PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Haas, A Haas, A Non-feeding and feeding tadpoles in hemiphractine frogs: Larval head morphology, heterochrony, and systematics of Flectonotus goeldii (Amphibia: Anura: Hylidae) JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH English Article morphology; cranium; skeleton; feeding; larvae; heterochrony; development; systematics; Anura; Hylidae The Hemiphractinae (Hylidae) is group of neotropical egg-brooding frogs. It comprises species with different larval life history strategies. The larvae of Flectonotus hatch in an advanced stage of development. They are free-living but non-feeding. The putative sister taxon Gastrotheca includes species with feeding and free-living larvae, and others that undergo direct development. This study gives the first description of the skull of premetamorphic Flectonotus goeldii. Results are compared to the skulls of free-living Gastrotheca larvae. Some of the differences between the skulls can be explained as structural reductions of the larval feeding system in F. goeldii, due to the non-feeding mode of life: small and shallow branchial basket; simple ceratobranchialia; absence of branchial food traps, filter rows, ciliary cushions; only two open gill clefts; some branchial muscles weakly developed or missing. Many cranial structures appear to stop their differentiation and growth precociously in F. goeldii, compared to Gastrotheca: lack of commissura quadratoorbitalis anterior; short cornu trabeculae; persisting fenestrae parietales; and crista parotica without pronounced processus. The simplified feeding apparatus and the retarded features of the neurocranium can be accounted for by a heterochronic truncation of the larval developmental program in F. goeldii. Despite many structural differences, larvae of F. goeldii and Gastrotheca also share cranial features: similar ethmoidal region; lack of processus oticus; high cartilage orbitalis; intermediate suspensorium; large processus pterygoideus; copula anterior absent; musculus levator mandibulae externus and m. branchiohyoideus externus missing; m. levator mandibulae anterior lateralis not functionally differentiated before metamorphosis; ramus mandibularis (N.V) perforates m. levator mandibulae subexternus; rostral end of cornu trabeculae not conspicuously projecting laterally beyond cartilage labialis superior; and lateral rim of palatoquadrate curved dorsally and smooth. However, none of these shared character states is unique to the two taxa. They are also found in larvae of some other species of the Hylidae and Hyloidea and are probably symplesiomorphic for Gastrotheca and Flectonotus. Haas, A (reprint author), INST SPEZIELLE ZOOL & EVOLUT BIOL,ERBERTSTR 1,D-07743 JENA,GERMANY. Brooks DR, 1991, PHYLOGENY ECOLOGY BE; de VILLIERS C. G. S., 1929, SOUTH AFRICAN JOUR SCI, V26, P481; DEJONGH HJ, 1968, NETH J ZOOL, V18, P1; DELPINO EM, 1989, DEVELOPMENT, V107, P169; DELPINO EM, 1981, J MORPHOL, V167, P277, DOI 10.1002/jmor.1051670303; DELPINO EM, 1980, COPEIA, P10, DOI 10.2307/1444129; DESA RO, 1988, J MORPHOL, V195, P345, DOI 10.1002/jmor.1051950308; DINGERKUS G, 1977, STAIN TECHNOL, V52, P229, DOI 10.3109/10520297709116780; Duellman W. E., 1986, BIOL AMPHIBIANS; DUELLMAN WE, 1988, COPEIA, P527, DOI 10.2307/1445371; DUELLMAN WE, 1983, HERPETOLOGICA, V39, P333; DUELLMAN WE, 1993, SPECIAL PUBLICATION, V21, P1; DUELLMAN WE, 1992, SCI AM, P58; DUELLMAN WE, 1984, MISC PUBL MUS NAT HI, V75, P1; Fabrezi M., 1992, Acta Zoologica Lilloana, V41, P155; Fabrezi M, 1993, PHYSIS B, V48, P39; Frost D. R, 1985, AMPHIBIAN SPECIES WO; Gosner K. L., 1960, Herpetologica, V16, P183; HAAS A, 1995, J MORPHOL, V224, P241, DOI 10.1002/jmor.1052240302; HAAS A, 1996, IN PRESS VERH NATURW; HANKEN J, 1992, J MORPHOL, V211, P95, DOI 10.1002/jmor.1052110111; Jungfer K.-H., 1991, Revue Francaise d'Aquariologie Herpetologie, V18, P91; Jungfer KH, 1996, HERPETOLOGICA, V52, P25; JURASKE N, 1995, VERH DT ZOOL GESELL, V88, pA259; LAVILLA E O, 1987, Acta Zoologica Lilloana, V39, P81; LAVILLA E O, 1987, Physis Seccion B las Aguas Continentales y sus Organismos, V45, P77; LAVILLA E O, 1991, Amphibia-Reptilia, V12, P33, DOI 10.1163/156853891X00301; Lynn W. Gardner, 1942, CARNEGIE INST WASHINGTON PUBL, V541, P27; MAXSON LR, 1977, SYST ZOOL, V26, P72, DOI 10.2307/2412866; Reinbach W., 1939, JENAISCHE ZEITSCHR NATURW, V72, P211; Romeis B., 1989, MIKROSKOPISCHE TECHN; STPHESNSON NG, 1951, T ZOOL SOC LONDON, V27, P203; SWANEPOEL J H, 1970, Annale Universiteit van Stellenbosch Serie A, V45, P1; TAYLOR EDWARD H., 1954, UNIV KANSAS SCI BULL, V36, P589; Viertel B., 1987, Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, V115, P425; VIERTEL B, 1985, ZOOMORPHOLOGY, V105, P345, DOI 10.1007/BF00312278; VIERTEL B, 1984, VERH GES OKOL, V12, P563; WASSERSUG R, 1972, J MORPHOL, V137, P279, DOI 10.1002/jmor.1051370303; WASSERSUG RJ, 1984, J MORPHOL, V182, P1, DOI 10.1002/jmor.1051820102; WEYGOLDT P, 1991, Amphibia-Reptilia, V12, P67, DOI 10.1163/156853891X00347; WEYGOLDT P, 1989, Amphibia-Reptilia, V10, P419, DOI 10.1163/156853889X00052 41 15 16 0 3 BLACKWELL WISSENSCHAFTS-VERLAG GMBH BERLIN KURFURSTENDAMM 57, D-10707 BERLIN, GERMANY 0947-5745 J ZOOL SYST EVOL RES J. Zool. Syst. Evol. Res. SEP 1996 34 3 163 171 9 Evolutionary Biology; Zoology Evolutionary Biology; Zoology WA157 WOS:A1996WA15700005 2019-02-26 J Shine, R Shine, R Life-history evolution in Australian snakes: A path analysis OECOLOGIA English Article allometry; life history; reproduction; sexual dimorphism; snake SEXUAL SIZE DIMORPHISM; DETERMINANTS; ALLOMETRY; PATTERNS I recently attempted to investigate interspecific patterns in ecological traits of Australian snakes using univariate statistical techniques (Shine 1994), but high intercorrelations among variables (especially with mean adult body size) made it difficult to interpret the observed patterns. In the present paper, I attempt to tease apart causal factors using multivariate (path) analysis on the same data set (103 species, based on dissection of >22000 museum specimens). Two separate path analyses were conducted: one that treated each species as an independent unit (and thus, ignored phylogeny) and the other based on independent phylogenetic contrasts. Path coefficients from the two types of analyses were similar in magnitude, and highly correlated with each other, suggesting that most interspecific patterns among traits may reflect functional association rather than phylogenetic conservatism. Path analysis showed that indirect effects of one variable upon another (i.e., mediated via other traits) were often stronger than direct effects. Thus, even when two variables appeared to be uncorrelated in the univariate analysis, this apparent lack of relationship sometimes masked strong but conflicting indirect effects. For example, a tradeoff between clutch size and offspring size tends to mask the direct effect of mean adult body size on clutch size. Path analysis may also suggest original causal hypotheses. For example, interspecific allometry of sexual size dimorphism (as seen in Australian snakes, and many other animal groups) may result from a strong effect of another allometrically-tied trait (offspring size) on growth trajectories of females. UNIV SYDNEY,INST WILDLIFE RES,SYDNEY,NSW 2006,AUSTRALIA Shine, R (reprint author), UNIV SYDNEY,SCH BIOL SCI A08,SYDNEY,NSW 2006,AUSTRALIA. Shine, Richard/B-8711-2008; Rohlf, F/A-8710-2008 Andersson MB, 1994, SEXUAL SELECTION; Andrews R.M., 1982, Biology of Reptilia, V13, P273; HARVEY PH, 1991, OXFORD STUDIES ECOLO; KING RB, 1993, J HERPETOL, V27, P175, DOI 10.2307/1564934; KINGSOLVER JG, 1991, TRENDS ECOL EVOL, V6, P276, DOI 10.1016/0169-5347(91)90004-H; LOVICH JE, 1992, GROWTH DEVELOP AGING, V56, P269; MADSEN T, 1994, EVOLUTION, V48, P1389, DOI 10.1111/j.1558-5646.1994.tb05323.x; NUSSBAUM RA, 1985, MISC PUBL MUSEUM ZOO, V169, P1; Reiss M. J, 1989, ALLOMETRY GROWTH REP; SEIGEL R A, 1987, P210; Seigel Richard A., 1993, P395; SHINE R, 1990, HERPETOLOGICA, V46, P283; SHINE R, 1990, AM NAT, V135, P278, DOI 10.1086/285043; SHINE R, 1991, AM NAT, V138, P103, DOI 10.1086/285207; SHINE R, 1989, HERPETOLOGICA, V45, P195; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; SHINE R, 1994, COPEIA, P851; Shine Richard, 1993, P49; SINE R, 1994, COPEIA, P326; WEATHERHEAD PJ, 1994, EVOLUTION, V48, P671, DOI 10.1111/j.1558-5646.1994.tb01352.x 20 19 19 0 9 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia SEP 1996 107 4 484 489 10.1007/BF00333939 6 Ecology Environmental Sciences & Ecology VH672 WOS:A1996VH67200010 28307391 2019-02-26 J Thoren, LM; Karlsson, PS; Tuomi, J Thoren, LM; Karlsson, PS; Tuomi, J Somatic cost of reproduction in three carnivorous Pinguicula species OIKOS English Article LIFE-HISTORY EVOLUTION; RESOURCE-ALLOCATION; PLANTS; SELECTION; STRATEGIES; FLOWERS We estimated the cost of reproduction and reproductive effort in three iteroparous plant species, Pinguicula alpina, P. villosa and P. vulgaris, in a subarctic environment. The phenotypic costs of reproduction were quantified by comparing resource pools (dry weight, nitrogen or phosphorus) in reproductive and non-reproductive plants. Two types of non-reproductive plants were used; plants whose reproductive parts had been removed (RR) at the start of the growing season and naturally non-reproductive plants (NR). The reproductive effort was calculated as the resources invested in reproduction in relation to the total resource pool (somatic + reproductive parts). For P. vulgaris the amount of resources available was manipulated by feeding plants with insects and/or by leaf removal in a factorial design. A somatic cost of reproduction was found for all species and treatments since reproductive plants had smaller somatic resource pools than non-reproductive plants (both RR and NR). The total resource pool was higher in reproductive plants than in non-reproductive plants. Due to this difference, the reproductive effort exceeded the somatic cost of reproduction. This suggests that mechanisms may exist for decreasing the cost of reproduction. Mechanisms that potentially could explain the discrepancy between reproductive effort and the somatic cost are discussed. ABISKO SCI RES STN, S-98107 ABISKO, SWEDEN; UPPSALA UNIV, DEPT ECOL BOT, S-75236 UPPSALA, SWEDEN Thoren, LM (reprint author), LUND UNIV, DEPT ECOL, ECOL BLDG, S-22362 LUND, SWEDEN. Karlsson, Staffan/J-3082-2012 Karlsson, Staffan/0000-0002-5739-5213 Antonovics J., 1980, LIMITS ACTION ALLOCA, P1; Bazzaz F. A., 1985, STUDIES PLANT DEMOGR, P373; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; Calow P., 1981, PHYSL ECOLOGY EVOLUT, P3; DERIDDER F, 1990, THESIS U ANTWERP BEL; DOUST JL, 1989, TRENDS ECOL EVOL, V4, P230, DOI 10.1016/0169-5347(89)90166-3; EMLEN JM, 1984, POPULATION BIOL COEV; Fenner M, 1985, SEED ECOLOGY; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; Hansen M. H, 1953, SAMPLING SURVEY METH; HANSLIN HM, 1996, IN PRESS OECOLOGIA; HEIDE F, 1912, MEDDELELSER GRONLAND, V36, P441; HOROWITZ CC, 1988, ECOLOGY, V69, P1741; Karlsson PS, 1988, FUNCT ECOL, V2, P203, DOI 10.2307/2389696; KARLSSON PS, 1991, OECOLOGIA, V86, P1, DOI 10.1007/BF00317381; KARLSSON PS, 1986, CAN J BOT, V64, P2872, DOI 10.1139/b86-379; KARLSSON PS, 1994, OECOLOGIA, V99, P188, DOI 10.1007/BF00317100; KARLSSON PS, 1987, OECOLOGIA, V73, P518, DOI 10.1007/BF00379409; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; Levins R., 1968, EVOLUTION CHANGING E; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MOLAU U, 1993, NORD J BOT, V13, P149, DOI 10.1111/j.1756-1051.1993.tb00025.x; NEALES TF, 1968, BOT REV, V34, P107, DOI 10.1007/BF02872604; PINERO D, 1982, J ECOL, V70, P473, DOI 10.2307/2259916; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REEKIE EG, 1987, AM NAT, V129, P897, DOI 10.1086/284682; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; ROSE MR, 1983, J THEOR BIOL, V101, P137, DOI 10.1016/0022-5193(83)90277-1; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SLACK A, 1979, CARNIVOROUS PLANTS; SMITH AP, 1982, OECOLOGIA, V55, P243, DOI 10.1007/BF00384494; Sokal RR, 1987, INTRO BIOSTATISTICS; Sorensen Thorvald, 1941, MEDDELSER OM GRONLAND, V125, P1; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; SVENSSON BM, 1993, J ECOL, V81, P635, DOI 10.2307/2261662; THOMPSON K, 1981, AM NAT, V117, P205, DOI 10.1086/283700; TUOMI J, 1982, NEW PHYTOL, V91, P483, DOI 10.1111/j.1469-8137.1982.tb03326.x; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMS K, 1985, OECOLOGIA, V66, P530, DOI 10.1007/BF00379345 47 34 37 1 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos SEP 1996 76 3 427 434 10.2307/3546336 8 Ecology Environmental Sciences & Ecology VH374 WOS:A1996VH37400002 2019-02-26 J Wray, GA Wray, GA Parallel evolution of nonfeeding larvae in echinoids SYSTEMATIC BIOLOGY English Article larva; life history evolution; developmental evolution; disparity; Echinoidea URCHIN HELIOCIDARIS-ERYTHROGRAMMA; MARINE-INVERTEBRATES; SEA-URCHINS; PHYLOGENETIC HISTORY; ASTHENOSOMA-IJIMAI; ECHINODERMATA; MACROEVOLUTION; CLYPEASTEROIDA; MORPHOLOGY; DISPARITY The switch from feeding to nonfeeding larvae is an ecologically important transformation that has evolved on several separate occasions within the echinoids. In each case, this life history transformation has been accompanied by extensive changes in larval morphology. A phylogenetic approach is used here to reconstruct these morphological changes, to begin asking why they have taken the particular forms observed, and to assess the degree of parallel transformation in separate cases. Both traditional character mapping and a less usual aggregate analysis indicate massively parallel transformations in larval morphology associated with, and only with, this particular life history transformation. Some of these parallel morphological transformations may be due to relaxed functional constraints associated with the ancestral life history mode, but many are probably the result of new functional constraints associated with the derived mode. The comparative data suggest a simple and testable model for the switch from feeding to nonfeeding larvae involving three sequential steps. Wray, GA (reprint author), SUNY STONY BROOK,DEPT ECOL & EVOLUT,STONY BROOK,NY 11794, USA. AMEMIYA S, 1992, BIOL BULL, V182, P15, DOI 10.2307/1542177; AMEMIYA S, 1979, MAR BIOL, V52, P93, DOI 10.1007/BF00386862; BAUM DA, 1991, SYST ZOOL, V40, P1, DOI 10.2307/2992218; Byrne M., 1991, P499; CRACRAFT J, 1990, EVOLUTIONARY INNOVATIONS, P21; Emlet R.B., 1987, Echinoderm Studies, V2, P55; Emlet R.B., 1990, Advances in Invertebrate Reproduction, V5, P329; EMLET RB, 1986, J EXP MAR BIOL ECOL, V95, P183, DOI 10.1016/0022-0981(86)90202-9; EMLET RB, 1991, AM ZOOL, V31, P707; EMLET RB, 1995, DEV BIOL, V16, P405; FOOTE M, 1993, PALEOBIOLOGY, V19, P185; GOULD SJ, 1991, PALEOBIOLOGY, V17, P411; HART MW, 1991, BIOL BULL, V180, P12, DOI 10.2307/1542425; HART MW, 1996, IN PRESS EVOLUTION; Havenhand Jon N., 1995, P79; HENDLER G, 1982, BIOL BULL, V163, P431, DOI 10.2307/1541454; HENRY JJ, 1991, DEV GROWTH DIFFER, V33, P317; JABLONSKI D, 1986, B MAR SCI, V39, P565; Jagersten G., 1972, EVOLUTION METAZOAN L; Kier P. M., 1969, P215; Kume M, 1968, INVERTEBRATE EMBRYOL; LAUDER GV, 1982, J THEOR BIOL, V97, P57, DOI 10.1016/0022-5193(82)90276-4; LAUDER GV, 1990, ANNU REV ECOL SYST, V21, P317; LITTLEWOOD DTJ, 1995, PHILOS T R SOC B, V347, P213, DOI 10.1098/rstb.1995.0023; MADDISON WP, 1990, EVOLUTION, V44, P539, DOI 10.1111/j.1558-5646.1990.tb05937.x; MADDISON WP, 1992, MACCLADE VERSION 3 0; MCMILLAN WO, 1992, EVOLUTION, V46, P1299, DOI 10.1111/j.1558-5646.1992.tb01125.x; MLADENOV PV, 1979, MAR BIOL, V55, P55, DOI 10.1007/BF00391717; MOOI R, 1990, PALEOBIOLOGY, V16, P25; Morgan Steven G., 1995, P279; MORRIS VB, 1995, ZOOL J LINN SOC-LOND, V114, P349, DOI 10.1006/zjls.1995.0028; Mortensen T, 1921, STUDIES DEV LARVAL F; Okazaki K., 1975, P177; OKAZAKI K, 1954, BIOL BULL, V106, P83, DOI 10.2307/1538781; OLSON RR, 1993, BIOL BULL, V185, P77, DOI 10.2307/1542131; PARKS AL, 1989, BIOL BULL, V177, P96, DOI 10.2307/1541838; Philip G. M, 1971, Palaeontology, V14, P666; RAFF RA, 1987, DEV BIOL, V119, P6, DOI 10.1016/0012-1606(87)90201-6; RAFF RA, 1992, BIOESSAYS, V14, P211, DOI 10.1002/bies.950140403; RAFF RA, 1988, ECHINODERM PHYLOGENY, P29; ROMAN J, 1983, Annales de Paleontologie, V69, P13; RUMRILL SS, 1990, OPHELIA, V32, P163, DOI 10.1080/00785236.1990.10422030; SEILACHER A, 1990, EVOLUTIONARY INNOVATIONS, P231; SMITH AB, 1992, PHILOS T R SOC B, V338, P365, DOI 10.1098/rstb.1992.0155; SMITH AB, 1995, PHILOS T ROY SOC B, V349, P11, DOI 10.1098/rstb.1995.0085; SMITH MJ, 1990, MOL BIOL EVOL, V7, P315; STRATHMANN R R, 1971, Journal of Experimental Marine Biology and Ecology, V6, P109, DOI 10.1016/0022-0981(71)90054-2; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; SWOFFORD DL, 1993, PAUP PHYLOGENETIC AN; WILLIAMS DHC, 1975, AUST J ZOOL, V23, P371, DOI 10.1071/ZO9750371; WILLS MA, 1994, PALEOBIOLOGY, V20, P93; WRAY GA, 1994, DEVELOPMENT, P97; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D; WRAY GA, 1992, PALEOBIOLOGY, V18, P258; WRAY GA, 1995, ECHINODERMS TIME, P921 55 125 125 0 6 SOC SYSTEMATIC BIOLOGISTS WASHINGTON NATL MUSEUM NATURAL HISTORY NHB 163, WASHINGTON, DC 20560 1063-5157 SYST BIOL Syst. Biol. SEP 1996 45 3 308 322 10.2307/2413566 15 Evolutionary Biology Evolutionary Biology VN321 WOS:A1996VN32100005 Bronze 2019-02-26 J Grimes, CB; Isley, JJ Grimes, CB; Isley, JJ Influence of size-selective mortality on growth of gulf menhaden and king mackerel larvae TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article SALMON ONCORHYNCHUS-KETA; OTOLITH MICROSTRUCTURE; MARINE FISH; BREVOORTIA-PATRONUS; NORTHERN GULF; PREDATION; AGE; SURVIVAL; MODEL; ZOOPLANKTON Gulf menhaden Brevoortia patronus and king mackerel Scomberomorus cavalla represent two widely different larval life history strategies: feeding on large and small prey, respectively. We back-calculated lengths at age for wild and laboratory-reared larvae of gulf menhaden and wild king mackerel using direct proportion procedures then constructed matrices of observed age (rows) by increment number (columns) for mean back-calculated lengths at age. The coefficient of variation (100 . SD/mean) in length at age was greater for observed than for back-calculated length at age for both wild and laboratory-reared gulf menhaden and for king mackerel. Columns in the length-at-age matrix of wild gulf menhaden showed significant trends of increasing backcalculated length at age for older larvae, but the matrix for laboratory-reared fish did not. We suggest that size-selective mortality--the culling of slower-growing larvae--was the cause of the different error structures of observed and back-calculated lengths at age as well as of the increasing back-calculated lengths at age for older larvae in the matrix of wild gulf menhaden. Predation may have been the cause of size-selective mortality because wild larvae were exposed to predation and laboratory-reared larvae were not. Slopes of regressions of back-calculated length on observed age for columns of the matrices indicate the time trend and intensity of size-selective mortality; in wild gulf menhaden larvae, size-selective mortality began after hatching, reached a plateau at 5-8 d, then declined markedly after 14 d, which suggests that the influence of predation was mainly expressed during this period. Size-selective mortality caused average growth (mean backcalculated or observed length at age) to appear higher for both species, but especially for gulf menhaden, because the smallest larvae of a given age were removed. We adjusted back-calculated growth by removing the effect of size-selective mortality with analysis of covariance and estimated that the observed growth rate was 25% higher than the adjusted rate for wild gulf menhaden and 7% higher for wild king mackerel. Grimes, CB (reprint author), NATL MARINE FISHERIES SERV, SE FISHERIES SCI CTR, PANAMA CITY LAB, 3500 DELWOOD BEACH RD, PANAMA CITY, FL 32408 USA. ALHOSSAINI M, 1989, J FISH BIOL, V35, P81; ANDERSON J T, 1988, Journal of Northwest Atlantic Fishery Science, V8, P55; BAILEY KM, 1984, MAR BIOL, V79, P303, DOI 10.1007/BF00393262; BAILEY KM, 1989, ADV MAR BIOL, V25, P1; BAILEY KM, 1983, MAR BIOL, V72, P295, DOI 10.1007/BF00396835; BARKMAN RC, 1987, J FISH BIOL, V31, P683, DOI 10.1111/j.1095-8649.1987.tb05271.x; BEYER JE, 1980, ECOL MODEL, V8, P109, DOI 10.1016/0304-3800(80)90032-0; BEYER JE, 1989, DANA-J FISH MAR RES, V7, P45; Bradford MJ, 1987, AGE GROWTH FISH, P453; BROTHERS EB, 1976, FISH B-NOAA, V74, P1; CAMPANA SE, 1990, CAN J FISH AQUAT SCI, V47, P2219, DOI 10.1139/f90-246; CAMPANA SE, 1985, CAN J FISH AQUAT SCI, V42, P1014, DOI 10.1139/f85-127; CARLANDER KD, 1981, FISHERIES, V6, P2; Cowan J.H. Jr, 1992, Fisheries Oceanography, V1, P113, DOI 10.1111/j.1365-2419.1992.tb00030.x; DEVRIES DA, 1990, ENVIRON BIOL FISH, V29, P135, DOI 10.1007/BF00005030; FINUCANE J H, 1990, Northeast Gulf Science, V11, P145; Fitzhugh GR, 1995, BEL BAR LIB, P227; GERRITSEN J, 1977, J FISH RES BOARD CAN, V34, P73, DOI 10.1139/f77-008; GOVONI JJ, 1983, MAR ECOL PROG SER, V13, P189, DOI 10.3354/meps013189; GUTIERREZ E, 1986, J EXP MAR BIOL ECOL, V103, P163, DOI 10.1016/0022-0981(86)90139-5; HEALEY MC, 1982, CAN J FISH AQUAT SCI, V39, P952, DOI 10.1139/f82-130; HETTLER WF, 1983, PROG FISH CULT, V45, P45, DOI 10.1577/1548-8659(1983)45[45:TAALGM]2.0.CO;2; HOUDE ED, 1987, AM FISH SOC S, V2, P17; Hunter JR, 1981, MARINE FISH LARVAE M, P37; JENKINS GP, 1990, MAR ECOL PROG SER, V63, P93, DOI 10.3354/meps063093; JONES C, 1986, FISH B-NOAA, V84, P91; LEE RM, 1912, PUBLICATIONS CIRCONS, V63, P35; LITVAK MK, 1992, MAR ECOL PROG SER, V81, P13, DOI 10.3354/meps081013; MARGULIES D, 1993, MAR BIOL, V115, P317, DOI 10.1007/BF00346350; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; METHOT R D JR, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P424; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; MOLONY BW, 1990, J FISH BIOL, V37, P541; MOSEGAARD H, 1988, CAN J FISH AQUAT SCI, V45, P1514, DOI 10.1139/f88-180; NEILSON JD, 1985, FISH B-NOAA, V83, P91; PANNELLA G, 1971, SCIENCE, V173, P1124, DOI 10.1126/science.173.4002.1124; PENNEY RW, 1985, CAN J FISH AQUAT SCI, V42, P1452, DOI 10.1139/f85-183; PEPIN P, 1987, CAN J FISH AQUAT SCI, V44, P2012, DOI 10.1139/f87-247; PEPIN P, 1992, MAR ECOL PROG SER, V81, P1, DOI 10.3354/meps081001; PEPIN P, 1989, RAP PROCES, V191, P324; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; Pepin P., 1989, BIOL OCEANOGRAPHY, V6, P23; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; POST JR, 1987, CAN J FISH AQUAT SCI, V44, P1840, DOI 10.1139/f87-228; PURCELL JE, 1986, JELLYFISH PREDATORS, P139; RADTKE RL, 1989, CAN J FISH AQUAT SCI, V46, P1884, DOI 10.1139/f89-237; RICE JA, 1987, T AM FISH SOC, V116, P703, DOI 10.1577/1548-8659(1987)116<703:EOMRLS>2.0.CO;2; RICE JA, 1993, CAN J FISH AQUAT SCI, V50, P133, DOI 10.1139/f93-015; Ricker W. E., 1975, B FISH RES BOARD CAN, V191; ROSENBERG AA, 1982, MAR BIOL, V72, P73, DOI 10.1007/BF00393950; Savoy T.F., 1987, P413; SECOR DH, 1989, CAN J FISH AQUAT SCI, V46, P113, DOI 10.1139/f89-015; SHEPHERD JG, 1980, J CONSEIL, V39, P160; THORROLD SR, 1989, CAN J FISH AQUAT SCI, V46, P1615, DOI 10.1139/f89-206; VLYMEN W J, 1977, Environmental Biology of Fishes, V2, P211, DOI 10.1007/BF00005991; VOLK EC, 1984, CAN J FISH AQUAT SCI, V41, P126, DOI 10.1139/f84-012; WARLEN SM, 1988, FISH B-NOAA, V86, P77; Weisberg S., 1987, P127; WIEBE PH, 1976, J MAR RES, V34, P313 59 12 12 0 0 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. SEP 1996 125 5 741 752 10.1577/1548-8659(1996)125<0741:IOSMOG>2.3.CO;2 12 Fisheries Fisheries VJ089 WOS:A1996VJ08900009 2019-02-26 J King, JL; Simovich, MA; Brusca, RC King, JL; Simovich, MA; Brusca, RC Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools HYDROBIOLOGIA English Review temporary pools; vernal pools; crustaceans; wetlands; diversity PLANKTON COMMUNITIES; DAPHNIA-PULEX; GENETIC-VARIATION; LIFE-HISTORY; SAN-DIEGO; POPULATION; COMPETITION; ANOSTRACA; PREDATION; DIVERSITY Ephemeral pools occur worldwide, provide habitat for organisms with a variety of life history strategies, and may have served as evolutionary refugia for some taxa since Mesozoic times. Yet, our understanding of the ecology and evolutionary history of ephemeral pool communities is hampered by a paucity of such basic data as the species composition of pool assemblages. We surveyed 58 vernal (ephemeral spring-time) pools from 14 sites in northern California for crustaceans, and found diverse assemblages composed largely of endemic and rare species. Sixty-seven species of crustaceans were found, and as many as 30 of these may be new, undescribed species. Differences in species composition among pools correspond with physical and chemical aspects of the habitat (depth, solutes concentration, elevation, biogeographic region), and with existing geologic/floristic-based habitat descriptions. Species richness is positively correlated with both depth and surface area. This relationship can be explained in terms of hydroperiod (accommodation of species with slower developmental rates in long-lived pools, greater time for temporal resource partitioning) and size (spatial habitat heterogeneity). High species richness and numerous co-occurrences of congeneric species in temporary pools may be due to super-abundant resources, low levels of predation, and annual truncation of the community which prevents ecological interactions from going to completion. The results of this survey underscore the need for conservation of the vernal pool habitat and endemic vernal pool species in California. The best preservation strategy will include many pools at each site, multiple sites of each habitat type, and all identified habitat types. UNIV SAN DIEGO,DEPT BIOL,SAN DIEGO,CA 92110; UNIV CHARLESTON,GRICE MARINE BIOL LAB,CHARLESTON,SC 29412 King, JL (reprint author), UNIV CALIF DAVIS,SECT EVOLUT & ECOL,DAVIS,CA 95616, USA. ABELE LG, 1976, SCIENCE, V192, P461, DOI 10.1126/science.192.4238.461; AHL JSB, 1991, HYDROBIOLOGIA, V212, P137, DOI 10.1007/BF00025995; ANDERSON R. STEWART, 1968, NAT MUS CAN NATUR HIST PAP, V39, P1; ANDERSON RS, 1974, J FISH RES BOARD CAN, V31, P855, DOI 10.1139/f74-105; ARMITAGE K B, 1967, Hydrobiologia, V29, P205, DOI 10.1007/BF00142064; BALKO ML, 1984, U CALIFORNIA I ECOLO, V28, P76; Barclay W.R., 1984, UC DAV I EC PUBL, V28, P126; BARCLAY WR, 1981, THESIS UC DAVIS; BARLOCHER F, 1978, ARCH HYDROBIOL, V81, P269; BELK, 1994, ANOSTRACAN NEWS, V2, P2; BELK D, 1977, Southwestern Naturalist, V22, P99, DOI 10.2307/3670467; BELK D, 1990, J CRUSTACEAN BIOL, V10, P128, DOI 10.2307/1548675; BOILEAU MG, 1988, HYDROBIOLOGIA, V167, P393, DOI 10.1007/BF00026331; BOUCHER DH, 1982, ANNU REV ECOL SYST, V13, P315, DOI 10.1146/annurev.es.13.110182.001531; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; CARTER JCH, 1980, CAN J ZOOL, V58, P1355, DOI 10.1139/z80-188; CARVALHO GR, 1987, J ANIM ECOL, V56, P453, DOI 10.2307/5060; CATTELL RB, 1966, MULTIVAR BEHAV RES, V1, P245, DOI 10.1207/s15327906mbr0102_10; CHESSON P, 1989, TRENDS ECOL EVOL, V4, P293, DOI 10.1016/0169-5347(89)90024-4; COLE GA, 1966, AM MIDL NAT, V76, P351, DOI 10.2307/2423091; COLE J, 1978, AM MIDL NAT, V100, P15, DOI 10.2307/2424773; COLWELL RK, 1974, ECOLOGY, V55, P1148, DOI 10.2307/1940366; COX GW, 1983, OECOLOGIA, V57, P170, DOI 10.1007/BF00379577; CREASE TJ, 1990, MOL BIOL EVOL, V7, P444; Daborn G.R., 1975, Verhandlungen Int Verein Theor Angew Limnol, V19, P580; Daborn G. R., 1978, VERHANDLUNGEN INT VE, V20, P2442; DODSON S, 1991, VERH INT VER LIMNOL, V24, P1223; DODSON SI, 1975, LIMNOL OCEANOGR, V20, P426, DOI 10.4319/lo.1975.20.3.0426; DURRENBERGER RW, 1976, CALIFORNIA PATTERNS; EBERT TA, 1987, ARCH HYDROBIOL, V110, P101; ENG LL, 1990, J CRUSTACEAN BIOL, V10, P247, DOI 10.2307/1548485; EVERITT BS, 1992, APPL MULTIVARIATE DA; FRYER G, 1957, J ANIM ECOL, V26, P263, DOI 10.2307/1747; FRYER G, 1985, FRESHWATER BIOL, V15, P347, DOI 10.1111/j.1365-2427.1985.tb00206.x; FRYER G, 1993, FRESHWATER CRUSTACEA; Fugate M. L., 1992, THESIS U CALIFORNIA; GAUCH H. G, 1982, MULTIVARIATE ANAL CO; Gause G. F., 1934, STRUGGLE EXISTENCE; Grainger J.N.R., 1994, Anostracan News, V2, P3; HAMER ML, 1991, HYDROBIOLOGIA, V212, P105, DOI 10.1007/BF00025993; HAMMER UT, 1968, LIMNOL OCEANOGR, V13, P476, DOI 10.4319/lo.1968.13.3.0476; Hanes W. T, 1990, STUDIES HERBARIUM, P49; HANN BJ, 1986, CAN J ZOOL, V64, P2246, DOI 10.1139/z86-338; Hartland-Rowe R., 1966, Verhandlungen der Internationalen Vereinigung fuer Theoretische und Angewandte Limnologie, V16, P577; HARTLANDROWE R, 1972, ESSAYS HYDROBIOLOGY, P15; HAVEL JE, 1990, J EVOLUTION BIOL, V3, P65, DOI 10.1046/j.1420-9101.1990.3010065.x; HEBERT PDN, 1980, SCIENCE, V207, P1363, DOI 10.1126/science.207.4437.1363; HEBERT PDN, 1986, CAN J FISH AQUAT SCI, V43, P1416, DOI 10.1139/f86-175; HEBERT PDN, 1974, EVOLUTION, V28, P546, DOI 10.1111/j.1558-5646.1974.tb00788.x; HILL MO, 1980, VEGETATIO, V42, P47, DOI 10.1007/BF00048870; HILL MO, 1986, PRELIMINARY DESCRIPT; HOLLAND MO, 1988, CAL NAT PLANT SOC SP, V9, P515; HOLLAND RF, 1981, AM NAT, V117, P24, DOI 10.1086/283684; Hoover R. F, 1937, THESIS U CALIFORNIA; HURLBERT SH, 1981, HYDROBIOLOGIA, V83, P125, DOI 10.1007/BF02187157; HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366; HUTCHINSON G, 1961, AM NAT, V95, P137, DOI 10.1086/282171; Hutchinson G. E., 1937, Transactions of the Connecticut Academy of Arts and Science, V33, P47; Hutchinson G. E., 1967, TREATISE LIMNOLOGY, VII; HUTCHINSON G. EVELYN, 1953, PROC ACAD NAT SCI PHILADELPHIA, V105, P1; Hutchinson GE, 1941, AM NAT, V75, P406, DOI 10.1086/280983; HUTCHINSON GE, 1932, ARCH HYDROBIOL, V24, P1; HUTCHINSON GE, 1929, NATURE, V3109, P832; ISTOCK C, 1967, ECOLOGY, V48, P929, DOI 10.2307/1934536; ISTOCK CA, 1966, EVOLUTION, V20, P211, DOI 10.1111/j.1558-5646.1966.tb03357.x; JOLIFFE I. T., 1972, APPL STAT, V21, P160; Kerfoot WC, 1987, PREDATION DIRECT IND; KING JL, UNPUB SPATIAL PATTER, V1; LYNCH M, 1979, LIMNOL OCEANOGR, V24, P253, DOI 10.4319/lo.1979.24.2.0253; LYNCH M, 1987, GENETICS, V115, P657; LYNCH M, 1983, EVOLUTION, V37, P358, DOI 10.1111/j.1558-5646.1983.tb05545.x; MAC ARTHUR ROBERT H., 1967; MACARTHUR R, 1961, ECOLOGY, V42, P594, DOI 10.2307/1932254; MACARTHUR RH, 1963, EVOLUTION, V17, P373, DOI 10.1111/j.1558-5646.1963.tb03295.x; MAGUIRE B, 1963, ECOL MONOGR, V33, P161, DOI 10.2307/1948560; MAHONEY DL, 1990, AM MIDL NAT, V123, P244, DOI 10.2307/2426553; MAYNARD SD, 1977, THESIS U UTAH; MCKILLOP WB, 1992, CAN FIELD NAT, V106, P454; MCLACHLAN A, 1981, ECOL ENTOMOL, V6, P175, DOI 10.1111/j.1365-2311.1981.tb00603.x; MCLACHLAN AJ, 1981, ZOOL J LINN SOC-LOND, V71, P265, DOI 10.1111/j.1096-3642.1981.tb01133.x; MCLAY CL, 1978, CAN J ZOOL, V56, P1744, DOI 10.1139/z78-239; MCLAY CL, 1978, CAN J ZOOL, V56, P663, DOI 10.1139/z78-094; MOORE W G, 1970, Southwestern Naturalist, V15, P83, DOI 10.2307/3670204; Morin P.J., 1987, P174; MURA G, 1991, HYDROBIOLOGIA, V212, P45, DOI 10.1007/BF00025986; Murdoch W. W., 1975, ADV ECOL RES, V9, P1, DOI DOI 10.1016/S0065-2504(08)60288-3; NIKOLAEVA NV, 1985, SOV J ECOL, V15, P271; ODUM EP, 1963, AM I BIOL SCI B, V13, P39; PAINE RT, 1984, ECOLOGY, V65, P1339, DOI 10.2307/1939114; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; PATALAS K, 1971, J FISH RES BOARD CAN, V28, P231, DOI 10.1139/f71-034; PEDROSALIO C, 1983, FRESHWATER BIOL, V13, P227, DOI 10.1111/j.1365-2427.1983.tb00673.x; PRESTON FW, 1962, ECOLOGY, V43, P410, DOI 10.2307/1933371; PRESTON FW, 1962, ECOLOGY, V43, P185, DOI 10.2307/1931976; PRESTON FW, 1960, ECOLOGY, V41, P611, DOI 10.2307/1931793; PROCTOR VW, 1967, ECOLOGY, V48, P672, DOI 10.2307/1936517; QUADE HW, 1969, ECOLOGY, V50, P170, DOI 10.2307/1934843; REED EDWARD B., 1962, ARCTIC, V15, P27; REID JW, 1994, ARCTIC, V47, P80; RETALLACK JT, 1980, AM MIDL NAT, V103, P123, DOI 10.2307/2425046; RICH PH, 1978, AM NAT, V112, P57, DOI 10.1086/283252; RICHERSO.P, 1970, P NATL ACAD SCI USA, V67, P1710, DOI 10.1073/pnas.67.4.1710; SAUNDERS GW, 1980, FUNCTIONING FRESHWAT, P341; SAUNDERS JF, 1993, J CRUSTACEAN BIOL, V13, P184; SCHOLNICK DA, 1994, HYDROBIOLOGIA, V294, P111, DOI 10.1007/BF00016851; SEPERS ABJ, 1977, HYDROBIOLOGIA, V52, P39, DOI 10.1007/BF02658081; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; SIMOVICH MA, 1992, T W SEC WIL, V28, P6; TAYLOR DW, 1992, UNPUB VERNAL POOLS P; TAYLOR RJ, 1984, HYDROBIOLOGIA, V212, P117; THIERY RG, 1982, BIOL REV, V57, P671; THORNE RF, 1984, I ECOLOGY PUBLICATIO, V28, P1; WAGELE JW, 1992, ACTA ZOOL-STOCKHOLM, V73, P355; WEIDER LJ, 1985, J PLANKTON RES, V7, P101, DOI 10.1093/plankt/7.1.101; Weir H., 1990, VERNAL POOL MANAGEME; White G. E., 1969, Verhandlungen der Internationalen Vereinigung fuer Theoretische und Angewandte Limnologie, V17, P440; WHITESID.MC, 1967, ECOLOGY, V48, P664, DOI 10.2307/1936514; WIENS JA, 1977, AM SCI, V65, P590; WIGGINS G B, 1980, Archiv fuer Hydrobiologie Supplement, V58, P97; WILLIAMS CB, 1964, PATTERNS BALANCE NAT, P93; WILLIAMS WD, 1985, HYDROBIOLOGIA, V125, P85, DOI 10.1007/BF00045928; WILSON CC, 1992, ECOLOGY, V73, P1462, DOI 10.2307/1940690; Zaret T. M., 1980, PREDATION FRESHWATER; ZEDLER PH, 1987, 85 US FISH WILD SERV; 1994, FED REGISTER, V59, P39874; 1993, FED REGISTER, V58, P41700; 1991, FED REGISTER, V56, P61173; 1993, FED REGISTER, V58, P41384; 1994, FED REGISTER, V59, P48136; 1980, FED REGISTER, V45, P52807; 1992, FED REGISTER, V57, P24192 131 103 104 1 92 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia AUG 9 1996 328 2 85 116 10.1007/BF00018707 32 Marine & Freshwater Biology Marine & Freshwater Biology VG104 WOS:A1996VG10400001 2019-02-26 J Kenrick, DT; Gabrielidis, C; Keefe, RC; Cornelius, JS Kenrick, DT; Gabrielidis, C; Keefe, RC; Cornelius, JS Adolescents' age preferences for dating partners: Support for an evolutionary model of life-history strategies CHILD DEVELOPMENT English Article PHYSICAL ATTRACTIVENESS; SEX-DIFFERENCES; PSYCHOLOGY; SIMILARITY; MATES; SOCIOBIOLOGY; HYPOTHESIS; ATTITUDES The tendency for women to prefer older partners, and for men to prefer younger partners, has frequently been explained in terms of socialization to American sex-role norms specifying that men must be older and more powerful than their female partners. However, recent cross-cultural data reveal this same pattern in all societies studied, a finding more in line with an evolutionary life-history model. The evolutionary model assumes that what is attractive to males is not youth, per se, but features related to fertility. This perspective leads to a hypothesis concerning the development of age preferences among adolescents: teenage males should violate the normative pattern shown in adult males and express interest in females older than themselves. 