/j.1365-2311.1981.tb00602.x; Marshall AG, 1981, ECOLOGY ECTOPARASITI; MCCLURE HE, 1972, SOME ECTOPARASITES B; NADLER SA, 1989, ANN ENTOMOL SOC AM, V82, P109, DOI 10.1093/aesa/82.1.109; NADLER SA, 1990, EVOLUTION, V44, P942, DOI 10.1111/j.1558-5646.1990.tb03816.x; NELSON RICHARD CLAY, 1965, J MED ENTOMOL, V2, P249; NELSON WA, 1977, J MED ENTOMOL, V13, P389, DOI 10.1093/jmedent/13.4-5.389; PRICE PW, 1990, PARASITE COMMUNITIES : PATTERNS AND PROCESSES, P21; Price PW, 1980, EVOLUTIONARY BIOL PA; PRICE RD, 1983, INT J ENTOMOL, V25, P56; PRICE RD, 1975, ANN ENTOMOL SOC AM, V68, P617, DOI 10.1093/aesa/68.4.617; PRICE RD, IN PRESS J MED ENTOM; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; SIBLEY CG, 1990, PHYSLOGENY CLASSIFIC; Sibley CG, 1990, DISTRIBUTION TAXONOM; WAAGE JK, 1979, BIOL J LINN SOC, V12, P187, DOI 10.1111/j.1095-8312.1979.tb00055.x; WHEELER TA, 1986, CAN J ZOOL, V64, P630, DOI 10.1139/z86-093 36 83 89 1 14 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. 1992 61 3 781 795 10.2307/5631 15 Ecology; Zoology Environmental Sciences & Ecology; Zoology JR167 WOS:A1992JR16700026 2019-02-26 J CHEPLICK, GP CHEPLICK, GP SIBLING COMPETITION IN PLANTS JOURNAL OF ECOLOGY English Article DENSITY-DEPENDENT EFFECTS; EVOLUTION OF SEX; GENETIC RELATEDNESS; SEED AND DISPERSAL DIMORPHISM; SEED GERMINATION AND DORMANCY BUCHLOE-DACTYLOIDES GRAMINEAE; LIFE-HISTORY STRATEGIES; SIB-COMPETITION; SEXUAL REPRODUCTION; EVOLUTIONARY SIGNIFICANCE; IMPATIENS-CAPENSIS; GENE FLOW; AMPHICARPUM-PURSHII; DELAYED GERMINATION; SEED-GERMINATION 1. Sibling competition can de defined as operating when there is a density-dependent reduction in growth, survival or reproduction in closely interacting siblings utilizing the same space and resources relative to the growth, survival or reproduction that occurs when siblings are not interacting. This definition should be distinguished from hypotheses that make predictions about the intensity of inter-actions between siblings relative to those between non-siblings at the same density. 2. Two general classes of theoretical model incorporate sibling competition: one concerns the evolution of sex, the other seed germination-dormancy patterns. Unfortunately, the lack of documentation of sibling competition as a significant selection pressure in nature limits the utility of models that attempt to explain the evolution of specific life-history features in response to sibling competition. At present there is little support for the notion that interactions between siblings are more severe than between genetically unrelated non-siblings. 3. Life-history factors likely to promote sibling competition include fruit, seed and dispersal dimorphisms, synaptospermy, amphicarpy, cleistogamy, barochory, the phalanx growth pattern, and low growth habit. 4. Future research should focus on determining: (i) how widespread sibling competition is in plant populations, including an assessment of its relative importance as a selection pressure; (ii) the relation of sibling competition to plant breeding and dispersal systems; (iii) the importance and relevance of sibling competition to models that attempt to explain the evolution of sex or seed-dormancy patterns; (iv) the influence of sibling competition on population genetic structure; (v) the possibility that some plants may benefit from sibling interactions (kin selection). CHEPLICK, GP (reprint author), UNIV WISCONSIN,DEPT BIOL,WHITEWATER,WI 53190, USA. ANTONOVICS J, 1980, ANNU REV ECOL SYST, V11, P411, DOI 10.1146/annurev.es.11.110180.002211; Antonovics J., 1985, GENETIC DIFFERENTIAT, P369; AUGSPURGER CK, 1983, AM J BOT, V70, P1031, DOI 10.2307/2442812; BAKER GA, 1982, J ECOL, V70, P201, DOI 10.2307/2259873; BARTON NH, 1986, J THEOR BIOL, V120, P381, DOI 10.1016/S0022-5193(86)80033-9; BASKIN J M, 1973, Castanea, V38, P25; Bell G, 1987, Experientia Suppl, V55, P117; Berg R. Y, 1983, DISPERSAL DISTRIBUTI, P13; BOS M, 1986, HEREDITY, V56, P43, DOI 10.1038/hdy.1986.7; Bullock SH, 1981, MADRONO, V28, P94; BULMER MG, 1980, J THEOR BIOL, V82, P335, DOI 10.1016/0022-5193(80)90107-1; CAMPBELL CS, 1983, ANNU REV ECOL SYST, V14, P411, DOI 10.1146/annurev.es.14.110183.002211; CASPER BB, 1988, AM J BOT, V75, P859, DOI 10.2307/2444005; CAVERS PB, 1983, CAN J BOT, V61, P3578, DOI 10.1139/b83-407; CHEPLICK GP, 1988, AM J BOT, V75, P1048, DOI 10.2307/2443772; CHEPLICK GP, 1989, EVOL TREND PLANT, V3, P127; CHEPLICK GP, 1982, OECOLOGIA, V52, P327, DOI 10.1007/BF00367955; CHEPLICK GP, 1987, TRENDS ECOL EVOL, V2, P97, DOI 10.1016/0169-5347(87)90166-2; Cousens MI, 1988, PLANT REPROD ECOLOGY, P307; DIRZO R, 1986, FRUGIVORES SEED DISP, P237; DOBRENZ A. K, 1966, J RANGE MANAGE, V19, P292, DOI 10.2307/3895723; DOUST LL, 1981, J ECOL, V69, P743, DOI 10.2307/2259633; DURING HJ, 1987, TRENDS ECOL EVOL, V2, P89, DOI 10.1016/0169-5347(87)90164-9; EHRENDORFER F, 1983, DISPERSAL DISTRIBUTI, P391; ELLNER S, 1981, OECOLOGIA, V51, P133, DOI 10.1007/BF00344663; ELLNER S, 1986, J THEOR BIOL, V123, P173, DOI 10.1016/S0022-5193(86)80151-5; ELLSTRAND NC, 1985, EVOLUTION, V39, P657, DOI 10.1111/j.1558-5646.1985.tb00402.x; FENSTER CB, 1991, EVOLUTION, V45, P398, DOI 10.1111/j.1558-5646.1991.tb04413.x; GRACE JB, 1990, PERSPECTIVES PLANT C; Grime J. P, 1979, PLANT STRATEGIES VEG; HAMILTON WD, 1977, NATURE, V269, P278; Hamrick JL., 1986, FRUGIVORES SEED DISP, P211; HANDEL SN, 1985, AM NAT, V125, P367, DOI 10.1086/284348; Harper J.L., 1977, POPULATION BIOL PLAN; HARTL DL, 1991, BASIC GENETICS; HIRATSUKA A, 1988, ECOL REV, V21, P157; HOWE HF, 1982, ANNU REV ECOL SYST, V13, P201, DOI 10.1146/annurev.es.13.110182.001221; IWASA Y, 1990, Plant Species Biology, V5, P19, DOI 10.1111/j.1442-1984.1990.tb00189.x; JAIN S, 1984, PERSPECTIVES PLANT P, P128; JANA S, 1980, CAN J BOT, V58, P91, DOI 10.1139/b80-011; KAWANO S, 1990, Plant Species Biology, V5, P97, DOI 10.1111/j.1442-1984.1990.tb00196.x; Keddy P. A., 1989, COMPETITION; KELLEY SE, 1988, NATURE, V331, P714, DOI 10.1038/331714a0; KELLEY SE, 1989, EVOLUTION, V43, P1066, DOI 10.1111/j.1558-5646.1989.tb02551.x; KELLEY SE, 1989, EVOLUTION, V43, P1054, DOI 10.1111/j.1558-5646.1989.tb02550.x; KLEMOW KM, 1981, J ECOL, V69, P33, DOI 10.2307/2259814; KLINKHAMER PGL, 1987, THEOR POPUL BIOL, V32, P127, DOI 10.1016/0040-5809(87)90044-X; Levin D. A., 1984, PERSPECTIVES PLANT P, P242; LEVIN D A, 1974, EVOL BIOL, P139, DOI [DOI 10.1007/978-1-4615-6944-2_5, 10.1007/978-1-4615-944-2_5]; LEVIN DA, 1981, ANN MO BOT GARD, V68, P233, DOI 10.2307/2398797; LINHART YB, 1976, J ECOL, V64, P375, DOI 10.2307/2258701; LOVELESS MD, 1984, ANNU REV ECOL SYST, V15, P65, DOI 10.1146/annurev.es.15.110184.000433; MATTATIA J, 1977, BOT NOTISER, V129, P437; Maynard Smith J, 1978, EVOLUTION SEX; MCCALL C, 1989, EVOLUTION, V43, P1075, DOI 10.1111/j.1558-5646.1989.tb02552.x; MCEVOY PB, 1984, OECOLOGIA, V61, P160, DOI 10.1007/BF00396754; MEAGHER TR, 1987, ECOLOGY, V68, P803, DOI 10.2307/1938351; MISHLER BD, 1988, PLANT REPROD ECOLOGY, P285; MOTRO U, 1991, AM NAT, V137, P108, DOI 10.1086/285148; NAKAMURA R R, 1980, Evolutionary Theory, V5, P113; NAYLOR JM, 1976, CAN J BOT, V54, P306, DOI 10.1139/b76-028; OLIVIERI I, 1983, OECOLOGIA, V60, P114, DOI 10.1007/BF00379329; Olivieri I., 1985, GENETIC DIFFERENTIAT, P413; PECK JH, 1990, AM FERN J, V80, P126, DOI 10.2307/1547200; PLITMANN U, 1986, P ROY SOC EDINB B, V89, P193, DOI 10.1017/S0269727000009027; QUINN JA, 1987, AM J BOT, V74, P1167, DOI 10.2307/2444153; QUINN JA, 1986, AM J BOT, V73, P874, DOI 10.2307/2444298; SCHMITT J, 1985, AM NAT, V126, P570, DOI 10.1086/284439; SCHMITT J, 1986, EVOLUTION, V40, P830, DOI 10.1111/j.1558-5646.1986.tb00542.x; SCHMITT J, 1987, EVOLUTION, V41, P579, DOI 10.1111/j.1558-5646.1987.tb05828.x; SCHOEN DJ, 1984, BIOL J LINN SOC, V23, P303, DOI 10.1111/j.1095-8312.1984.tb00147.x; Shields W. M, 1982, PHILOPATRY INBREEDIN; Silvertown J, 1987, INTRO PLANT POPULATI; SMITH CC, 1984, ANNU REV ECOL SYST, V15, P329, DOI 10.1146/annurev.es.15.110184.001553; SOLTIS DE, 1986, AM J BOT, V73, P588, DOI 10.2307/2444264; SOLTIS DE, 1987, AM NAT, V130, P219, DOI 10.1086/284706; TAMARIN R, 1991, PRINCIPLES GENETICS; TONSOR SJ, 1989, AM NAT, V134, P897, DOI 10.1086/285020; TRAPP EJ, 1988, AM J BOT, V75, P1535, DOI 10.2307/2444703; van der Pijl L, 1982, PRINCIPLES DISPERSAL; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; VENABLE DL, 1985, J ECOL, V73, P133, DOI 10.2307/2259774; VENABLE DL, 1980, OECOLOGIA, V46, P272, DOI 10.1007/BF00540137; WALLER DM, 1980, EVOLUTION, V34, P747, DOI 10.1111/j.1558-5646.1980.tb04014.x; Weiner J., 1988, Plant reproductive ecology: patterns and strategies, P228; White J., 1984, PERSPECTIVES PLANT P, P15; Williams GC, 1975, SEX EVOLUTION; WILLSON MF, 1987, AM NAT, V129, P304, DOI 10.1086/284636; YOUNG JPW, 1981, J THEOR BIOL, V88, P755, DOI 10.1016/0022-5193(81)90249-6; ZAMMIT C, 1990, OECOLOGIA, V84, P24, DOI 10.1007/BF00665590; ZOHARY MICHAEL, 1937, BEIH BOT CENTRALBL ABT A, V56, P1 91 92 100 1 40 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0022-0477 J ECOL J. Ecol. 1992 80 3 567 575 10.2307/2260699 9 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology JN103 WOS:A1992JN10300016 2019-02-26 J SCRIBNER, KT; WOOTEN, MC; SMITH, MH; KENNEDY, PK; RHODES, OE SCRIBNER, KT; WOOTEN, MC; SMITH, MH; KENNEDY, PK; RHODES, OE VARIATION IN LIFE-HISTORY AND GENETIC-TRAITS OF HAWAIIAN MOSQUITOFISH POPULATIONS JOURNAL OF EVOLUTIONARY BIOLOGY English Article LIFE HISTORY EVOLUTION; GENETIC VARIABILITY; DRIFT; ENVIRONMENTAL VARIATION; MOSQUITOFISH Mosquitofish (Gambusia affinis) were collected from 17 reservoirs on three islands in Hawaii, USA. Genetic and life history traits for adult females from these populations were used to evaluate hypotheses concerning short-term evolutionary divergence of populations recently established from a common ancestral source. The effects of founder events and drift on genetic variability and population differentiation were also examined. Significant differences in life history characteristics, allele frequencies, and multi-locus heterozygosities (H) were found among fish populations collected from different reservoirs and between reservoirs classified as stable or fluctuating on the basis of temporal fluctuation in water level. Females from stable reservoirs exhibited greater standard length (35.1 vs 32.8 mm), lower fecundity (11.9 vs 15.2 embryos), lower reproductive allocation (18.2% vs 22.8%), but larger mean embryo size (1.95 vs 1.67 mg) than females from fluctuating reservoirs. Consistency in means among replicates of each reservoir class and concordance in direction and magnitude of differences reported here and results of sampling conducted from these same locations 10 years previously (Stearns, 1983a) suggest that ecological factors intrinsic to these two environments are important in determining population life history traits. Females from stable reservoirs exhibited lower heterozygosity than females from fluctuating reservoirs (0.134 vs 0.158, respectively). Levels and direction of differences in heterozygosity, the high proportion of polymorphic loci and lack of fixation of alternative alleles argue against a purely stochastic explanation for genetic and life history variation among reservoir populations. Levels of genetic variability and interpopulation differentiation were similar to those observed in mainland populations of this species. A high proportion of the genetic diversity was apportioned between populations and within populations due to differences between juveniles and adults. Significant genotypic differences between adult and juvenile age classes suggest that the genetic divergence of local populations may occur over short periods of time. SCRIBNER, KT (reprint author), SAVANNAH RIVER ECOL LAB,DRAWER E,AIKEN,SC 29802, USA. 0 21 22 2 10 BIRKHAUSER VERLAG AG BASEL PO BOX 133 KLOSTERBERG 23, CH-4010 BASEL, SWITZERLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. 1992 5 2 267 288 10.1046/j.1420-9101.1992.5020267.x 22 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HX996 WOS:A1992HX99600005 Bronze 2019-02-26 J HOCHBERG, ME; MICHALAKIS, Y; DEMEEUS, T HOCHBERG, ME; MICHALAKIS, Y; DEMEEUS, T PARASITISM AS A CONSTRAINT ON THE RATE OF LIFE-HISTORY EVOLUTION JOURNAL OF EVOLUTIONARY BIOLOGY English Article PARASITES; LIFE HISTORY; RESISTANCE; EVOLUTIONARY MODELS There are a number of ways in which a host can respond in evolutionary time to reductions in survival and reproduction due to a virulent parasite. These include evolving physiological morphological, or behavioural mechanisms of resistance to infection (or to proliferation, once infection has occurred). But a more unexpected tactic is also possible. This is for hosts to reproduce (slightly) sooner when in the presence of a virulent parasite as compared to when the parasite is less virulent or absent. As such, hosts which reproduce younger may be at a selective advantage, since they can both evade parasitism in time and, even when parasitised, can reduce the likely impact of the parasite on survival and reproductive success. We employ a simple mathematical model to propose that parasites and pathogens can act as important agents in the evolution of the timing of reproduction and associated life-history characters (e.g. body size). Once established in a semelparous host population, evolutionary increases in parasite virulence should result in the evolution of shorter lived hosts; whereas the evolution of less virulent forms of the parasite should be accompanied by the evolution of longer lived hosts. We argue that in the presence of a sufficiently virulent parasite the evolution of longer pre-reproductive life-spans should require the previous or concomitant evolution of morphological, behavioural or physiological resistance to parasitic infection and proliferation. HOCHBERG, ME (reprint author), ECOLE NORM SUPER,ECOL LAB,CNRS,URA 258,46 RUE ULM,F-75230 PARIS 05,FRANCE. 0 93 94 0 20 BIRKHAUSER VERLAG AG BASEL PO BOX 133 KLOSTERBERG 23, CH-4010 BASEL, SWITZERLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. 1992 5 3 491 504 10.1046/j.1420-9101.1992.5030491.x 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity JK287 WOS:A1992JK28700009 2019-02-26 J HOCHBERG, ME HOCHBERG, ME PARASITISM AS A CONSTRAINT ON THE RATE OF LIFE-HISTORY EVOLUTION (JOURNAL OF EVOLUTIONARY BIOLOGY, VOL 5, PG 493, 1992) JOURNAL OF EVOLUTIONARY BIOLOGY English Correction, Addition 0 2 2 0 0 BIRKHAUSER VERLAG AG BASEL PO BOX 133 KLOSTERBERG 23, CH-4010 BASEL, SWITZERLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. 1992 5 4 732 732 1 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity KE392 WOS:A1992KE39200013 2019-02-26 J BRETT, MT BRETT, MT CHAOBORUS AND FISH-MEDIATED INFLUENCES ON DAPHNIA-LONGISPINA POPULATION-STRUCTURE, DYNAMICS AND LIFE-HISTORY STRATEGIES OECOLOGIA English Article DAPHNIA; CHAOBORUS; FISH; SIZE-SELECTIVE; PREDATION ZOOPLANKTON COMMUNITY; PREY VULNERABILITY; CHEMICAL STIMULI; ECOLOGICAL ROLE; SPINED MORPHS; PREDATION; PULEX; INDUCTION; CYCLOMORPHOSIS; MORPHOLOGY This study examined the long term effects of predation by larvae of the midge Chaoborus and simulated fish predation on experimental Daphnia longispina populations. Chaoborus predation, relative to fish predation, led to populations composed of larger individuals as a whole, larger egg-bearing individuals, and a larger primiparous instar. Daphnia retained helmets beyond the first instar in response to the presence of Chaoborus. Both types of predation, relative to predator-free controls, reduced prey population size and rates of increase, but increased population death rates. The reduction in population size due to predation led to increased resource availability for individuals remaining in the populations and increased individual fecundity in the predation treatments. The differences noted between the Chaoborus, fish, and control treatments increased with predation intensity. UNIV UPPSALA,INST LIMNOL,S-75122 UPPSALA,SWEDEN Brett, Michael/A-2066-2010 Brambilla DJ, 1980, EVOLUTION ECOLOGY ZO, P438; Conover W. J., 1980, PRACTICAL NONPARAMET; DEBERNARDI R, 1981, B ZOOL ITAL, V48, P351; DODSON S, 1988, LIMNOL OCEANOGR, V33, P1431, DOI 10.4319/lo.1988.33.6_part_2.1431; DODSON SI, 1989, OECOLOGIA, V78, P361, DOI 10.1007/BF00379110; DODSON SI, 1988, FRESHWATER BIOL, V19, P109, DOI 10.1111/j.1365-2427.1988.tb00332.x; EDLEY MT, 1988, BIOL J LINN SOC, V34, P309, DOI 10.1111/j.1095-8312.1988.tb01966.x; GILBERT JJ, 1966, SCIENCE, V151, P1234, DOI 10.1126/science.151.3715.1234; GLIWICZ ZM, 1981, HYDROBIOLOGIA, V80, P205, DOI 10.1007/BF00018359; HAVEL JE, 1984, LIMNOL OCEANOGR, V29, P487, DOI 10.4319/lo.1984.29.3.0487; HAVEL JE, 1987, HYDROBIOLOGIA, V150, P273, DOI 10.1007/BF00008708; HAVEL JE, 1985, LIMNOL OCEANOGR, V30, P853, DOI 10.4319/lo.1985.30.4.0853; HEBERT PDN, 1985, LIMNOL OCEANOGR, V30, P1291, DOI 10.4319/lo.1985.30.6.1291; KERFOOT WC, 1977, LIMNOL OCEANOGR, V22, P316, DOI 10.4319/lo.1977.22.2.0316; KRUEGER DA, 1981, LIMNOL OCEANOGR, V26, P219, DOI 10.4319/lo.1981.26.2.0219; KUHLMANN HW, 1985, SCIENCE, V227, P1347, DOI 10.1126/science.227.4692.1347; LINDSTROM K, 1984, HYDROBIOLOGIA, V101, P35; MORT MA, 1986, HYDROBIOLOGIA, V133, P39, DOI 10.1007/BF00010800; PALOHEIMO JE, 1974, LIMNOL OCEANOGR, V19, P692, DOI 10.4319/lo.1974.19.4.0692; PASTOROK RA, 1981, ECOLOGY, V62, P1311, DOI 10.2307/1937295; RIESSEN HP, 1988, CAN J FISH AQUAT SCI, V45, P1912, DOI 10.1139/f88-223; RIESSEN HP, 1984, ECOLOGY, V65, P514, DOI 10.2307/1941413; RIESSEN HP, 1990, ECOLOGY, V71, P1536, DOI 10.2307/1938290; SLOBODKIN LB, 1956, LIMNOL OCEANOGR, V1, P209, DOI 10.4319/lo.1956.1.3.0209; Snedecor G. W., 1980, STATISTICAL METHODS; SPITZE K, 1985, ECOLOGY, V66, P938, DOI 10.2307/1940556; STEMBERGER RS, 1987, ECOLOGY, V68, P370, DOI 10.2307/1939268; STENSON JAE, 1987, ECOLOGY, V68, P928, DOI 10.2307/1938364; VANNI MJ, 1988, CAN J FISH AQUAT SCI, V45, P1758, DOI 10.1139/f88-207; VANNI MJ, 1987, ECOL MONOGR, V57, P61, DOI 10.2307/1942639; VUORINEN I, 1989, LIMNOL OCEANOGR, V34, P245, DOI 10.4319/lo.1989.34.1.0245; WALLS M, 1989, LIMNOL OCEANOGR, V34, P390, DOI 10.4319/lo.1989.34.2.0390 32 33 34 0 13 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia JAN 1992 89 1 69 77 10.1007/BF00319017 9 Ecology Environmental Sciences & Ecology HA234 WOS:A1992HA23400010 28313397 2019-02-26 J KUITUNEN, M; ALEKNONIS, A KUITUNEN, M; ALEKNONIS, A NEST PREDATION AND BREEDING SUCCESS IN COMMON TREECREEPERS NESTING IN BOXES AND NATURAL CAVITIES ORNIS FENNICA English Article Most long-term studies of passerine life-history evolution have been based on species that breed readily in nest-boxes. Very few papers deal with data from natural holes. Here we compare the breeding success of the Common Treecreeper (Certhia familiaris) between special nest-boxes (southern Finland; 61-degrees-N) and natural nesting sites (Lithuania 55-degrees-N). The nest-boxes and natural nest sites did not differ in laying date or the frequency of the second clutches. Significant differences were found in clutch size, number of fledglings per breeding attempt and frequency of the replacement clutches. The reproductive rate was lower in natural sites than in nest-boxes, because of the higher nest predation in natural cavities (37% vs. 8% in nest-boxes). The higher predation in natural cavities led to greater frequency of replacement clutches in natural holes. This increased the clutch size, because the Treecreeper lays the largest clutches in the middle of its breeding period. The proportion of nests suffering predation did not vary seasonally. The observed difference in predation may bias conclusions regarding life-history evolution drawn from nest-box studies alone. KUITUNEN, M (reprint author), UNIV JYVASKYLA, DEPT BIOL, YLIOPISTONKATU 9, SF-40100 JYVASKYLA, FINLAND. 0 10 12 0 1 BIRDLIFE FINLAND HELSINKI PO BOX 1285, HELSINKI, 00101, FINLAND 0030-5685 ORNIS FENNICA Ornis Fenn. 1992 69 1 7 12 6 Ornithology Zoology HV041 WOS:A1992HV04100002 2019-02-26 J PILLAR, SC; STUART, V; BARANGE, M; GIBBONS, MJ PILLAR, SC; STUART, V; BARANGE, M; GIBBONS, MJ COMMUNITY STRUCTURE AND TROPHIC ECOLOGY OF EUPHAUSIIDS IN THE BENGUELA ECOSYSTEM SOUTH AFRICAN JOURNAL OF MARINE SCIENCE-SUID-AFRIKAANSE TYDSKRIF VIR SEEWETENSKAP English Article Current knowledge of the community structure, life history strategies and trophodynamics of euphausiids in the Benguela ecosystem is synthesized. Three species dominate, Euphausia lucens over the shelf region of the southern Benguela, Euphausia hanseni over the outer shelf off Namibia and Nyctiphanes capensis in the neritic and shelf regions of the northern Benguela. Various models of interactions between biological processes and physical features are considered to explain likely mechanisms whereby these species can remain spatially segregated. All three species breed throughout the year, produce multiple broods and large numbers of eggs per brood and have high turnover rates. These strategies enable them to maintain high production in terms of both somatic growth and reproductive output throughout the year. Biomass of euphausiids in the northern Benguela is about double that of the west coast of the southern Benguela, consistent with similar geographical differences in phytoplankton abundance. Adult euphausiids are opportunistic omnivores and the larval stages are primarily herbivorous. Alternative feeding patterns are reflected in differences in the vertical migratory behaviour of various ontogenetic stages and ambient food type. Factors causing a switch from herbivory to carnivory are considered. Grazing of euphausiids is considered to play a minor role in phytoplankton losses, but euphausiids could exert considerable predatory impact on mesozooplankton and therefore compete directly with pelagic fish. Combined predation by various fish species has an appreciable impact on euphausiid production. PILLAR, SC (reprint author), SEA FISHERIES RES INST,PRIVATE BAG X2,ROGGE BAY 8012,SOUTH AFRICA. Barange, Manuel/D-2689-2016 Barange, Manuel/0000-0002-1508-0483 0 47 49 0 2 SEA FISHERIES RESEARCH INST DEPT ENVIRONMENT AFFAIRS CAPE TOWN PRIVATE BAG X2 ROGGE BAY 8012, CAPE TOWN, SOUTH AFRICA 0257-7615 S AFR J MARINE SCI South Afr. J. Mar. Sci.-Suid-Afr. Tydsk. Seewetens. 1992 12 393 409 17 Marine & Freshwater Biology Marine & Freshwater Biology KX119 WOS:A1992KX11900029 2019-02-26 J KOZLOWSKI, J KOZLOWSKI, J OPTIMAL ALLOCATION OF RESOURCES TO GROWTH AND REPRODUCTION - IMPLICATIONS FOR AGE AND SIZE AT MATURITY TRENDS IN ECOLOGY & EVOLUTION English Review LIFE-HISTORY STRATEGIES; BODY SIZE; STABLE STRATEGIES; PERENNIAL PLANTS; EVOLUTION; PATTERNS; MODEL; COMPETITION; CALIFORNIA; DYNAMICS The schedule of growth and reproduction is crucial to maximization of fitness. Models of optimal allocation of limiting resources are useful tools for predicting age and size at maturity - key components of fitness - for all lifestyles. Early models considered annual plants. Recently, they have been generalized to other short-lived organisms and also to perennials in which growth and reproduction schedules following maturation can be predicted. A review of existing models shows that differences in trophic conditions and mortality are the main sources of inter- and intraspecific variation in size. KOZLOWSKI, J (reprint author), JAGIELLONIAN UNIV,INST ENVIRONM BIOL,OLEANDRY 2A,PL-30063 KRAKOW,POLAND. Kozlowski, Jan/K-5549-2012 Kozlowski, Jan/0000-0002-7084-2030 ALEXANDER RM, 1982, OPTIMA ANIMALS; ANDREWS RM, 1982, BIOL REPTILLA, P273; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; CHAPIN FS, 1987, BIOSCIENCE, V37, P49, DOI 10.2307/1310177; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; DEMARTINI EE, 1983, ENVIRON BIOL FISH, V8, P29, DOI 10.1007/BF00004943; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HASTINGS A, 1978, J THEOR BIOL, V75, P527, DOI 10.1016/0022-5193(78)90361-2; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; KENNETH HN, 1990, ECOL MONOGR, V60, P239; KINDLMANN P, 1989, FUNCT ECOL, V3, P531, DOI 10.2307/2389567; KING D, 1982, THEOR POPUL BIOL, V21, P194, DOI 10.1016/0040-5809(82)90013-2; KING D, 1983, ECOLOGY, V64, P16, DOI 10.2307/1937324; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; KOZLOWSKI J, 1991, ACTA OECOL, V12, P11; KOZLOWSKI J, 1988, THEOR POPUL BIOL, V34, P118, DOI 10.1016/0040-5809(88)90037-8; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; PUGLIESE A, 1987, J THEOR BIOL, V126, P33, DOI 10.1016/S0022-5193(87)80099-1; PUGLIESE A, 1988, THEOR POPUL BIOL, V34, P215, DOI 10.1016/0040-5809(88)90022-6; PUGLIESE A, 1990, EVOL ECOL, V4, P75, DOI 10.1007/BF02270717; RALHAN PK, 1987, ECOLOGY, V68, P1974, DOI 10.2307/1939888; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; Reiss M. J, 1989, ALLOMETRY GROWTH REP; RKOZLOWSKI J, 1987, EVOL ECOL, V1, P231; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; RONSHEIM ML, 1988, TRENDS ECOL EVOL, V3, P30, DOI 10.1016/0169-5347(88)90041-9; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SMITH JM, 1986, THEOR POPUL BIOL, V30, P166, DOI 10.1016/0040-5809(86)90031-6; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, IN PRESS EVOLUTION L; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; VINCENT TL, 1980, THEOR POPUL BIOL, V17, P215, DOI 10.1016/0040-5809(80)90007-6; ZIOLKO M, 1983, MATH BIOSCI, V64, P127, DOI 10.1016/0025-5564(83)90032-9 38 345 361 4 127 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. JAN 1992 7 1 15 19 10.1016/0169-5347(92)90192-E 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GW746 WOS:A1992GW74600006 21235937 2019-02-26 J OHGUSHI, T OHGUSHI, T LIFETIME FITNESS AND EVOLUTION OF REPRODUCTIVE PATTERN IN THE HERBIVOROUS LADY BEETLE ECOLOGY English Article EPILACHNA-NIPONICA; HERBIVOROUS INSECT; HOST PLANT DETERIORATION; LIFE HISTORY EVOLUTION; LIFETIME FITNESS; OVIPOSITION SCHEDULE; PLANT-INSECT INTERACTION; PREDATION; REPRODUCTIVE LIFE-SPAN; SEASONAL VARIATION HENOSEPILACHNA-PUSTULOSA KONO; OVIPOSITION PREFERENCE; DROSOPHILA-MELANOGASTER; POPULATION-DYNAMICS; DENSITY-DEPENDENCE; JUVENILE SURVIVAL; SEXUAL SELECTION; NIPONICA LEWIS; INSECTS; HERITABILITY The adaptive significance of the timing of oviposition in the thistle-feeding lady beetle Epilachna niponica was investigated at two localities (site A and site F) in the northwestern part of Shiga Prefecture, central Japan. I followed cohorts produced over a season and measured four components of lifetime fitness: egg survival, larval survival, female adult survival from emergence to the reproductive season in the following year, and lifetime fecundity. These data are based on mark-recapture data for > 9000 adult beetles and detailed life tables over 5 yr. Large variation in lifetime fitness was evident among cohorts within a population, but the two local populations showed a clear difference in patterns of cohort fitness. At site A, cohorts produced early in a season had higher lifetime fitness than later cohorts, whereas at site F, later cohorts (except for the last one) tended to have higher lifetime fitness. The major causes of these between-site differences were seasonal variation in intensity of egg and larval mortalities due to arthropod predation and host plant deterioration. Field observations revealed a significant difference in oviposition phenology between the two sites: early reproduction at site A and delayed reproduction at site F. The relatively longer reproductive life-span of females was responsible for the prolonged reproduction at site F. Results of a laboratory experiment that eliminated environmental variables agreed with the field observations, and suggested a genetic basis for the oviposition schedules. Correlation of reproductive pattern at each site with higher lifetime fitness of offspring suggests selection on the timing of oviposition to improve the lifetime reproductive success of females. KYOTO UNIV,FAC AGR,ENTOMOL LAB,KYOTO 606,JAPAN ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; BROWN D, 1988, REPROD SUCCESS, P439; CLANCY KM, 1986, ECOLOGY, V67, P1601, DOI 10.2307/1939091; CLUTTONBROCK TH, 1988, REPRODUCTIVE SUCCESS; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; Denno R.F., 1983, VARIABLE PLANTS HERB, P1; Endler JA, 1986, NATURAL SELECTION WI; Feller W, 1957, INTRO PROBABILITY TH; FUTUYMA DJ, 1985, ANNU REV ENTOMOL, V30, P217, DOI 10.1146/annurev.en.30.010185.001245; Grant B. R., 1989, EVOLUTIONARY DYNAMIC; Grant P. R., 1986, ECOLOGY EVOLUTION DA; Hassell M.P., 1985, P3; HASSELL MP, 1986, TRENDS ECOL EVOL, V1, P90, DOI 10.1016/0169-5347(86)90031-5; HOLLIDAY NJ, 1985, BIOL J LINN SOC, V25, P221, DOI 10.1111/j.1095-8312.1985.tb00394.x; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; JONES RE, 1987, J ANIM ECOL, V56, P723, DOI 10.2307/4944; Kareiva P., 1983, P259; Koenig W. D., 1987, POPULATION ECOLOGY C; Lomnicki A., 1988, POPULATION ECOLOGY I; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MORRIS RF, 1970, CAN ENTOMOL, V102, P927, DOI 10.4039/Ent102927-8; MUNSTERSWENDSEN M, 1980, ECOL ENTOMOL, V5, P373, DOI 10.1111/j.1365-2311.1980.tb01161.x; MYERS JH, 1981, J ANIM ECOL, V50, P11, DOI 10.2307/4028; NAKAMURA K, 1981, RES POPUL ECOL, V23, P210, DOI 10.1007/BF02515627; NG D, 1988, NATURE, V334, P611, DOI 10.1038/334611a0; OHGUSHI T, 1985, J ANIM ECOL, V54, P781, DOI 10.2307/4378; OHGUSHI T, 1987, RES POPUL ECOL, V29, P147, DOI 10.1007/BF02515432; OHGUSHI T, 1981, RES POPUL ECOL, V23, P94, DOI 10.1007/BF02514095; OHGUSHI T, 1986, J ANIM ECOL, V55, P861, DOI 10.2307/4421; OHGUSHI T, 1985, RES POPUL ECOL, V27, P351, DOI 10.1007/BF02515472; OHGUSHI T, 1988, RES POPUL ECOL, V30, P57, DOI 10.1007/BF02512602; OHGUSHI T, 1984, Kontyu, V52, P399; OHGUSHI T, 1983, THESIS KYOTO U KYOTO; PRICE PW, 1980, ANNU REV ECOL SYST, V11, P41, DOI 10.1146/annurev.es.11.110180.000353; RAUSHER MD, 1980, EVOLUTION, V34, P342, DOI 10.1111/j.1558-5646.1980.tb04823.x; RAUSHER MD, 1983, ECOLOGY HOST SELECTI, P223; ROSE MR, 1981, GENETICS, V97, P187; SAWADA H, 1984, THESIS KYOTO U KYOTO; SCRIBER JM, 1981, ANNU REV ENTOMOL, V26, P183, DOI 10.1146/annurev.en.26.010181.001151; Seber GAF, 1973, ESTIMATION ANIMAL AB; SINGER MC, 1988, EVOLUTION, V42, P977, DOI 10.1111/j.1558-5646.1988.tb02516.x; SITCH TA, 1988, OECOLOGIA, V76, P371, DOI 10.1007/BF00377031; SMITH RH, 1985, BEHAVIOURAL ECOLOGY; THOMPSON JN, 1988, ENTOMOL EXP APPL, V47, P3, DOI 10.1111/j.1570-7458.1988.tb02275.x; VIA S, 1986, EVOLUTION, V40, P778, DOI 10.1111/j.1558-5646.1986.tb00537.x; WHITHAM TG, 1980, AM NAT, V115, P449, DOI 10.1086/283573; WHITHAM TG, 1986, ECOLOGY, V67, P139, DOI 10.2307/1938512 48 25 25 0 8 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology DEC 1991 72 6 2110 2122 10.2307/1941563 13 Ecology Environmental Sciences & Ecology GV769 WOS:A1991GV76900019 2019-02-26 J PFENNIG, DW; MABRY, A; ORANGE, D PFENNIG, DW; MABRY, A; ORANGE, D ENVIRONMENTAL CAUSES OF CORRELATIONS BETWEEN AGE AND SIZE AT METAMORPHOSIS IN SCAPHIOPUS-MULTIPLICATUS ECOLOGY English Article ADAPTATION; AMPHIBIAN; COMPLEX LIFE CYCLE; DEVELOPMENT; LIFE HISTORY EVOLUTION; METAMORPHOSIS; PHENOTYPIC PLASTICITY; SCAPHIOPUS-MULTIPLICATUS; UNPREDICTABLE ENVIRONMENTS LIFE-HISTORY TRAITS; AMPHIBIAN METAMORPHOSIS; ADAPTIVE SIGNIFICANCE; COUCHII TADPOLES; RANA-SYLVATICA; DESERT PONDS; PLASTICITY; PREDATION; POPULATION; ANURANS We examined environmental effects on the correlation between age and size at metamorphosis in spadefoot toad tadpoles (Scaphiopus multiplicatus). These tadpoles occur in ponds of variable duration as two environmentally induced, trophic morphs: a large, rapidly developing carnivore morph and a smaller, more slowly developing omnivore morph. Drawing on data from both natural ponds and artificial pools we examined for both morphs the environmental determinants of, and the intercorrelations among, three life history parameters: age at metamorphosis, size at metamorphosis, and survivorship (both pre- and postmetamorphic). Censuses of four natural ponds revealed that age and size at metamorphosis for both morphs were inversely related, in contrast to many other amphibians and insects with complex life cycles. In artificial pools in which we simultaneously varied two diet components and pond duration, age and size at metamorphosis were negatively correlated in high food treatments and positively correlated in low food, long pond duration treatments. Ephemeral larval habitats should favor rapid differentiation; achieving large body size depends upon the quality and quantity of available food and the time available to develop. A negative relationship between age and size at metamorphosis may occur often in S. multiplicatus since this species is exposed to a rapidly diminishing food resource (anostracans). We predict that other organisms with complex life cycles faced with these conditions would possess an inverse relationship between size and age at metamorphosis. UNIV TEXAS,DEPT ZOOL,AUSTIN,TX 78712 ALFORD RA, 1988, AM NAT, V131, P91, DOI 10.1086/284775; ARNOLD SJ, 1978, ECOLOGY, V59, P1014, DOI 10.2307/1938553; BERVEN KA, 1982, OECOLOGIA, V52, P360, DOI 10.1007/BF00367960; BERVEN KA, 1983, AM ZOOL, V23, P85; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRAGG AN, 1965, GNOMES NIGHT SPADEFO; Cochran W. G., 1957, EXPT DESIGNS; COLLINS JP, 1979, ECOLOGY, V60, P739; Cornejo DO, 1985, THESIS U ARIZONA TUC; CRONIN JT, 1986, HERPETOLOGICA, V42, P171; CRUMP ML, 1989, COPEIA, P794, DOI 10.2307/1445521; FORREST TG, 1987, OECOLOGIA, V73, P178, DOI 10.1007/BF00377505; LORING SJ, 1988, SMALL WATER IMPOUNDM, P89; NEWMAN RA, 1987, OECOLOGIA, V71, P301, DOI 10.1007/BF00377299; NEWMAN RA, 1988, EVOLUTION, V42, P763, DOI 10.1111/j.1558-5646.1988.tb02494.x; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; NEWMAN RA, 1989, ECOLOGY, V70, P1775, DOI 10.2307/1938111; PETRANKA JW, 1987, EVOLUTION, V41, P1347, DOI 10.1111/j.1558-5646.1987.tb02472.x; PFENIG DW, 1989, THESIS U TEXAS AUSTI; PFENNIG D, 1990, OECOLOGIA, V85, P101, DOI 10.1007/BF00317349; POMEOY LV, 1981, THESIS U CALIFORNIA; PRITCHARD G, 1965, CAN J ZOOLOG, V43, P271, DOI 10.1139/z65-026; REMMERT H, 1981, OECOLOGIA, V50, P12, DOI 10.1007/BF00378789; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; SOKOL A, 1984, COPEIA, P868; Stearns S.C., 1984, P13; TRAVIS J, 1981, EVOLUTION, V35, P423, DOI 10.1111/j.1558-5646.1981.tb04903.x; TRAVIS J, 1987, EVOLUTION, V41, P145, DOI 10.1111/j.1558-5646.1987.tb05777.x; TRAVIS J, 1983, EVOLUTION, V37, P496, DOI 10.1111/j.1558-5646.1983.tb05566.x; TRAVIS J, 1980, EVOLUTION, V34, P40, DOI 10.1111/j.1558-5646.1980.tb04787.x; TRAVIS J, 1984, ECOLOGY, V65, P1156; WASSERSUG RJ, 1975, AM ZOOL, V15, P405; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WILBUR HM, 1977, ECOLOGY, V58, P206, DOI 10.2307/1935124; WOODWARD BD, 