209 teenagers (103 males, 106 females) ranging in age from 12 to 19 were surveyed regarding the age limits they would find acceptable in a dating partner, as well as the age of a dating partner they would find ideally attractive. Although teenage males were willing to date girls slightly younger than themselves, they indicated a much wider range of acceptability above their own ages, and also reported that their ideally attractive partners would be several years older than themselves. Preferences of teenage females were similar in pattern to those of adult females, ranging, on average, from their own age to several years older. When combined with the consistent adult data obtained from numerous cultures, these data suggest the utility of viewing the development of sex differences in mate preference from the perspective of an evolutionary life-history model. NEW MEXICO STATE UNIV,LAS CRUCES,NM 88003; SCOTTSDALE COLL,SCOTTSDALE,AZ Kenrick, DT (reprint author), ARIZONA STATE UNIV,DEPT PSYCHOL,TEMPE,AZ 85287, USA. ACSADI G., 1970, HIST HUMAN LIFE SPAN; ALLEY TR, 1992, BEHAV BRAIN SCI, V15, P92, DOI 10.1017/S0140525X00067601; Barkow J, 1992, ADAPTED MIND EVOLUTI; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; BOLIG R, 1984, FAM RELAT, V33, P587, DOI 10.2307/583839; Bowlby J., 1969, ATTACHMENT LOSS, V1; BROUDE GJ, 1992, BEHAV BRAIN SCI, V15, P94, DOI 10.1017/S0140525X00067637; Buss D.M., 1992, ADAPTED MIND EVOLUTI, P249; BUSS DM, 1995, PSYCHOL INQ, V6, P1, DOI 10.1207/s15327965pli0601_1; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BYRNE D, 1986, J PERS SOC PSYCHOL, V51, P1167, DOI 10.1037//0022-3514.51.6.1167; CAMERON C, 1977, FAM COORD, V26, P27, DOI 10.2307/581857; CAMPBELL DT, 1975, AM PSYCHOL, V30, P1103, DOI 10.1037//0003-066X.30.12.1103; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; CUNNINGHAM MR, 1986, J PERS SOC PSYCHOL, V50, P925, DOI 10.1037/0022-3514.50.5.925; DALY M, 1983, SEX EVOLUTION BEHAVI; Darwin C, 1873, EXPRESSION EMOTIONS; DEUTSCH FM, 1986, J APPL SOC PSYCHOL, V16, P771; GOTTLIEB G, 1983, HDB CHILD PSYCHOL, V2, P1; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; HARPENDING H, 1992, BEHAV BRAIN SCI, V15, P102, DOI 10.1017/S0140525X00067716; HARRISON AA, 1977, J PERS SOC PSYCHOL, V35, P257, DOI 10.1037//0022-3514.35.4.257; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; KANDEL DB, 1978, J PERS SOC PSYCHOL, V36, P306, DOI 10.1037//0022-3514.36.3.306; KEIL FC, 1981, PSYCHOL REV, V88, P197, DOI 10.1037/0033-295X.88.3.197; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75, DOI 10.1017/S0140525X00067595; KENRICK DT, 1995, J PERS SOC PSYCHOL, V69, P1166, DOI 10.1037/0022-3514.69.6.1166; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P119, DOI 10.1017/S0140525X0006790X; KENRICK DT, IN PRESS EVOLUTION H; KENRICK DT, 1993, PSYCHOL GENDER, P148; Kessner DM, 1973, INFANT DEATH ANAL MA; KUNSTWILSON WR, 1980, SCIENCE, V207, P557, DOI 10.1126/science.7352271; LEONARD JL, 1989, BEHAV BRAIN SCI, V12, P26, DOI 10.1017/S0140525X00024134; MATHES EW, 1985, J SOC PSYCHOL, V125, P157, DOI 10.1080/00224545.1985.9922868; MENKEN J, 1986, AGING REPROD CLIMACT, P147; MORELAND RL, 1992, J EXP SOC PSYCHOL, V28, P255, DOI 10.1016/0022-1031(92)90055-O; Newcomb T. M., 1961, ACQUAINTANCE PROCESS; NEWCOMB TM, 1978, J PERS SOC PSYCHOL, V36, P1075, DOI 10.1037/0022-3514.36.10.1075; NIESCHLAG E, 1986, AGING REPRODUCTION C, P59; Peplau L. A., 1985, WOMEN GENDER SOCIAL; Pinker S, 1994, LANGUAGE INSTINCT; Plomin R., 1990, NATURE NURTURE INTRO; PRESSER HB, 1975, AM BEHAV SCI, V19, P190, DOI 10.1177/000276427501900205; RESNICK R, 1986, AGING REPRODUCT CUM, P167; ROSENBLATT PC, 1974, FDN INTERPERSONAL AT; ROSSER R, 1994, COGNITIVE DEV PSYCHO; ROWE DC, 1994, LIMITS FAMILY EXPERI; ROWE DC, IN PRESS THEORIES CR; RUSHTON JP, 1989, BEHAV BRAIN SCI, V12, P503, DOI 10.1017/S0140525X00057320; SCARR S, 1983, CHILD DEV, V54, P424, DOI 10.2307/1129703; Shaffer D. R., 1994, SOCIAL PERSONALITY D; Sheets V., 1996, SEX POWER CONFLICT E, P29; SINGH D, 1993, J PERS SOC PSYCHOL, V65, P293, DOI 10.1037/0022-3514.65.2.293; SINGH R, 1992, BRIT J SOC PSYCHOL, V31, P227, DOI 10.1111/j.2044-8309.1992.tb00967.x; Spence J., 1978, MASCULINITY FEMININI; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STUDD MV, 1991, ETHOL SOCIOBIOL, V12, P249, DOI 10.1016/0162-3095(91)90021-H; Symons D., 1987, SOCIOBIOLOGY PSYCHOL, P121; Symons D, 1979, EVOLUTION HUMAN SEXU; THORNHILL R, 1983, ETHOL SOCIOBIOL, V4, P137, DOI 10.1016/0162-3095(83)90027-4; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; *VIT HLTH STAT, 1972, INF MORT RAT SOC FAC, V22; WARNER RR, 1984, AM SCI, V72, P128; WEISFELD GE, 1992, ETHOL SOCIOBIOL, V13, P125, DOI 10.1016/0162-3095(92)90022-V; Wilson E. O., 1981, GENES MIND CULTURE 65 62 62 1 30 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0009-3920 CHILD DEV Child Dev. AUG 1996 67 4 1499 1511 10.1111/j.1467-8624.1996.tb01810.x 13 Psychology, Educational; Psychology, Developmental Psychology VP344 WOS:A1996VP34400014 8890497 2019-02-26 J Dobler, S; RowellRahier, M Dobler, S; RowellRahier, M Reproductive biology of viviparous and oviparous species of the leaf beetle genus Oreina ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article Oreina; Chrysomelidae; viviparity; offspring size; fecundity; maternal investment EGG SIZE; CHEMICAL DEFENSE; PARENTAL CARE; CLUTCH SIZE; NUMBER; EVOLUTION; CHRYSOMELIDAE; COLEOPTERA; SELECTION; TACTICS In five species of the genus Oreina Chevrolat (Coleoptera, Chrysomelidae) we compared the size of offspring, the fecundity of the females, the timing of offspring production and female investment over the season. Two of the species, O. elongata and O. luctuosa, laid eggs, while O. cacaliae, O. gloriosa and O. variabilis gave birth to larvae. Offspring size corrected for female size was similar in the two oviparous species and in the viviparous O. cacaliae. In the two other viviparous species the larvae were two to three times bi,, geer in relation to the female. The greater size of the offspring was not traded off for lower fecundity in these latter two species, yet the production of bigger larvae was associated with a longer laying period and thereby a spreading of reproductive investment over the season. The prediction of life history theory that higher investment in individual offspring should be traded off for lower fecundity could not be confirmed. The investigation of egg and larval development showed that in one of the oviparous species, O. luctuosa, the length of the egg stage was more variable. This corroborates the view that in this species the eggs can be retained for varying times before being laid. Greater size at birth does not necessarily lead to shortened developmental times: the larval periods of O. cacaliae, O. elongata, O. gloriosa and O. variabilis were all comparable although the larvae of the first two species were relatively smaller when laid; only the small larvae of O. luctuosa needed significantly longer for their development. For all growth parameters examined the differences between species were larger than the differences between populations. A comparison of larval growth of the oligophagous species O. cacaliae on three plant genera showed that larval growth rate is influenced by the food plant. However, the plant on which the larvae grew worst is apparently not chosen for oviposition in the field. A comparison with a phylogeny of the species based on allozymes suggests that species with similar reproductive parameters are closely related, yet that viviparity evolved independently in O. cacaliae on one hand and O. variabilis and O. gloriosa on the other. UNIV BASEL,INST ZOOL,CH-4051 BASEL,SWITZERLAND Dobler, Susanne/0000-0002-0635-7719 BLACKBURN DG, 1992, AM ZOOL, V32, P313; Bontems C., 1985, Bulletin de la Societe Entomologique de France, V89, P973; BONTEMS C, 1984, Nouvelle Revue d'Entomologie, V1, P179; BONTEMS C, 1981, Nouvelle Revue d'Entomologie, V11, P93; BONTEMS C, 1978, Nouvelle Revue d'Entomologie, V8, P69; Bontems C, 1988, BIOL CHRYSOMELIDAE, P299, DOI [10.1007/978-94-009-3105-3_18, DOI 10.1007/978-94-009-3105-3_]; Bontems C., 1981, THESIS U PARIS 6, P6; Breden F., 1985, Entomography, V3, P455; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Champion G. C., 1901, Transactions of the Entomological Society of London, P1; Chapman T. A., 1903, Transactions of the Entomological Society of London, P245; Dixon A.F.G., 1987, P3; DOBLER S, 1994, OECOLOGIA, V97, P271, DOI 10.1007/BF00323160; DOBLER S, 1996, EVOLUTION; EGGENBERGER F, 1991, NATURWISSENSCHAFTEN, V78, P317, DOI 10.1007/BF01221419; KRIEGBAUM H, 1988, THESIS U ERLANGEN NU; LIEBHERR JK, 1985, J NAT HIST, V19, P1079, DOI 10.1080/00222938500770681; Lloyd DG, 1988, EVOL ECOL, V2, P175, DOI 10.1007/BF02067276; MAC ARTHUR ROBERT H., 1967; MONTAGUE JR, 1981, AM NAT, V118, P865, DOI 10.1086/283877; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PASTEELS JM, 1995, J CHEM ECOL, V21, P1163, DOI 10.1007/BF02228318; PASTEELS JM, 1993, BIOCHEM SYST ECOL, V21, P135, DOI 10.1016/0305-1978(93)90019-N; PASTEELS JM, 1992, NATURWISSENSCHAFTEN, V79, P521, DOI 10.1007/BF01135774; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1976, AM ZOOL, V16, P775; RANK NE, 1992, NATURAL HIST E CALIF, P161; Rowell-Rahier M., 1991, Chemoecology, V2, P41, DOI 10.1007/BF01240665; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; *SAS I INC, 1990, SAS STAT US GUIDE VE; SCRIBER JM, 1981, ANNU REV ENTOMOL, V26, P183, DOI 10.1146/annurev.en.26.010181.001151; SEENO TN, 1982, ENTOMOGRAPHY, V1, P75; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; Sibly R., 1985, P75; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns SC., 1992, EVOLUTION LIFE HIST; STEWART LA, 1991, FUNCT ECOL, V5, P380, DOI 10.2307/2389809; Tabashnik B.E., 1987, P71; Tutin T.G., 1980, FLORA EUROPAEA; Tutin TG, 1980, FLORA EUROPAEA, VII; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; WOURMS JP, 1992, AM ZOOL, V32, P276; Zar J. H., 1984, BIOSTATISTICAL ANAL 43 6 6 1 11 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0013-8703 ENTOMOL EXP APPL Entomol. Exp. Appl. AUG 1996 80 2 375 388 10.1111/j.1570-7458.1996.tb00950.x 14 Entomology Entomology VC946 WOS:A1996VC94600006 2019-02-26 J Reznick, DN; Butler, MJ; Rodd, FH; Ross, P Reznick, DN; Butler, MJ; Rodd, FH; Ross, P Life-history evolution in guppies (Poecilia reticulata) .6. Differential mortality as a mechanism for natural selection EVOLUTION English Article adaptation; life-history evolution; mark-recapture; mortality; selection; size-selective predation GEOGRAPHIC-VARIATION; DROSOPHILA-MELANOGASTER; PISCES-POECILIIDAE; TRINIDAD GUPPY; PREDATION; BEHAVIOR; AGE; POPULATION; DENSITY; TRAITS We have previously reported a correlation between the life-history patterns of guppies and the types of predators with which they coexist. Guppies from localities with an abundance of large predators (high predation localities) mature at an earlier age and devote more resources to reproduction than those found in localities with only a single, small species of predator (low predation localities). We also found that when guppies were introduced from a high to low predation locality, the guppy life history evolved to resemble what was normally found in this low predation locality. The presumed mechanism of natural selection is differences among localities in age/size-specific mortality (the age/size-specific mortality hypothesis); in high predation localities we assumed that guppies experienced high adult mortality rates while in the low predation localities we assumed that guppies experienced high juvenile mortality rates. These assumptions were based on stomach content analyses of wild-caught predators and on laboratory experiments. Here, we evaluate these assumptions by directly estimating the mortality rates of guppies in natural populations. We found that guppies from high predation localities experience significantly higher mortality rates than their counterparts from low predation localities, but that these higher mortality rates are uniformly distributed across all size classes, rather than being concentrated in the larger size classes. This result appears to contradict the predictions of the age/size-specific predation hypothesis. However, we argue, using additional data on growth rates and the probabilities of survival to maturity in each type of locality, that the age-specific mortality hypothesis remains plausible. This is because the probability of survival to first reproduction is very similar in each type of locality, but the guppies from high predation localities have a much lower probability of survival per unit time after maturity. We also argue for the plausibility of two other mechanisms of natural selection. These results thus reveal mortality patterns that provide a potential cause of natural selection, but expand, rather than narrow, the number of possible mechanisms responsible for life-history evolution in guppies. OLD DOMINION UNIV,DEPT BIOL SCI,NORFOLK,VA 23529; FLORIDA STATE UNIV,DEPT BIOL SCI,TALLAHASSEE,FL 32306; UNIV CALIF SANTA BARBARA,DEPT BIOL SCI,SANTA BARBARA,CA 93106 Reznick, DN (reprint author), UNIV CALIF RIVERSIDE,DEPT BIOL,RIVERSIDE,CA 92521, USA. reznick, david/0000-0002-1144-0568 BIERBAUM TJ, 1989, EVOLUTION, V43, P382, DOI 10.1111/j.1558-5646.1989.tb04234.x; BREDEN F, 1987, ANIM BEHAV, V35, P618, DOI 10.1016/S0003-3472(87)80297-X; Charlesworth B., 1980, EVOLUTION AGE STRUCT; DIXON WJ, 1992, BMDP STATISTICAL SOF; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; Endler JA, 1986, NATURAL SELECTION WI; FARR JA, 1974, ANIM BEHAV, V22, P582, DOI 10.1016/S0003-3472(74)80003-5; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; Ford E.B., 1971, ECOLOGICAL GENETICS; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; JONES JS, 1977, ANNU REV ECOL SYST, V8, P109, DOI 10.1146/annurev.es.08.110177.000545; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1993, MAR BEHAV PHYSIOL, V23, P29, DOI 10.1080/10236249309378855; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MUELLER LD, 1991, SCIENCE, V253, P433, DOI 10.1126/science.1907401; MUELLER LD, 1993, FUNCT ECOL, V7, P469, DOI 10.2307/2390034; Power M.E., 1987, P333; PRICE TD, 1984, EVOLUTION, V38, P483, DOI 10.1111/j.1558-5646.1984.tb00314.x; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; REZNICK DN, 1982, EVOLUTION, V36, P1285; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; ROFF D, 1980, Evolutionary Theory, V4, P195; *SAS I, 1985, SAS US GUID; Seghers B. H., 1973, THESIS U BRIT COLOMB; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1974, OECOLOGIA, V14, P93, DOI 10.1007/BF00344900; Seghers BH, 1978, VERH INT VEREIN LIMN, V20, P2055; Stearns SC., 1992, EVOLUTION LIFE HIST; STONER G, 1988, BEHAV ECOL SOCIOBIOL, V22, P285, DOI 10.1007/BF00299844; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; TAUBERT BD, 1977, J FISH RES BOARD CAN, V34, P332, DOI 10.1139/f77-054; Vanni M.J., 1987, P149; WERNER PA, 1977, ECOLOGY, V58, P1103, DOI 10.2307/1936930; WILSON CA, 1987, T AM FISH SOC, V116, P668, DOI 10.1577/1548-8659(1987)116<668:CAAFMO>2.0.CO;2 49 289 295 3 126 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution AUG 1996 50 4 1651 1660 10.2307/2410901 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity VE700 WOS:A1996VE70000027 28565709 Bronze 2019-02-26 J Li, DQ; Jackson, RR Li, DQ; Jackson, RR How temperature affects development and reproduction in spiders: A review JOURNAL OF THERMAL BIOLOGY English Review temperature; spiders; development rate; thermal requirements; survival; fecundity; phenotypic plasticity ORB-WEAVING SPIDER; LIFE-HISTORY; SPECIES ARANEAE; PEST-CONTROL; CLUBIONIDAE; THERIDIIDAE; PLASTICITY; FECUNDITY; DURATION; BIOLOGY We review previously published studies on how temperature affects development and reproduction of spiders, with an emphasis on recent studies from China published in Chinese. We apply both linear and non-linear models to data from these papers to examine relationships between temperature and the spider's rate of development, and we estimate the thermal requirements of selected species. Intra-and interspecific variation in development time, survival, adult longevity, adult size, and reproduction are considered, and apparently, phenotypic plasticity in these above life history traits is induced by growth temperature. With respect to the life histories and life style of the spider species we argue that the thermal adaptations of spiders might have important roles in fine-tuning the species' life-history strategies: much of this variability is probably a consequence of adaptations to the different thermal conditions prevailing in the natural habitats of these species. Spiders living in warmer climates can withstand higher temperatures than species from colder climates, and species from colder climates can tolerate lower temperatures than species from warmer climates. Cold-habitat species develop more slowly at high temperatures, and warm-habitat species develop more slowly at low temperatures. Also, different species of spiders show different seasonal adaptations to the microenvironments in which they live: fast, low-temperature development is an indicator of adaptation to colder season(s) of the year, whereas slow, low-temperature development and fast, high-temperature development are indicators of adaptation to warm season(s) of the year. Copyright (C) 1996 Elsevier Science Ltd Li, DQ (reprint author), UNIV CANTERBURY,DEPT ZOOL,PRIVATE BAG 4800,CHRISTCHURCH 1,NEW ZEALAND. Li, Daiqin/D-6922-2013 Li, Daiqin/0000-0001-8269-7734 Andrewartha H.G., 1954, DISTRIBUTION ABUNDAN, pII; AUSTIN AD, 1984, J ARACHNOL, V12, P87; BAERT L, 1980, Bulletin de l'Institut Royal des Sciences Naturelles de Belgique Entomologie, V52, P1; Beck S, 1983, ANNU REV ENTOMOL, V29, P91; BENTON MJ, 1986, OECOLOGIA, V68, P395, DOI 10.1007/BF01036745; Blunck H, 1914, Z WISS ZOOL ABT A, V111, P76; Bonnet P., 1930, Bull Soc Hist nat Toulouse T, V59, P237; BOTTRELL HH, 1975, OECOLOGIA, V18, P63, DOI 10.1007/BF00350636; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRISTOWE WS, 1941, COMITY SPIDERS; BROWNING HC, 1941, P ZOOL SOC LOND, V11, P303; Buche W., 1966, Zeitschrift fuer Morphologie und Oekologie der Tiere, V57, P329; BURSELL E, 1974, PHYSL INSECTA, V2, P1; CAMPBELL A, 1974, J APPL ECOL, V11, P431, DOI 10.2307/2402197; Cariaso BL, 1967, PHILIPP AGR, V51, P171; Chen W.-h., 1991, Acta Ecologica Sinica, V11, P171; CHEN WH, 1990, J HUBEI U NAT SCI, V12, P346; CHEN WH, 1989, NAT ENEM INSECTS, V11, P122; CHEN WH, 1990, CONTRIBUTIONS ENTOMO; CHRISTOPHE T, 1977, B SOC ZOOL FR, V102, P187; Davidson J, 1944, J ANIM ECOL, V13, P26, DOI 10.2307/1326; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; Downes M.F., 1988, Bulletin of the British Arachnological Society, V7, P204; DOWNES MF, 1985, AUST J ECOL, V10, P261, DOI 10.1111/j.1442-9993.1985.tb00888.x; DOWNES MF, 1988, J ARACHNOL, V16, P41; Downes MF, 1987, J ARACHNOL, V14, P293; EDGAR WD, 1971, OIKOS, V22, P84, DOI 10.2307/3543365; FOELIX RF, 1982, BIOL SPIDERS; FORSTER L, 1983, NEW ZEAL ENTOMOL, V7, P431, DOI 10.1080/00779962.1983.9722437; Forster L.M., 1984, P273; GILBERT DW, 1995, ENVIRON ENTOMOL, V24, P771; HALLMAN J, 1989, J FORECASTING, V8, P189, DOI 10.1002/for.3980080305; HERZIG A, 1983, HYDROBIOLOGIA, V100, P65, DOI 10.1007/BF00027423; HIGGINS LE, 1992, J ARACHNOL, V20, P94; Hochachka P. W., 1973, STRATEGIES BIOCH ADA; HOFFMANN KH, 1985, ENV PHYSL BIOCH INSE, P1; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOWE RW, 1967, ANNU REV ENTOMOL, V12, P15, DOI 10.1146/annurev.en.12.010167.000311; Huffaker Carl B., 1944, ANN ENT SOC AMER, V37, P1; HUKUSIMA S, 1970, ACTA ARACHNOL, V20, P5; JACKSON RR, 1978, J ARACHNOL, V6, P1; JONES SARAH E., 1941, ANN ENT SOC AMERICA, V34, P557; KASTON B J, 1970, Transactions of the San Diego Society of Natural History, V16, P33; LEVY G, 1970, J ZOOL, V160, P523; Li C, 1985, ACTA ECOL SINICA, V5, P157; LI D, 1989, THESIS HUBEI U; LI D, 1989, J HUBEI U NAT SCI, V11, P74; LI D, 1991, J HUBEI U NAT SCI, V13, P170; LI D, 1995, B ENTOMOL RES, V86, P78; LI D, 1990, CONTRIBUTIONS ENTOMO, P20; Li D.-Q., 1991, Acta Ecologica Sinica, V11, P338; LI D-Q, 1992, Acta Zoologica Sinica, V38, P31; Li Dai-Qin, 1993, Acta Ecologica Sinica, V13, P205; Li Daiqin et al, 1989, Sichuan Journal of Zoology, V8, P12; LOGAN JA, 1976, ENVIRON ENTOMOL, V5, P1133, DOI 10.1093/ee/5.6.1133; LUCZAK J, 1979, Polish Ecological Studies, V5, P151; MANSOUR F, 1980, ENTOMOPHAGA, V25, P237, DOI 10.1007/BF02371923; MARSHALL SD, 1994, FUNCT ECOL, V8, P118, DOI 10.2307/2390120; McCRONE JOHN D., 1966, PSYCHE, V73, P180, DOI 10.1155/1966/67316; MESSENGER PS, 1959, ANNU REV ENTOMOL, V4, P183, DOI 10.1146/annurev.en.04.010159.001151; MINERVINO E, 1993, MEM I OSWALDO CRUZ, V88, P49, DOI 10.1590/S0074-02761993000100009; MIYASHITA K, 1968, Applied Entomology and Zoology, V3, P81; NYFFELER M, 1987, J APPL ENTOMOL, V103, P321, DOI 10.1111/j.1439-0418.1987.tb00992.x; PALANICHAMY S, 1985, J THERM BIOL, V10, P63, DOI 10.1016/0306-4565(85)90027-0; PALANICHAMY S, 1983, P INDIAN AS-ANIM SCI, V92, P369, DOI 10.1007/BF03186206; PEAIRS LM, 1914, W VIRG AGR EXP STAT, V208, P32; Peck W, 1970, B ARKANSAS AGR EXP S, V753, P1; Ratte H.T., 1985, P33; ROBINSON B, 1978, S ZOOL SOC LONDON, V42, P31; SCHAEFER M, 1977, PEDOBIOLOGIA, V17, P189; Schaefer M., 1976, Zoologische Jb (Syst), V103, P127; Schaefer M., 1987, P331; SCHAEFER M, 1977, ZOOL JAH SYST OKOL G, V17, P189; SHARPE PJH, 1977, J THEOR BIOL, V64, P649, DOI 10.1016/0022-5193(77)90265-X; Shelford V. E., 1927, Bulletin of the Illinois Natural History Survey, V16, P311; SOFTLY A, 1970, J I ANIM TECH, V21, P117; STEARNS SC, 1982, ROLE DEV EVOLUTION; STINNER RE, 1974, CAN ENTOMOL, V106, P519, DOI 10.4039/Ent106519-5; SUN LS, 1990, CHINESE J ECOL, V9, P10; TAYLOR F, 1981, AM NAT, V117, P1, DOI 10.1086/283683; TRUDGILL DL, 1995, FUNCT ECOL, V9, P136; TURNBULL AL, 1973, ANNU REV ENTOMOL, V18, P305, DOI 10.1146/annurev.en.18.010173.001513; UVAROV B. P., 1931, TRANS ENT SOC [LONDON], V79, P1; Valerio C.E., 1976, Bulletin Br arachnol Soc, V3, P194; VOLLRATH F, 1992, NATURE, V360, P156, DOI 10.1038/360156a0; VOLLRATH F, 1983, Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, V26, P277; WAGNER TL, 1984, ANN ENTOMOL SOC AM, V77, P208, DOI 10.1093/aesa/77.2.208; WANG HQ, 1982, ACTA ZOOL SINICA, V28, P69; Wang R, 1982, ACTA ECOL SIN, V2, P47; WHALON ME, 1979, CAN ENTOMOL, V111, P1025, DOI 10.4039/Ent1111025-9; Wise D. H, 1993, SPIDERS ECOLOGICAL W; WISE DH, 1976, AM MIDL NAT, V96, P66, DOI 10.2307/2424568; YAN HM, 1986, J HUNAN NORMAL U NAT, V9, P95; YOUNG OP, 1985, ENTOMOPHAGA, V30, P329, DOI 10.1007/BF02372339; Zhang C., 1983, Natural Enemies of Insects, V5, P108; Zhang Y. C., 1987, Chinese Journal of Biological Control, V3, P157; ZHAO J, 1988, Acta Zoologica Sinica, V34, P371; Zhao J., 1984, Natural Enemies of Insects, V6, P1; Zhao J.-z., 1988, Chinese Journal of Zoology, V23, P5; Zhao J.-z., 1989, Chinese Journal of Zoology, V24, P9; Zhao J. Z., 1989, J HUBEI U NATURAL SC, V1, P1; Zhao J. Z., 1991, CHINESE J ECOL, V10, P11; ZHAO JH, 1987, ACTA ZOOL SINICA, V33, P51; Zhao Jingzhao, 1988, Acta Ecologica Sinica, V8, P140; Zhao Jingzhao, 1989, Natural Enemies of Insects, V11, P174; ZHAO JZ, 1980, ACTA ZOOL SINICA, V26, P255; ZHAO JZ, 1982, ACTA ZOOL SINICA, V28, P271; ZHAO JZ, 1987, ACTA ZOOL SINICA, V33, P367; ZHAO JZ, 1986, ACTA ZOOL SINICA, V32, P152; ZHAO JZ, 1993, SPIDERS COTTON ECOSY; ZHAO JZ, 1981, ZOOL RES, V3, P125; ZHAO JZ, 1990, CONTRIBUTIONS ENTOMO, P154; ZHAO JZ, 1979, NAT ENEM INSECTS, V1, P25 113 62 70 2 45 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0306-4565 J THERM BIOL J. Therm. Biol. AUG 1996 21 4 245 274 10.1016/0306-4565(96)00009-5 30 Biology; Zoology Life Sciences & Biomedicine - Other Topics; Zoology VD929 WOS:A1996VD92900007 2019-02-26 J Irvine, SM; Martindale, MQ Irvine, SM; Martindale, MQ Cellular and molecular mechanisms of segmentation in annelids SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY English Review annelida; embryology; segmentation LEECH HELOBDELLA-TRISERIALIS; RIBOSOMAL-RNA SEQUENCES; GLOSSIPHONIID LEECH; HOMEOBOX GENES; EARTHWORM EMBRYO; EXPRESSION; LINEAGE; PATTERN; ARTHROPODS; EVOLUTION The annelids are a diverse phylum of metamerically segmented animals. they are of special interest embryologically because of their highly stereotyped pattern of development, much of which is shared by other spiralian phyla. They are also of interest phylogenetically for what they can tell us about the evolution of segmentation, and the relationships of coelomate protostomes in general. In this paper we review the embryology of the different annelid groups, showing considerable conservation of the basic character of segmentation, with modifications associated with evolving life history strategies. We also describe the current knowledge of molecular mechanisms of segmentation in annelids. The most is known at a cellular and molecular level about the phylogenetically derived leeches, while information is just emerging on the more basal annelids, the polychaetes and oligochaetes. This review is intended to provide a framework for comparison of the different annelid groups, and to suggest avenues for future research that might help to illuminate the evolution of annelid developmental patterns. UNIV CHICAGO,COMM NEUROBIOL,CHICAGO,IL 60637; UNIV CHICAGO,COMM DEV BIOL,CHICAGO,IL 60637 Irvine, SM (reprint author), UNIV CHICAGO,COMM EVOLUTIONARY BIOL,1025 E 57TH ST,CULVER HALL 402,CHICAGO,IL 60637, USA. AISEMBERG GO, 1993, J NEUROBIOL, V24, P1423, DOI 10.1002/neu.480241012; AISEMBERG GO, 1994, DEV BIOL, V161, P455, DOI 10.1006/dbio.1994.1044; AKAM M, 1995, PHILOS T R SOC B, V349, P313, DOI 10.1098/rstb.1995.0119; ANDERSON D. T., 1966, ACTA ZOOL STOCKHOLM, V47, P1; Anderson D T, 1973, EMBRYOLOGY PHYLOGENY; ANDERSON DT, 1959, Q J MICROSC SCI, V100, P89; BALLARD JWO, 1992, SCIENCE, V258, P1345, DOI 10.1126/science.1455227; BERRILL NJ, 1961, GROWTH DEV PATTERN, P288; BLAIR SS, 1982, DEV BIOL, V89, P389, DOI 10.1016/0012-1606(82)90327-X; BLAIR SS, 1982, DEV BIOL, V91, P64, DOI 10.1016/0012-1606(82)90008-2; BRUCSA RC, 1990, INVERTEBRATES; BRUSCA GJ, 1978, NATURALISTS GUIDE CO; DICK MH, 1994, MOL PHYLOGENET EVOL, V3, P146, DOI 10.1006/mpev.1994.1017; DORRESTEIJN AWC, 1993, ROUX ARCH DEV BIOL, V202, P260, DOI 10.1007/BF00363215; EERNISSE DJ, 1992, SYST BIOL, V41, P305, DOI 10.2307/2992569; Felsenstein J, 1993, PHYLIP PHYLOGENY INF; Glaessner M. F., 1966, Palaeontology, V9, P599; GLEIZER L, 1993, DEVELOPMENT, V117, P177; HENRY JJ, 1990, DEV BIOL, V141, P55, DOI 10.1016/0012-1606(90)90101-N; Kaufman T C, 1990, Adv Genet, V27, P309; KOSTRIKEN R, 1992, DEV BIOL, V151, P225, DOI 10.1016/0012-1606(92)90229-A; Kume M., 1957, INVERTEBRATE EMBRYOL; LAKE JA, 1990, P NATL ACAD SCI USA, V87, P763, DOI 10.1073/pnas.87.2.763; LANS D, 1993, DEVELOPMENT, V117, P857; Lillie F. R., 1899, Biological Lectures Wood's Hole 1898 Boston, P43; LILLIE RS, 1906, MITT ZOOL STA NEAP, V17, P341; MARTINDALE MQ, 1990, NATURE, V347, P672, DOI 10.1038/347672a0; MARTINDALE MQ, 1995, DEVELOPMENT, V121, P3175; MORRIS SC, 1993, NATURE, V361, P219, DOI 10.1038/361219a0; MORRIS SC, 1979, PHILOS T ROY SOC B, V285, P227, DOI 10.1098/rstb.1979.0006; NARDELLHAEFLIGER D, 1992, DEVELOPMENT, V116, P697; NARDELLIHAEFLIGER D, 1994, DEVELOPMENT, V120, P1839; NARDELLIHAEFLIGER D, 1993, DEVELOPMENT, V118, P877; PATEL NH, 1994, NATURE, V367, P429, DOI 10.1038/367429a0; PATEL NH, 1989, DEVELOPMENT, V107, P201; PATEL NH, 1989, CELL, V58, P955, DOI 10.1016/0092-8674(89)90947-1; SANDIG M, 1988, J MORPHOL, V196, P217, DOI 10.1002/jmor.1051960210; SAVAGE RM, 1996, IN PRESS DEV BIOL; SCHUBERT FR, 1993, P NATL ACAD SCI USA, V90, P143, DOI 10.1073/pnas.90.1.143; Segrove F, 1941, Q J MICROSC SCI, V82, P467; SEIMIYA M, 1994, EUR J BIOCHEM, V221, P219, DOI 10.1111/j.1432-1033.1994.tb18732.x; SHANKLAND M, 1991, DEV BIOL, V144, P221, DOI 10.1016/0012-1606(91)90416-Z; SHANKLAND M, 1991, DEVELOPMENT S, V2, P29; Shimizu T., 1982, P283; SNOW P, 1994, MOL PHYLOGENET EVOL, V3, P360, DOI 10.1006/mpev.1994.1042; SOMMER RJ, 1992, P NATL ACAD SCI USA, V89, P10782, DOI 10.1073/pnas.89.22.10782; STOREY KG, 1989, DEVELOPMENT, V107, P519; STOREY KG, 1989, DEVELOPMENT, V107, P533; SWOFFORD DL, 1991, PAUP PHYLOGENETIC AN; TURBEVILLE JM, 1991, MOL BIOL EVOL, V8, P669; Verdonk N.H., 1983, P91; WEDEEN CJ, 1991, DEVELOPMENT, V113, P805; WEISBLAT DA, 1984, DEV BIOL, V101, P326, DOI 10.1016/0012-1606(84)90146-5; WEISBLAT DA, 1985, PHILOS T ROY SOC B, V312, P40; Willmer P, 1990, INVERTEBRATE RELATIO; Wilson E. B., 1898, BIOL LECTURES MARINE, P21; WONG VY, 1995, J NEUROSCI, V15, P5551; WYSOCKADILLER JW, 1989, NATURE, V341, P760, DOI 10.1038/341760a0; ZACKSON SL, 1984, DEV BIOL, V104, P143, DOI 10.1016/0012-1606(84)90044-7 59 31 31 0 11 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 1084-9521 SEMIN CELL DEV BIOL Semin. Cell Dev. Biol. AUG 1996 7 4 593 604 10.1006/scdb.1996.0073 12 Cell Biology; Developmental Biology Cell Biology; Developmental Biology VK483 WOS:A1996VK48300016 2019-02-26 J Dale, S; Gustavsen, R; Slagsvold, T Dale, S; Gustavsen, R; Slagsvold, T Risk taking during parental care: A test of three hypotheses applied to the pied flycatcher BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article parental care; predation risk; risk taking; reproductive value; Ficedula hypoleuca REPRODUCTIVE SUCCESS; COLORED MALES; NEST DEFENSE; MALE-REMOVAL; BROOD SIZE; FEMALES; BIRDS; INVESTMENT; PREDATION; SURVIVAL According to life-history theory, there will often be a conflict between investment in current versus future reproduction. If a predator appears during breeding, parents must make a compromise between ensuing the growth and survival of offspring (nest defence, feeding and brooding of young), and reducing the risk of predation to ensure their own survival. We model three hypotheses for the outcome of this conflict which are particularly relevant for altricial birds. They are not mutually exclusive, but focus on different costs and benefits. (1) Parental investment is determined by the parents' own risk of predation. This hypothesis predicts that a lone parent should take smaller risks than a parent that has a mate. (2) Parental investment is related to the reproductive value of the offspring: Parents are predicted to take greater risks for larger broods, larger-sized or older offspring. (3) Finally, we present the new hypothesis that parental investment is related to the harm that offspring would suffer during a period of no parental care (incubation, brooding, feeding). This hypothesis predicts that parents should take greater risks for younger offspring, or for offspring in poorer condition, because the marginal benefit of parental care is largest in such cases. Hence, one may also expect that lone parents should take greater risks than two parents because their offspring are more in need of care. We tested these hypotheses on the pied flycatcher (Ficedula hypoleuca) by presenting a stuffed predator of the parents (a sparrowhawk, Accipiter nisus) close to the nest when parents were feeding the young. Risk taking was measured as the time that elapsed until the first visit to the nest. Most support was found for the ''harm to offspring'' hypothesis. Previous studies have usually measured the intensity of nest defence against typical nest predators, and have found evidence for the ''reproductive value of offspring'' hypothesis. However, our model predicts that the importance of the reproductive value of the offspring should decrease relative to the harm that offspring would suffer if they were not cared for when the predator type changes from a nest predator to a predator of adults, and when conditions for breeding turn from good to bad. UNIV OSLO,DEPT BIOL,N-0316 OSLO,NORWAY ALATALO RV, 1982, ANIM BEHAV, V30, P585, DOI 10.1016/S0003-3472(82)80072-9; ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; BART J, 1989, BEHAV ECOL SOCIOBIOL, V24, P109, DOI 10.1007/BF00299642; BLANCHER PJ, 1982, ANIM BEHAV, V30, P929, DOI 10.1016/S0003-3472(82)80167-X; BREITWISCH R, 1988, ANIM BEHAV, V36, P62, DOI 10.1016/S0003-3472(88)80250-1; BUITRON D, 1983, BEHAVIOUR, V87, P209, DOI 10.1163/156853983X00435; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CURIO E, 1975, ANIM BEHAV, V23, P1, DOI 10.1016/0003-3472(75)90056-1; DROST R, 1936, VOGELZUG, V6, P179; GREIGSMITH PW, 1980, ANIM BEHAV, V28, P604, DOI 10.1016/S0003-3472(80)80069-8; LARSON S, 1960, OIKOS, V11, P277; LAZARUS J, 1986, ANIM BEHAV, V34, P1791, DOI 10.1016/S0003-3472(86)80265-2; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lundberg A., 1992, PIED FLYCATCHER; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MEEK SB, 1994, IBIS, V136, P305, DOI 10.1111/j.1474-919X.1994.tb01099.x; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Newton I., 1986, SPARROWHAWK; PERRINS CM, 1980, ARDEA, V68, P133; REGELMANN K, 1986, ANIM BEHAV, V34, P1206, DOI 10.1016/S0003-3472(86)80180-4; REGELMANN K, 1983, BEHAV ECOL SOCIOBIOL, V13, P131, DOI 10.1007/BF00293803; SAETRE GP, 1994, ANIM BEHAV, V48, P1407, DOI 10.1006/anbe.1994.1376; SAETRE GP, 1995, J ANIM ECOL, V64, P21, DOI 10.2307/5824; SHALTER MD, 1975, J COMP PHYSIOL PSYCH, V89, P258, DOI 10.1037/h0076817; SLAGSVOLD T, 1994, AM NAT, V143, P59, DOI 10.1086/285596; SLAGSVOLD T, 1995, J ANIM ECOL, V64, P563, DOI 10.2307/5800; SLAGSVOLD T, 1995, ANIM BEHAV, V50, P1109, DOI 10.1016/0003-3472(95)80110-3; Stearns SC., 1992, EVOLUTION LIFE HIST; STENMARK G, 1988, ANIM BEHAV, V36, P1646, DOI 10.1016/S0003-3472(88)80105-2; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VONHAARTMAN L, 1988, P INT ORN C, V18, P1; WALLIN K, 1987, BEHAVIOUR, V102, P213, DOI 10.1163/156853986X00135; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WINKLER DW, 1987, AM NAT, V130, P526, DOI 10.1086/284729 34 81 82 2 50 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUL 1996 39 1 31 42 10.1007/s002650050264 12 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology UZ040 WOS:A1996UZ04000004 2019-02-26 J Lewis, JB Lewis, JB Spatial distributions of the calcareous hydrozoans Millepora complanata and Millepora squarrosa on coral reefs BULLETIN OF MARINE SCIENCE English Article ACROPORA-CERVICORNIS; POPULATION-STRUCTURE; PATTERN; COMMUNITIES; ECOLOGY; BARBADOS The abundance and spatial distributions of Millepora complanata and Millepora squarrosa were determined from contiguous, m(2) quadrats laid out along transects on three fringing reefs at Barbados, W.I. Spatial pattern of millepore colonies, determined by an analysis of variance at increasing, hierarchical block sizes, indicated clumped or contagious distributions. It is concluded that the patchy distribution of M. complanata is due to stolonal growth of colony bases and to breakage and reattachment of colony branches. The patchy distribution of M. squarrosa is more Likely due to settlement preferences and differential survival of recruits. The life-history strategies of M. complanata which lead to contagious distributions would be advantageous in competition for space on coral reefs. Lewis, JB (reprint author), MCGILL UNIV, DEPT BIOL, 1205 AVE DR PENFIELD, MONTREAL, PQ H3A 1B1, CANADA. ABEL DJ, 1983, MAR ECOL PROG SER, V12, P257, DOI 10.3354/meps012257; ADEY WH, 1977, P 3 INT COR REEF S M, V2, P21; ANDREW NL, 1987, OCEANOGR MAR BIOL, V25, P39; CHOAT JH, 1982, ANNU REV ECOL SYST, V13, P423, DOI 10.1146/annurev.es.13.110182.002231; CHORNESKY EA, 1991, MAR BIOL, V109, P41, DOI 10.1007/BF01320230; DANA TF, 1976, B MAR SCI, V26, P1; Done T.J., 1983, PERSPECTIVES CORAL R, P107; DUSTAN P, 1985, ATOLL RES B, V288, P1; FISHELSON L, 1973, OECOLOGIA, V12, P55, DOI 10.1007/BF00345470; Glynn P.W., 1973, P271; GOREAU TF, 1959, ECOLOGY, V40, P67, DOI 10.2307/1929924; Grassle J.F., 1973, P247; Greig-Smith P., 1983, QUANTITATIVE PLANT E; HIGHSMITH RC, 1982, MAR ECOL PROG SER, V7, P207, DOI 10.3354/meps007207; HUGHES TP, 1980, SCIENCE, V209, P713, DOI 10.1126/science.209.4457.713; JACKSON JBC, 1983, BIOTIC INTERACTIONS, P39; JOKIEL PL, 1983, B MAR SCI, V33, P181; JONES GP, 1990, MAR ECOL PROG SER, V62, P109, DOI 10.3354/meps062109; Lewis J.B., 1974, Proceedings int Coral Reef Symp, V2, P201; LEWIS JB, 1970, NATURE, V227, P1158, DOI 10.1038/2271158a0; LEWIS JB, 1991, MAR ECOL PROG SER, V70, P101, DOI 10.3354/meps070101; LEWIS JB, 1989, CORAL REEFS, V8, P99, DOI 10.1007/BF00338264; LEWIS JB, 1960, CAN J ZOOL, V38, P1130; Loya Y, 1971, S ZOOL SOC LONDON, V28, P117; MALATESTA RJ, 1992, MAR ECOL PROG SER, V87, P189, DOI 10.3354/meps087189; MARAGOS JE, 1974, PAC SCI, V28, P257; NEIGEL JE, 1983, EVOLUTION, V37, P437, DOI 10.1111/j.1558-5646.1983.tb05561.x; OSTARELLO GL, 1976, COELENTERATE ECOLOGY, P331; PIELOU E C, 1969, P286; POLACHECK T, 1994, J EXP MAR BIOL ECOL, V181, P189, DOI 10.1016/0022-0981(94)90127-9; SHEPPARD CRC, 1982, MAR ECOL PROG SER, V7, P83, DOI 10.3354/meps007083; SMITH SV, 1992, ANNU REV ECOL SYST, V23, P89, DOI 10.1146/annurev.es.23.110192.000513; STEARN CW, 1973, LETHAIA, V6, P187, DOI 10.1111/j.1502-3931.1973.tb01192.x; STEARN CW, 1977, B MAR SCI, V27, P479; STIMSON J, 1974, ECOLOGY, V55, P445, DOI 10.2307/1935234; STODDART DR, 1969, BIOL REV, V44, P433, DOI 10.1111/j.1469-185X.1969.tb00609.x; TOMASCIK T, 1987, MAR BIOL, V94, P53, DOI 10.1007/BF00392900; TUNNICLIFFE V, 1981, P NATL ACAD SCI-BIOL, V78, P2427, DOI 10.1073/pnas.78.4.2427; YOSHIOKA PM, 1989, MAR ECOL PROG SER, V54, P257, DOI 10.3354/meps054257 39 6 6 1 10 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 USA 0007-4977 1553-6955 B MAR SCI Bull. Mar. Sci. JUL 1996 59 1 188 195 8 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography VB343 WOS:A1996VB34300012 2019-02-26 J Bonis, A; Lepart, J; Laloe, F Bonis, A; Lepart, J; Laloe, F Effect of temperature on the installation and growth of annuals in Mediterranean temporary marshes CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE French Article macrophytes; germination dynamics; water regime; ''preemption'' FRESH-WATER MACROPHYTES; SEEDLING ESTABLISHMENT; WESTERN-EUROPE; COMMUNITIES; DYNAMICS; DEMOGRAPHY; AUTECOLOGY; GRASSLAND; ECOLOGY; IMPACT The abundance of annual plants in temporary marshes is subjected to strong fluctuations through time. Such fluctuations could be linked with the variability of the Mediterranean climate. We studied experimentally the relationships between those fluctuations of abundance and the water temperature. The establishment and growth pattern of the species were studied in three temperate ranges. Each species has its own germination pattern, which varies with the temperature. The speed of seedling emergence changes with the temperature for all species. The germination rate is modified significantly only for charophytes, with a strong decrease under cold conditions. The size of the diaspore bank explains a large part of the germination dynamics for Chara sp. and Zannichellia spp. At the end of the establishment stage, the cover is maximum under warm conditions and Callitriche truncata and Zannichellia spp. have the largest cover values. At the end of the growth period, Ranunculus boudotii generally dominates the community in terms of biomass, whereas C. truncata is dominated. Species biomass varies with the temperature during the establishment or (and) the growth stage, except for Zannichellia spp. There is no obvious ''preemption'' effect: the contrasted life history strategies among species allow dominance relationship modifications during the life cycle. CNRS,CTR ECOL FONCT & EVOLUT,F-34003 MONTPELLIER,FRANCE; STN BIOL TOUR VALAT,F-13200 LE SAMBUC,FRANCE; ORSTOM,INST FRANCAIS RECH SCI DEV COOPERAT,F-34032 MONTPELLIER 1,FRANCE BARTOLOME JW, 1979, J ECOL, V67, P273, DOI 10.2307/2259350; BONIS A, 1993, J VEG SCI, V4, P461, DOI 10.2307/3236073; BONIS A, 1994, VEGETATIO, V112, P127, DOI 10.1007/BF00044687; BONIS A, 1995, OIKOS, V74, P91; CHESSON P, 1989, TRENDS ECOL EVOL, V4, P293, DOI 10.1016/0169-5347(89)90024-4; CHESSON PL, 1981, AM NAT, V117, P923, DOI 10.1086/283778; CHESSON PL, 1986, COMMUNITY ECOLOGY, P229; *COMM STAT DEP, 1988, GENST 5 REF MAN; CORILLION R, 1957, CHAROPHYCEES FRANCE; Cox DR, 1984, ANAL SURVIVAL DATA; EGLER FE, 1954, VEGETATIO, V4, P212; GRACE JB, 1987, ECOL MONOGR, V57, P283, DOI 10.2307/2937088; GRILLAS P, 1991, AQUAT BOT, V42, P1, DOI 10.1016/0304-3770(91)90101-A; GRILLAS P, 1992, THESIS U RENNES 1 RE; GRILLAS P, 1991, HYDROBIOLOGIA, V228, P29; Grillas Patrick, 1993, Journal of Vegetation Science, V4, P453, DOI 10.2307/3236072; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; Harper J.L., 1977, POPULATION BIOL PLAN; HARPER JOHN L., 1961, SYMPOSIA SOC EXPTL BIOL, V15, P1; HUTCHINSON G, 1961, AM NAT, V95, P137, DOI 10.1086/282171; KELLY D, 1989, J ECOL, V77, P785, DOI 10.2307/2260985; MARAZANOF F, 1972, THESIS U ORLEANS ORL; MCCARTHY KA, 1987, THESIS RUTGERS U PIC; ROSS MA, 1972, J ECOL, V60, P77, DOI 10.2307/2258041; SALE PF, 1977, AM NAT, V111, P337, DOI 10.1086/283164; SANDJENSEN K, 1991, J ECOL, V79, P749, DOI 10.2307/2260665; SMART RM, 1985, AQUAT BOT, V21, P251; SMITH BH, 1983, J ECOL, V71, P413, DOI 10.2307/2259724; SUTHERLAND JP, 1974, AM NAT, V108, P859, DOI 10.1086/282961; TALAVERA S, 1986, Lagascalia, V14, P241; Tutin TG, 1964, FLORA EUROPAEA; VANVIERSSEN W, 1982, AQUAT BOT, V12, P103, DOI 10.1016/0304-3770(82)90010-9; VERHOEVEN JTA, 1979, AQUAT BOT, V6, P197, DOI 10.1016/0304-3770(79)90064-0; WATKINSON AR, 1990, J ECOL, V78, P196, DOI 10.2307/2261045; Winer BJ, 1991, STATISTICAL PRINCIPL 35 8 8 0 6 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4026 CAN J BOT Can. J. Bot.-Rev. Can. Bot. JUL 1996 74 7 1086 1094 10.1139/b96-133 9 Plant Sciences Plant Sciences UY563 WOS:A1996UY56300012 2019-02-26 J Abrams, PA Abrams, PA Evolution and the consequences of species introductions and deletions ECOLOGY English Article character displacement; coevolution; competition; evolution; food web; interaction; mathematical model; predation ECOLOGICAL CHARACTER DISPLACEMENT; LIFE-HISTORY EVOLUTION; INTERSPECIFIC COMPETITION; FIELD EXPERIMENTS; NICHE SHIFT; PERTURBATION EXPERIMENTS; APPARENT COMPETITION; ADAPTIVE RESPONSES; ALTERNATIVE MODELS; PREY COMMUNITIES The addition or deletion of a species from a community is likely to have effects on the trait values of other species and on their population densities. This article argues that current theory is insufficiently developed to provide guidance in predicting what might happen to either traits or population densities. In addition, there has been relatively little empirical work to examine many of the phenomena that have been predicted by the limited available theory. The example of character displacement of competitors is reviewed to reveal some of the gaps in our knowledge about the evolutionary consequences of additions or deletions. The example of evolution of traits related to predation in food webs is used to reveal gaps in our knowledge of the population-level consequences of evolutionary changes initiated by a species addition or deletion. Several approaches to studying combined evolutionary and ecological processes in multispecies communities are discussed. Some previous multispecies models have been too abstract to be easily related to more mechanistic two-species models, but recent methods derived from quantitative genetics may result in significant advances in understanding multispecies systems and their relationship to communities with fewer species. Abrams, PA (reprint author), UNIV MARYLAND,DEPT ZOOL,COLLEGE PK,MD 20742, USA. Abrams, Peter/A-5240-2008 Abrams, Peter/0000-0002-1828-326X Abrams P., 1987, P38; ABRAMS PA, 1991, THEOR POPUL BIOL, V39, P241, DOI 10.1016/0040-5809(91)90022-8; Abrams PA, 1996, ECOLOGY, V77, P610, DOI 10.2307/2265634; ABRAMS PA, 1986, EVOLUTION, V40, P1229, DOI 10.1111/j.1558-5646.1986.tb05747.x; ABRAMS PA, 1992, EVOL ECOL, V6, P449, DOI 10.1007/BF02270691; ABRAMS PA, 1991, OIKOS, V62, P167, DOI 10.2307/3545262; ABRAMS PA, 1995, AM NAT, V146, P112, DOI 10.1086/285789; ABRAMS PA, 1986, THEOR POPUL BIOL, V29, P107, DOI 10.1016/0040-5809(86)90007-9; ABRAMS PA, 1987, EVOLUTION, V41, P651, DOI 10.1111/j.1558-5646.1987.tb05836.x; ABRAMS PA, 1990, EVOL ECOL, V4, P93, DOI 10.1007/BF02270907; ABRAMS PA, 1987, AM NAT, V130, P271, DOI 10.1086/284708; ABRAMS PA, 1993, EVOL ECOL, V7, P465, DOI 10.1007/BF01237642; ABRAMS PA, 1992, AM NAT, V140, P573, DOI 10.1086/285429; ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ABRAMS PA, 1994, EVOL ECOL, V8, P667, DOI 10.1007/BF01237849; ABRAMS PA, 1990, EVOL ECOL, V4, P103, DOI 10.1007/BF02270908; ARTHUR W, 1982, ADV ECOL RES, V12, P127, DOI 10.1016/S0065-2504(08)60078-1; BELOVSKY GE, 1986, AM ZOOL, V26, P51; BENDER EA, 1984, ECOLOGY, V65, P1, DOI 10.2307/1939452; BENKMAN CW, 1989, EVOLUTION, V43, P1324, DOI 10.1111/j.1558-5646.1989.tb02581.x; BROWN JS, 1992, EVOLUTION, V46, P1269, DOI 10.1111/j.1558-5646.1992.tb01123.x; BROWN WL, 1956, SYST ZOOL, V5, P49, DOI 10.2307/2411924; CASE TJ, 1979, FORTS ZOOL, V25, P235; CONNELL JH, 1983, AM NAT, V122, P661, DOI 10.1086/284165; Dawkins R, 1986, BLIND WATCHMAKER; Ebenman B., 1988, SIZE STRUCTURED POPU; Endler JA, 1986, NATURAL SELECTION WI; GOULD F, 1991, ENTOMOL EXP APPL, V58, P1, DOI 10.1111/j.1570-7458.1991.tb01445.x; GRANT P R, 1972, Biological Journal of the Linnean Society, V4, P39, DOI 10.1111/j.1095-8312.1972.tb00690.x; Grant P. R., 1986, ECOLOGY EVOLUTION DA; Grant P. R, 1975, EVOL BIOL, V8, P237; GUREVITCH J, 1992, AM NAT, V140, P539, DOI 10.1086/285428; HOLT RD, 1977, THEOR POPUL BIOL, V12, P197, DOI 10.1016/0040-5809(77)90042-9; HOLT RD, 1994, ANNU REV ECOL SYST, V25, P495, DOI 10.1146/annurev.es.25.110194.002431; HOLT RD, 1987, AM NAT, V130, P412, DOI 10.1086/284718; Hubbell S. P., 1986, COMMUNITY ECOLOGY, P314; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; Kauffman S., 1993, ORIGINS ORDER; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; LAWLOR LR, 1976, AM NAT, V110, P79, DOI 10.1086/283049; LOSOS JB, 1990, EVOLUTION, V44, P558, DOI 10.1111/j.1558-5646.1990.tb05938.x; MATSUDA H, 1993, OIKOS, V68, P549, DOI 10.2307/3544924; MATSUDA H, 1994, EVOL ECOL, V8, P628, DOI 10.1007/BF01237846; MILLER TE, 1996, ECOLOGY, V77; PACALA SW, 1988, AM NAT, V132, P576, DOI 10.1086/284873; PEASE CM, 1984, EVOLUTION, V38, P1099, DOI 10.1111/j.1558-5646.1984.tb00379.x; Pimm S. L., 1982, FOOD WEBS; Pimm SL, 1991, BALANCE NATURE; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROBINSON BW, 1994, AM NAT, V144, P596, DOI 10.1086/285696; Rosenzweig ML, 1987, EVOL ECOL, V1, P59, DOI 10.1007/BF02067269; RUMMEL JD, 1985, EVOLUTION, V39, P1009, DOI 10.1111/j.1558-5646.1985.tb00444.x; SALONIEMI I, 1993, AM NAT, V141, P880, DOI 10.1086/285514; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; SCHLUTER D, 1985, SCIENCE, V227, P1056, DOI 10.1126/science.227.4690.1056; SCHLUTER D, 1994, SCIENCE, V266, P798, DOI 10.1126/science.266.5186.798; SCHLUTER D, 1988, AM NAT, V131, P799, DOI 10.1086/284823; SCHLUTER D, 1986, AM NAT, V127, P95, DOI 10.1086/284470; SCHOENER TW, 1983, AM NAT, V122, P240, DOI 10.1086/284133; SMITH J M, 1976, American Naturalist, V110, P331, DOI 10.1086/283071; SOULE M, 1966, AM NAT, V100, P47, DOI 10.1086/282399; STENSETH NC, 1984, EVOLUTION, V38, P870, DOI 10.1111/j.1558-5646.1984.tb00358.x; TAKADA T, 1991, J MATH BIOL, V29, P513, DOI 10.1007/BF00164049; Taper M.L., 1992, Oxford Surveys in Evolutionary Biology, V8, P63; TAPER ML, 1992, EVOLUTION, V46, P317, DOI 10.1111/j.1558-5646.1992.tb02040.x; Thompson JN., 1994, COEVOLUTIONARY PROCE; Tilman D., 1988, DYNAMICS STRUCTURE P; Van Valen L., 1973, EVOL THEORY, V1, P1, DOI DOI 10.1017/CBO9781139173179; VANDERMEER J, 1993, AM NAT, V141, P687, DOI 10.1086/285500; VANDERMEER J, 1980, AM NAT, V116, P441, DOI 10.1086/283637; Vermeij G. J., 1987, ESCALATION EVOLUTION; VERMEIJ GJ, 1994, ANNU REV ECOL SYST, V25, P219, DOI 10.1146/annurev.es.25.110194.001251; YODZIS P, 1988, ECOLOGY, V69, P508, DOI 10.2307/1940449; Yodzis P, 1989, INTRO THEORETICAL EC 75 60 62 1 24 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology JUL 1996 77 5 1321 1328 10.2307/2265529 8 Ecology Environmental Sciences & Ecology UX396 WOS:A1996UX39600002 2019-02-26 J Austad, SN Austad, SN The uses of intraspecific variation in aging research EXPERIMENTAL GERONTOLOGY English Article aging; genetic variation; mammals; intraspecific variation; geographic variation; longevity LIFE-HISTORY EVOLUTION; BODY SIZE; DROSOPHILA-MELANOGASTER; HOUSE MICE; CAENORHABDITIS-ELEGANS; MUS-DOMESTICUS; ISLAND; POPULATIONS; SENESCENCE; MAMMALS The artificial creation of genetically long-lived populations of several invertebrate species has illustrated how researchers may take advantage of genetic variation within a species to investigate the nature and mechanisms of aging. The advantage of studying intraspecific variation is that populations will be generally similar except for the relevant demographic differences. Also, there are reasons to suspect that genetic mechanisms of aging may differ from mechanisms associated with life extension via environmental manipulations such as caloric restriction, However coating a long-lived mammalian aging model will be expensive and time consuming. An alternative approach is to seek to identify naturally occurring slowly aging populations to contrast mechanistically with a reference population. Ecologists have already noted that demographic alterations of the appropriate type are frequently associated with populations from differing latitudes, differing altitudes, or from islands. Therefore, it is likely that genetically longer- (and shorter)-lived mammal populations of the same species already exist in nature, and could potentially be exploited to inquire into the genetics and mechanisms of aging and longevity. Of particular interest is the indication that some island populations of house mice may exhibit extended longevity compared with laboratory strains. Austad, SN (reprint author), UNIV IDAHO,DEPT BIOL SCI,MOSCOW,ID 83843, USA. NIA NIH HHS [AG11534] ABBOTT I, 1980, ADV ECOLOGICAL RES A, V2, P329; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; AUSTAD SN, 1993, AGING-CLIN EXP RES, V5, P259, DOI 10.1007/BF03324171; BALLINGER RE, 1979, ECOLOGY, V60, P901, DOI 10.2307/1936858; BELLAMY D, 1981, S ZOOL SOC LOND, V47, P267; BERRY RJ, 1979, J MAMMAL, V60, P222, DOI 10.2307/1379782; BERRY RJ, 1986, BIOL J LINN SOC, V28, P205, DOI 10.1111/j.1095-8312.1986.tb01754.x; BERRY RJ, 1978, J ZOOL, V185, P73; BERRY RJ, 1975, J ZOOL, V176, P375; BERRY RJ, 1969, J ZOOL, V158, P247; BERRY RJ, 1981, MAMMAL REV, V11, P91, DOI 10.1111/j.1365-2907.1981.tb00001.x; BERRY RJ, 1975, J ZOOL, V175, P523; BERVEN KA, 1983, AM ZOOL, V23, P85; BOURSOT P, 1993, ANNU REV ECOL SYST, V24, P119, DOI 10.1146/annurev.es.24.110193.001003; Boyce M.S., 1988, EVOLUTION LIFE HIST; BRONSON FH, 1979, Q REV BIOL, V54, P265, DOI 10.1086/411295; BRONSON MT, 1979, ECOLOGY, V60, P2723; BROWN JH, 1969, EVOLUTION, V23, P329, DOI 10.1111/j.1558-5646.1969.tb03515.x; BROWNELL E, 1983, EVOLUTION, V37, P1034, DOI 10.1111/j.1558-5646.1983.tb05631.x; CAMERON GN, 1988, EVOLUTION LIFE HIST; CARLQUIST S, 1974, ISLAND B IOL; Case T.J., 1982, P184; CASE TJ, 1975, ECOLOGY, V56, P3, DOI 10.2307/1935296; CASE TJ, 1978, ECOLOGY, V59, P1, DOI 10.2307/1936628; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CLARK J, 1980, J ANIM ECOL, V49, P185; CLEVELAND AG, 1971, THESIS N TEXAS STATE; COCKBURN A, 1983, EVOLUTION, V37, P86, DOI 10.1111/j.1558-5646.1983.tb05517.x; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; CROWELL KL, 1981, IBIS, V123, P42, DOI 10.1111/j.1474-919X.1981.tb00171.x; Deeb BJ, 1994, VET MED S, V89, P702; EDNEY EB, 1968, NATURE, V220, P281, DOI 10.1038/220281a0; EKLUND J, 1977, NATURE, V265, P48, DOI 10.1038/265048b0; FALCONER DS, 1984, GENET RES, V44, P47, DOI 10.1017/S0016672300026240; Finch C. E., 1990, LONGEVITY SENESCENCE; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; FLEMING TH, 1979, ECOLOGY SMALL MAMMAL; FRIEDMAN DB, 1988, GENETICS, V118, P75; GARLAND T, 1991, ANNU REV ECOL SYST, V22, P193, DOI 10.1146/annurev.es.22.110191.001205; GEIST V, 1987, CAN J ZOOL, V65, P1035, DOI 10.1139/z87-164; GLIWICZ J, 1980, BIOL REV, V55, P109, DOI 10.1111/j.1469-185X.1980.tb00690.x; GOLDSTON RTB, 1989, VET CLIN N AM-SMALL, V19, pR9; GRANT PR, 1966, CAN J ZOOLOG, V44, P391, DOI 10.1139/z66-042; GRANT PR, 1966, CONDOR, V69, P249; HEANEY LR, 1978, EVOLUTION, V32, P29, DOI 10.1111/j.1558-5646.1978.tb01096.x; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; Huxley Julian, 1942, EVOLUTION MODERN SYN; JAMES FC, 1970, ECOLOGY, V51, P365, DOI 10.2307/1935374; JEWELL P. A., 1966, SYMP ZOOL SOC LONDON, V15, P89; JOHNSON TE, 1987, P NATL ACAD SCI USA, V84, P3777, DOI 10.1073/pnas.84.11.3777; KAVALIERS M, 1990, PHYSIOL ZOOL, V63, P388, DOI 10.1086/physzool.63.2.30158503; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LIDICKER WZ, 1975, SMALL MAMMALS PRODUC, P105; LINDSEY CC, 1966, EVOLUTION, V47, P456; LOMOLINO MV, 1985, AM NAT, V125, P310, DOI 10.1086/284343; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; LYNCH CB, 1992, AM NAT, V139, P1219, DOI 10.1086/285383; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1972, ECOLOGY, V53, P330, DOI 10.2307/1934090; MARSHALL JT, 1962, PACIFIC ISLAND RAT E, P240; MATTINGLY DK, 1985, ECOLOGY, V66, P928, DOI 10.2307/1940555; Mayr E., 1963, ANIMAL SPECIES EVOLU; McDowall RM, 1988, DIADROMY FISHES MIGR; MCNAB BK, 1971, ECOLOGY, V52, P845, DOI 10.2307/1936032; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; PELIKAN J, 1981, S ZOOL SOC LOND, V47, P205; PENDERGRASS WR, 1993, J CELL PHYSIOL, V156, P96, DOI 10.1002/jcp.1041560114; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, IN PRESS EXP GERONTO; ROBERTS RC, 1961, HEREDITY, V16, P369, DOI 10.1038/hdy.1961.46; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1991, EVOLUTIONARY BIOL SE; SACHER GA, 1978, GENETIC EFFECTS AGIN, P71; SCHOLANDER PF, 1955, EVOLUTION, V9, P115; SHIRE JGM, 1976, BIOL REV, V51, P105, DOI 10.1111/j.1469-185X.1976.tb01121.x; STAMPS JA, 1985, Q REV BIOL, V60, P155, DOI 10.1086/414314 79 23 23 1 7 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0531-5565 EXP GERONTOL Exp. Gerontol. JUL-AUG 1996 31 4 453 463 10.1016/0531-5565(95)02068-3 11 Geriatrics & Gerontology Geriatrics & Gerontology UV634 WOS:A1996UV63400003 9415103 2019-02-26 J Nusbaum, TJ; Mueller, LD; Rose, MR Nusbaum, TJ; Mueller, LD; Rose, MR Evolutionary patterns among measures of aging EXPERIMENTAL GERONTOLOGY English Article Gompertz equation; measures of aging; evolution of aging LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; POSTPONED SENESCENCE; SPAN; POPULATIONS; RESISTANCE; SELECTION; STRESS Maximum lifespan has been one of the most common aging measures in comparative studies, while the Gompertz model has recently attracted both proponents and critics of its capacity to adequately describe the acceleration of mortality in the oldest age classes. The Gompertz demographic model describes age-dependent mortality rate acceleration and age-independent mortality using the parameters a and A, respectively. Evolutionary biologists have predominantly used average longevity in studies of aging. Little is known about the evolutionary relationships of these measures on the microevolutionary time scale. We have simultaneously compared Gompertz parameters, average longevity, and maximum longevity in 50 related populations of Drosophila melanogaster, many of which have been selected for postponed aging. Overall, these populations have differentiated significantly for the A and a parameter of the Gompertz equation, as well as average and maximum longevity. These indices of aging appear to measure the same genetic changes in aging. However, in some specific population comparisons, the relationships among these measures are more complex. In a second experiment, environmental manipulation of longevity had substantially different effects from genetic differentiation, with the A parameter accounting for chances in overall mortality. The adequacy of the maximum lifespan and the Gompertz equation as indices of aging in evolutionary studies is discussed. Nusbaum, TJ (reprint author), UNIV CALIF IRVINE,DEPT ECOL & EVOLUTIONARY BIOL,IRVINE,CA 92717, USA. NIA NIH HHS [AG09970] BROOKS A, 1994, SCIENCE, V263, P668, DOI 10.1126/science.8303273; CAREY JR, 1992, SCIENCE, V258, P457; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Comfort A., 1979, BIOL SENESCENCE; CURTSINGER JW, 1992, SCIENCE, V258, P461, DOI 10.1126/science.1411541; Falconer D.S., 1981, INTRO QUANTITATIVE G; Finch C. E., 1990, LONGEVITY SENESCENCE; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; FRIES JF, 1980, NEW ENGL J MED, V303, P130, DOI 10.1056/NEJM198007173030304; Gavrilov L. A, 1991, BIOL LIFE SPAN QUANT; Gompertz B., 1825, PHILOS T ROY SOC LON, V115, P513, DOI [10.1098/RSTL.1825.0026, DOI 10.1098/RSTL.1825.0026, 10.1098/rstl.1825.0026]; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HUGHES KA, 1994, NATURE, V367, P64, DOI 10.1038/367064a0; JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681; JOHNSON TE, 1987, P NATL ACAD SCI USA, V84, P3777, DOI 10.1073/pnas.84.11.3777; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; Mueller LD, 1995, EXP GERONTOL, V30, P553, DOI 10.1016/0531-5565(95)00029-1; NUSBAUM TJ, 1993, SCIENCE, V260, P1567, DOI 10.1126/science.8503001; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; PROMISLOW DEL, 1993, J GERONTOL, V48, pB115, DOI 10.1093/geronj/48.4.B115; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; Stearns SC., 1992, EVOLUTION LIFE HIST 28 34 34 0 1 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0531-5565 EXP GERONTOL Exp. Gerontol. JUL-AUG 1996 31 4 507 516 10.1016/0531-5565(96)00002-2 10 Geriatrics & Gerontology Geriatrics & Gerontology UV634 WOS:A1996UV63400007 9415107 2019-02-26 J Combs, DL; Fredrickson, LH Combs, DL; Fredrickson, LH Foods used by male mallards wintering in southeastern Missouri JOURNAL OF WILDLIFE MANAGEMENT English Article Anas platyrhynchos; diet; foods; foraging; habitat; invertebrates; mallard; mast; Missouri; molt FEMALE MALLARDS; MOLT; MISSISSIPPI; WETLANDS; HABITS; DUCKS; TEXAS Although winter foods of mallards (Anas platyrhynchos) have been documented in several studies, the importance of ecological or biological factors on the consumption of specific food groups often was ignored. Consequently, we evaluated whether age, pair status, molt status, habitat, year, or season influenced foods consumed by male mallards in southeastern Missouri during winters 1983-86. Seeds of moist-soil plants composed 61.4 and 46.0% of the aggregate dry mass diet of ducks collected in 1983-84 and 1984-85. Agricultural grain made up 33.8% of the aggregate dry mass diet in 1984-85, and acorns accounted for 54.5% of the diet in 1985-86. Our analysis revealed that habitat where birds were collected (P < 0.01) and annual variation (P < 0.01) were predominate factors influencing male mallard diet during winter. We attribute annual differences in food consumption primarily to annual variation in mast production. Invertebrates were present in 82% of 156 food samples, but composed only 7.3% dry mass of all ducks collected. Invertebrate consumption was greater during mid-winter than during other portions of winter (P < 0.01), probably a result of population growth and life history strategies of invertebrate species. Consumption of food groups did not differ among adult and immature males (P = 0.75), paired and unpaired males (P = 0.15), or males of different molt status (P = 0.22). These results suggest that age and physiological factors are less important than environmental factors in determining food use by male mallards during winter. Providing a diversity of habitats and suitable foods may be the best management approach to compensate for annual variation in availability of individual food resources. UNIV MISSOURI,SCH NAT RESOURCES,GAYLORD MEM LAB,PUXICO,MO 63960 ALLEN CE, 1980, J WILDLIFE MANAGE, V44, P232, DOI 10.2307/3808376; BALDASSARRE GA, 1984, J WILDLIFE MANAGE, V48, P63, DOI 10.2307/3808453; BARTONEK JC, 1984, TRANS N AM WILDL NAT, V49, P501; Bellrose F., 1980, DUCKS GEESE SWANS N; Carney S. M, 1964, 82 US FISH WILDL SER; COMBS DL, 1995, WILSON BULL, V107, P359; COMBS DL, 1987, THESIS U MISSOURI CO; DELNICKI D, 1986, J WILDLIFE MANAGE, V50, P43, DOI 10.2307/3801486; FORSYTHE SW, 1985, T N AM WILDL NAT RES, V50, P566; FREDRICKSON LH, 1978, WETLAND FUNCTIONS VA, P296; GODFREY RK, 1981, AQUATIC WETLAND PLAN; GODFREY RK, 1979, AQUATIC WETLAND PLAN; GRUENHAGEN NM, 1990, J WILDLIFE MANAGE, V54, P622, DOI 10.2307/3809359; HEITMEYER ME, 1988, CONDOR, V90, P263, DOI 10.2307/1368465; HEITMEYER ME, 1985, THESIS U MISSOURI CO; Hochbaum H. Albert, 1942, TRANS NORTH AMER WILDLIFE CONF, V7, P299; Johnsgard P.A, 1965, HDB WATERFOWL BEHAV; Johnson R. A., 1988, APPLIED MULTIVARIATE; KORTE P. A., 1977, T N AM WILDL NAT RES, V42, P31; KRAPU GL, 1977, J WILDLIFE MANAGE, V43, P384; LANDERS JL, 1976, FLA MISC PUBL, V4; Martin A. C, 1961, SEED IDENTIFICATION; MCQUILKIN RA, 1977, J WILDLIFE MANAGE, V41, P218, DOI 10.2307/3800598; MERRITT RW, 1984, INTRO AQUATIC INSECT; Pennak R. W., 1978, FRESHWATER INVERTEBR; Prince HH, 1979, WATERFOWL WETLANDS I, P103; Reid F. A., 1983, THESIS U MISSOURI CO; Reinecke K.J., 1989, P203; RICHARDSON DM, 1992, J WILDLIFE MANAGE, V56, P531, DOI 10.2307/3808869; *SAS I INC, 1991, SAS SYST LIN MOD; SHERMAN DE, 1992, WILDLIFE SOC B, V20, P148; STEYERMARK J, 1963, FLORA MISSOURI; SWANSON GA, 1974, J WILDLIFE MANAGE, V38, P302, DOI 10.2307/3800737; SWANSON GA, 1970, J WILDLIFE MANAGE, V34, P739, DOI 10.2307/3799138; Tiner R. W., 1984, WETLANDS US CURRENT; WHITE DC, 1982, THESIS U MISSOURI CO; Wright TW, 1959, P ANN C SE ASS GAM F, V13, P291; YOUNG DA, 1982, CAN J ZOOL, V60, P3220, DOI 10.1139/z82-408 38 19 19 3 15 WILDLIFE SOC BETHESDA 5410 GROSVENOR LANE, BETHESDA, MD 20814-2197 0022-541X J WILDLIFE MANAGE J. Wildl. Manage. JUL 1996 60 3 603 610 10.2307/3802078 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology UZ985 WOS:A1996UZ98500015 2019-02-26 J Martin, TE; Clobert, J Martin, TE; Clobert, J Nest predation and avian life-history evolution in Europe versus North America: A possible role of humans? AMERICAN NATURALIST English Article MITOCHONDRIAL-DNA VARIATION; CLUTCH-SIZE; PHYLOGENETIC REGRESSION; POPULATION-STRUCTURE; REPRODUCTIVE EFFORT; PASSERINE BIRDS; SURVIVAL RATES; BODY-WEIGHT; GENETICS; PATTERNS Life-history theory predicts that decreased mortality in early life can favor increased fecundity and reduced iteroparity. Similar to other causes of environmental variation, modification of the environment by humans potentially can change age-specific mortality and, hence, affect life-history evolution. Forests were removed throughout western Europe long ago, and nest predation (early mortality) is reduced in human-settled environments there, whereas nest predation is generally increased in areas settled by humans in North America. We controlled statistically for effects of body size and phylogeny and compared songbirds (Passeriformes) of Europe to those of North America and found that nest predation was lower in Europe. Associated with this decrease in early mortality in Europe, fecundity was increased and iteroparity was reduced via decreased adult survival rates, as predicted by theory. Moreover, continental differences were greater for species that were more vulnerable to nest predation (open-nesting species) than for species that used safer nest sites (hole-nesting species). These results suggest that nest predation can be an important influence on avian life-history evolution but that evolutionary constraints of nest predation may have been reduced in European systems because of large-scale modification of the environment. UNIV PARIS 06, INST ECOL, ECOL LAB, F-75252 PARIS, FRANCE Martin, TE (reprint author), UNIV MONTANA, MONTANA COOPERAT WILDLIFE RES UNIT, US NATL BIOL SERV, MISSOULA, MT 59812 USA. Martin, Thomas/F-6016-2011; Langerhans, R./A-7205-2009 Martin, Thomas/0000-0002-4028-4867; AVISE JC, 1980, J HERED, V71, P303, DOI 10.1093/oxfordjournals.jhered.a109376; AVISE JC, 1980, AUK, V97, P135; AVISE JC, 1980, SYST ZOOL, V29, P323, DOI 10.2307/2992339; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; BERMINGHAM E, 1992, P NATL ACAD SCI USA, V89, P6624, DOI 10.1073/pnas.89.14.6624; BLEDSOE AH, 1988, AUK, V105, P504; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; BRITTINGHAM MC, 1988, ECOLOGY, V69, P581, DOI 10.2307/1941007; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CRAMP S, 1989, BIRDS W PALEARCTIC, V6; CRAMP S, 1985, BIRDS W PALEARCTIC, V5; Cramp S., 1993, BIRDS W PALEARCTIC, V7; CURIO E, 1989, TRENDS ECOL EVOL, V4, P81, DOI 10.1016/0169-5347(89)90155-9; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Dobson Andrew, 1990, V7, P115; DRENT RH, 1980, ARDEA, V68, P225; Dunning JB, 1984, W BIRD BANDING ASS M, V1; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; GILL FB, 1993, EVOLUTION, V47, P195, DOI 10.1111/j.1558-5646.1993.tb01210.x; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; GRAFEN A, 1992, J THEOR BIOL, V156, P405, DOI 10.1016/S0022-5193(05)80635-6; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; JOHNSON NK, 1988, CONDOR, V90, P428, DOI 10.2307/1368571; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; MARTEN JA, 1986, CONDOR, V88, P409, DOI 10.2307/1368266; Martin T.E., 1992, Current Ornithology, V9, P163; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; MARTIN TE, 1993, AM NAT, V141, P897, DOI 10.1086/285515; MARTIN TE, 1988, AM NAT, V132, P900, DOI 10.1086/284896; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MARTINS