1982, OECOLOGIA, V54, P96, DOI 10.1007/BF00541115; Zweifel R. G., 1968, Bulletin of the American Museum of Natural History, V140, P1 41 81 83 1 15 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology DEC 1991 72 6 2240 2248 10.2307/1941574 9 Ecology Environmental Sciences & Ecology GV769 WOS:A1991GV76900030 2019-02-26 J GUO, PZ; MUELLER, LD; AYALA, FJ GUO, PZ; MUELLER, LD; AYALA, FJ EVOLUTION OF BEHAVIOR BY DENSITY-DEPENDENT NATURAL-SELECTION PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article LOW-DENSITY SELECTION; HIGH-DENSITY SELECTION; DROSOPHILA-MELANOGASTER POPULATION-GROWTH; DROSOPHILA Theories of density-dependent natural selection predict that evolution should favor those genotypes with the highest per capita rates of population growth under the current density conditions. These theories are silent about the mechanisms that may give rise to these increases in density-dependent growth rates. We have observed the evolution of six populations of Drosophila melanogaster recently placed in crowded environments after nearly 200 generations at low-population density in the laboratory. After 25 generations in these crowded cultures all six populations showed the predicted increase in population growth rates at high-population density with the concomitant decrease in their growth rates at low densities. These changes in rates of population growth are accompanied by changes in the feeding and pupation behavior of the larvae: those populations that have evolved at high-population densities have higher feeding rates and are less likely to pupate on or near the food surface than populations maintained at low densities. These changes in behavior serve to increase the competitive ability of larvae for limited food and reduce mortality under crowded conditions during the pupal stage of development. A detailed understanding of the mechanisms by which populations evolve under density-dependent natural selection will provide a framework for understanding the nature of trade-offs in life history evolution. UNIV CALIF IRVINE,DEPT ECOL & EVOLUT BIOL,IRVINE,CA 92717 ANDERSON WW, 1971, AM NAT, V105, P489, DOI 10.1086/282741; BRADSHAW WE, 1989, AM NAT, V133, P869, DOI 10.1086/284957; BURNET B, 1977, GENET RES, V30, P149, DOI 10.1017/S0016672300017559; CHARLESWORTH B, 1971, ECOLOGY, V52, P469, DOI 10.2307/1937629; CLARKE B, 1972, AM NAT, V106, P1, DOI 10.1086/282747; JOSHI A, 1988, EVOLUTION, V42, P1090, DOI 10.1111/j.1558-5646.1988.tb02527.x; MUELLER LD, 1988, P NATL ACAD SCI USA, V85, P4383, DOI 10.1073/pnas.85.12.4383; MUELLER LD, 1991, SCIENCE, V253, P433, DOI 10.1126/science.1907401; MUELLER LD, 1988, AM NAT, V132, P786, DOI 10.1086/284890; MUELLER LD, 1990, EVOL ECOL, V4, P290, DOI 10.1007/BF02270928; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1986, EVOLUTION, V40, P1354, DOI 10.1111/j.1558-5646.1986.tb05761.x; MUELLER LD, 1991, PHILOS T ROY SOC B, V332, P25, DOI 10.1098/rstb.1991.0029; ROUGHGARDEN J, 1971, ECOLOGY, V52, P453, DOI 10.2307/1937628; SEWELL D, 1975, GENET RES CAMB, V24, P163 15 21 22 1 9 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. DEC 1991 88 23 10905 10906 10.1073/pnas.88.23.10905 2 Multidisciplinary Sciences Science & Technology - Other Topics GT480 WOS:A1991GT48000110 1961760 Green Published, Bronze 2019-02-26 J COLEMAN, RM; GROSS, MR COLEMAN, RM; GROSS, MR PARENTAL INVESTMENT THEORY - THE ROLE OF PAST INVESTMENT TRENDS IN ECOLOGY & EVOLUTION English Article AVIAN NEST DEFENSE; CONCORDE FALLACY; BROOD SIZE; DECISION RULES; INTENSITY; DESERTION; COMMIT; DOVES The role of past investment in parental-care behaviour has often been controversial. Some researchers have argued that organisms basing present investment on past investment are committing the 'Concorde fallacy'. Others have incorporated life history theory to suggest that investing according to past investment is one component of investing according to expected future reproductive success: a parent can use past investment as well as other information, such as brood size, to make its optimal parental-investment decisions. Although parental-investment research is still in its infancy, the incorporation of life history theory suggests that the Concorde fallacy is a misleading concept. COLEMAN, RM (reprint author), UNIV TORONTO,DEPT ZOOL,TORONTO M5S 1A1,ONTARIO,CANADA. ARMSTRONG T, 1988, ANIM BEHAV, V36, P941, DOI 10.1016/S0003-3472(88)80180-5; BOUCHER DH, 1977, AM NAT, V111, P786, DOI 10.1086/283207; BURGER J, 1989, BEHAVIOUR, V111, P129, DOI 10.1163/156853989X00628; CARLISLE TR, 1985, ANIM BEHAV, V33, P234, DOI 10.1016/S0003-3472(85)80137-8; COLEMAN RM, 1988, BEHAV ECOL SOCIOBIOL, V23, P367, DOI 10.1007/BF00303710; COLEMAN RM, 1985, BEHAV ECOL SOCIOBIOL, V18, P59; CURIO E, 1987, TRENDS ECOL EVOL, V2, P148, DOI 10.1016/0169-5347(87)90064-4; CURIO E, 1984, Z TIERPSYCHOL, V66, P101; DAWKINS R, 1976, NATURE, V262, P131, DOI 10.1038/262131a0; DAWKINS R, 1980, ANIM BEHAV, V28, P892, DOI 10.1016/S0003-3472(80)80149-7; Dawkins R, 1976, SELFISH GENE; FAGERSTROM T, 1982, OIKOS, V39, P116, DOI 10.2307/3544541; GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; IMMELMANN K, 1989, DICT ETHOLOGY; KILPI M, 1987, ORNIS FENNICA, V64, P16; KNIGHT RL, 1986, AUK, V103, P318; Lifjeld JT, 1990, BEHAV ECOL, V1, P48, DOI 10.1093/beheco/1.1.48; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; MURRAY JAH, 1978, OXFORD ENGLISH DICT; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; REDONDO T, 1989, BEHAVIOUR, V111, P161, DOI 10.1163/156853989X00646; RIDGWAY MS, 1989, ETHOLOGY, V80, P47; ROBERTSON RJ, 1979, Z TIERPSYCHOL, V50, P124; SARGENT RC, 1985, BEHAV ECOL SOCIOBIOL, V17, P43, DOI 10.1007/BF00299427; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; Trivers R. L, 1972, SEXUAL SELECTION DES, P139; WEATHERHEAD PJ, 1979, BEHAV ECOL SOCIOBIOL, V5, P373, DOI 10.1007/BF00292525; WEATHERHEAD PJ, 1982, Z TIERPSYCHOL, V60, P199; WESTMORELAND D, 1989, ANIM BEHAV, V38, P1062, DOI 10.1016/S0003-3472(89)80145-9; WESTNEAT DF, 1989, AUK, V106, P747; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON A, 1973, CONCORDE FIASCO 35 41 42 1 24 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. DEC 1991 6 12 404 406 10.1016/0169-5347(91)90163-R 3 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GQ384 WOS:A1991GQ38400010 21232521 2019-02-26 J WIEGLEB, G; BRUX, H; HERR, W WIEGLEB, G; BRUX, H; HERR, W HUMAN IMPACT ON THE ECOLOGICAL PERFORMANCE OF POTAMOGETON SPECIES IN NORTHWESTERN GERMANY VEGETATIO English Article; Proceedings Paper SYMP ON ECOLOGY OF SUBMERSED AND FLOATING-LEAVED AQUATIC VEGETATION ( SYMP SI-6-05 ) AT THE 5TH INTERNATIONAL CONGRESS OF ECOLOGY AUG 23-30, 1990 YOKOHAMA, JAPAN FLORISTIC CHANGE; HABITAT QUALITY; LIFE HISTORY; LOWLAND RIVERS; MACROPHYTES; POTAMOGETON PHENOTYPIC PLASTICITY; MACROPHYTE COMMUNITIES; AQUATIC MACROPHYTES; PECTINATUS L; LIFE-CYCLES; VEGETATION; PLANTS; STRATEGIES; DISTURBANCE; POPULATIONS The changes in habitat quality of lowland rivers in Lower Saxony (Germany) during the past 40 years are outlined. Almost all chemical, physical, and morphological parameters have changed, resulting in most cases in an enhanced potential productivity, accompanied by a complex disturbance regime. Historical reconstruction of the change in river vegetation is presented to compare the frequency of macrophyte species 40 years ago with the situation of today. For a total of 289 sampling sites, the floristic change was exactly reconstructed. Nearly all species show a decline in frequency. This trend is also recognizable in Potamogeton, with the exception of two narrow-leaved species. An attempt is made to explain both decline and maintenance in terms of life history characters (vital attributes) allowing the species to react to the changing habitat conditions. The successful species are characterized by certain life history characteristics which enable them to survive under the current disturbance regime. Most important aspects of life history are the ability to reproduce by means of turions and other fragments, a long-lived, deep-rooting rhizome system, phenotypic plasticity of above-ground parts, synchronous shoot polymorphism, and the potential to regenerate quickly from remaining buds after disturbance. The decline of formerly frequent species can be attributed mainly to the lack of certain key characters; however, physiological characters also may be important. The extirpation of some rare species could also be caused by random fluctuations in small populations. The general importance of population ecological research, particularly demography, life history theory, and the modelling of clonal populations in conservation ecology is stressed. INST APPL BIOL LANDSCAPE ECOL & LANDSCAPE PLANNING,W-2900 OLDENBURG,GERMANY WIEGLEB, G (reprint author), UNIV OLDENBURG,FACHBEREICH BIOL,POB 2503,W-2900 OLDENBURG,GERMANY. AGAMI M, 1986, PHYSIOL VEG, V24, P607; BRUX H, 1988, AQUAT BOT, V32, P23, DOI 10.1016/0304-3770(88)90086-1; BRUX H, 1989, DROSERA 89, P85; Brux H., 1987, ARCH HYDROBIOL S, V27, P115; Butcher R.W., 1933, J ECOL, V21, P59; CARBIENER R, 1990, VEGETATIO, V86, P71, DOI 10.1007/BF00045135; CONRAD M, 1990, BIOSYSTEMS, V24, P61, DOI 10.1016/0303-2647(90)90030-5; DAHL HJ, 1984, JB NATURSCHUTZ LANDS, V36, P26; DAWSON FH, 1988, HDB VEGETATION SCI, V151, P283; DAY RT, 1988, ECOLOGY, V69, P1044, DOI 10.2307/1941260; FELZINES JC, 1979, B SOC BOT N FRANCE, V32, P39; Grime J. P, 1979, PLANT STRATEGIES VEG; GRUBE H-J, 1975, Archiv fuer Hydrobiologie Supplement, V45, P376; HAEUPLER H, 1985, ROTE LISTE GEFASSPFL; Hagstrom J.O., 1916, K SVENSKA VETENSKAPS, V55, P1; HASLAM SM, 1987, RIVER PLANTS; HELLQUIST CB, 1980, RHODORA, V82, P331; HERR W, 1985, Goettinger Floristische Rundbriefe, V19, P2; Herr W., 1989, NATURSCHUTZ LANDSCHA, V18, P121; Herr W., 1989, NATURSCHUTZ LANDSCHA, V18, P145; HOLMES NTH, 1977, FRESHWATER BIOL, V7, P43, DOI 10.1111/j.1365-2427.1977.tb01656.x; HOLTTUM R. E., 1955, PHYTOMORPHOLOGY [DELHI], V5, P399; HOUGH RA, 1977, AQUAT BOT, V3, P297; HULLEN M., 1989, NATURSCHUTZ LANDSCHA, V18, P5; Hutchinson GE, 1975, TREATISE LIMNOLOGY, VIII; KADONO Y, 1982, BOT MAG TOKYO, V95, P63, DOI 10.1007/BF02493411; KADONO Y, 1984, Japanese Journal of Ecology, V34, P161; KAUTSKY L, 1987, AQUAT BOT, V27, P177, DOI 10.1016/0304-3770(87)90065-9; KAUTSKY L, 1988, OIKOS, V53, P126, DOI 10.2307/3565672; KOHLER A, 1978, VEROFF NATURSCH LA S, V11, P251; KOHLER A, 1980, LANDWIRTSCHAFTLICHE, V37, P46; LOEHLE C, 1987, OIKOS, V49, P199, DOI 10.2307/3566027; MITCHELL DS, 1985, HYDROBIOLOGIA, V125, P137, DOI 10.1007/BF00045931; MURPHY KJ, 1990, AQUAT BOT, V36, P303, DOI 10.1016/0304-3770(90)90048-P; NOBLE IR, 1980, VEGETATIO, V43, P5, DOI 10.1007/BF00121013; PICKETT STA, 1989, OIKOS, V54, P129, DOI 10.2307/3565258; PIETSCH W, 1972, ARCH NATURSCHUTZ LAN, V12, P121; PIP E, 1979, AQUAT BOT, V7, P339, DOI 10.1016/0304-3770(79)90034-2; PRIMACK RB, 1989, ANNU REV ECOL SYST, V20, P367, DOI 10.1146/annurev.es.20.110189.002055; RAVEN JA, 1981, NEW PHYTOL, V88, P1; Roll H., 1938, ARCH HYDROBIOL, V34, P159; ROLL H, 1938, FEDDES REPERT S, V101, P108; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; SEDDON B, 1972, Freshwater Biology, V2, P107, DOI 10.1111/j.1365-2427.1972.tb00365.x; SONDERGAARD M, 1988, HDB VEGETATION SCI, V151, P63; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Sukopp H., 1972, BER LANDWIRTSCH, V50, P112; TAYLOR DR, 1990, OIKOS, V58, P239, DOI 10.2307/3545432; TOMLINSON PB, 1982, ACTA BIOTHEOR, V31A, P162; van Steenis CGGJ, 1981, RHEOPHYTES WORLD; VANVIERSSEN W, 1989, AQUATIC WEEDS, P238; VANWIJK RJ, 1988, AQUAT BOT, V31, P211, DOI 10.1016/0304-3770(88)90015-0; Weber-Oldecop D. W., 1982, HEIMAT, V89, P122; Weber-Oldecop D.W., 1969, THESIS TU HANNOVER; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WIEGLEB G, 1984, Goettinger Floristische Rundbriefe, V18, P65; WIEGLEB G, 1991, AQUAT BOT, V39, P131, DOI 10.1016/0304-3770(91)90028-4; WIEGLEB G, 1984, AQUAT BOT, V18, P313, DOI 10.1016/0304-3770(84)90055-X; WIEGLEB G, 1988, Feddes Repertorium, V99, P249; WIEGLEB G, 1978, ARCH HYDROBIOL, V83, P443; WIEGLEB G, 1989, NORD J BOT, V9, P241, DOI 10.1111/j.1756-1051.1989.tb00995.x; WIEGLEB G, 1989, VEGETATIO, V82, P163, DOI 10.1007/BF00045029; WIEGLEB G, 1984, INF NATURSCHUTZ LAND, V4, P109; Wiegleb G., 1989, LANDSCHAFT STADT, V21, P15; WIEGLEB G, 1984, EXCERPTA BOTANICA B, V23, P145; Wiegleb G., 1981, LIMNOLOGICA, V13, P427; Wiegleb G, 1989, VERH GES OKOL, V18, P665; WIEGLEB G, 1985, VERH GES OKOL, V13, P191; WIEGLEB G, 1988, HDB VEGETATION SCI, V151, P311; WIEGLEB G, 1991, IN PRESS VERH GES OK, V19; Wiegleb G., 1983, P INT S AQ MACR NIJM, P311; WIEGLEB G, 1989, BOT JB SYST, V109, P81; WIENS JA, 1989, FUNCT ECOL, V3, P385, DOI 10.2307/2389612; WILMANNS O, 1983, OKOLOGISCHE PFLANZEN 74 26 29 0 14 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0042-3106 VEGETATIO Vegetatio DEC 1991 97 2 161 172 10.1007/BF00035389 12 Plant Sciences; Ecology; Forestry Plant Sciences; Environmental Sciences & Ecology; Forestry HP978 WOS:A1991HP97800007 2019-02-26 J GIBSON, GD; CHIA, FS GIBSON, GD; CHIA, FS CONTRASTING REPRODUCTIVE MODES IN 2 SYMPATRIC SPECIES OF HAMINAEA (OPISTHOBRANCHIA, CEPHALASPIDEA) JOURNAL OF MOLLUSCAN STUDIES English Article MARINE BENTHIC INVERTEBRATES; LIFE-HISTORY EVOLUTION; LARVAL DEVELOPMENT; STRATEGIES; PATTERNS; MOLLUSCA; HAMINOEA; SIZE; NUDIBRANCHIA; ENERGETICS Haminaea vesicula Gould and H. callidegenita Gibson & Chia co-exist in muddy seagrass (Zostera spp.) beds in Washington State, U.S.A. They are very similar, both morphologically and in terms of their food and habitat preference. H. vesicula have planktotrophic development, involving a high fecundity of low energy eggs, and a relatively long planktonic period. Seasonal observations of a field population showed a long period of reproductive activity, one discrete recruitment event, and the growth of one cohort throughout the year. H. callidegenita are poecilogonous in that both lecithotrophic veligers and juveniles hatch from each egg mass. H. callidegenita have a lower fecundity and allocate more energy to egg production than do H. vesicula, both in absolute terms and relative to adult size. A field population of H. callidegenita shows continuous reproduction and recruitment throughout the year. The period from oviposition to recruitment is approximately the same for both species. H. vesicula veligers grow throughout the planktonic period and yet are smaller than H. callidegenita veligers at metamorphosis. H. vesicula juveniles have higher growth rates, and are larger at maturity than H. callidegenita. GIBSON, GD (reprint author), UNIV ALBERTA,DEPT ZOOL,EDMONTON T6G 2E9,ALBERTA,CANADA. BROWNE RA, 1978, OECOLOGIA, V37, P23, DOI 10.1007/BF00349988; BURGH ME, 1983, CAN J ZOOL, V61, P349; Chia F.S., 1974, Thalassia Jugosl, V10, P121; CHIA F-S, 1971, Veliger, V13, P319; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; CLARK KB, 1975, HELGOLAND WISS MEER, V27, P28, DOI 10.1007/BF01611686; CLARK KB, 1978, J MOLLUS STUD, V44, P283; CLARK KB, 1979, REPRODUCTIVE ECOLOGY, P11; Crisp D.J., 1974, Thalassia Jugosl, V10, P103; Crisp D. J., 1976, PERSPECTIVES EXPT BI, V1, P145; DEFREESE DE, 1983, INT J INVER REP DEV, V6, P1; GIBSON GD, 1989, CAN J ZOOL, V67, P914, DOI 10.1139/z89-133; GIBSON GD, 1989, VELIGER, V32, P409; GIBSON GD, 1989, BIOL BULL, V176, P103, DOI 10.2307/1541577; GRAHAME J, 1985, OCEANOGR MAR BIOL, V23, P373; GRAHAME J, 1982, INT J INVER REP DEV, V5, P91; GRANT A, 1983, AM NAT, V122, P549, DOI 10.1086/284155; HADFIELD MG, 1987, AM MALACOL BULL, V5, P197; HAVENHAND JN, 1989, FUNCT ECOL, V3, P153, DOI 10.2307/2389296; HUGHES RN, 1980, OECOLOGIA, V47, P130, DOI 10.1007/BF00541788; HURST ANNE, 1967, VELIGER, V9, P255; JOHANNESSON K, 1988, MAR BIOL, V99, P507, DOI 10.1007/BF00392558; MANAHAN DT, 1989, BIOL BULL, V176, P161, DOI 10.2307/1541584; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; MILEIKOVSKY SA, 1971, MAR BIOL, V10, P193, DOI 10.1007/BF00352809; MORRIS R. H., 1980, INTERTIDAL INVERTEBR; PAINE RT, 1965, ECOLOGY, V46, P603, DOI 10.2307/1935000; PALMER AR, 1981, OECOLOGIA, V48, P308, DOI 10.1007/BF00346487; Parsons TR, 1984, MANUAL CHEM BIOL MET; PECHENIK JA, 1979, AM NAT, V114, P859, DOI 10.1086/283533; PERRON FE, 1981, AM NAT, V118, P110, DOI 10.1086/283805; RAWLINGS TA, 1990, BIOL BULL, V179, P312, DOI 10.2307/1542323; SCHELTEMA RS, 1978, MARINE ORGANISMS GEN, P303; SMITH DA, 1983, J EXPT MARINE BIOL E, V72, P282; STICKLE WB, 1973, BIOL BULL-US, V144, P511, DOI 10.2307/1540305; STRATHMANN R, 1974, AM NAT, V108, P29, DOI 10.1086/282883; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; STRATHMANN RR, 1977, MAR BIOL, V39, P305, DOI 10.1007/BF00391933; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; STRATHMANN RR, 1986, B MAR SCI, V39, P616; SWENNEN, 1961, NETHERLANDS J SEA RE, V40, P1191; THOMPSON TE, 1967, J MAR BIOL ASSOC UK, V47, P1, DOI 10.1017/S0025315400033518; THOMPSON TE, 1958, PHILOS T ROY SOC B, V242, P1, DOI 10.1098/rstb.1958.0012; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; THORSON GUNNAR, 1946, MEDDEL KOMM DANMARKS FISKERI OG HAVUNDERSOGELSER SER PLANKTON, V4, P1; TINKLE DW, 1975, ECOLOGY, V56, P427, DOI 10.2307/1934973; Todd C. D., 1983, MOLLUSCA, V6, P225; TODD CD, 1979, J EXP MAR BIOL ECOL, V41, P213, DOI 10.1016/0022-0981(79)90134-5; TODD CD, 1979, MAR BIOL, V53, P57, DOI 10.1007/BF00386529; TUOMI J, 1983, AM ZOOL, V23, P25; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839 53 19 21 1 5 OXFORD UNIV PRESS UNITED KINGDOM OXFORD WALTON ST JOURNALS DEPT, OXFORD, ENGLAND OX2 6DP 0260-1230 J MOLLUS STUD J. Molluscan Stud. NOV 1991 57 4 S 49 60 10.1093/mollus/57.Supplement_Part_4.49 12 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology GX371 WOS:A1991GX37100005 2019-02-26 J ZAJAC, RN ZAJAC, RN POPULATION ECOLOGY OF POLYDORA-LIGNI (POLYCHAETA, SPIONIDAE) .2. SEASONAL DEMOGRAPHIC VARIATION AND ITS POTENTIAL IMPACT ON LIFE-HISTORY EVOLUTION MARINE ECOLOGY PROGRESS SERIES English Article CAPITELLA-CAPITATA POLYCHAETA; DEPENDENT NATURAL-SELECTION; R-SELECTION; K-SELECTION; GROWTH-RATE; REPRODUCTIVE RESPONSES; STREBLOSPIO-BENEDICTI; INFAUNAL POLYCHAETE; ILYANASSA-OBSOLETA; I ANNELIDA Seasonal demographic variation was studied in an estuarine population of the opportunistic polychaete Polydora ligni between May 1982 and November 1983 in Alewife Cove, Connecticut, USA. The demography of 15 cohorts settling during this period was analyzed using life cycle graph models. Cohorts settling in spring and early summer had the shortest life spans (almost-equal-to 10 wk); highest survivorship over all life cycle stages and adult females produced an estimated maximum of 6 larval broods. Early adult stages contributed most to population growth during this period, and the potential for population growth, lambda, was the highest during the study. Late summer cohorts had low juvenile survivorship, life spans of almost-equal-to 12 wk, and females produced a maximum of 8 broods. Later stage females contributed most to population growth, and lambda-values were usually less-than-or-equal-to 1, indicating population decline. Fall cohorts comprised 2 groups. Early fall cohorts reproduced only in late fall, as females growing into later stages during winter did not reproduce and died before reproduction resumed in spring, These cohorts had low fecundity, 4 to 6 broods female-1, and lambda less-than-or-equal-to 1. One cohort settled at the beginning of winter and along with late fall cohorts overwintered to produce the following spring's cohorts. Overwintering cohorts had low juvenile but high adult survivorship, extended times to maturity (almost-equal-to 14 to 20 wk), the highest mean fecundity, 4 to 8 broods female-1 and lambda almost-equal-to 1. The results indicate the demography of Polydora ligni exhibits 3 seasonal phases with respect to population growth over the year: (1) a spring/early summer growth period; (2) a late summer/fall transition phase; (3) a late fall/winter maintenance period. These demographic phases can be related to regular periodic changes in estuarine soft-bottom habitats and can influence the evolution of its life history traits. Seasonal life history patterns were consistent with predictions of life-history models centering on demographic selection. Seasonal changes in demographic selection may act to increase life-history flexibility in Polydora ligni, and in other infaunal opportunists, as a way of maintaining fitness with respect to periodic changes in habitat conditions. Such flexibility may either enhance or diminish its colonizing abilities. Seasonal demographic changes can influence the response of P. ligni to benthic disturbances as opportunistic potential falls off after early summer due to life-history shifts. ZAJAC, RN (reprint author), UNIV NEW HAVEN, GRAD PROGRAM ENVIRONM SCI, 300 ORANGE AVE, W HAVEN, CT 06516 USA. ADMIRAAL W, 1980, MAR ECOL PROG SER, V2, P35, DOI 10.3354/meps002035; ARNTZ WE, 1982, J EXP MAR BIOL ECOL, V64, P17, DOI 10.1016/0022-0981(82)90066-1; AYAL Y, 1982, AM NAT, V119, P391, DOI 10.1086/283917; BIERZYCHUDEK P, 1982, ECOL MONOGR, V52, P335, DOI 10.2307/2937350; Boicourt W. C., 1982, ESTUARINE COMP, P445; BONSDORFF E, 1989, OLSEN INT S, P349; BOYCE MS, 1979, AM NAT, V114, P569, DOI 10.1086/283503; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; CASWELL H, 1982, ECOLOGY, V63, P1223, DOI 10.2307/1938847; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; CASWELL H, 1983, AM ZOOL, V23, P35; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHESNEY EJ, 1985, MAR ECOL PROG SER, V20, P289, DOI 10.3354/meps020289; CHESNEY EJ, 1985, 19TH P EUR MAR BIOL, P277; Christy J. H., 1982, ESTUARINE COMP, P489; CURTIS LA, 1981, ESTUAR COAST SHELF S, V13, P277, DOI 10.1016/S0302-3524(81)80026-6; DOBBS FC, 1981, THESIS U CONNECTICUT; Fretwell SD, 1972, POPULATIONS SEASONAL; GRAF G, 1982, MAR BIOL, V67, P201, DOI 10.1007/BF00401286; Grassle J. F., 1977, ECOLOGY MARINE BENTH, P177; GRASSLE JF, 1974, J MAR RES, V32, P253; GRASSLE JF, 1973, DEEP-SEA RES, V20, P643; GREMARE A, 1988, J EXP MAR BIOL ECOL, V123, P147, DOI 10.1016/0022-0981(88)90166-9; GREMARE A, 1989, MAR ECOL PROG SER, V51, P99, DOI 10.3354/meps051099; GUILLOU M, 1983, MAR BIOL, V73, P43, DOI 10.1007/BF00396284; HUBBELL SP, 1979, AM NAT, V113, P277, DOI 10.1086/283385; HUNT JH, 1987, J EXP MAR BIOL ECOL, V108, P229, DOI 10.1016/0022-0981(87)90087-6; JOHNSON RG, 1973, MODELS PALEOBIOLOGY, P148; KING CE, 1971, AM NAT, V105, P137, DOI 10.1086/282711; LEVIN LA, 1986, MAR BIOL, V92, P103, DOI 10.1007/BF00392752; LEVIN LA, 1990, ECOLOGY, V71, P2191, DOI 10.2307/1938632; LEVIN LA, 1984, ECOLOGY, V65, P1185, DOI 10.2307/1938326; LEVIN LA, 1987, ECOLOGY, V68, P1877, DOI 10.2307/1939879; MACARTHUR R, 1968, AM NAT, V102, P381, DOI 10.1086/282550; MARSH AG, 1990, LIMNOL OCEANOGR, V35, P406; MCCALL PL, 1977, J MAR RES, V35, P221; MYERS AC, 1977, J MAR RES, V35, P633; NICHOLS JD, 1976, AM NAT, V110, P995, DOI 10.1086/283122; NIXON SW, 1973, ECOL MONOGR, V43, P463, DOI 10.2307/1942303; PARSONS PA, 1983, EVOLUTIONARY BIOL CO; PESCH CE, 1987, MAR BIOL, V96, P545, DOI 10.1007/BF00397973; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PRATT DAVID M., 1965, LIMNOL OCEANOGR, V10, P173; PYKE DA, 1986, ECOLOGY, V67, P240, DOI 10.2307/1938523; REDMAN CM, 1984, THESIS CITY U NEW YO; RHOADS DC, 1978, AM SCI, V66, P557; RICE SA, 1980, OPHELIA, V19, P79, DOI 10.1080/00785326.1980.10425509; RICE SA, 1978, THESIS U S FLORIDA T; RICE SA, 1975, THESIS CALIFORNIA ST; ROUGHGARDEN J, 1971, ECOLOGY, V52, P453, DOI 10.2307/1937628; SOKAL R., 1981, BIOMETRY; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TENORE KR, 1985, LIMNOL OCEANOGR, V30, P1188, DOI 10.4319/lo.1985.30.6.1188; THISTLE D, 1981, MAR ECOL PROG SER, V6, P223, DOI 10.3354/meps006223; TSUTSUMI H, 1987, MAR ECOL PROG SER, V36, P139, DOI 10.3354/meps036139; TSUTSUMI H, 1984, MAR BIOL, V80, P315, DOI 10.1007/BF00392827; TURNER J T, 1983, Marine Ecology, V4, P359, DOI 10.1111/j.1439-0485.1983.tb00119.x; WEINBERG JR, 1986, MAR BIOL, V93, P305, DOI 10.1007/BF00508268; WHITLATCH RB, 1981, J EXP MAR BIOL ECOL, V53, P31, DOI 10.1016/0022-0981(81)90082-4; WHITTAKER RH, 1979, AM NAT, V113, P185, DOI 10.1086/283378; WILSON WH, 1983, ECOLOGY, V64, P295, DOI 10.2307/1937077; Woodin S.A., 1983, BIOTIC INTERACTIONS, P3; WOODIN SA, 1976, J MAR RES, V34, P25; ZAJAC RN, 1986, J MAR RES, V44, P339, DOI 10.1357/002224086788405310; ZAJAC RN, 1985, J EXP MAR BIOL ECOL, V88, P1, DOI 10.1016/0022-0981(85)90197-2; ZAJAC RN, 1991, MAR ECOL PROG SER, V77, P197, DOI 10.3354/meps077197; ZAJAC RN, 1982, MAR ECOL PROG SER, V10, P15, DOI 10.3354/meps010015; ZAJAC RN, 1982, MAR ECOL PROG SER, V10, P1, DOI 10.3354/meps010001; ZAJAC RN, 1985, THESIS U CONNECTICUT 70 35 36 0 11 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. NOV 1991 77 2-3 207 220 10.3354/meps077207 14 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography GV756 WOS:A1991GV75600010 Bronze 2019-02-26 J WHEELWRIGHT, NT; LEARY, J; FITZGERALD, C WHEELWRIGHT, NT; LEARY, J; FITZGERALD, C THE COSTS OF REPRODUCTION IN TREE SWALLOWS (TACHYCINETA-BICOLOR) CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article BREEDING BLUE TITS; CLUTCH-SIZE; BROOD SIZE; GREAT TIT; PARENTAL SURVIVAL; SUCCESS; BIRDS; EVOLUTION; QUALITY; SEASON We investigated the effect of brood size on nestling growth and survival, and parental survival, and future fecundity in tree swallows (Tachycineta bicolor) over a 4-year period (1987-1990) in an effort to understand whether reproductive trade-offs limit clutch size in birds. In addition to examining naturally varying brood sizes in a population on Kent Island, New Brunswick, Canada, we experimentally modified brood sizes, increasing or decreasing the reproductive burdens of females by two offspring. Unlike previous studies, broods of the same females were enlarged or reduced in up to 3 successive years in a search for evidence of cumulative costs of reproduction that might go undetected by a single brood manipulation. Neither observation nor experiment supported the existence of a trade-off between offspring quality and quantity, in contrast with the predictions of life-history theory. Nestling wing length, mass, and tarsus length were unrelated to brood size. Although differences between means were in the direction predicted, few differences were statistically significant, despite large sample sizes. Nestlings from small broods were no more likely to return as breeding adults than nestlings from large broods, but return rates of both groups were very low. Parental return rates were also independent of brood size, and there was no evidence of a negative effect of brood size on future fecundity (laying date, clutch size). Reproductive success, nestling size, and survival did not differ between treatments for females whose broods were manipulated in successive years. Within the range of brood sizes observed in this study, the life-history costs of feeding one or two additional nestlings in tree swallows appear to be slight and cannot explain observed clutch sizes. Costs not measured in this study, such as the production of eggs or postfledging parental care, may be more important in limiting clutch size in birds. WHEELWRIGHT, NT (reprint author), BOWDOIN COLL,DEPT BIOL,BRUNSWICK,ME 04011, USA. ASKENMO C, 1979, AM NAT, V114, P748, DOI 10.1086/283523; BART J, 1989, BEHAV ECOL SOCIOBIOL, V24, P109, DOI 10.1007/BF00299642; BELL G, 1986, OXFORD SURVEYS EVOLU, V3, P88; BIEBACH H, 1981, ARDEA, V69, P141; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Breitwisch R., 1989, Current Ornithology, V6, P1; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Clark L, 1984, OECOLOGIA BERLIN, V65, P387; CLOBERT J, 1987, ACTA OECOL-OEC GEN, V8, P427; DENBOERHAZEWINKEL J, 1987, ARDEA, V75, P99; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; EAST ML, 1988, IBIS, V130, P393, DOI 10.1111/j.1474-919X.1988.tb00997.x; EKMAN J, 1986, EVOLUTION, V40, P156; FINKE MA, 1987, J ANIM ECOL, V56, P99, DOI 10.2307/4802; HARRIS RN, 1979, CAN J ZOOL, V57, P2072, DOI 10.1139/z79-273; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; HOGSTEDT G, 1981, AM NAT, V118, P568, DOI 10.1086/283850; HUSSELL DJT, 1983, WILSON BULL, V95, P470; HUSSELL DJT, 1987, IBIS, V129, P243, DOI 10.1111/j.1474-919X.1987.tb03204.x; KORPIMAKI E, 1988, J ANIM ECOL, V57, P1027, DOI 10.2307/5109; Kuerzi R. G., 1941, Proceedings of the Linnean Society of New York, Vno. 52-53, P1; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LEFFELAAR D, 1986, BEHAV ECOL SOCIOBIOL, V18, P199, DOI 10.1007/BF00290823; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; MORENO J, 1984, AUK, V101, P741, DOI 10.2307/4086901; Murphy E.C., 1986, Current Ornithology, V4, P141; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1988, ARDEA, V76, P155; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; NUR N, 1990, 1989 P NATO WORKSH D; ORELL M, 1988, OECOLOGIA, V77, P423, DOI 10.1007/BF00378054; Paynter R. A., 1954, BIRD BANDING, V25, P102; Paynter R. A., 1954, BIRD BANDING, V25, P136; Paynter R. A. Jr., 1954, Bird-Banding, V25, P35; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; QUINNEY TE, 1986, WILSON BULL, V98, P147; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROCKWELL RF, 1987, AM NAT, V130, P839, DOI 10.1086/284751; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; SMITH HG, 1989, ORNIS SCAND, V20, P156, DOI 10.2307/3676885; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; Sokal R.R, 1980, BIOMETRY; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STUTCHBURY BJ, 1988, CAN J ZOOL, V66, P827, DOI 10.1139/z88-122; WHEELWRIGHT NT, 1991, AUK, V108, P719, DOI 10.2307/4088118; WIGGINS DA, 1990, CONDOR, V92, P534, DOI 10.2307/1368257; WIGGINS DA, 1990, CAN J ZOOL, V68, P1292, DOI 10.1139/z90-193; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMS JB, 1988, AUK, V105, P706; Winkler D.W., 1988, Oxford Surveys in Evolutionary Biology, V5, P185; WOLF L, 1988, ANIM BEHAV, V36, P1601, DOI 10.1016/S0003-3472(88)80102-7; 1988, STATVIEW SE PLUS GRA 58 41 42 1 14 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. OCT 1991 69 10 2540 2547 10.1139/z91-358 8 Zoology Zoology HD709 WOS:A1991HD70900005 2019-02-26 J TAUBER, CA; TAUBER, MJ; TAUBER, MJ TAUBER, CA; TAUBER, MJ; TAUBER, MJ EGG SIZE AND TAXON - THEIR INFLUENCE ON SURVIVAL AND DEVELOPMENT OF CHRYSOPID HATCHLINGS AFTER FOOD AND WATER-DEPRIVATION CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article LIFE-HISTORY EVOLUTION; WEIGHT VARIATION; LEPIDOPTERA; PHYLOGENY; RESPONSES; LARVAE; VIEW Genus- and species-level differences characterize the pattern of life-history variation in two distinct phylogenetic lineages of chrysopids, Chrysopa and Chrysoperla. Species in the genus Chrysopa exhibit significant variation in egg size, and this variation is positively correlated with the ability of hatchlings to withstand periods of food and water deprivation prior to their initial feeding. The variation is also significantly correlated with larval size, as measured by the tibial length of first-instar larvae. Although the six Chrysopa species differ in several other life-history traits (i.e, the incubation period and rate of first-instar larval development), the variation is unrelated to egg size. It appears that maternal allocation of resources to eggs largely serves to enhance embryonic growth and the survival of hatchings during searching. That is, within the Chrysopa lineage egg size varies; larger eggs yield larger, more robust hatchlings. These hatchlings may or may not develop faster than congeners from small eggs. In comparison with Chrysopa, the genus Chrysoperla has less variability in egg size and developmental rate. Furthermore, although Chrysoperla eggs are relatively small, the ability of hatchlings to endure periods of food or water deprivation is at least as great as it is in the Chrysopa species with large eggs. We conclude that maternal investment in larval fitness has different ontogenetic pathways, ecological roles, and phylogenetic histories in the two genera. TAUBER, CA (reprint author), CORNELL UNIV,DEPT ENTOMOL,COMSTOCK HALL,ITHACA,NY 14853, USA. ANDERSON JF, 1978, OECOLOGIA, V37, P41, DOI 10.1007/BF00349990; Askew R.R., 1975, P130; BARBOSA P, 1981, CAN J ZOOL, V59, P293, DOI 10.1139/z81-044; BERNARDO J, 1991, TRENDS ECOL EVOL, V6, P1, DOI 10.1016/0169-5347(91)90137-M; Brooks S.J., 1990, Bulletin of the British Museum (Natural History) Entomology, V59, P117; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; Duelli P., 1984, BIOL CHRYSOPIDAE, P129; ETGES WJ, 1982, OIKOS, V38, P118, DOI 10.2307/3544573; FLESCHNER CHARLES A., 1950, HILGARDIA, V20, P233; GOULDEN CE, 1987, OECOLOGIA, V72, P28, DOI 10.1007/BF00385040; HAGEN KS, 1976, B LAB ENTOMOL AGRAR, V28, P113; HARVEY GT, 1985, CAN ENTOMOL, V117, P1451, DOI 10.4039/Ent1171451-12; Ito Y, 1978, COMP ECOLOGY; JOHNSON LK, 1982, EVOLUTION, V36, P251, DOI 10.1111/j.1558-5646.1982.tb05039.x; KARLSSON B, 1985, ECOL ENTOMOL, V10, P205, DOI 10.1111/j.1365-2311.1985.tb00549.x; LAMB RJ, 1980, CAN J ZOOL, V58, P2065, DOI 10.1139/z80-283; LESSIOS HA, 1990, AM NAT, V135, P1, DOI 10.1086/285028; MARSHALL LD, 1990, CAN J ZOOL, V68, P44, DOI 10.1139/z90-008; Price P.W., 1975, P87; ROLLO CD, 1986, ECOLOGY, V67, P616, DOI 10.2307/1937685; RUBERSON JR, 1989, ENTOMOL EXP APPL, V51, P101, DOI 10.1111/j.1570-7458.1989.tb01219.x; SCHMIDT JM, 1987, SCIENCE, V237, P903, DOI 10.1126/science.237.4817.903; SHIBATA DM, 1988, MEMOIRS ENTOMOLOGICA, V146, P199; Smith R. C., 1922, MEM CORNELL U AGR EX, V58, P1287; SOLBRECK C, 1989, OIKOS, V55, P387, DOI 10.2307/3565599; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Stehr F. W., 1987, IMMATURE INSECTS; TAUBER CA, 1986, CAN J ZOOL, V64, P875, DOI 10.1139/z86-131; Tauber CA, 1987, EVOL ECOL, V1, P175, DOI 10.1007/BF02067399; TAUBER MJ, 1975, CAN ENTOMOL, V106, P921; VINSON SB, 1980, ANNU REV ENTOMOL, V25, P397, DOI 10.1146/annurev.en.25.010180.002145; WIKLUND C, 1983, OIKOS, V40, P53, DOI 10.2307/3544198 33 31 31 0 3 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. OCT 1991 69 10 2644 2650 10.1139/z91-372 7 Zoology Zoology HD709 WOS:A1991HD70900019 2019-02-26 J MCFADDEN, CS MCFADDEN, CS A COMPARATIVE DEMOGRAPHIC-ANALYSIS OF CLONAL REPRODUCTION IN A TEMPERATE SOFT CORAL ECOLOGY English Article ALCYONIUM; CLONAL REPRODUCTION; DEMOGRAPHY; FISSION; LIFE HISTORY EVOLUTION; POPULATION PROJECTION MODEL; RECRUITMENT; SEXUAL VS ASEXUAL REPRODUCTION; SIZE-CLASS TRANSITION MATRIX; SIZE-DEPENDENT REPRODUCTION; SOFT CORAL; STABLE SIZE DISTRIBUTION DIPSACUS-SYLVESTRIS-HUDS; RANUNCULUS-REPENS L; POPULATION-DYNAMICS; PLANT DEMOGRAPHY; GENUS PORITES; BULBOSUS L; ACRIS L; COMPETITION; DISPERSAL; MODEL In order to evaluate the relative importance of asexual and sexual reproduction to the fitness of a clonal organism, matrix projection models were used to quantify the contributions of each of these reproductive modes to population growth of the soft coral, Alcyonium sp., a species that undergoes frequent colony fission. The demographic and fitness consequences of eliminating either asexual or sexual reproduction from the life cycle of this species were examined by sensitivity analysis and by altering selected entries in the transition matrices to simulate changes in reproductive allocation. Four populations of Alcyonium sp. were monitored photographically for two years to record colony growth, mortality, fission, sexual reproduction, and larval recruitment. Despite high turnover, population densities remained reasonably constant. The 24-52% mortality was matched approximately by recruitment of daughter colonies produced by fission. Sexual reproduction was infrequent, and no larval recruitment was observed. The frequency of both fission and sexual reproduction increased with increasing colony size, while mortality decreased with increasing size. Size-class transition matrices constructed from the demographic data were analyzed by the methods of Caswell (1986, 1989). In both years of the study the size distributions of colonies observed in the field did not differ from the stable size distributions predicted from the projection models. Eliminating sexual reproduction from the life cycle did not alter the predicted stable size distributions; eliminating fission shifted the size distributions of all four populations towards the larger size classes. Reproductive value increased with increasing colony size. Damping ratio, rho, a measure of the rate of convergence to the stable size distribution, increased with increases in both fission and sexual reproduction, suggesting that rapidly growing populations are more stable than slowly growing populations. Projected growth rates (= relative fitness, lambda) of the four populations ranged from 0.66 to 1.15. Sensitivity analyses indicated that sexual reproduction contributes < 1% of the value of lambda, while > 40% of lambda is accounted for by transitions between the upper size classes in the population, either by fission or growth. Eliminating sexual reproduction from the life cycle had a negligible effect on fitness (lambda); eliminating fission greatly reduced-lambda and suggested rapid extinction for all populations. This result held even when sexual reproductive output was increased by an order of magnitude. The results of these simulations suggest that selection for increased-lambda will increase fission at the expense of sexual reproduction in this species. UNIV WASHINGTON,DEPT ZOOL NJ15,SEATTLE,WA 98195; FRIDAY HARBOR LABS,FRIDAY HARBOR,WA 98250 ABRAHAMSON WG, 1979, BOTANICAL MONOGRAPH, V15, P89; ANDERSON TW, 1957, ANN MATH STAT, V28, P89, DOI 10.1214/aoms/1177707039; BELL G, 1982, MASTERPIECE NATURE; BENAYAHU Y, 1981, B MAR SCI, V31, P514; BENAYAHU Y, 1983, BIOL BULL, V166, P32; BIERZYCHUDEK P, 1982, ECOL MONOGR, V52, P335, DOI 10.2307/2937350; CASWELL H, 1978, ECOLOGY, V59, P53, DOI 10.2307/1936631; Caswell H., 1986, LECTURES MATH LIFE S, V18, P171; CASWELL H, 1985, POPULATION BIOL EVOL, P187; Caswell H., 1989, MATRIX POPULATION MO; COHEN JE, 1979, THEOR POPUL BIOL, V16, P159, DOI 10.1016/0040-5809(79)90011-X; Cook R. E., 1985, POPULATION BIOL EVOL; COOK RE, 1983, AM SCI, V71, P244; COOK RE, 1979, AM NAT, V113, P769, DOI 10.1086/283435; COOK RE, 1985, POPULATION BIOL EVOL, P259; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; DAI CF, 1990, MAR ECOL PROG SER, V60, P291, DOI 10.3354/meps060291; DONE TJ, 1987, CORAL REEFS, V6, P75, DOI 10.1007/BF00301377; ENRIGHT N, 1979, AUST J ECOL, V4, P3, DOI 10.1111/j.1442-9993.1979.tb01195.x; Harper J, 1986, GROWTH FORM MODULAR; Harper J.L., 1977, POPULATION BIOL PLAN; HARTNOLL RG, 1975, ESTUAR COAST MAR SCI, V3, P71, DOI 10.1016/0302-3524(75)90006-7; Hartshorn G. S., 1975, Tropical ecological systems., P41; HIGHSMITH RC, 1982, MAR ECOL PROG SER, V7, P207, DOI 10.3354/meps007207; HIGHSMITH RC, 1985, MAR ECOL PROG SER, V25, P169, DOI 10.3354/meps025169; HUGHES RN, 1985, POPULATION BIOL EVOL, P153; HUGHES TP, 1984, AM NAT, V123, P778, DOI 10.1086/284239; Jackson J.B.C., 1985, P297; JACKSON JBC, 1986, B MAR SCI, V39, P588; JACKSON JBC, 1986, PHILOS T R SOC B, V313, P7, DOI 10.1098/rstb.1986.0022; JACKSON JBC, 1977, AM NAT, V111, P743, DOI 10.1086/283203; JANZEN DH, 1977, AM NAT, V111, P586, DOI 10.1086/283186; JOKIEL PL, 1984, CORAL REEFS, V3, P113, DOI 10.1007/BF00263761; Keyfitz N, 1977, INTRO MATH POPULATIO; LABARRE S, 1982, MAR BIOL, V72, P119, DOI 10.1007/BF00396912; LASKER HR, 1990, ECOLOGY, V71, P1578, DOI 10.2307/1938293; Maynard Smith J, 1978, EVOLUTION SEX; MCFADDEN CS, 1986, J EXP MAR BIOL ECOL, V103, P1, DOI 10.1016/0022-0981(86)90129-2; MCFADDEN CS, 1988, THESIS U WASHINGTON; POTTS DC, 1985, MAR ECOL PROG SER, V23, P79, DOI 10.3354/meps023079; SARUKHAN J, 1974, J ECOL, V62, P921, DOI 10.2307/2258962; SARUKHAN J, 1973, J ECOL, V61, P675, DOI 10.2307/2258643; SEBENS KP, 1983, J EXP MAR BIOL ECOL, V72, P263, DOI 10.1016/0022-0981(83)90111-9; USHER MB, 1979, J ANIM ECOL, V48, P413, DOI 10.2307/4170; VANDERMEER J, 1978, OECOLOGIA, V32, P79, DOI 10.1007/BF00344691; WERNER PA, 1977, ECOLOGY, V58, P1103, DOI 10.2307/1936930; Williams GC, 1975, SEX EVOLUTION; 1985, SAS USERS GUIDE STAT 48 60 62 1 18 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology OCT 1991 72 5 1849 1866 10.2307/1940983 18 Ecology Environmental Sciences & Ecology GK823 WOS:A1991GK82300031 2019-02-26 J MADSEN, JD; HARTLEB, CF; BOYLEN, CW MADSEN, JD; HARTLEB, CF; BOYLEN, CW PHOTOSYNTHETIC CHARACTERISTICS OF MYRIOPHYLLUM-SPICATUM AND 6 SUBMERSED AQUATIC MACROPHYTE SPECIES NATIVE TO LAKE GEORGE, NEW-YORK FRESHWATER BIOLOGY English Article LIGHT 1. The macrophyte community of Lake George, New York is diverse, composing of forty-eight submersed species representing a wide range of habitats, depth ranges and life-history strategies. The photosynthetic rates of seven representative submersed aquatic macrophytes were determined in laboratory studies using measurements of short-term changes in oxygen concentration at eight light intensities from 0 to 1000-mu-mol m-2 s-1 at 20-degrees-C. The species examined were: Elodea canadensis, Myriophyllum spicatum, Potamogeton amplifolius, P. gramineus, P. praelongus, P. robbinsii, and Vallisneria americana. 2. Comparisons of maximum net photosynthesis, Michaelis-Menten V(max) and K(m) for photosynthesis versus irradiance, and dark respiration rates correlated with changes in community composition and species distribution with depth. 3. In particular, Myriophyllum spicatum exhibited a high photosynthetic rate (V(max)) and high light requirement (both in compensation point and higher half-saturation constant (K(m)) indicative of a high light-adapted species. In contrast, the native species exhibited shade-tolerant characteristics. 4. Simple daily carbon balance models indicate that M. spicatum has a higher positive carbon balance near the surface than the native species, but carbon balance decreased more rapidly with decreased light. All species showed greatly reduced carbon balances under a simulated M. spicatum canopy, indicating that native species might not survive. Myriopyllum spicatum leaves would experience self-shading and eventual sloughing. INST MRC 203,TROY,NY 12180; RENSSELAER POLYTECH INST,TROY,NY 12180 BOYLEN CW, 1981, LAKE GEORGE ECOSYSTE, P183; COLLINS CD, 1987, AQUAT BOT, V29, P177, DOI 10.1016/0304-3770(87)90095-7; EICHLER LW, 1989, 893 RENSS POL I REP; Fitter A. H., 1986, PLANT ECOL, P375; KREBS CJ, 1978, ECOLOGY EXPT ANAL DI; MADSEN JD, 1989, AQUAT BOT, V36, P23, DOI 10.1016/0304-3770(89)90088-0; MADSEN JD, 1990, 896 RENNSS FRESH WAT; Madsen JD, 1989, LAKE GEORGE AQUATIC; MADSEN JD, 1990, 9011 RENSS FRESH WAT; MADSEN JD, 1989, 895 RENSS POL I REP; TITUS JE, 1979, OECOLOGIA, V40, P273, DOI 10.1007/BF00345324; 1988, LAKE GEORGE AQUATIC 12 71 74 7 31 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0046-5070 FRESHWATER BIOL Freshw. Biol. OCT 1991 26 2 233 240 10.1111/j.1365-2427.1991.tb01732.x 8 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GQ115 WOS:A1991GQ11500008 2019-02-26 J RODD, FH; REZNICK, DN RODD, FH; REZNICK, DN LIFE-HISTORY EVOLUTION IN GUPPIES .3. THE IMPACT OF PRAWN PREDATION ON GUPPY LIFE HISTORIES OIKOS English Article POECILIA-RETICULATA; COLOR PATTERNS; FEMALE PREFERENCE; SEXUAL SELECTION; POPULATION; BEHAVIOR; SIZE Male Trinidadian guppies (Poecilia reticulata) that co-occur with a large, predatory prawn, Macrobrachium crenulatum, have colour patterns that are strinkingly different from those of guppies that co-occur with fish predators. Since many crustaceans are red-blind, Endler suggested that predation pressure by M. crenulatum has reduced all vivid components of colouration in male guppies except the reddish hues that they are unable to detect. If Macrobrachium have had an impact on the evolution of guppy colour patterns, they must prey upon mature size classes of guppies since a male's colouration does not appear until after he reaches sexual maturity. Guppy life history traits are sensitive to size-specific predation and are used here to indicate the importance of Macrobrachium as predators of mature guppies. We used discriminant function analyses, that simultaneously considered three components of female life histories, to classify guppies from Macrobrachium localities with guppies that coexist with fish predators that 1) prey selectively on immature guppies; 2) prey selectively on mature guppies; or 3) are not size-selective. These analyses suggest that Macrobrachium preys infrequently on guppies or that it does not select guppies on the basis of their size. Results of a mark-recapture study on guppies at a Macrobrachium site were consistent with those of discriminant function analyses. Nevertheless, all available evidence suggests that predation pressure by Macrobrachium, together with sexual selection, is responsible for the unusual colour patterns of male guppies that co-occur with them. UNIV CALIF RIVERSIDE,DEPT BIOL,RIVERSIDE,CA 92521 RODD, FH (reprint author), YORK UNIV,DEPT BIOL,4700 KEELE ST,N YORK M3J 1P3,ONTARIO,CANADA. reznick, david/0000-0002-1144-0568 BREDEN F, 1987, NATURE, V329, P831, DOI 10.1038/329831a0; CARVALHO GR, 1991, IN PRESS BIOL J LINN; CHACE FA, 1969, US NAT MUS B, V292; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; ELNER RW, 1978, J ANIM ECOL, V47, P103, DOI 10.2307/3925; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FAJEN A, 1990, 4TH INT C SYST EVOL, P1; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; KLECKA WR, 1980, 07019 SAG U PAP SER; KODRICBROWN A, 1985, BEHAV ECOL SOCIOBIOL, V17, P199, DOI 10.1007/BF00300137; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK D, 1982, AM NAT, V120, P181, DOI 10.1086/283981; Reznick D.N., 1989, P125; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1973, THESIS U BRIT COLUMB; SEGHERS BH, 1990, CAN SOC ZOOL B, V21, P86; SOKAL R., 1981, BIOMETRY; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; WATERMAN TH, 1961, PHYSIOL CRUSTACEA, V2, P1; Wolken J. J, 1971, INVERTEBRATE PHOTORE; 1985, SAS USERS GUIDE STAT 32 48 48 1 25 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos OCT 1991 62 1 13 19 10.2307/3545440 7 Ecology Environmental Sciences & Ecology GP450 WOS:A1991GP45000003 2019-02-26 J SEIGEL, RA; FORD, NB SEIGEL, RA; FORD, NB PHENOTYPIC PLASTICITY IN THE REPRODUCTIVE CHARACTERISTICS OF AN OVIPAROUS SNAKE, ELAPHE-GUTTATA - IMPLICATIONS FOR LIFE-HISTORY STUDIES HERPETOLOGICA English Article SERPENTES; SQUAMATA; ELAPHE; REPRODUCTION; PHENOTYPIC PLASTICITY; LIFE-HISTORY EVOLUTION; CLUTCH SIZE FOOD AVAILABILITY; PATTERNS; ENVIRONMENT; REPTILES; TURTLES; LIZARD; TRAITS; SIZE Previous field studies of squamate reptiles have shown that many life history traits show a significant amount of phenotypic plasticity, especially in response to prey availability. These results were recently supported by laboratory studies on a viviparous garter snake, which showed that clutch size and clutch mass were plastic in response to changes in energy intake, but that relative clutch mass and offspring size were relatively canalized. To determine if these results extend to oviparous reptiles, we conducted an experimental study of phenotypic plasticity in the corn snake, Elaphe guttata. Female corn snakes on a high energy diet produced larger clutch sizes, larger clutch masses, and larger relative clutch masses than did females on a low energy diet, but egg mass did not differ between the feeding regimens. Our data support earlier studies suggesting that much of the observed intraspecific variation in life-history traits of squamate reptiles may be the result of phenotypic plasticity. SAVANNAH RIVER ECOL LAB,AIKEN,SC 29802 ANDREN C, 1983, Amphibia-Reptilia, V4, P63, DOI 10.1163/156853883X00274; ANDREN C, 1982, Amphibia-Reptilia, V3, P81, DOI 10.1163/156853882X00194; [Anonymous], 1982, SAS USERS GUIDE STAT; BAILEY RC, 1986, CAN J ZOOL, V64, P1701, DOI 10.1139/z86-256; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; BALLINGER RE, 1983, LIZARD ECOLOGY STUDI, P301; BOSMAN AL, 1988, OECOLOGIA, V75, P412, DOI 10.1007/BF00376945; BRODIE ED, 1989, AM MIDL NAT, V122, P51; BULL JJ, 1987, EVOLUTION, V41, P303, DOI 10.1111/j.1558-5646.1987.tb05799.x; CONANT R, 1975, FIELD GUIDE REPTILES; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; FITCH HS, 1949, AM MIDL NAT, V41, P513, DOI 10.2307/2421774; FITCH HS, 1949, ECOLOGY, V30, P520, DOI 10.2307/1932455; FORD NB, 1989, HERPETOLOGICA, V45, P75; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; GIBBONS JW, 1982, HERPETOLOGICA, V38, P222; GIBBONS JW, 1982, COPEIA, P776, DOI 10.2307/1444086; GIBBONS JW, 1969, ECOLOGY, V50, P340, DOI 10.2307/1934863; JONES SM, 1987, OIKOS, V48, P325, DOI 10.2307/3565521; KAPLAN RH, 1987, OECOLOGIA, V71, P273, DOI 10.1007/BF00377295; PLUMMER MV, 1983, COPEIA, P741, DOI 10.2307/1444340; SEIGEL RA, 1984, OECOLOGIA, V61, P293, DOI 10.1007/BF00379625; SEIGEL RA, 1985, J ANIM ECOL, V54, P497, DOI 10.2307/4494; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TRYON B W, 1984, Transactions of the Kansas Academy of Science, V87, P98, DOI 10.2307/3627843 27 77 79 0 11 HERPETOLOGISTS LEAGUE JOHNSON CITY EAST TENNESSEE STATE UNIV, DEPT BIOLOGICAL SCIENCES, BOX 70726, JOHNSON CITY, TN 37614-0726 0018-0831 HERPETOLOGICA Herpetologica SEP 1991 47 3 301 307 7 Zoology Zoology GK951 WOS:A1991GK95100004 2019-02-26 J MARTIN, TH; JOHNSON, DM; MOORE, RD MARTIN, TH; JOHNSON, DM; MOORE, RD FISH-MEDIATED ALTERNATIVE LIFE-HISTORY STRATEGIES IN THE DRAGONFLY EPITHECA-CYNOSURA JOURNAL OF THE NORTH AMERICAN BENTHOLOGICAL SOCIETY English Article EPITHECA (TETRAGONEURIA)-CYNOSURA; COHORT-SPLITTING; PREDATION; COMPETITION; LIFE-HISTORY; UNIVOLTINE; SEMIVOLTINE; BIOTIC INTERACTIONS; FIELD EXPERIMENTS; LEPOMIS-MICROLOPHUS; LEPOMIS-MACROCHIRUS We investigated the potential impact of predation on life-history traits of aquatic insects by examining various factors affecting the voltinism pattern of Epitheca (Tetragoneuria) cynosura (Say) in Bays Mountain Lake, Sullivan County, Tennessee, USA. We observed the growth of individual Epitheca protected from competition and predation in small (0.03 m2) in situ enclosures. Approximately 70% of the larvae followed univoltine development; this contrasts sharply with earlier studies in Bays Mountain Lake where only 25% of emerging imagoes were thought to be univoltine. We also conducted a study of the diets of large sunfish to identify the predator with the greatest potential impact on Epitheca population densities. Redear sunfish (Lepomis microlophus) consumed large numbers of Epitheca during mid-July, and the dragonflies consumed were larger than expected based on size-distributions found in the lake. In fact, those eaten were often from sizes identified as potentially following univoltine development, suggesting that predation from large fish could reduce the success of the univoltine strategy. We also conducted an experiment in small (0.15 m2) in situ enclosures to examine competition between small sunfish and Epitheca. We found that while small sunfish had little influence on larval survival, larvae grew more slowly in their presence than in their absence. Thus small sunfish potentially hindered the ability of larvae to develop in a univoltine manner. Lastly, we conducted an experiment in large (24 m2) enclosures to test hypotheses generated by the studies above. Small sunfish produced a statistically significant reduction in the ratio of univoltine to semivoltine Epitheca larvae; and both large and small fish decreased the number of successfully emerging univoltine Epitheca. These studies show that in the absence of potentially deleterious biotic interactions, most Epitheca larvae in Bays Mountain Lake follow univoltine development; but competition and predation from sunfish result in lowered success of the univoltine strategy. MARTIN, TH (reprint author), UNIV WISCONSIN,CTR LIMNOL,MADISON,WI 53706, USA. 0 23 24 0 8 NORTH AMER BENTHOLOGICAL SOC LAWRENCE 1041 NEW HAMSPHIRE STREET, LAWRENCE, KS 66044 0887-3593 J N AM BENTHOL SOC J. N. Am. Benthol. Soc. SEP 1991 10 3 271 279 10.2307/1467600 9 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GF530 WOS:A1991GF53000005 2019-02-26 J YOUNG, TP; AUGSPURGER, CK YOUNG, TP; AUGSPURGER, CK ECOLOGY AND EVOLUTION OF LONG-LIVED SEMELPAROUS PLANTS TRENDS IN ECOLOGY & EVOLUTION English Review LIFE-HISTORY VARIATION; MOUNT KENYA; REPRODUCTIVE EXPENDITURE; TACHIGALIA-VERSICOLOR; YUCCA-WHIPPLEI; SEED; SELECTION; SIZE; CONSEQUENCES; DEMOGRAPHY One of the more dramatic life histories in the natural world is that characterized by a single, massive, fatal reproductive episode ('semelparity'). A wealth of increasingly sophisticated theoretical models on differential life history evolution have been produced over the last two decades. In recent years, empirical studies of the ecology of semelparous plants (and their iteroparous relatives) have begun to address many aspects of the biology of these species, and to test the assumptions and predictions of theoretical models. Semelparity in long-lived plants is one of the few natural phenomena that has yielded specific quantitative tests of mathematical evolutionary theory. UNIV CALIF DAVIS,DEPT BOT,DAVIS,CA 95616; UNIV ILLINOIS,DEPT PLANT BIOL,URBANA,IL 61801 YOUNG, TP (reprint author), UNIV CALIF DAVIS,CTR POPULAT BIOL,DAVIS,CA 95616, USA. ACKER CL, 1982, J ECOL, V70, P357; AGNEW ADQ, 1985, J E AFRICA NATURAL H, V183, P1; AUGSJPURGER CK, 1981, ECOLOGY, V62, P762; AUGSPURGER CK, 1985, OIKOS, V45, P341, DOI 10.2307/3565569; BASKIN CC, 1988, AM J BOT, V75, P286, DOI 10.2307/2443896; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; CARLQUIST S, 1984, ISLAND BIOL; CARR GD, 1987, TRENDS ECOL EVOL, V2, P192, DOI 10.1016/0169-5347(87)90019-X; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CORNER EJH, 1966, NATURAL HIST PALMS; FOSTER RB, 1977, NATURE, V268, P624, DOI 10.1038/268624b0; FOX GA, 1990, AM NAT, V135, P829, DOI 10.1086/285076; FRANCO AC, 1990, OECOLOGIA, V82, P151, DOI 10.1007/BF00323528; HAINES DA, 1941, MADRONO, V6, P33; Halle F., 1978, TROPICAL TREES FORES; HILLMAN JC, 1987, MAMMALIA, V51, P53, DOI 10.1515/mamm.1987.51.1.53; IMS RA, 1990, TRENDS ECOL EVOL, V5, P135, DOI 10.1016/0169-5347(90)90218-3; JANZEN DH, 1976, ANNU REV ECOL SYST, V7, P347, DOI 10.1146/annurev.es.07.110176.002023; KEELEY JE, 1986, AM MIDL NAT, V115, P1, DOI 10.2307/2425831; KITAJIMA K, 1989, ECOLOGY, V70, P1102, DOI 10.2307/1941379; MARTIN A, 1990, BIOSCIENCE, V40, P359, DOI 10.2307/1311213; NOBEL PS, 1987, BOT GAZ, V148, P79, DOI 10.1086/337630; ORZACK SH, 1989, AM NAT, V133, P9901; PAIGE KN, 1987, ECOLOGY, V68, P1691, DOI 10.2307/1939861; REID DG, 1989, BIOL CONSERV, V49, P85, DOI 10.1016/0006-3207(89)90081-5; REINARTZ JA, 1984, J ECOL, V72, P913, DOI 10.2307/2259540; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1979, ECOLOGY, V60, P1051, DOI 10.2307/1936872; Schaller GB, 1985, GIANT PANDAS WOLONG; SCHAT H, 1989, ACTA BOT NEERL, V38, P183, DOI 10.1111/j.1438-8677.1989.tb02041.x; SMITH AP, 1987, ANNU REV ECOL SYST, V18, P137, DOI 10.1146/annurev.ecolsys.18.1.137; SMITH AP, 1983, SMITHSON CONTRIB BOT, V48, P1; SUTHERLAND S, 1987, EVOLUTION, V41, P750, DOI 10.1111/j.1558-5646.1987.tb05850.x; TAYLOR AH, 1988, AM J BOT, V75, P1065, DOI 10.2307/2443774; TAYLOR OR, 1985, ECOLOGY, V66, P521, DOI 10.2307/1940400; TISSUE DT, 1990, ECOLOGY, V71, P273, DOI 10.2307/1940266; UDOVIC D, 1981, OECOLOGIA, V48, P389, DOI 10.1007/BF00346500; VEILLON J M, 1971, Adansonia, V11, P625; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; VERKAAR HJ, 1984, NEW PHYTOL, V98, P673, DOI 10.1111/j.1469-8137.1984.tb04156.x; YOUNG TP, 1982, ECOLOGY, V63, P1983, DOI 10.2307/1940139; YOUNG TP, 1984, J ECOL, V72, P637, DOI 10.2307/2260073; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 45 66 68 3 35 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. SEP 1991 6 9 285 289 10.1016/0169-5347(91)90006-J 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GC164 WOS:A1991GC16400006 21232483 2019-02-26 J LODGE, DM LODGE, DM HERBIVORY ON FRESH-WATER MACROPHYTES AQUATIC BOTANY English Review ROACH RUTILUS-RUTILUS; SCARDINIUS-ERYTHROPHTHALMUS L; VALLISNERIA-AMERICANA MICHX; NAJAS-MARINA L; SUBMERSED MACROPHYTES; PRIMARY PRODUCTIVITY; ELODEA-CANADENSIS; SEASONAL-CHANGES; SALT-MARSH; SNOW GEESE Conventional wisdom holds that live macrophytes are rarely consumed and are functionally unimportant in aquatic food webs. With a review of the literature, I first demonstrate that macrophyte biomass, productivity, and species composition is often influenced by a variety of vertebrate and invertebrate grazers. Many grazers destroy much more macrophyte tissue than they eat. Contrary to conventional wisdom, live macrophytes are engaged in aquatic food webs, but the functional importance of grazing remains largely untested. Second, I evaluate the hypothesis that macrophytes are a poor quality food (low in protein). Nitrogen content (as a percentage of dry weight), as summarized from published literature, differs little among algae, emergent macrophytes, floating macrophytes, submersed macrophytes, trees, terrestrial forbs, and terrestrial grasses. Thus, nitrogen content could not be a reason to expect low herbivory on macrophytes. Third, I present previously unpublished data on the selectivity of crayfish grazing. A correlational analysis of the grazing hierarchy of crayfish and published hierarchies of other grazers (moose, carp, snails, and crayfish) suggest that herbivores have apparently similar selectivities among macrophyte species. Previously unpublished (for crayfish) and published proximate and mineral analyses of macrophytes eaten by grazers suggest no basis for selectivity by crayfish and other grazers, with the exception of a preference by moose for high sodium and protein. However, a correlational analysis of independently published grazer preferences and plant tissue phenolic and alkaloid concentrations suggests that phenolic, but not alkaloid, content is negatively related to grazing preference. Finally, I point out the need for unifying approaches in the study of freshwater herbivory. To understand the influence of herbivory (relative to other biotic and abiotic factors) on macrophyte populations and assemblages, extensive comparisons of grazing damage across environmental gradients and across macrophyte and grazer species must be made. Susceptibility to grazers must be evaluated in light of the contrasting life history strategies evident in different macrophytes. Reasonable starting points for general approaches to macrophyte-herbivore interactions may include the apparency and resource availability models developed for terrestrial plant-herbivore interactions. Given the apparently negative relationship between grazing preference and phenolic content of macrophytes, more investigation of the role of secondary compounds is necessary. LODGE, DM (reprint author), UNIV NOTRE DAME,DEPT BIOL SCI,NOTRE DAME,IN 46556, USA. ABRAHAMSSON SA, 1966, OIKOS, V17, P96, DOI 10.2307/3564784; AGAMI M, 1988, OECOLOGIA, V76, P83, DOI 10.1007/BF00379604; AGAMI M, 1986, OECOLOGIA, V68, P473, DOI 10.1007/BF01036757; AGAMI M, 1986, 7TH P INT S AQ WEEDS, P4; ANDERSON MG, 1976, J WILDLIFE MANAGE, V40, P233, DOI 10.2307/3800420; ANDERSON RR, 1966, ECOLOGY, V47, P844, DOI 10.2307/1934270; ARAUJOLIMA CARM, 1986, SCIENCE, V234, P1256, DOI 10.1126/science.234.4781.1256; ARBER A, 1920, WATER PLANTS STUDY A; BARKO JW, 1986, ECOLOGY, V67, P1328, DOI 10.2307/1938689; BARKO JW, 1981, AQUAT BOT, V10, P339, DOI 10.1016/0304-3770(81)90032-2; BASSETT PA, 1980, VEGETATIO, V43, P173, DOI 10.1007/BF00158747; BAZELY DR, 1986, J ECOL, V74, P693, DOI 10.2307/2260392; BAZELY DR, 1985, J APPL ECOL, V22, P693, DOI 10.2307/2403222; BERG CO, 1949, T AM MICROSC SOC, V68, P291; BERGQUIST AM, 1986, ECOLOGY, V67, P1351, DOI 10.2307/1938691; BERTNESS MD, 1984, ECOLOGY, V65, P370, DOI 10.2307/1941400; BEST EPH, 1977, AQUAT BOT, V3, P337, DOI 10.1016/0304-3770(77)90038-9; Boar R.R., 1985, VERH INT VEREIN LIMN, V22, P2916; BOSTON HL, 1987, ANN BOT-LONDON, V60, P485, DOI 10.1093/oxfordjournals.aob.a087471; BOSTON HL, 1987, J ECOL, V75, P333, DOI 10.2307/2260422; BOWERS KL, 1987, 21ST P ANN M AQ PLAN, P133; BOYD CE, 1969, ECON BOT, V23, P123, DOI 10.1007/BF02860614; BOYD CE, 1971, AM MIDL NAT, V86, P28, DOI 10.2307/2423683; BOYD CE, 1970, ECOLOGY, V51, P902, DOI 10.2307/1933986; BOYD CE, 1968, ECON BOT, V22, P235; BRABRAND A, 1985, OECOLOGIA, V66, P461, DOI 10.1007/BF00379334; BRINSON MM, 1981, ANNU REV ECOL SYST, V12, P123, DOI 10.1146/annurev.es.12.110181.001011; BROCK TCM, 1983, AQUAT BOT, V17, P189, DOI 10.1016/0304-3770(83)90057-8; BRONMARK C, 1989, J MOLLUS STUD, V55, P299, DOI 10.1093/mollus/55.2.299; BRONMARK C, 1990, ECOLOGY, V71, P1212, DOI 10.2307/1937391; BUCHSBAUM R, 1984, OECOLOGIA, V63, P343, DOI 10.1007/BF00390663; BUCHSBAUM R, 1984, ECOLOGY, V67, P386; CALVERT JJ, 1985, OECOLOGIA, V65, P236, DOI 10.1007/BF00379223; CAMPBELL HW, 1977, AQUACULTURE, V12, P249, DOI 10.1016/0044-8486(77)90065-5; CARGILL SM, 1984, J APPL ECOL, V21, P669, DOI 10.2307/2403437; CARPENTER S R, 1977, Aquatic Botany, V3, P239, DOI 10.1016/0304-3770(77)90026-2; CARPENTER SR, 1986, AQUAT BOT, V26, P341, DOI 10.1016/0304-3770(86)90031-8; CARPENTER SR, 1987, ECOLOGY, V68, P1863, DOI 10.2307/1939878; CARTER V, 1985, AQUAT BOT, V23, P197, DOI 10.1016/0304-3770(85)90066-X; CHAMBERS PA, 1989, CAN J FISH AQUAT SCI, V46, P435, DOI 10.1139/f89-058; CHAPIN FS, 1983, ECOLOGY, V64, P376, DOI 10.2307/1937083; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; COLEY PD, 1983, ECOL MONOGR, V53, P209, DOI 10.2307/1942495; CRAWLEY MJ, 1983, HERBIVORY DYNAMICS A; DEAN JL, 1969, 24 BUR SPORT FISH WI; DIETZ DR, 1972, USDA INT1 FOR SERV G, P289; DONNERMEYER GN, 1985, AQUAT BOT, V22, P33, DOI 10.1016/0304-3770(85)90027-0; Fassett N. C, 1957, MANUAL AQUATIC PLANT; Fassett NC, 1940, MANUAL AQUATIC PLANT; FEENY P, 1976, RECENT ADV PHYTOCHEM, P1; FEMINELLA JW, 1989, HOLARCTIC ECOL, V12, P1; FIANCE S B, 1977, Journal of the Lepidopterists' Society, V31, P81; FLINT RW, 1975, LIMNOL OCEANOGR, V20, P935, DOI 10.4319/lo.1975.20.6.0935; FLINT RW, 1977, J FISH RES BOARD CAN, V34, P155, DOI 10.1139/f77-022; FOX LR, 1981, AM ZOOL, V21, P853; FRASER D, 1984, CAN J ZOOL, V62, P80, DOI 10.1139/z84-014; FROHNE WC, 1956, ECOLOGY, V37, P387, DOI 10.2307/1933155; GAEVSKAYA NS, 1969, ROLE HIGHER AQUATIC; GAUDET JJ, 1973, HYDROBIOLOGIA, V41, P77, DOI 10.1007/BF00014737; GERLOFF GC, 1966, LIMNOL OCEANOGR, V11, P529, DOI 10.4319/lo.1966.11.4.0529; GIROUX JF, 1987, J APPL ECOL, V24, P773, DOI 10.2307/2403980; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Gregory S.V., 1983, P157; GRISE D, 1985, CAN J BOT, V64, P306; HANSSON LA, 1987, LIMNOL OCEANOGR, V32, P723, DOI 10.4319/lo.1987.32.3.0723; HARBORNE JB, 1988, INTRO ECOLOGICAL BIO; HAY ME, 1988, ANNU REV ECOL SYST, V19, P111, DOI 10.1146/annurev.es.19.110188.000551; HICKMAN OE, 1975, SEASONAL TRENDS NUTR; HOWE HF, 1988, ECOLOGICAL RELATIONS; HUNTER RD, 1980, HYDROBIOLOGIA, V69, P251, DOI 10.1007/BF00046800; Hutchinson GE, 1975, TREATISE LIMNOLOGY, VIII; JANAUER GA, 1981, AQUAT BOT, V11, P231, DOI 10.1016/0304-3770(81)90063-2; JUPP BP, 1977, J ECOL, V65, P431, DOI 10.2307/2259493; KERFOOT WC, 1989, 23RD P ANN M AQ PLAN, P178; KERFOOT WC, 1988, 22ND P ANN M AQ PLAN, P31; KIORBOE T, 1980, J APPL ECOL, V17, P675, DOI 10.2307/2402646; Lambert G.A., 1984, P164; LINN JG, 1973, B U MINNESOTA, V56; LODGE D M, 1988, P181; LODGE DM, 1985, FRESHWATER BIOL, V15, P695, DOI 10.1111/j.1365-2427.1985.tb00243.x; LODGE DM, 1986, FRESHWATER BIOL, V16, P831, DOI 10.1111/j.1365-2427.1986.tb01020.x; LODGE DM, 1987, CAN J FISH AQUAT SCI, V44, P591, DOI 10.1139/f87-072; LUBCHENCO J, 1981, ANNU REV ECOL SYST, V12, P405, DOI 10.1146/annurev.es.12.110181.002201; MACLEAN SF, 1985, OIKOS, V44, P211, DOI 10.2307/3544063; Magnuson J. J., 1975, Proceedings of a Symposium on Water Quality and Management through Biological Control, Gainesville, 1975., P66; MAHENDRAPPA M K, 1973, Canadian Journal of Forest Research, V3, P333, DOI 10.1139/x73-048; MARCUS JH, 1978, FRESHWATER BIOL, V8, P505, DOI 10.1111/j.1365-2427.1978.tb01473.x; MARTEN GC, 1975, CROP SCI, V15, P821, DOI 10.2135/cropsci1975.0011183X001500060024x; MATTSON WJ, 1980, ANNU REV ECOL SYST, V11, P119, DOI 10.1146/annurev.es.11.110180.001003; MCCLURE JW, 1970, PHYTOCHEMICAL PHYLOG, P233; MCCREARY NJ, 1991, AQUAT BOT, V41, P177, DOI 10.1016/0304-3770(91)90043-5; McGAHA Y. J., 1952, TRANS AMER MICROSC SOC, V71, P355, DOI 10.2307/3223467; MCMAHON RF, 1974, HYDROBIOLOGIA, V45, P391, DOI 10.1007/BF00012027; MCNAUGHTON SJ, 1985, ECOL MONOGR, V55, P259, DOI 10.2307/1942578; MCNAUGHTON SJ, 1986, AM NAT, V128, P765, DOI 10.1086/284602; MCNAUGHTON SJ, 1979, AM NAT, V113, P691, DOI 10.1086/283426; MELZER A, 1986, OECOLOGIA, V69, P606, DOI 10.1007/BF00410370; MIURA T, 1978, VERH INT VEREIN LIMN, V20, P1116; MOCHNACKA-LAWACZ H, 1974, Polskie Archiwum Hydrobiologii, V21, P369; MOELLER RE, 1978, CAN J BOT, V56, P1425, DOI 10.1139/b78-165; NEWMAN RM, 1990, J CHEM ECOL, V16, P245, DOI 10.1007/BF01021282; NICHOLS SA, 1991, AQUAT BOT, V41, P225, DOI 10.1016/0304-3770(91)90045-7; ODUM WE, 1988, ANNU REV ECOL SYST, V19, P147, DOI 10.1146/annurev.es.19.110188.001051; OLSEN TM, 1991, IN PRESS CAN J FISH, V48; OSTROFSKY ML, 1986, J ECOL, V74, P279, DOI 10.2307/2260363; OTTO C, 1981, HYDROBIOLOGIA, V78, P107, DOI 10.1007/BF00007583; Otto C., 1983, PERIPHYTON FRESHWATE, P199; PAIGE KN, 1987, AM NAT, V129, P407, DOI 10.1086/284645; PAINTER DS, 1988, J AQUAT PLANT MANAGE, V26, P3; Pelikan J, 1971, Hidrobiologia, V12, P177; PIECZYNSKA E, 1986, AQUAT BOT, V25, P153, DOI 10.1016/0304-3770(86)90051-3; PIP E, 1976, CAN J ZOOL, V54, P1192, DOI 10.1139/z76-136; Planas D., 1981, VERH INT VEREIN LIMN, V21, P1492; POLUNIN NVC, 1984, ADV ECOL RES, V14, P115, DOI 10.1016/S0065-2504(08)60170-1; PREJS A, 1984, ENVIRON BIOL FISH, V10, P281, DOI 10.1007/BF00001481; PREJS A, 1978, EKOL POL-POL J ECOL, V26, P537; PREJS A, 1978, EKOL POL-POL J ECOL, V26, P429; PRITCHARD G, 1987, FRESHWATER BIOL, V18, P529, DOI 10.1111/j.1365-2427.1987.tb01337.x; Rhoades DF, 1976, RECENT ADV PHYTOCHEM, V10, P168, DOI DOI 10.1007/978-1-4684-2646-54; RIEMER DN, 1970, WEED SCI, V18, P4; RIEMER DN, 1969, WEED SCI, V17, P219; RISLEY LS, 1988, ECOLOGY, V69, P1118, DOI 10.2307/1941266; ROBBINS CT, 1987, ECOLOGY, V68, P98, DOI 10.2307/1938809; Rogers K. H., 1983, PERIPHYTON FRESHWATE, P217; Rosenthal G. A., 1979, HERBIVORES THEIR INT; SANDJENSEN K, 1991, AQUAT BOT, V41, P137, DOI 10.1016/0304-3770(91)90042-4; SARAF N, 1987, ERGEB LIMNOL, V28, P209; SCHLOTT G, 1984, ARCH HYDROBIOL, V101, P265; SCHOWALTER TD, 1986, ANNU REV ENTOMOL, V31, P177, DOI 10.1146/annurev.en.31.010186.001141; SCOTT ML, 1987, B TORREY BOT CLUB, V114, P13, DOI 10.2307/2996384; Sculthorpe CD, 1967, BIOL AQUATIC VASCULA; SEROLL A, 1975, Crustaceana (Leiden), V29, P319; SHELDON SP, 1990, ECOLOGY, V71, P1215, DOI 10.2307/1937392; SHELDON SP, 1987, ECOLOGY, V68, P1920, DOI 10.2307/1939883; Shelford V. E., 1918, FRESHWATER BIOL, P21; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; Singh C.S., 1970, Journal Inland Fish Soc India, V2, P121; SMITH CS, 1986, LIMNOL OCEANOGR, V31, P1312, DOI 10.4319/lo.1986.31.6.1312; SMITH LM, 1985, ECOLOGY, V66, P259, DOI 10.2307/1941326; Smith T.J. III, 1982, P131; SMITH TJ, 1981, ECOLOGY, V62, P98; SOSZKA G J, 1975, Ekologia polska, V23, P393; STERNER RW, 1986, SCIENCE, V224, P985; STEVENSON JC, 1988, LIMNOL OCEANOGR, V33, P867, DOI 10.4319/lo.1988.33.4_part_2.0867; STRASKRABA M, 1968, MITT INT VER LIMNOL, V14, P212; SU KL, 1973, LLOYDIA, V36, P72; TAN YT, 1970, J FISH BIOL, V2, P253, DOI 10.1111/j.1095-8649.1970.tb03283.x; THAYER GW, 1984, ESTUARIES, V7, P351, DOI 10.2307/1351619; TWILLEY RR, 1985, AQUAT BOT, V22, P231, DOI 10.1016/0304-3770(85)90002-6; URBAN E, 1975, Ekologia polska, V23, P417; VAN DER VELDE G, 1982, HYDROBIOL B AMSTERDA, V16, P51; WALLACE JB, 1985, ECOLOGY, V66, P1534, DOI 10.2307/1938016; Ward HB, 1918, FRESHWATER BIOL; Welch P. S, 1952, LIMNOLOGY; Welch PS, 1935, LIMNOLOGY; Wetzel R. G., 1983, LIMNOLOGY; Wetzel RG, 1975, LIMNOLOGY; WHITTAKER RH, 1979, ECOLOGY, V60, P203, DOI 10.2307/1936481; WILEY MJ, 1986, J FISH BIOL, V29, P507, DOI 10.1111/j.1095-8649.1986.tb04966.x; WOODWELL GM, 1975, ECOLOGY, V56, P318, DOI 10.2307/1934963 160 297 313 5 128 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3770 AQUAT BOT Aquat. Bot. AUG 1991 41 1-3 195 224 10.1016/0304-3770(91)90044-6 30 Plant Sciences; Marine & Freshwater Biology Plant Sciences; Marine & Freshwater Biology GD573 WOS:A1991GD57300009 2019-02-26 J BOERSMA, M; VANSCHAIK, CP; HOGEWEG, P BOERSMA, M; VANSCHAIK, CP; HOGEWEG, P NUTRIENT GRADIENTS AND SPATIAL STRUCTURE IN TROPICAL FORESTS - A MODEL STUDY ECOLOGICAL MODELLING English Article RAIN-FOREST; PLANT SUCCESSION; LITTERFALL; SOIL; CONSEQUENCES; AVAILABILITY; COMMUNITIES; LIMITATION; VEGETATION; RAINFOREST We studied the competitive relationships between two life history strategies of tropical trees in a mixed-age spatial model. The two life histories differ primarily with respect to longevity, biomass per unit nutrient and amount of nutrients shedded. We show that stable coexistence in a homogeneous environment is not feasible, but that both types represent a climax vegetation on appropriate soils. In a smooth gradient of soil nutrient content a sharp transition occurs