EP, 1991, EVOLUTION, V45, P534, DOI 10.1111/j.1558-5646.1991.tb04328.x; MARTINS EP, 1993, AM NAT, V142, P994, DOI 10.1086/285585; MATHER AS, 1990, GLOBAL FOREST RESOUR; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MOLLER AP, 1994, EVOLUTION, V48, P1089, DOI 10.1111/j.1558-5646.1994.tb05296.x; Murray B. G., 1979, POPULATION DYNAMICS; MURRAY BG, 1985, ORNITHOL MONOGR, V36, P505; Newton Ian, 1993, British Birds, V86, P638; NILSSON SG, 1986, AUK, V103, P432; NILSSON SG, 1984, ORNIS SCAND, V15, P167, DOI 10.2307/3675958; PAGEL M, 1994, P ROY SOC B-BIOL SCI, V255, P37, DOI 10.1098/rspb.1994.0006; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; PIOTROWSKA M, 1989, Acta Ornithologica (Warsaw), V25, P25; PURVIS A, 1993, SYST BIOL, V42, P569, DOI 10.2307/2992489; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; Ricklefs RE, 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI DOI 10.5479/SI.00810282.9; ROBBINS CS, 1989, P NATL ACAD SCI USA, V86, P7658, DOI 10.1073/pnas.86.19.7658; ROBBINS CS, 1989, WILDLIFE MONOGR, P1; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; SAETHER BE, 1989, ORNIS SCAND, V20, P13, DOI 10.2307/3676702; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Sibley C.G., 1990, PHYLOGENY CLASSIFICA; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; SMALL MF, 1988, OECOLOGIA, V76, P62, DOI 10.1007/BF00379601; SNOW D, 1958, SUDY BLACKBIRDS; STJERNBERG T, 1979, Acta Zoologica Fennica, P1; SUTHERLAND WJ, 1989, TRENDS ECOL EVOL, V4, P273, DOI 10.1016/0169-5347(89)90200-0; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; TAMPLIN JW, 1993, WILSON BULL, V105, P93; THORPE H, 1978, CONSERVATION AGR, P17; TOMIALOJC L, 1984, Acta Ornithologica (Warsaw), V20, P241; TOMIALOJC L, 1980, Polish Ecological Studies, V5, P141; WEBSTER MS, 1992, EVOLUTION, V46, P1621, DOI 10.1111/j.1558-5646.1992.tb01158.x; WILCOVE DS, 1985, ECOLOGY, V66, P1211, DOI 10.2307/1939174; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; ZINK RM, 1982, AUK, V99, P632; ZINK RM, 1993, WILSON BULL, V105, P399; ZINK RM, 1991, CONDOR, V93, P98, DOI 10.2307/1368611; ZINK RM, 1991, AUK, V108, P578, DOI 10.2307/4088098; ZINK RM, 1991, CONDOR, V93, P318, DOI 10.2307/1368947; ZINK RM, 1984, SYST ZOOL, V33, P205, DOI 10.2307/2413021; ZINK RM, 1990, SYST ZOOL, V39, P148, DOI 10.2307/2992452 88 133 134 1 19 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JUN 1996 147 6 1028 1046 10.1086/285891 19 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology UP976 WOS:A1996UP97600008 2019-02-26 J Cox, JA; Conran, JG Cox, JA; Conran, JG The effect of water stress on the life cycles of Erodium crinitum Carolin and Erodium cicutarium (L) L'Herit ex Aiton (Geraniaceae) AUSTRALIAN JOURNAL OF ECOLOGY English Article drought; Erodium; fecundity; Geraniaceae; life history strategy WINTER ANNUALS; MOJAVE-DESERT; GERMINATION; AUSTRALIA; ALLOCATION; COMPONENTS; DYNAMICS Erodium cicutarium (L.) L'Herit. ex Aiton (Geraniaceae) from temperate Mediterranean Eurasia is naturalized across large areas of arid and semi-arid Australia to which Erodium crinitum Carolin is native. The response of seed cohorts from Koonamore, SA, of these two species to water stress on plant height, leaf numbers, buds and fruit under artificial drought was investigated to see if there were significant differences in their life history strategies which might reflect their evolution under different water regimes. Although in E. cicutarium plant size, leaf and bud numbers and fruit/plant biomass ratio were significantly lower under drought, flower and fruit number, fruit size and total mass were unaffected. In contrast, E. crinitum was largely unaffected by the drought conditions, showing only an increase in the fruit/plant biomass ratio. UNIV ADELAIDE,DEPT BOT,ADELAIDE,SA 5005,AUSTRALIA BEATLEY JC, 1974, ECOLOGY, V55, P856, DOI 10.2307/1934421; BEATLEY JC, 1967, ECOLOGY, V48, P745, DOI 10.2307/1933732; BELL KL, 1979, J ECOL, V67, P781, DOI 10.2307/2259214; BLACK J. N., 1957, AUSTRALIAN JOUR AGRIC RES, V8, P1, DOI 10.1071/AR9570001; COX JA, 1992, THESIS U ADELAIDE; CRISP MD, 1975, THESIS U ADELAIDE; Cunningham GM, 1981, PLANTS W NEW S WALES; DELPH LF, 1986, OECOLOGIA, V69, P471, DOI 10.1007/BF00377071; FOX GA, 1990, EVOLUTION, V44, P1404, DOI 10.1111/j.1558-5646.1990.tb03835.x; FOX GA, 1990, AM NAT, V135, P829, DOI 10.1086/285076; GREEN RH, 1993, AUST J ECOL, V18, P81, DOI 10.1111/j.1442-9993.1993.tb00436.x; GUTTERMAN Y, 1994, BOT REV, V60, P373, DOI 10.1007/BF02857924; HICKMAN JC, 1977, J ECOL, V65, P317, DOI 10.2307/2259080; HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661; JURADO E, 1992, J ECOL, V80, P407, DOI 10.2307/2260686; LORIA M, 1979, Israel Journal of Botany, V28, P211; MARSHALL DL, 1986, AM NAT, V127, P508, DOI 10.1086/284499; MARTIN MM, 1982, EVOLUTION, V36, P1290, DOI 10.1111/j.1558-5646.1982.tb05498.x; MEIDAN E, 1990, J ARID ENVIRON, V19, P77, DOI 10.1016/S0140-1963(18)30831-0; MOTT JJ, 1975, J ECOL, V63, P825, DOI 10.2307/2258604; MOTT JJ, 1972, J ECOL, V60, P293, DOI 10.2307/2258347; NEWMAN EI, 1965, J ECOL, V53, P211, DOI 10.2307/2257578; NICHOLSON KP, 1985, THESIS U ADELAIDE; NOBLE IR, 1977, AUST J BOT, V25, P639, DOI 10.1071/BT9770639; NOBLE IR, 1980, ISRAEL J BOT, V28, P495; Noy-Meir I., 1973, Annual Review of Ecology and Systematics, V4, P25, DOI 10.1146/annurev.es.04.110173.000325; OSBORN T. G. B., 1931, PROC LINNEAN SOC NEW SOUTH WALES, V56, P299; RICE KJ, 1985, ECOLOGY, V66, P1651, DOI 10.2307/1938027; SHREVE F, 1951, PUBL CARNEGIE I, V591; STAMP NE, 1990, AM J BOT, V77, P82; UNDERWOOD AJ, 1993, AUST J ECOL, V18, P99, DOI 10.1111/j.1442-9993.1993.tb00437.x; von Ende Carl N., 1993, P113; WENT FW, 1949, ECOLOGY, V30, P1, DOI 10.2307/1932273; WENT FW, 1948, ECOLOGY, V29, P242, DOI 10.2307/1930988; WENT FW, 1955, SCI AM, V193, P68; WILKINSON L, 1990, SYSTAT SYST STAT REF; YOUNG JA, 1975, AGRON J, V67, P54, DOI 10.2134/agronj1975.00021962006700010014x; YOUNG JA, 1981, HILGARDIA, V49, P1 38 14 15 0 10 BLACKWELL SCIENCE CARLTON 54 UNIVERSITY ST, P O BOX 378, CARLTON VICTORIA 3053, AUSTRALIA 0307-692X AUST J ECOL Aust. J. Ecol. JUN 1996 21 2 235 240 10.1111/j.1442-9993.1996.tb00604.x 6 Ecology Environmental Sciences & Ecology UX378 WOS:A1996UX37800012 2019-02-26 J Magurran, AE; Paxton, CGM; Seghers, BH; Shaw, PW; Carvalho, GR Magurran, AE; Paxton, CGM; Seghers, BH; Shaw, PW; Carvalho, GR Genetic divergence, female choice and male mating success in trinidadian guppies BEHAVIOUR English Article LIFE-HISTORY EVOLUTION; COSTLY MATE PREFERENCES; MALE COLOR PATTERNS; POECILIA-RETICULATA; SEXUAL SELECTION; ARTIFICIAL INTRODUCTION; NATURAL-POPULATIONS; N-TRINIDAD; BEHAVIOR; PREDATION Guppy, Poecilia reticulata, populations from two major Trinidadian drainages, the Caroni and Oropuche, are characterised by high levels of genetic divergence. Our aim in this paper was to determine whether this divergence is linked to behaviourally-based reproductive isolation. We compared two populations of guppies, one from the Tacarigua River in the Caroni drainage, the other from the Oropuche River in the Oropuche drainage. Guppies in both sites are subject to predation from the pike cichlid, Crenicichla alta, and other predators. In visual choice tests, virgin females from both the Oropuche and Tacarigua populations showed no preference for either type of male. This result was confirmed when females had free access to males. However, a population asymmetry in male mating behaviour resulted in Tacarigua males gaining virtually all copulations. We argue that predation risk has constrained female choice and discuss the evolutionary significance of population differences in male behaviour. UNIV OXFORD,DEPT ZOOL,ANIM BEHAV RES GRP,OXFORD OX1 3PS,ENGLAND; UNIV COLL SWANSEA,SCH BIOL SCI,SWANSEA SA2 8PP,W GLAM,WALES Magurran, AE (reprint author), UNIV ST ANDREWS,SCH BIOL & MED SCI,ST ANDREWS KY16 9TS,FIFE,SCOTLAND. Langerhans, R./A-7205-2009; Magurran, Anne/D-7463-2013 Paxton, Charles/0000-0002-9350-3197; Magurran, Anne/0000-0002-0036-2795 BALLIN PJ, 1973, THESIS U BRIT COLUMB; Barlow G. W., 1967, Zeitschrift fuer Tierpsychologie, V25, P315; Butlin R.K., 1994, P43; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; DOUGLAS ME, 1982, J THEOR BIOL, V99, P777, DOI 10.1016/0022-5193(82)90197-7; DUGATKIN LA, 1992, P ROY SOC B-BIOL SCI, V249, P179, DOI 10.1098/rspb.1992.0101; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FAJEN A, 1992, EVOLUTION, V46, P1457, DOI 10.1111/j.1558-5646.1992.tb01136.x; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; HASKINS CP, 1951, EVOLUTION, V5, P216, DOI 10.1111/j.1558-5646.1951.tb02780.x; HASKINS CP, 1950, P NATL ACAD SCI USA, V36, P464, DOI 10.1073/pnas.36.9.464; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HOUDE AE, 1988, ANIM BEHAV, V36, P510, DOI 10.1016/S0003-3472(88)80022-8; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HOUDE AE, 1994, P ROY SOC B-BIOL SCI, V256, P125, DOI 10.1098/rspb.1994.0059; IWASA Y, 1994, EVOLUTION, V48, P853, DOI 10.1111/j.1558-5646.1994.tb01367.x; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; KODRICBROWN A, 1993, BEHAV ECOL SOCIOBIOL, V32, P415, DOI 10.1007/BF00168825; KODRICBROWN A, 1992, ANIM BEHAV, V44, P165, DOI 10.1016/S0003-3472(05)80766-3; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; Liley N. R., 1966, Behaviour Suppl, V13, P1; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; LUYTEN PH, 1991, BEHAV ECOL SOCIOBIOL, V28, P329, DOI 10.1007/BF00164382; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1994, BEHAVIOUR, V128, P121, DOI 10.1163/156853994X00073; MAGURRAN AE, 1995, ADV STUD BEHAV, V24, P155, DOI 10.1016/S0065-3454(08)60394-0; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; Magurran AE, 1993, BEHAV ECOLOGY FISHES, P29; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MEYER A, 1994, GENETICS AND EVOLUTION OF AQUATIC ORGANISMS, P219; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; POMIANKOWSKI A, 1991, EVOLUTION, V45, P1422, DOI 10.1111/j.1558-5646.1991.tb02645.x; POMIANKOWSKI A, 1994, TRENDS ECOL EVOL, V9, P242, DOI 10.1016/0169-5347(94)90287-9; POMIANKOWSKI A, 1993, P ROY SOC B-BIOL SCI, V253, P173, DOI 10.1098/rspb.1993.0099; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SHAW PW, 1991, J FISH BIOL, V39, P203, DOI 10.1111/j.1095-8649.1991.tb05084.x; SHAW PW, 1992, P ROY SOC B-BIOL SCI, V248, P111, DOI 10.1098/rspb.1992.0049; Siegel S, 1988, NONPARAMETRIC STAT B; SOKAL R., 1981, BIOMETRY 49 16 16 0 16 E J BRILL LEIDEN PO BOX 9000, 2300 PA LEIDEN, NETHERLANDS 0005-7959 BEHAVIOUR Behaviour JUN 1996 133 7-8 503 517 10.1163/156853996X00189 15 Behavioral Sciences; Zoology Behavioral Sciences; Zoology UX416 WOS:A1996UX41600002 2019-02-26 J Abrams, PA; Rowe, L Abrams, PA; Rowe, L The effects of predation on the age and size of maturity of prey EVOLUTION English Article age at maturity; development time; food supply; foraging effort; growth rate; life history; optimization; predation; size at maturity LIFE-HISTORY EVOLUTION; FRESH-WATER SNAIL; PHENOTYPIC PLASTICITY; DAPHNIA-PULEX; TIME CONSTRAINTS; REACTION NORMS; TRADE-OFF; GROWTH; METAMORPHOSIS; RESPONSES The effects oi nonselective predation on the optimal age and size of maturity of their prey tire investigated using mathematical models of a simple life history with juvenile and adult stages. Fitness is measured by the product of survival ro the adult stage and expected adult reproduction, which is usually an increasing function of size at maturity. Size is determined by both age at maturity and the value of costly traits that increase mean growth rate (growth effort), The analysis includes cases with fixed size but flexible time to maturity, fixed time but flexible size, and adaptively flexible values of both variables. In these analyses, growth effort is flexible. For comparison with previous theory, models with a fixed growth effort are analyzed, In each case, there may he indirect effects of predation on the prey's food supply. The effect of increased predation depends on (I) which variables are flexible; (2) whether increased growth effort requires increased exposure to predators; and (3) how increased predator density affects the abundance of Pc,od for juvenile prey; Ii there is no indirect effect of predators on prey food supply, size at maturity will generally decrease in response to increased predation. However, the indirect effect from increased food has the opposite effect, and the net result of predation is often increased size. Age at maturity may either increase or decrease, depending on functional forms and parameter values; this is true regardless of the presence of indirect effects. The results are compared with those of previous theoretical analyses. Observed shifts in life history in response to predation am reviewed, and the role of lie-selective predation is reassessed. UNIV MINNESOTA, DEPT ECOL EVOLUT & BEHAV, ST PAUL, MN 55108 USA; UNIV TORONTO, DEPT ZOOL, TORONTO, ON M5S 1A1, CANADA Langerhans, R./A-7205-2009; Abrams, Peter/A-5240-2008 Abrams, Peter/0000-0002-1828-326X ABRAMS PA, 1991, OIKOS, V62, P167, DOI 10.2307/3545262; ABRAMS PA, 1993, ECOLOGY, V74, P726, DOI 10.2307/1940800; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ABRAMS PA, 1991, ECOLOGY, V72, P1242, DOI 10.2307/1941098; ALFORD RA, 1993, AM NAT, V141, P717, DOI 10.1086/285501; BLACK AR, 1993, LIMNOL OCEANOGR, V38, P986, DOI 10.4319/lo.1993.38.5.0986; Carpenter S. R., 1993, TROPHIC CASCADES LAK; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CROWL TA, 1990, OECOLOGIA, V84, P238, DOI 10.1007/BF00318278; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DODSON SI, 1988, LIMNOL OCEANOGR, V33, P1274, DOI 10.4319/lo.1988.33.6.1274; Endler JA, 1986, NATURAL SELECTION WI; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; GILINSKY E, 1984, ECOLOGY, V65, P455, DOI 10.2307/1941408; GILLAM JF, 1982, THESIS MICHIGAN STAT; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; Kerfoot WC, 1987, PREDATION DIRECT IND; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KUSANO T, 1982, RES POPUL ECOL, V24, P329, DOI 10.1007/BF02515580; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEIBOLD M, 1991, OECOLOGIA, V86, P342, DOI 10.1007/BF00317599; LIMA SL, 1992, ANN ZOOL FENN, V29, P217; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; PERRIN N, 1990, FUNCT ECOL, V4, P53, DOI 10.2307/2389652; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1996, IN PRESS EVOLUTION; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Roff Derek A., 1992; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SEGHERS BH, 1973, THESIS U BRIT COLUMB; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; Sih A., 1987, P203; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HIST; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1991, ECOLOGY, V72, P1709, DOI 10.2307/1940970; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILBUR HM, 1990, AM NAT, V135, P176, DOI 10.1086/285038 55 292 304 1 117 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 1996 50 3 1052 1061 10.2307/2410646 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UY555 WOS:A1996UY55500008 28565288 Bronze 2019-02-26 J Bradshaw, W; Holzapfel, CM Bradshaw, W; Holzapfel, CM Genetic constraints to life-history evolution in the pitcher-plant mosquito, Wyeomyia smithii EVOLUTION English Article diapause; mosquito; pleiotropy; tradeoffs; wyeomyia BUGS ONCOPELTUS-FASCIATUS; DROSOPHILA-MELANOGASTER; QUANTITATIVE CHARACTERS; ANTAGONISTIC PLEIOTROPY; CORRELATED RESPONSES; SELECTION; TRAITS; REPRODUCTION; FITNESS; COSTS Life-history theory relies heavily an the hypothesis that genetic tradeoffs among the components of fitness constrain their independent evolution and joint maximization. Herein we show that selection on preadult development time in the pitcher-plant mosquito, Wyeomyia smithii,, leads to a correlated response in cohort mean generation time but no correlated response in survivorship, fecundity. or cohort replacement rare. Lines selected for fast development achieve a higher capacity for increase (r(c)) than lines selected for slow development, independently of larval density. These results imply that tradeoffs due to underlying antagonistic pleiotropy affecting growth, development, survivorship. and reproduction are not necessary constraints to life-history evolution. Previous work with W. smithii has shown a positive generic correlation between development time and a general, genetically coordinated diapause syndrome. We propose that the observed nontradeoffs among the components of r(c) may be subsumed into an even more fundamental tradeoff between performance during the summer generations and synchronization of development and reproduction with the changing seasons, Consequently, critical tests of genetic tradeoffs as a constraint to the independent evolution or simultaneous optimization of fitness components may need to consider the seasonal context. Bradshaw, W (reprint author), UNIV OREGON, DEPT BIOL, EUGENE, OR 97403 USA. BARTON NH, 1987, GENET RES, V49, P157, DOI 10.1017/S0016672300026951; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; Bradshaw W.E., 1983, P161; BRADSHAW WE, 1989, AM NAT, V133, P869, DOI 10.1086/284957; BRADSHAW WE, 1977, EVOLUTION, V31, P546, DOI 10.1111/j.1558-5646.1977.tb01044.x; BRADSHAW WE, 1980, OECOLOGIA, V46, P13, DOI 10.1007/BF00346959; BRADSHAW WE, 1972, CAN J ZOOLOG, V50, P713, DOI 10.1139/z72-098; CAMPBELL MD, 1992, ANN ENTOMOL SOC AM, V85, P445, DOI 10.1093/aesa/85.4.445; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Clark A, 1987, GENETIC CONSTRAINTS, P25; DAY RW, 1989, ECOL MONOGR, V59, P433, DOI 10.2307/1943075; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEJONG G, 1993, FUNCT ECOL, V7, P75, DOI 10.2307/2389869; DINGLE H, 1988, EVOLUTION, V42, P79, DOI 10.1111/j.1558-5646.1988.tb04109.x; Dingle H., 1986, P187; GUPTA AP, 1982, EVOLUTION, V36, P934, DOI 10.1111/j.1558-5646.1982.tb05464.x; HARD JJ, 1993, J EVOLUTION BIOL, V6, P707, DOI 10.1046/j.1420-9101.1993.6050707.x; Hegmann J.P., 1982, P177; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1992, GENETICS, V130, P195; Istock C.A., 1978, P171; Istock C.A., 1983, PROCEEDINGS OF THE ANNUAL BIOLOGY COLLOQUIUM (OREGON STATE UNIVERSITY), P61; Istock C.A., 1981, P113; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1980, GENETICS, V94, P203; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1991, PHILOS T ROY SOC B, V332, P25, DOI 10.1098/rstb.1991.0029; PALMER JO, 1986, EVOLUTION, V40, P767, DOI 10.1111/j.1558-5646.1986.tb00536.x; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1985, GENET RES, V46, P279, DOI 10.1017/S0016672300022783; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF DA, 1987, HEREDITY, V58, P103, DOI 10.1038/hdy.1987.15; Roff Derek A., 1992; Rose M.R., 1990, P29; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1981, GENETICS, V97, P187; ROSE MR, 1991, EVOLUTIONARY BIOL AI; *SAS I, 1985, SAS US GUID; SCHEINER SM, 1991, GENETICA, V84, P123, DOI 10.1007/BF00116552; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WILLIS JH, 1991, EVOLUTION, V45, P441, DOI 10.1111/j.1558-5646.1991.tb04418.x 49 30 31 0 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 1996 50 3 1176 1181 10.2307/2410658 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UY555 WOS:A1996UY55500020 28565280 Bronze 2019-02-26 J Nunney, L Nunney, L The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: An example of a fitness trade-off EVOLUTION English Article body size; development time; fecundity; fitness trade-off; genetic correlation; life-history evolution; longevity; selection LIFE-HISTORY; ANTAGONISTIC PLEIOTROPY; ARTIFICIAL SELECTION; CORRELATED RESPONSES; EVOLUTIONARY DEMOGRAPHY; NATURAL POPULATIONS; GENETIC-ANALYSIS; BRUCHID BEETLE; BODY-WEIGHT; COMPETITION A selection experiment using Drosophila melanogaster revealed a strong trade-off between adult weight and larval development time (LDT), supporting the view that antagonistic pleiotropy for these two fitness traits determines mean adult size. Two experimental lines of flies were selected for a shorter LDT (measured from egg laying to pupation). After 15 generations LDT was reduced by an average of 7.9%. The response appeared to be controlled primarily by autosomal loci. A correlated response to the selection was a reduction in adult dry weight: individuals from the selected populations were on average 15.1% lighter than the controls. The lighter females of the selected lines showed a 35% drop in fecundity, bur no change in longevity. Thus, there is no direct relationship between LDT and adult longevity. The genetic correlation between weight and LDT, as measured from their joint response to selection, was 0.86. Although there was weak evidence for dominance in LDT, there was none for weight, making it unlikely that selection acting on this antagonistic pleiotropy could lead to a stable polymorphism. In all lines, sex differences in weight violated expectations based on intrasex genetic correlations: Females, being larger than males, ought to require a longer LDT, whereas there was a slight trend in the opposite direction. Because the sexual dimorphism in size was nor significantly altered by selection, it appears that the controlling loci are either invariant or have very limited pleiotropic effect on developmental time. Iris suggested that they probably control some intrinsic, energy-intensive developmental process in males. Nunney, L (reprint author), UNIV CALIF RIVERSIDE,DEPT BIOL,RIVERSIDE,CA 92521, USA. Nunney, Leonard/0000-0002-4315-3694 BAKKER K., 1959, Entomologia Experimentalis et Applicata, V2, P171; Bakker K., 1963, Entomologia Experimentalis et Applicata, V6, P37; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BURNET B, 1977, GENET RES, V30, P149, DOI 10.1017/S0016672300017559; CLARKE JM, 1961, GENET RES, V2, P70, DOI 10.1017/S0016672300000550; CURTSINGER JW, 1994, AM NAT, V144, P210, DOI 10.1086/285671; Falconer D.S., 1981, INTRO QUANTITATIVE G; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; HIRAIZUMI Y, 1961, GENETICS, V46, P615; Kerkis J, 1931, GENETICS, V16, P0212; Kirk R. E., 1982, EXPT DESIGN PROCEDUR; Lindsley D.L., 1980, Genetics and Biology of Drosophila, V2d, P225; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; MUKAI T, 1971, GENETICS, V69, P385; NUNNEY L, 1990, ECOLOGY, V71, P1904, DOI 10.2307/1937598; NUNNEY L, 1983, AM NAT, V121, P67, DOI 10.1086/284040; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; POWSNER J, 1935, PHYSIOL ZOOL, V8, P474; PROUT T, 1989, GENETICS, V123, P803; PROUT T, 1993, GENETICS, V134, P368; ROBERTSON FW, 1957, J GENET, V55, P428, DOI DOI 10.1007/BF02984061; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; SANG J. H., 1957, JOUR HEREDITY, V48, P265; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SIBLY RM, 1991, FUNCT ECOL, V5, P594, DOI 10.2307/2389477; Sokal R. R., 1994, BIOMETRY; SOKAL RR, 1958, 10 INT C ENT, V2, P842; Stearns SC., 1992, EVOLUTION LIFE HIST; TANTAWY AO, 1970, GENETICS, V64, P79; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x 36 112 115 1 41 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution JUN 1996 50 3 1193 1204 10.2307/2410660 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UY555 WOS:A1996UY55500022 28565282 Bronze 2019-02-26 J Olsson, M; Gullberg, A; Shine, R; Madsen, T; Tegelstrom, H Olsson, M; Gullberg, A; Shine, R; Madsen, T; Tegelstrom, H Paternal genotype influences incubation period, offspring size and offspring shape in an oviparous reptile EVOLUTION English Article Lacerta agilis; incubation period; multiple paternity; offspring size and shape; paternal genes CLUTCH SIZE; EGG SIZE; TERRITORY ACQUISITION; UTA-STANSBURIANA; LACERTA-AGILIS; PARENTAL CARE; SAND LIZARD; NUMBER; TEMPERATURE; SELECTION Theoretical models for tie evolution of life-history traits assume a genetic basis for a significant proportion of the phenotypic variance observed in characteristics such as hatching date and offspring size. However, recent experimental work has shown that much oi the phenotypic variance in hatchling reptiles is induced by nongenetic factors, such as maternal nutrition and thermoregulation, and the physical conditions experienced during embryogenesis. Thus, there is no unambiguous evidence for strictly genetic (intraspecific) influences on the phenotypes of hatchling reptiles. We report results from a technique that uses a genetic marker trait and DNA fingerprinting to determine paternity of offspring from multiply sired clutches of European sand lizards, Lacerta agilis. By focusing on paternal rather than maternal effects, we show that hatchling genotypes exert a direct influence on the duration of incubation, the size (mass, snout-vent length) and shape !relative tail length) of the hatchling, and subsequent growth rates of the lizard during the first 3 mo oi life. Embryos with genes that code for a few days' delay in hatching are thereby larger when they hatch, having undergone further differentiation (and hence, have changed in bodily proportions), and are able to grow faster after hatching. Our data thus provide empirical support for a crucial but rarely tested assumption of life-history theory, and illuminate some of the proximate mechanisms that produce intraspecific variation in offspring phenotypes. UNIV SYDNEY,SCH BIOL SCI,SYDNEY,NSW 2006,AUSTRALIA; UPPSALA UNIV,DEPT GENET,S-75007 UPPSALA,SWEDEN Olsson, M (reprint author), GOTHENBURG UNIV,DEPT ZOOL,SECT ANIM ECOL,MEDICINAREGATAN 18,S-41390 GOTHENBURG,SWEDEN. Shine, Richard/B-8711-2008 Olsson, Mats/0000-0002-4130-1323; Madsen, Thomas/0000-0002-0998-8372 AUSTIN CR, 1984, REPROD MAMMALS, V4; Bischoff W., 1984, HDB REPTILIEN AMPHIB, V2/I, P23; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Bulmer MG., 1985, MATH THEORY QUANTITA; BURGER J, 1990, J HERPETOL, V24, P158, DOI 10.2307/1564223; BURGER J, 1989, BEHAV ECOL SOCIOBIOL, V24, P201, DOI 10.1007/BF00295199; CHEVERUD JM, 1983, GENET RES, V42, P62; Falconer D. S., 1989, INTRO QUANTITATIVE G; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; Ford EB, 1927, BR J EXP BIOL, V5, P112; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Gould S. J, 1977, ONTOGENY PHYLOGENY; Grafen A., 1988, REPROD SUCCESS, P454; GUILETTE LJ, 1992, J MORPHOL, V212, P1; GUILLETTE LJ, 1985, J MORPHOL, V184, P85, DOI 10.1002/jmor.1051840109; HEULIN B, 1990, CAN J ZOOL, V68, P1015, DOI 10.1139/z90-147; Hochberg Y, 1987, MULTIPLE COMP PROCED; KING RB, 1993, J HERPETOL, V27, P175, DOI 10.2307/1564934; LANG JW, 1985, AM ZOOL, V25, pA18; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MADSEN T, 1992, OECOLOGIA, V92, P40, DOI 10.1007/BF00317260; NEWMAN RA, 1994, EVOLUTION, V48, P1773, DOI 10.1111/j.1558-5646.1994.tb02213.x; NUSSBAUM RA, 1989, AM NAT, V133, P591, DOI 10.1086/284939; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; OLSSON M, 1994, ANIM BEHAV, V48, P607, DOI 10.1006/anbe.1994.1280; OLSSON M, 1994, ANIM BEHAV, V48, P193, DOI 10.1006/anbe.1994.1226; OLSSON M, 1994, NATURE, V369, P528, DOI 10.1038/369528b0; OLSSON M, 1994, NATURE, V372, P230, DOI 10.1038/372230a0; OLSSON M, 1992, THESIS U GOTEBORG SW; Packard G.C., 1991, P213, DOI 10.1017/CBO9780511585739.014; PALMER BD, 1994, IN PRESS J MORPHOL; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PRICE TD, 1985, AM NAT, V125, P169, DOI 10.1086/284336; Rykena S., 1988, MERTENSIELLA, V1, P41; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; SHINE R, 1977, AUST J ZOOL, V25, P655, DOI 10.1071/ZO9770655; SHINE R, 1993, OECOLOGIA, V96, P122, DOI 10.1007/BF00318039; SHINE R, 1995, AM NAT, V145, P809, DOI 10.1086/285769; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STAMPS JA, 1994, ANIM BEHAV, V47, P1387, DOI 10.1006/anbe.1994.1186; STAMPS JA, 1994, ANIM BEHAV, V47, P1375, DOI 10.1006/anbe.1994.1185; VAISANEN R A, 1972, Ornis Fennica, V49, P25; VANNOORDWIJK AJ, 1981, GENETICA, V55, P221, DOI 10.1007/BF00127206; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 48 39 41 0 19 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution JUN 1996 50 3 1328 1333 10.2307/2410672 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UY555 WOS:A1996UY55500034 28565274 Bronze 2019-02-26 J Amat, JA; Carrascal, LM; Moreno, J Amat, JA; Carrascal, LM; Moreno, J Nest defence by chinstrap penguins Pygoscelis antarctica in relation to offspring number and age JOURNAL OF AVIAN BIOLOGY English Article BROOD SIZE; PARENTAL RESPONSE; CICHLID FISH We manipulated clutches of Chinstrap Penguins to examine the effects of brood size and offspring age on brood defence le, els. Nest defence intensity increased with increasing offspring age, Experimental birds reduced nest defence intensity after losing one egg, These results support predictions derived from life-history theory a which assumes changes in nest defence intensity to be related to changes in the reproductive value of the brood. Amat, JA (reprint author), CSIC, MUSEO NACL CIENCIAS NAT, J GUTIERREZ ABASCAL 2, E-28006 MADRID, SPAIN. carrascal@pinar1.csic.es; mcnjm19@pinar1.csic.es CSIC, EBD Donana/C-4157-2011; Evolutionary Ecology, Ecologia Evolutiva/M-3553-2014; Carrascal, Luis M./B-8381-2008 CSIC, EBD Donana/0000-0003-4318-6602; Carrascal, Luis M./0000-0003-1288-5531; Amat, Juan A./0000-0003-1685-1056 AINLEY DG, 1983, BREEDING BIOL ADELIE; AMAT JA, 1993, COLON WATERBIRD, V16, P213, DOI 10.2307/1521441; ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; BUITRON D, 1983, BEHAVIOUR, V87, P209, DOI 10.1163/156853983X00435; CARLISLE TR, 1985, ANIM BEHAV, V33, P234, DOI 10.1016/S0003-3472(85)80137-8; CURIO E, 1986, ETHOLOGY, V72, P75; KNIGHT RL, 1986, AUK, V103, P318; LAVERY RJ, 1990, ANIM BEHAV, V40, P1128, DOI 10.1016/S0003-3472(05)80179-4; MARCHANT S, 1990, HDB AUSTR NZ ANTARCT, V1; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; MORENO J, 1994, POLAR BIOL, V14, P21; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PUGESEK BH, 1983, BEHAV ECOL SOCIOBIOL, V13, P161, DOI 10.1007/BF00299919; REDONDO T, 1989, BEHAVIOUR, V111, P161, DOI 10.1163/156853989X00646; RIDGWAY MS, 1989, ETHOLOGY, V80, P47; SARGENT RC, 1985, BEHAV ECOL SOCIOBIOL, V17, P43, DOI 10.1007/BF00299427; THORNHILL R, 1989, ETHOLOGY, V83, P31, DOI 10.1111/j.1439-0310.1989.tb00517.x; VINUELA J, 1995, ETHOLOGY, V99, P323; WALLIN K, 1987, BEHAVIOUR, V102, P213, DOI 10.1163/156853986X00135; WALTER D, 1983, BR BIRDS, V76, P312; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 22 12 12 0 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. JUN 1996 27 2 177 179 10.2307/3677150 3 Ornithology Zoology VF155 WOS:A1996VF15500013 2019-02-26 J Leimar, O Leimar, O Life history plasticity: Influence of photoperiod on growth and development in the common blue butterfly OIKOS English Article SEASONAL PLASTICITY; PIERIS-RAPAE; SIZE; LARVAE; ANTS; SELECTION; LEPIDOPTERA; LYCAENIDAE; PROTANDRY; QUALITY The daylength experienced by a larva provides information about the progression of the season, so that plasticity in growth and development with photoperiod might serve as an adaptation allowing efficient timing relative to the favorable part of the season. In an experiment with Polyommatus icarus it was found that shorter daylengths, indicating less time available until the season ends, resulted in faster development from hatching to adult eclosion. From hatching and into the earlier part of the final instar, larval mass increased approximately exponentially with time, but the rate of growth during this phase was not affected by photoperiod. Both the later part of the final instar and pupal development proceeded more rapidly in shorter daylengths. The decrease in total development time did not reduce female final size, measured as pupal mass, whereas males became somewhat smaller. Males developed slightly faster than females (protandry) and were heavier than females in the longer daylengths but lighter in the shorter daylengths. The observed lack of a trade-off between development time and adult size in females is discussed in the light of life history theory of optimal age and size at maturity. Leimar, O (reprint author), UNIV STOCKHOLM, DEPT ZOOL, S-10691 STOCKHOLM, SWEDEN. Leimar, Olof/L-3781-2014 Leimar, Olof/0000-0001-8621-6977 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Beck SD, 1980, INSECT PHOTOPERIODIS; BLAU WS, 1981, OECOLOGIA, V48, P116, DOI 10.1007/BF00346997; COURTNEY SP, 1983, ECOL ENTOMOL, V8, P271, DOI 10.1111/j.1365-2311.1983.tb00508.x; DANKS HV, 1994, SERIES ENTOM, V52, P5; Dempster J. P., 1984, The biology of butterflies. Symposium of the Royal Entomological Society of London Number 11., P97; FEENY P, 1985, ECOL MONOGR, V55, P167, DOI 10.2307/1942556; FIEDLER K, 1992, OECOLOGIA, V91, P468, DOI 10.1007/BF00650318; FIEDLER K, 1990, OECOLOGIA, V83, P284, DOI 10.1007/BF00317767; Fiedler K, 1991, J RES LEPIDOPTERA, V28, P239; Frohawk F. W., 1924, NATURAL HIST BRIT BU, VII; GILBERT N, 1986, J ANIM ECOL, V55, P317, DOI 10.2307/4711; GILBERT N, 1984, J ANIM ECOL, V53, P599, DOI 10.2307/4538; JONES RE, 1982, AUST J ZOOL, V30, P223, DOI 10.1071/ZO9820223; KARLSSON B, 1990, FUNCT ECOL, V4, P609, DOI 10.2307/2389728; KRISTENSEN CO, 1994, J APPL ENTOMOL, V117, P92, DOI 10.1111/j.1439-0418.1994.tb00712.x; Masaki S., 1978, P72; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1992, BIOL J LINN SOC, V47, P301, DOI 10.1111/j.1095-8312.1992.tb00672.x; OHSAKI N, 1994, ECOLOGY, V75, P59, DOI 10.2307/1939382; PIERCE NE, 1981, SCIENCE, V211, P1185, DOI 10.1126/science.211.4487.1185; PIERCE NE, 1986, J ANIM ECOL, V55, P451, DOI 10.2307/4730; PIERCE NE, 1985, AM NAT, V125, P888, DOI 10.1086/284387; Reiss M. J, 1989, ALLOMETRY GROWTH REP; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff Derek A., 1992; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; SCHROEDER LA, 1986, ECOLOGY, V67, P1628, DOI 10.2307/1939094; Scriber J.M., 1992, P429; SINGER MC, 1982, AM NAT, V119, P440, DOI 10.1086/283924; Stearns SC., 1992, EVOLUTION LIFE HIST; WICKMAN PO, 1990, HOLARCTIC ECOL, V13, P238; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917 35 70 72 1 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos JUN 1996 76 2 228 234 10.2307/3546194 7 Ecology Environmental Sciences & Ecology VC125 WOS:A1996VC12500004 2019-02-26 J Tanaka, Y Tanaka, Y How is life history variation generated from the genetic resource allocation? RESEARCHES ON POPULATION ECOLOGY English Article antagonistic pleiotropy; trade-off; resource allocation; quantitative genetics; life history AZUKI-BEAN WEEVIL; DROSOPHILA-MELANOGASTER; CALLOSOBRUCHUS-CHINENSIS; QUANTITATIVE TRAITS; EVOLUTION; REPRODUCTION; MUTATIONS; CHARACTERS; SENESCENCE; DOMINANCE A simple quantitative genetic model is proposed to explain the observed genetic correlation structure of a bruchid beetle Callosobruchus chinensis in terms of two underlying variables: the resource acquisition and the resource allocation. Heritabilities and genetic correlations among age-specific fecundities are regarded as consequences of genetic variations of the two variables. Genetic correlations are predominantly positive in both predictions and observations. Nonetheless, comparison between observed and predicted values in heritabilities, genetic correlations, and genetic principal components suggested significant genetic variances both of the resource allocation and the resource acquisition. The prediction of the model is discussed in relation to experimental tests of trade-off in life history evolution. MCGILL UNIV, DEPT BIOL, MONTREAL, PQ H3A 1B1, CANADA Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; CROW JF, 1983, GENETICS BIOL DRSOPH, V3; EMLEN JM, 1970, ECOLOGY, V51, P588, DOI 10.2307/1934039; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GIESEL JT, 1986, AM NAT, V128, P593, DOI 10.1086/284590; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1994, GENETICS, V138, P773; HOULE D, 1992, GENETICS, V130, P195; KEIGHTLEY PD, 1989, GENETICS, V121, P869; KONDRASHOV AS, 1988, NATURE, V336, P435, DOI 10.1038/336435a0; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; MUKAI T, 1972, GENETICS, V72, P335; NOMURA T, 1990, APPL ENTOMOL ZOOL, V25, P423, DOI 10.1303/aez.25.423; Roff Derek A., 1992; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1983, AM ZOOL, V23, P15; ROSE MR, 1981, GENETICS, V97, P187; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SIMMONS MJ, 1977, ANNU REV GENET, V11, P49, DOI 10.1146/annurev.ge.11.120177.000405; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; Stuart A, 1987, KENDALLS ADV THEORY, V1, P1; TANAKA Y, 1993, HEREDITY, V70, P318, DOI 10.1038/hdy.1993.46; TANAKA Y, 1990, RES POPUL ECOL, V32, P329, DOI 10.1007/BF02512567; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 33 7 7 0 1 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0034-5466 RES POPUL ECOL Res. Popul. Ecol. JUN 1996 38 1 11 17 10.1007/BF02514966 7 Ecology Environmental Sciences & Ecology VE183 WOS:A1996VE18300002 2019-02-26 J Meesters, EH; Wesseling, I; Bak, RPM Meesters, EH; Wesseling, I; Bak, RPM Partial mortality in three species of reef-building corals and the relation with colony morphology BULLETIN OF MARINE SCIENCE English Article SCLERACTINIAN CORALS; INTERSPECIFIC AGGRESSION; POPULATION-DYNAMICS; PORITES-ASTREOIDES; ACROPORA-PALMATA; LIFE HISTORIES; STONY CORALS; RED-SEA; GROWTH; REGENERATION Partial tissue mortality (lesions) in three coral species with distinctly different colony morphologies was quantified in a series of field surveys on a shallow reef, Extent and type of partial mortality was related to differences in size and morphology of the colonies within and between species. Lesion size-frequency distributions were found to be very skewed to the right, meaning that most partial mortality is small in size and well within the regeneration capabilities of all coral species. However, large lesions may make a considerable contribution in terms of surface area to total partial mortality. Within partial mortality two types of lesions must be distinguished. Type I lesions are completely surrounded by living tissue and their occurrence is mostly related to non-bottom associated processes. Type II lesions, at the edge of a colony, are only partly surrounded by living tissue, and are caused mostly by bottom associated processes. The ratio of number of type II/type I lesions differed between species and was related to the ratio of colony edge (circumference)/colony surface area in the three species studied. Type II lesions were larger in size than type I lesions and can make a large contribution to total partial mortality. Species differed in the number of type I and type II lesions per colony and per unit of tissue area. Type II lesions were almost absent on branched colonies, but very frequent on colonies of massive species. Lesion number increased with colony size in the massive species. Most partial mortality is caused by bottom related processes and our results show that ''escape in height'' is a significant feature in the life history strategies of corals. The surveys showed small colonies to be very vulnerable to partial mortality. Because their circumference/surface area ratio is high, they are very susceptible to colony edge (i.e., bottom-associated) processes that cause mortality. Consequently, small colonies will often suffer whole colony death. On the other hand, large colonies, although unlikely to escape partial mortality, will less often suffer complete mortality. The relationship between this ratio and susceptibility to partial mortality holds as well within species as between species and suggests an important effect of colony morphology on survival. Colony genetic identity also affected susceptibility to partial mortality. Other factors that may influence sensitivity to mortality are discussed. Regeneration capabilities of corals suggest that scleractinian corals have become adapted to the very common occurrence of small lesions. INST SYST POPULAT BIOL,1090 GT AMSTERDAM,NETHERLANDS BABCOCK RC, 1991, ECOL MONOGR, V61, P225, DOI 10.2307/2937107; Bak R. P., 1977, AAPG STUDIES GEOLOGY, V4, P3; BAK RPM, 1981, MAR ECOL PROG SER, V6, P43, DOI 10.3354/meps006043; BAK RPM, 1983, MAR BIOL, V77, P221, DOI 10.1007/BF00395810; BAK RPM, 1975, OECOLOGIA, V20, P111, DOI 10.1007/BF00369023; BAK RPM, 1979, MAR BIOL, V54, P341, DOI 10.1007/BF00395440; BAK RPM, 1982, MAR BIOL LETT, V3, P67; BAK RPM, 1980, B MAR SCI, V30, P883; BAK RPM, 1982, MAR BIOL, V69, P215, DOI 10.1007/BF00396901; BAK RPM, 1981, 4TH P INT COR REEF S, V2, P221; BAK RPM, 1977, 3RD P INT COR REEF S, V1, P143; CHORNESKY EA, 1987, BIOL BULL, V172, P161, DOI 10.2307/1541790; DONE TJ, 1987, CORAL REEFS, V6, P75, DOI 10.1007/BF00301377; FISHELSON L, 1973, MAR BIOL, V19, P183, DOI 10.1007/BF02097137; GLADFELTER WB, 1982, B MAR SCI, V32, P639; GLYNN PW, 1988, P 6 INT COR REEF S A, V2, P51; Harrison P.L., 1990, ECOSYSTEMS WORLD, V25, P133; HIGHSMITH RC, 1982, MAR ECOL PROG SER, V7, P207, DOI 10.3354/meps007207; HIGHSMITH RC, 1980, OECOLOGIA, V46, P322, DOI 10.1007/BF00346259; Hudson J.H., 1988, P231; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; HUGHES TP, 1984, AM NAT, V123, P778, DOI 10.1086/284239; HUGHES TP, 1980, SCIENCE, V209, P713, DOI 10.1126/science.209.4457.713; JACKSON JBC, 1986, PHILOS T R SOC B, V313, P7, DOI 10.1098/rstb.1986.0022; JACKSON JBC, 1979, BIOL SYSTEMATICS COL, P499; KNOWLTON N, 1981, NATURE, V294, P251, DOI 10.1038/294251a0; KOJIS BL, 1982, 4TH P INT COR REEF S, V2, P145; LANG J, 1973, B MAR SCI, V23, P260; LANG J, 1971, B MAR SCI, V21, P952; LASKER HR, 1991, OECOLOGIA, V86, P503, DOI 10.1007/BF00318316; LOYA Y, 1976, NATURE, V261, P490, DOI 10.1038/261490a0; MCFADDEN CS, 1991, ECOLOGY, V72, P1849, DOI 10.2307/1940983; MEESTERS EH, 1993, MAR ECOL PROG SER, V96, P189, DOI 10.3354/meps096189; MEESTERS EH, 1992, P 7 INT COR REEF S G, V1, P681; MEESTERS EH, 1994, IN PRESS DAMAGE REGE; OTT B, 1972, CAN J ZOOL, V50, P1651, DOI 10.1139/z72-217; PEARSON RG, 1981, MAR ECOL PROG SER, V4, P105, DOI 10.3354/meps004105; PETERS EC, 1984, HELGOLANDER MEERESUN, V37, P113, DOI 10.1007/BF01989298; ROBERTSON R, 1970, PAC SCI, V24, P43; ROGERS CS, 1989, MAR ECOL-PROG SER, V78, P189; RYLAARSDAM KW, 1983, MAR ECOL PROG SER, V13, P249, DOI 10.3354/meps013249; SIEGEL S, 1989, NONPARAMETRIC STAT B; SOKAL R., 1981, BIOMETRY; SOONG K, 1993, CORAL REEFS, V12, P77, DOI 10.1007/BF00302106; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; SZMANT AM, 1986, CORAL REEFS, V5, P43, DOI 10.1007/BF00302170; VANMOORSEL GWNM, 1983, MAR ECOL PROG SER, V13, P273, DOI 10.3354/meps013273; WOODLEY JD, 1981, SCIENCE, V214, P749, DOI 10.1126/science.214.4522.749 48 87 90 0 18 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 0007-4977 B MAR SCI Bull. Mar. Sci. MAY 1996 58 3 838 852 15 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography UP205 WOS:A1996UP20500017 2019-02-26 J Charnov, EL Charnov, EL Optimal flower lifetimes EVOLUTIONARY ECOLOGY English Article dimensional analysis; life-history theory; sex allocation; dimensionless variables; pollination ESS floral lifetimes satisfy the product theorem from sex allocation theory. The dimensionless time investment per flower is a symmetric function of two dimensionless gain:cost ratios, one for each gender function. Charnov, EL (reprint author), UNIV UTAH,DEPT BIOL,SALT LAKE CITY,UT 84112, USA. ASHMAN TL, 1994, NATURE, V371, P788, DOI 10.1038/371788a0; CHARNOV E L, 1982; CHARNOV EL, 1995, P NATL ACAD SCI USA, V92, P1446, DOI 10.1073/pnas.92.5.1446; CHARNOV EL, 1979, P NATL ACAD SCI USA, V76, P2480, DOI 10.1073/pnas.76.5.2480; Charnov Eric L., 1993, P1; SCHOEN DJ, 1995, IN PRESS EVOLUTION; STEPHENS DW, 1993, BEHAV ECOL, V4, P172, DOI 10.1093/beheco/4.2.172 7 7 8 0 2 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAY 1996 10 3 245 248 10.1007/BF01237682 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UN976 WOS:A1996UN97600003 2019-02-26 J Lorentsen, SH Lorentsen, SH Regulation of food provisioning in the Antarctic petrel Thalassoica antarctica JOURNAL OF ANIMAL ECOLOGY English Article Antarctica; body mass; body condition; reproductive effort; chick growth WANDERING ALBATROSS; FEEDING RATES; ENERGY COSTS; STORM-PETREL; MEAL SIZE; REPRODUCTION; INCUBATION; DIOMEDEA; ISLAND; CHICK 1. Life-history theory predicts that individual birds should invest in reproduction according to their current body condition and the future prospects for survival and reproduction. Thus, it could be expected that current adult body condition should significantly influence food provisioning rates, food loads and concurrent chick growth in the Antarctic petrel. 2. In order to study the significance of parental body condition I correlated meal sizes, feeding frequencies and chick growth with the body condition of the parents. 3. There was a strong correlation between the average meal size delivered to a chick and its growth rare. Adult body condition at the time of hatching was strongly correlated with the average size of meals delivered to individual chicks. Male and female body condition at the time of hatching and average body condition of the pair at the first incubation shift and at hatching significantly influenced the body mass of the chick on day 30. Male body condition and the average body condition of the pair correlated significantly with the growth rate of the chick. 4. The difference in body mass at the age of 30 days of chicks from parents with good body condition compared with chicks from parents with poorer body condition was nearly double that expected. 5. The results strongly suggest that the effort spent during the chick-rearing period, and thus reproductive success, is regulated by the body condition of the parents. Lorentsen, SH (reprint author), NORWEGIAN INST NAT RES,TUNGASLETTA 2,N-7005 TRONDHEIM,NORWAY. ANDERSEN R, 1995, POLAR BIOL, V15, P65; BOLTON M, 1995, FUNCT ECOL, V9, P161, DOI 10.2307/2390560; CHAURAND T, 1994, J ANIM ECOL, V63, P275, DOI 10.2307/5546; COPESTAKE PG, 1988, POLAR BIOL, V8, P271, DOI 10.1007/BF00263175; CROXALL JP, 1982, J ANIM ECOL, V51, P177, DOI 10.2307/4318; CROXALL JP, 1983, IBIS, V125, P33, DOI 10.1111/j.1474-919X.1983.tb03081.x; Fisher H.I., 1971, Living Bird, V10, P19; HAMER KC, 1994, J AVIAN BIOL, V25, P198, DOI 10.2307/3677075; HAMER KC, 1993, J ANIM ECOL, V62, P441, DOI 10.2307/5193; HAMER KC, 1994, IBIS, V136, P271, DOI 10.1111/j.1474-919X.1994.tb01095.x; Hastings NAJ, 1975, STATISTICAL DISTRIBU; HATCH SA, 1990, ORNIS SCAND, V21, P89, DOI 10.2307/3676803; JOHNSEN I, 1994, OIKOS, V71, P273, DOI 10.2307/3546276; Krebs J.R., 1991, P105; LORENTSEN SH, 1994, POLAR BIOL, V14, P143; LORENTSEN SH, 1995, IBIS, V137, P345, DOI 10.1111/j.1474-919X.1995.tb08031.x; Marchant S., 1990, HDB AUSTR NZ ANTARCT; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; MEHLUM F, 1988, Polar Research, V6, P1, DOI 10.1111/j.1751-8369.1988.tb00576.x; Norusis M. J., 1985, SPSS X ADV STAT GUID; PRINCE PA, 1981, CONDOR, V83, P238, DOI 10.2307/1367315; PRINCE PA, 1981, ORNIS SCAND, V12, P207, DOI 10.2307/3676078; RICKLEFS RE, 1992, ANIM BEHAV, V43, P895, DOI 10.1016/0003-3472(92)90003-R; RICKLEFS RE, 1987, AUK, V104, P750; RICKLEFS RE, 1984, ORNIS SCAND, V15, P16, DOI 10.2307/3675998; RICKLEFS RE, 1994, FUNCT ECOL, V8, P159, DOI 10.2307/2389899; RICKLEFS RE, 1985, J ANIM ECOL, V54, P883, DOI 10.2307/4385; ROV N, 1994, 1991 92 NORSK POL, P9; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Stearns SC., 1992, EVOLUTION LIFE HIST; Stephens DW, 1986, FORAGING THEORY; Warham J, 1990, PETRELS THEIR ECOLOG; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11 34 54 55 0 4 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. MAY 1996 65 3 381 388 10.2307/5884 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology UM116 WOS:A1996UM11600013 2019-02-26 J Armbruster, WS; Schwaegerle, KE Armbruster, WS; Schwaegerle, KE Causes of covariation of phenotypic traits among populations JOURNAL OF EVOLUTIONARY BIOLOGY English Article among-population covariation; genetic correlation; population differentiation; quantitative genetics; selective covariance LIFE-HISTORY EVOLUTION; GENETIC CORRELATIONS; GEOGRAPHIC-VARIATION; QUANTITATIVE GENETICS; DALECHAMPIA-SCANDENS; CHARACTERS; SELECTION; HERITABILITY; MORPHOLOGY; MUTATION Morphological and life-history traits often vary among populations of a species. Traits generally do not vary independently, but show patterns of covariation that can arise from genetic and environmental influences on phenotype. Covariance of traits may arise at an among-population level when genetically influenced traits diverge among populations in a correlated manner. Genetic correlations caused by pleiotropy and/or gene linkage can cause traits to evolve together, but among-population covariance can also arise among traits that are not genetically correlated. For example, ''selective covariance'' can arise when natural selection directly causes correlated change in a suite of traits. Similarly, mutation, migration, and drift may also sometimes cause correlated genetic changes among populations. Because covariation of traits among populations can arise by several different processes, the evolution of suites of traits must be interpreted with great caution. We discuss the sources of among-population covariance and illustrate one approach to identifying the sources using data on floral traits of Dalechampia scandens (Euphorbiaceae). UNIV ALASKA,DEPT BIOL & WILDLIFE,FAIRBANKS,AK 99775 Armbruster, WS (reprint author), UNIV ALASKA,INST ARCTIC BIOL,FAIRBANKS,AK 99775, USA. Armbruster, William/B-4799-2013 Allen JA., 1877, RADICAL REV, V1, P108; ARMBRUSTER WS, 1985, EVOLUTION, V39, P733, DOI 10.1111/j.1558-5646.1985.tb00416.x; ARMBRUSTER WS, 1991, EVOLUTION, V45, P1229, DOI 10.1111/j.1558-5646.1991.tb04389.x; ARMBRUSTER WS, 1990, AM NAT, V135, P14, DOI 10.1086/285029; ARMBRUSTER WS, 1984, AM J BOT, V71, P1149, DOI 10.2307/2443391; ARMBRUSTER WS, 1988, ECOLOGY, V69, P1746, DOI 10.2307/1941153; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Arthur W., 1984, MECH MORPHOLOGICAL E; BERG RL, 1960, EVOLUTION, V14, P171, DOI 10.1111/j.1558-5646.1960.tb03076.x; BERNARDO R, 1989, CROP SCI, V29, P1371, DOI 10.2135/cropsci1989.0011183X002900060008x; CHAPIN FS, 1991, BIOSCIENCE, V41, P29, DOI 10.2307/1311538; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHEVERUD JM, 1982, EVOLUTION, V36, P499, DOI 10.1111/j.1558-5646.1982.tb05070.x; CHEVERUD JM, 1984, J THEOR BIOL, V110, P155, DOI 10.1016/S0022-5193(84)80050-8; CONNER J, 1993, EVOLUTION, V47, P704, DOI 10.1111/j.1558-5646.1993.tb02128.x; COYNE JA, 1987, GENETICS, V117, P727; DEVICENTE MC, 1993, GENETICS, V134, P585; DOBZHANSKY T, 1959, COLD SPRING HARB SYM, V24, P15, DOI 10.1101/SQB.1959.024.01.004; Dobzhansky T, 1970, GENETICS EVOLUTIONAR; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Endler JA, 1986, NATURAL SELECTION WI; Faegri K, 1979, PRINCIPLES POLLINATI; Falconer D. S., 1989, INTRO QUANTITATIVE G; FELSENSTEIN J, 1988, ANNU REV ECOL SYST, V19, P445, DOI 10.1146/annurev.es.19.110188.002305; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; GOODNIGHT CJ, 1989, AM NAT, V133, P888, DOI 10.1086/284958; GRANT V, 1975, GENETICS FLOWERING P; Grime J. P, 1979, PLANT STRATEGIES VEG; HELVERSEN D, 1975, J COMP PHYSIOL, V104, P273; HELVERSEN DV, 1975, J COMP PHYSIOL, V104, P301; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; KINGSOLVER JG, 1987, EVOLUTION, V41, P491, DOI 10.1111/j.1558-5646.1987.tb05820.x; LANDE R, 1992, EVOLUTION, V46, P381, DOI 10.1111/j.1558-5646.1992.tb02046.x; Lande R., 1976, Genetical Research, V26, P221; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; LANDE R, 1981, GENETICS, V99, P541; LANDE R, 1980, GENETICS, V94, P203; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; LYNCH M, 1986, EVOLUTION, V40, P915, DOI 10.1111/j.1558-5646.1986.tb00561.x; Mayr E., 1963, ANIMAL SPECIES EVOLU; MITCHELLOLDS T, 1995, TRENDS ECOL EVOL, V10, P324, DOI 10.1016/S0169-5347(00)89119-3; Pax F.A., 1919, PFLANZENREICH, VIV, p[147, 1]; PRICE T, 1992, TRENDS ECOL EVOL, V7, P307, DOI 10.1016/0169-5347(92)90229-5; Price T. D., 1984, POPULATION BIOL EVOL, P49; RAUP DM, 1974, SYST ZOOL, V23, P305, DOI 10.2307/2412538; RISKA B, 1989, EVOLUTION, V43, P1172, DOI 10.1111/j.1558-5646.1989.tb02567.x; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; RISKA B, 1989, GENETICS, V123, P865; SCHEINER SM, 1991, GENETICA, V84, P123, DOI 10.1007/BF00116552; SLATKIN M, 1981, EVOLUTION, V35, P859, DOI 10.1111/j.1558-5646.1981.tb04949.x; SOKAL R., 1981, BIOMETRY; Sokal R. R., 1978, Ecological genetics: the interface., P215; SOKAL RR, 1980, BIOL J LINN SOC, V14, P163, DOI 10.1111/j.1095-8312.1980.tb00104.x; SOKAL RR, 1981, BIOL J LINN SOC, V15, P201, DOI 10.1111/j.1095-8312.1981.tb00760.x; SOLTIS PS, 1986, THEOR APPL GENET, V73, P88, DOI 10.1007/BF00273724; SOLTIS PS, 1985, THESIS U KANSAS LAWR; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; Stebbins G. L. Jr, 1950, VARIATION EVOLUTION; STEBBINS GL, 1951, EVOLUTION, V5, P299, DOI 10.2307/2405676; Stebbins GL, 1974, FLOWERING PLANTS EVO; Tedin O, 1925, HEREDITAS, V6, P275; THORPE RS, 1976, BIOL REV, V51, P407; TURELLI M, 1984, THEOR POPUL BIOL, V25, P138, DOI 10.1016/0040-5809(84)90017-0; VANHOUTEN W, 1994, PLANT SYST EVOL, V190, P49, DOI 10.1007/BF00937858; WADE MJ, 1980, EVOLUTION, V36, P799; WAGNER GP, 1984, BIOSYSTEMS, V17, P51, DOI 10.1016/0303-2647(84)90015-7; Waser N.M., 1983, P277; WASER NM, 1983, POLLINATION BIOL; WHITKUS RV, 1993, 15 INT BOT C YOK, P172; Wright S., 1952, Quantitative inheritance. Papers read at a colloquium held at the Institute of Animal Genetics Edinburgh University under the auspices of the Agricultural Research Council April 4th to 6th, 1950., P5; Wright S, 1968, EVOLUTION GENETICS P, V1; ZENG ZB, 1988, EVOLUTION, V42, P363, DOI 10.1111/j.1558-5646.1988.tb04139.x 78 122 122 1 28 BIRKHAUSER VERLAG AG BASEL PO BOX 133 KLOSTERBERG 23, CH-4010 BASEL, SWITZERLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAY 1996 9 3 261 276 10.1046/j.1420-9101.1996.9030261.x 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UR570 WOS:A1996UR57000001 Bronze 2019-02-26 J Tsuji, K; Tsuji, N Tsuji, K; Tsuji, N Evolution of life history strategies in ants: Variation in queen number and mode of colony founding OIKOS English Article SOLENOPSIS-INVICTA HYMENOPTERA; SOCIAL HYMENOPTERA; REPRODUCTIVE DIVISION; PRISTOMYRMEX-PUNGENS; R-SELECTION; K-SELECTION; FIRE ANT; FORMICIDAE; POLYGYNY; INSECTS Most theoretical models for the evolution of polygyny in ants assume a stable population. Here, we discuss the evolution of life history strategies with perennial life cycles, overlapping generations, and fluctuating populations. We assume two alternative strategies, i.e., monogyny = independent founding strategy (in which the survival rate of foundress queens is low but fecundity of individual queens is high), and polygyny = dependent founding strategy (in which the initial survival rate of queens is high, but queens have low fecundity and short longevity). Adopting the intrinsic rate of natural increase (r) as the fitness measurement, we compare the two strategies under various ranges of life history parameters. Our model suggests that a higher survival rate of queens may compensate for a low fecundity of queens adopting the dependent founding strategy. Since dependent foundresses can skip over the non-sexual producing founding and ergonomic stages, they can quickly initiate sexual production and gain a higher r. This implies that dependent founding, which may result in secondary polygyny, tends to be an, strategist. This ''early reproduction effect'' has not been explicitly dealt with in previous discussions of polygyny, because they have omitted population demography. We predict that dependent founding (or polygyny) would be more common in open areas where ant populations might suffer from random density independent population fluctuation than in forests where density dependent regulations could stabilize ant populations. A recent empirical data-set from Okinawa Island actually suggested that polygyny is more common in open areas than in forests. Some other published data that enabled intraspecific comparison also supported our prediction. SASEBO COLL TECHNOL, DEPT CONTROL ENGN, SASEBO, NAGASAKI 85711, JAPAN; UNIV WURZBURG, THEODOR BOVERI INST BIOWISSENSCH, LEHRSTUHL VERHALTENSPHYSIOL & SOZIOBIOL 2, D-97074 WURZBURG, GERMANY Tsuji, Kazuki/D-6607-2014 Tsuji, Kazuki/0000-0002-2027-8582 BARTZ SH, 1982, BEHAV ECOL SOCIOBIOL, V10, P137, DOI 10.1007/BF00300174; BOURKE AFG, 1994, PHILOS T ROY SOC B, V345, P359, DOI 10.1098/rstb.1994.0115; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; BRIAN MV, 1955, EVOLUTION, V9, P280, DOI 10.2307/2405649; BUSCHINGER A, 1974, P862; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CRAIG R, 1980, AM NAT, V116, P311, DOI 10.1086/283630; DIXON AFG, 1993, J ANIM ECOL, V62, P182, DOI 10.2307/5492; Elmes Graham W., 1993, P294; FLETCHER DJC, 1980, ANN ENTOMOL SOC AM, V73, P658, DOI 10.1093/aesa/73.6.658; FUTUYMA DJ, 1986, EVOLUTIONARY BIOL; Grafen A., 1991, P5; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HEINZE J, 1993, OECOLOGIA, V96, P32, DOI 10.1007/BF00318027; HERBERS JM, 1986, BEHAV ECOL SOCIOBIOL, V19, P115, DOI 10.1007/BF00299946; HERBERS JM, 1993, QUEEN NUMBER SOCIALI, P242; HOLLDOBLER B, 1977, NATURWISSENSCHAFTEN, V64, P8, DOI 10.1007/BF00439886; Holldobler B, 1990, ANTS; ITO Y, 1980, COMP ECOLOGY; KELLER L, 1993, OIKOS, V67, P177, DOI 10.2307/3545107; KELLER L, 1989, OECOLOGIA, V80, P236, DOI 10.1007/BF00380157; KELLER L, 1988, ANIM BEHAV, V36, P159, DOI 10.1016/S0003-3472(88)80259-8; KELLER L, 1991, ETHOL ECOL EVOL, V3, P307, DOI 10.1080/08927014.1991.9525359; KELLER L, 1990, INSECTS SOC, V37, P733; Keller Laurent, 1993, P16; MAC ARTHUR ROBERT H., 1967; MACEVICZ S, 1979, AM NAT, V113, P363, DOI 10.1086/283395; Michener C. D., 1964, Insectes Sociaux Paris, V11, P317, DOI 10.1007/BF02227433; NONACS P, 1988, EVOLUTION, V42, P566, DOI 10.1111/j.1558-5646.1988.tb04161.x; Nonacs Peter, 1993, P110; Oster G. F., 1978, CASTE ECOLOGY SOCIAL; PAMILO P, 1991, AM NAT, V137, P83, DOI 10.1086/285147; PAMILO P, 1981, BEHAV ECOL SOCIOBIOL, V9, P45, DOI 10.1007/BF00299852; PAMILO P, 1991, AM NAT, V138, P412, DOI 10.1086/285224; PASSERA L, 1994, WESTV STUD, P23; PEARSON B, 1983, BEHAV ECOL SOCIOBIOL, V12, P1, DOI 10.1007/BF00296926; PEARSON B, 1981, BIOSYSTEMATICS SOCIA, P75; PEETERS C, 1991, BIOL J LINN SOC, V44, P141, DOI 10.1111/j.1095-8312.1991.tb00612.x; Peeters Christian, 1993, P234; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pianka ER, 1974, EVOLUTIONARY ECOLOGY; Rissing S.W., 1988, P179; Roff Derek A., 1992; ROSENGREN R, 1983, Acta Entomologica Fennica, V42, P65; ROSENGREN R, 1986, Mitteilungen der Schweizerischen Entomologischen Gesellschaft, V59, P63; Rosengren Rainer, 1993, P308; ROSS KG, 1991, J EVOLUTION BIOL, V4, P117, DOI 10.1046/j.1420-9101.1991.4010117.x; ROSS KG, 1985, BEHAV ECOL SOCIOBIOL, V17, P349, DOI 10.1007/BF00293212; SATOH T, 1989, INSECT SOC, V36, P277, DOI 10.1007/BF02224881; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; STILLE M, 1991, BEHAV ECOL SOCIOBIOL, V28, P91; TSUJI K, 1990, ANIM BEHAV, V39, P843, DOI 10.1016/S0003-3472(05)80948-0; TSUJI K, 1988, BEHAV ECOL SOCIOBIOL, V23, P247, DOI 10.1007/BF00302947; TSUJI N, 1990, J MED ENTOMOL, V27, P446, DOI 10.1093/jmedent/27.4.446; Ulloa-Chacon P., 1988, Actes des Colloques Insectes Sociaux, V4, P177; WARD PS, 1983, BEHAV ECOL SOCIOBIOL, V12, P285, DOI 10.1007/BF00302896; WILSON EO, 1974, ANN ENTOMOL SOC AM, V67, P781, DOI 10.1093/aesa/67.5.781; WILSON EO, 1971, INSECT SOCIETIES; Yamauchi Katsusuke, 1995, Pacific Science, V49, P55 60 32 33 2 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAY 1996 76 1 83 92 10.2307/3545750 10 Ecology Environmental Sciences & Ecology UY433 WOS:A1996UY43300009 2019-02-26 J Bridges, TS; Heppell, S Bridges, TS; Heppell, S Fitness consequences of maternal effects in Streblospio benedicti (Annelida: Polychaeta) AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Maternal Effects on Early Life History, Their Persistence, and Impact on Organismal Ecology, at the Annual Meeting of the American-Society-of-Zoologists DEC 27-30, 1993 LOS ANGELES, CA Amer Soc Zoologists EGG SIZE; CLUTCH SIZE; PARENTAL INVESTMENT; REPRODUCTIVE EFFORT; PROPAGULE SIZE; OFFSPRING SIZE; LIFE HISTORIES; CAPITELLA SP; EVOLUTION; POPULATION The degree to which a female partitions resources between fecundity and per offspring investment is a central question in life-history theory. Maternal effects may influence the nature of this tradeoff through their effect on per offspring investment and subsequent offspring fitness. The purpose of this study was to determine the effect of female age and size on brood size (number of offspring), per offspring investment, and fitness in the polychaete Streblospio benedicti, Early stage embryos were collected from brooding females of known age and size over a period of 100 days; these embryos were counted and analyzed for their C and N content. Female size had a positive effect on brood size; larger females produced larger broods. However, brood size decreased with female age (females did not increase in size after reaching sexual maturity). Brood size declined 20-46% between 60 and 160 days of age. During this same age period per offspring investment, measured in terms of C and N, increased by 25%. Offspring survivorship and size at two weeks post-release from the female were used as measures of offspring fitness, Offspring survivorship increased 28% between 60 and 160 days of age. Increased growth in offspring from older females resulted in a 23% increase in offspring size at two weeks, Including the maternal age effect in two population models for S. benedicti increased population growth rate (lambda), Population growth was increased to a greater degree when the maternal effect was modeled by enhancing offspring survival compared to when fecundity was increased by the same proportional amount. This suggests that the maternal effect may be adaptive, particularly when conditions for offspring survival and growth are poor. N CAROLINA STATE UNIV, DEPT MARINE EARTH & ATMOSPHER SCI, RALEIGH, NC 27695 USA; N CAROLINA STATE UNIV, DEPT ZOOL, RALEIGH, NC 27695 USA AKESSON B, 1982, INT J INVER REP DEV, V5, P59; ANTONOVICS J, 1986, OECOLOGIA, V69, P277, DOI 10.1007/BF00377634; BAGENAL TB, 1969, J FISH BIOL, V1, P349, DOI 10.1111/j.1095-8649.1969.tb03882.x; BARNES H, 1965, J ANIM ECOL, V34, P391, DOI 10.2307/2656; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; BELK D, 1990, J CRUSTACEAN BIOL, V10, P128, DOI 10.2307/1548675; BELL SS, 1980, MARINE BENTHIC DYNAM, P179; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; BRIDGES TS, 1993, BIOL BULL, V184, P144, DOI 10.2307/1542224; BRIDGES TS, 1994, J EXP MAR BIOL ECOL, V177, P99, DOI 10.1016/0022-0981(94)90146-5; BRIDGES TS, 1992, THESIS N CAROLINA ST; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BRODY MS, 1984, OECOLOGIA, V61, P55, DOI 10.1007/BF00379089; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; Caswell H., 1989, MATRIX POPULATION MO; CAVERS PB, 1984, AM NAT, V124, P324, DOI 10.1086/284276; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHECKLEY DM, 1980, LIMNOL OCEANOGR, V25, P430, DOI 10.4319/lo.1980.25.3.0430; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; CHU JW, 1989, INVERTEBR REPROD DEV, V15, P131, DOI 10.1080/07924259.1989.9672033; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CONGDON JD, 1983, ECOLOGY, V64, P419, DOI 10.2307/1939959; EMLEN JM, 1984, POPULATION BIOL COEV; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GALLAGER SM, 1986, AQUACULTURE, V56, P105, DOI 10.1016/0044-8486(86)90021-9; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; GRASSLE JF, 1974, J MAR RES, V32, P253; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HELM MM, 1973, J MAR BIOL ASSOC UK, V53, P673, DOI 10.1017/S0025315400058872; HORWOOD JW, 1989, J MAR BIOL ASSOC UK, V69, P81, DOI 10.1017/S0025315400049122; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; KAPLAN RH, 1989, FUNCT ECOL, V3, P597, DOI 10.2307/2389574; KASULE FK, 1991, ECOL ENTOMOL, V16, P345, DOI 10.1111/j.1365-2311.1991.tb00226.x; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KRAEUTER JN, 1981, J EXP MAR BIOL ECOL, V56, P3, DOI 10.1016/0022-0981(81)90003-4; KUZNETSOV V A, 1973, Journal of Ichthyology, V13, P669; LEVIN LA, 1991, EVOLUTION, V45, P380, DOI 10.1111/j.1558-5646.1991.tb04412.x; LEVIN LA, 1986, MAR BIOL, V92, P103, DOI 10.1007/BF00392752; LEVIN LA, 1984, BIOL BULL, V166, P494, DOI 10.2307/1541157; LEVIN LA, 1990, ECOLOGY, V71, P2191, DOI 10.2307/1938632; LEVIN LA, 1986, BIOL BULL, V171, P143, DOI 10.2307/1541913; LEVIN LA, 1987, ECOLOGY, V68, P1877, DOI 10.2307/1939879; MARSH AG, 1990, LIMNOL OCEANOGR, V35, P710, DOI 10.4319/lo.1990.35.3.0710; MARSH E, 1986, COPEIA, P18; MARSHALL LD, 1990, CAN J ZOOL, V68, P44, DOI 10.1139/z90-008; MCCANN LD, 1989, J EXP MAR BIOL ECOL, V131, P233, DOI 10.1016/0022-0981(89)90115-9; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Michaels HJ, 1988, EVOL ECOL, V2, P157, DOI 10.1007/BF02067274; MONTELEONE DM, 1990, J EXP MAR BIOL ECOL, V140, P1, DOI 10.1016/0022-0981(90)90076-O; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; ORTON RA, 1990, FUNCT ECOL, V4, P91, DOI 10.2307/2389657; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PIANKA ER, 1970, ECOLOGY, V51, P703, DOI 10.2307/1934053; QIAN PY, 1992, J EXP MAR BIOL ECOL, V156, P23, DOI 10.1016/0022-0981(92)90014-2; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roff Derek A., 1992; ROSE MR, 1981, GENETICS, V97, P172; SEMLITSCH RD, 1985, OECOLOGIA, V65, P305, DOI 10.1007/BF00378903; SIBLY R, 1988, J THEOR BIOL, V133, P13, DOI 10.1016/S0022-5193(88)80021-3; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SKADSHEIM A, 1984, OIKOS, V43, P94, DOI 10.2307/3544250; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; STRATHMANN RR, 1992, EVOLUTION, V46, P972, DOI 10.1111/j.1558-5646.1992.tb00613.x; STRONG DR, 1972, ECOLOGY, V53, P1103, DOI 10.2307/1935422; TESSIER AJ, 1991, ECOLOGY, V72, P468, DOI 10.2307/2937188; THOMAS CS, 1983, IBIS, V125, P567, DOI 10.1111/j.1474-919X.1983.tb03151.x; TRAVIS J, 1987, EVOLUTION, V41, P145, DOI 10.1111/j.1558-5646.1987.tb05777.x; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; WATZIN MC, 1986, J EXP MAR BIOL ECOL, V98, P65, DOI 10.1016/0022-0981(86)90076-6; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D 82 40 40 1 9 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 0003-1569 AM ZOOL Am. Zool. APR 1996 36 2 132 146 15 Zoology Zoology UJ518 WOS:A1996UJ51800004 2019-02-26 J Reznick, D; Callahan, H; Llauredo, R Reznick, D; Callahan, H; Llauredo, R Maternal effects on offspring quality in poeciliid fishes AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Maternal Effects on Early Life History, Their Persistence, and Impact on Organismal Ecology, at the Annual Meeting of the American-Society-of-Zoologists DEC 27-30, 1993 LOS ANGELES, CA Amer Soc Zoologists