between the two tree types. The most important factors determining the outcome of the competition are longevity and the presence or absence of disturbance, and not, as earlier assumed, the differences in nutrient hoarding. STATE UNIV UTRECHT,BIOINFORMAT GRP,3584 CH UTRECHT,NETHERLANDS Hogeweg, paulien/D-1242-2011; Boersma, Maarten/A-5475-2013 Boersma, Maarten/0000-0003-1010-026X Beeftink W. G., 1985, POPULATION STRUCTURE, P637; BOTKIN DB, 1972, J ECOL, V60, P849, DOI 10.2307/2258570; CHAPIN FS, 1986, AM NAT, V127, P48, DOI 10.1086/284466; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; CONNELL JH, 1977, AM NAT, V111, P1119, DOI 10.1086/283241; DALE VH, 1986, CAN J FOREST RES, V16, P56, DOI 10.1139/x86-010; de Boer R., 1983, GRIND GREAT INTEGRAT; DEES AP, 1987, SPATIAL VERSUS TEMPO; Doyle T. W., 1981, FOREST SUCCESSION CO, P56; EDWARDS PJ, 1982, J ECOL, V70, P649, DOI 10.2307/2259929; FINEGAN B, 1984, NATURE, V312, P109, DOI 10.1038/312109a0; GOLLEY F B, 1980, Tropical Ecology, V21, P59; GOLLEY FB, 1983, ECOSYSTEMS WORLD A, V14, P101; GUILLAUMET JL, 1987, EXPERIENTIA, V43, P241, DOI 10.1007/BF01945547; HERRERA R, 1978, NATURWISSENSCHAFTEN, V65, P208, DOI 10.1007/BF00450594; HOGEWEG P, 1988, APPL MATH COMPUT, V27, P81, DOI 10.1016/0096-3003(88)90100-2; HOGEWEG P, 1985, J THEOR BIOL, V113, P311, DOI 10.1016/S0022-5193(85)80230-7; HUSTON M, 1987, AM NAT, V130, P168, DOI 10.1086/284704; JORDAN CF, 1981, AM NAT, V117, P167, DOI 10.1086/283696; JORDAN CF, 1985, NUTRIENT CYCLING TRO; KIRA T, 1978, P561; Leigh E. G., 1978, ECOLOGY ARBOREAL FOL, P33; LEVIN SA, 1974, P NATL ACAD SCI USA, V71, P2744, DOI 10.1073/pnas.71.7.2744; LUIZAO FJ, 1987, EXPERIENTIA, V43, P259, DOI 10.1007/BF01945549; LUSE RA, 1970, TROPICAL RAINFOREST, pH161; MCKEY D, 1978, SCIENCE, V202, P61; NADKARNI NM, 1981, SCIENCE, V214, P1023, DOI 10.1126/science.214.4524.1023; PASTOR J, 1986, BIOGEOCHEMISTRY, V2, P3, DOI 10.1007/BF02186962; PROCTOR J, 1983, J ECOL, V71, P261, DOI 10.2307/2259976; Proctor J., 1984, Tropical rain-forest. The Leeds symposium, P83; Shugart H. H, 1984, THEORY FOREST DYNAMI; SHUGART HH, 1980, MATH BIOSCI, V50, P163, DOI 10.1016/0025-5564(80)90034-6; SHUGART HH, 1977, J ENVIRON MANAGE, V5, P161; SHUGART HH, 1980, BIOSCIENCE, V30, P308, DOI 10.2307/1307854; SHUGART HH, 1987, BIOSCIENCE, V37, P596, DOI 10.2307/1310670; SHUGART HH, 1980, J ENVIRON MANAGE, V11, P243; SHUGART HH, 1981, FOREST SUCCESSION CO, P74; TANNER EVJ, 1985, J ECOL, V73, P553, DOI 10.2307/2260493; TILMAN D, 1985, AM NAT, V125, P827, DOI 10.1086/284382; Tilman D, 1982, RESOURCE COMPETITION; Toffoli T, 1987, CELLULAR AUTOMATA MA; VANNOORDWIJK M, 1986, PLANT SOIL, V96, P299, DOI 10.1007/BF02374775; VANSCHAIK CP, 1985, BIOTROPICA, V17, P196, DOI 10.2307/2388217; VITOUSEK P, 1982, AM NAT, V119, P553, DOI 10.1086/283931; VITOUSEK PM, 1986, ANNU REV ECOL SYST, V17, P137, DOI 10.1146/annurev.es.17.110186.001033; VITOUSEK PM, 1986, J ECOL, V74, P1167, DOI 10.2307/2260241; VITOUSEK PM, 1984, ECOLOGY, V65, P285, DOI 10.2307/1939481; Whitmore T. C, 1984, TROPICAL RAIN FOREST 49 9 10 0 5 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 ECOL MODEL Ecol. Model. AUG 1991 55 3-4 219 240 10.1016/0304-3800(91)90088-I 22 Ecology Environmental Sciences & Ecology GF190 WOS:A1991GF19000004 2019-02-26 J GROSS, MR GROSS, MR SALMON BREEDING-BEHAVIOR AND LIFE-HISTORY EVOLUTION IN CHANGING ENVIRONMENTS ECOLOGY English Article ONCORHYNCHUS-KISUTCH; PACIFIC SALMON; COHO; SELECTION; SUCCESS; RIVER GROSS, MR (reprint author), UNIV TORONTO,DEPT ZOOL,TORONTO M5S 1A1,ONTARIO,CANADA. BILTON HT, 1980, 941 FISH AQ SCI CAN; BORGHETTI JR, 1989, AQUACULTURE, V77, P51, DOI 10.1016/0044-8486(89)90020-3; Forester J. E., 1975, FISHING BRIT COLUMBI; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; Gross M.R., 1987, AM FISH SOC S, V1, P14; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; GROSS MR, 1991, IN PRESS BEHAVIORAL; Hart J. L, 1973, FISH RES BOARD CAN B, V180; HUTCHINGS JA, 1988, OECOLOGIA, V75, P169, DOI 10.1007/BF00378593; IWAMOTO RN, 1984, AQUACULTURE, V43, P105, DOI 10.1016/0044-8486(84)90015-2; Laws EA, 1981, AQUATIC POLLUTION; LIMBURG KE, 1990, ECOLOGY, V71, P1238, DOI 10.2307/1938260; MAEKAWA K, 1986, ENVIRON BIOL FISH, V15, P119, DOI 10.1007/BF00005427; MILLS DH, 1989, ECOLOGY MANAGEMENT A; Parker G. A, 1984, BEHAVIOURAL ECOLOGY, P30; Pearse P. H., 1982, TURNING TIDE NEW POL; Piper R. G., 1982, FISH HATCHERY MANAGE; QUINN TP, 1990, TRENDS ECOL EVOL, V5, P174, DOI 10.1016/0169-5347(90)90205-R; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; SARGENT RC, 1986, ANIM BEHAV, V34, P545, DOI 10.1016/S0003-3472(86)80123-3; Schroder S. L., 1982, SALMON TROUT MIGRATO, P275; Smith J.M., 1982, EVOLUTION THEORY GAM; SWALES S, 1989, CAN J FISH AQUAT SCI, V46, P232, DOI 10.1139/f89-032; VANDENBERGHE EP, 1989, EVOLUTION, V43, P125, DOI 10.1111/j.1558-5646.1989.tb04212.x 24 158 160 1 17 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology AUG 1991 72 4 1180 1186 10.2307/1941091 7 Ecology Environmental Sciences & Ecology GB185 WOS:A1991GB18500002 2019-02-26 J MA, HHT; LAM, PKS; DUDGEON, D MA, HHT; LAM, PKS; DUDGEON, D INTERSPECIFIC AND INTRASPECIFIC VARIATION IN THE LIFE HISTORIES OF 3 SYMPATRIC ISOPODS IN A HONG-KONG FOREST JOURNAL OF ZOOLOGY English Article LIGIA-OCEANICA CRUSTACEA; POPULATION-DYNAMICS; TERRESTRIAL ISOPOD; ARMADILLIDIUM-VULGARE; DUNE GRASSLAND; ONISCOIDEA; ONISCIDEA There is a paucity of data on the life-history strategies of tropical animals. Accordingly, the inter- and intraspecific life-history variations of three sympatric isopods, Burmoniscus ocellatus (Philosciidae), Formosillo raffaelei and Orodillo maculatus (Armadillidae), were studied at two sites in a Hong Kong forest. All three isopods were iteroparous. Burmoniscus ocellatus had more frequent breeding bouts, and smaller broods than O. maculatus and F. raffaelei. Although the three isopods had different life spans, brood numbers and life-time fecundities, their rates of offspring production (number of eggs per month) were similar. The Hong Kong isopods had longer breeding periods, a greater number of broods per life time, and lower reproductive allocation per brood than their temperate counterparts. These findings were consistent with the predictions of r- and K-theory. Intraspecific, between-site differences in fecundity and brood dry weight of F. raffaelei could probably be explained by the variations in the size of gravid females. Burmoniscus ocellatus produced heavier eggs at the site with a higher population density, suggesting that conditions at the site with a higher isopod density may be more K-selecting. Female-biased sex ratios, possibly resulting from differential sex-specific mortality, were common among the isopod samples, and the possible adaptive significance of this pattern was discussed. The potential influence of phylogenetic constraints on the evolution of life-history strategies was also considered. CHINESE UNIV HONG KONG,DEPT BIOL,SHA TIN,HONG KONG; UNIV HONG KONG,DEPT ZOOL,HONG KONG,HONG KONG Dudgeon, David/A-2733-2010; LAM, Paul/B-9121-2008 LAM, Paul/0000-0002-2134-3710 ALDABBAGH KY, 1981, J ANIM ECOL, V50, P61, DOI 10.2307/4031; BRERETON JOHN LE GAY, 1957, OIKOS, V8, P85, DOI 10.2307/3564994; BRODY MS, 1984, OECOLOGIA, V61, P55, DOI 10.1007/BF00379089; DAVIS RC, 1984, OIKOS, V42, P387, DOI 10.2307/3544409; Fisher R.A., 1930, GENETICAL THEORY NAT; HATCHETT SP, 1947, ECOL MONOGR, V17, P47, DOI 10.2307/1948613; KREBS JR, 1981, INTRO BEHAVIOURAL EC; Lam P. K. S., 1985, Journal of Tropical Ecology, V1, P55; LAM PKS, 1989, J NAT HIST, V23, P1087, DOI 10.1080/00222938900770981; LAWLOR LR, 1976, EVOLUTION, V30, P775, DOI 10.1111/j.1558-5646.1976.tb00958.x; MA HHT, 1991, J ZOOL, V224, P347, DOI 10.1111/j.1469-7998.1991.tb06030.x; MA HHT, 1988, THESIS U HONG KONG H; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; Maynard Smith J, 1978, EVOLUTION SEX; MILLER RH, 1983, OECOLOGIA, V57, P216, DOI 10.1007/BF00379583; NAIR GA, 1978, ZOOL ANZ, V201, P86; PARIS OH, 1962, ECOLOGY, V43, P229, DOI 10.2307/1931979; PARIS OH, 1963, ECOL MONOGR, V33, P1, DOI 10.2307/1948475; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; SCHMALFUSS VH, 1984, STUTTG BEITR NATURK, V317, P1; SIBLY RM, 1986, PHYSIOLOGICAL ECOLOG; SUNDERLAND KD, 1976, J ANIM ECOL, V45, P487, DOI 10.2307/3887; SUTTON SL, 1968, J ANIM ECOL, V37, P425, DOI 10.2307/2958; SUTTON SL, 1984, ZOOLOGICAL SOC LONDO, V53, P269; Sutton SL, 1980, WOODLICE; Warburg M.R., 1987, Advances in Ecological Research, V17, P187, DOI 10.1016/S0065-2504(08)60246-9; WILLOWS RI, 1987, J ANIM ECOL, V56, P331, DOI 10.2307/4818; WILLOWS RI, 1987, J ANIM ECOL, V56, P315, DOI 10.2307/4817 28 14 16 1 7 OXFORD UNIV PRESS UNITED KINGDOM OXFORD WALTON ST JOURNALS DEPT, OXFORD, ENGLAND OX2 6DP 0952-8369 J ZOOL J. Zool. AUG 1991 224 4 677 687 10.1111/j.1469-7998.1991.tb03795.x 11 Zoology Zoology GE050 WOS:A1991GE05000013 2019-02-26 J HENLE, K HENLE, K SOME REFLECTIONS ON EVOLUTIONARY-THEORIES, WITH A CLASSIFICATION OF FITNESS ACTA BIOTHEORETICA English Article SMITH AND FRETWELL MODEL; SURVIVAL OF THE FITTEST TAUTOLOGY; FITNESS DEFINITIONS; FITNESS-FREE EVOLUTIONARY THEORIES LIFE-HISTORY EVOLUTION; PROPAGULE SIZE; CLUTCH-SIZE; VARIABLE ENVIRONMENTS; POPULATION; TAUTOLOGY; PLASTICITY; EXTINCTION; AMBYSTOMA; NUMBER Using a classical life history model (the Smith & Fretwell model of the evolution of offspring size), it is demonstrated that even in the presence of overwhelming empirical support, the testability of predictions derived from evolutionary models can give no guarantee that the underlying fitness concept is sound. Non-awareness of this problem may cause considerable justified but avoidable criticism. To help understanding the variable use of fitness in evolutionary models and recognizing potentially problematic areas which need careful consideration, a hierarchical classification of definitions of fitness used in evolutionary models is presented. As a conclusion, it is advocated to use the term fitness more conscientiously than currently often practised and to think more about ways to develop fitness-free evolutionary theories compatible with Darwin's ideas. HENLE, K (reprint author), UNIV FRANKFURT,INST ZOOL,SIESMAYERSTR 70,W-6000 FRANKFURT 11,GERMANY. Henle, Klaus/I-6837-2013 Henle, Klaus/0000-0002-6647-5362 ABUGOV R, 1986, J THEOR BIOL, V122, P311, DOI 10.1016/S0022-5193(86)80123-0; BERTIN L, 1958, TRAITE ZOOL, V13, P1585; BOX GEP, 1976, J AM STAT ASSOC, V71, P791, DOI 10.2307/2286841; BRANDON RN, 1978, STUD HIST PHILOS SCI, V9, P181, DOI 10.1016/0039-3681(78)90005-5; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BRODY MS, 1984, OECOLOGIA, V61, P55, DOI 10.1007/BF00379089; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; CAPLAN AL, 1977, AM NAT, V111, P390, DOI 10.1086/283173; CASTRODEZA C, 1977, AM NAT, V111, P393, DOI 10.1086/283174; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; COOPER WS, 1984, J THEOR BIOL, V107, P603, DOI 10.1016/S0022-5193(84)80135-6; CRUMP ML, 1981, AM NAT, V117, P724, DOI 10.1086/283755; Darwin C, 1859, ORIGIN SPECIES; Duellman W. E., 1986, BIOL AMPHIBIANS; Dunbar R.I.M., 1982, P9; EISENBERG JF, 1981, MAMMALIAN RAD; ENDLER JA, 1986, PRINCETON U MONOGR P, V21; FERGUSON A, 1976, AM NAT, V110, P1101, DOI 10.1086/283130; FITCH NS, 1970, U KANSAS MUS NAT HIS, V52; Gould S. J, 1980, PANDAS THUMB; GOULD SJ, 1985, FLAMINGOS SMILE; Holling C.S., 1973, Annual Rev Ecol Syst, V4, P1, DOI 10.1146/annurev.es.04.110173.000245; JANZEN DH, 1977, ANN MO BOT GARD, V61, P706; JONGELING TB, 1985, J THEOR BIOL, V117, P529, DOI 10.1016/S0022-5193(85)80236-8; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; KAPLAN RH, 1980, EVOLUTION, V34, P51, DOI 10.1111/j.1558-5646.1980.tb04788.x; KEMPTHORNE O, 1970, GENETICS, V64, P125; KLOMP H, 1970, ARDEA, V58, P1; KRIMBAS CB, 1984, EVOL BIOL, V17, P1; Lewontin R.C., 1978, Scientific American, V239, P156; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MURRAY BG, 1988, OIKOS, V51, P249, DOI 10.2307/3565650; NUR N, 1987, OIKOS, V48, P338, DOI 10.2307/3565523; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PETERS RH, 1976, AM NAT, V110, P1, DOI 10.1086/283045; PIANKA ER, 1988, EVOLUTIONARY ECOLOGY; POPPER KR, 1974, PHILOS K POPPER, V1, P133; ROSENBERG A, 1986, PHILOS SCI, V53, P412, DOI 10.1086/289326; ROSENBERG A, 1983, J PHILOS, V80, P457, DOI 10.2307/2026163; Roughgarden J, 1979, THEORY POPULATION GE; Ruse M., 1982, DARWINISM DEFENDED; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SITCH TA, 1988, OECOLOGIA, V76, P371, DOI 10.1007/BF00377031; SLOBODKIN LB, 1974, Q REV BIOL, V49, P181, DOI 10.1086/408082; SLOBODKIN LB, 1964, AM SCI, V52, P342; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sober E., 1984, NATURE SELECTION; STAMP NE, 1983, OECOLOGIA, V59, P272, DOI 10.1007/BF00378848; Stearns S. C., 1976, Q REV BIOL, V51, P1; Stearns S. C., 1986, PATTERNS PROCESSES H, P23, DOI [10.1007/978-3-642-70831-2, DOI 10.1007/978-3-642-70831-2-3]; STEARNS SC, 1987, OIKOS, V49, P118, DOI 10.2307/3565561; STEARNS SC, 1982, ENV ADAPTATION EVOLU, P3; STEBBINS GL, 1977, AM NAT, V111, P386, DOI 10.1086/283172; THOMPSON JN, 1984, ECOLOGY, V65, P626, DOI 10.2307/1941425; TULJAPURKAR SD, 1980, THEOR POPUL BIOL, V18, P314, DOI 10.1016/0040-5809(80)90057-X; TUOMI J, 1979, SAVONIA, V3, P9; VITT LJ, 1982, HERPETOLOGICA, V38, P237; WALLACE B, 1981, BASIC POPULATION GEN; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WILLIAMS MB, 1970, J THEOR BIOL, V29, P343, DOI 10.1016/0022-5193(70)90103-7; WITTEN M, 1978, J THEOR BIOL, V74, P23, DOI 10.1016/0022-5193(78)90287-4 62 4 4 0 4 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0001-5342 ACTA BIOTHEOR Acta Biotheor. JUN 1991 39 2 91 106 10.1007/BF00046594 16 Mathematical & Computational Biology Mathematical & Computational Biology GD295 WOS:A1991GD29500001 2019-02-26 J FOX, JF; STEVENS, GC FOX, JF; STEVENS, GC COSTS OF REPRODUCTION IN A WILLOW - EXPERIMENTAL RESPONSES VS NATURAL VARIATION ECOLOGY English Article ALLOCATION; COST; DEFLORATION; DEBUDDING; DISBUDDING; FLOWERING INTENSITY; GROWTH; PLANTS; REPRODUCTION; SALIX; WILLOW LIFE-HISTORY EVOLUTION; FRUIT PRODUCTION; PLANTS; CARBON; POLLINATOR; ALLOCATION; PATTERNS; GROWTH; PHOTOSYNTHESIS; LIMITATION We report on the interaction between reproduction and subsequent reproductive and vegetative growth in female plants of a dioecious, early successional, tall shrub, the feltleaf willow (Salix alaxensis). We measured natural variation among individuals in flowering, and its correlation with subsequent shoot growth and flowering. We also experimentally curtailed reproductive allocation in two ways: (1) by removing inflorescence buds in April when plants were dormant, and (2) by covering inflorescences to prevent pollination and fruit development. We hypothesized that these treatments would cause manipulated plants to retain more resources and to deploy them subsequently in shoot growth or reproduction. However, treatment had no significant effect upon shoot elongation, which decreased slightly after floral buds were removed. Treatments did significantly increase the fraction of buds differentiating as inflorescences instead of shoots. We compared the experimental outcome with the natural, phenotypic variation among plants. Among plants of either the treated or the unmanipulated groups, there was a significant negative correlation between current reproduction and subsequent growth; the corresponding regressions did not differ between the two groups. Thus, natural phenotypic variation suggested a trade-off between reproduction and growth, but a direct test by experiment revealed only a trade-off between current and future reproduction. Furthermore, the negative correlation seen in unmanipulated plants was unaffected by treatments curtailing reproductive investment. We conclude that this correlation is not directly related to allocation constraints, and does not provide reliable evidence about costs of reproduction. The increased commitment to flowering that occurred after experimental reduction of current reproductive investment may be evidence for a cost of reproduction, although the response need not have been caused directly by resource allocation constraints. GUSTAVUS ADOLPHUS COLL,DEPT BIOL,ST PETER,MN 56082 FOX, JF (reprint author), UNIV ALASKA,INST ARCTIC BIOL,FAIRBANKS,AK 99775, USA. Fox, John/0000-0003-4386-010X ADAMS MW, 1967, CROP SCI, V7, P505, DOI 10.2135/cropsci1967.0011183X000700050030x; ARGUS GW, 1973, PUBLICATIONS BOTANY, V2; Bazzaz F. A., 1985, STUDIES PLANT DEMOGR, P373; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BIERZYCHUDEK P, 1981, AM NAT, V117, P838, DOI 10.1086/283773; BRAR G, 1977, Z PFLANZENPHYSIOL, V82, P1; BROWN MB, 1974, TECHNOMETRICS, V16, P129, DOI 10.2307/1267501; Buban T., 1982, Horticultural Reviews, V4, P174; CHAN BG, 1967, P AM SOC HORTIC SCI, V91, P63; CHAPIN FS, 1980, J ECOL, V68, P189; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; CHILDERS NF, 1961, MODERN FRUIT SCI ORC; CROOKSTON RK, 1974, CROP SCI, V14, P708, DOI 10.2135/cropsci1974.0011183X001400050030x; DIXON WJ, 1981, BMDP STATISTICAL SOF; EIS S, 1965, CAN J BOTANY, V43, P1553, DOI 10.1139/b65-165; EMLEN JM, 1984, POPULATION BIOL COEV; Fisher R. A, 1958, GENETICAL THEORY NAT; GEIGER DR, 1979, BOT GAZ, V140, P241, DOI 10.1086/337081; GIFFORD RM, 1981, ANNU REV PLANT PHYS, V32, P485, DOI 10.1146/annurev.pp.32.060181.002413; GOLDSCHMIDT EE, 1982, J AM SOC HORTIC SCI, V107, P206; Harper J.L., 1977, POPULATION BIOL PLAN; HOFFMANN AJ, 1984, OECOLOGIA, V61, P109, DOI 10.1007/BF00379095; HORVITZ CC, 1988, ECOLOGY, V69, P1741, DOI 10.2307/1941152; Kozlowski T. T, 1971, GROWTH DEV TREES, V2; Kramer P. J., 1979, PHYSL WOODY PLANTS; LEONARD ER, 1962, BOT REV, V28, P353, DOI 10.1007/BF02868688; MARSCHNER H, 1986, MINERAL NUTRITION HI; MEAGHER TR, 1982, ECOLOGY, V63, P1690, DOI 10.2307/1940111; Monselise S. P., 1982, Horticultural Reviews, V4, P128; NEALES TF, 1968, BOT REV, V34, P107, DOI 10.1007/BF02872604; OWEN DB, 1962, HDB STATISTICAL TABL; PAIGE KN, 1987, ECOLOGY, V68, P1691, DOI 10.2307/1939861; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PATE JS, 1977, PLANT PHYSIOL, V59, P506, DOI 10.1104/pp.59.3.506; PHARIS RP, 1985, ANNU REV PLANT PHYS, V36, P517, DOI 10.1146/annurev.pp.36.060185.002505; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REEKIE EG, 1987, AM NAT, V129, P897, DOI 10.1086/284682; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SACHS RM, 1977, HORTSCIENCE, V12, P220; SALISBURY FB, 1978, PLANT PHYSIOL; SCHAFFER AA, 1985, J AM SOC HORTIC SCI, V110, P574; Silvertown J, 1987, INTRO PLANT POPULATI; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEPHENSON AG, 1981, ANNU REV ECOL SYST, V12, P253, DOI 10.1146/annurev.es.12.110181.001345; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WARDLAW IF, 1968, BOT REV, V34, P79, DOI 10.1007/BF02858622; WATSON MA, 1984, ANNU REV ECOL SYST, V15, P233, DOI 10.1146/annurev.es.15.110184.001313; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLSON MF, 1986, AM MIDL NAT, V115, P204, DOI 10.2307/2425852; Winer B. J., 1971, STATISTICAL PRINCIPL; ZIMMERMAN JK, 1989, AM J BOT, V76, P67, DOI 10.2307/2444775; ZIMMERMAN M, 1988, J ECOL, V76, P777, DOI 10.2307/2260573 57 78 81 0 21 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology JUN 1991 72 3 1013 1023 10.2307/1940601 11 Ecology Environmental Sciences & Ecology FM084 WOS:A1991FM08400023 2019-02-26 J JAMES, CD JAMES, CD POPULATION-DYNAMICS, DEMOGRAPHY, AND LIFE-HISTORY OF SYMPATRIC SCINCID LIZARDS (CTENOTUS) IN CENTRAL AUSTRALIA HERPETOLOGICA English Article POPULATION DYNAMICS; RECRUITMENT; SURVIVAL RATE; DEMOGRAPHY; MOVEMENTS; LIFE-HISTORY; BET-HEDGING; LIZARDS; SCINCIDAE; CTENOTUS; ARID-ZONE; AUSTRALIA; SYMPATRIC SCELOPORUS-UNDULATUS; IGUANID LIZARD; ACTIVITY PATTERNS; ARID AUSTRALIA; HOME-RANGE; SIZE; ABUNDANCE; SELECTION; JARROVI; REPRODUCTION Population fluctuations, density, recruitment, and survivorship of five species of syntopic scincid lizards (Ctenotus) were studied for three years on a spinifex grassland site in central Australia. Lizards were captured in pit-traps covering an area of approximately 60 ha. The climate is arid and rainfall was variable with a sequence of dry, wet, and dry years. In response to dry conditions in the first year of the study, there was little reproduction and virtually no recruitment for any species except C. pantherinus. Adult survivorship over the first 12 mo of the study ranged from 25-40%. Reproductive activity was higher during the mesic conditions in the second year of the study and two cohorts of juveniles hatched; one in summer (December/January) and one in autumn (April). Most of the adults (> 90%) of four species died after reproductive activity was complete in the second year. The exception was C. pantherinus in which only 70% of the adult population may have died. Juvenile survival during the first year of life ranged from 10-25%. Estimated longevity of adults based on growth rates over 3 yr was from 4-6 yr. Under normal conditions (arid), adult Ctenotus may not reproduce each year but during the infrequent favorable years individuals invest large amounts of energy in reproduction and consequently experience widespread mortality. The life-history strategies of most species of Ctenotus studied seem to be most consistent with predictions of demographic (bet-hedging) life-history models. UNIV SYDNEY, SYDNEY, NSW 2006, AUSTRALIA James, Craig/D-7001-2011 BALLINGER R E, 1978, Southwestern Naturalist, V23, P641, DOI 10.2307/3671186; Ballinger R.E., 1983, P241; BALLINGER RE, 1979, ECOLOGY, V60, P901, DOI 10.2307/1936858; BALLINGER RE, 1973, ECOLOGY, V54, P269, DOI 10.2307/1934336; BARBAULT R, 1974, Terre et la Vie, V28, P352; BELLIS EDWARD D., 1964, HERPETO LOGICA, V20, P9; BERRY K H, 1974, University of California Publications in Zoology, V101, P1; Blair F. W., 1960, RUSTY LIZARD POPULAT; BOSTIC DL, 1965, SW NAT, V10, P279; BURNHAM KP, 1979, ECOLOGY, V60, P927, DOI 10.2307/1936861; Carpenter C. C., 1959, Herpetologica, V15, P81; Caughley G, 1977, ANAL VERTEBRATE POPU; CHAO A, 1987, BIOMETRICS, V43, P783, DOI 10.2307/2531532; Christiansen J. L., 1971, American Mus Novit, VNo. 2442, P1; COGGER HG, 1978, AUST J ZOOL, V26, P653, DOI 10.1071/ZO9780653; COGGER HG, 1986, REPTILES AMPHIBIANS; CREUSERE FM, 1982, HERPETOLOGICAL COMMU, P121; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; Dunham A. E., 1981, MISC PUBL MUS ZOOL, V158, P1; DUNHAM AE, 1982, HERPETOLOGICA, V38, P208; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; DUNLOP J N, 1982, Records of the Western Australian Museum, V10, P47; FERGUSSON B, 1986, AUST WILDLIFE RES, V13, P287; FERNER JW, 1974, COPEIA, P332, DOI 10.2307/1442527; GRIFFIN GF, 1985, J ARID ENVIRON, V9, P63, DOI 10.1016/S0140-1963(18)31272-2; HULSE A C, 1981, Annals of Carnegie Museum, V50, P353; JAMES CD, 1991, COPEIA, P744, DOI 10.2307/1446402; JAMES CD, 1991, OECOLOGIA, V85, P553, DOI 10.1007/BF00323768; JAMES CD, 1991, IN PRESS J HERPETOL; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; JONES SM, 1987, OECOLOGIA, V73, P53, DOI 10.1007/BF00376977; JONES SM, 1987, ECOLOGY, V68, P1828, DOI 10.2307/1939874; JUDD F W, 1975, Herpetologica, V31, P137; KITCHENER DJ, 1986, AUST WILDLIFE RES, V13, P13; LESLIE PH, 1952, BIOMETRIKA, V39, P363, DOI 10.1093/biomet/39.3-4.363; MAC ARTHUR ROBERT H., 1967; MASCANZONI D, 1986, ECOL ENTOMOL, V11, P387, DOI 10.1111/j.1365-2311.1986.tb00317.x; MORTON SR, 1988, AM NAT, V132, P237, DOI 10.1086/284847; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; PARKER W S, 1972, Herpetologica, V28, P360; PAULISSEN MA, 1988, AM MIDL NAT, V120, P355, DOI 10.2307/2426007; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1971, COPEIA, P527; PIANKA ER, 1970, ECOLOGY, V51, P703, DOI 10.2307/1934053; POLLOCK KH, 1982, J WILDLIFE MANAGE, V46, P752, DOI 10.2307/3808568; REYNOLDS RP, 1982, SOUTHWEST NAT, V27, P161, DOI 10.2307/3671140; ROSE B, 1981, ECOLOGY, V62, P706, DOI 10.2307/1937739; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Seber G. A. F., 1982, ESTIMATION ANIMAL AB; SEBER GAF, 1965, BIOMETRIKA, V52, P249; SEBER GAF, 1986, BIOMETRICS, V42, P267, DOI 10.2307/2531049; SIMON CA, 1976, ECOLOGY, V57, P1317, DOI 10.2307/1935057; SIMON CA, 1975, ECOLOGY, V56, P993, DOI 10.2307/1936311; STAFFORD SMITH DM, 1990, J ARID ENVIRON, V18, P255; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STORR G M, 1968, Journal of the Royal Society of Western Australia, V51, P97; Storr G. M., 1981, LIZARDS W AUSTR; Tinkle D. W., 1967, Miscellaneous Publications Museum of Zoology University of Michigan, VNo. 132, P1; TINKLE DW, 1967, ECOLOGY, V48, P166, DOI 10.2307/1933431; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; TINKLE DW, 1986, COPEIA, P1; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; VANDAMME R, 1987, HERPETOLOGICA, V43, P405; WHITFORD W G, 1977, Herpetologica, V33, P54; WHITFORD WG, 1976, J MAMMAL, V57, P351, DOI 10.2307/1379694; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WILSON KR, 1985, J MAMMAL, V66, P13, DOI 10.2307/1380951; ZENG ZY, 1987, J MAMMAL, V68, P656, DOI 10.2307/1381598 70 51 55 1 9 HERPETOLOGISTS LEAGUE EMPORIA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST, EMPORIA, KS 66801-5087 USA 0018-0831 1938-5099 HERPETOLOGICA Herpetologica JUN 1991 47 2 194 210 17 Zoology Zoology GK038 WOS:A1991GK03800005 2019-02-26 J BONHAM, CD; COTTRELL, TR; MITCHELL, JE BONHAM, CD; COTTRELL, TR; MITCHELL, JE INFERENCES FOR LIFE-HISTORY STRATEGIES OF ARTEMISIA-TRIDENTATA SUBSPECIES JOURNAL OF VEGETATION SCIENCE English Article ARTEMISIA-TRIDENTATA SSP TRIDENTATA; ARTEMISIA-TRIDENTATA SSP WYOMINGENSIS; ARTEMISIA-TRIDENTATA SSP VASEYANA; COLORADO; COMPETITOR; DISTURBANCE; MULTIVARIATE ANALYSIS; SAGEBRUSH; STRATEGY, STRESS-TOLERANCE Communities dominated by Artemisia tridentata ssp. tridentata, A. tridentata ssp. wyomingensis, and A. tridentata ssp. vaseyana, found in the Piceance Basin of western Colorado, were evaluated for life history strategy. Species cover data were analyzed using Grime's (1984) triangular model. Then a canonical analysis was conducted to obtain an ordination of relative species cover. Results from these two analyses were then used to infer strategy differences among life histories of subspecies, based on the respective plant community associates. These differences were found to be consistent with the divergent evolution assumed to have occurred in this species. The primary ordination axis was interpreted as an elevation-moisture gradient. Further analysis of soil data by factor analysis also separated the three Artemisia subspecies along a soil texture gradient. BONHAM, CD (reprint author), COLORADO STATE UNIV,DEPT RANGE SCI,FT COLLINS,CO 80523, USA. 0 14 14 0 11 OPULUS PRESS UPPSALA AB KNIVSTA APELSINVAGEN 47, S 741 00 KNIVSTA, SWEDEN 1100-9233 J VEG SCI J. Veg. Sci. JUN 1991 2 3 339 344 10.2307/3235925 6 Plant Sciences; Ecology; Forestry Plant Sciences; Environmental Sciences & Ecology; Forestry GB683 WOS:A1991GB68300008 2019-02-26 J WILLIAMS, DD WILLIAMS, DD LIFE-HISTORY TRAITS OF AQUATIC ARTHROPODS IN SPRINGS MEMOIRS OF THE ENTOMOLOGICAL SOCIETY OF CANADA English Article Springs are especially useful for examining questions related to life history because they are widespread, and because they include not only the most predictable of fresh-water habitats but also the most adverse (hot springs). Permanent springs tend to be stable environments, particularly in terms of temperature, discharge, and substrate. Extreme habitats such as hot springs can be ideal for studying biotic responses to environmental features because they vary little in certain factors and so do not conceal the mechanisms at work. This paper reviews the known life history and associated community traits of spring arthropods in terms of broad categories of selection forces thought to be acting in these habitats, and also examines the biotic consequences of stable environmental temperature. The data, although limited, show most support for the deterministic view of life history evolution in that traits of cold and hot permanent spring faunas tend to conform to those of K- and A-selected species, respectively. Non-conformities exist however, and data are totally lacking for springs that flow intermittently. A model continuum of spring types from the stable to the unstable and from the benign to the adverse is proposed which predicts the biological properties of communities living in little-studied spring types. The stable and/or adverse temperature regimens of springs are thought to impinge on many aspects of the biology of their faunas but most relationships (e.g. physiological, phenological) are based on data that are correlative, circumstantial, or laboratory based. Manipulative field tests are advocated to establish definite causative links. Wide scope exists for further research on the life history and community traits of spring arthropods. WILLIAMS, DD (reprint author), UNIV TORONTO,DIV LIFE SCI,SCARBOROUGH CAMPUS,1265 MIL TRAIL,SCARBOROUGH M1C 1A4,ONTARIO,CANADA. 0 2 2 0 2 ENTOMOL SOC CANADA OTTAWA 393 WINSTON AVE, OTTAWA ON K2A 1Y8, CANADA 0071-075X MEM ENTOMOL SOC CAN Mem. Entomol. Soc. Can. SUM 1991 155 63 87 25 Entomology Entomology FU071 WOS:A1991FU07100005 2019-02-26 J HOULE, D HOULE, D GENETIC COVARIANCE OF FITNESS CORRELATES - WHAT GENETIC CORRELATIONS ARE MADE OF AND WHY IT MATTERS EVOLUTION English Article EVOLUTIONARY CONSTRAINT; LIFE HISTORY; QUANTITATIVE GENETICS MUTATION-SELECTION BALANCE; LIFE-HISTORY EVOLUTION; GENOTYPE-ENVIRONMENT INTERACTION; DROSOPHILA-MELANOGASTER; QUANTITATIVE GENETICS; DEVELOPMENTAL CONSTRAINTS; ANTAGONISTIC PLEIOTROPY; NATURAL-POPULATIONS; AFFECTING VIABILITY; REPRODUCTION The genetic variance-covariance matrix, G, is determined in part by functional architecture, the pathways by which variation in genotype influences phenotype. I develop a simple architectural model for G for two traits under directional selection constrained by their dependence on a common limiting resource. I assume that genetic variance is maintained by mutation-selection balance. The relative numbers of loci that play a role in acquiring versus allocating a limiting resource play a crucial role in determining genetic covariance. If many loci are involved in acquiring a resource, genetic covariance may be either negative or positive at equilibrium, depending on the fitness function and the input of mutational variance. The form of G does not necessarily reveal the constraint on resource acquisition inherent in the system, and therefore studies estimating G do not test for the existence of life-history tradeoffs. Characters may evolve in patterns that are unpredictable from G. Experiments are suggested that would indicate if this model could explain observations of positive genetic covariance. N CAROLINA STATE UNIV, DEPT STAT, RALEIGH, NC 27695 USA; SUNY STONY BROOK, DEPT ECOL & EVOLUT, STONY BROOK, NY 11794 USA Rohlf, F/A-8710-2008 Houle, David/0000-0002-8095-3156 ARTAVANISTSAKONAS S, 1988, TRENDS GENET, V4, P95, DOI 10.1016/0168-9525(88)90096-0; ASMUSSEN MA, 1990, GENETICS, V125, P215; BARTON NH, 1990, GENETICS, V124, P773; BARTON NH, 1987, GENET RES, V49, P157, DOI 10.1017/S0016672300026951; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.genet.23.1.337; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; BENDER W, 1983, SCIENCE, V221, P23, DOI 10.1126/science.221.4605.23; BILLINGTON HL, 1988, EVOLUTION, V42, P1267, DOI 10.1111/j.1558-5646.1988.tb04186.x; Bulmer M. G., 1980, MATH THEORY QUANTITA; CASPARI E, 1952, EVOLUTION, V6, P1, DOI 10.2307/2405500; Cavalier-Smith T., 1985, P69; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHARLESWORTH B, 1987, SEXUAL SELECTION TES, P21; CHARNOV EL, 1989, HEREDITY, V62, P113, DOI 10.1038/hdy.1989.15; CHEVERUD JM, 1982, EVOLUTION, V36, P499, DOI 10.1111/j.1558-5646.1982.tb05070.x; CHEVERUD JM, 1984, J THEOR BIOL, V110, P155, DOI 10.1016/S0022-5193(84)80050-8; Clark A, 1987, GENETIC CONSTRAINTS, P25; CLARK AG, 1987, AM NAT, V129, P933; CLARK AG, 1990, EVOLUTION, V44, P637, DOI 10.1111/j.1558-5646.1990.tb05944.x; Crow J.F., 1983, Genetics and Biology of Drosophila, V3c, P1; Falconer D.S., 1981, INTRO QUANTITATIVE G; FELL DA, 1985, EUR J BIOCHEM, V148, P555, DOI 10.1111/j.1432-1033.1985.tb08876.x; FUTUYMA DJ, 1987, EVOLUTION, V41, P269, DOI 10.1111/j.1558-5646.1987.tb05796.x; GARLAND T, 1988, EVOLUTION, V42, P335, DOI 10.1111/j.1558-5646.1988.tb04137.x; GILLESPIE JH, 1989, GENETICS, V121, P129; GILLESPIE JH, 1984, GENETICS, V107, P321; Hegmann J.P., 1982, P177; HOULE D, 1989, GENETICS, V123, P789; HOULE D, 1991, UNPUB GENETICS; Istock C.A., 1983, PROCEEDINGS OF THE ANNUAL BIOLOGY COLLOQUIUM (OREGON STATE UNIVERSITY), P61; Jinks J. L., 1983, Heterosis. Reappraisal of theory and practice, P1; KACSER H, 1981, GENETICS, V97, P639; KACSER H, 1987, TRENDS BIOCHEM SCI, V12, P5, DOI 10.1016/0968-0004(87)90005-3; KEIGHTLEY PD, 1989, GENETICS, V121, P869; KEIGHTLEY PD, 1987, GENETICS, V117, P319; KIMURA M, 1978, P NATL ACAD SCI USA, V75, P6168, DOI 10.1073/pnas.75.12.6168; KONDRASHOV AS, 1988, NATURE, V336, P435, DOI 10.1038/336435a0; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1980, GENETICS, V94, P203; Lewontin R., 1974, GENETIC BASIS EVOLUT; LINDSLEY DL, 1968, CARNEGIE I WASH PUBL, V552; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; MACKAY TFC, 1986, GENET RES, V48, P77, DOI 10.1017/S0016672300024794; MITCHELLOLDS T, 1986, EVOLUTION, V40, P107, DOI 10.1111/j.1558-5646.1986.tb05722.