LIFE-HISTORY EVOLUTION; VIVIPARITY; GUPPIES; SIZE We evaluated the effects of maternal environment on offspring size and composition in three species of poeciliid fishes. We chose food availability as the environmental factor for study. Mature females were assigned to either high or low food for an interval of time, then randomly reassigned to high or low food, with the restriction that there be equal numbers in each of four treatments: high-high, high-low, low-high, and low-low food availability. The three species chosen for study differ in the pattern of maternal provisioning. Poecilia reticulata and Priapichthys festae mothers provide all resources necessary for development as yolk, prior to fertilization. In contrast, Heterandria formosa mothers continue to provision the young throughout development. These species also differ in whether or not they have superfetation, or the ability to carry multiple broods of young in different stages of development. P. reticulata does not have superfetation while the other two species do. We were interested in whether the pattern of maternal provisioning or superfetation influenced the maternal effect. The two lecithotrophic species responded to low food by producing larger young with greater fat reserves. H. formosa, the matrotrophic species, responded to low food by producing smaller young. We propose that the production of large young in the face of low food availability might represent adaptive plasticity; matrotrophy might represent a constraint that prevents such an adaptive response. Superfetation had no impact on this maternal effect. Reznick, D (reprint author), UNIV CALIF RIVERSIDE,DEPT BIOL,RIVERSIDE,CA 92521, USA. reznick, david/0000-0002-1144-0568 FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; GLIWICZ ZM, 1992, OECOLOGIA, V91, P463, DOI 10.1007/BF00650317; GORDON M, 1950, CARE BREEDING LAB AN; GROVE BD, 1991, J MORPHOL, V209, P265, DOI 10.1002/jmor.1052090304; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; LAURIE WA, 1990, J ANIM ECOL, V59, P529, DOI 10.2307/4879; PARICHY DM, 1992, OECOLOGIA, V91, P579, DOI 10.1007/BF00650334; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D.N., 1989, P125; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1991, EVOLUTIONARY BIOL, P780; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; SCRIMSHAW NS, 1945, BIOL BULL, V88, P233, DOI 10.2307/1538312; Scrimshaw NS, 1944, BIOL BULL-US, V87, P37, DOI 10.2307/1538127; SCRIMSHAW NS, 1944, COPEIA, P180; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; TREXLER JC, 1985, COPEIA, P999, DOI 10.2307/1445254; Turner CL, 1937, BIOL BULL-US, V72, P145, DOI 10.2307/1537249; TURNER CL, 1940, COPEIA, P88; WOURMS JP, 1981, AM ZOOL, V21, P473 22 109 111 0 32 AMER SOC ZOOLOGISTS LAWRENCE 1041 NEW HAMPSHIRE ST, LAWRENCE, KS 66044 0003-1569 AM ZOOL Am. Zool. APR 1996 36 2 147 156 10 Zoology Zoology UJ518 WOS:A1996UJ51800005 2019-02-26 J Resetarits, WJ Resetarits, WJ Oviposition site choice and life history evolution AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Maternal Effects on Early Life History, Their Persistence, and Impact on Organismal Ecology, at the Annual Meeting of the American-Society-of-Zoologists DEC 27-30, 1993 LOS ANGELES, CA Amer Soc Zoologists BATTUS-PHILENOR; HYLA-CHRYSOSCELIS; POND COMMUNITIES; RANA-SYLVATICA; PREFERENCE; PREDATION; FROGS; PERFORMANCE; COMPETITION; BUTTERFLIES Studies of life history evolution, as well as much of life history theory, have typically focused on ''hard'' components of life histories; phenotypic characteristics that can be readily observed, quantified, and ultimately, connected rather directly to fitness. Typical of these are propagule size, propagule number, and age and size at maturity. What is largely missing from the study of life history evolution is consideration of the role of behavior, principally female oviposition site choice, in the evolution of life histories. For oviparous organisms, natural selection cannot produce locally optimized ''hard'' components of life history phenotypes without a consistent environmental context (whether invariant or variable); in a variable environment, that consistent environmental context can be most effectively provided by interactive oviposition site choice. I present a model of selection on oviposition site choice in the context of the evolution of ''hard'' components of life history phenotypes, along with some experimental data illustrating oviposition site choice in response to predators. The model and data are then related to the overall question of the role of oviposition site choice in life history evolution. The conclusion is that oviposition site choice must be under equally strong selection with egg size, egg number and the other hard components of life histories in order to generate and optimize locally adapted or ecologically specialized life history phenotypes, and must therefore, play a significant role in the evolution of life histories. UNIV ILLINOIS, DEPT ECOL ETHOL & EVOLUT, CHAMPAIGN, IL 61820 USA Resetarits, WJ (reprint author), ILLINOIS NAT HIST SURVEY, CTR AQUAT ECOL, CHAMPAIGN, IL 61820 USA. ALFORD RA, 1989, ECOLOGY, V70, P206, DOI 10.2307/1938427; ARNOLD SJ, 1994, AM NAT, V143, P317, DOI 10.1086/285606; BANKS B, 1987, HOLARCTIC ECOL, V10, P14; BERNARDO J, 1996, AM ZOOL, V36; CHESSON J, 1984, ENVIRON ENTOMOL, V13, P531, DOI 10.1093/ee/13.2.531; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DUNHAM AE, 1989, PHYSIOL ZOOL, V62, P335, DOI 10.1086/physzool.62.2.30156174; DUNNETT CW, 1955, J AM STAT ASSOC, V50, P1096; FAUTH JE, 1991, ECOLOGY, V72, P827, DOI 10.2307/1940585; Feeny P., 1983, P27; FRY JD, 1996, IN PRESS AM NAT; Heyer W.R., 1975, Biotopica, V7, P100; Holomuzki JR, 1995, COPEIA, P607, DOI 10.2307/1446757; HOPEY ME, 1994, COPEIA, P1023; HOWARD RD, 1978, ECOLOGY, V59, P789, DOI 10.2307/1938783; JOHNALDER HB, 1988, AM NAT, V132, P506, DOI 10.1086/284868; KATS LB, 1992, COPEIA, P468, DOI 10.2307/1446206; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LAWLER SP, 1993, ECOLOGY, V74, P174, DOI 10.2307/1939512; LEVIN SA, 1974, P NATL ACAD SCI USA, V71, P2744, DOI 10.1073/pnas.71.7.2744; MacAuthur R. H., 1967, THEORY ISLAND BIOGEO; MAGNUSSON WE, 1991, OECOLOGIA, V86, P310, DOI 10.1007/BF00317595; MCPEEK MA, 1989, OIKOS, V56, P187, DOI 10.2307/3565335; MORIN PJ, 1983, ECOL MONOGR, V53, P119, DOI 10.2307/1942491; Papaj D.R., 1983, P77; PAPAJ DR, 1987, OECOLOGIA, V74, P24, DOI 10.1007/BF00377341; PETRANKA JW, 1991, COPEIA, P234, DOI 10.2307/1446271; PETRANKA JW, 1994, COPEIA, P691, DOI 10.2307/1447185; PETRANKA JW, 1987, ANIM BEHAV, V35, P420, DOI 10.1016/S0003-3472(87)80266-X; RAUSHER MD, 1981, ECOL MONOGR, V51, P1, DOI 10.2307/2937304; RAUSHER MD, 1978, SCIENCE, V200, P1071, DOI 10.1126/science.200.4345.1071; RAUSHER MD, 1979, ECOLOGY, V60, P503, DOI 10.2307/1936070; RAUSHER MD, 1983, ANIM BEHAV, V31, P341, DOI 10.1016/S0003-3472(83)80052-9; RAUSHER MD, 1980, EVOLUTION, V34, P342, DOI 10.1111/j.1558-5646.1980.tb04823.x; RAUSHER MD, 1993, VARIABLE PLANTS HERB, P223; Resetarits William, 1995, Bulletin of the Ecological Society of America, V76, P380; RESETARITS WJ, 1989, ECOLOGY, V70, P220, DOI 10.2307/1938428; RESETARITS WJ, 1991, ECOLOGY, V72, P778, DOI 10.2307/1940580; RICHIE SA, 1992, ENVIRON ENTOMOL, V21, P737; RICHIE SA, 1994, J AM MOSQUITO CONT A, V10, P380; Roff Derek A., 1992; Roosenburg WM, 1996, AM ZOOL, V36, P157; SEALE DB, 1982, COPEIA, P627, DOI 10.2307/1444663; SINGER MC, 1988, EVOLUTION, V42, P977, DOI 10.1111/j.1558-5646.1988.tb02516.x; SINGER MC, 1984, S R ENTOMOL SOC, V11, P81; Singer MC, 1994, ECOSCIENCE, V1, P107, DOI 10.1080/11956860.1994.11682234; SKELLY DK, 1995, ECOLOGY, V76, P150, DOI 10.2307/1940638; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH DC, 1983, ECOLOGY, V64, P501, DOI 10.2307/1939970; Stearns SC., 1992, EVOLUTION LIFE HIST; Steel R. G. D., 1980, PRINCIPLES PROCEDURE; WALDMAN B, 1982, BEHAV ECOL SOCIOBIOL, V10, P169, DOI 10.1007/BF00299681; WERNER EE, 1994, ECOLOGY, V75, P1368, DOI 10.2307/1937461; WHITTAKER RH, 1977, THEOR POPUL BIOL, V12, P117, DOI 10.1016/0040-5809(77)90039-9; Wilbur H.M, 1984, NEW ECOLOGY NOVEL AP, P114; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; WILBUR HM, 1985, ECOLOGY, V66, P1106, DOI 10.2307/1939162; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WOODWARD BD, 1983, ECOLOGY, V64, P1549, DOI 10.2307/1937509 60 172 187 3 47 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 0003-1569 AM ZOOL Am. Zool. APR 1996 36 2 205 215 11 Zoology Zoology UJ518 WOS:A1996UJ51800010 2019-02-26 J Bernardo, J Bernardo, J The particular maternal effect of propagule size, especially egg size: Patterns, models, quality of evidence and interpretations AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Maternal Effects on Early Life History, Their Persistence, and Impact on Organismal Ecology, at the Annual Meeting of the American-Society-of-Zoologists DEC 27-30, 1993 LOS ANGELES, CA Amer Soc Zoologists ETHEOSTOMA-SPECTABILE PISCES; FROG BOMBINA-ORIENTALIS; SAFE-HARBOR HYPOTHESIS; LIFE-HISTORY EVOLUTION; CLUTCH SIZE; OFFSPRING SIZE; PARENTAL CARE; REPRODUCTIVE EFFORT; WEIGHT VARIATION; BODY SIZE Propagule size is perhaps the most widely recognized and studied maternal effect in ecology, yet its evolution is not well-understood. The large body of extant optimality theory treats parental investment solely as an ecological problem, largely from the perspective of progeny. This approach has had limited success explaining the ubiquitous variation in propagule size within and among natural populations at most temporal and spatial scales. This problem aside, an unassailable gap in propagule size theory is that it pays little heed to the fact that offspring size is a joint phenotype of two individuals- the offspring and its mother. Hence, the ecology of mothers is decidedly as important in shaping the evolution of propagule size phenotypes. There are two reasons to suspect that this gap may account for the lack of success of optimality theory to explain variation in nature. The first is that optimality models of propagule size make no allowance for, nor can they explain, widespread, multivariate correlations between maternal characters and clutch parameters, namely the positive phenotypic covariances of maternal age, size, fecundity, and per-propagule investment found in many organisms. If per-propagule investment is optimized by selection based on the expectation of offspring fitness, then why should that phenotype be a function of maternal age or size when the ecological circumstances of progeny are not changing as a function of maternal age or size? The second gap in current theory is that, like all optimization theory, it is patently non-genetic in that it is assumed that the phenotypes optimized are evolutionarily accessible. Recent maternal effects theory indicates that traits subject to maternal influence behave in unanticipated ways. Specifically, there may be time lags in response to selection, and hence, selection away from the optimum phenotype. This paper explores a suite of issues pertaining to the evolution of propagule size from the broader perspective of propagule size as a maternal effect (PSME) with a goal of widening the lens through which propagule size is viewed by evolutionary ecologists. Two themes are developed. First, I suggest that, to understand egg size variance and its implications for both maternal and offspring fitness, it is necessary to consider explicitly the ecological context in which a mother is producing eggs, not just that into which offspring will enter. I argue that some of the variables that have only been incorporated in pairwise fashion (or not at all) into studies of propagule size might account for the lack of agreement about how this important life history feature evolves. Further, I suggest that failure to consider other sources of selection on maternal phenotypes, driven by a narrow adaptationist view that has historically been taken of PSMEs, has obfuscated many interesting questions surrounding their coevolution with maternal characters. Thus, the second theme is that it is necessary to consider other explanations for why propagule size varies apart from those pertaining to offspring fitness per se'. Based on a detailed review of the empirical literature, I conclude that the concept of an optimal propagule size is not only an insufficient construct to explain the evolution of propagule size, but that continued reliance on an optimization approach is likely to stifle development of more realistic and predictive theory for the evolution of this key life history trait. Novel theory should incorporate realities from physiology, development and genetics and should accommodate the dynamic nature of the selective environments in which propagule size evolves, all of which have been shown by empiricists to play a role in determining propagule size phenotypes. A key feature of this theory should be the explicit treatment of propagule size as a maternal effect. Bernardo, J (reprint author), UNIV TEXAS, DEPT ZOOL, AUSTIN, TX 78712 USA. Bernardo, Joseph/C-2403-2008 Bernardo, Joseph/0000-0002-5516-4710 Arnold Stean J., 1994, P17; ARNOLD TW, 1992, CAN J ZOOL, V70, P1904, DOI 10.1139/z92-259; BAGENAL TB, 1969, J FISH BIOL, V1, P349, DOI 10.1111/j.1095-8649.1969.tb03882.x; BARNES H, 1965, J ANIM ECOL, V34, P391, DOI 10.2307/2656; BEACHAM TD, 1985, CAN J ZOOL, V63, P847, DOI 10.1139/z85-125; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; BERNARDO J, 1994, AM NAT, V143, P14, DOI 10.1086/285594; BERNARDO J, 1991, TRENDS ECOL EVOL, V6, P1, DOI 10.1016/0169-5347(91)90137-M; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; Bernardo J, 1996, AM ZOOL, V36, P83; BERNARDO J, 1994, SYST BIOL, V43, P139; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; BERVEN KA, 1988, OECOLOGIA, V75, P67, DOI 10.1007/BF00378815; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BRADFORD DF, 1990, PHYSIOL ZOOL, V63, P1157, DOI 10.1086/physzool.63.6.30152638; BRADFORD DF, 1984, RESP METABOLISM EMBR, P87; BRIDGES TS, 1993, BIOL BULL, V184, P144, DOI 10.2307/1542224; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BRODIE ED, 1989, AM MIDL NAT, V122, P51; BRODY MS, 1984, OECOLOGIA, V61, P55, DOI 10.1007/BF00379089; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; CAVERS PB, 1984, AM NAT, V124, P324, DOI 10.1086/284276; CHAMBERS RC, 1989, FISH B-NOAA, V87, P515; Chambers RC, 1996, AM ZOOL, V36, P180; CHAMBERS RC, 1993, T AM FISH SOC, V122, P404, DOI 10.1577/1548-8659(1993)122<0404:PVIFPA>2.3.CO;2; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CHECKLEY DM, 1980, LIMNOL OCEANOGR, V25, P430, DOI 10.4319/lo.1980.25.3.0430; Collazo A, 1996, AM ZOOL, V36, P116; Congdon J.D., 1990, P109; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; CRUMP ML, 1979, COPEIA, P626; CRUMP ML, 1981, AM NAT, V117, P724, DOI 10.1086/283755; CRUMP ML, 1984, COPEIA, P302, DOI 10.2307/1445185; DANGERFIELD JM, 1990, OECOLOGIA, V82, P251, DOI 10.1007/BF00323542; Darwin C, 1859, ORIGIN SPECIES; Darwin C, 1871, DESCENT MAN SELECTIO; DUNHAM AE, 1989, PHYSIOL ZOOL, V62, P335, DOI 10.1086/physzool.62.2.30156174; EBERT D, 1993, ARCH HYDROBIOL S, V90, P1; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; ELINSON RP, 1989, LIFE SCI R, V45, P251; ELINSON RP, 1987, DEV EVOLUTIONARY PRO, P1; EMLET RB, 1989, PALEOBIOLOGY, V15, P223; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; FERGUSON GW, 1982, HERPETOLOGICA, V38, P178; FORD NB, 1989, HERPETOLOGICA, V45, P75; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; GARCIABARROS E, 1994, BIOL J LINN SOC, V51, P309, DOI 10.1006/bijl.1994.1026; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; GLIWICZ ZM, 1992, OECOLOGIA, V91, P463, DOI 10.1007/BF00650317; GORDON IJ, 1989, FUNCT ECOL, V3, P285, DOI 10.2307/2389367; GOULDEN CE, 1987, OECOLOGIA, V72, P28, DOI 10.1007/BF00385040; GREEN J, 1966, J ANIM ECOL, V35, P77, DOI 10.2307/2691; Heins D.C., 1987, P223; HOM CL, 1990, HERPETOLOGICA, V46, P304; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; HUTCHINGS JA, 1985, OIKOS, V45, P118, DOI 10.2307/3565229; IGUCHI K, 1994, COPEIA, P184; ITO Y, 1980, COMP ECOLOGY; IVERSON JB, 1993, CAN J ZOOL, V71, P2448, DOI 10.1139/z93-341; JANZEN DH, 1977, AM J BOT, V64, P347, DOI 10.2307/2441978; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; KAPLAN RH, 1979, AM NAT, V113, P671, DOI 10.1086/283425; KARLSSON B, 1984, OIKOS, V43, P376, DOI 10.2307/3544156; KARLSSON B, 1985, ECOL ENTOMOL, V10, P205, DOI 10.1111/j.1365-2311.1985.tb00549.x; KASULE FK, 1991, ECOL ENTOMOL, V16, P345, DOI 10.1111/j.1365-2311.1991.tb00226.x; KERFOOT WC, 1974, ECOLOGY, V55, P1259, DOI 10.2307/1935454; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; KRAEUTER JN, 1981, J EXP MAR BIOL ECOL, V56, P3, DOI 10.1016/0022-0981(81)90003-4; KURAMOTO M, 1978, EVOLUTION, V32, P287, DOI 10.1111/j.1558-5646.1978.tb00644.x; KUZNETSOV V A, 1973, Journal of Ichthyology, V13, P669; Lack D, 1954, NATURAL REGULATION A; LAGOMARSINO IV, 1988, COPEIA, P1086; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; LANCE V, 1983, CAN J ZOOL, V61, P1744, DOI 10.1139/z83-225; LANDE R, 1990, GENET RES, V55, P189, DOI 10.1017/S0016672300025520; LEBLANC Y, 1987, CAN J ZOOL, V65, P3044, DOI 10.1139/z87-461; LESSELLS CM, 1989, J EVOLUTION BIOL, V2, P457, DOI 10.1046/j.1420-9101.1989.2060457.x; LESSIOS HA, 1987, J EXP MAR BIOL ECOL, V114, P217; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MARSH E, 1986, COPEIA, P18; MARSH E, 1984, COPEIA, P291, DOI 10.2307/1445184; MARSHALL LD, 1990, CAN J ZOOL, V68, P44, DOI 10.1139/z90-008; MARSHALL NB, 1953, EVOLUTION, V7, P328, DOI 10.2307/2405343; MARTIN RD, 1985, NATURE, V313, P220, DOI 10.1038/313220a0; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; McEdward LR, 1996, AM ZOOL, V36, P169; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MCGINLEY MA, 1989, EVOL ECOL, V3, P150, DOI 10.1007/BF02270917; McGinley MA, 1988, EVOL ECOL, V2, P77, DOI 10.1007/BF02071590; MEATHREL CE, 1993, J ZOOL, V230, P679, DOI 10.1111/j.1469-7998.1993.tb02716.x; MIRE JB, 1994, COPEIA, P100; MOORE RA, 1987, ECOL ENTOMOL, V12, P401, DOI 10.1111/j.1365-2311.1987.tb01021.x; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; NILSSON JA, 1993, J ZOOL, V230, P469, DOI 10.1111/j.1469-7998.1993.tb02699.x; Noble R.C, 1991, PHYSICAL INFLUENCES, P17; NUSSBAUM RA, 1987, RES POPUL ECOL, V29, P27, DOI 10.1007/BF02515423; NUSSBAUM RA, 1989, AM NAT, V133, P591, DOI 10.1086/284939; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; NUSSBAUM RA, 1985, MISC PUBL MUSEUM ZOO, V169, P1; OLSEN PD, 1993, OIKOS, V66, P447, DOI 10.2307/3544939; PARICHY DM, 1992, OECOLOGIA, V91, P579, DOI 10.1007/BF00650334; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PIANKA ER, 1976, AM ZOOL, V16, P775; Pianka ER, 1974, EVOLUTIONARY ECOLOGY; PICARD JL, 1988, STAR TREK NEXT GEN; PONTIER D, 1993, OIKOS, V66, P424, DOI 10.2307/3544936; POTTI J, 1993, CAN J ZOOL, V71, P1534, DOI 10.1139/z93-217; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; RAUSHER MD, 1992, EVOLUTION, V46, P616, DOI 10.1111/j.1558-5646.1992.tb02070.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REID WV, 1990, EVOLUTION, V44, P1780, DOI 10.1111/j.1558-5646.1990.tb05248.x; Resetarits WJ, 1996, AM ZOOL, V36, P205; RESETARITS WJ, 1988, CAN J ZOOL, V66, P329, DOI 10.1139/z88-049; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D, 1996, AM ZOOL, V36, P147; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; REZNICK D, 1982, AM NAT, V120, P181, DOI 10.1086/283981; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, OECOLOGIA, V73, P401, DOI 10.1007/BF00385257; REZNICK DN, 1991, 4 ICSEB P, V2, P780; RICHARDS LJ, 1980, CAN J ZOOL, V58, P1452, DOI 10.1139/z80-199; RISKA B, 1985, GENET RES, V45, P287, DOI 10.1017/S0016672300022278; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.ecolsys.18.1.209; Roff Derek A., 1992; ROHWER FC, 1988, AUK, V105, P161; Roosenburg WM, 1996, AM ZOOL, V36, P157; ROSSITER MC, 1991, FUNCT ECOL, V5, P386, DOI 10.2307/2389810; ROWE JW, 1994, COPEIA, P1034; Salthe S.N., 1973, P229; SALTHE SN, 1969, AM MIDL NAT, V81, P467, DOI 10.2307/2423983; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SCHULTZ DL, 1991, EVOL ECOL, V5, P415, DOI 10.1007/BF02214158; SCHULTZ DL, 1986, THESIS U MICHIGAN AN; SELCER KW, 1990, HERPETOLOGICA, V46, P15; SEMLITSCH RD, 1990, ECOLOGY, V71, P1789, DOI 10.2307/1937586; SEMLITSCH RD, 1985, OECOLOGIA, V65, P305, DOI 10.1007/BF00378903; Seymour R.S, 1984, RESP METABOLISM EMBR; SEYMOUR RS, 1995, PHYSIOL ZOOL, V68, P1; SHINE R, 1989, AM NAT, V134, P311, DOI 10.1086/284982; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; SINERVO B, 1989, OECOLOGIA, V78, P411, DOI 10.1007/BF00379118; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sober E., 1984, NATURE SELECTION; SPIGHT TM, 1975, OECOLOGIA, V21, P1, DOI 10.1007/BF00345889; Stearns SC., 1992, EVOLUTION LIFE HIST; STEELE DH, 1977, AM NAT, V111, P371, DOI 10.1086/283167; STRATHMANN RR, 1995, AM ZOOL, V35, P426; STRATHMANN RR, 1984, J EXP MAR BIOL ECOL, V84, P85, DOI 10.1016/0022-0981(84)90232-6; TAKAHASHI H, 1988, SCI REP NIIGATA U D, V25, P19; Taylor B.E., 1985, Advances in Limnology, V21, P285; TEMME DH, 1986, EVOLUTION, V40, P414, DOI 10.1111/j.1558-5646.1986.tb00481.x; TESSIER AJ, 1991, ECOLOGY, V72, P468, DOI 10.2307/2937188; TESSIER AJ, 1987, LIMNOL OCEANOGR, V32, P680, DOI 10.4319/lo.1987.32.3.0680; TESSIER AJ, 1983, LIMNOL OCEANOGR, V28, P667, DOI 10.4319/lo.1983.28.4.0667; THOMAS CS, 1983, IBIS, V125, P567, DOI 10.1111/j.1474-919X.1983.tb03151.x; TROYER K, 1983, OECOLOGIA, V58, P340, DOI 10.1007/BF00385233; VANBUSKIRK J, 1994, COPEIA, P66; VANDAMME R, 1992, HERPETOLOGICA, V48, P220; VANNOORDWIJK AJ, 1981, GENETICA, V55, P221, DOI 10.1007/BF00127206; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; WERNER YL, 1989, ISRAEL J ZOOL, V35, P199; White H.B. III, 1991, P1, DOI 10.1017/CBO9780511585739.002; WIKLUND C, 1983, OIKOS, V40, P53, DOI 10.2307/3544198; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WILLIAMS TD, 1993, OIKOS, V67, P250, DOI 10.2307/3545469; WILLIAMS TD, 1993, OECOLOGIA, V96, P331, DOI 10.1007/BF00317502; WILSON DC, 1969, J FISH RES BOARD CAN, V26, P2339, DOI 10.1139/f69-227; WILSON DS, 1975, AM NAT, V109, P769, DOI 10.1086/283042; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; WOODWARD B, 1987, SOUTHWEST NAT, V32, P127, DOI 10.2307/3672018; WOODWARD BD, 1987, SOUTHWEST NAT, V32, P13, DOI 10.2307/3672004; WOOTTON RJ, 1973, J FISH BIOL, V5, P89, DOI 10.1111/j.1095-8649.1973.tb04433.x; ZONOVA A S, 1973, Journal of Ichthyology, V13, P679 184 498 511 1 94 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 0003-1569 AM ZOOL Am. Zool. APR 1996 36 2 216 236 21 Zoology Zoology UJ518 WOS:A1996UJ51800011 2019-02-26 J Thomson, DL Thomson, DL Age-specific life history tactics in organisms with determinate growth: Optimal models for non-optimal behavior? ECOLOGICAL RESEARCH English Article age; evolutionary model; life history evolution; reproductive effort; senescence REPRODUCTIVE EFFORT; CALIFORNIA GULL Among organisms with determinate growth, optimization models predict that reproductive effort should increase as individuals approach old age, but the assumptions of these models may be inappropriate because the senescence that generates the necessary selective pressure may be not itself be optimal. Population genetics models were constructed to examine whether genes for age-specific changes in reproductive effort could invade a population in which senescence was maintained at equilibrium levels by a balance between mutation and selection. In asexually reproducing organisms, it was found that strategies of increasing reproductive effort could not normally invade the population. In sexually reproducing organisms, however, recombination was found to be important and genes for age-specific changes in effort could spread in the population under most circumstances. UNIV GLASGOW, INST BIOMED & LIFE SCI, DIV ENVIRONM & EVOLUTIONARY BIOL, APPL ORNITHOL UNIT, GLASGOW G12 8QQ, LANARK, SCOTLAND AYALA FJ, 1982, POPULATION EVOLUTION; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Clutton-Brock T. H, 1991, MONOGRAPHS BEHAV ECO; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Crow J, 1986, BASIC CONCEPTS POPUL; CROW J F, 1970, P591; EWENS WJ, 1969, POPULATION GENETICS; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; GUSTAFSSON L, 1990, POPULATION BIOL PASS; HAMER KC, 1991, J ANIM ECOL, V60, P693, DOI 10.2307/5306; Hartl D. L., 1989, PRINCIPLES POPULATIO; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; NEWTON I, 1989, LIFETIME REPRODUCTIO; NUR N, 1988, ARDEA, V76, P155; NUR N, 1984, OIKOS, V43, P407, DOI 10.2307/3544163; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PUGESEK BH, 1981, SCIENCE, V212, P822, DOI 10.1126/science.212.4496.822; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Saether B.-E., 1990, Current Ornithology, V7, P251; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S 25 0 1 0 5 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0912-3814 1440-1703 ECOL RES Ecol. Res. APR 1996 11 1 61 68 10.1007/BF02347820 8 Ecology Environmental Sciences & Ecology UG321 WOS:A1996UG32100007 2019-02-26 J Chippindale, AK; Chu, TJF; Rose, MR Chippindale, AK; Chu, TJF; Rose, MR Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster EVOLUTION English Article aging; development rate; Drosophila melanogaster; growth rate; life-history evolution; starvation; stress resistance; trade-offs LIFE-HISTORY EVOLUTION; POSTPONED SENESCENCE; ENVIRONMENTAL-STRESS; FITNESS COMPONENTS; SELECTION; DESICCATION; HERITABILITY; GENERATIONS; LONGEVITY; SIZE The measurement of trade-offs may be complicated when selection exploits multiple avenues of adaptation or multiple life-cycle stages. We surveyed 10 populations of Drosophila melanogaster selected for increased resistance to starvation for 60 generations, their paired controls, and their mutual ancestors (a total 30 outbred populations) for evidence of physiological and life-history trade-offs that span life-cycle stages. The directly selected lines showed an impressive response to starvation selection, with mature adult females resisting starvation death 4-6 times longer than unselected controls or ancestors-up to a maximum of almost 20 days. Starvation-selected flies are already 80% more resistant to starvation death than their controls immediately upon eclosion, suggesting that a significant portion of their selection response was owing to preadult growth and acquisition of metabolites relevant to the stress. These same lines exhibited significantly longer development and lower viability in the larval and pupal stages. Weight and lipid measurements on one of the starvation-selected treatments (SB1-5) its control populations (CB1-5), and their ancestor populations (B-1-5) revealed three important findings. First, starvation resistance and lipid content were linearly correlated; second, larval lipid acquisition played a major role in the evolution of adult starvation resistance; finally, increased larval growth rate and lipid acquisition had a fitness cost exacted in reduced viability and slower development. This study implicates multiple life-cycle stages in the response to selection for the stress resistance of only one stage. Our starvation-selected populations illustrate a case that may be common in nature. Patterns of genetic correlation may prove misleading unless multiple pleiotropic interconnections are resolved. UNIV CALIF IRVINE, DEPT ECOL & EVOLUTIONARY BIOL, IRVINE, CA 92717 USA Bakker K., 1961, Archives Neerlandaises de Zoologie Leiden, V14, P200; BLOWS MW, 1993, EVOLUTION, V47, P1255, DOI 10.1111/j.1558-5646.1993.tb02151.x; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CHIPPINDALE AK, 1994, EVOLUTION, V48, P1880, DOI 10.1111/j.1558-5646.1994.tb02221.x; EWING ARTHUR W., 1961, ANIMAL BEHAVIOUR, V9, P93, DOI 10.1016/0003-3472(61)90055-0; Fisher R.A., 1930, GENETICAL THEORY NAT; GRAVES JL, 1992, PHYSIOL ZOOL, V65, P268, DOI 10.1086/physzool.65.2.30158253; HARSHMAN LG, 1994, EVOLUTION, V48, P758, DOI 10.1111/j.1558-5646.1994.tb01359.x; HOFFMANN AA, 1993, BIOL J LINN SOC, V48, P43, DOI 10.1006/bijl.1993.1004; HOFFMANN AA, 1989, BIOL J LINN SOC, V37, P117, DOI 10.1111/j.1095-8312.1989.tb02098.x; Hoffmann AA, 1991, EVOLUTIONARY GENETIC; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; IVES PT, 1970, EVOLUTION, V24, P507, DOI 10.1111/j.1558-5646.1970.tb01785.x; LENSKI RE, 1991, AM NAT, V138, P1315, DOI 10.1086/285289; LEROI AM, 1994, AM NAT, V143, P381, DOI 10.1086/285609; LEROI AM, 1994, EVOLUTION, V48, P1258, DOI 10.1111/j.1558-5646.1994.tb05310.x; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; NICHOLSON AJ, 1957, COLD SPRING HARB SYM, V22, P153, DOI 10.1101/SQB.1957.022.01.017; PARTRIDGE L, 1983, ANIM BEHAV, V31, P871, DOI 10.1016/S0003-3472(83)80242-5; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; ROBERTSON FW, 1957, J GENET, V55, P428, DOI DOI 10.1007/BF02984061; Roff Derek A., 1992; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1990, INSECT LIFE CYCLES G, P91; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; SPIELMAN A, 1957, AM J HYG, V65, P404, DOI 10.1093/oxfordjournals.aje.a119878; Stearns SC., 1992, EVOLUTION LIFE HIST; TANTAWY AO, 1960, AM NAT, V94, P395, DOI 10.1086/282143; WIGGLESWORTH VB, 1949, J EXP BIOL, V26, P150; WILLIAMS KL, 1977, J INSECT PHYSIOL, V23, P659, DOI 10.1016/0022-1910(77)90080-4; Wright S, 1977, EVOLUTION GENETICS P; ZWAAN BJ, 1991, HEREDITY, V66, P29, DOI 10.1038/hdy.1991.4 41 176 179 0 36 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution APR 1996 50 2 753 766 10.2307/2410848 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UJ156 WOS:A1996UJ15600025 28568920 Bronze 2019-02-26 J Stearns, SC; Kaiser, M Stearns, SC; Kaiser, M Effects on fitness components of P-element inserts in Drosophila melanogaster: Analysis of trade-offs EVOLUTION English Article aging; Drosophila; genetic engineering; life-history evolution; lifespan; trade-offs CORRELATED RESPONSES; ARTIFICIAL SELECTION; REPRODUCTION; SENESCENCE; COST; EVOLUTION We analyzed the trade-offs between fitness components detected in four experiments in which traits were manipulated by inserting small (control) and large (treatment) P-elements into the Drosophila melanogaster genome. Treatment effects and the interactions of treatment with temperature, experiment, and line were caused by the greater length and different positions of the treatment insert. In inbred flies, the treatment decreased early and total fecundity. Whether it increased the lifespan of mated females depended upon adult density. Analysis of line-by-treatment-by-temperature interactions revealed hidden trade-offs that would have been missed by other methods. They included a significant trade-off between lifespan and early fecundity. At 25 degrees C high early fecundity was associated with decreased reproductive rates and increased mortality rates 10-15 days later and persisting throughout life, but not at 29.5 degrees C. Correlations with Gompertz coefficients suggested that flies that were heavier at eclosion also aged more slowly and that flies that aged more slowly had higher fecundity late in life at 25 degrees C. The results support the view that lifespan trades off with fecundity and that late fecundity trades off with rate of aging in fruitflies. Genetic engineering is an independent method for the analysis of trade-offs that complements selection experiments. Stearns, SC (reprint author), UNIV BASEL,INST ZOOL,RHEINSPRUNG 9,CH-4051 BASEL,SWITZERLAND. Stearns, Stephen/F-4099-2012 Kaiser, Marcel/0000-0003-1785-7302; Stearns, Stephen/0000-0002-6621-4373 BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; BELLEN HJ, 1989, GENE DEV, V3, P1288, DOI 10.1101/gad.3.9.1288; COOLEY L, 1988, SCIENCE, V239, P1121, DOI 10.1126/science.2830671; Dingle H., 1982, EVOLUTION GENETICS L; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HIRSCHFIELD MF, 1974, P NATL ACAD SCI USA, V72, P2227; HUGHES KA, 1994, NATURE, V367, P64, DOI 10.1038/367064a0; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LEROI AM, 1994, EVOLUTION, V48, P1258, DOI 10.1111/j.1558-5646.1994.tb05310.x; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LEWONTIN RC, 1974, AM J HUM GENET, V26, P400; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; Mayr E., 1963, ANIMAL SPECIES EVOLU; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DN, 1986, EVOLUTION, V40, P1338, DOI 10.1111/j.1558-5646.1986.tb05757.x; ROBERTSON HM, 1988, GENETICS, V118, P461; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; *SAS I, 1985, SAS US GUID; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Schmalhausen I.I., 1949, FACTORS OF EVOLUTION; SHEPHERD JCW, 1989, P NATL ACAD SCI USA, V86, P7520, DOI 10.1073/pnas.86.19.7520; SHIKAMA N, 1994, P NATL ACAD SCI USA, V91, P4199, DOI 10.1073/pnas.91.10.4199; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1993, AM NAT, V142, P961, DOI 10.1086/285584; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1993, GENETICA, V91, P167, DOI 10.1007/BF01435996; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; Williams GC, 1966, ADAPTATION NATURAL S; Wright S, 1969, EVOLUTION GENETICS P, V2; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x 42 12 12 0 6 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution APR 1996 50 2 795 806 10.2307/2410852 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UJ156 