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MUKAI T, 1971, GENETICS, V69, P385; MUKAI T, 1972, GENETICS, V72, P335; MUKAI T, 1982, MOL EVOLUTION PROTEI, P81; MUKAI T, 1988, 2ND P INT C QUANT GE, P21; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DN, 1986, EVOLUTION, V40, P1338, DOI 10.1111/j.1558-5646.1986.tb05757.x; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; ROFF DA, 1987, HEREDITY, V58, P103, DOI 10.1038/hdy.1987.15; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; SCHEINER SM, 1989, EVOL ECOL, V3, P51, DOI 10.1007/BF02147931; SIMMONS MJ, 1977, ANNU REV GENET, V11, P49, DOI 10.1146/annurev.ge.11.120177.000405; SIMMONS MJ, 1980, GENETICS, V94, P467; SIMMS EL, 1989, EVOLUTION, V43, P573, DOI 10.1111/j.1558-5646.1989.tb04253.x; SLATKIN M, 1987, EVOLUTION, V41, P799, DOI 10.1111/j.1558-5646.1987.tb05854.x; SMITH JM, 1985, Q REV BIOL, V60, P265, DOI 10.1086/414425; SVED JA, 1970, GENETICS, V66, P97; SVED JA, 1971, GENET RES, V18, P97, DOI 10.1017/S0016672300012453; TAKANO T, 1987, GENETICS, V117, P245; TURELLI M, 1984, THEOR POPUL BIOL, V25, P138, DOI 10.1016/0040-5809(84)90017-0; TURELLI M, 1985, GENETICS, V111, P165; TURELLI M, 1988, 2ND P INT C QUANT GE, P601; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WAGNER GP, 1989, GENETICS, V122, P223; WESTERHOFF HV, 1987, BIOTECHNOL BIOENG, V30, P101, DOI 10.1002/bit.260300115; Wright S, 1968, EVOLUTION GENETICS P, V1; YOSHIMARU H, 1985, JPN J GENET, V60, P307, DOI 10.1266/jjg.60.307; ZENG ZB, 1988, EVOLUTION, V42, P363, DOI 10.1111/j.1558-5646.1988.tb04139.x; ZENG ZB, 1989, GENET RES, V53, P215, DOI 10.1017/S0016672300028196 81 422 429 3 84 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAY 1991 45 3 630 648 10.2307/2409916 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity FQ984 WOS:A1991FQ98400010 28568816 Bronze 2019-02-26 J DOSSANTOS, J; JOBLING, M DOSSANTOS, J; JOBLING, M FACTORS AFFECTING GASTRIC EVACUATION IN COD, GADUS-MORHUA L, FED SINGLE-MEALS OF NATURAL PREY JOURNAL OF FISH BIOLOGY English Article GADUS-MORHUA; GASTRIC EVACUATION LIFE-HISTORY STRATEGIES; FOOD-CONSUMPTION; ATLANTIC SALMON; EMPTYING TIME; RATES; GROWTH; FISH; SIZE; TEMPERATURE; PATTERNS DOSSANTOS, J (reprint author), UNIV TROMSO,NORWEGIAN COLL FISHERY SCI,N-9000 TROMSO,NORWAY. Jobling, Malcolm/F-6036-2011 Jobling, Malcolm/0000-0003-2806-4439 BRODEUR RD, 1984, J FISH BIOL, V24, P287, DOI 10.1111/j.1095-8649.1984.tb04800.x; BROPHY CM, 1986, DIGEST DIS SCI, V31, P799, DOI 10.1007/BF01296046; BURNS J, 1986, VET RADIOLOGY, V27, P169, DOI 10.1111/j.1740-8261.1986.tb00028.x; DURBIN EG, 1983, FISH B-NOAA, V81, P437; ELASHOFF JD, 1982, GASTROENTEROLOGY, V83, P1306; ELLIOTT JM, 1978, J ANIM ECOL, V47, P977, DOI 10.2307/3682; ELLIOTT JM, 1972, FRESHWATER BIOL, V2, P1, DOI DOI 10.1111/J.1365-2427.1972.TB01575.X; Fange R., 1979, FISH PHYSIOL, V8, P161; FLOWERDEW MW, 1979, J FISH BIOL, V14, P229, DOI 10.1111/j.1095-8649.1979.tb03514.x; HALL SJ, 1988, J FISH BIOL, V32, P783, DOI 10.1111/j.1095-8649.1988.tb05417.x; HAWKINS AD, 1985, J CONSEIL, V42, P11; HERSHEY AE, 1985, CAN J FISH AQUAT SCI, V42, P483, DOI 10.1139/f85-065; HIGGINS PJ, 1985, NUTRITION FEEDING FI, P244; JOBLING M, 1977, J FISH BIOL, V10, P291, DOI 10.1111/j.1095-8649.1977.tb05134.x; JOBLING M, 1987, J FISH BIOL, V30, P299, DOI 10.1111/j.1095-8649.1987.tb05754.x; JOBLING M, 1982, J FISH BIOL, V21, P357, DOI 10.1111/j.1095-8649.1982.tb02841.x; JONES R, 1974, J CONSEIL, V35, P225; LAMBERT TC, 1985, CAN J ZOOL, V63, P817, DOI 10.1139/z85-120; MACPHERSON E, 1989, J FISH BIOL, V35, P37, DOI 10.1111/j.1095-8649.1989.tb03391.x; MEHL S, 1989, RAPPORTS PROCES VERB, V188, P185; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P21, DOI 10.1098/rspb.1989.0010; OLSON RJ, 1986, ENVIRON BIOL FISH, V16, P183, DOI 10.1007/BF00005170; PERSSON L, 1986, ENVIRON BIOL FISH, V16, P51, DOI 10.1007/BF00005159; PERSSON L, 1981, FRESHWATER BIOL, V11, P131, DOI 10.1111/j.1365-2427.1981.tb01249.x; Smith L.S., 1989, FISH NUTR, V2, P331; SNEE RD, 1977, TECHNOMETRICS, V19, P415, DOI 10.2307/1267881; SOKAL R., 1981, BIOMETRY; Talbot C., 1985, P125; TYLER AV, 1970, J FISH RES BOARD CAN, V27, P1177, DOI 10.1139/f70-140 30 62 62 0 1 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-1112 J FISH BIOL J. Fish Biol. MAY 1991 38 5 697 713 17 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology FN974 WOS:A1991FN97400008 2019-02-26 J HART, RC HART, RC FOOD AND SUSPENDED SEDIMENT INFLUENCES ON THE NAUPLIAR AND COPEPODID DURATIONS OF FRESH-WATER COPEPODS - COMPARATIVE-STUDIES ON TROPODIAPTOMUS AND METADIAPTOMUS JOURNAL OF PLANKTON RESEARCH English Article POPULATION-DYNAMICS; COMMUNITY STRUCTURE; MARINE COPEPODS; SOUTH-AFRICA; LE-ROUX; ZOOPLANKTON; WATER; TURBIDITY; RESERVOIR; GROWTH Post-embryonic durations of Tropodiaptomus spectabilis (Kiefer) and Metadiaptomus colonialis (van Douwe) were determined at 20-degrees-C in laboratory factorial experiments involving four algal food enrichment levels (0, 100, 500 and 2500-mu-g l-1 C of Selenastrum added to 20-mu-m filtered water from respective source-lakes) and three suspended sediment levels (filtered, natural, and 2- to 3-fold sediment-enriched lake water). Food effects (30, 75, 225 and 600-mu-g l-1 C of Scenedesmus) were tested alone at 20-degrees-C for Metadiaptomus meridianus (van Douwe). Total naupliar (D(n)) and total copepodid (D(c)) development times [summed to give total post-embryonic duration (D(t))] and metasome lengths at maturity were measured. In all taxa, food supply maximally affected D(c) values 2- to 3-fold, whereas its maximal influence on D(n) values was relatively slight (generally approximately 25%). The measured effect of food supply on D(t) was as strong as the predicted influence of temperature over an appropriate annual range. Food supply influenced size at maturity, and probably thereby fecundity, thus exerting additional demographic influences. Sediment effects were inconsistent, and quantitatively weaker than food effects. Total development of T. spectabilis was approximately 20% faster, and that of M. colonialis approximately 15% slower in sediment-enriched than in natural sediment level treatments; contrasting baseline sediment levels (2-3 times higher for the latter species) and different enrichment procedures confound interpretation. Unexpectedly, and inexplicably, development almost invariably failed in sediment-free water, implying an apparent dependency on inorganic particles in these taxa. This contrasts with the generally adverse influences of high sediment concentrations upon zooplankton. Minimal male and female D(t) values at 20-degrees-C were comparable and significantly longer in M. colonialis (15.5 and 17.7 days) and M. meridianus (16.5 and 21.5 days) than in T. spectabilis (11.7 and 12.2 days). These differences in duration are ecologically incongruous in relation to expected r - K life history strategies of genera characteristic of temporary or semi-permanent waters and permanent waters respectively. HART, RC (reprint author), UNIV NATAL,DEPT ZOOL & ENTOMOL,POB 375,PIETERMARITZBURG 3200,SOUTH AFRICA. ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; Allanson BR, 1990, INLAND WATERS SO AFR; ALLEN MM, 1968, J PHYCOL, V4, P1, DOI 10.1111/j.1529-8817.1968.tb04667.x; ARRUDA JA, 1983, ECOLOGY, V64, P1225, DOI 10.2307/1937831; BOTTRELL HH, 1976, NORW J ZOOL, V24, P419; Corkett C. J., 1986, SYLLOGEUS, P539; CORKETT CJ, 1970, HELGOLAND WISS MEER, V20, P318, DOI 10.1007/BF01609909; DAVIES BR, 1985, HYDROBIOLOGIA, V125, P1, DOI 10.1007/BF00045922; DEMOTT WR, 1988, LIMNOL OCEANOGR, V33, P397, DOI 10.4319/lo.1988.33.3.0397; Downing J. A, 1984, MANUAL METHODS ASSES, P1; Dumont H. J., 1980, EVOLUTION ECOLOGY ZO, P685; DUMONT HJ, 1984, HYDROBIOLOGIA, V113, P313, DOI 10.1007/BF00026618; Dussart B, 1989, CRUSTACEANA S, V15, P1; GOPHEN M, 1981, HYDROBIOLOGIA, V80, P43, DOI 10.1007/BF00130679; Gras R., 1981, Revue d'Hydrobiologie Tropicale, V14, P39; HART RC, 1986, FRESHWATER BIOL, V16, P351, DOI 10.1111/j.1365-2427.1986.tb00976.x; HART RC, 1990, HYDROBIOLOGIA, V206, P175, DOI 10.1007/BF00014085; HART RC, 1988, FRESHWATER BIOL, V19, P123, DOI 10.1111/j.1365-2427.1988.tb00334.x; HART RC, 1987, FRESHWATER BIOL, V18, P287, DOI 10.1111/j.1365-2427.1987.tb01315.x; HEINLE DR, 1969, J FISH RES BOARD CAN, V26, P150, DOI 10.1139/f69-015; HERZIG A, 1983, HYDROBIOLOGIA, V100, P65, DOI 10.1007/BF00027423; HERZIG A, 1980, HOLARCTIC ECOL, V3, P50; HUNTLEY M, 1984, AM NAT, V124, P455, DOI 10.1086/284288; JULLER E, 1937, ARCH PROTISTENKD, V89, P53; Kiefer F., 1978, BINNENGEWASSER, V26, P1; LAMPERT W, 1985, ERGEB LIMNOL, V21, P1; Marzolf G.R., 1980, RESTORATION LAKES IN, P53; MCCABE GD, 1983, AM MIDL NAT, V110, P324, DOI 10.2307/2425273; MCLAREN IA, 1978, J FISH RES BOARD CAN, V35, P1330, DOI 10.1139/f78-208; MCLAREN IA, 1989, CAN J ZOOL, V67, P559, DOI 10.1139/z89-079; MULLIN MM, 1967, LIMNOL OCEANOGR, V12, P657, DOI 10.4319/lo.1967.12.4.0657; PAFFENHOFER GA, 1970, HELGOLAND WISS MEER, V20, P346, DOI 10.1007/BF01609912; Peters R H., 1984, MANUAL METHODS ASSES, P336; Reynolds CS, 1984, ECOLOGY FRESHWATER P; ROBARTS R D, 1981, Journal of the Limnological Society of Southern Africa, V7, P72; ROBINSON MARYANNE, 1957, PUBL INST MARINE SCI [PORT ARANSAS TEXAS], V4, P265; ROCHA O, 1985, J PLANKTON RES, V7, P279, DOI 10.1093/plankt/7.2.279; SCHOLTZ S, 1988, FRESHWATER BIOL, V20, P177, DOI 10.1111/j.1365-2427.1988.tb00440.x; SELKIRK WT, 1982, HYDROBIOLOGIA, V97, P151, DOI 10.1007/BF00011968; SOMMER U, 1986, ARCH HYDROBIOL, V106, P433; ZUREK R, 1980, Acta Hydrobiologica, V22, P449 41 25 28 0 4 OXFORD UNIV PRESS UNITED KINGDOM OXFORD WALTON ST JOURNALS DEPT, OXFORD, ENGLAND OX2 6DP 0142-7873 J PLANKTON RES J. Plankton Res. MAY 1991 13 3 645 660 10.1093/plankt/13.3.645 16 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography FH422 WOS:A1991FH42200013 2019-02-26 J MALTBY, L MALTBY, L POLLUTION AS A PROBE OF LIFE-HISTORY ADAPTATION IN ASELLUS-AQUATICUS (ISOPODA) OIKOS English Article ERPOBDELLA-OCTOCULATA HIRUDINEA; INTRASPECIFIC VARIATION; TOXICITY TESTS; GAMMARUS-PULEX; CRUSTACEA; INVERTEBRATES; EVOLUTION; GROWTH; FOOD; SIZE Habitat classification schemes attempt to predict the types of life-history patterns that should be selected for in particular habitats. Several such schemes have been proposed, all of which are based on habitat characteristics relating to productivity, disturbance and/or biotic interactions. As environmental pollution may impact one or all of these habitat characteristics, it should act as a selection pressure resulting in life-history modification and could therefore be used to test predictions arising from life-history theory. Two populations of the freshwater isopod, Asellus aquaticus (L.), separated by an effluent discharge from a disused coal mine, were studied to investigate whether they had adapted to the pollution by modifying their life history in accordance with the predictions of life-history theory. Using the classification scheme proposed by Sibly and Calow it was predicted that asellids below the discharge should invest less in reproduction and allocate this investment into fewer, larger offspring than asellids at the site above the discharge. Both these predictions were supported by field observations. Laboratory studies indicated that the observed differences in reproductive biology had a genetic basis and were therefore due to adaptation and not acclimation. MALTBY, L (reprint author), UNIV SHEFFIELD,DEPT ANIM & PLANT SCI,SHEFFIELD S10 2TN,S YORKSHIRE,ENGLAND. Maltby, Lorraine/A-6702-2012 Maltby, Lorraine/0000-0003-3817-4033 Andersson E., 1969, Report Institute of Freshwater Research Drottningholm, VNo. 49, P5; ASTON RJ, 1980, FRESHWATER BIOL, V10, P1, DOI 10.1111/j.1365-2427.1980.tb01175.x; BARLOCHER F, 1985, BOT J LINN SOC, V91, P83, DOI 10.1111/j.1095-8339.1985.tb01137.x; BARLOCHER F, 1973, ARCH HYDROBIOL, V72, P501; BRADSHAW AD, 1989, BIOL J LINN SOC, V37, P137, DOI 10.1111/j.1095-8312.1989.tb02099.x; BRADSHAW AD, 1981, STUDIES BIOL, V130; BUELER CM, 1984, FLA ENTOMOL, V67, P393, DOI 10.2307/3494718; BUIKEMA AL, 1979, J FISH RES BOARD CAN, V36, P321, DOI 10.1139/f79-050; CHAMBERS MR, 1977, HYDROBIOLOGIA, V53, P147, DOI 10.1007/BF00029293; FRASER J, 1978, WATER RES, V12, P637, DOI 10.1016/0043-1354(78)90145-8; GIUDICI MD, 1986, ENVIRON TECHNOL LETT, V7, P45; GIUDICI MD, 1986, B SOC IT BIOL, V62, P321; GOLLADAY SW, 1983, HOLARCTIC ECOL, V6, P157; GREEN DWJ, 1986, ARCH ENVIRON CON TOX, V15, P465, DOI 10.1007/BF01056557; GRIME P, 1989, BIOL J LINN SOC, V37, P3; KAUSHIK NK, 1971, ARCH HYDROBIOL, V68, P465; KAUSHIK NK, 1968, J ECOL, V56, P229, DOI 10.2307/2258076; KOSTALOS M, 1976, OIKOS, V27, P512, DOI 10.2307/3543471; MALTBY L, 1986, J ANIM ECOL, V55, P739, DOI 10.2307/4751; MALTBY L, 1987, ANN SOC ROY ZOOL BEL, V117, P105; MALTBY L, 1986, J ANIM ECOL, V55, P721, DOI 10.2307/4750; MALTBY L, 1987, ENVIRON POLLUT, V43, P271, DOI 10.1016/0269-7491(87)90180-1; MALTBY L, 1991, WATER RES, V25, P247, DOI 10.1016/0043-1354(91)90003-9; MARCUS JH, 1978, FRESHWATER BIOL, V8, P505, DOI 10.1111/j.1365-2427.1978.tb01473.x; MIGLIORE L, 1982, INT J INVER REP DEV, V4, P359; MURPHY PM, 1982, FRESHWATER BIOL, V12, P435, DOI 10.1111/j.1365-2427.1982.tb00638.x; NAYLOR C, 1990, WATER RES, V24, P757, DOI 10.1016/0043-1354(90)90032-2; OKLAND KA, 1978, HYDROBIOLOGIA, V59, P243, DOI 10.1007/BF00036504; RIDLEY M, 1979, Z TIERPSYCHOL, V51, P380; ROSSI L, 1985, OIKOS, V44, P175, DOI 10.2307/3544059; Sibly R., 1985, P75; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STEEL E. A., 1961, PROC ZOOL SOC LONDON, V137, P71; SUTCLIFFE DW, 1981, FRESHWATER BIOL, V11, P183, DOI 10.1111/j.1365-2427.1981.tb01252.x; TOLBA MR, 1981, AQUAT TOXICOL, V1, P101, DOI 10.1016/0166-445X(81)90033-3; VANDEL A, 1926, B SOC ZOOL FRANCE, V51, P161; Wood R.J., 1981, GENETIC CONSEQUENCES, P97; WRONA FJ, 1986, CAN J FISH AQUAT SCI, V43, P2025, DOI 10.1139/f86-248 40 36 37 0 20 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos MAY 1991 61 1 11 18 10.2307/3545402 8 Ecology Environmental Sciences & Ecology FR485 WOS:A1991FR48500002 2019-02-26 J KIRKWOOD, TBL; ROSE, MR KIRKWOOD, TBL; ROSE, MR EVOLUTION OF SENESCENCE - LATE SURVIVAL SACRIFICED FOR REPRODUCTION PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article LONGER-LIVED RODENTS; LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; POSTPONED SENESCENCE; ANTAGONISTIC PLEIOTROPY; SELECTION; SPAN; MECHANISMS; RESISTANCE; THOUGHTS In so far as it is associated with declining fertility and increasing mortality, senescence is directly detrimental to reproductive success. Natural selection should therefore act in the direction of postponing or eliminating senescence from the life history. The widespread occurrence of senescence is explained by observing that (i) the force of natural selection is generally weaker at late ages than at early ages, and (ii) the acquisition of greater longevity usually involves some cost. Two convergent theories are the 'antagonistic pleiotropy' theory, based in population genetics, and the 'disposable soma' theory, based in physiological ecology. The antagonistic pleiotropy theory proposes that certain alleles that are favoured because of beneficial early effects also have deleterious later effects. The disposable soma theory suggests that because of the competing demands of reproduction less effort is invested in the maintenance of somatic tissues than is necessary for indefinite survival. UNIV CALIF IRVINE, DEPT ECOL & EVOLUT BIOL, IRVINE, CA 92717 USA KIRKWOOD, TBL (reprint author), NATL INST MED RES, MILL HILL, LONDON NW7 1AA, ENGLAND. Rose, Michael/0000-0002-7766-0731 BELL G, 1984, AM NAT, V124, P600, DOI 10.1086/284300; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; CHARLESWORTH B, 1988, GROWTH DEVELOP AGING, V52, P211; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLARE MJ, 1985, HEREDITY, V55, P19, DOI 10.1038/hdy.1985.67; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Comfort A., 1979, BIOL SENESCENCE; EPSTEIN CJ, 1987, P NATL ACAD SCI USA, V84, P8044, DOI 10.1073/pnas.84.22.8044; Ewens W. J, 1979, MATH POPULATION GENE; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; FINCH CE, 1985, HDB BIOL AGING; Fisher R. A, 1958, GENETICAL THEORY NAT; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; GIESEL JT, 1979, EXP GERONTOL, V14, P323, DOI 10.1016/0531-5565(79)90044-5; GRAVES JL, 1988, J INSECT PHYSIOL, V34, P1021, DOI 10.1016/0022-1910(88)90201-6; GRAVES JL, 1990, GENETIC EFFECTS AGIN, V2, P59; HALDANE JBS, 1941, NEW PATHS GENETICS; Halliwell B., 1989, FREE RADICALS BIOL M; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HART RW, 1974, P NATL ACAD SCI USA, V71, P2169, DOI 10.1073/pnas.71.6.2169; HIPKISS AR, 1989, HUMAN AGEING LATER L, P15; JOHNSON TE, 1988, GROWTH DEVELOP AGING, V52, P207; JOHNSON TE, 1987, P NATL ACAD SCI USA, V84, P3777, DOI 10.1073/pnas.84.11.3777; KIDWELL JF, 1967, J HERED, V58, P169, DOI 10.1093/oxfordjournals.jhered.a107576; Kirkwood T.B.L., 1981, P165; KIRKWOOD T B L, 1986, P1, DOI 10.1017/CBO9780511753350.002; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1982, HUM GENET, V60, P101, DOI 10.1007/BF00569695; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Kirkwood TBL, 1985, HDB BIOL AGING, P27; KIRKWOOD TBL, 1986, ACCURACY MOL PROCESS; KIRKWOOD TBL, 1990, GENETIC EFFECTS AGIN, V2, P9; Lack D, 1954, NATURAL REGULATION A; LINTS FA, 1977, EVOLUTION, V31, P387, DOI 10.1111/j.1558-5646.1977.tb01020.x; LINTS FA, 1974, EXP GERONTOL, V9, P51, DOI 10.1016/0531-5565(74)90008-4; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; Luckinbill LS, 1987, EVOL ECOL, V1, P37, DOI 10.1007/BF02067267; LUCKINBILL LS, 1988, HEREDITY, V60, P367, DOI 10.1038/hdy.1988.54; LUCKINBILL LS, 1985, HEREDITY, V55, P9, DOI 10.1038/hdy.1985.66; Medawar P. B., 1946, MODERN Q, V1, P30; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MEDAWAR PB, 1955, CIBA F C AGEING, V1, P4; MEDVEDEV ZA, 1990, BIOL REV, V65, P375, DOI 10.1111/j.1469-185X.1990.tb01428.x; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; PROMISLOW D, 1991, UNPUB EVOLUTION; RATTAN SIS, 1989, INT REV CYTOL, V116, P47; REICHMAN OJ, 1984, AM NAT, V123, P752, DOI 10.1086/284237; ROBERTSON O, 1961, P NATL ACAD SCI USA, V47, P609, DOI 10.1073/pnas.47.4.609; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1990, GROWTH DEVELOP AGING, V54, P7; ROSE MR, 1988, GROWTH DEVELOP AGING, V52, P209; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1984, CAN J ZOOL, V62, P1576, DOI 10.1139/z84-230; Sacher G. A., 1978, The genetics of aging., P151; SAVAGEAU MA, 1979, P NATL ACAD SCI USA, V76, P4507, DOI 10.1073/pnas.76.9.4507; Sedgwick SG, 1986, ACCURACY MOL PROCESS, P233; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SMITH JM, 1962, PROC R SOC SER B-BIO, V157, P115, DOI 10.1098/rspb.1962.0065; SMITH JM, 1958, J EXP BIOL, V35, P832; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TOWNSEND CR, 1981, PHYSL ECOLOGY EVOLUT; Warner H. R, 1987, MODERN BIOL THEORIES; WATTIAUX JM, 1968, EVOLUTION, V22, P406, DOI 10.1111/j.1558-5646.1968.tb05908.x; WATTIAUX JM, 1968, EXP GERONTOL, V3, P55, DOI 10.1016/0531-5565(68)90056-9; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WODINSKY J, 1977, SCIENCE, V198, P948, DOI 10.1126/science.198.4320.948 78 581 592 7 184 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. APR 29 1991 332 1262 15 24 10.1098/rstb.1991.0028 10 Biology Life Sciences & Biomedicine - Other Topics FK630 WOS:A1991FK63000002 1677205 2019-02-26 J MUELLER, LD MUELLER, LD ECOLOGICAL DETERMINANTS OF LIFE-HISTORY EVOLUTION PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES English Article DEPENDENT NATURAL-SELECTION; K-SELECTION; R-SELECTION; DROSOPHILA-MELANOGASTER; POPULATION PREDICTION; FITNESS COMPONENTS; COMPETITION; DYNAMICS; GROWTH; MODEL Density-dependent natural selection has been studied, empirically with laboratory populations of Drosophila melanogaster. Populations kept at very high and low population density have become differentiated with respect to important fitness-related traits. There is now some understanding of the behavioural and physiological basis of these differences. These studies have identified larval competitive ability and efficiency of food utilization as traits that are negatively correlated with respect to effects on fitness. Theory that illuminates and motivates additional research with this experimental system has been lacking. Current research has focused on models that incorporate many details of Drosophila ecology in laboratory environments. MUELLER, LD (reprint author), UNIV CALIF IRVINE,DEPT ECOL & EVOLUT BIOL,IRVINE,CA 92717, USA. NCRR NIH HHS [S07 RR07008] Bakker K., 1961, Archives Neerlandaises de Zoologie Leiden, V14, P200; BIERBAUM TJ, 1989, EVOLUTION, V43, P382, DOI 10.1111/j.1558-5646.1989.tb04234.x; BOTELLA LM, 1985, J INSECT PHYSIOL, V31, P179, DOI 10.1016/0022-1910(85)90118-0; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; BURNET B, 1977, GENET RES, V30, P149, DOI 10.1017/S0016672300017559; Charlesworth B., 1980, EVOLUTION AGE STRUCT; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; JOSHI A, 1988, EVOLUTION, V42, P1090, DOI 10.1111/j.1558-5646.1988.tb02527.x; JOSHI A, 1991, UNPUB DIRECTIONAL ST; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MCNAUGHTON SJ, 1975, AM NAT, V109, P251, DOI 10.1086/282995; MUELLER LD, 1988, P NATL ACAD SCI USA, V85, P4383, DOI 10.1073/pnas.85.12.4383; MUELLER LD, 1988, AM NAT, V132, P786, DOI 10.1086/284890; MUELLER LD, 1990, EVOL ECOL, V4, P290, DOI 10.1007/BF02270928; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1986, EVOLUTION, V40, P1354, DOI 10.1111/j.1558-5646.1986.tb05761.x; PACALA SW, 1985, AM NAT, V125, P385, DOI 10.1086/284349; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1972, AM NAT, V106, P581, DOI 10.1086/282798; Prout T., 1980, Evolutionary Biology (New York), V13, P1; PROUT T, 1971, GENETICS, V68, P127; PROUT T, 1971, GENETICS, V68, P151; PROUT T, 1985, AM NAT, V126, P521, DOI 10.1086/284436; PROUT T, 1965, EVOLUTION, V19, P546, DOI 10.2307/2406251; ROBERTSON FW, 1957, J GENET, V55, P428, DOI DOI 10.1007/BF02984061; ROUGHGARDEN J, 1985, ECOLOGY, V66, P54, DOI 10.2307/1941306; ROUGHGARDEN J, 1971, ECOLOGY, V52, P453, DOI 10.2307/1937628; SEWELL D, 1975, GENET RES CAMB, V24, P163; SLANSKY F, 1977, ECOL MONOGR, V47, P209, DOI 10.2307/1942617 31 16 16 0 7 ROYAL SOC LONDON LONDON 6 CARLTON HOUSE TERRACE, LONDON, ENGLAND SW1Y 5AG 0962-8436 PHILOS T ROY SOC B Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. APR 29 1991 332 1262 25 30 10.1098/rstb.1991.0029 6 Biology Life Sciences & Biomedicine - Other Topics FK630 WOS:A1991FK63000003 1677206 2019-02-26 J HARVEY, PH; KEYMER, AE HARVEY, PH; KEYMER, AE COMPARING LIFE HISTORIES USING PHYLOGENIES PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES English Article COMPLEX MALLOPHAGA; BODY SIZE; THOMOMYS RODENTIA; FOOD-HABITS; TRICHODECTIDAE; GEOMYIDAE; MAMMALS; BIRDS; REPRODUCTION; COEVOLUTION The comparative method as recently developed can be used to identify statistically independent instances of life-history evolution. When life-history traits show evidence for correlated evolutionary change with each other or with ecological differences, it is often possible to single out the trade-offs and selective forces responsible for the evolution of life-history diversity. Suites of life-history characters often evolve in concert, and recent optimality models incorporating few variables show promise for interpreting that evolution in terms of few selective forces. Because hosts provide well-defined environments for their parasites, when host-parasite phylogenies are congruent it is possible to test ideas about the evolution of particular life-history and size-related traits. HARVEY, PH (reprint author), UNIV OXFORD,DEPT ZOOL,S PARKS RD,OXFORD OX1 3PS,ENGLAND. ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; BLACKBURN TM, 1991, IN PRESS AUK; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; BROOKS DR, 1982, P HELM SOC WASH, V49, P76; Calder WA, 1974, AVIAN BIOL, V4, P259; CAMERON TWM, 1929, J HELMINTHOL, V24, P171; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FENCHEL T, 1974, OECOLOGIA, V14, P317, DOI 10.1007/BF00384576; Futuyma D. J, 1983, COEVOLUTION; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; HAFNER MS, 1988, NATURE, V332, P258, DOI 10.1038/332258a0; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HARVEY PH, 1989, COMP SOCIOECOLOGY, P305; HARVEY PH, 1991, IN PRESS AM NAT; HELLENTHAL RA, 1989, J KANSAS ENTOMOL SOC, V62, P245; HELLENTHAL RA, 1989, ANN ENTOMOL SOC AM, V82, P286, DOI 10.1093/aesa/82.3.286; HUGOT J-P, 1987, Bulletin du Museum National d'Histoire Naturelle Section A Zoologie Biologie et Ecologie Animales, V9, P341; HUGOT JP, 1985, ANN PARASIT HUM COMP, V60, P57, DOI 10.1051/parasite/198560157; LACK D, 1967, WILDFOWL, V19, P67; Law R, 1979, POPULATION DYNAMICS, P81; MCNAB BK, 1980, AM NAT, V116, P106, DOI 10.1086/283614; MCNAB BK, 1986, ECOL MONOGR, V56, P1, DOI 10.2307/2937268; MILLAR JS, 1977, EVOLUTION, V31, P370, DOI 10.1111/j.1558-5646.1977.tb01019.x; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; PAGEL MD, 1989, FOLIA PRIMATOL, V53, P203, DOI 10.1159/000156417; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PRICE RD, 1980, J MED ENTOMOL, V17, P298, DOI 10.1093/jmedent/17.4.298; PRICE RD, 1981, J MED ENTOMOL, V18, P1; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; QUENTIN JC, 1979, B MUS NAT HIST NATUR, V4, P1031; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; ROHWER FC, 1988, AUK, V105, P161; ROSS CR, 1987, J ZOOL, V217, P199; SACHER GA, 1978, BIOSCIENCE, V28, P297; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sandosham A. A., 1950, Journal of Helminthology, V24, P171; SIBLEY CG, 1988, AUK, V105, P409; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SKRJABIN KI, 1960, OXYURATA ANIMALS MAN; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; SWIHART RK, 1984, OIKOS, V43, P282, DOI 10.2307/3544145; TIMM RM, 1980, J MED ENTOMOL, V17, P126, DOI 10.1093/jmedent/17.2.126; TREVELYAN R, 1990, FUNCT ECOL, V4, P135, DOI 10.2307/2389332; TURNER JRG, 1975, NAT HIST, V84, P28; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; YEN W-C, 1973, Acta Zoologica Sinica, V19, P354 54 71 74 1 14 ROYAL SOC LONDON LONDON 6 CARLTON HOUSE TERRACE, LONDON, ENGLAND SW1Y 5AG 0962-8436 PHILOS T ROY SOC B Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. APR 29 1991 332 1262 31 39 10.1098/rstb.1991.0030 9 Biology Life Sciences & Biomedicine - Other Topics FK630 WOS:A1991FK63000004 2019-02-26 J CHARNOV, EL; BERRIGAN, D CHARNOV, EL; BERRIGAN, D DIMENSIONLESS NUMBERS AND THE ASSEMBLY RULES FOR LIFE HISTORIES PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES English Article MAMMALIAN REPRODUCTION; NATURAL-SELECTION; ADAPTIVE FEATURES; SEX DETERMINATION; GROUND-SQUIRRELS; GROWTH; AGE; EVOLUTION; MATURITY; POPULATION This paper reviews recent efforts to use certain dimensionless numbers (DLNs) to classify life histories in plants and animals. These DLNs summarize the relation between growth, mortality and maturation, and several groups of animals show interesting patterns with respect to their numeric values. Finally we focus on one DLN, the product of the age of maturity and the adult instantaneous mortality, to show how evolutionary life history theory may be used to predict the value of the DLN, which differs greatly between major groups of animals. CHARNOV, EL (reprint author), UNIV UTAH,DEPT BIOL,SALT LAKE CITY,UT 84112, USA. ALEKSIUK M, 1969, CAN J ZOOLOG, V47, P965, DOI 10.1139/z69-157; ARMITAGE KB, 1981, OECOLOGIA, V48, P36, DOI 10.1007/BF00346986; Beverton R. J. H., 1963, Rapport Conseil Exploration Mer, V154, P44; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; Calder W. A, 1984, SIZE FUNCTION LIFE H; CASEY GA, 1975, CAN J ZOOL, V53, P223, DOI 10.1139/z75-027; CHARNOV E L, 1982; CHARNOV EL, 1989, EVOL ECOL, V3, P236, DOI 10.1007/BF02270724; CHARNOV EL, 1989, NATURE, V338, P148, DOI 10.1038/338148a0; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; CHARNOV EL, 1979, AM NAT, V113, P715, DOI 10.1086/283428; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; CROWE DM, 1975, J MAMMAL, V56, P177, DOI 10.2307/1379615; CUSHING DH, 1968, FISHERIES BIOL; EBERT TA, 1975, AM ZOOL, V15, P755; Fisher R.A., 1930, GENETICAL THEORY NAT; GIORDANO FR, 1987, COMAP TOOLS TEACHING, P72; HANSEN CG, 1980, DESERT BIGHORN; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; HOENIG JM, 1983, FISH B US, V82, P898, DOI DOI 10.1890/04-0594; Horwich R.H., 1972, Advances Ethol, V8, P1; HOWELLS W W, 1975, Journal of the Southern African Wildlife Management Association, V5, P95; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LAVIGNE DM, 1982, J ANIM ECOL, V51, P195, DOI 10.2307/4319; LAWS R. M., 1966, EAST AFR WILDLIFE J, V4, P1; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Mason CF, 1986, OTTERS; MILLAR JS, 1977, EVOLUTION, V31, P370, DOI 10.1111/j.1558-5646.1977.tb01019.x; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; MORTON ML, 1971, J MAMMAL, V52, P611, DOI 10.2307/1378599; MYRCHA A, 1972, ACTA THERIO, V33, P443; NEAL E, 1986, NATURAL HIST BADGERS; PAULY D, 1980, J CONSEIL, V39, P175; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reiss M. J, 1989, ALLOMETRY GROWTH REP; RICKLEFS RE, 1969, NATURE, V223, P922, DOI 10.1038/223922a0; SHINE R, 1991, UNPUB AM NAT; SINCLAIR ARE, 1977, AFRICAN BUFFALO; SLADE NA, 1974, ECOLOGY, V55, P989, DOI 10.2307/1940350; Smith J.M., 1982, EVOLUTION THEORY GAM; SPINAGE CA, 1982, TERRITORIAL ANTELOPE; STAHL WR, 1962, SCIENCE, V137, P205, DOI 10.1126/science.137.3525.205; STEPHENS DW, 1991, DIMENSIONAL ANAL BEH; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; TALBOT LM, 1963, E AFRICA WILDL MONOG, V12; Wackernagel H., 1965, International Zoo Yearbook, V5, P38, DOI 10.1111/j.1748-1090.1965.tb01567.x; WATSON A, 1990, NEW SCI, V1740, P45; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WISHNER L, 1982, E CHIPMUNKS 54 39 40 1 8 ROYAL SOC LONDON LONDON 6 CARLTON HOUSE TERRACE, LONDON, ENGLAND SW1Y 5AG 0962-8436 PHILOS T ROY SOC B Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. APR 29 1991 332 1262 41 48 10.1098/rstb.1991.0031 8 Biology Life Sciences & Biomedicine - Other Topics FK630 WOS:A1991FK63000005 2019-02-26 J HAMER, ML; APPLETON, CC HAMER, ML; APPLETON, CC LIFE-HISTORY ADAPTATIONS OF PHYLLOPODS IN RESPONSE TO PREDATORS, VEGETATION, AND HABITAT DURATION IN NORTH-EASTERN NATAL HYDROBIOLOGIA English Article; Proceedings Paper EUPHYLLOPOD SYMP AUG 09-12, 1989 STATE UNIV GHENT, GHENT, BELGIUM INST ECOL & ZOOGEOG, BELGIAN NATL SCI FUND STATE UNIV GHENT PHYLLOPODS; TEMPORARY POOLS; LIFE HISTORY STRATEGIES TEMPORARY Phyllopod populations were monitored in three temporary pools differing in the amount of submerged, peripheral vegetation present, surface area and duration. The effects of these factors on the life history strategies employed by phyllopods were investigated. Triops granarius, various conchostracan species and the anostracan Branchipodopsis sp. inhabited the periphery of two pools where rooted, submerged vegetation was abundant while three Streptocephalus species dominated the central, unvegetated regions of the pools and the unvegetated pool. This distribution pattern appeared to be related to the animals' morphology and feeding habits. The peripheral regions of the pools were stressful habitats since they were colonized by large numbers of predators and competitors 30-40 days after inundation and they dried out sooner than the centre. The 'peripheral' species exhibited typical r-selected life history strategies; they grew rapidly, reproduced early and had short lifespans and in this way they overcame the threats presented by their habitat. The 'central' species took advantage of their predator-free, more stable habitat and exhibited life history patterns which tended towards the K-end of the r-K continuum. A degree of intraspecific variation in growth and reproduction was obvious and appeared to be related to differences in habitat duration of the three pools. HAMER, ML (reprint author), UNIV NATAL,DEPT ZOOL & ENTOMOL,POB 375,PIETERMARITZBURG 3200,SOUTH AFRICA. BELK D, 1977, Southwestern Naturalist, V22, P99, DOI 10.2307/3670467; BISHOP JA, 1967, J ANIM ECOL, V36, P599, DOI 10.2307/2815; BROWN KM, 1985, MALACOLOGIA, V26, P191; ELLIOT JM, 1985, SOME METHODS STATIST; HAMER M, 1989, THESIS U NATAL PIETE; HARTLANDROWE R, 1972, ESSAYS HYDROBIOLOGY, P15; HILDREW AG, 1985, J ANIM ECOL, V54, P99, DOI 10.2307/4623; Lake P. S., 1969, Hydrobiologia, V33, P342, DOI 10.1007/BF00029443; MITCHELL SA, 1987, THESIS U ORANGE FREE; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; SLUZHEVSKAYADRO.EB, HYDROBIOL J, V18, P95; TAKAHASHI F, 1976, APPL ENTOMOL ZOOL, V12, P104; WIGGINS G B, 1980, Archiv fuer Hydrobiologie Supplement, V58, P97; WILLIAMS WD, 1985, HYDROBIOLOGIA, V125, P85, DOI 10.1007/BF00045928 14 41 41 0 4 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia APR 25 1991 212 105 116 10.1007/BF00025993 12 Marine & Freshwater Biology Marine & Freshwater Biology FP451 WOS:A1991FP45100015 2019-02-26 J QUINN, JA QUINN, JA EVOLUTION OF DIOECY IN BUCHLOE-DACTYLOIDES (GRAMINEAE) - TESTS FOR SEX-SPECIFIC VEGETATIVE CHARACTERS, ECOLOGICAL DIFFERENCES, AND SEXUAL NICHE-PARTITIONING AMERICAN JOURNAL OF BOTANY English Article LIFE-HISTORY STRATEGIES; BREEDING SYSTEMS; SEED PLANTS; CHAMAELIRIUM-LUTEUM; BIOMASS ALLOCATION; POPULATION BIOLOGY; FEMALE PLANTS; CLONAL GROWTH; NEW-ZEALAND; RATIOS Buchloe dactyloides is a perennial dioecious grass in which male and female inflorescences are so strikingly dimorphic that they were originally assigned to different genera. The objective of this paper is to present the results of tests for sex-specific vegetative characters, ecological differences, and sexual niche-partitioning, combining them with prior information on the reproductive biology of Buchloe for an evaluation of the key factors leading to the evolution of dioecy and sexual dimorphism. Field and greenhouse data were collected from Oklahoma and Kansas populations on vegetative characters, allocation to reproduction, and relative growth and competitive success along resource gradients. Except for greater susceptibility to leaf rust by males, there were no significant differences between males and females in vegetative characters, total biomass, or reproductive effort. Field studies of spatial distributions of males and females failed to show any relation to soil, topography, or soil moisture. In a 45-month greenhouse experiment starting at the seedling stage, the relative growth and competitive success of randomly paired individuals showed no evidence for differential competitive success or for niche-partitioning of males and females. The "outcrossing advantage" and subsequent sexual specialization of the female inflorescence appear to be the major factors underlying this dimorphic system. QUINN, JA (reprint author), RUTGERS STATE UNIV,DEPT BIOL SCI,PISCATAWAY,NJ 08855, USA. AGREN J, 1988, ECOLOGY, V69, P962, DOI 10.2307/1941251; ANDERSON GJ, 1979, NATURE, V282, P836, DOI 10.1038/282836a0; ANDERSON GJ, 1982, TAXON, V31, P667, DOI 10.2307/1219682; ANDERSON GJ, 1984, AM NAT, V124, P423, DOI 10.1086/284283; Arber A., 1934, GRAMINEAE STUDY CERE; ARMSTRONG JE, 1989, AM J BOT, V76, P74, DOI 10.2307/2444776; BAKER HG, 1984, AM NAT, V124, P149, DOI 10.1086/284260; BAWA KS, 1980, ANNU REV ECOL SYST, V11, P15, DOI 10.1146/annurev.es.11.110180.000311; BAWA KS, 1982, AM NAT, V119, P866, DOI 10.1086/283960; BEETLE AA, 1950, WYOMING AGR EXPT STA, V293; BIERZYCHUDEK P, 1988, AM NAT, V132, P34, DOI 10.1086/284836; BOECKLEN WJ, 1990, ECOLOGY, V71, P581, DOI 10.2307/1940311; BURR RICHARD D., 1951, JOUR RANGE MANAGEMENT, V4, P267, DOI 10.2307/3894337; CAMBI VN, 1989, SEX PLANT REPROD, V2, P142; Chailakhyan M. K, 1987, SEXUALITY PLANTS ITS; CHAILAKHYAN MK, 1979, AM J BOT, V66, P717, DOI 10.2307/2442417; CHARLESWORTH B, 1978, AM NAT, V112, P975, DOI 10.1086/283342; CONN JS, 1981, B TORREY BOT CLUB, V108, P446, DOI 10.2307/2484445; CONNOR HE, 1984, NEW ZEAL J BOT, V22, P569, DOI 10.1080/0028825X.1984.10425292; COX PA, 1981, AM NAT, V117, P295, DOI 10.1086/283707; Davidse G., 1987, GRASS SYSTEMATICS EV, P143; DOUST JL, 1987, AM J BOT, V74, P40, DOI 10.2307/2444329; DOUST JL, 1985, STUDIES PLANT DEMOGR, P327; EAST E. M., 1940, PROC AMER PHIL SOC, V82, P449; ESCARRE J, 1987, CAN J BOT, V65, P2668, DOI 10.1139/b87-357; FLORES S, 1984, BIOTROPICA, V16, P132, DOI 10.2307/2387845; FOX JF, 1981, OECOLOGIA, V49, P233, DOI 10.1007/BF00349194; FOX JF, 1985, OECOLOGIA, V67, P244, DOI 10.1007/BF00384293; FREEMAN DC, 1980, OECOLOGIA, V44, P410; FREEMAN DC, 1976, SCIENCE, V193, P597, DOI 10.1126/science.193.4253.597; GIVNISH TJ, 1980, EVOLUTION, V34, P959, DOI 10.1111/j.1558-5646.1980.tb04034.x; GIVNISH TJ, 1982, AM NAT, V119, P849, DOI 10.1086/283959; GLOVER RK, 1975, SOIL SURVEY ELLIS CO; GRANT MC, 1979, EVOLUTION, V33, P914, DOI 10.1111/j.1558-5646.1979.tb04744.x; GROSS KL, 1981, AM J BOT, V68, P801, DOI 10.2307/2443186; HANCOCK JF, 1980, EVOLUTION, V34, P762, DOI 10.1111/j.1558-5646.1980.tb04015.x; HANDEL SN, 1985, AM NAT, V125, P367, DOI 10.1086/284348; HENSEL R. L., 1938, JOUR AMER SOC AGRON, V30, P1043; HITCHCOCK AS, 1951, USDA MISC PUBL, V200; HITCHCOCK AS, 1938, SMITHSONIAN SCI SERI, V11, P201; HUFF DR, 1987, CROP SCI, V27, P623, DOI 10.2135/cropsci1987.0011183X002700040002x; Jantz D. R., 1975, SOIL SURVEY RILEY CO; JONES MD, 1946, NEBRASKA AGR EXPT ST, V148; LAZARTE JE, 1979, AM J BOT, V66, P753, DOI 10.2307/2442462; Lloyd D. G., 1980, Demography and evolution in plant populations., P67; LLOYD DG, 1982, AM NAT, V120, P571, DOI 10.1086/284014; LLOYD DG, 1977, BOT REV, V43, P177, DOI 10.1007/BF02860717; MAZE KM, 1988, THESIS U NEW ENGLAND; MEAGHER TR, 1984, ANN MO BOT GARD, V71, P254, DOI 10.2307/2399069; MEAGHER TR, 1982, ECOLOGY, V63, P1690, DOI 10.2307/1940111; MEAGHER TR, 1980, EVOLUTION, V34, P1127, DOI 10.1111/j.1558-5646.1980.tb04054.x; MUENCHOW GE, 1987, AM J BOT, V74, P287, DOI 10.2307/2444031; PLANK EN, 1892, B TORREY BOT CLUB, V19, P303; POPP JW, 1988, AM J BOT, V75, P1732, DOI 10.2307/2444688; POWLESLAND MH, 1985, NEW ZEAL J BOT, V23, P581, DOI 10.1080/0028825X.1985.10434229; QUINN JA, 1987, AM J BOT, V74, P1167, DOI 10.2307/2444153; QUINN JA, 1986, AM J BOT, V73, P874, DOI 10.2307/2444298; REEDER JR, 1971, BRITTONIA, V23, P105, DOI 10.2307/2805426; ROSS MD, 1982, AM NAT, V119, P297, DOI 10.1086/283911; SAVAGE DA, 1934, USDA328 CIRC; SHAW RB, 1987, BOT GAZ, V148, P85, DOI 10.1086/337631; SOKAL R., 1981, BIOMETRY; STEINER KE, 1988, AM J BOT, V75, P1742, DOI 10.2307/2444689; THOMSON JD, 1981, AM NAT, V118, P443, DOI 10.1086/283837; TUCKER SC, 1988, AM J BOT, V75, P1584, DOI 10.2307/2444708; VITALE JJ, 1985, AM J BOT, V72, P1061, DOI 10.2307/2443449; WEBB JOHN J., 1941, TRANS KANSAS ACAD SCI, V44, P58, DOI 10.2307/3624868; WILLSON MF, 1982, AM NAT, V119, P579, DOI 10.1086/283934; WILLSON MF, 1979, AM NAT, V113, P777, DOI 10.1086/283437; WU L, 1984, HORTSCIENCE, V19, P505 70 18 21 1 11 BOTANICAL SOC AMER INC COLUMBUS OHIO STATE UNIV-DEPT BOTANY 1735 NEIL AVE, COLUMBUS, OH 43210 0002-9122 AM J BOT Am. J. Bot. APR 1991 78 4 481 488 10.2307/2445257 8 Plant Sciences Plant Sciences FG752 WOS:A1991FG75200004 2019-02-26 J GOTELLI, NJ GOTELLI, NJ DEMOGRAPHIC-MODELS FOR LEPTOGORGIA-VIRGULATA, A SHALLOW-WATER GORGONIAN ECOLOGY English Article CNIDARIA; COLONY GROWTH; DEMOGRAPHY; ELASTICITY; GORGONIAN; LIFE HISTORY THEORY; OCTOCORALLIA; RECRUITMENT; SURVIVORSHIP; TEMPORAL FLUCTUATIONS; TRANSITION MATRIX STABLE-POPULATION STRUCTURE; COMPLEX LIFE-CYCLES; VARIABLE ENVIRONMENTS; CONFIDENCE-INTERVALS; REPRODUCTIVE VALUE; CATEGORY SIZE; GROWTH-RATES; NEW-ZEALAND; DYNAMICS; AGE I used time-invariant and time-varying matrix models to analyze the demography of Leptogorgia virgulata, a shallow-water gorgonian. For a local population in the northeastern Gulf of Mexico, I estimated monthly rates of recruitment, colony growth, and mortality in a mapped 24-m2 plot for 2 yr. In a time-invariant model, average mortality and recruitment rates were nearly balanced, so the population growth rate, 1n(lambda), was close to 0.0. An elasticity analysis showed recruitment contributed < 5% to the measured rate of population growth. The most important component of population growth rate was survivorship, particularly of the large size classes. Results were similar for a patch model that incorporated spatial variation in recruitment and colony growth rates. Several published transition matrices of forest trees, which have a similar life history, were also characterized by low elasticities for recruitment. Fluctuations in population size of L. virgulata were analyzed with a time-varying matrix model. I randomized certain elements in the 23 monthly projection matrices and simulated the population track. For models with random temporal variation in survivorship, standard deviations (and coefficients of variation) of population size were consistently larger than observed. This result suggests that temporal variation in mortality rates tended to damp population fluctuations. The damping occurred at low population sizes: models with random variation in survivorship generated significantly smaller minimum population sizes than observed. In contrast, population tracks with random temporal variation in recruitment were not consistently different from observed. Although recruitment is widely regarded as an important factor structuring marine communities, its contribution to the temporal (but not spatial) dynamics of L. virgulata was minimal. This finding may be typical of long-lived organisms with delayed reproduction and indeterminate growth, such as forest trees and many sessile marine invertebrates. GOTELLI, NJ (reprint author), UNIV OKLAHOMA, DEPT ZOOL, NORMAN, OK 73019 USA. ADAMS RO, 1980, THESIS FLORIDA STATE; BIERZYCHUDEK P, 1982, ECOL MONOGR, V52, P335, DOI 10.2307/2937350; BOYCE MS, 1977, THEOR POPUL BIOL, V12, P366, DOI 10.1016/0040-5809(77)90050-8; BULLOCK SH, 1980, BIOTROPICA, V12, P247, DOI 10.2307/2387694; BURNS BR, 1985, AUST J ECOL, V10, P125, DOI 10.1111/j.1442-9993.1985.tb00874.x; CAFFEY HM, 1985, ECOL MONOGR, V55, P313, DOI 10.2307/1942580; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; CASWELL H, 1982, ECOLOGY, V63, P1223, DOI 10.2307/1938847; Caswell H., 1986, LECTURES MATH LIFE S, V18, P171; Caswell H., 1989, MATRIX POPULATION MO; COE WR, 1956, J MAR RES, V15, P212; COHEN JE, 1986, DEMOGRAPHY, V23, P105, DOI 10.2307/2061412; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; DAYTON PK, 1989, MAR ECOL PROG SER, V54, P75, DOI 10.3354/meps054075; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Ebert TA, 1985, OECOLOGIA, V65, P461, DOI 10.1007/BF00379658; ENRIGHT N, 1979, AUST J ECOL, V4, P3, DOI 10.1111/j.1442-9993.1979.tb01195.x; GOTELLI NJ, 1987, MAR BIOL, V94, P45, DOI 10.1007/BF00392899; GOTELLI NJ, 1988, ECOLOGY, V69, P157, DOI 10.2307/1943170; GOTELLI NJ, 1985, THESIS FLORIDA STATE; GRIGG RW, 1977, ECOLOGY, V58, P278, DOI 10.2307/1935603; HANSKI I, 1989, TRENDS ECOL EVOL, V4, P113, DOI 10.1016/0169-5347(89)90061-X; Hartshorn G. S., 1975, Tropical ecological systems., P41; HEYDE CC, 1985, THEOR POPUL BIOL, V27, P120, DOI 10.1016/0040-5809(85)90007-3; HIGHSMITH RC, 1982, MAR ECOL PROG SER, V7, P207, DOI 10.3354/meps007207; HUBBELL SP, 1979, AM NAT, V113, P277, DOI 10.1086/283385; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; HUGHES TP, 1984, AM NAT, V123, P778, DOI 10.1086/284239; HUGHES TP, 1987, AM NAT, V129, P818, DOI 10.1086/284677; KIRKPATRICK M, 1984, ECOLOGY, V65, P1874, DOI 10.2307/1937785; LANDE R, 1988, P NATL ACAD SCI USA, V85, P7418, DOI 10.1073/pnas.85.19.7418; LAW R, 1983, ECOLOGY, V64, P224, DOI 10.2307/1937069; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LEIGH EG, 1981, J THEOR BIOL, V90, P213; LESLIE PH, 1948, BIOMETRIKA, V35, P213, DOI 10.1093/biomet/35.3-4.213; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI DOI 10.1093/BI0MET/33.3.183; LEVERICH WJ, 1979, AM NAT, V113, P881, DOI 10.1086/283443; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; LOOSANOF.VL, 1966, BIOL BULL, V130, P211, DOI 10.2307/1539698; LOOSANOFF VL, 1964, BIOL BULL, V126, P423, DOI 10.2307/1539311; LOPEZ A, 1961, PROBLEMS STABLE POPU; MEAGHER TR, 1982, ECOLOGY, V63, P1701, DOI 10.2307/1940112; MOLONEY KA, 1986, OECOLOGIA, V69, P176, DOI 10.1007/BF00377618; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; PAINE RT, 1984, ECOLOGY, V65, P1339, DOI 10.2307/1939114; PIMM SL, 1988, NATURE, V334, P613, DOI 10.1038/334613a0; PINERO D, 1984, J ECOL, V72, P977, DOI 10.2307/2259545; PLATT WJ, 1988, AM NAT, V131, P491, DOI 10.1086/284803; REDDINGIUS J, 1989, OECOLOGIA, V78, P1, DOI 10.1007/BF00377191; RICHTERDYN N, 1972, THEOR POPUL BIOL, V3, P406, DOI 10.1016/0040-5809(72)90014-7; ROUGHGARDEN J, 1985, ECOLOGY, V66, P54, DOI 10.2307/1941306; SARUKHAN J, 1974, J ECOL, V62, P921, DOI 10.2307/2258962; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; TULJAPURKAR S, 1985, THEOR POPUL BIOL, V28, P1, DOI 10.1016/0040-5809(85)90019-X; TULJAPURKAR SD, 1980, THEOR POPUL BIOL, V18, P314, DOI 10.1016/0040-5809(80)90057-X; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P114, DOI 10.1016/0040-5809(82)90009-0; Underwood A.J., 1984, P151; USHER MB, 1966, J APPL ECOL, V3, P355, DOI 10.2307/2401258; VANDERMEER J, 1978, OECOLOGIA, V32, P79, DOI 10.1007/BF00344691; VANGROENENDAEL J, 1988, TRENDS ECOL EVOL, V3, P264, DOI 10.1016/0169-5347(88)90060-2; VANGROENENDAEL JM, 1988, J ECOL, V76, P585, DOI 10.2307/2260614; VANVALEN L, 1975, BIOTROPICA, V7, P260; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; WERNER PA, 1977, ECOLOGY, V58, P1103, DOI 10.2307/1936930 67 72 73 0 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology APR 1991 72 2 457 467 10.2307/2937187 11 Ecology Environmental Sciences & Ecology FE248 WOS:A1991FE24800005 2019-02-26 J METCALFE, NB METCALFE, NB COMPETITIVE ABILITY INFLUENCES SEAWARD MIGRATION AGE IN ATLANTIC SALMON CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Note LIFE-HISTORY STRATEGIES; SALAR Juvenile Atlantic salmon (Salmo salar L.) reach a life-history decision in late summer as to whether they will migrate to sea the following spring or remain in fresh water for at least a further year. Here I show that the feeding efficiency of those fish that subsequently defer migration is significantly impaired by the presence of a size-matched competitor, whereas that of fish adopting the strategy of early migration is unaffected by a competitor's presence. This suggests that competitive ability influences the decision as to when to migrate, through its effect on food intake and growth rates, later migrating fish being the poorer competitors. METCALFE, NB (reprint author), UNIV GLASGOW,DEPT ZOOL,FISH BEHAV & ECOL GRP,GLASGOW G12 8QQ,SCOTLAND. Metcalfe, Neil/C-5997-2009 Metcalfe, Neil/0000-0002-1970-9349 METCALFE NB, 1988, J ANIM ECOL, V57, P463, DOI 10.2307/4918; METCALFE NB, 1990, CAN J ZOOL, V68, P2630, DOI 10.1139/z90-367; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; METCALFE NB, 1990, J ANIM ECOL, V59, P135, DOI 10.2307/5163; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P21, DOI 10.1098/rspb.1989.0010; MILINSKI M, 1979, ANIM BEHAV, V27, P1122, DOI 10.1016/0003-3472(79)90060-5; Ricker W. E, 1979, FISH PHYSIOL, P677, DOI DOI 10.1016/S1546-5098(08)60034-5; TAYLOR EB, 1986, CAN J FISH AQUAT SCI, V43, P565, DOI 10.1139/f86-067; THORPE JE, 1989, J FISH BIOL, V35, P295; THORPE JE, 1977, J FISH BIOL, V11, P175, DOI 10.1111/j.1095-8649.1977.tb04111.x; WRIGHT PJ, 1990, J FISH BIOL, V36, P241, DOI 10.1111/j.1095-8649.1990.tb05599.x 11 30 32 0 3 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. MAR 1991 69 3 815 817 10.1139/z91-121 3 Zoology Zoology FJ473 WOS:A1991FJ47300041 2019-02-26 J LEE, DJ; ELIAS, RJ LEE, DJ; ELIAS, RJ MODE OF GROWTH AND LIFE-HISTORY STRATEGIES OF A LATE ORDOVICIAN HALYSITID CORAL JOURNAL OF PALEONTOLOGY English Article The upper surface of the corallum of Catenipora rubra was often at or just above the sediment-water interface during life. The vertical growth rate was barely sufficient to keep pace with background sedimentation and possible subsidence of the corallum. Therefore, the colonies were in constant danger of being covered by influxes of sediment, especially during storms. This was compensated by the ability of polyps to respond to sedimentation events and by certain aspects of colony growth. Rapid regeneration following partial mortality involved budding of uninjured polyps and rejuvenation of damaged individuals, in some cases accompanied by a type of axial increase not previously known in tabulate corals. Rapid lateral expansion was possible because small, "immature" polyps could bud and grow in a reptant manner. Interconnected ranks of the cateniform corallum served to dam shifting sediment at the periphery of the colony. Lacunae within the colony were reservoirs for material that breached peripheral ranks and for sediment that settled on the ranks and was rejected by polyps or removed by passive flow. Polyps comprising the colony were distributed over a large area of the substrate surface, thereby decreasing the probability of complete mortality during sedimentation events and increasing the probability that a sufficient number of individuals would survive to ensure optimum regeneration. The corallum, anchored in the substrate and with sediment filling the lacunae, provided a broad, stable base during high-energy events. It remains to be established how widespread these growth patterns and strategies were among other corals with cateniform colonies, a form that appeared in many unrelated stocks. Most previous workers emphasized physical strength when considering functional morphology, following a tacit assumption that the corallum rose high above the substrate and was therefore susceptible to breakage during high-energy events. An understanding of the origin of cateniform patterns and the phylogeny of these corals requires knowledge of their modes of growth and life-history strategies, which were genetically as well as environmentally controlled. LEE, DJ (reprint author), UNIV MANITOBA,DEPT GEOL SCI,WINNIPEG R3T 2N2,MANITOBA,CANADA. BAK RPM, 1983, MAR BIOL, V77, P221, DOI 10.1007/BF00395810; BAK RPM, 1977, 3RD P INT COR REEF S, V1, P143; BUEHLER EJ, 1955, YALE U B, V8; Coates A.G.., 1973, P3; Cocks L.R.M., 1978, P93; Cowan J., 1971, GEOSCIENCE STUDIES M, P235; ELIAS R J, 1988, Palaios, V3, P22, DOI 10.2307/3514542; ELIAS R. J., 1985, PALEONTOLOGICAL SOC, V16; ELIAS RJ, 1982, CAN J EARTH SCI, V19, P1582, DOI 10.1139/e82-136; ELIAS RJ, 1981, GEOLOGICAL SURVEY CA, V344; FLOWER RH, 1987, PALEONTOLOGICAL CONT; Hall J., 1851, REPORT GEOLOGY LAKE, P203; HAMADA T, 1959, U TOKYO FS J, V11, P273; Hill D., 1981, TREATISE INVERT F S1, V2, p[F430, F379]; Hubbard J.A.E.B., 1973, P31; HUBBARD JAE, 1972, GEOL RUNDSCH, V61, P598, DOI DOI 10.1007/BF01896337; JACKSON JBC, 1983, BIOTIC INTERACTIONS, P39; KENDALL A C, 1977, Bulletin of Canadian Petroleum Geology, V25, P480; Lambe L.M., 1899, CONTRIBUTIONS CANADI, V4, P1; LASKER HR, 1980, J EXP MAR BIOL ECOL, V47, P77, DOI 10.1016/0022-0981(80)90139-2; LEE DJ, 1990, LETHAIA, V23, P179, DOI 10.1111/j.1502-3931.1990.tb01359.x; LEE DJ, 1988, B CAN PETROL GEOL, V36, P379; Leith E. I., 1944, JOUR PALEONTOL, V18, P268; Linnaeus C., 1767, SYSTEMA NATURAE 2, V1, P533; MANTEN AA, 1971, SILURIAN REEFS GOTLA; SCRUTTON CT, 1984, RECENT ADV PALEOBIOL, P110; Sinclair G. W., 1955, ROYAL SOC CANADA T 3, V3, P95; SINCLAIR GW, 1956, J PALEONTOL, V30, P203; Stel J. H., 1978, STUDIES PALEOBIOLOGY; SWEET WC, 1979, CONODONT BIOSTRATIGR, P45; WESTROP SR, 1983, GR822 MAN DEP EN MIN; Whiteaves J. F., 1897, GEOLOGICAL SURVEY CA, V3, P129; WHITEAVES JF, 1880, 1878 1879 GEOL SURV, pC45; WHITEAVES JF, 1981, 1879 1880 GEOL SURV, pC57; YOUNG GA, 1987, J PALEONTOL, V61, P1125, DOI 10.1017/S0022336000029516 35 21 21 0 3 PALEONTOLOGICAL SOC INC ITHACA 1259 TRUMANSBURG ROAD, ITHACA, NY 14850 0022-3360 J PALEONTOL J. Paleontol. MAR 1991 65 2 191 199 10.1017/S0022336000020424 9 Paleontology Paleontology FJ836 WOS:A1991FJ83600003 2019-02-26 J LEONARDSSON, K LEONARDSSON, K PREDICTING RISK-TAKING BEHAVIOR FROM LIFE-HISTORY THEORY USING STATIC OPTIMIZATION TECHNIQUE OIKOS English Article PREDATION RISK; FORAGING BEHAVIOR; HABITAT; METAMORPHOSIS; SELECTION; MINNOWS; SALMON; HAZARD; SIZE Gilliam improved the possibility of predicting habitat choice and risk-taking behaviour in juvenile animals by the rule of "minimization of mortality rate over growth rate (mu/g)", derived by using dynamic optimization technique. I have derived a similar expression (M/k) by using static optimization. M is instantaneous mortality rate, and k is the growth constant from the von Bertalanffy growth function. Both Gilliam's and my expressions were derived for situations where animals maximize fitness in stable populations (per capita growth rate r = 0). The more general expression from my analysis becomes (M+r)/k. Independent of the level of maximum fitness, the slope of the M-k curve at optimum growth and mortality conditions was found to be constant. This slope was determined by fecundity, size at reproduction, and maximum attainable size. In order to avoid using fitness explicitly in the final solution, I derived an alternative expression for predicting risk-taking behaviour. The resulting expression became s(W+g/W (= sG), where s is survival rate, W is individual weight, and g is growth rate. This expression was derived from the Euler-Lotka equation. The marginal risk describing the optimum trade off between growth and mortality became partial-mu/partial-g = (1-mu)/(W+g). Short-term sG-maximization should be appropriate in many different situations, but not for those which involves high initial costs such as long distance migration, and metamorphosis. In most situations (mu+r)/g-minimizers (mu/g when r = 0) and sG-maximizers should qualitatively behave similarly due to changes in growth and/or mortality conditions. Both rules may be used to predict ontogenetic niche shifts, but only sG can explicity predict at what body size the shift from one habitat to another should occur, W* = (s2g2-s1g1)/(s1-s2). LEONARDSSON, K (reprint author), UMEA UNIV,DEPT ANIM ECOL,S-90187 UMEA,SWEDEN. ABRAHAMS MV, 1989, ECOLOGY, V70, P999, DOI 10.2307/1941368; BENNETT ATD, 1989, TRENDS ECOL EVOL, V4, P3, DOI 10.1016/0169-5347(89)90004-9; CERRI RD, 1983, AM NAT, V121, P552, DOI 10.1086/284082; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; DILL LM, 1983, CAN J FISH AQUAT SCI, V40, P398, DOI 10.1139/f83-058; FRASER DF, 1986, ETHOLOGY, V73, P56; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GILLIAM JF, 1982, THESIS MICHIGAN STAT; GODIN JGJ, 1986, CAN J ZOOL, V64, P1675, DOI 10.1139/z86-251; HUNTINGFORD FA, 1988, J FISH BIOL, V32, P777, DOI 10.1111/j.1095-8649.1988.tb05416.x; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MANGEL M, 1986, ECOLOGY, V67, P1127, DOI 10.2307/1938669; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; MILINSKI M, 1985, BEHAVIOUR, V93, P203, DOI 10.1163/156853986X00883; Milinski M., 1986, P236; OSENBERG CW, 1988, CAN J FISH AQUAT SCI, V45, P17, DOI 10.1139/f88-003; PANDIAN TJ, 1985, COPEIA, P653; RAFF RA, 1983, EMBRYOS GENES EVOLUT; ROWE L, IN PRESS ECOLOGY; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Stephens DW, 1986, FORAGING THEORY; WASSERSUG RJ, 1977, ECOLOGY, V58, P830, DOI 10.2307/1936218; Werner E.E., 1988, P60; WERNER EE, 1988, ECOLOGY, V69, P1352, DOI 10.2307/1941633; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141 28 24 24 0 5 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos MAR 1991 60 2 149 154 10.2307/3544860 6 Ecology Environmental Sciences & Ecology FA952 WOS:A1991FA95200002 2019-02-26 J SCHULTZ, ET; WARNER, RR SCHULTZ, ET; WARNER, RR PHENOTYPIC PLASTICITY IN LIFE-HISTORY TRAITS OF FEMALE THALASSOMA-BIFASCIATUM (PISCES, LABRIDAE) .2. CORRELATION OF FECUNDITY AND GROWTH-RATE IN COMPARATIVE-STUDIES ENVIRONMENTAL BIOLOGY OF FISHES English Article CORRELATED TRAITS; COST OF REPRODUCTION; CORAL-REEF FISH; BLUEHEAD WRASSE CORAL-REEF FISH; REPRODUCTIVE SUCCESS; JUVENILE MORTALITY; SEXUAL SELECTION; POPULATION; COSTS; CONSEQUENCES; ENVIRONMENTS; LIMPET; FOOD The cost of reproduction is a central concept in theories of life-history evolution. One way to empirically examine the tradeoff between current reproduction and future reproductive prospects is to use natural intraspecific variation in life-history traits. However, this approach is complicated by the sensitivity of life-history traits to variation in the level of resources. We report here an attempt to measure the cost of increasing reproductive activity in populations of female bluehead wrasse, Thalassoma bifasciatum, a coral-reef fish. All of the significant correlations of fecundity and growth rate were positive, in contradiction to the tradeoff predicted by the cost concept. In one of two regions studied, the populations with relatively high mean growth rate had a relatively large mean fecundity. The trait means were also positively associated over time: in months of rapid growth, female reproductive activity was high. Even after removing the effects of habitat and time period in a comparison of individual traits, no growth cost to reproduction appears. Variation in the abundance of resources over space and time is likely to interfere with the measurement of the cost of reproduction in many natural systems. UNIV CALIF SANTA BARBARA, INST MARINE SCI, SANTA BARBARA, CA 93106 USA SCHULTZ, ET (reprint author), UNIV CALIF SANTA BARBARA, DEPT BIOL SCI, SANTA BARBARA, CA 93106 USA. Warner, Robert/M-5342-2013 Warner, Robert/0000-0002-3299-5685; Schultz, Eric/0000-0003-4086-7883 ALDENHOVEN JM, 1986, MAR BIOL, V92, P237, DOI 10.1007/BF00392841; ALLEN JRM, 1982, J FISH BIOL, V21, P537, DOI 10.1111/j.1095-8649.1982.tb02858.x; Bagenal T.B., 1978, P75; BAGENAL TB, 1969, J FISH BIOL, V1, P167, DOI 10.1111/j.1095-8649.1969.tb03850.x; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; CONSTANTZ GD, 1979, OECOLOGIA, V40, P189, DOI 10.1007/BF00347936; DOHERTY PJ, 1980, THESIS U SYDNEY SYDN; ECKERT GJ, 1987, MAR BIOL, V95, P167, DOI 10.1007/BF00409002; Falconer D.S., 1981, INTRO QUANTITATIVE G; FEDDERN HENRY A., 1965, BULL MAR SCI, V15, P896; FLETCHER WJ, 1987, MAR ECOL PROG SER, V39, P115, DOI 10.3354/meps039115; FLETCHER WJ, 1988, OECOLOGIA, V74, P586, DOI 10.1007/BF00380057; HESTER FJ, 1964, J FISH RES BOARD CAN, V21, P757, DOI 10.1139/f64-068; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Randall J. E., 1967, STUD TROP OCEANOGR, V5, P665; REINBOTH R, 1973, HELGOLAND WISS MEER, V24, P174, DOI 10.1007/BF01609510; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROBERTSON DR, 1987, COPEIA, P637, DOI 10.2307/1445655; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1981, GENETICS, V97, P187; SCHULTZ ET, 1989, IN PRESS EVOLUTION; SEARLE SR, 1980, AM STAT, V34, P216, DOI 10.2307/2684063; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; THRESHER RE, 1983, ECOLOGY, V64, P1184, DOI 10.2307/1937828; TRENDALL JT, 1982, AM NAT, V119, P774, DOI 10.1086/283954; TYLER AV, 1976, J FISH RES BOARD CAN, V33, P63, DOI 10.1139/f76-008; VICTOR BC, 1986, ECOL MONOGR, V56, P145, DOI 10.2307/1942506; WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x; WARNER RR, 1980, EVOLUTION, V34, P508, DOI 10.1111/j.1558-5646.1980.tb04840.x; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360; WARNER RR, 1978, SMITHSON CONTRIB ZOO, V254, P1, DOI DOI 10.1098/RSPB.2003.2425; WELLINGTON GM, 1988, AM NAT, V131, P588, DOI 10.1086/284808; Wootton R.J., 1985, P231 39 40 40 1 19 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes FEB 1991 30 3 333 344 10.1007/BF02028849 12 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology EY366 WOS:A1991EY36600007 2019-02-26 J SPITZE, K SPITZE, K CHAOBORUS PREDATION AND LIFE-HISTORY EVOLUTION IN DAPHNIA-PULEX - TEMPORAL PATTERN OF POPULATION DIVERSITY, FITNESS, AND MEAN-LIFE HISTORY EVOLUTION English Article DROSOPHILA-MELANOGASTER; BOSMINA-LONGIROSTRIS; GENETIC COVARIATION; ZOOPLANKTON; COMPETITION; AMERICANUS; CLADOCERA; MORTALITY; GUPPIES The effect of predation by the aquatic dipteran larva Chaoborus americanus on genetic diversity and life-history evolution in the cladoceran Daphnia pulex was investigated in large replicate laboratory populations. Instantaneous daily loss rates of clonal diversity and genetic variance for fitness indicate that 93-99% of initial genetic diversity can be removed from populations during the 8-12 generations of clonal reproduction that occur each year in natural populations. In the absence of predation, the principal evolved changes in mean population life history were smaller immature body size and increased and earlier fecundity. In the presence of size-selective Chaoborus predation, populations evolved toward larger body size and increased and earlier reproduction. The difference between these two trajectories is an estimate of the direct additive effect of Chaoborus predation. This effect was manifested as evolution toward larger body size with a trend toward earlier and increased reproduction. UNIV ILLINOIS, DEPT ECOL ETHOL & EVOLUT, CHAMPAIGN, IL 61820 USA BARCLAY HJ, 1981, AM NAT, V117, P944, DOI 10.1086/283779; BARCLAY HJ, 1982, AM NAT, V120, P26, DOI 10.1086/283967; Black R. W, 1980, EVOLUTION ECOLOGY ZO, P456; BROCK DA, 1980, FRESHWATER BIOL, V10, P239, DOI 10.1111/j.1365-2427.1980.tb01199.x; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CREASE TJ, 1990, MOL BIOL EVOL, V7, P444; CROW J F, 1970, P591; CROW JF, 1958, AM ANTHROPOL, V60, P1; DODSON SI, 1974, ECOLOGY, V55, P605, DOI 10.2307/1935150; DODSON SI, 1972, ECOLOGY, V53, P1011, DOI 10.2307/1935414; DODSON SI, 1970, LIMNOL OCEANOGR, V15, P131; DORAZIO RM, 1983, FRESHWATER BIOL, V13, P157, DOI 10.1111/j.1365-2427.1983.tb00668.x; DOYLE RW, 1981, J EXP MAR BIOL ECOL, V52, P147, DOI 10.1016/0022-0981(81)90033-2; Endler JA, 1986, NATURAL SELECTION WI; Fisher R.A., 1930, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Giesel J.T., 1982, P189; HIRAIZUMI Y, 1961, GENETICS, V46, P615; HRBACEK J, 1962, ROZPRAVY CESKOSLOVEN, V72, P1; Istock C.A., 1982, P7; KRUEGER DA, 1981, LIMNOL OCEANOGR, V26, P219, DOI 10.4319/lo.1981.26.2.0219; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LUCKINBILL LS, 1984, ECOLOGY, V65, P1170, DOI 10.2307/1938325; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; LYNCH M, 1983, AM NAT, V122, P745, DOI 10.1086/284169; LYNCH M, 1989, EVOLUTION, V43, P1724, DOI 10.1111/j.1558-5646.1989.tb02622.x; LYNCH M, 1986, LIMNOL OCEANOGR, V31, P17, DOI 10.4319/lo.1986.31.1.0017; LYNCH M, 1979, LIMNOL OCEANOGR, V24, P253, DOI 10.4319/lo.1979.24.2.0253; LYNCH M, 1983, EXP GERONTOL, V18, P147, DOI 10.1016/0531-5565(83)90008-6; LYNCH M, 1983, EVOLUTION, V37, P358, DOI 10.1111/j.1558-5646.1983.tb05545.x; Lynch M., 1980, EVOLUTION ECOLOGY ZO, P367; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MANNING BJ, 1978, EVOLUTION, V32, P365, DOI 10.1111/j.1558-5646.1978.tb00652.x; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MUKAI T, 1971, GENETICS, V69, P385; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Ricklefs R. E., 1979, ECOLOGY; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1983, AM ZOOL, V23, P15; ROSE MR, 1981, GENETICS, V97, P187; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; Snedecor G.W., 1967, STATISTICAL METHODS; SPITZE K, 1985, ECOLOGY, V66, P938, DOI 10.2307/1940556; SPITZE K, 1989, THESIS U ILLINOIS; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TESSIER AJ, 1986, FRESHWATER BIOL, V16, P279, DOI 10.1111/j.1365-2427.1986.tb00971.x; VONENDE CN, 1981, AM MIDL NAT, V105, P240; Zaret T. M., 1980, PREDATION FRESHWATER 56 112 115 1 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 1991 45 1 82 92 10.2307/2409484 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity FF292 WOS:A1991FF29200008 28564082 Bronze 2019-02-26 J SMITH, RS SMITH, RS RELATIONSHIPS WITHIN THE ORDER SABELLIDA (POLYCHAETA) OPHELIA English Article POLYCHAETA; SABELLIDA; PHYLOGENY; MORPHOLOGY The order Sabellida is a discrete grouping of the tubeworm families which share a common divergence from the basic polychaete form. Despite this homogeneity, the phylogenetic trends within the order still need to be established to support reliable taxonomic divisions. It is possible to arrange extant forms in a monophyletic hierachy of increasing specialization to a tubicolous habit. This relies on a justifiable assumption that the prosabelliform polychaete was a spiomorphic worm inhabiting soft sediments. Such a scheme sees the Fabriciinae as closest to the ancestral form and antecedent to the remaining taxa of Sabellida. Serpulids and spirorbids are considered more specialized than the sabellids, the major separation within the order having occurred at an early stage with the acquisition of the ability to secrete a calcareous tube. Spirorbids arose only after serpuliform worms had developed a discrete operculum. Redefinition of taxonomic status within the order may be necessary if further research supports the validity of the phylogeny. Justification for the proposed relationships between and within taxa in the Sabellida comes from a comparison of body morphology, ciliation, setal patterns, photoreceptor ultrastructure, life history strategies, opercular differentiation and methods of tube formation. JAMES COOK UNIV N QUEENSLAND,DEPT MARINE BIOL,TOWNSVILLE,QLD 4811,AUSTRALIA BAILEY J H, 1969, Zoological Journal of the Linnean Society, V48, P387, DOI 10.1111/j.1096-3642.1969.tb00719.x; BENELIAHU MN, 1979, ISRAEL J ZOOL, V28, P199; BERRILL NJ, 1977, BIOL BULL, V153, P453, DOI 10.2307/1540600; BONAR D B, 1972, Journal of Experimental Marine Biology and Ecology, V9, P1, DOI 10.1016/0022-0981(72)90002-0; Bullock T., 1965, STRUCTURE FUNCTION N; DALES RP, 1952, Q J MICROSC SCI, V93, P435; DAUER DM, 1984, 1ST P INT POL C SYDN, P418; Day J.A., 1967, BRIT MUSEUM NATURAL, V656, P459, DOI DOI 10.1017/S0025315400019299; ECKELBARGER KJ, 1976, CAN J ZOOL, V54, P2082, DOI 10.1139/z76-241; FAUCHALD K, 1974, SYST ZOOL, V23, P493, DOI 10.2307/2412467; Fauchald K., 1979, Oceanography and Marine Biology an Annual Review, V17, P193; Fauchald K, 1977, NAT HIST MUS LOS ANG, V28, P1; FAUVEL PIERRE, 1927, FAUNE DE FRANCE, V16, P1; Fauvel Pierre, 1907, Annales des Sciences Naturelles Zoologie Paris ser 9, V6; FITZSIMONS GAIL, 1965, BULL MAR SCI, V15, P642; JONES M L, 1974, Smithsonian Contributions to Zoology, V175, P1; KERNEIS A, 1975, J ULTRA MOL STRUCT R, V53, P164, DOI 10.1016/S0022-5320(75)80133-X; KNIGHTJONES P, 1981, ZOOL SCR, V10, P183, DOI 10.1111/j.1463-6409.1981.tb00495.x; KNIGHTJONES P, 1979, ZOOL SCR, V8, P119, DOI 10.1111/j.1463-6409.1979.tb00624.x; KNIGHTJONES P, 1984, J MAR BIOL ASSOC UK, V64, P808; LACALLI TC, 1984, PHILOS T ROY SOC B, V306, P79, DOI 10.1098/rstb.1984.0082; LEWIS DAVID B., 1968, PROC LINN SOC LONDON, V179, P37; LEWIS DB, 1961, NATURE, V192, P80, DOI 10.1038/192080b0; Lommerzheim A., 1979, Decheniana, V132, P110; MILL PJ, 1979, PHYSL ANNELIDS, P63; Nicol E. A. T., 1930, T ROY SOC EDINBURGH, V56, P537; NICOL JAC, 1950, J MAR BIOL ASSOC UK, V29, P303, DOI 10.1017/S0025315400055399; OKADA YK, 1932, J MAR BIOL ASSOC UK, V18, P655; ORRHAGE L, 1980, ZOOMORPHOLOGY, V96, P113, DOI 10.1007/BF00310081; PETTIBONE MH, 1982, SYNOPSIS CLASSIFICAT, V2, P1; Pillai T. G., 1970, CEYLON J SCI BIOL SC, V8, P100; RASMUSSEN E, 1973, Ophelia, V11, P1; Rioja E., 1923, TRAB MUS NAC CIENC N, V48, P1; SANTER RM, 1971, Z ZELLFORSCH MIK ANA, V122, P160, DOI 10.1007/BF00337627; SCHROEDER PC, 1975, REPRODUCTION MARINE, V3, P1; Segrove F, 1941, Q J MICROSC SCI, V82, P467; SMITH R, 1984, 1ST P INT POL C SYDN, P461; SMITH RS, 1984, TISSUE CELL, V16, P951, DOI 10.1016/0040-8166(84)90074-0; ten Hove HA, 1979, SYSTEMATICS ASS SPEC, V11, P281; TENHOVE HA, 1984, 1ST P INT POL C SYDN, P181; TENHOVE HA, 1979, MCGRAW HILL YB SCI T, P400; Thomas J. G., 1940, MEM LIVERPOOL MAR BI, V33, P1; USHIDA JG, 1978, B MARINE PARK RES ST, V2, P1; Vine PJ, 1977, MEM NZ OCEANOGR I, V68, P1; WU BL, 1984, 1ST P INT POL C SYDN, P413 45 2 3 2 4 OPHELIA PUBLICATIONS HELSINGOR STRANDPROMENADEN 5, DK-3000 HELSINGOR, DENMARK 0078-5326 OPHELIA Ophelia FEB 1991 5 249 260 12 Marine & Freshwater Biology Marine & Freshwater Biology FP608 WOS:A1991FP60800021 2019-02-26 J BARBAULT, R; STEARNS, S BARBAULT, R; STEARNS, S TOWARDS AN EVOLUTIONARY ECOLOGY LINKING SPECIES INTERACTIONS, LIFE-HISTORY STRATEGIES AND COMMUNITY DYNAMICS - AN INTRODUCTION ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY English Editorial Material MODELS ZOOL INST,CH-4051 BASEL,SWITZERLAND BARBAULT, R (reprint author), ECOLE NORM SUPER,ECOL LAB,CNRS,URA 258,46 RUE ULM,F-75230 PARIS 05,FRANCE. BARBAULT R, 1991, ACTA OECOL, V12, P139; BELL G, 1989, AM NAT, V133, P553, DOI 10.1086/284935; BOULETREAU M, 1986, INSECT PARASITOIDS, P169; CARTON Y, 1991, ACTA OECOL, V12, P89; COMBES C, 1991, ACTA OECOL, V12, P165; DEJONG G, 1988, POPULATION GENETICS; Elseth GD, 1981, POPULATION BIOL, pxvi; FONTDEVILA A, 1989, EVOLUTIONARY BIOL TR; Futuyma D. J, 1983, COEVOLUTION; HARVEY PH, 1991, COMPARATIVE METHOD E; HAUKIOJA E, 1991, ACTA OECOL, V12, P77; HUSTON M, 1988, BIOSCIENCE, V38, P682, DOI 10.2307/1310870; KEYMER AE, 1991, ACTA OECOL, V12, P105; KING CE, 1983, POPULATION BIOL RETR; KOZLOWSKI J, 1991, ACTA OECOL, V12, P11; Lewontin R. C, 1968, POPULATION BIOL EVOL; Loeschcke V., 1987, GENETIC CONSTRAINTS; MURPHY GI, 1967, ECOLOGY, V48, P731, DOI 10.2307/1933730; PIANKA ER, 1978, EVOLUTIONARY ECOLOGY; Price PW, 1980, EVOLUTIONARY BIOL PA; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; ROUGHGARDEN J, 1991, ACTA OECOL, V12, P35; SCHOENER TW, 1991, ACTA OECOL, V12, P53; SCHOENER TW, 1986, AM ZOOL, V26, P81; SHORROCKS B, 1984, EVOLUTIONARY ECOLOGY; SLATKIN M, 1979, Q REV BIOL, V54, P233, DOI 10.1086/411294; Smith J. M., 1989, EVOLUTIONARY GENETIC; STONEHOUSE B, 1977, EVOLUTIONARY ECOLOGY; THOMPSON JN, 1988, ANNU REV ECOL SYST, V19, P65, DOI 10.1146/annurev.es.19.110188.000433; VANNOORDWIJK AJ, 1989, BIOSCIENCE, V39, P453, DOI 10.2307/1311137; WIENS JA, 1984, NEW ECOLOGY NOVEL AP; WILSON EO, 1987, J ANIM ECOL, V56, P1, DOI 10.2307/4795; WILSON EO, 1989, POUR SCI, V145, P66; Wohrmann K, 1990, POPULATION BIOL ECOL; WOHRMANN K, 1984, POPULATION BIOL EVOL 35 10 11 1 8 GAUTHIER-VILLARS PARIS S P E S-JOURNAL DEPT, 120 BD ST GERMAIN, F-75006 PARIS, FRANCE 1146-609X ACTA OECOL Acta Oecol.