WOS:A1996UJ15600029 28568924 Bronze 2019-02-26 J Lacey, EP Lacey, EP Parental effects in Plantago lanceolata L .1. A growth chamber experiment to examine pre- and postzygotic temperature effects EVOLUTION English Article germination; growth; life-history evolution; maternal effects; onset of reproduction; parental effects; paternal effects; Plantago lanceolata; pre- and postzygotic effects; seed weight; temperature EXPERIMENTAL ECOLOGICAL GENETICS; SEED SIZE VARIATION; RELEVANT MORPHOLOGICAL VARIABILITY; LYCHNIS-FLOS-CUCULI; ENVIRONMENTAL INDUCTION; DESMODIUM-PANICULATUM; HERITABLE CHANGES; MATERNAL INHERITANCE; COMPETITIVE ABILITY; CHLOROPLAST DNA In spite of the potential evolutionary importance of parental effects, many aspects of these effects remain inadequately explained. This paper explores both their causes and potential consequences or the evolution of life-history traits in plants. In a growth chamber experiment, I manipulated the pre- and postzygotic temperatures of both parents of controlled crosses of Plantago lanceolata. All offspring traits were affected by parental temperature. On average, low parental temperature increased seed weight, reduced germination and offspring growth rate, and accelerated onset of reproduction by 7%, 50%, 5%, and 47%, respectively, when compared to the effects of high parental temperature, Both pre- and postzygotic parental temperatures (i.e., prior to fertilization vs. during fertilization and seed set, respectively) influenced offspring traits but not always in the same direction. In all cases, however, the postzygotic effect was stronger. The prezygotic effects were more often transmitted paternally than maternally. Growth and onset of reproduction were influenced both directly by parental temperature as well as indirectly via the effects of parental temperature on seed weight and germination. Significant interactions between parental genotypes and prezygotic temperature treatment (G x E interactions) show that genotypes differ in their intergenerational responses to temperature with respect to germination and growth. The data suggest that temperature is involved in both genetically based and environmentally induced parental effects and that parental temperature may accelerate the rate of evolutionary change in flowering time in natural populations of P. lanceolata. The environmentally induced temperature effects, as mediated through G x (prezygotic) E interactions are not likely to affect the rate or direction of evolutionary change in the traits examined because postzygotic temperature effects greatly exceed prezygotic effects. Lacey, EP (reprint author), UNIV N CAROLINA,DEPT BIOL,EBERHART BLDG,GREENSBORO,NC 27412, USA. AARSSEN LW, 1990, AM J BOT, V77, P1231, DOI 10.2307/2444634; Aksel R., 1977, Genetic diversity in plants. IV. Genetics of quantitative characters., P269; ALEXANDER HM, 1985, J ECOL, V73, P271, DOI 10.2307/2259783; ANTONOVICS J, 1986, OECOLOGIA, V69, P277, DOI 10.1007/BF00377634; BEDDOWS AR, 1962, HEREDITY, V17, P501, DOI 10.1038/hdy.1962.51; Bertin R. I., 1988, Plant reproductive ecology: patterns and strategies, P30; BIERE A, 1991, J EVOLUTION BIOL, V4, P467, DOI 10.1046/j.1420-9101.1991.4030467.x; BIERE A, 1991, J EVOLUTION BIOL, V4, P447, DOI 10.1046/j.1420-9101.1991.4030447.x; COCKERHAM C. CLARK, 1963, NATL ACAD SCI NATL RES COUNC PUBL, V982, P53; CORRIVEAU JL, 1988, AM J BOT, V75, P1443, DOI 10.2307/2444695; COWLEY DE, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P762; CULLIS CA, 1977, HEREDITY, V38, P129, DOI 10.1038/hdy.1977.19; CULLIS CA, 1981, HEREDITY, V47, P87, DOI 10.1038/hdy.1981.61; DURRANT A, 1962, HEREDITY, V17, P27, DOI 10.1038/hdy.1962.2; DURRANT A, 1973, HEREDITY, V30, P368; EDWARDS KJR, 1970, HEREDITY, V25, P179, DOI 10.1038/hdy.1970.23; Elgersma A., 1989, Sexual Plant Reproduction, V2, P225; FALCONER D. S., 1965, Genetics today. Proceedings of the XI International Congress of Genetics, The Hague, the Netherlands, September, 1963., V3, P763; FALCONER DS, 1983, INTRO QUANTITATIVE G; FREEMAN DC, 1985, BOT GAZ, V146, P137, DOI 10.1086/337508; GARWOOD DL, 1970, CROP SCI, V10, P39, DOI 10.2135/cropsci1970.0011183X001000010015x; GAWEL NJ, 1987, THEOR APPL GENET, V72, P84; GIMELFARB A, 1986, GENETICS, V114, P333; GROSS KL, 1984, J ECOL, V72, P369, DOI 10.2307/2260053; GUTTERMAN Y, 1980, Israel Journal of Botany, V29, P105; GUTTERMAN Y, 1983, WEED PHYSL, V1, P1; HANSON MR, 1985, INT REV CYTOL, V94, P213, DOI 10.1016/S0074-7696(08)60398-8; JANSSEN GM, 1988, EVOLUTION, V42, P828, DOI 10.1111/j.1558-5646.1988.tb02503.x; KAPLAN RH, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P794; KIRKPATRICK M, 1992, EVOLUTION, V46, P284, DOI 10.2307/2409824; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; KOLLER D, 1962, AM J BOT, V49, P841, DOI 10.2307/2439695; LACEY EP, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P735; LANDE R, 1989, GENETICS, V122, P915; LANDE R, 1990, GENET RES, V55, P189, DOI 10.1017/S0016672300025520; LAU TC, 1993, AM J BOT, V80, P763, DOI 10.2307/2445596; MATZKE M, 1993, ANNU REV PLANT PHYS, V44, P53, DOI 10.1146/annurev.pp.44.060193.000413; MAZER SJ, 1987, EVOLUTION, V41, P355, DOI 10.1111/j.1558-5646.1987.tb05803.x; MIAO SL, 1991, ECOLOGY, V72, P1634, DOI 10.2307/1940963; MIAO SL, 1991, ECOLOGY, V72, P586, DOI 10.2307/2937198; MILLER TE, 1987, OECOLOGIA, V72, P272, DOI 10.1007/BF00379278; MILLIGAN BG, 1992, AM J BOT, V79, P1325, DOI 10.2307/2445061; MOUSSEAU TA, 1991, EVOLUTION, V45, P1053, DOI 10.1111/j.1558-5646.1991.tb04371.x; MOUSSEAU TA, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P745; Neter J., 1985, APPL LINEAR STAT MOD; PHILIPPI T, 1993, AM NAT, V142, P488, DOI 10.1086/285551; PLATENKAMP GAJ, 1993, EVOLUTION, V47, P540, DOI 10.1111/j.1558-5646.1993.tb02112.x; PONS TL, 1988, OECOLOGIA, V75, P394, DOI 10.1007/BF00376942; PRIMACK RB, 1981, EVOLUTION, V35, P1069, DOI 10.1111/j.1558-5646.1981.tb04975.x; PRIMACK RB, 1982, EVOLUTION, V36, P742, DOI 10.1111/j.1558-5646.1982.tb05440.x; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; REZNICK DN, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P780; RICHARDSON TE, 1992, EVOLUTION, V46, P1731, DOI 10.1111/j.1558-5646.1992.tb01165.x; RISKA B, 1985, GENET RES, V45, P287, DOI 10.1017/S0016672300022278; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.ecolsys.18.1.209; ROACH DA, 1986, AM NAT, V128, P47, DOI 10.1086/284538; ROBERTSON JM, 1962, ACTA CRYSTALLOGR, V15, P1, DOI 10.1107/S0365110X62000018; ROWE JS, 1964, ECOLOGY, V45, P399, DOI 10.2307/1933860; *SAS I, 1985, SAS US GUID; SAWHNEY R, 1979, CAN J BOT, V57, P59, DOI 10.1139/b79-012; SCHAAL BA, 1984, PERSPECTIVES PLANT P, P188; Scheffe H., 1959, ANAL VARIANCE; Schlichting C. D., 1986, BIOTECHNOLOGY ECOLOG, P483; SCHLUTER D, 1993, EVOLUTION, V47, P658, DOI 10.1111/j.1558-5646.1993.tb02119.x; SCHMITT J, 1992, AM NAT, V139, P451, DOI 10.1086/285338; SCHNEEBERGER RG, 1991, GENETICS, V128, P619; Searle S.R., 1992, VARIANCE COMPONENTS; SEARS BB, 1980, PLASMID, V4, P233, DOI 10.1016/0147-619X(80)90063-3; SIDDIQUE MA, 1980, J EXP BOT, V31, P313; SINERVO B, 1991, UNITY OF EVOLUTIONARY BIOLOGY, VOLS 1 AND 2, P725; SINGH JN, 1980, THEOR APPL GENET, V56, P265, DOI 10.1007/BF00282569; STANTON ML, 1984, ECOLOGY, V65, P1105, DOI 10.2307/1938318; STEARNS F, 1960, ECOLOGY, V41, P221, DOI 10.2307/1931956; STRATTON DA, 1989, AM J BOT, V76, P1646, DOI 10.2307/2444402; SZMIDT AE, 1987, PLANT MOL BIOL, V9, P59, DOI 10.1007/BF00017987; TERAMURA AH, 1981, AM J BOT, V68, P425, DOI 10.2307/2442780; TERAMURA AH, 1979, CAN J BOT, V57, P2559, DOI 10.1139/b79-304; TERAMURA AH, 1978, THESIS DUKE U DURHAM; TILLNEYBASSETT RAE, 1978, PLASTIDS THEIR CHEM, P251; VANDAMME JMM, 1984, HEREDITY, V52, P77, DOI 10.1038/hdy.1984.8; WAGNER DB, 1987, P NATL ACAD SCI USA, V84, P2097, DOI 10.1073/pnas.84.7.2097; WINN AA, 1985, J ECOL, V73, P831, DOI 10.2307/2260150; WOLFF K, 1987, THEOR APPL GENET, V73, P903, DOI 10.1007/BF00289397; WOLFF K, 1987, HEREDITY, V58, P183, DOI 10.1038/hdy.1987.32; WULFF RD, 1992, AM J BOT, V79, P1102, DOI 10.2307/2445208; WULFF RD, 1986, J ECOL, V74, P87, DOI 10.2307/2260350; WULFF RD, 1986, J ECOL, V74, P115, DOI 10.2307/2260352; WULFF RD, 1986, J ECOL, V74, P99, DOI 10.2307/2260351; YOUNG HJ, 1990, SCIENCE, V248, P1631, DOI 10.1126/science.248.4963.1631 89 79 82 0 25 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution APR 1996 50 2 865 878 10.2307/2410858 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UJ156 WOS:A1996UJ15600035 28568933 Bronze 2019-02-26 J Oostermeijer, JGB; Brugman, ML; DeBoer, ER; DenNijs, HCM Oostermeijer, JGB; Brugman, ML; DeBoer, ER; DenNijs, HCM Temporal and spatial variation in the demography of Gentiana pneumonanthe, a rare perennial herb JOURNAL OF ECOLOGY English Article conservation; elasticity analysis; life-history evolution; management; matrix analysis; succession MODELING APPROACH; PLANT DEMOGRAPHY; SUCCESSION 1 A total of 35 transition and elasticity matrices for the rare iteroparous herb Gentiana pneumonanthe was analysed for temporal and spatial variation. The data used were collected annually from 10 sites in six different populations on up to seven occasions in the period 1987-93. 2 In general, temporal variation was higher in transition matrices than in elasticities, while between-site variation was high for both transition and elasticity matrices. 3 The relative contributions of three life-history transitions, progression (or growth, G), recruitment from seed (fecundity, F) and survival (retrogression plus stasis, L) to the finite rate of increase, lambda, were also highly variable, between years within as well as between sites. The observed variation is very large in comparison with that previously observed either between or within other iteroparous herbs from open habitats, even showing some overlap with demographic patterns normally characteristic of woody plants. 4 A G-L-F ordination shows a long, narrow band across the entire diagram from matrices with a low elasticity for L and high elasticities for G and F at one end to matrices which have an elasticity of 1.00 for L on the other. 5 Correlations between the G-, L- and F-elasticities, lambda, and the vegetation cover suggest that the band in the ordination diagram represents a successional pathway in wet heathlands from invasive to regressive populations. Elasticity matrices from regularly mown hay meadows are characteristic of stable populations, but represent senile, regressive populations after mowing has ceased. 6 Relationships between lambda and the elasticities of G, L and F show that in matrices of stable or declining populations (lambda less than or equal to 1) survival is most important. In growing populations (lambda > 1) the contribution of progression and fecundity becomes larger, 7 Given their relatively large temporal and spatial variation, elasticities are useful in nature conservation and management only if the corresponding value of lambda is taken into account. 8 Significant positive correlations between transition probabilities of different life stages were observed. This phenomenon may increase the risk of extinction by environmental stochasticity. Oostermeijer, JGB (reprint author), UNIV AMSTERDAM,INST SYSTEMAT & POPULAT BIOL,HUGO DE VRIES LAB,KRUISLAAN 318,1098 SM AMSTERDAM,NETHERLANDS. Oostermeijer, Johannes/N-8909-2013 BASTRENTA B, 1995, J ECOL, V83, P603, DOI 10.2307/2261628; BENGTSSON K, 1993, J ECOL, V81, P745, DOI 10.2307/2261672; BOEKEN B, 1995, J ECOL, V83, P569, DOI 10.2307/2261625; BULLOCK JM, 1994, J ECOL, V82, P101, DOI 10.2307/2261390; CASWELL H, 1983, AM ZOOL, V23, P35; Caswell H., 1989, MATRIX POPULATION MO; CHAPMAN SB, 1989, J APPL ECOL, V26, P1059, DOI 10.2307/2403712; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; FRANCO M, 1990, EVOL TREND PLANT, V4, P74; FRANCO M, 1994, J ECOL, V82, P958, DOI 10.2307/2261458; GLEESON SK, 1990, ECOLOGY, V71, P1144, DOI 10.2307/1937382; GRAY AJ, 1987, COLONISATION SUCCESS; KEDDY PA, 1981, J ECOL, V69, P615, DOI 10.2307/2259688; Manly B. F. J., 1991, RANDOMIZATION MONTE; MARGADANT WD, 1982, BEKNOPTE FLORA NEDER; Menges E. S., 1992, Conservation biology: the theory and practice of nature conservation, preservation, and management., P253; MENGES ES, 1990, CONSERV BIOL, V4, P52, DOI 10.1111/j.1523-1739.1990.tb00267.x; OCONNOR TG, 1993, J APPL ECOL, V30, P119, DOI 10.2307/2404276; OCONNOR TG, 1994, J APPL ECOL, V31, P155, DOI 10.2307/2404608; OKLAND RH, 1995, J ECOL, V83, P697, DOI 10.2307/2261637; OLFF H, 1994, J ECOL, V82, P69, DOI 10.2307/2261387; OOSTERMEIJER JGB, 1994, J APPL ECOL, V31, P428, DOI 10.2307/2404440; OOSTERMEIJER JGB, 1992, BOT J LINN SOC, V108, P117, DOI 10.1111/j.1095-8339.1992.tb01636.x; OOSTERMEIJER JGB, 1994, OECOLOGIA, V97, P289, DOI 10.1007/BF00317317; PICKETT STA, 1987, VEGETATIO, V69, P109, DOI 10.1007/BF00038691; RAIJMANN LL, 1994, CONSERV BIOL, V8, P1014, DOI 10.1046/j.1523-1739.1994.08041014.x; SHEA K, 1994, J ECOL, V82, P951, DOI 10.2307/2261457; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; SILVERTOWN J, IN PRESS CONSERVATIO; Silvertown Jonathan, 1993, Plant Species Biology, V8, P67, DOI 10.1111/j.1442-1984.1993.tb00058.x; SVENSSON BM, 1993, J ECOL, V81, P635, DOI 10.2307/2261662; VANDERMEIJDEN R, 1990, HEUKELS FLORA NEDERL; Weinert E, 1978, VERGLEICHENDE CHOROL, VII; WESTHOFF V, 1969, PLANTENGEMEENSCHAPPE 34 147 152 2 41 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0022-0477 J ECOL J. Ecol. APR 1996 84 2 153 166 10.2307/2261351 14 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology UH363 WOS:A1996UH36300002 2019-02-26 J Sparkes, TC Sparkes, TC Effects of predation risk on population variation in adult size in a stream dwelling isopod OECOLOGIA English Article isopod; sculpin; salamander larvae; size-dependent mortality risk; antipredator life history strategy LIFE-HISTORY EVOLUTION; SELECTIVE PREDATION; LIRCEUS-FONTINALIS; HABITAT USE; COMPETITION; AGE; PREFERENCE; ALLOCATION; MORTALITY; MATURITY I used a combination of laboratory experiments and field surveys to examine the role that population-specific predation risk may play in shaping the life history strategy of a stream-dwelling isopod Lirceus fontinalis. Two focal populations were identified that were exposed to different predator types. The first population was exposed to larvae of the streamside salamander (Ambystoma barbouri) and the second to banded sculpin (Cottus carolinae). A laboratory experiment, in which different size classes of prey were offered simultaneously to individual predators, revealed that L. fontinalis suffered greatest mortality risk at small sizes with A. barbouri. Alternatively, with C. carolinae the risk of mortality was independent of size. Life history theory predicts that L, frontinalis from populations exposed to the gaps-limited salamander larvae should be larger at maturity relative to individuals from populations exposed to C. carolinae. Field surveys on the two focal populations both within 1 year and across 4 years supported this prediction. Four other populations, two exposed to streamside salamander larvas and two to fish, provided additional support for the prediction. I concluded that L. fontinalis exhibited an adaptive response in size at maturity in response to population-specific predation risk. I then used gut content assays of the major predators to assess whether the population-specific life history strategies adopted by L. fontinalis were successful in avoiding predation. Sparkes, TC (reprint author), UNIV KENTUCKY, TH MORGAN SCH BIOL SCI, CTR ECOL EVOLUT & BEHAV, LEXINGTON, KY 40506 USA. ADAMS J, 1985, BEHAVIOUR, V92, P277; BRODIE ED, 1983, HERPETOLOGICA, V39, P67; CALEF GW, 1973, ECOLOGY, V54, P741, DOI 10.2307/1935670; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHESSON J, 1978, ECOLOGY, V59, P211, DOI 10.2307/1936364; Conover W. J., 1980, PRACTICAL NONPARAMET; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; CROWLEY PH, 1991, AM NAT, V137, P567, DOI 10.1086/285184; GALBRAIT.MG, 1967, T AM FISH SOC, V96, P1, DOI 10.1577/1548-8659(1967)96[1:SPODBR]2.0.CO;2; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Havel J.E., 1987, P263; HEER LM, 1974, THESIS U KENTUCKY; HOLOMUZKI JR, 1988, OIKOS, V52, P79, DOI 10.2307/3565985; HOLOMUZKI JR, 1990, HOLARCTIC ECOL, V13, P300; HUANG CF, 1990, ECOLOGY, V71, P1515, DOI 10.2307/1938288; HUANG CF, 1991, OECOLOGIA, V85, P530, DOI 10.1007/BF00323765; HUANG CF, 1991, FRESHWATER BIOL, V25, P451, DOI 10.1111/j.1365-2427.1991.tb01388.x; HUBRICHT L, 1949, AM MIDL NAT, V42, P334, DOI 10.2307/2422012; Kerfoot WC, 1987, PREDATION DIRECT IND; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MORIN PJ, 1983, ECOL MONOGR, V53, P119, DOI 10.2307/1942491; NEWMAN RM, 1984, ECOLOGY, V65, P1535, DOI 10.2307/1939133; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Pennak R. W., 1989, FRESHWATER INVERTEBR; PETRANKA JW, 1986, ECOLOGY, V67, P729, DOI 10.2307/1937696; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Roff Derek A., 1992; *SAS, 1988, SAS STAT US GUID REL; SHORT TM, 1992, FRESHWATER BIOL, V27, P91, DOI 10.1111/j.1365-2427.1992.tb00526.x; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; Stearns SC., 1992, EVOLUTION LIFE HIST; STENHOUSE SL, 1983, J HERPETOL, V17, P210, DOI 10.2307/1563822; STYRON CE, 1969, AM MIDL NAT, V82, P402, DOI 10.2307/2423786; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WOOSTER D, 1994, OECOLOGIA, V99, P7, DOI 10.1007/BF00317077; Zaret T. M., 1980, PREDATION FRESHWATER 43 26 27 0 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia APR 1996 106 1 85 92 10.1007/BF00334410 8 Ecology Environmental Sciences & Ecology UF579 WOS:A1996UF57900010 28307160 2019-02-26 J Day, T; Taylor, PD Day, T; Taylor, PD Evolutionarily stable versus fitness maximizing life histories under frequency-dependent selection PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article CHARACTER DISPLACEMENT; NATURAL-SELECTION; COEVOLUTION; MODELS; TRAITS; AGE There has been recent interest in using the techniques of quantitative genetics to study optimal life histories under frequency-dependent selection, but a search of the literature has revealed no clear quantitative genetics recursion that incorporates both frequency dependence and overlapping generations. This may be due in part to the historical tendency of life-history theory to ignore frequency dependence. Here we provide such a recursion, and use it to explore the general question of how frequency-dependent selection bn life-history traits can cause the evolutionarily stable strategies to differ from the point of maximum mean fitness. Day, T (reprint author), QUEENS UNIV, DEPT MATH & STAT, KINGSTON, ON K7L 3N6, CANADA. ABRAMS P, 1983, THEOR POPUL BIOL, V24, P22, DOI 10.1016/0040-5809(83)90044-8; ABRAMS PA, 1989, EVOL ECOL, V3, P215, DOI 10.1007/BF02270722; ABRAMS PA, 1993, EVOLUTION, V47, P982, DOI 10.1111/j.1558-5646.1993.tb01254.x; BROWN JS, 1987, EVOLUTION, V41, P66, DOI 10.1111/j.1558-5646.1987.tb05771.x; CHARLESWORTH B, 1993, P ROY SOC B-BIOL SCI, V251, P47, DOI 10.1098/rspb.1993.0007; Charlesworth B, 1994, EVOLUTION AGE STRUCT; Falconer D. S., 1989, INTRO QUANTITATIVE G; Haldane J. B. S, 1932, CAUSES EVOLUTION; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; Lande R., 1982, P21; LESLIE PH, 1948, BIOMETRIKA, V35, P213, DOI 10.1093/biomet/35.3-4.213; MATSUDA H, 1994, EVOLUTION, V48, P1764, DOI 10.1111/j.1558-5646.1994.tb02212.x; Roff Derek A., 1992; SLATKIN M, 1979, GENETICS, V93, P755; SLATKIN M, 1980, ECOLOGY, V61, P163, DOI 10.2307/1937166; Smith J.M., 1982, EVOLUTION THEORY GAM; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1992, EVOLUTION LIFE HISTO; TAPER ML, 1992, EVOLUTION, V46, P317, DOI 10.1111/j.1558-5646.1992.tb02040.x; TAYLOR PD, 1996, IN PRESS EVOLUTION; TAYLOR PD, 1996, UNPUB EVOLUTIONARY S; VINCENT TL, 1988, ANNU REV ECOL SYST, V19, P423; Wright S., 1942, Bull Amer Math Soc, V48, P223, DOI 10.1090/S0002-9904-1942-07641-5 29 14 14 0 6 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAR 22 1996 263 1368 333 338 10.1098/rspb.1996.0051 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology UE093 WOS:A1996UE09300014 2019-02-26 J McNamara, JM; Houston, AI McNamara, JM; Houston, AI State-dependent life histories NATURE English Review CLUTCH SIZE; REPRODUCTIVE EFFORT; PHENOTYPIC PLASTICITY; REACTION NORMS; GREAT TIT; AGE; EVOLUTION; NUMBER; STRATEGIES; SELECTION Life-history theory is concerned with strategic decisions over an organism's lifetime. Evidence is accumulating about the way in which these decisions depend on the organism's physiological state and other components such as external circumstances. Phenotypic plasticity may be interpreted as an organism's response to its state. The quality of offspring may depend on the state and behaviour of the mother. Recent theoretical advances allow these and other state-dependent effects to be modelled within the same framework. UNIV BRISTOL, SCH BIOL SCI, BRISTOL BS8 1UG, AVON, ENGLAND McNamara, JM (reprint author), UNIV BRISTOL, SCH MATH, UNIV WALK, BRISTOL BS8 1TW, AVON, ENGLAND. Altmann J., 1988, P403; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BLARER A, 1995, P R SOC LOND B, V262, P303; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Caswell H., 1989, MATRIX POPULATION MO; CHANDRA RK, 1975, SCIENCE, V190, P289, DOI 10.1126/science.1179211; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B, 1994, EVOLUTION AGE STRUCT; Clutton-Brock T.H., 1988, P325; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1985, J ANIM ECOL, V54, P831, DOI 10.2307/4381; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; ELLNER S, 1986, J THEOR BIOL, V123, P173, DOI 10.1016/S0022-5193(86)80151-5; Fisher R. A, 1958, GENETICAL THEORY NAT; FRANK LG, 1986, ANIM BEHAV, V34, P1510, DOI 10.1016/S0003-3472(86)80221-4; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HARCOURT AH, 1989, TRENDS ECOL EVOL, V4, P101, DOI 10.1016/0169-5347(89)90055-4; HEINSOHN RG, 1991, AM NAT, V137, P864, DOI 10.1086/285198; HOLEKAMP KE, 1993, ANIM BEHAV, V46, P451, DOI 10.1006/anbe.1993.1214; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOUSTON DC, 1995, IBIS, V137, P322, DOI 10.1111/j.1474-919X.1995.tb08028.x; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; LANDE R, 1990, GENET RES, V55, P189, DOI 10.1017/S0016672300025520; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LEIMAR O, IN PRESS BEHAV ECOL; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Lumey L H, 1992, Paediatr Perinat Epidemiol, V6, P240, DOI 10.1111/j.1365-3016.1992.tb00764.x; LUNN NJ, 1993, J ZOOL, V229, P55, DOI 10.1111/j.1469-7998.1993.tb02620.x; MANGEL M, 1994, BEHAV ECOL, V5, P412, DOI 10.1093/beheco/5.4.412; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; MCNAMARA JM, 1993, J THEOR BIOL, V161, P23, DOI 10.1006/jtbi.1993.1037; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; MCNAMARA JM, 1995, EVOL ECOL, V9, P185, DOI 10.1007/BF01237756; MCNAMARA JM, 1993, ACTA BIOTHEOR, V41, P165, DOI 10.1007/BF00712164; MCNAMARA JM, IN PRESS THEOR POP B; MECH LD, 1991, J MAMMAL, V72, P146, DOI 10.2307/1381989; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MOLLER AP, 1993, J ANIM ECOL, V62, P309, DOI 10.2307/5362; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PERRIN N, 1993, EVOL ECOL, V7, P576, DOI 10.1007/BF01237822; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PETTIFOR RA, 1993, J ANIM ECOL, V62, P131, DOI 10.2307/5488; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PRICE K, 1993, BEHAV ECOL, V4, P144, DOI 10.1093/beheco/4.2.144; PRINCE PA, 1981, CONDOR, V83, P238, DOI 10.2307/1367315; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; RISCH TS, 1995, ECOLOGY, V76, P1643, DOI 10.2307/1938165; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.ecolsys.18.1.209; Roff Derek A., 1992; SAETHER BE, 1993, J ANIM ECOL, V62, P482, DOI 10.2307/5197; SILK JB, 1983, AM NAT, V121, P56, DOI 10.1086/284039; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Steams S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; TANNER JE, 1994, ECOLOGY, V75, P2204, DOI 10.2307/1940877; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; ZAMENHOF S, 1971, SCIENCE, V172, P850, DOI 10.1126/science.172.3985.850 73 508 511 5 168 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0028-0836 1476-4687 NATURE Nature MAR 21 1996 380 6571 215 221 10.1038/380215a0 7 Multidisciplinary Sciences Science & Technology - Other Topics UB117 WOS:A1996UB11700042 8637568 2019-02-26 J Reznick, DN; Rodd, FH; Cardenas, M Reznick, DN; Rodd, FH; Cardenas, M Life-history evolution in guppies (Poecilia reticulata: Poeciliidae) .4. Parallelism in life-history phenotypes AMERICAN NATURALIST English Article TRINIDADIAN GUPPIES; SELECTION; PREDATION; POPULATION; PATTERNS; CONVERGENCE; FISHES; IMPACT In earlier publications, we reported an association between the life-history patterns of guppies and the types of predators with which they co-occur. We contrasted guppies from high-predation sites (Crenicichla localities) with those from low-predation sites (Rivulus localities) found on the south slope of the Northern Range Mountains of Trinidad. Guppies from high-predation localities attain maturity at an earlier age and smaller size, produce more and smaller offspring per litter, and have higher reproductive allotments than their counterparts from low-predation sites. Here we present a parallel series of analyses for guppies from a new series of localities on the north slope of the Northern Range. These fish are also found in what appear to be high- and low-predation communities, but, with one exception, the species of predators are entirely different from those on the south slope. The larger predators are derived from marine families (gobies and mullets) that have invaded freshwater rivers; the south slope fauna is derived from families typical of mainland South America. If predator-induced mortality selects for life-history evolution, then guppies from high- and low-predation sites on the north slope should have life histories similar to their counterparts on the south slope. We compare the life-history phenotypes of guppies from the north slope communities and find that the high-and low-predation contrasts are remarkably similar to those reported earlier for the south slope communities. We reinforce this comparison with multivariate analyses that use discriminant functions derived for the south slope collections to classify north slope samples. Finally, we exploit recent molecular genetic data and the geographical distribution of high- and low-predation communities to argue for the independent origin of these life-history patterns in each drainage. YORK UNIV,DEPT BIOL,N YORK,ON M3J 1P3,CANADA Reznick, DN (reprint author), UNIV CALIF RIVERSIDE,DEPT BIOL,RIVERSIDE,CA 92521, USA. reznick, david/0000-0002-1144-0568 CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CODY ML, 1978, ANNU REV ECOL SYST, V9, P265, DOI 10.1146/annurev.es.09.110178.001405; CULVER D C, 1990, Memoires de Biospeologie, V17, P13; EMERSON SB, 1990, FUNCT ECOL, V4, P47, DOI 10.2307/2389651; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; JONES R, 1992, EVOLUTION, V46, P353, DOI 10.1111/j.1558-5646.1992.tb02043.x; KANE TC, 1992, EVOLUTION, V46, P272, DOI 10.1111/j.1558-5646.1992.tb02002.x; KLECKA WR, 1980, 07019 SAG U PAP SER; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MCFARLAND W, 1979, VERTEBRATE LIFE; Meffe G.K., 1989, P13; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MILLIKEN GA, 1984, ANAL MESSY DATA; MORRIS P, 1991, BIOL J LINN SOC, V44, P307, DOI 10.1111/j.1095-8312.1991.tb00622.x; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; PHILLIP DAT, 1993, ENVIRON BIOL FISH, V37, P47, DOI 10.1007/BF00000711; RESNICK DN, 1996, INPRESS EVOLUTION; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SEGHERS BH, 1973, THESIS U BRIT COLUMB; SHAW PW, 1991, J FISH BIOL, V39, P203, DOI 10.1111/j.1095-8649.1991.tb05084.x; SOKAL R., 1981, BIOMETRY; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; WAKE DB, 1991, AM NAT, V138, P543, DOI 10.1086/285234; WEISS MR, 1991, NATURE, V354, P227, DOI 10.1038/354227a0; WOURMS JP, 1981, AM ZOOL, V21, P473; 1988, SAS STAT USERS GUIDE 40 138 139 2 51 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. MAR 1996 147 3 319 338 10.1086/285854 20 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology TV859 WOS:A1996TV85900001 2019-02-26 J Reznick, DN; Bryga, HA Reznick, DN; Bryga, HA Life-history evolution in guppies (Poecilia reticulata: Poeciliidae) .5. Genetic basis of parallelism in life histories AMERICAN NATURALIST English Article SELECTION; PATTERNS; REPRODUCTION; PREDATION; TRINIDAD; FISHES; IMPACT; SPACE We document a genetic basis for convergent life-history evolution in guppies from high- and low-predation sites on the north slope of the Northern Range Mountains of Trinidad. In previous work, we showed that guppies from high-predation sites on the south slope attained maturity at an earlier age and smaller size; produced more, smaller offspring per litter; and had higher reproductive efforts than their counterparts from low-predation localities. The south slope has predators derived from a mainland South American fauna. These predators are absent from the north slope drainages and are replaced by species derived from a marine fauna. Nevertheless, the same contrast between high- and low-predation sites appears to exist. In a companion article we demonstrate differences in the life-history phenotypes of guppies from high- versus low-predation localities on the north slope. The patterns are similar to those on the south slope for almost all dependent variables. A study of life-history phenotypes is based on wild-caught individuals, so any observed differences in life histories can be attributed to environmental effects. The virtue of such an investigation is that it is possible to efficiently survey a large number of populations from a wide geographical area. In the current study, we evaluate the life-history genotypes of guppies from two high- and two low-predation localities. We reared guppies for two generations in a common environment, then compared the life histories of individuals reared on controlled levels of food availability, This methodology allows us to evaluate more components of the life history than is possible in a study of life-history phenotypes, including age at maturity and reproductive effort, and to conclude that these differences have a genetic basis; however, it is limited in the number of populations that can be evaluated. A combination of the geographical breadth of the first study and the greater depth of this study provides a more complete picture of interpopulation variation in guppy life-history patterns. Reznick, DN (reprint author), UNIV CALIF RIVERSIDE, DEPT BIOL, RIVERSIDE, CA 92521 USA. Langerhans, R./A-7205-2009 reznick, david/0000-0002-1144-0568 CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; DUSSAULT GV, 1981, CAN J ZOOL, V59, P684, DOI 10.1139/z81-098; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; GORDON M, 1950, FISHES LABORATORY AN, P315; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Kleiber M., 1975, FIRE LIFE INTRO ANIM; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MCCLENAGHAN LR, 1985, EVOLUTION, V39, P451, DOI 10.1111/j.1558-5646.1985.tb05681.x; NORDLIE FG, 1981, J FISH BIOL, V18, P97, DOI 10.1111/j.1095-8649.1981.tb03764.x; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PHILLIP DAT, 1993, ENVIRON BIOL FISH, V37, P47, DOI 10.1007/BF00000711; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1996, IN PRESS EVOLUTION; REZNICK DN, 1980, THESIS U PENNSYLAVAN; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Roff Derek A., 1992; ROSENTHAL HL, 1952, BIOL BULL, V102, P30, DOI 10.2307/1538621; Smith M.H., 1989, P235; Stearns SC., 1992, EVOLUTION LIFE HIST; THOMAS RDK, 1993, EVOLUTION, V47, P341, DOI 10.1111/j.1558-5646.1993.tb02098.x; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; WOURMS JP, 1981, AM ZOOL, V21, P473; 1988, SAS STAT USERS GUIDE 33 113 114 0 33 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAR 1996 147 3 339 359 10.1086/285855 21 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology TV859 WOS:A1996TV85900002 2019-02-26 J Carvalho, GR; Shaw, PW; Hauser, L; Seghers, BH; Magurran, AE Carvalho, GR; Shaw, PW; Hauser, L; Seghers, BH; Magurran, AE Artificial introductions, evolutionary change and population differentiation in Trinidadian guppies (Poecilia reticulata:Poeciliidae) BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article genetic differentiation; natural selection; adaptation; genetic variability; predation; founder effect; allozyme LIFE-HISTORY EVOLUTION; COLOR PATTERNS; GENETIC DIFFERENTIATION; BEHAVIOR; REVOLUTIONS; BOTTLENECKS; DIVERGENCE; SPECIATION; SELECTION; DISTANCE The evolutionary consequences of three artificial introductions of the guppy, Poecilia reticulata, in Trinidad were examined by comparing the allozymic structure (observed heterozygosity (H-o) and mean number of alleles (N-a)) of each corresponding source (S) and transplant (T) population. In 'Haskins' (H) and 'Endler's' (E) introduction, 200 guppies (half female) were transferred to guppy-free habitats in 1957 and 1976 respectively. 