-Int. J. Ecol. 1991 12 1 3 10 8 Ecology Environmental Sciences & Ecology FT622 WOS:A1991FT62200001 2019-02-26 J KOZLOWSKI, J KOZLOWSKI, J OPTIMAL ENERGY ALLOCATION MODELS - AN ALTERNATIVE TO THE CONCEPTS OF REPRODUCTIVE EFFORT AND COST OF REPRODUCTION ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY English Article ENERGY ALLOCATION; LIFE HISTORY; OPTIMIZATION MODEL; AGE AT MATURITY; SIZE AT MATURITY; REPRODUCTIVE EFFORT; REPRODUCTIVE VALUE; COST OF REPRODUCTION; GROWTH CURVE; CHLAMYS-ISLANDICA LIFE-HISTORY EVOLUTION; GROWTH; AGE; BUDGETS; SIZE A model predicting optimal allocation of energy to growth, reproduction and to storage necessary for winter survival is presented. The optimal fraction of surplus energy devoted to growth decreases with age, whereas the fraction devoted to storage increases asymptotically with age. The latter fraction increases also with the maximum possible probability of winter survival. At high chances of survival in winter, it is optimal to delay maturation and to grow intensively in a few initial years of life. This delay leads to much greater body size than the one optimal at low survivability, even under the same productivity of a habitat. Classic life history parameters as age-specific growth curve, fecundity, reproductive effort or residual reproductive value can be generated from the model, and they resemble typical field data of this type, as shown by the example of Iceland scallop. It is argued that models of the type presented here are powerful predictive tools, whereas concepts "reproductive effort" or "costs of reproduction" have mainly descriptive character. Consequences of the optimal energy allocation at the community level are also discussed. The existence of sibling species is predicted, differing mainly in the schedule of energy allocation and adapted to habitats with different average productivity. KOZLOWSKI, J (reprint author), JAGIELLONIAN UNIV,INST ENVIRONM BIOL,OLEANDRY 2A,PL-30063 KRAKOW,POLAND. Kozlowski, Jan/K-5549-2012 Kozlowski, Jan/0000-0002-7084-2030 ALEXANDER RM, 1982, OPTIMA ANIMALS; BELL G, 1986, EVOLUTION, V40, P1344, DOI 10.1111/j.1558-5646.1986.tb05758.x; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; CAHL O, 1981, OECOLOGIA, V51, P53; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; Dawkins R, 1982, EXTENDED PHENOTYPE G; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; KIRKWOOD JK, 1983, COMP BIOCHEM PHYS A, V75, P1, DOI 10.1016/0300-9629(83)90033-6; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LAVIGNE DM, 1982, J ANIM ECOL, V51, P195, DOI 10.2307/4319; Lomnicki A., 1988, POPULATION ECOLOGY I; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Press W. H, 1986, NUMERICAL RECIPES; PUGLIESE A, 1990, EVOL ECOL, V4, P75, DOI 10.1007/BF02270717; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DN, 1986, EVOLUTION, V40, P1338, DOI 10.1111/j.1558-5646.1986.tb05757.x; SCHMIDTNIELSEN K, 1984, SCALING WHY ANIMAL S; SCHOENER TW, 1969, AM NAT, V103, P277, DOI 10.1086/282602; SEBENS KP, 1982, ECOLOGY, V63, P209, DOI 10.2307/1937045; VAHL O, 1981, J EXP MAR BIOL ECOL, V53, P281, DOI 10.1016/0022-0981(81)90026-5; WEINER J, 1989, ACTA THERIOL, V34, P3, DOI 10.4098/AT.arch.89-1; ZIOLKO M, 1983, MATH BIOSCI, V64, P127, DOI 10.1016/0025-5564(83)90032-9 25 42 47 1 18 GAUTHIER-VILLARS PARIS S P E S-JOURNAL DEPT, 120 BD ST GERMAIN, F-75006 PARIS, FRANCE 1146-609X ACTA OECOL Acta Oecol.-Int. J. Ecol. 1991 12 1 11 33 23 Ecology Environmental Sciences & Ecology FT622 WOS:A1991FT62200002 2019-02-26 J KEYMER, AE; GREGORY, RD; HARVEY, PH; READ, AF; SKORPING, A KEYMER, AE; GREGORY, RD; HARVEY, PH; READ, AF; SKORPING, A PARASITE-HOST ECOLOGY - CASE-STUDIES IN POPULATION-DYNAMICS, LIFE-HISTORY EVOLUTION AND COMMUNITY STRUCTURE ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY English Article PARASITE; NEMATODE; POPULATION DYNAMICS; LIFE-HISTORY; COMMUNITY STRUCTURE HELIGMOSOMOIDES-POLYGYRUS NEMATODA; LESSER SCAUP DUCKS; K-SELECTION; INTESTINAL HELMINTHS; SITE SEGREGATION; OUTBRED MICE; R-SELECTION; INFECTION; FISH The paper describes results from three studies of host-parasite ecology. The first concerns the population dynamics of the interaction between Heligmosomoides polygyrus (an intestinal nematode) and the wood mouse Apodemus sylvaticus. The results indicate that the parasite has a significant impact on the population growth of the host. The second section describes co-variation between life-history traits among nematodes of the mammalian intestinal tract. Observed patterns are interpreted with reference to factors influencing the age at which the parasites first begin to reproduce. Lastly, an analysis of host life-history and ecology as determinants of parasite community structure in avian hosts is presented. Host body weight is found to be the only significant associate of the number of different parasites recorded from each species of bird. The three studies are discussed with reference to the growing interest in the evolutionary ecology of species interactions between parasite and host. UNIV TROMSO,INST BIOL & GEOL,DEPT ECOL,N-9001 TROMSO,NORWAY KEYMER, AE (reprint author), UNIV OXFORD,DEPT ZOOL,S PARKS RD,OXFORD OX1 3PS,ENGLAND. Gregory, Richard/0000-0002-7419-5053 ANDERSON RM, 1979, NATURE, V279, P150, DOI 10.1038/279150a0; ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; BODDINGTON JF, 1976, CAN J ZOOL, V53, P1723; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; BUSH AO, 1986, CAN J ZOOL, V64, P142, DOI 10.1139/z86-023; BUSH AO, 1986, CAN J ZOOL, V64, P132, DOI 10.1139/z86-022; CALOW P, 1983, PARASITOLOGY, V86, P197, DOI 10.1017/S0031182000050897; CHAPPELL LH, 1969, J PARASITOL, V55, P775, DOI 10.2307/3277217; Crompton D. W. T., 1980, PARASITIC WORMS; DOBSON AP, 1986, TRENDS ECOL EVOL, V1, P11, DOI 10.1016/0169-5347(86)90060-1; Dogiel VA, 1964, GENERAL PARASITOLOGY; DOGIEL VA, 1961, PARASITOLOGY FISHES; Esch GW, 1990, PARASITE COMMUNITIES; ESCH GW, 1977, REGULATION PARASITE; GREENWOOD M, 1936, MED RES COUNCIL SPEC, V209, P1; GREGORY RD, 1990, FUNCT ECOL, V4, P645, DOI 10.2307/2389732; GREGORY RD, 1990, J ANIM ECOL, V59, P363, DOI 10.2307/5178; GREGORY RD, 1989, SCI PROG, V73, P67; GREGORY RD, IN PRESS BIOL J LINN; HAIR J D, 1975, Acta Parasitologica Polonica, V23, P253; HARVEY PH, 1991, COMPARATIVE METHOD; HOAGLAND KE, 1978, EXP PARASITOL, V44, P36, DOI 10.1016/0014-4894(78)90078-4; Holmes J. C., 1982, Population biology of infectious diseases. (Report of the Dahlem Workshop on Population Biology of Infectious Disease Agents, Berlin, 1982, March 14-19.) (Life Science Research Report, 25), P37; Holmes J.C., 1986, P203; HOLMES JC, 1973, CAN J ZOOL, V51, P333, DOI 10.1139/z73-047; HOLMES JC, 1962, J PARASITOL, V48, P87, DOI 10.2307/3275418; HOLMES JC, 1961, J PARASITOL, V47, P209, DOI 10.2307/3275291; Holmes JC, 1986, COMMUNITY ECOLOGY PA; KENNEDY CR, 1985, PARASITOLOGY, V90, P375, DOI 10.1017/S0031182000051076; KENNEDY CR, 1975, ECOLOGICAL ANIMAL PA; Keymer A., 1985, Ecology and genetics of host-parasite interactions. International symposium, Keele University, 12-13 July 1984, P55; KEYMER AE, 1987, MAMMAL REV, V17, P105, DOI 10.1111/j.1365-2907.1987.tb00056.x; KEYMER AE, 1986, PROC R SOC SER B-BIO, V229, P47, DOI 10.1098/rspb.1986.0074; KEYMER AE, 1990, PARASITOLOGY, V101, P69, DOI 10.1017/S0031182000079774; LEVINE ND, 1980, NEMATODE PARASITES D; MAC ARTHUR ROBERT H., 1967; MAY RM, 1983, AM SCI, V71, P36; NOBLE ER, 1976, PARASITOLOGY BIOL AN; PAGEL MD, 1989, FOLIA PRIMATOL, V53, P203, DOI 10.1159/000156417; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1972, AM NAT, V106, P581, DOI 10.1086/282798; Price P.W., 1986, P209; Price P.W., 1984, P510; PRICE PW, 1977, EVOLUTION, V31, P405, DOI 10.1111/j.1558-5646.1977.tb01021.x; Price PW, 1980, EVOLUTIONARY BIOL PA; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; ROHDE K, 1979, AM NAT, V114, P648, DOI 10.1086/283514; Rohde K, 1982, ECOLOGY MARINE PARAS; SCHAD GA, 1963, NATURE, V198, P404, DOI 10.1038/198404b0; SCOTT ME, 1984, PARASITOLOGY, V89, P159, DOI 10.1017/S0031182000001207; SCOTT ME, 1987, PARASITOLOGY, V95, P111, DOI 10.1017/S0031182000057590; SEGER J, 1987, EVOLUTION SEX, P176; SKORPING A, IN PRESS OIKOS; SPURLOCK GM, 1943, J PARASITOL, V50, P401; WHARTON DA, 1986, FUNCTIONAL BIOL NEMA; WHITFIELD PJ, 1976, BIOL PARASITISM INTR; WHITFIELD PJ, 1982, MODERN PARASITOLOGY 57 17 17 0 7 GAUTHIER-VILLARS PARIS S P E S-JOURNAL DEPT, 120 BD ST GERMAIN, F-75006 PARIS, FRANCE 1146-609X ACTA OECOL Acta Oecol.-Int. J. Ecol. 1991 12 1 105 118 14 Ecology Environmental Sciences & Ecology FT622 WOS:A1991FT62200007 2019-02-26 J PROMISLOW, DEL; HARVEY, PH PROMISLOW, DEL; HARVEY, PH MORTALITY-RATES AND THE EVOLUTION OF MAMMAL LIFE HISTORIES ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY English Article COMPARATIVE METHOD; DEMOGRAPHY; LIFE HISTORIES; MAMMALS; MORTALITY RATES K-SELECTION; R-SELECTION; BODY SIZE; NATURAL-SELECTION; 1ST REPRODUCTION; FOOD-HABITS; AGE; BIRDS; PATTERNS; TRAITS Within mammals we find enormous diversity in life history strategies. Previous attempts to explain variation in fecundity-related variables have focussed on interspecific differences in body size, brain size or metabolic rate. But such studies have usually been carried out without integrating theoretical and experimental developments in the study of life history evolution. In addition, attempts to explain life history variation on the basis of ecological differences have so far been relatively unsuccessful. With an ever increasing data base on age-specific mortality rates in natural populations, coupled with enormous advances in comparative methodology in the past few years, comparative studies have been able to focus on an 'evolutionary demographic' approach, balancing the previous work on fecundity-related traits with data on age-specific survival. Here we briefly review these studies, and suggest that comparative studies of age-specific survival rates in natural populations can serve not only as general tests of theory, but also highlight novel interspecific patterns. Studies of age-specific mortality have enabled us not only to address the relationship between survival and fecundity-related traits, but also to examine the importance of interspecific variation in mortality rates between age-classes and sexes. We argue that the use of mortality rates from natural populations may provide a vital path towards understanding the role of ecology in shaping life history strategies. Interspecific comparisons of age-specific mortality may lead to a greater understanding of a number of other phenomena as well, including the evolution of altriciality and precociality, phenotypic plasticity and life history trade-offs. UNIV OXFORD, DEPT ZOOL, OXFORD, ENGLAND PROMISLOW, DEL (reprint author), ECOLE NORM SUPER, ECOL LAB, 46 RUE ULM, F-75231 PARIS 05, FRANCE. Alexander R.D., 1979, EVOLUTIONARY BIOL HU, P402; Allee W. C., 1949, PRINCIPLES ANIMAL EC; ANDERSON DR, 1985, J ANIM ECOL, V54, P89, DOI 10.2307/4622; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BERNSTEIN AD, 1970, FAUN ECOL ROD MOSCOW, V9, P62; BLACKBURN TM, 1991, AUK, V108, P209; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; BOYCE MS, 1988, EVOLUTION LIFE HIST, P351; Calder W. A, 1984, SIZE FUNCTION LIFE H; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CASWELL H, 1982, J THEOR BIOL, V98, P519, DOI 10.1016/0022-5193(82)90134-5; CASWELL H, 1984, MATRIX POPULATION MO, V107, P169; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CLARKE BC, 1979, PROC R SOC SER B-BIO, V205, P453, DOI 10.1098/rspb.1979.0079; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; COCKBURN A, 1983, EVOLUTION, V37, P86, DOI 10.1111/j.1558-5646.1983.tb05517.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Comfort A., 1979, BIOL SENESCENCE; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Elgar MA, 1987, FUNCT ECOL, V1, P25, DOI 10.2307/2389354; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; GEORGIADIS N, 1985, AFR J ECOL, V23, P75, DOI 10.1111/j.1365-2028.1985.tb00718.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HARVEY PH, 1991, COMPARATIVE METHOD E; HARVEY PH, IN PRESS AM NAT; HENNEMANN WW, 1983, OECOLOGIA, V56, P104, DOI 10.1007/BF00378224; HOFMAN MA, 1983, Q REV BIOL, V58, P495, DOI 10.1086/413544; Huxley J. S, 1932, PROBLEMS RELATIVE GR; HYMAN LH, 1951, INVERTEBRATES, V2; JEZIERSKI W, 1977, ACTA THERIOL, V22, P337, DOI 10.4098/AT.arch.77-31; KILTIE RA, 1982, J MAMMAL, V63, P646, DOI 10.2307/1380270; KING CE, 1982, EVOL BIOL, V63, P646; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Lack D, 1954, NATURAL REGULATION A; LAKHANI KH, 1983, J ANIM ECOL, V52, P83, DOI 10.2307/4589; LEBRETON JD, 1977, BIOMETR PRAX, V17, P145; Lee AK, 1985, EVOLUTIONARY ECOLOGY; LEIGH EG, 1970, AM NAT, V104, P205, DOI 10.1086/282650; LEWONTIN RC, 1965, GENETICS COLONIZING, P79; LINDSTEDT SL, 1981, Q REV BIOL, V56, P1, DOI 10.1086/412080; LINDSTEDT SL, 1988, EVOLUTION LIFE HIST, P93; LORD REXFORD D., 1961, JOUR WILDLIFE MANAGEMENT, V25, P33, DOI 10.2307/3796988; LUCKINBILL LS, 1978, SCIENCE, V202, P1201, DOI 10.1126/science.202.4373.1201; MAC ARTHUR ROBERT H., 1967; MAY RM, 1984, REPROD MAMMALS, V4, P1; MCNAB BK, 1986, J ZOOL, V208, P595; MCNAB BK, 1983, J ZOOL, V199, P1; MCNAB BK, 1980, AM NAT, V116, P106, DOI 10.1086/283614; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MERTZ DB, 1975, PHYSIOL ZOOL, V48, P1; MILLAR JS, 1981, EVOLUTION, V35, P1149, DOI 10.1111/j.1558-5646.1981.tb04986.x; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; NESSE RM, 1988, EXP GERONTOL, V23, P445, DOI 10.1016/0531-5565(88)90056-3; PAGEL MD, 1990, BIOSCIENCE, V40, P116, DOI 10.2307/1311344; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PAULY D, 1988, ENVIRON BIOL FISH, V22, P261, DOI 10.1007/BF00004892; Peters R.H., 1983, P1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PROMISLOW DEL, 1990, MORTALITY PATTERNS N; Ralls K., 1980, REP INT WHALING COMM, P233; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSS C, 1988, J ZOOL, V214, P199, DOI 10.1111/j.1469-7998.1988.tb04717.x; SACHER GA, 1978, BIOSCIENCE, V28, P497, DOI 10.2307/1307295; SACHER GA, 1959, CIBA F S LIFESPAN AN; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHER GA, 1974, AM NAT, V108, P593; SCHULTZ DL, 1989, EVOLUTION, V43, P473, DOI 10.1111/j.1558-5646.1989.tb04243.x; SKORPING A, IN PRESS OIKOS; SMITH AT, 1978, ECOLOGY, V59, P133, DOI 10.2307/1936639; SMITH AT, 1988, EVOLUTION LIFE HIST, P233; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; SWIHART RK, 1984, OIKOS, V43, P282, DOI 10.2307/3544145; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; WESTERN D, 1979, AFR J ECOL, V17, P185, DOI 10.1111/j.1365-2028.1979.tb00256.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WOOLLEY P., 1966, SYMP ZOOL SOC LONDON, V15, P281; WOOTTON JT, 1987, EVOLUTION, V41, P732, DOI 10.1111/j.1558-5646.1987.tb05849.x; ZAMMUTO RM, 1985, ECOLOGY, V66, P1784, DOI 10.2307/2937374 101 48 48 0 27 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1146-609X 1873-6238 ACTA OECOL Acta Oecol.-Int. J. Ecol. 1991 12 1 119 137 19 Ecology Environmental Sciences & Ecology FT622 WOS:A1991FT62200008 2019-02-26 J BARBAULT, R BARBAULT, R ECOLOGICAL CONSTRAINTS AND COMMUNITY DYNAMICS - LINKING COMMUNITY PATTERNS TO ORGANISMAL ECOLOGY - THE CASE OF TROPICAL HERPETOFAUNAS ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY English Article COMMUNITY DYNAMICS; PREDATION PRESSURE; LIZARDS; ANURANS; SEASONAL BREEDING CYCLES; LIFE-HISTORY STRATEGIES; TROPICAL LIZARD COMMUNITY; COMPETITION; HETEROGENEITY; ORGANIZATION; AMPHIBIANS; PREDATION; MODELS For the past decade, analysis of the ecological determinism of community organization, together with study of the evolution of life history strategies, has been one of the chief aspects of evolutionary ecology. The argument is that, in order to understand the adaptive meaning of life-history patterns or community structures, we need to focus on population dynamics and the factors that limit or regulate population growth. Thus, an individual-centered population biology, but linking the population with its environment, is to be favoured. With this framework in mind, the problem of the ecological determinism of community organization is addressed here by focusing more specifically on the case of tropical herpetologic assemblages. The dynamics and organization of tropical lizard and amphibian communities depend to a large extent on the ecology specific to the species in question, even if most subunit species fall under general constraints in which the rainfall pattern and predation play leading roles. The crucial importance of seasonal breeding cycles has been stressed and emphasis has been placed on the need to increase research in this field, particularly in the forest areas which shelter the greatest variety of animal life. Finally, an integrated approach is advocated, of a kind which respects the overall structure of the systems under study, and particularly the different scales of heterogeneity, in space and time. BARBAULT, R (reprint author), ECOLE NORM SUPER,ECOL LAB,46 RUE ULM,F-75230 PARIS 05,FRANCE. AUFFENBERG W, 1988, Bulletin of the Florida State Museum Biological Sciences, V32, P151; AUFFENBERG W, 1989, IN PRESS B FLORIDA S, V33; BARBAULT R, 1984, OIKOS, V43, P77, DOI 10.2307/3544248; BARBAULT R, 1976, COPEIA, P483; BARBAULT R, 1974, Terre et la Vie, V28, P352; BARBAULT R, 1988, HERPETOLOGICA, V44, P38; BARBAULT R, 1987, Revue de Zoologie Africaine, V101, P301; Barbault R., 1977, Geo-Eco-Trop, V1, P309; Barbault R, 1985, OECOLOGIA, V65, P550, DOI 10.1007/BF00379671; BARBAULT R, 1981, OECOLOGIA, V51, P335, DOI 10.1007/BF00540903; BARBAULT R, 1980, ACTA OECOL-OEC GEN, V1, P373; CASWELL H, 1976, ECOL MONOGR, V46, P327, DOI 10.2307/1942257; CHESSON PL, 1986, COMMUNITY ECOLOGY, V13, P229; Cody M., 1975, ECOLOGY EVOLUTION CO; Colwell R.K., 1984, P387; Conneil J.H., 1975, P460; CONNELL JH, 1983, AM NAT, V121, P789, DOI 10.1086/284105; Diamond J., 1986, COMMUNITY ECOLOGY, P3; Diamond J, 1986, COMMUNITY ECOLOGY, P65; Duellman W.E., 1989, VERTEBRATES COMPLEX, P61; Duellman W. E., 1986, BIOL AMPHIBIANS; DUELLMAN WE, 1978, MISCELLANEOUS PUBLIC, V65, P1; Fisher R.A., 1930, GENETICAL THEORY NAT; FITCH H S, 1973, University of Kansas Science Bulletin, V50, P39; GEE JHR, 1987, ORG COMMUNITIES PAST; GONZALEZ-ROMERO A, 1989, Amphibia-Reptilia, V10, P1, DOI 10.1163/156853889X00250; Hairston N. G, 1987, COMMUNITY ECOLOGY SA; HARVEY PH, 1983, ANNU REV ECOL SYST, V14, P189, DOI 10.1146/annurev.es.14.110183.001201; HENLE K, 1989, Amphibia-Reptilia, V10, P277, DOI 10.1163/156853889X00430; HENLE K, 1989, ACTA OECOL-OEC GEN, V10, P19; HUEY RB, 1974, ECOLOGY, V55, P304, DOI 10.2307/1935218; HUSTON M, 1988, BIOSCIENCE, V38, P682, DOI 10.2307/1310870; INGER RF, 1966, ECOLOGY, V47, P1007, DOI 10.2307/1935648; JACOBSEN NHG, 1982, THESIS FAC SCI U PRE; JAMES C, 1985, OECOLOGIA, V67, P464, DOI 10.1007/BF00790016; KIKKAWA J, 1986, COMMUNITY ECOLOGY PA; KOTLER BP, 1988, ANNU REV ECOL SYST, V19, P281, DOI 10.1146/annurev.es.19.110188.001433; LAMOTTE M, 1977, TERRE VIE-REV ECOL A, V31, P225; LOMNICKI A, 1988, MONOGRAPHS POPULATIO, V25; MAGNUSON JJ, 1990, BIOSCIENCE, V40, P495, DOI 10.2307/1311317; MAIORANA V C, 1976, Evolutionary Theory, V1, P157; MEDEL RG, 1988, OIKOS, V53, P321, DOI 10.2307/3565531; MENGE BA, 1976, AM NAT, V110, P351, DOI 10.1086/283073; ORTEGA A, 1982, ACTA OECOL-OEC GEN, V3, P323; PIANKA ER, 1966, ECOLOGY, V47, P1055, DOI 10.2307/1935656; Pianka ER., 1986, ECOLOGY NATURAL HIST; PILORGE T, 1987, HERPETOLOGICA, V43, P345; ROUGHGARDEN J, 1984, EVOLUTIONARY ECOLOGY, P203; Schoener T.W., 1987, P8; SCHOENER TW, 1982, AM SCI, V70, P586; SCHOENER TW, 1980, COPEIA, P839, DOI 10.2307/1444463; SCHOENER TW, 1986, AM ZOOL, V26, P81; SCHOENER TW, 1978, NATURE, V274, P685, DOI 10.1038/274685a0; SCHOENER TW, 1979, ECOLOGY, V60, P1110, DOI 10.2307/1936958; SCHOENER TW, 1985, AM NAT, V126, P633, DOI 10.1086/284444; SCHOENER TW, 1985, COMMUNITY ECOLOGY, P467; SCOTT NJ, 1982, WILDLIFE RES REPORT, V13, P221; SCOTT NJ, 1982, 13 US FISH WILDLIFE; STEARNS SC, 1982, EVOL DEV, P237; STENSETH NC, 1984, TRENDS ECOLOGICAL RE, P239; Strong D. R., 1984, INSECTS PLANTS; Strong D. R., 1984, ECOLOGICAL COMMUNITI; THOMPSON JN, 1988, ANNU REV ECOL SYST, V19, P65, DOI 10.1146/annurev.es.19.110188.000433; TOFT CA, 1985, COPEIA, P1; WERNER EE, 1979, ECOLOGY, V60, P256, DOI 10.2307/1937653; Wiens J.A., 1984, P397; Wiens J. A., 1986, COMMUNITY ECOLOGY, P145; Wiens J.A., 1989, ECOLOGY BIRD COMMUNI, V1; Wiens J. A., 1989, ECOLOGY BIRD COMMUNI, V2; WIENS JA, 1977, AM SCI, V65, P590; Wiens JA, 1986, COMMUNITY ECOLOGY, P154 71 51 54 0 8 GAUTHIER-VILLARS PARIS S P E S-JOURNAL DEPT, 120 BD ST GERMAIN, F-75006 PARIS, FRANCE 1146-609X ACTA OECOL Acta Oecol.-Int. J. Ecol. 1991 12 1 139 163 25 Ecology Environmental Sciences & Ecology FT622 WOS:A1991FT62200009 2019-02-26 J SMITH, RH SMITH, RH GENETIC AND PHENOTYPIC ASPECTS OF LIFE-HISTORY EVOLUTION IN ANIMALS ADVANCES IN ECOLOGICAL RESEARCH English Review GENOTYPE-ENVIRONMENT INTERACTION; POPULATION-GROWTH RATE; BREEDING BLUE TITS; DROSOPHILA-MELANOGASTER; CLUTCH-SIZE; QUANTITATIVE GENETICS; PIERIS-RAPAE; BRUCHID BEETLE; DEVELOPMENTAL CONSTRAINTS; CALLOSOBRUCHUS-MACULATUS UNIV READING,DEPT PURE & APPL ZOOL,READING RG6 2AJ,BERKS,ENGLAND ARVESEN JN, 1970, BIOMETRICS, V26, P677, DOI 10.2307/2528715; ATKINSON WD, 1979, J ANIM ECOL, V48, P91, DOI 10.2307/4102; BAKER RJ, 1988, 2ND P INT C QUANT GE, P492; Barker JSF, 1987, GENETIC CONSTRAINTS, P3; Becker W, 1984, MANUAL QUANTITATIVE; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BERVEN KA, 1983, AM ZOOL, V23, P85; Bowman J. C., 1974, INTRO ANIMAL BREEDIN; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Bradshaw W.E., 1990, P243; Bulmer MG., 1985, MATH THEORY QUANTITA; CALOW P, 1983, SCI PROG, V68, P177; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H., 1989, P285; CASWELL H, 1983, AM ZOOL, V23, P35; Caswell H., 1989, MATRIX POPULATION MO; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charlesworth B., 1984, EVOLUTIONARY ECOLOGY, P117; CHARNOV E L, 1982; CHARNOV EL, 1984, FLA ENTOMOL, V67, P5, DOI 10.2307/3494101; CHARNOV EL, 1989, HEREDITY, V62, P113, DOI 10.1038/hdy.1989.15; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CHEVERUD JM, 1982, EVOLUTION, V36, P499, DOI 10.1111/j.1558-5646.1982.tb05070.x; CHEVERUD JM, 1984, J THEOR BIOL, V110, P155, DOI 10.1016/S0022-5193(84)80050-8; CLARK A G, 1987, American Naturalist, V129, P932, DOI 10.1086/284686; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; CLUTTONBROCK TH, 1979, PROC R SOC SER B-BIO, V205, P547, DOI 10.1098/rspb.1979.0084; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CREDLAND PF, 1986, ECOL ENTOMOL, V11, P41, DOI 10.1111/j.1365-2311.1986.tb00278.x; Crow J, 1986, BASIC CONCEPTS POPUL; DHONDT AA, 1990, NATURE, V348, P723, DOI 10.1038/348723a0; Dingle H., 1982, P209; Dingle H., 1986, P187; Dingle H., 1982, EVOLUTION GENETICS L; Efron B., 1982, JACKKNIFE BOOTSTRAP; Falconer D. S., 1989, INTRO QUANTITATIVE G; FALCONER DS, 1952, AM NAT, V86, P293, DOI 10.1086/281736; FALCONER DS, 1989, EVOLUTION ANIMAL BRE, P121; Fisher R.A., 1930, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Giesel J.T., 1982, P189; GIESEL JT, 1980, OECOLOGIA, V47, P299, DOI 10.1007/BF00398520; GIESEL JT, 1982, AM NAT, V119, P464, DOI 10.1086/283926; GIESEL JT, 1979, EXP GERONTOL, V14, P323, DOI 10.1016/0531-5565(79)90044-5; GIGA DP, 1983, J STORED PROD RES, V19, P189, DOI 10.1016/0022-474X(83)90007-3; Gilbert F., 1990, INSECT LIFE CYCLES G; GILBERT N, 1986, J ANIM ECOL, V55, P317, DOI 10.2307/4711; GILBERT N, 1984, J ANIM ECOL, V53, P599, DOI 10.2307/4538; GILBERT N, 1984, J ANIM ECOL, V53, P589, DOI 10.2307/4537; GILBERT N, 1984, J ANIM ECOL, V53, P581, DOI 10.2307/4536; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; HEGMANN JP, 1970, NATURE, V226, P284, DOI 10.1038/226284a0; HILL WG, 1989, EVOLUTION ANIMAL BRE; HOLLOWAY GJ, 1990, HEREDITY, V64, P323, DOI 10.1038/hdy.1990.40; HOLLOWAY GJ, 1990, FUNCT ECOL, V4, P289, DOI 10.2307/2389588; HOWE RW, 1953, ANN APPL BIOL, V40, P134, DOI 10.1111/j.1744-7348.1953.tb02372.x; KALLMAN KD, 1978, GENETICS, V89, P79; KEMPTHORNE O, 1957, INTRO GENETIC STATIS; Kennedy B, 1988, 2ND P INT C QUANT GE, P91; KLOMP H, 1970, ARDEA, V58, P1; KOUFOPANOU V, 1984, OECOLOGIA, V64, P81, DOI 10.1007/BF00377548; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D, 1954, NATURAL REGULATION A; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1975, GENET RES, V26, P221, DOI 10.1017/S0016672300016037; LANDE R, 1988, 2ND P INT C QUANT GE, P71; Law R, 1979, POPULATION DYNAMICS, P81; LAWRENCE MJ, 1984, EVOLUTIONARY ECOLOGY, P27; Levins R., 1968, EVOLUTION CHANGING E; Lewontin R. C., 1965, P77; LEWONTIN RC, 1974, AM J HUM GENET, V26, P400; Li L., 1988, THESIS U READING; LOESCHKE V, 1987, GENETIC CONSTRAINTS; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MANLY BFJ, 1985, STATISTICS NATURAL S; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; MEDAWAR PB, 1946, MODERN Q, V1, P30; MESSINA FJ, 1989, ANN ENTOMOL SOC AM, V82, P792, DOI 10.1093/aesa/82.6.792; MESSINA FJ, 1990, BRUCHIDS LEGUMES EC, P303; MEYER K, 1989, EVOLUTION ANIMAL BRE, P161; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; MOLLER H, 1990, FUNCT ECOL, V4, P489, DOI 10.2307/2389316; MOLLER H, 1989, FUNCT ECOL, V3, P683, DOI 10.2307/2389500; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; NUR N, 1987, OIKOS, V48, P338, DOI 10.2307/3565523; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; Partridge L., 1989, P421; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; PARTRIDGE L, 1989, MORE EXACT ECOLOGY, P231; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROBERTSON A, 1968, POPULATION BIOL EVOL, P5; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Roff D.A., 1990, P5; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1983, AM ZOOL, V23, P15; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; ROSE MR, 1987, GENETIC CONSTRAINTS, P91; ROSE MR, 1981, GENETICS, V97, P173; ROSE MR, 1990, INSECT LIFE CYCLES G, P28; ROSE MR, 1983, POPULATION BIOL, P47; Roughgarden J, 1979, THEORY POPULATION GE; Schmalhauser I. I., 1949, FACTORS EVOLUTION TH; Scott S.M., 1990, P69; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; Shorrocks B., 1990, P215; SIBLY R, 1987, J THEOR BIOL, V125, P177, DOI 10.1016/S0022-5193(87)80039-5; SIBLY RM, 1989, FUNCT ECOL, V3, P129, DOI 10.2307/2389293; SIBLY RM, 1983, J THEOR BIOL, V102, P327; SIBLY RM, 1991, IN PRESS FUNCT ECOL, V5; Smith J. M., 1989, EVOLUTIONARY GENETIC; SMITH JM, 1985, Q REV BIOL, V60, P265, DOI 10.1086/414425; SMITH JM, 1989, EVOLUTION ANIMAL BRE, P67; Smith R.H., 1985, P423; SMITH RH, 1987, J ANIM ECOL, V56, P341, DOI 10.2307/4819; SMITH RH, 1990, BRUCHIDS LEGUMES EC, P351; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Taylor F., 1986, EVOLUTION INSECT LIF; THOMPSON R, 1989, EVOLUTION ANIMAL BRE, P169; TURELLI M, 1988, 2ND P INT C QUANT GE, P601; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANNOORDWIJK AJ, 1980, ARDEA, V68, P193; VIA S, 1984, EVOLUTION, V38, P881, DOI 10.1111/j.1558-5646.1984.tb00359.x; VIA S, 1984, EVOLUTION, V38, P896, DOI 10.1111/j.1558-5646.1984.tb00360.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Via S., 1987, GENETIC CONSTRAINTS, P47; Waage J.K., 1985, P449; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WRELTON AE, 1987, THESIS U READING; Wright S, 1931, GENETICS, V16, P0097; WRIGHT S, 1978, GENETICS EVOLUTION P, V4; YAMADA Y, 1962, JPN J GENET, V37, P498, DOI 10.1266/jjg.37.498; 1985, SAS USERS GUIDE STAT 155 45 51 0 8 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0065-2504 ADV ECOL RES Adv. Ecol. Res. 1991 21 63 120 10.1016/S0065-2504(08)60097-5 58 Ecology Environmental Sciences & Ecology MC408 WOS:A1991MC40800002 2019-02-26 J ROFF, DA; FAIRBAIRN, DJ ROFF, DA; FAIRBAIRN, DJ WING DIMORPHISMS AND THE EVOLUTION OF MIGRATORY POLYMORPHISMS AMONG THE INSECTA AMERICAN ZOOLOGIST English Article BUGS ONCOPELTUS-FASCIATUS; LIFE-HISTORY EVOLUTION; MILKWEED BUGS; HETEROGENEOUS ENVIRONMENT; ANTAGONISTIC PLEIOTROPY; PYRRHOCORIS-APTERUS; GERRIS-REMIGIS; GRYLLUS-RUBENS; DISPERSAL; FLIGHT Many species of insects exhibit wing dimorphism, one morph having fully developed wings and the other morph having reduced wings and being incapable of flight. These wing dimorphisms provide visible manifestations of migratory polymorphisms. Since winged individuals do not, in principle, have to fly, the reduced wings suggests that there is a tradeoff between flight capability and other fitness components. Comparisons of the life histories of the fully winged and wing reduced morphs demonstrate that this tradeoff is most commonly expressed as a decrease in the age of first reproduction and increased fecundity in the morph with reduced wings. Given these tradeoffs, the evolution of wing dimorphism will depend upon its genetic basis, including correlations with other life history components. A review of the recent literature suggests that the heritability of wing morphology is high, and we suggest that this high heritability could be maintained, in part, by antagonistic pleiotropy. In dimorphic species, the winged morph is generally considered to be the migrant form. However, there are significant correlations, both within and among species, between the proportion of winged individuals, the proportion of winged individuals with functional flight muscles, and the flight propensity of those individuals. This suggests that the proportion of winged individuals and the propensity of the winged morph to migrate are intimately connected at both the physiological and population level. Therefore, the study of the evolution of wing dimorphism is important not only in its own right but also as a model of how migratory propensity evolves in monomorphically winged species. CONCORDIA UNIV, DEPT BIOL, MONTREAL H3G 1M8, QUEBEC, CANADA ROFF, DA (reprint author), MCGILL UNIV, DEPT BIOL, MONTREAL H3A 1B1, QUEBEC, CANADA. ANDERSEN N M, 1973, Entomologica Scandinavica, V4, P1; BRICENO RD, 1987, OECOLOGIA, V74, P253, DOI 10.1007/BF00379367; BUTLER T, 1987, THESIS CONCORDIA U M; COATS SA, 1987, ANN ENTOMOL SOC AM, V80, P697, DOI 10.1093/aesa/80.5.697; CRESPI BJ, 1986, ECOL ENTOMOL, V11, P119, DOI 10.1111/j.1365-2311.1986.tb00286.x; DANTHANARYANA W, 1986, INSECT FLIGHT DISPER; Darwin C, 1859, ORIGIN SPECIES; DAVIS MA, 1984, ECOLOGY, V65, P230, DOI 10.2307/1939475; DENNO R F, 1979, Miscellaneous Publications of the Entomological Society of America, V11, P41; DENNO RF, 1980, ECOLOGY, V61, P859, DOI 10.2307/1936756; DENNO RF, 1978, CAN ENTOMOL, V110, P135, DOI 10.4039/Ent110135-2; DICKERSON GE, 1955, COLD SPRING HARB SYM, V20, P213, DOI 10.1101/SQB.1955.020.01.020; DINGLE H, 1966, J EXP BIOL, V44, P335; Dingle H., 1985, Contributions in Marine Science, V27, P27; Dingle H., 1979, P64; DINGLE H, 1988, EVOLUTION, V42, P79, DOI 10.1111/j.1558-5646.1988.tb04109.x; Dingle H., 1981, P57; DINGLE H, 1987, ENTOMOL EXP APPL, V45, P289, DOI 10.1111/j.1570-7458.1987.tb01097.x; DINGLE H, 1985, COMPREHENSIVE INSECT, V9, P375; FAIRBAIRN D, 1987, ECOL ENTOMOL, V12, P13, DOI 10.1111/j.1365-2311.1987.tb00980.x; FAIRBAIRN DJ, 1988, ECOL ENTOMOL, V13, P273, DOI 10.1111/j.1365-2311.1988.tb00357.x; FAIRBAIRN DJ, 1986, ECOL ENTOMOL, V11, P355, DOI 10.1111/j.1365-2311.1986.tb00314.x; FAIRBAIRN DJ, 1990, ECOL ENTOMOL, V15, P131, DOI 10.1111/j.1365-2311.1990.tb00794.x; Gatehouse A.G., 1986, P128; Greenewalt C. H., 1962, SMITHSONIAN MISC COL, V144; HARRISON RG, 1980, ANNU REV ECOL SYST, V11, P95, DOI 10.1146/annurev.es.11.110180.000523; HONEK A, 1985, ACTA ENTOMOL BOHEMOS, V82, P347; HONEK A, 1986, J HERED, V77, P465; INGLESFIELD C, 1983, BIOL J LINN SOC, V19, P9, DOI 10.1111/j.1095-8312.1983.tb00772.x; Jackson D. J., 1956, Proceedings of the Linnean Society of London, V167, P76; JARVINEN O, 1976, HEREDITAS, V84, P61; JARVINEN O, 1976, ANN ACAD SCI FENN A4, V206, P1; Johnson C.G., 1976, Symposia Royal Ent Soc Lond, V7, P217; Johnson C. G., 1969, MIGRATION DISPERSAL; KAITALA A, 1988, OIKOS, V53, P222, DOI 10.2307/3566066; KLAUSNER E, 1981, J HERED, V72, P288, DOI 10.1093/oxfordjournals.jhered.a109502; MCANELLY ML, 1984, THESIS U TEXAS AUSTI; MOUSSEAU TA, 1989, HEREDITY, V62, P315, DOI 10.1038/hdy.1989.45; Rankin M.A., 1986, P27; Rankin M.A., 1978, P5; RANKIN MA, 1978, J INSECT PHYSIOL, V24, P31, DOI 10.1016/0022-1910(78)90008-2; RANKIN MA, 1985, CONTRIBUTIONS MARI S, V27; REDDINGIUS J, 1970, OECOLOGIA, V5, P240, DOI 10.1007/BF00344886; RITCHIE MG, 1987, ECOL ENTOMOL, V12, P209, DOI 10.1111/j.1365-2311.1987.tb00999.x; ROFF D, 1977, J ANIM ECOL, V46, P443, DOI 10.2307/3822; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; ROFF DA, 1989, J EVOLUTION BIOL, V2, P109, DOI 10.1046/j.1420-9101.1989.2020109.x; ROFF DA, 1984, OECOLOGIA, V63, P30, DOI 10.1007/BF00379781; ROFF DA, 1974, OECOLOGIA, V15, P245, DOI 10.1007/BF00345181; ROFF DA, 1991, AM ZOOL, V31, P205; ROFF DA, 1975, OECOLOGIA, V19, P217, DOI 10.1007/BF00345307; ROFF DA, 1974, OECOLOGIA, V15, P259, DOI 10.1007/BF00345182; ROFF DA, 1986, HEREDITY, V57, P221, DOI 10.1038/hdy.1986.112; ROFF DA, 1986, EVOLUTION INSECT LIF, P209; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1983, AM ZOOL, V23, P15; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1981, GENETICS, V97, P187; RYGG TD, 1966, ENTOMOL EXP APPL, V9, P74, DOI 10.1111/j.1570-7458.1966.tb00978.x; SLANSKY F, 1980, ENTOMOL EXP APPL, V28, P277, DOI 10.1111/j.1570-7458.1980.tb03027.x; SOLBRECK C, 1986, ECOL ENTOMOL, V11, P435, DOI 10.1111/j.1365-2311.1986.tb00322.x; SOUTHWOOD TRE, 1962, BIOL REV, V37, P171, DOI 10.1111/j.1469-185X.1962.tb01609.x; Southwood TRE, 1961, P R ENTOMOL SOC LO A, V36, P63; UTIDA S, 1972, J STORED PROD RES, V8, P111, DOI 10.1016/0022-474X(72)90028-8; Van Valen Leigh, 1971, Evolution, V25, P591, DOI 10.1111/j.1558-5646.1971.tb01919.x; Vepsalainen K., 1978, P218; WALKER TJ, 1987, ANN ENTOMOL SOC AM, V80, P547, DOI 10.1093/aesa/80.5.547; Wigglesworth V. B., 1961, Symposia Royal Entomological Society London, Vno. 1, P103; YOUNG EC, 1965, J ANIM ECOL, V34, P353, DOI 10.2307/2655; ZERA AJ, 1989, J INSECT PHYSIOL, V35, P7, DOI 10.1016/0022-1910(89)90031-0 71 224 233 0 52 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 0003-1569 AM ZOOL Am. Zool. 1991 31 1 243 251 9 Zoology Zoology FD123 WOS:A1991FD12300019 2019-02-26 J BEACHY, CK BEACHY, CK ECOLOGY OF LARVAL PLETHODONTID SALAMANDERS - SIZE-SPECIFIC PREDATION, HABITAT SHIFTS AND LIFE-HISTORY EVOLUTION AMERICAN ZOOLOGIST English Meeting Abstract UNIV SW LOUISIANA,LAFAYETTE,LA 70504 0 2 2 0 1 AMER SOC ZOOLOGISTS LAWRENCE 1041 NEW HAMPSHIRE ST, LAWRENCE, KS 66044 0003-1569 AM ZOOL Am. Zool. 1991 31 5 A106 A106 1 Zoology Zoology GV285 WOS:A1991GV28500419 2019-02-26 J GARLAND, T; ADOLPH, SC GARLAND, T; ADOLPH, SC PHYSIOLOGICAL DIFFERENTIATION OF VERTEBRATE POPULATIONS ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS English Review EVOLUTION; COMPARATIVE METHODS; QUANTITATIVE GENETICS; THERMOREGULATION; METABOLISM; LOCOMOTION; ADAPTATION MICE PEROMYSCUS-MANICULATUS; PERCH PERCA-FLAVESCENS; MAXIMUM OXYGEN-CONSUMPTION; LIZARD SCELOPORUS-MERRIAMI; LIFE-HISTORY EVOLUTION; HISPID COTTON RAT; DEER MICE; LOCOMOTOR PERFORMANCE; GEOGRAPHIC-VARIATION; SWIMMING PERFORMANCE GARLAND, T (reprint author), UNIV WISCONSIN, DEPT ZOOL, MADISON, WI 53706 USA. ADOLPH SC, 1990, AM ZOOL, V30, pA55; ANDERSON J D, 1972, Herpetologica, V28, P126; Andrews R.M., 1982, Biology of Reptilia, V13, P273; ARAD Z, 1988, PHYSIOL ZOOL, V61, P293, DOI 10.1086/physzool.61.4.30161246; ARIELI R, 1986, EXPERIENTIA, V42, P441, DOI 10.1007/BF02118650; ARNOLD SJ, 1981, EVOLUTION, V35, P510, DOI 10.1111/j.1558-5646.1981.tb04913.x; Avery R.A., 1982, Biology of Reptilia, V12, P93; AVISE JC, 1987, ANNU REV ECOL SYST, V18, P489, DOI 10.1146/annurev.es.18.110187.002421; BARLOW GW, 1961, SYST ZOOL, V10, P105, DOI 10.2307/2411595; BARNETT SA, 1987, GENET RES, V50, P199, DOI 10.1017/S0016672300023703; BARNETT SA, 1989, BIOL REV, V64, P317, DOI 10.1111/j.1469-185X.1989.tb00679.x; BARROWCLOUGH GF, 1985, CURRENT ORNITHOLOGY, V2, P135; BARTHOLOMEW GA, 1986, BIOSCIENCE, V36, P324, DOI 10.2307/1310237; BARTHOLOMEW GA, 1987, NEW DIRECTIONS PHYSI, V102, P11; BARTLETT PN, 1970, THESIS U CALIF RIVER; BASHAM MP, 1987, CONDOR, V89, P697, DOI 10.2307/1368516; BASSETT JE, 1982, COMP BIOCHEM PHYS A, V72, P703, DOI 10.1016/0300-9629(82)90152-9; BEAMISH FWH, 1990, ENVIRON BIOL FISH, V29, P201; BEDFORD TG, 1979, J APPL PHYSIOL, V47, P1278; Bennett A.F., 1976, P127; BENNETT AF, 1975, COMP BIOCHEM PHYSIOL, V50, P105, DOI 10.1016/S0010-406X(75)80209-X; BENNETT AF, 1990, NATURE, V346, P79, DOI 10.1038/346079a0; BERRY RJ, 1981, MAMMAL REV, V11, P91, DOI 10.1111/j.1365-2907.1981.tb00001.x; BERRY RJ, 1978, J ZOOL LOND, V85, P73; BERVEN KA, 1987, EVOLUTION, V41, P1088, DOI 10.1111/j.1558-5646.1987.tb05878.x; BERVEN KA, 1979, EVOLUTION, V33, P609, DOI 10.1111/j.1558-5646.1979.tb04714.x; BERVEN KA, 1983, AM ZOOL, V23, P85; BERVEN KA, 1979, AM ZOOL, V33, P690; Blem C.R., 1973, Ornithological Monographs, VNo. 14, P96; BLEM CR, 1974, COMP BIOCHEM PHYSIOL, V47, P101, DOI 10.1016/0300-9629(74)90056-5; BLEM CR, 1981, CONDOR, V83, P370, DOI 10.2307/1367508; Borut A, 1978, Experientia Suppl, V32, P219; Boyce M.S., 1988, EVOLUTION LIFE HIST; BRATTSTROM BH, 1968, COMP BIOCHEM PHYSIOL, V24, P93, DOI 10.1016/0010-406X(68)90961-4; BRATTSTROM BH, 1970, COMP BIOCHEM PHYSIOL, V35, P69, DOI 10.1016/0010-406X(70)90915-1; BRODIE ED, 1989, AM NAT, V134, P225, DOI 10.1086/284977; BRODIE ED, 1990, EVOLUTION, V44, P651, DOI 10.1111/j.1558-5646.1990.tb05945.x; BROWN HA, 1975, COMP BIOCHEM PHYS A, V51, P863, DOI 10.1016/0300-9629(75)90067-5; BROWN JH, 1969, EVOLUTION, V23, P329, DOI 10.1111/j.1558-5646.1969.tb03515.x; BUBENIK GA, 1990, COMP BIOCHEM PHYS A, V97, P253, DOI 10.1016/0300-9629(90)90181-Q; Bull J. J., 1983, EVOLUTION SEX DETERM; BULLOCK TH, 1955, BIOL REV, V30, P311, DOI 10.1111/j.1469-185X.1955.tb01211.x; BURGGREN WW, 1990, EVOLUTIONARY INNOVATIONS, P191; Calow P, 1987, EVOLUTIONARY PHYSL E; CANADY RA, 1984, P NATL ACAD SCI-BIOL, V81, P6232, DOI 10.1073/pnas.81.19.6232; CAREY C, 1989, J COMP PHYSIOL B, V159, P389, DOI 10.1007/BF00692411; CAREY C, 1983, PHYSIOL ZOOL, V56, P340, DOI 10.1086/physzool.56.3.30152599; CAREY C, 1982, AUK, V99, P710; CAREY C, 1978, OECOLOGIA, V35, P197, DOI 10.1007/BF00344732; CAREY C, 1976, COMP BIOCHEM PHYS A, V54, P61, DOI 10.1016/S0300-9629(76)80073-4; CAREY C, 1979, OECOLOGIA, V39, P201, DOI 10.1007/BF00348069; Carey C., 1984, RESPIRATION METABOLI, P259; CASTRO G, 1985, COMP BIOCHEM PHYS A, V82, P847, DOI 10.1016/0300-9629(85)90493-1; CEI JM, 1959, EVOLUTION, V13, P532, DOI 10.2307/2406134; CHAFFEE RRJ, 1966, J THEOR BIOL, V12, P151, DOI 10.1016/0022-5193(66)90193-7; CHAFFEE RRJ, 1971, ANNU REV PHYSIOL, V33, P155, DOI 10.1146/annurev.ph.33.030171.001103; CHAMPPELL MA, 1984, P NATL ACAD SCI USA, V81, P5484; CHAPPELL MA, 1988, EVOLUTION, V42, P681, DOI 10.1111/j.1558-5646.1988.tb02486.x; CHEVALIER CD, 1991, THESIS U CALIF IRVIN; CHRISTENSEN K, 1985, HEREDITAS, V102, P219, DOI 10.1111/j.1601-5223.1985.tb00618.x; CLARKE A, 1980, BIOL J LINN SOC, V14, P77, DOI 10.1111/j.1095-8312.1980.tb00099.x; Clausen J., 1948, CARNEGIE I WASHINGTO, V581; COCKBURN A, 1988, SOCIAL BEHAVIOR FLUC; COCKBURN A, 1985, EVOLUTIONARY ECOLOGY; COHAN FM, 1989, AM NAT, V134, P613, DOI 10.1086/285000; CONNOLLY MS, 1983, BEHAV GENET, V13, P491, DOI 10.1007/BF01065924; CONOVER DO, 1990, SCIENCE, V250, P1556, DOI 10.1126/science.250.4987.1556; COOKE F, 1988, AVIAN GENETICS, P407; COUTURE P, 1990, CAN J ZOOL, V68, P1552, DOI 10.1139/z90-229; CRAWFORD DL, 1989, P NATL ACAD SCI USA, V86, P9365, DOI 10.1073/pnas.86.23.9365; CROWLEY SR, 1985, OECOLOGIA, V66, P219, DOI 10.1007/BF00379858; CUPP PV, 1972, AM ZOOL, V12, P689; DAVIS JP, 1983, COMP BIOCHEM PHYS A, V76, P115, DOI 10.1016/0300-9629(83)90301-8; DAWSON WR, 1985, CONDOR, V87, P424, DOI 10.2307/1367228; DAWSON WR, 1983, PHYSIOL ZOOL, V56, P353, DOI 10.1086/physzool.56.3.30152600; DAWSON WR, 1986, PHYSIOL ZOOL, V59, P357, DOI 10.1086/physzool.59.3.30156107; DEJOURS P, 1987, ADAPTIVE PHYSL STRES, P113; DELSON J, 1973, Herpetologica, V29, P352; DERTING TL, 1989, J MAMMAL, V70, P520, DOI 10.2307/1381424; DESJARDINS C, 1986, NATURE, V322, P172, DOI 10.1038/322172a0; DIMICHELE L, 1986, AM ZOOL, V26, P201; DJAWDAN M, 1989, THESIS U CALIF IRVIN; DOYLE RW, 1986, CAN J FISH AQUAT SCI, V43, P1059, DOI 10.1139/f86-132; Dunham A.E., 1988, Biology of Reptilia, V16, P441; DUNHAM AE, 1978, ECOLOGY, V59, P1230, DOI 10.2307/1938236; DUNLAP DG, 1969, COPEIA, P852; DUNSON WA, 1972, AM J PHYSIOL, V222, P1167; DUNSON WA, 1974, AM J PHYSIOL, V226, P662; DUNSON WA, 1973, ECOLOGY, V54, P1370, DOI 10.2307/1934201; DUNSON WA, 1980, COPEIA, P268; DUNSON WA, 1968, SCIENCE, V161, P167, DOI 10.1126/science.161.3837.167; DUNSON WA, 1986, COPEIA, P741, DOI 10.2307/1444958; DUNSON WA, 1989, B MAR SCI, V44, P229; DUNSON WILLIAM A., 1965, CONDOR, V67, P215, DOI 10.2307/1365399; DuShane GP, 1944, ECOLOGY, V25, P414, DOI 10.2307/1932016; DUTHIE GG, 1987, ENVIRON BIOL FISH, V18, P309, DOI 10.1007/BF00004884; EARLE M, 1990, CAN J ZOOL, V68, P381, DOI 10.1139/z90-054; Echelle A. A., 1984, EVOLUTION FISH SPECI; Falconer D. S., 1989, INTRO QUANTITATIVE G; FALCONER DS, 1965, GENETICS TODAY, P763; FARNER DS, 1985, ANNU REV PHYSIOL, V47, P65, DOI 10.1146/annurev.ph.47.030185.000433; FARRAR ES, 1979, GEN COMP ENDOCR, V39, P358, DOI 10.1016/0016-6480(79)90133-3; FEDER ME, 1987, NEW DIRECTIONS ECOLO; FERGUSON GW, 1980, COPEIA, P259, DOI 10.2307/1444002; FERGUSON MM, 1985, CAN J GENET CYTOL, V27, P289, DOI 10.1139/g85-043; FIGIEL CR, 1990, COPEIA, P818, DOI 10.2307/1446447; FOLEY CW, 1971, J ANIM SCI, V32, P926; FULLER JL, 1951, AM J PHYSIOL, V166, P20; GARLAND T, 1990, EXPERIENTIA, V46, P530, DOI 10.1007/BF01954257; GARLAND T, 1987, AM J PHYSIOL, V252, pR439; GARLAND T, 1990, AM J PHYSIOL, V259, pR986; GARLAND T, 1992, ECOLOGICAL MORPHOLOG, pR20; GARLAND T, 1991, IN PRESS EVOLUTION; GARNETT I, 1975, GENET RES, V25, P45, DOI 10.1017/S0016672300015421; GAUSE G. F., 1947, TRANS CONNECTICUT ACAD ARTS AND SCI, V37, P17; Gause GF, 1942, Q REV BIOL, V17, P99, DOI 10.1086/394649; GEISER F, 1990, BIOCHIM BIOPHYS ACTA, V1046, P159, DOI 10.1016/0005-2760(90)90183-X; GEIST V, 1987, CAN J ZOOL, V65, P1035, DOI 10.1139/z87-164; GIBBONS JW, 1990, LIF HIST ECOLOGY SLI; Gould S.J., 1972, Annual Rev Ecol Syst, V3, P457, DOI 10.1146/annurev.es.03.110172.002325; GRAHAM JB, 1985, ENVIRON BIOL FISH, V12, P291, DOI 10.1007/BF00005459; Gray R.H., 1977, Transactions Illinois State Acad Sci, V70, P73; GREGG VA, 1982, BRIT J NUTR, V48, P65, DOI 10.1079/BJN19820088; GROSS JE, 1985, J MAMMAL, V66, P661, DOI 10.2307/1380792; GRUBBS DE, 1980, COMP BIOCHEM PHYS A, V66, P89, DOI 10.1016/0300-9629(80)90363-1; GUDERLEY H, 1986, CAN J FISH AQUAT SCI, V43, P1859, DOI 10.1139/f86-230; GUILLETTE LJ, 1982, HERPETOLOGICA, V38, P94; GUILLETTE LJ, 1991, J ZOOL, V223, P521, DOI 10.1111/j.1469-7998.1991.tb04783.x; HAIM A, 1986, MAMMALIA, V50, P27, DOI 10.1515/mamm.1986.50.1.27; HAIM A, 1986, COMP BIOCHEM PHYS A, V84, P111, DOI 10.1016/0300-9629(86)90051-4; HAIM A, 1981, J COMP PHYSIOL, V142, P445, DOI 10.1007/BF00688974; Hart J. S., 1971, COMP PHYSL THERMOREG, VII, P1; HART JS, 1952, 60 U TOR STUD BIOL P, V72, P1; HAYES JP, 1989, PHYSIOL ZOOL, V62, P732, DOI 10.1086/physzool.62.3.30157924; HAYES JP, 1986, PHYSIOL ZOOL, V59, P473, DOI 10.1086/physzool.59.4.30158600; HAYES JP, 1989, J COMP PHYSIOL B, V159, P453, DOI 10.1007/BF00692417; HEATH ME, 1983, COMP BIOCHEM PHYS A, V76, P363, DOI 10.1016/0300-9629(83)90338-9; HEDRICK PW, 1986, ANNU REV ECOL SYST, V17, P535; HELLER HC, 1986, LIVING COLD PHYSL BI; HENGEVELD R, 1990, DYNAMIC BIOGEOGRPHY; HERREID CF, 1967, ECOLOGY, V48, P579; HERTZ PE, 1981, J ZOOL, V195, P25; HERTZ PE, 1980, COPEIA, P440, DOI 10.2307/1444519; HERTZ PE, 1983, EVOLUTION, V37, P1075, DOI 10.1111/j.1558-5646.1983.tb05634.x; HERTZ PE, 1981, ECOLOGY, V62, P515, DOI 10.2307/1937714; HERTZ PE, 1979, COMP BIOCHEM PHYS A, V63, P217, DOI 10.1016/0300-9629(79)90151-8; HERTZ PE, 1979, ANOLIS GUNDLAHCI COM, V62, P947; HERZ PE, 1981, ISR J ZOOL, V30, P190; HEUSNER AA, 1981, PHYSIOL A, V69, P363; HICKMAN GC, 1983, J BIOGEOGR, V10, P29, DOI 10.2307/2844580; Highton R., 1977, Evolutionary Biol, V10, P397; HILLMAN S, 1979, COMP BIOCHEM PHYS A, V62, P491, DOI 10.1016/0300-9629(79)90091-4; HILLMAN SS, 1977, OECOLOGIA, V29, P105, DOI 10.1007/BF00345791; HILLMAN SS, 1988, ANNU REV ECOL SYST, V19, P39; Hillyard S. D., 1980, ENV PHYSL AGING HEAT, P363; HIRSHFIELD MF, 1980, SCIENCE, V207, P999, DOI 10.1126/science.207.4434.999; Hochachka PW, 1984, BIOCH ADAPTATION; HOCK RAYMOND J., 1965, HVALRADETS SKR, V48, P214; HOFFMANN AA, 1989, BIOL J LINN SOC, V37, P117, DOI 10.1111/j.1095-8312.1989.tb02098.x; HOOVERPLOW J, 1985, J NUTR, V115, P303; HOPPE DM, 1978, HERPETOLOGICA, V34, P318; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HOWARD JH, 1983, J HERPETOL, V17, P400, DOI 10.2307/1563592; HUDSON JW, 1966, COMP BIOCHEM PHYSIOL, V17, P203, DOI 10.1016/0010-406X(66)90021-1; HUEY RB, 1990, PHYSIOL ZOOL, V63, P845, DOI 10.1086/physzool.63.5.30152617; HUEY RB, 1991, EVOLUTION, V45, P751, DOI 10.1111/j.1558-5646.1991.tb04343.x; HUEY RB, 1987, EVOLUTION, V41, P1116, DOI 10.1111/j.1558-5646.1987.tb05880.x; HULBERT AJ, 1985, COMP BIOCHEM PHYS A, V81, P687, DOI 10.1016/0300-9629(85)91048-5; HUTCHISON VH, 1965, COPEIA, P373; HUTCHISON VICTOR H., 1966, HERPETOLOGIA, V22, P32; IBERALL AS, 1984, AM J PHYSIOL, V246, pR516; IHSSEN P, 1974, J FISH RES BOARD CAN, V31, P1351, DOI 10.1139/f74-159; JAKOBSON ME, 1981, S ZOOL SOC LOND, V47, P301; JAMES FC, 1983, SCIENCE, V221, P184, DOI 10.1126/science.221.4606.184; JAMES FC, 1986, 19 ACT C INT ORN, V2, P1424; JAMESON DL, 1966, ECOLOGY, V47, P605, DOI 10.2307/1933938; JAMESON DL, 1970, EVOLUTION, V24, P75, DOI 10.1111/j.1558-5646.1970.tb01741.x; JAMESON EW, 1977, BIOCH PHYSL A, V56, P73; JERRETT DP, 1973, COPEIA, P331, DOI 10.2307/1442972; JOHNALDER HB, 1989, J EXP BIOL, V142, P357; KARASOV WH, 1988, BIOSCIENCE, V38, P602, DOI 10.2307/1310825; KARASOV WH, 1984, ECOLOGY, V65, P235, DOI 10.2307/1939476; KAVALIERS M, 1990, PHYSIOL ZOOL, V63, P388, DOI 10.1086/physzool.63.2.30158503; KAVALIERS M, 1989, PHARMACOL BIOCHEM BE, V32, P613, DOI 10.1016/0091-3057(89)90006-3; Keith L.B., 1990, Current Mammalogy, V2, P119; KENDEIGH SC, 1974, COMP BIOCHEM PHYSIOL, V48, P175; KING JR, 1981, AUK, V98, P752; KING TL, 1985, ENVIRON BIOL FISH, V13, P49, DOI 10.1007/BF00004855; KIRKLAND G. L., 1989, ADV STUDY PEROMYSCUS; KNG C, 1989, NATURAL HIST WEASELS; Koehn R.K., 1987, P170; KOEHN RK, 1969, SCIENCE, V163, P943, DOI 10.1126/science.163.3870.943; Leon-Velarde F, 1984, RESPIRATION METABOLI, P245; LEONVELARDE F, 1984, J EXP ZOOL, V230, P137, DOI 10.1002/jez.1402300118; LICHT P., 1984, MARSHALLS PHYSL REPR, P206; LIU EH, 1985, PHYSIOL ZOOL, V58, P242, DOI 10.1086/physzool.58.2.30158572; Lynch C.B., 1986, P497; LYNCH CB, 1984, EVOLUTION, V38, P527, DOI 10.1111/j.1558-5646.1984.tb00318.x; LYNCH CB, 1984, GENET RES, V43, P299, DOI 10.1017/S0016672300026082; LYNCH GR, 1989, J COMP PHYSIOL A, V164, P475, DOI 10.1007/BF00610441; LYNCH GR, 1976, PHYSIOL ZOOL, V49, P191, DOI 10.1086/physzool.49.2.30152539; MACARI M, 1983, COMP BIOCHEM PHYS A, V74, P549, DOI 10.1016/0300-9629(83)90546-7; MacFarlane W.V., 1972, Symposia Zool Soc Lond, VNo. 31, P261; MACFARLANE WV, 1978, WATER PLANETS PLANTS, P108; MACMILLEN E, 1989, ADV STUDY PEROMYSUCS, P143; MAGNUSON JJ, 1989, FRESHWATER WETLANDS, P487; MAGNUSSON KP, 1987, ENVIRON BIOL FISH, V20, P67, DOI 10.1007/BF00002026; MANIS ML, 1986, J THERM BIOL, V11, P31, DOI 10.1016/0306-4565(86)90014-8; Marsh R.L., 1989, Advances in Comparative and Environmental Physiology, V4, P205; MATTINGLY DK, 1985, ECOLOGY, V66, P928, DOI 10.2307/1940555; Mautz W.J., 1982, Biology of Reptilia, V12, P443; McCarthy J. C., 1983, Animal Breeding Abstracts, V51, P87; McCAULEY R. W., 1958, CANADIAN JOUR ZOOL, V36, P655, DOI 10.1139/z58-059; MCCLENAGHAN LR, 1985, EVOLUTION, V39, P451, DOI 10.1111/j.1558-5646.1985.tb05681.x; MCGOVERN M, 1985, ECOLOGY, V66, P396, DOI 10.2307/1940389; MCLEESE JM, 1986, CAN J FISH AQUAT SCI, V43, P1664, DOI 10.1139/f86-206; MELCHER JC, 1989, PHYSIOL ZOOL, V62, P429, DOI 10.1086/physzool.62.2.30156178; MENDONCA MT, 1987, HERPETOLOGICA, V43, P82; Millar J.S., 1989, P169; MILLAR JS, 1987, CAN J ZOOL, V65, P1713, DOI 10.1139/z87-264; MILLER K, 1974, EXPERIENTIA, V30, P355, DOI 10.1007/BF01921660; MILLER K, 1977, AM NAT, V111, P267, DOI 10.1086/283159; MILLER K, 1987, J EXP BIOL, V127, P401; MITTON JB, 1975, GENETICS, V79, P97; MITTON JB, 1984, ANNU REV ECOL SYST, V15, P479; MOLL E O, 1973, Herpetologica, V29, P307; Montgomery W.I., 1989, P293; MOORE JA, 1949, EVOLUTION, V3, P1, DOI 10.2307/2405448; MYERS JH, 1974, ECOLOGY, V55, P747, DOI 10.2307/1934411; NELSON JA, 1988, CAN J FISH AQUAT SCI, V45, P1699, DOI 10.1139/f88-201; NELSON JA, 1989, J EXP BIOL, V145, P239; NELSON JA, 1987, FISH PHYSIOL BIOCHEM, V3, P7, DOI 10.1007/BF02183989; Nevo E, 1988, EVOLUTIONARY BIOL, P217; NEVO E, 1986, VARIABILITY BEHAV EV, P39; NIMMO MA, 1983, COMP BIOCHEM PHYS A, V74, P955, DOI 10.1016/0300-9629(83)90376-6; NOAKES DLG, 1989, PERSP VERT, V6, P329; NUSSBAUM RA, 1976, COMP BIOCHEM PHYS B, V53, P569, DOI 10.1016/0305-0491(76)90219-4; PACKARD GC, 1977, NATURE, V266, P255, DOI 10.1038/266255a0; PATTERSON JW, 1984, PHYSIOL ZOOL, V57, P301, DOI 10.1086/physzool.57.3.30163718; PENNYCUIK PR, 1979, AUST J BIOL SCI, V32, P133; PETERSON CR, 1987, ECOLOGY, V68, P160, DOI 10.2307/1938816; PIERCE BA, 1987, COPEIA, P94, DOI 10.2307/1446042; POHL H, 1976, OECOLOGIA, V25, P211, DOI 10.1007/BF00345099; POWERS DA, 1986, AM ZOOL, V26, P235; Prosser C L, 1986, Physiologist, V29, P2; PROSSER CL, 1955, BIOL REV, V30, P229, DOI 10.1111/j.1469-185X.1955.tb01208.x; PRUDOM CE, 1979, S ZOOL SOC LOND, V44, P207; RAHN H, 1977, P NATL ACAD SCI USA, V74, P3095, DOI 10.1073/pnas.74.7.3095; RAHN H, 1982, J APPL PHYSIOL, V53, P1429; RALIN DB, 1981, COMP BIOCHEM PHYS A, V68, P175, DOI 10.1016/0300-9629(81)90338-8; Rapson GL, 1988, FUNCT ECOL, V2, P479, DOI 10.2307/2389391; RAY CARLETON, 1960, JOUR MORPHOL, V106, P85, DOI 10.1002/jmor.1051060104; Reznick D.N., 1989, P125; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; RISKA B, 1985, GENET RES, V45, P287, DOI 10.1017/S0016672300022278; RISKA B, 1984, GENETICS, V107, P79; ROBBINS LW, 1987, COPEIA, P156; ROBINSON GD, 1976, J FISH BIOL, V8, P5, DOI 10.1111/j.1095-8649.1976.tb03901.x; ROME LC, 1985, SCIENCE, V228, P194, DOI 10.1126/science.228.4696.194; ROSE MR, 1987, ENETIC CONSTRAINTS A, P91; SANDSTROM O, 1983, CAN J ZOOL, V61, P1475, DOI 10.1139/z83-198; SCHECK SH, 1982, PHYSIOL ZOOL, V55, P91, DOI 10.1086/physzool.55.1.30158446; SCHECK SH, 1990, AM ZOOL, V30, pA32; SCHECK SH, 1982, ECOLOGY, V63, P361, DOI 10.2307/1938954; SCHLAGER G, 1983, J HERED, V74, P97, DOI 10.1093/oxfordjournals.jhered.a109749; Schmalhausen I.I., 1949, FACTORS OF EVOLUTION; SCHMIDT-NIELSEN KNUT, 1964, AUK, V81, P160; SCHWARTZ JM, 1989, BEHAV ECOL SOCIOBIOL, V25, P269, DOI 10.1007/BF00300053; SELANDER R. K., 1969, Studies in genetics. V. Univ. Tex. Pubis, P271; SIBLY RM, 1990, J ZOOL, V221, P605, DOI 10.1111/j.1469-7998.1990.tb04020.x; SIEGELCAUSEY D, 1990, AUK, V107, P110; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; SINERVO B, 1991, J EXP BIOL, V155, P323; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SINERVO B, IN PRESS ECOLOGY; SMITH MH, 1983, COPEIA, P193, DOI 10.2307/1444713; SNELL HL, 1988, EVOL ECOL, V2, P353, DOI 10.1007/BF02207566; SNOW DH, 1985, CIRCULATOIN RESPIRAT, P277; SNYDER GK, 1977, J COMP PHYSIOL, V117, P291, DOI 10.1007/BF00691555; SNYDER LRG, 1988, EVOLUTION, V42, P689, DOI 10.1111/j.1558-5646.1988.tb02487.x; SOTHERLAND PR, 1980, AUK, V97, P177; STEPHENSON EM, 1968, AUST J BIOL SCI, V21, P741; STINI WA, 1979, PHYSL MORPHOLOGICAL; SWARTS FA, 1978, T AM FISH SOC, V107, P651, DOI 10.1577/1548-8659(1978)107<651:GAEFII>2.0.CO;2; TAIGEN TL, 1985, AM ZOOL, V25, P987; TAIGEN TL, 1980, PHYSIOL ZOOL, V53, P163, DOI 10.1086/physzool.53.2.30152579; TAYLOR EB, 1990, CAN J FISH AQUAT SCI, V47, P2172, DOI 10.1139/f90-242; TAYLOR EB, 1986, CAN J ZOOL, V64, P416, DOI 10.1139/z86-064; TAYLOR EB, 1991, J FISH BIOL, V38, P407, DOI 10.1111/j.1095-8649.1991.tb03130.x; TAYLOR EB, 1985, CAN J FISH AQUAT SCI, V42, P2029, DOI 10.1139/f85-250; TAYLOR EB, 1991, IN PRESS AQUACULTURE; TEMTE JL, 1991, MAR MAMMAL SCI, V7, P145, DOI 10.1111/j.1748-7692.1991.tb00561.x; TEMTE JL, 1991, IN PRESS J ZOOL LOND; THOMPSON SD, 1985, PHYSIOL ZOOL, V58, P430, DOI 10.1086/physzool.58.4.30156018; THORPE RS, 1989, COPEIA, P63; TOWNSEND CR, 1981, PHYSL ECOLOGY EVOLUT; Tracy C. R., 1982, B ECOL SOC AM, V63, P340; TRAVIS J, IN PRESS ECOLOGICAL; TROST CH, 1972, AUK, V89, P506; TSUJI JS, 1989, EVOL ECOL, V3, P240, DOI 10.1007/BF02270725; TSUJI JS, 1988, PHYSIOL ZOOL, V61, P230, DOI 10.1086/physzool.61.3.30161236; TSUJI JS, 1988, PHYSIOL ZOOL, V61, P241, DOI 10.1086/physzool.61.3.30161237; ULTSCH GR, 1985, ECOLOGY, V66, P388, DOI 10.2307/1940388; USHAKOV B, 1964, PHYSIOL REV, V44, P518; VANBERKUM F, 1982, PHYSIOL ZOOL, V55, P130, DOI 10.1086/physzool.55.2.30155847; VANBERKUM FH, 1988, AM NAT, V132, P327, DOI 10.1086/284856; VANDAMME R, 1989, OECOLOGIA, V80, P516, DOI 10.1007/BF00380076; VANDAMME R, 1986, J THERM BIOL, V11, P219, DOI 10.1016/0306-4565(86)90006-9; VANDAMME R, 1990, OIKOS, V57, P61; VERNBERG FJ, 1962, ANNU REV PHYSIOL, V24, P517, DOI 10.1146/annurev.ph.24.030162.002505; VOLPE E- PETER, 1957, PHYSIOL ZOOL, V30, P164; VOLPE EP, 1953, PHYSIOL ZOOL, V26, P344, DOI 10.1086/physzool.26.4.30152161; WAINWRIGHT PC, 1991, 4TH P INT C SYST EV; WANGENSTEEN OD, 1974, RESP PHYSIOL, V21, P61, DOI 10.1016/0034-5687(74)90007-3; WARD JM, 1981, COMP BIOCHEM PHYS A, V69, P627, DOI 10.1016/0300-9629(81)90147-X; WARD JM, 1981, COMP BIOCHEM PHYS A, V69, P621, DOI 10.1016/0300-9629(81)90146-8; WEATHERS WW, 1979, OECOLOGIA, V42, P81, DOI 10.1007/BF00347620; WEATHERS WW, 1972, JHERPETOLOGICA, V28, P172; Wells R.M.G., 1990, Advances in Comparative and Environmental Physiology, V6, P143; WHITTOW GC, 1971, COMP PHYSL THERMOREG, V2, P191; WILKENS H, 1988, EVOL BIOL, V23, P271; WILLIS MB, 1989, GENETICS DOG; WILSON MA, 1987, COMP BIOCHEM PHYS A, V87, P757, DOI 10.1016/0300-9629(87)90395-1; WINGFIELD JC, 1980, PROG REPRODUCT BIOL, V5, P62; Zink R.M., 1986, Current Ornithology, V4, P1; 1990, PHYSIOLOGIST, V33, P161; 1979, MAMMALS SEAS, V2 329 212 212 0 31 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA 0066-4162 ANNU REV ECOL SYST Annu. Rev. Ecol. Syst. 1991 22 193 228 10.1146/annurev.es.22.110191.001205 36 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GR382 WOS:A1991GR38200009 2019-02-26 J GODFRAY, HCJ; PARTRIDGE, L; HARVEY, PH GODFRAY, HCJ; PARTRIDGE, L; HARVEY, PH CLUTCH SIZE ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS English Review CLUTCH SIZE; LIFE HISTORY THEORY; BEHAVIORAL ECOLOGY PARENT-OFFSPRING CONFLICT; TIT PARUS-MAJOR; FLYCATCHER FICEDULA-ALBICOLLIS; OWL AEGOLIUS-FUNEREUS; SEX-RATIO; EGG SIZE; BROOD REDUCTION; GREAT TIT; HATCHING ASYNCHRONY; SNOW GEESE UNIV LONDON IMPERIAL COLL SCI & TECHNOL,CTR POPULAT BIOL,ASCOT SL5 7PY,BERKS,ENGLAND; UNIV EDINBURGH,DIV BIOL SCI,EDINBURGH EH9 3JT,MIDLOTHIAN,SCOTLAND; UNIV OXFORD,DEPT ZOOL,OXFORD OX1 3PS,ENGLAND GODFRAY, HCJ (reprint author), UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT BIOL,ASCOT SL5 7PY,BERKS,ENGLAND. Partridge, Linda/A-5501-2010 ALATALO RV, 1981, AM NAT, V117, P738, DOI 10.1086/283756; Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; ANDERSON DJ, 1990, AM NAT, V135, P334, DOI 10.1086/285049; ANDERSSON M, 1982, AM NAT, V120, P1, DOI 10.1086/283965; ANDERSSON M, 1976, IBIS, V118, P586; ANDERSSON M, 1984, PRODUCERS SCROUNGERS, P195; ANKNEY CD, 1978, AUK, V95, P459; ARCESE P, 1988, J ANIM ECOL, V57, P119, DOI 10.2307/4768; ARNOLD TW, 1987, AM NAT, V130, P643, DOI 10.1086/284736; BARTLETT J, 1987, BEHAV ECOL SOCIOBIOL, V21, P179, DOI 10.1007/BF00303208; BAYNE C J, 1969, Malacologia, V9, P391; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BENNETT PM, 1986, THESIS U SUSSEX ENGL; BIEBACH H, 1984, PHYSIOL ZOOL, V57, P26, DOI 10.1086/physzool.57.1.30155963; BLACKBURN TM, 1991, IN PRESS AUK; Boag P.T., 1987, P45; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BRUNING DF, 1973, NAT HIST, V82, P68; CHARNOV EL, 1984, FLA ENTOMOL, V67, P5, DOI 10.2307/3494101; CHARNOV EL, 1985, ENVIRON ENTOMOL, V14, P383, DOI 10.1093/ee/14.4.383; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CHARNOV EL, 1988, AM NAT, V132, P727; CHEW FS, 1984, BIOL BUTTERFLIES, P65; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; COOKE F, 1990, AM NAT, V136, P261, DOI 10.1086/285095; COURTNEY SP, 1984, AM NAT, V123, P276, DOI 10.1086/284202; CRUZ YP, 1981, NATURE, V289, P27; DAVIES NB, 1988, ANIM BEHAV, V36, P262, DOI 10.1016/S0003-3472(88)80269-0; DAVIES NB, 1985, ANIM BEHAV, V33, P628, DOI 10.1016/S0003-3472(85)80087-7; Dawkins R, 1976, SELFISH GENE; DHONDT AA, 1990, NATURE, V348, P723, DOI 10.1038/348723a0; DIJKSTRA C, 1988, THESIS U GRONINGEN N; DIJKSTRA LJ, 1986, THESIS U LEIDEN NETH; DOWDEN PB, 1961, J ECON ENTOMOL, V54, P876, DOI 10.1093/jee/54.5.876; EADIE JM, 1988, CAN J ZOOL, V66, P1709, DOI 10.1139/z88-247; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; Falconer D.S., 1981, INTRO QUANTITATIVE G; FRANK SA, 1990, ANNU REV ECOL SYST, V21, P13, DOI 10.1146/annurev.ecolsys.21.1.13; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARGETT V, 1978, OSTRICH, V49, P57, DOI 10.1080/00306525.1978.9632631; GHENT ARTHUR W., 1960, BEHAVIOUR, V16, P110, DOI 10.1163/156853960X00070; GIBBS HL, 1988, EVOLUTION, V42, P750, DOI 10.1111/j.1558-5646.1988.tb02493.x; GITTLEMAN JL, 1980, NATURE, V286, P149, DOI 10.1038/286149a0; Godfray H.C.J., 1987, Oxford Surveys in Evolutionary Biology, V4, P117; GODFRAY HCJ, 1991, PHILOS T ROY SOC B, V332, P67, DOI 10.1098/rstb.1991.0034; GODFRAY HCJ, 1987, AM NAT, V129, P221, DOI 10.1086/284632; GODFRAY HCJ, 1990, J THEOR BIOL, V145, P163, DOI 10.1016/S0022-5193(05)80122-5; GODFRAY HCJ, 1986, THEOR POPUL BIOL, V30, P215, DOI 10.1016/0040-5809(86)90034-1; GODFRAY HCJ, 1986, ECOL ENTOMOL, V11, P75, DOI 10.1111/j.1365-2311.1986.tb00281.x; GODFRAY HCJ, 1987, THEOR POPUL BIOL, V33, P79; GODFRAY HCJ, 1991, IN PRESS ANIM BEHAV; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HAFTORN S, 1985, AUK, V102, P470; HAHN DC, 1981, ANIM BEHAV, V29, P421, DOI 10.1016/S0003-3472(81)80101-7; HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARPER AB, 1986, AM NAT, V128, P99, DOI 10.1086/284542; HARVEY PE, 1991, COMP METHOD; HEGNER RE, 1987, AUK, V104, P470, DOI 10.2307/4087546; HENRY C S, 1972, Psyche (Cambridge), V79, P1, DOI 10.1155/1972/54050; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HOGSTEDT G, 1981, J ANIM ECOL, V50, P219, DOI 10.2307/4041; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; HORNFELDT B, 1990, IBIS, V132, P395, DOI 10.1111/j.1474-919X.1990.tb01058.x; IVES AR, 1989, AM NAT, V133, P671, DOI 10.1086/284944; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; JARVINEN A, 1989, IBIS, V131, P572, DOI 10.1111/j.1474-919X.1989.tb04792.x; JONES PJ, 1976, J ZOOLOGY LONDON, V189, P1; KLOMP H, 1970, ARDEA, V58, P1; KORPIMAKI E, 1989, IBIS, V131, P51, DOI 10.1111/j.1474-919X.1989.tb02743.x; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1947, IBIS, V90, P25; LACK D, 1966, POPULATION STUDIES B; Lack D., 1947, IBIS, V89, P309; LACK D, 1954, NATURAL REGULATION A; LANK DB, 1990, EVOLUTION, V44, P1436, DOI 10.1111/j.1558-5646.1990.tb03837.x; Lessells C.M., 1991, P32; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LESSELLS CM, 1989, J ANIM ECOL, V58, P815, DOI 10.2307/5126; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LINDEN M, 1988, OIKOS, V51, P285, DOI 10.2307/3565309; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MAGRATH RD, 1989, NATURE, V339, P536, DOI 10.1038/339536a0; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; MANGEL M, 1989, AM NAT, V133, P688, DOI 10.1086/284945; MEYBURG BU, 1974, IBIS, V116, P224, DOI 10.1111/j.1474-919X.1974.tb00243.x; MILINSKI M, 1977, Z TIERPSYCHOL, V45, P373; MOCK DW, 1986, EVOLUTION, V40, P459, DOI 10.1111/j.1558-5646.1986.tb00499.x; MOCK DW, 1987, ANIM BEHAV, V35, P150, DOI 10.1016/S0003-3472(87)80220-8; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; NELSON B, 1989, IBIS, V131, P609, DOI 10.1111/j.1474-919X.1989.tb04796.x; NUR N, 1984, J THEOR BIOL, V110, P275, DOI 10.1016/S0022-5193(84)80059-4; NUR N, 1986, J ANIM ECOL, V55, P983, DOI 10.2307/4428; OCONNOR RJ, 1978, ANIM BEHAV, V26, P79, DOI 10.1016/0003-3472(78)90008-8; PACKER C, 1987, AM NAT, V130, P636, DOI 10.1086/284735; Parker GA, 1987, EVOL ECOL, V1, P161, DOI 10.1007/BF02067398; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PARKER GA, 1989, AM NAT, V133, P846, DOI 10.1086/284956; PARKER GA, 1979, ANIM BEHAV, V27, P1210, DOI 10.1016/0003-3472(79)90068-X; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Partridge L., 1989, P421; PARTRIDGE L, 1989, MORE EXACT ECOLOGY, P231; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PILSON D, 1988, NATURE, V333, P361, DOI 10.1038/333361a0; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; PRICE T, 1989, AM NAT, V134, P950, DOI 10.1086/285023; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; ROBENSTEIN DI, 1982, CURRENT PROBLEMS SOC, P91; ROCKWELL RF, 1987, AM NAT, V130, P839, DOI 10.1086/284751; ROHWER FC, 1988, AUK, V105, P161; ROSENHEIM JA, 1991, IN PRESS J ANIM ECOL; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; ROTHSTEIN SI, 1990, TRENDS ECOL EVOL, V5, P101, DOI 10.1016/0169-5347(90)90161-6; SALTHE SN, 1969, AM MIDL NAT, V81, P467, DOI 10.2307/2423983; SHAANKER RU, 1988, ANNU REV ECOL SYST, V19, P177, DOI 10.1146/annurev.es.19.110188.001141; SILBY R, 1983, J THEOR BIOL, V102, P527; SIMMONS R, 1988, IBIS, V130, P339, DOI 10.1111/j.1474-919X.1988.tb00992.x; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SKINNER SW, 1985, BEHAV ECOL SOCIOBIOL, V17, P231, DOI 10.1007/BF00300141; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1989, J ANIM ECOL, V58, P837, DOI 10.2307/5127; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Smith R.H., 1985, P423; SNOW BK, 1970, IBIS, V112, P299, DOI 10.1111/j.1474-919X.1970.tb00109.x; STAMP NE, 1980, AM NAT, V115, P367, DOI 10.1086/283567; Stephens DW, 1986, FORAGING THEORY; STINSON CH, 1979, EVOLUTION, V33, P1219, DOI 10.1111/j.1558-5646.1979.tb04775.x; STOUFFER PC, 1990, AUK, V107, P359, DOI 10.2307/4087620; STRAND MR, 1989, FLA ENTOMOL, V72, P32, DOI 10.2307/3494965; STRAND MR, 1989, BEHAV ECOL SOCIOBIOL, V24, P421, DOI 10.1007/BF00293271; SUZUKI Y, 1980, RES POPUL ECOL, V22, P366, DOI 10.1007/BF02530857; TAKAGI M, 1985, OECOLOGIA, V68, P1, DOI 10.1007/BF00379463; TAYLOR AD, 1988, J ANIM ECOL, V57, P163, DOI 10.2307/4770; TAYLOR PD, 1981, NATURE, V291, P64, DOI 10.1038/291064a0; TAYLOR PD, 1990, J THEOR BIOL, V148, P33; Taylor THC, 1937, BIOL CONTROL INSECT; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; TRIVERS RL, 1974, AM ZOOL, V14, P249; TSUBAKI Y, 1981, RES POPUL ECOL, V23, P156, DOI 10.1007/BF02514098; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANNOORDWIJK AJ, 1981, NETH J ZOOL, V31, P342; Waage J.K., 1985, P449; WAAGE JK, 1986, INSECT PARASITOIDS, P449; WEIS AE, 1983, ECOLOGY, V64, P688, DOI 10.2307/1937190; WERREN JH, 1980, SCIENCE, V208, P1157, DOI 10.1126/science.208.4448.1157; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMS GC, 1971, GROUP SELECTION; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; WINKLER DW, 1985, EVOLUTION, V39, P667, DOI 10.1111/j.1558-5646.1985.tb00403.x; Wynne-Edwards Vero C, 1962, ANIMAL DISPERSION RE 164 188 193 2 55 ANNUAL REVIEWS INC PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 0066-4162 ANNU REV ECOL SYST Annu. Rev. Ecol. Syst. 1991 22 409 429 10.1146/annurev.es.22.110191.002205 21 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GR382 WOS:A1991GR38200017 2019-02-26 J RAYNER, ADM RAYNER, ADM THE PHYTOPATHOLOGICAL SIGNIFICANCE OF MYCELIAL INDIVIDUALISM ANNUAL REVIEW OF PHYTOPATHOLOGY English Article INCOMPATIBILITY IN FUNGI; INTRASPECIFIC ANTAGONISM; DEVELOPMENTAL VARIATION; GENETIC VARIATION; LIFE HISTORY STRATEGIES OUTCROSSING POPULATIONS; VEGETATIVE INCOMPATIBILITY; DALDINIA-CONCENTRICA; RESOURCE UNITS; PATHOGEN; FUNGUS; FOREST; BEECH; SOIL; COMMUNITIES RAYNER, ADM (reprint author), UNIV BATH,SCH BIOL SCI,BATH BA2 7AY,AVON,ENGLAND. ADAMS DH, 1969, FOREST SCI, V15, P327; ADAMS G, 1990, PHYTOPATHOLOGY, V80, P287, DOI 10.1094/Phyto-80-287; ADAMS TJH, 1982, THESIS U EXETER; AINSWORTH AM, 1990, MYCOL RES, V94, P263, DOI 10.1016/S0953-7562(09)80625-4; AINSWORTH AM, 1990, NEW PHYTOL, V115, P119, DOI 10.1111/j.1469-8137.1990.tb00929.x; Ainsworth AM, 1987, STEREUM PHANEROCHAET, P285; ANAGNOSTAKIS SL, 1987, MYCOLOGIA, V79, P23, DOI 10.2307/3807741; ANDREWS JH, 1982, AM NAT, V120, P283, DOI 10.1086/283991; BEVERCOMBE GP, 1982, PLANT PATHOL, V33, P211; BEVERCOMBE GP, 1980, THESIS U EXETER UK; BODDY L, 1983, NEW PHYTOL, V94, P623, DOI 10.1111/j.1469-8137.1983.tb04871.x; BODDY L, 1989, Sydowia, V41, P41; BODDY L, 1985, T BRIT MYCOL SOC, V85, P201, DOI 10.1016/S0007-1536(85)80183-2; BODDY L, 1983, T BRIT MYCOL SOC, V80, P437, DOI 10.1016/S0007-1536(83)80040-0; BODDY L, 1982, T BRIT MYCOL SOC, V78, P337, DOI 10.1016/S0007-1536(82)80018-1; Boddy L., 1983, NEW PHYTOL, V93, P177; Brasier C.M., 1984, ECOLOGY PHYSL FUNGAL, P451; BRASIER CM, 1986, ADV PLANT PATHOL, V5, P53; BRASIER CM, 1987, EVOLUTIONARY BIOL FU, P231; BRAYFORD D, 1990, MYCOL RES, V94, P745, DOI 10.1016/S0953-7562(09)81373-7; BURNETT JH, 1976, FUNDAMENTALS MYCOLOG; CARLILE MJ, 1987, EVOLUTIONARY BIOL FU, P203; CATEN CE, 1972, J GEN MICROBIOL, V72, P221, DOI 10.1099/00221287-72-2-221; CATEN CE, 1987, EVOLUTIONARY BIOL FU, P215; CHAPELA IH, 1989, NEW PHYTOL, V113, P65, DOI 10.1111/j.1469-8137.1989.tb02396.x; CHAPELA IH, 1988, NEW PHYTOL, V110, P47, DOI 10.1111/j.1469-8137.1988.tb00236.x; COATES D, 1985, NEW PHYTOL, V101, P153, DOI 10.1111/j.1469-8137.1985.tb02823.x; Cooke R. C., 1984, ECOLOGY SAPROTROPHIC; COOKE RC, 1987, EVOLUTIONARY BIOL FU, P137; CORRELL JC, 1989, MYCOL RES, V93, P21, DOI 10.1016/S0953-7562(89)80130-3; D'Aeth HRX, 1939, BIOL REV CAMB PHILOS, V14, P105, DOI 10.1111/j.1469-185X.1939.tb00927.x; Dawkins R, 1976, SELFISH GENE; DEBARY A, 1887, COMP MORPHOLOGY BIOL; DICKMAN A, 1989, CAN J BOT, V67, P2005, DOI 10.1139/b89-254; DOWSON CG, 1989, NEW PHYTOL, V111, P501, DOI 10.1111/j.1469-8137.1989.tb00713.x; DOWSON CG, 1986, J GEN MICROBIOL, V132, P203; DOWSON CG, 1988, NEW PHYTOL, V109, P423, DOI 10.1111/j.1469-8137.1988.tb03718.x; DOWSON CG, 1988, FEMS MICROBIOL ECOL, V53, P291, DOI 10.1016/0378-1097(88)90486-7; ETHERIDGE D E, 1976, Canadian Journal of Forest Research, V6, P299; FALAHATIRASTEGAR M, 1983, T BRIT MYCOL SOC, V81, P233, DOI 10.1016/S0007-1536(83)80074-6; GARRETT SD, 1970, PATHOGENIC ROOT INFE; Gleick J., 1988, CHAOS; GRIFFITH GW, 1989, THESIS U WALES ABERY; Grime J. P, 1979, PLANT STRATEGIES VEG; HAMILTON WD, 1980, OIKOS, V35, P282, DOI 10.2307/3544435; Harper J.L., 1977, POPULATION BIOL PLAN; KOLMER JA, 1986, HEREDITY, V57, P85, DOI 10.1038/hdy.1986.91; LEBEAU JB, 1975, PHYTOPATHOLOGY, V65, P877, DOI 10.1094/Phyto-65-877; LEWIS DH, 1973, BIOL REV, V48, P261, DOI 10.1111/j.1469-185X.1973.tb00982.x; LEWIS DH, 1974, S SOC GEN MICROBIOL, V24, P367; LUTTRELL ES, 1974, MYCOLOGIA, V66, P1, DOI 10.2307/3758447; MATSUMOTO N, 1983, T MYCOL SOC JPN, V24, P459; Maynard-Smith J., 1978, THE EVOLUTION OF SEX; MCDONALD BA, 1989, ANNU REV PHYTOPATHOL, V27, P77, DOI 10.1146/annurev.py.27.090189.000453; MICHOD RE, 1988, EVOLUTION SEX; Raper JR, 1966, GENETICS SEXUALITY H; Raper JR, 1970, S SOC GEN MICROBIOL, V20, P401; RAYNER A, 1991, NEW SCI, V129, P30; Rayner A. D. M., 1979, Advances in Botanical Research, V7, P333; Rayner A. D. M., 1985, DEV BIOL HIGHER FUNG, P249; Rayner A.D.M., 1987, S SOC GEN MICROBIOL, V41, P83; Rayner A. D. M, 1988, FUNGAL DECOMPOSITION; RAYNER ADM, 1991, MYCOLOGIA, V83, P48, DOI 10.2307/3759832; RAYNER ADM, 1988, ADV MICROB ECOL, V10, P115; RAYNER ADM, 1977, J GEN MICROBIOL, V103, P85, DOI 10.1099/00221287-103-1-85; RAYNER ADM, 1982, T BRIT MYCOL SOC, V78, P483, DOI 10.1016/S0007-1536(82)80155-1; RAYNER ADM, 1986, ADV PLANT PATHOL, V5, P119; RAYNER ADM, 1991, GENETIC INTERACTIONS; RAYNER ADM, 1990, T MYCOL SOC JAPAN, V31, P75; RAYNER ADM, 1986, NATURAL ANTIMICROBIA, P277; Rayner ADM, 1987, EVOLUTIONARY BIOL FU, P115; Rayner ADM, 1984, ECOLOGY PHYSL FUNGAL, P509; RAYNER ADM, 1985, DEV BIOL HIGHER FUNG, P1; SHARLAND PR, 1986, T BRIT MYCOL SOC, V86, P643, DOI 10.1016/S0007-1536(86)80068-7; SHARLAND PR, 1988, T BRIT MYCOL SOC, V90, P654, DOI 10.1016/S0007-1536(88)80074-3; SHARLAND PR, 1989, MYCOL RES, V93, P273, DOI 10.1016/S0953-7562(89)80153-4; SHARLAND PR, 1989, MYCOL RES, V93, P187, DOI 10.1016/S0953-7562(89)80117-0; SHARLAND PR, 1987, THESIS U BATH UK; SHAW CG, 1976, PHYTOPATHOLOGY, V66, P1210, DOI 10.1094/Phyto-66-1210; STENLID J, 1989, NEW PHYTOL, V113, P245, DOI 10.1111/j.1469-8137.1989.tb02401.x; TODD NK, 1980, SCI PROG, V66, P331; WANNER R, 1985, EXP MYCOL, V9, P279 82 35 35 1 4 ANNUAL REVIEWS INC PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 0066-4286 ANNU REV PHYTOPATHOL Annu. Rev. Phytopathol. 1991 29 305 323 10.1146/annurev.py.29.090191.001513 19 Plant Sciences Plant Sciences GE749 WOS:A1991GE74900015 2019-02-26