'Kenny's' (K) introduction in 1981 involved the release of a single pregnant female into an isolated ornamental pond. Analysis of allozyme frequencies at 25 enzyme-coding loci revealed reductions in observed heterozygosity at some loci in all three transplant samples, and a marked decline in the mean number of alleles in Kenny's pond sample. Significant genetic differentiation occurred between (S) and (T) samples at some loci in all introductions, but was most marked in H(T) and K(T). Despite previous studies on rapid evolutionary changes in the life histories and morphology of Endler's transplant guppies, there was little support for any major effects of stochastic forces on allozymic diversity arising from the introduction. Selection arising from changes in predation pressure appeared to be the predominant factor causing the remarkably rapid adaptation of guppies to their new environments. Generic divergence in some marginal or isolated natural populations was similar to, or greater than, Kenny's pond guppies (Reynolds' genetic distance, R = 0.496), indicating that chance colonization and founder effects may have contributed to the observed geographic patterns of genetic differentiation in Trinidad. (C) 1996 The Linnean Society of London UNIV COLL SWANSEA,SCH BIOL SCI,MARINE & FISHERIES GENET LAB,SWANSEA SA2 8PP,W GLAM,WALES; UNIV OXFORD,DEPT ZOOL,ANIM BEHAV RES GRP,OXFORD OX1 3PS,ENGLAND Langerhans, R./A-7205-2009; Magurran, Anne/D-7463-2013; Hauser, Lorenz/E-4365-2010 Magurran, Anne/0000-0002-0036-2795 BAKER AJ, 1990, EVOLUTION, V44, P981, DOI 10.1111/j.1558-5646.1990.tb03819.x; BAKER AJ, 1987, EVOLUTION, V41, P525, DOI 10.1111/j.1558-5646.1987.tb05823.x; BARTON NH, 1984, ANNU REV ECOL SYST, V15, P133, DOI 10.1146/annurev.es.15.110184.001025; BOOS HEA, 1984, LIVING WORLD, P19; BRIGGS JC, 1984, SYST ZOOL, V33, P428, DOI 10.2307/2413095; CARSON HL, 1984, ANNU REV ECOL SYST, V15, P97, DOI 10.1146/annurev.es.15.110184.000525; Carvalho G. R., 1995, IMPACT SPECIES CHANG, P457; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; CARVALHO GR, 1993, J FISH BIOL, V43, P53, DOI 10.1111/j.1095-8649.1993.tb01179.x; COSS RG, 1991, ECOL PSYCHOL, V5, P171; CURIO E, 1993, ADV STUD BEHAV, V22, P135, DOI 10.1016/S0065-3454(08)60407-6; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Endler JA, 1986, NATURAL SELECTION WI; FAJEN A, 1992, EVOLUTION, V46, P1457, DOI 10.1111/j.1558-5646.1992.tb01136.x; FEVOLDEN SE, 1989, HEREDITAS, V110, P149, DOI 10.1111/j.1601-5223.1989.tb00435.x; GHARRETT AJ, 1987, CAN J FISH AQUAT SCI, V43, P787; GOLUBTSOV AS, 1993, Z ZOOL SYST EVOL, V31, P269; HARRIS H, 1976, HDB ENZYME ELECTROPH; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HINDAR K, 1991, CAN J FISH AQUAT SCI, V48, P945, DOI 10.1139/f91-111; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; Huntingford F.A., 1994, P277; KNIGHT AJ, 1987, BIOL J LINN SOC, V32, P417, DOI 10.1111/j.1095-8312.1987.tb00441.x; LEBERG PL, 1992, EVOLUTION, V46, P477, DOI 10.1111/j.1558-5646.1992.tb02053.x; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LOUIS EJ, 1987, BIOMETRICS, V43, P805, DOI 10.2307/2531534; LUYTEN PH, 1991, BEHAV ECOL SOCIOBIOL, V28, P329, DOI 10.1007/BF00164382; MAGURRAN AE, 1995, ADV STUD BEHAV, V24, P155, DOI 10.1016/S0065-3454(08)60394-0; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1987, PROC R SOC SER B-BIO, V229, P439, DOI 10.1098/rspb.1987.0004; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; MAGURRAN AE, 1993, MARINE BEHAV PHYSL, V22, P29; MARUYAMA T, 1985, GENETICS, V111, P675; Mayr E., 1963, ANIMAL SPECIES EVOLU; MCCOMMAS SA, 1990, HEREDITY, V64, P315, DOI 10.1038/hdy.1990.39; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; NEI M, 1975, EVOLUTION, V2, P1; Provine W.B., 1989, P43; RAYMOND M, IN PRESS EVOLUTION; REYNOLDS J, 1983, GENETICS, V105, P767; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Seghers B.H., 1992, P81; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SHAKLEE JB, 1990, T AM FISH SOC, V119, P2, DOI 10.1577/1548-8659(1990)119<0002:GNFPLI>2.3.CO;2; SHAW PW, 1994, J FISH BIOL, V45, P875, DOI 10.1006/jfbi.1994.1184; SHAW PW, 1991, J FISH BIOL, V39, P203, DOI 10.1111/j.1095-8649.1991.tb05084.x; SHAW PW, 1992, P ROY SOC LOND B BIO, V247, P111; SING CF, 1973, GENETICS, V75, P381; STLOUIS VL, 1988, EVOLUTION, V42, P266, DOI 10.1111/j.1558-5646.1988.tb04131.x; SWOFFORD DL, 1989, BIOSYS 1 COMPUTER PR; VUORINEN J, 1991, J FISH BIOL, V39, P193, DOI 10.1111/j.1095-8649.1991.tb05083.x; WARD RD, 1994, J FISH BIOL, V44, P213, DOI 10.1111/j.1095-8649.1994.tb01200.x; Wright S, 1978, EVOLUTION GENETICS P, V4 60 38 38 0 18 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0024-4066 BIOL J LINN SOC Biol. J. Linnean Soc. MAR 1996 57 3 219 234 10.1111/j.1095-8312.1996.tb00310.x 16 Evolutionary Biology Evolutionary Biology UH203 WOS:A1996UH20300003 Bronze 2019-02-26 J Chiappone, M; Sullivan, KM Chiappone, M; Sullivan, KM Distribution, abundance and species composition of juvenile scleractinian corals in the Florida Reef Tract BULLETIN OF MARINE SCIENCE English Article HERMATYPIC CORALS; RECRUITMENT PATTERNS; COMMUNITY STRUCTURE; CARIBBEAN REEF; KEY-LARGO; RED-SEA; SETTLEMENT; QUANTIFICATION; POPULATIONS; MORTALITY The density of juvenile scleratinian corals was quantified in shallow-water (4-18 m) sites representing three common reef types of the Florida Reef Tract: high-relief spur and groove, relict reef flat, and relict spur and groove. Reef types were chosen to encompass differences in depth, physical relief, and coral abundance. The purpose of this study was to 1) determine the density of juveniles in relation to non-juvenile corals and depth; and 2) evaluate correlations between juveniles and non-juvenile density in relation to larval dispersal strategies. Juvenile corals were identified and enumerated in random l-mz quadrat surveys and compared to density and cover of non-juveniles. Juveniles of 16 species were identified among the study sites. The number of species observed as juveniles was significantly greater in deeper (>10 m), relict spur and groove sites. Juvenile density differed significantly among sites and reef types, ranging from 1.18 to 3.74 colonies m(-2). Juvenile density was greatest in relict spur and groove sites and was weakly correlated (r = 0.581) with depth. Juveniles comprised from 20.6 to 51.5% of the total coral assemblage in study sites. The majority of juveniles in high-relief spur and groove and relict reef flat communities were Agaricia agaricites, Porites astreoides, and P. porites. The majority of juveniles in relict spur and groove sites were P. astreoides, P. porites, and Montastraea cavernosa. Non-juvenile density and cover were significantly different among the study sites. Non-juvenile density (r = 0.577) was weakly correlated with depth. Coral cover ranged from 0.4 to 13 percent throughout the study area and was greatest in high-relief spur and groove communities. Life history strategies of juveniles in high-relief spur and groove and relict reef flat communities were generally characterized by species that brood larvae and attain a small colony size. Juveniles of three dominant brooding species (A. agaricites, P astreoides, and P. porites) were significantly correlated to parental abundance across sites, suggesting that either self-seeding may occur for some species or that some recruits have been able to grow and survive. Density of juvenile A. agaricites was inversely related to depth (r = -0.326). Juveniles of three broadcasting species (M. annularis, M. cavernosa, Siderastrea siderea) were significantly correlated to parental abundance and increased in abundance with depth (r > 0.450). In contrast to some previous studies of juvenile coral assemblages in Caribbean reefs, the results suggest that parental abundance and composition may be a direct function of juvenile abundance in reef communities of the Florida Keys. Chiappone, M (reprint author), UNIV MIAMI,DEPT BIOL,NAT CONSERVANCY,FLORIDA & CARIBBEAN MARINE CONSERVAT SCI CTR,POB 249118,CORAL GABLES,FL 33124, USA. Sealey, Kathleen/0000-0003-4470-0909 BABCOCK RC, 1988, 6TH P INT COR REEF S, V2, P635; BAGGETT LS, 1985, 5TH P INT COR REEF C, V4, P379; Bak R.P.M., 1976, Netherlands J Sea Res, V10, P285, DOI 10.1016/0077-7579(76)90009-0; BAK RPM, 1976, MAR BIOL, V37, P105, DOI 10.1007/BF00389121; BAK RPM, 1979, MAR BIOL, V54, P341, DOI 10.1007/BF00395440; BIRKELAND C, 1977, 3RD P INT COR REEF S, V1, P15; Boschma H., 1929, Papers from the Tortugas Laboratory, V26, P129; CARLETON JH, 1987, B MAR SCI, V40, P85; CONNELL JH, 1973, BIOLOGY GEOLOGY CORA, V2, P205; DUSTAN P, 1987, CORAL REEFS, V6, P91, DOI 10.1007/BF00301378; DUSTAN P, 1977, ENVIRON GEOL, V2, P51, DOI 10.1007/BF02430665; Fadlallah Y.H., 1983, Coral Reefs, V2, P129, DOI 10.1007/BF00336720; GRIGG RW, 1974, ECOLOGY, V55, P387, DOI 10.2307/1935226; HARRIOTT VJ, 1987, MAR ECOL PROG SER, V37, P201, DOI 10.3354/meps037201; HUDSON JH, 1981, 4TH P INT COR REEF S, V2, P233; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; JAAP WC, 1988, P 6 INT COR REEF S, V2, P237; JAAP WC, 1984, FWSOBS8208 US FISH W; LEE TN, 1992, CONT SHELF RES, V12, P971, DOI 10.1016/0278-4343(92)90055-O; Lewis J.B., 1974, Proceedings int Coral Reef Symp, V2, P201; LOYA Y, 1972, MAR BIOL, V13, P100, DOI 10.1007/BF00366561; Marszalek DS, 1977, P 3 INT COR REEF S, P223; Pielou E. C., 1977, MATH ECOLOGY; PORTER JW, 1992, AM ZOOL, V32, P625; RICHMOND RH, 1990, MAR ECOL PROG SER, V60, P185, DOI 10.3354/meps060185; ROBBIN DM, 1981, 4TH P INT COR REEF S, V1, P575; ROBERTS HH, 1982, J SEDIMENT PETROL, V52, P145; ROGERS CS, 1984, CORAL REEFS, V3, P69, DOI 10.1007/BF00263756; ROUGHGARDEN J, 1985, ECOLOGY, V66, P54, DOI 10.2307/1941306; SAMMARCO PW, 1989, LIMNOL OCEANOGR, V34, P896, DOI 10.4319/lo.1989.34.5.0896; SHINN EA, 1989, FIELD TRIP GUIDEBOOK, V176; SOONG K, 1993, CORAL REEFS, V12, P77, DOI 10.1007/BF00302106; SOONG K, 1991, B MAR SCI, V49, P832; SZMANT AM, 1986, CORAL REEFS, V5, P43, DOI 10.1007/BF00302170; VANMOORSEL GWNM, 1988, MAR ECOL PROG SER, V50, P127, DOI 10.3354/meps050127; VANMOORSEL GWNM, 1985, MAR ECOL PROG SER, V24, P99, DOI 10.3354/meps024099; VANVEGHEL MLJ, 1994, MAR ECOL PROG SER, V109, P221, DOI 10.3354/meps109221; VAUGHAN VW, 1915, J NAT ACAD SCI, V5, P591; WHEATON JL, 1988, FLA MAR RES PUBL, V43, P1; WHITE MW, 1985, 5TH P INT COR REEF S, V6, P531; WITTENBERG M, 1992, MAR BIOL, V112, P131, DOI 10.1007/BF00349736; Zar J. H., 1984, BIOSTATISTICAL ANAL 42 54 58 1 17 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 0007-4977 B MAR SCI Bull. Mar. Sci. MAR 1996 58 2 555 569 15 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography TZ926 WOS:A1996TZ92600014 2019-02-26 J Slagsvold, T; Dale, S Slagsvold, T; Dale, S Disappearance of female Pied Flycatchers in relation to breeding stage and experimentally induced molt ECOLOGY English Article adult predation; body mass; Ficedula hypoleuca; molt; physiological stress; sexual dimorphism FICEDULA-HYPOLEUCA; CLUTCH SIZE; HATCHING ASYNCHRONY; REPRODUCTIVE EFFORT; PREDATION RISK; BODY-MASS; BIRDS; COSTS; INCUBATION; SPARROWHAWKS According to life history theory, adult mortality during the breeding season may have an important influence on the evolution of several aspects of breeding ecology in birds, yet few studies have tried to quantify such mortality. We studied disappearance of Pied Flycatchers (Ficedula hypoleuca) during four breeding seasons in a woodland area in Norway provided with nest boxes. The main cause of disappearance was probably predation by the European Sparrowhawk (Accipiter nisus). Disappearance was nonsignificantly higher in females (10% per season, n = 305) than in males (7% per season, n = 269). Female disappearance peaked during egg-laying (0.53% per day), but was also high during the nest-building (0.42% per day) and nestling (0.36% per day) stages. It was low during incubation (0.05% per day), probably because less time was spent outside the nest. Low risk of predation during incubation may help to explain why female body mass remains high during this stage of breeding but drops soon after hatching. Females with selected flight feathers experimentally removed to simulate molt suffered a much higher disappearance per season (24%, n = 109) than did control females (10%, n = 305). This may help to explain why breeding and molt usually are temporally segregated activities in birds. Variation in female body mass and size (wing length, tarsus length), age, previous breeding experience, mating date, laying date, clutch size, and mating status could not account for the variation found in female disappearance. Disappearance was lower in males than in females during the nest-building period, despite the more conspicuous plumage color of males. This may be explained by the fact that only the female builds the nest. We suggest that risk of predation is an important constraint on sexual selection of male plumage color in species in which males take part in nest building. Slagsvold, T (reprint author), UNIV OSLO,DEPT BIOL,POB 1050,N-0316 OSLO,NORWAY. ANDERSSON M, 1978, ANIM BEHAV, V26, P1207, DOI 10.1016/0003-3472(78)90110-0; BEISSINGER SR, 1991, AUK, V108, P863; Breitwisch R., 1989, Current Ornithology, V6, P1; CRESSWELL W, 1993, ANIM BEHAV, V46, P609, DOI 10.1006/anbe.1993.1231; Creutz G., 1955, Journal fuer Ornithologie, V96, P241; CURIO E, 1975, ANIM BEHAV, V23, P1, DOI 10.1016/0003-3472(75)90056-1; DALE S, 1992, BEHAV ECOL SOCIOBIOL, V30, P165, DOI 10.1007/BF00166699; DALE S, 1994, ANIM BEHAV, V47, P1197, DOI 10.1006/anbe.1994.1158; DHONDT AA, 1981, ORNIS SCAND, V12, P127, DOI 10.2307/3676039; DRENT RH, 1980, ARDEA, V68, P225; Endler J.A., 1991, P169; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; GEER TA, 1978, CONDOR, V80, P419, DOI 10.2307/1367192; GOTMARK F, 1995, BEHAV ECOL, V6, P22, DOI 10.1093/beheco/6.1.22; GOTMARK F, 1994, P ROY SOC B-BIOL SCI, V256, P83, DOI 10.1098/rspb.1994.0053; GOTMARK F, IN PRESS OIKOS; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HAFTORN S, 1985, AUK, V102, P470; HOUSTON AI, 1986, J THEOR BIOL, V119, P345, DOI 10.1016/S0022-5193(86)80146-1; Jenni L, 1994, MOULT AGEING EUROPEA; JONES G, 1986, BEHAV ECOL SOCIOBIOL, V19, P179; Karlsson L., 1986, Var Fagelvarld, V45, P131; Lifjeld JT, 1990, BEHAV ECOL, V1, P48, DOI 10.1093/beheco/1.1.48; LIFJELD JT, 1986, ANIM BEHAV, V34, P1441, DOI 10.1016/S0003-3472(86)80215-9; LIFJELD JT, 1988, ORNIS SCAND, V19, P111, DOI 10.2307/3676459; LIMA SL, 1986, ECOLOGY, V67, P377, DOI 10.2307/1938580; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDSTROM A, 1989, AUK, V106, P225; Lundberg A., 1992, PIED FLYCATCHER; MAGRATH RD, 1988, AM NAT, V131, P893, DOI 10.1086/284829; Martin T.E., 1992, Current Ornithology, V9, P163; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; Newton I., 1986, SPARROWHAWK; NORDBERG RA, 1981, AM NAT, V118, P838; NUR N., 1990, POPULATION BIOL PASS, P281; ORELL M, 1980, ORNIS SCAND, V11, P43, DOI 10.2307/3676264; PART T, 1989, J ANIM ECOL, V58, P305, DOI 10.2307/5002; PAYNE RB, 1972, AVIAN BIOL, V2, P103; PERRINS CM, 1980, ARDEA, V68, P133; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V250, P143, DOI 10.1098/rspb.1992.0142; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; ROBINSON SK, 1986, ECOLOGY, V67, P394, DOI 10.2307/1938582; ROGERS CM, 1987, ECOLOGY, V68, P1051, DOI 10.2307/1938377; SAETRE GP, 1995, J ANIM ECOL, V64, P21, DOI 10.2307/5824; *SAS I, 1989, JMP US GUID VERS 2 J; SEALY SG, 1986, J FIELD ORNITHOL, V57, P315; SELAS V, 1993, ORNIS FENNICA, V70, P144; SILVERIN B, 1981, ORNIS SCAND, V12, P133, DOI 10.2307/3676040; SLAGSVOLD T, 1989, AM NAT, V134, P239, DOI 10.1086/284978; SLAGSVOLD T, 1986, J ANIM ECOL, V55, P1115, DOI 10.2307/4437; SLAGSVOLD T, 1992, EVOLUTION, V46, P825, DOI 10.1111/j.1558-5646.1992.tb02087.x; SLAGSVOLD T, 1988, ECOLOGY, V69, P1918, DOI 10.2307/1941168; SLAGSVOLD T, 1990, ECOLOGY, V71, P1258, DOI 10.2307/1938263; SLAGSVOLD T, 1994, BEHAV ECOL SOCIOBIOL, V34, P239, DOI 10.1007/s002650050039; SLAGSVOLD T, 1988, ANIM BEHAV, V36, P433, DOI 10.1016/S0003-3472(88)80013-7; SLAGSVOLD T, 1995, IN PRESS ANIMAL BEHA, V50; SMITH HG, 1989, BEHAV ECOL SOCIOBIOL, V24, P417, DOI 10.1007/BF00293270; STENMARK G, 1988, ANIM BEHAV, V36, P1646, DOI 10.1016/S0003-3472(88)80105-2; Sternberg H., 1989, P55; STRESEMANN ERWIN, 1966, J ORNITHOL, V107, P1; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Verner J., 1969, Ornithological Monographs, VNo. 9, P1; von HAARTMAN LARS, 1954, ACTA ZOOL FENNICA, V83, P1; VONHAARTMAN L, 1988, 18 C INT ORN MOSC, P1; WALSBERG GE, 1983, AVIAN BIOL, V7, P161; WOOLFENDEN GE, 1984, FLORIDA SCRUB JAY 67 81 84 1 15 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology MAR 1996 77 2 461 471 10.2307/2265622 11 Ecology Environmental Sciences & Ecology TY198 WOS:A1996TY19800010 2019-02-26 J Young, BE Young, BE An experimental analysis of small clutch size in tropical House Wrens ECOLOGY English Article brood manipulation; clutch size; food limitation; future fecundity; nest predation; offspring quality; population model; survivorship; trade-off; Troglodytes aedon; tropics TIT PARUS-MAJOR; GREAT TIT; BROOD SIZE; TROGLODYTES-AEDON; PASSERINE BIRDS; NEST PREDATION; HATCHING ASYNCHRONY; COLLARED FLYCATCHER; MANIPULATED BROODS; JUVENILE SURVIVAL Trade-offs are central to life history theory, yet few studies have examined how geographic variation in trade-offs can lead to geographic variation in life history characters. I examined whether or not trade-offs for future fecundity or offspring survivorship could explain why tropical birds lay smaller clutches than their temperate relatives. I studied a tropical population (in Monteverde, Costa Pica) of the House Wren (Troglodytes aedon), a species that ranges in average clutch size from 6 in the temperate zone to 3.5 in the tropics. Three years of brood manipulation experiments showed weak effects of brood size on both future fecundity and offspring survivorship. Females that raised broods enlarged by two nestlings laid subsequent clutches, in the same breeding season, that were one-third of an egg smaller than those of females that did not raise enlarged first broods. Clutches in the year following brood manipulation were about a half an egg smaller for females raising enlarged broods than for females raising control or reduced broods. However, brood manipulation had no effect on male or female survivorship in any year of the study, despite the observation that both sexes increased their foraging rate to compensate for rearing larger broods. In two of three years, House Wrens were able to raise enlarged broods just as successfully as control and reduced broods, as measured by fledgling mass and survivorship of nestlings and fledglings. In one year, nestlings in enlarged broods hedged lighter and had lower fledgling survival than those in control or reduced broods. Predation of broods was unrelated to brood size, so food limitation appeared to be the mechanism causing the trade-off between brood number and offspring production. The pattern in tropical House Wrens is similar to that found in many studies of temperate passerines: in most years, brood sizes larger than the modal brood size appear to produce the most offspring. Thus, the same mechanism that controls dutch size in temperate birds may be at work in the tropics, but the level at which clutch size is controlled is lower in tropical birds, resulting in smaller clutches. A population model based on demographic parameters measured in the study population showed that the trade-off for offspring survivorship had a greater influence on fitness than the trade-off for future fecundity. Also, the clutch size strategy accruing the highest fitness depended on temporally varying conditions for reproduction. A strategy of laying 5-6 eggs had higher fitness than laying smaller clutches in years when conditions were favorable for reproduction, but clutch sizes of 3-4 (the observed clutch sizes in Monteverde) were most productive during less favorable years. Depending on the frequency of favorable years, House Wrens may be responding to a ''bad-years effect'' by lowering variance in reproductive success to maximize fitness over the long term. Alternatively, tropical birds may lay fewer eggs so that they can invest more care in each offspring, enhancing the chance that their offspring will survive and compete successfully in social contests for breeding territories. This offspring-quality hypothesis is supported by the observation that tropical House Wrens devote more time to the different stages of the reproductive cycle than do temperate House Wrens. UNIV WASHINGTON,DEPT ZOOL,SEATTLE,WA 98195 Alatalo R, 1990, POPULATION BIOL PASS, P323; ALVAREZ-LOPEZ H, 1984, Caldasia, V14, P85; ARNOLD TW, 1993, WILSON BULL, V105, P448; BALTZ ME, 1988, WILSON BULL, V100, P70; BEISSINGER SR, 1990, AM NAT, V136, P20, DOI 10.1086/285080; BEISSINGER SR, 1991, AUK, V108, P863; BOCK CE, 1992, AM NAT, V140, P815, DOI 10.1086/285442; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Caswell H., 1989, MATRIX POPULATION MO; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; DRILLING NE, 1988, AUK, V105, P480; FINKE MA, 1987, J ANIM ECOL, V56, P99, DOI 10.2307/4802; FOSTER RB, 1982, ECOLOGY TROPICAL FOR, P201; FREED LA, 1987, CONDOR, V89, P195, DOI 10.2307/1368780; FREED LA, 1987, AM NAT, V130, P507, DOI 10.1086/284728; FREED LA, 1986, BEHAV ECOL SOCIOBIOL, V19, P197; FRETWELL SD, 1969, IBIS, V111, P624, DOI 10.1111/j.1474-919X.1969.tb02581.x; GAINES SD, 1990, AM NAT, V135, P310, DOI 10.1086/285047; GARNETT MC, 1981, IBIS, V123, P31, DOI 10.1111/j.1474-919X.1981.tb00170.x; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.es.22.110191.002205; Grant B. R., 1989, EVOLUTIONARY DYNAMIC; GRAVES J, 1991, AUK, V108, P967; GROSS AO, 1948, US NATL MUS BULL, V195, P113; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HAGVAR S, 1989, FAUNA NORVEGICA C, V13, P33; HARPER RG, 1992, BEHAV ECOL, V3, P76, DOI 10.1093/beheco/3.1.76; Hesse R, 1937, ECOLOGICAL ANIMAL GE; HOCHACHKA W, 1991, J ANIM ECOL, V60, P995, DOI 10.2307/5427; Holdridge LR, 1967, LIFE ZONE ECOLOGY; JANZEN D H, 1974, Biotropica, V6, P69, DOI 10.2307/2989823; JARVINEN A, 1991, IBIS, V133, P62, DOI 10.1111/j.1474-919X.1991.tb04811.x; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; KARR JR, 1983, ECOLOGY, V64, P1481, DOI 10.2307/1937503; KENNEDY ED, 1990, CONDOR, V92, P861, DOI 10.2307/1368722; KLOMP H, 1970, ARDEA, V58, P1; KOENIG WD, 1986, CONDOR, V88, P499, DOI 10.2307/1368278; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; LANDE R, 1988, OECOLOGIA, V75, P601, DOI 10.1007/BF00776426; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Levings S. C, 1982, ECOLOGY TROPICAL FOR, P355; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LUNDBERG S, 1985, OIKOS, V45, P110, DOI 10.2307/3565228; MADER WJ, 1982, CONDOR, V84, P261, DOI 10.2307/1367368; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MOLLER AP, 1984, ORNIS SCAND, V15, P43, DOI 10.2307/3676002; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; MURPHY MT, 1989, OIKOS, V54, P3, DOI 10.2307/3565891; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; NUR N., 1990, POPULATION BIOL PASS, P281; ORELL M, 1990, POPULATION BIOL PASS, P297; Perrins C.M., 1977, P181; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; Pollock K.H., 1990, WILDLIFE MONOGR, V107, P1; REDONDO T, 1992, IBIS, V134, P180, DOI 10.1111/j.1474-919X.1992.tb08395.x; Ricklefs R.E., 1977, P193; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 1969, SMITHSONIAN CONTRIBU, V9; ROBINSON KD, 1991, AUK, V108, P277; ROBINSON SK, 1986, ECOLOGY, V67, P394, DOI 10.2307/1938582; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; SAFRIEL UN, 1975, ECOLOGY, V56, P703, DOI 10.2307/1935505; SAUER JR, 1989, J WILDLIFE MANAGE, V53, P137, DOI 10.2307/3801320; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHAUB R, 1992, AUK, V109, P585; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Skutch A. F., 1953, Condor, V55, P121, DOI 10.2307/1364829; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Skutch AF, 1985, ORNITHOLOGICAL MONOG, P575, DOI DOI 10.2307/40168306; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Smith N.G, 1982, ECOLOGY TROPICAL FOR, P331; SMITH SM, 1994, ECOLOGY, V75, P2043, DOI 10.2307/1941609; Stearns SC., 1992, EVOLUTION LIFE HIST; TINBERGEN JM, 1987, ARDEA, V75, P111; TREXLER JC, 1993, ECOLOGY, V74, P1629, DOI 10.2307/1939921; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; WALSBERG GE, 1983, AVIAN BIOL, V7, P161; WILKINSON L, 1989, SYSTAT SYSTEM STAT; WINNETTMURRAY K, 1986, THESIS U FLORIDA GAI; YOUNG BE, 1994, AUK, V111, P545; YOUNG BE, 1994, CONDOR, V96, P341, DOI 10.2307/1369319; YOUNG BE, 1993, THESIS U WASHINGTON; Zach R., 1981, P95; ZACH R, 1982, CAN J ZOOL, V60, P1417, DOI 10.1139/z82-191 95 42 43 1 23 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology MAR 1996 77 2 472 488 10.2307/2265623 17 Ecology Environmental Sciences & Ecology TY198 WOS:A1996TY19800011 2019-02-26 J Case, AL; Lacey, EP; Hopkins, RG Case, AL; Lacey, EP; Hopkins, RG Parental effects in plantago lanceolata L .2. Manipulation of grandparental temperature and parental flowering time HEREDITY English Article flowering phenology; gametophytic selection; intergenerational plasticity; life history evolution; parental temperature effects; Plantago lanceolata SEED; PERFORMANCE; INHERITANCE; CHARACTERS; SIZE In an experimental study of Plantago lanceolata L., postzygotic environmentally induced parental effects were (1) transmitted across generations, (2) genotype-specific, and (3) mediated by natural differences in flowering phenology. Individuals were cloned, hand-pollinated and allowed to mature seed at one of two temperatures. Second-generation plants were induced to seed-set at four times during the flowering season. The effects of grandparental temperature (GPT), parental flowering time (PFT) and maternal family (MFAM) on seed size, germination, leaf area and allometry, flowering time and male sterility in third generation plants were then measured. GPT significantly affected all adult traits and did so more strongly than and often independently of seed weight and germination. The data suggest that heritable GPT effects arise from gametophytic selection or genomic modification. Significant GPT x MFAM interactions were detected for seed weight, leaf area, flowering time, and male sterility. Such genotype-specific responses are necessary if parental temperature is to influence the evolutionary divergence of life history and breeding patterns in populations growing in different temperature regimes. PFT affected leaf area and percentage germination. Natural changes in photoperiod but not temperature may explain the observed PFT effects on germination. UNIV N CAROLINA,DEPT BIOL,GREENSBORO,NC 27412 ALEXANDER HM, 1985, J ECOL, V73, P271, DOI 10.2307/2259783; ANTONOVICS J, 1986, OECOLOGIA, V69, P277, DOI 10.1007/BF00377634; BIERE A, 1991, J EVOLUTION BIOL, V4, P467, DOI 10.1046/j.1420-9101.1991.4030467.x; Chailakhyan M. K, 1987, SEXUALITY PLANTS ITS; DAS OP, 1994, GENETICS, V136, P1121; DURRANT A, 1962, HEREDITY, V17, P27, DOI 10.1038/hdy.1962.2; GUTTERMAN Y, 1983, WEED PHYSL, V1, P1; LACEY EP, 1996, IN PRESS EVOLUTION; LAU TC, 1993, AM J BOT, V80, P763, DOI 10.2307/2445596; MATZKE M, 1993, ANNU REV PLANT PHYS, V44, P53, DOI 10.1146/annurev.pp.44.060193.000413; MIAO SL, 1991, ECOLOGY, V72, P1634, DOI 10.2307/1940963; MIAO SL, 1991, ECOLOGY, V72, P586, DOI 10.2307/2937198; PLATENKAMP GAJ, 1993, EVOLUTION, V47, P540, DOI 10.1111/j.1558-5646.1993.tb02112.x; PURRINGTON CB, 1993, J ECOL, V81, P807, DOI 10.2307/2261678; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.ecolsys.18.1.209; ROSS MD, 1973, HEREDITY, V30, P169, DOI 10.1038/hdy.1973.19; *SAS I, 1985, SAS US GUID; SCHMITT J, 1992, AM NAT, V139, P451, DOI 10.1086/285338; SCHNEEBERGER RG, 1991, GENETICS, V128, P619; TERAMURA AH, 1981, AM J BOT, V68, P425, DOI 10.2307/2442780; VANDAMME JMM, 1983, HEREDITY, V50, P253, DOI 10.1038/hdy.1983.28; WULFF RD, 1992, AM J BOT, V79, P1102, DOI 10.2307/2445208; YOUNG HJ, 1990, SCIENCE, V248, P1631, DOI 10.1126/science.248.4963.1631 23 38 39 0 12 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0018-067X HEREDITY Heredity MAR 1996 76 3 287 295 10.1038/hdy.1996.42 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TZ198 WOS:A1996TZ19800010 Bronze 2019-02-26 J Thorbjarnarson, JB Thorbjarnarson, JB Reproductive characteristics of the order Crocodylia HERPETOLOGICA English Article clutch size; Crocodylia; life history evolution; reproduction CROCODILIAN NESTING HABITS; LIFE-HISTORY TRAITS; OPTIMAL EGG SIZE; CLUTCH SIZE; BODY SIZE; ALLIGATOR; EVOLUTION; COVARIATION; ENVIRONMENT; INCUBATION Information on crocodilian egg and clutch characteristics is reviewed. The relationships between female size and egg mass, clutch size, and clutch mass are quantified, and the effects of nest mode, relative snout width, and family are examined. At the interspecific level, egg mass, clutch size, and clutch mass are strongly correlated with female size. However, larger species produce relatively smaller clutches and eggs. In most cases, similar relationships were found at the intraspecific level as well. Crocodylids are more variable in terms of nesting mode (hole and mound nesters) than alligatorids (all mound nesters). After correcting for differences in female length, no trade-off between clutch size and egg size was found at the interspecific level. The effects of family, snout width, and nest mode were also examined independent of female size. Clutch size and clutch mass were greater in the Alligatoridae than in the Crocodylidae and the Gavialidae. However, data on reproductive frequency suggest that crocodylids nest more frequently than alligatorids, and no significant difference in mean annual clutch mass was found between these two major phylogenetic groups. Narrow-snouted species lay significantly smaller clutches than other crocodilians. Consistent patterns of relative egg mass/clutch size variation were found within genera in the Alligatoridae. Alligator produces large clutches of small eggs. Tropical alligatorids have large relative clutch masses due to the production of relatively large eggs (Melanosuchus and Paleosuchus) or relatively large clutches (Caiman). Within the genus Crocodylus, the four species that inhabit strongly seasonal riverine or lacustrine environments are all hole nesters that invest relatively little in each reproductive bout (C. intermedius, C. palustris, and C. johnsoni) but may compensate with high reproductive frequencies. Gavialis may also follow this general pattern. Among the true crocodiles, two species have notably large clutch masses (C. niloticus and C. porosus). In terms of reproductive characteristics, C. cataphractus is the most unusual species, laying very small numbers of very large eggs. Thorbjarnarson, JB (reprint author), NEW YORK ZOOL SOC, WILDLIFE CONSERVAT SOC, BRONX, NY 10460 USA. ACKERMAN RA, 1980, AM ZOOL, V20, P575; AYARZAGUENA JS, 1983, DONANA, V10, P7; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; BRAZAITIS P, 1973, Zoologica (New York), V58, P59; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Calder W. A, 1984, SIZE FUNCTION LIFE H; CAMPBELL HW, 1972, NATURE, V238, P404, DOI 10.1038/238404a0; CHABRECK RH, 1979, HERPETOLOGICA, V35, P51; CHABRECK RH, 1967, P ANN C SE ASS GAME, V20, P105; Congdon J.D., 1982, Biology of Reptilia, V13, P233; Congdon J.D., 1990, P45; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; CONGDON JD, 1985, HERPETOLOGICA, V41, P194; COTT H. B., 1961, TRANS ZOOL SOC LONDON, V29, P211; DEITZ DC, 1980, COPEIA, P249, DOI 10.2307/1444001; Dunham A.E., 1988, Biology of Reptilia, V16, P441; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; Ferguson M.W.J., 1985, Biology of Reptilia, V14, P329; GRAHAM A, 1968, UNPUB LAKE RUDOLF CR; GREER A E, 1975, Journal of Herpetology, V9, P319, DOI 10.2307/1563198; GREER A E JR, 1971, Fauna (Rancho Mirage California), V2, P20; GREER AE, 1970, NATURE, V227, P523, DOI 10.1038/227523a0; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HUTTON JM, 1984, THESIS U ZIMBABWE HA; IVERSON J B, 1987, Florida Scientist, V50, P223; Iverson JB, 1992, HERPETOL MONOGR, V6, P25, DOI DOI 10.2307/1466960; JACOBSEN T, 1986, CROCODILES, P153; JANZEN FJ, 1993, ECOLOGY, V74, P332, DOI 10.2307/1939296; Joanen T., 1970, Proceedings a Conf SEast Ass Game Fish Commnrs, V23, P141; JOANEN T, 1980, REPRODUCTIVE BIOL DI, V1, P153; KING FW, 1989, CROCODILIAN TAUATARA; LANCE VA, 1989, AM ZOOL, V29, P999; LUTZ PL, 1984, COPEIA, P153, DOI 10.2307/1445047; MAGNUSSON WE, 1982, J HERPETOL, V16, P121, DOI 10.2307/1563804; MAGNUSSON WE, 1991, J HERPETOL, V25, P41, DOI 10.2307/1564793; MAGNUSSON WE, 1989, SPECIAL PUBLICATION, P101; MAZZOTTI FJ, 1983, THESIS PENNSYLVANIA; MONTAGUE JJ, 1984, AUST WILDLIFE RES, V11, P395; Mook CC, 1921, B AM MUS NAT HIST, V44, P123; MOOK CHARLES C., 1934, JOUR GEOL, V42, P295; OUBOTER P E, 1987, Amphibia-Reptilia, V8, P331, DOI 10.1163/156853887X00117; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PERUTZ MF, 1981, NATURE, V291, P682, DOI 10.1038/291682a0; Peters R.H., 1983, P1; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Reiss M. J, 1989, ALLOMETRY GROWTH REP; Roff Derek A., 1992; Romanoff A. L., 1949, AVIAN EGG; Romer A. S, 1956, OSTEOLOGY REPTILES; SEYMOUR RS, 1980, AM ZOOL, V20, P437; SEYMOUR RS, 1979, PALEOBIOLOGY, V5, P1; SHINE R, 1988, BIOL REPTILIA, V16, P275; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SOKAL R., 1981, BIOMETRY; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; STEEL R, 1973, HDB PALAOHERPETOLOGI, V16, P1; Taylor D., 1984, Proceedings of the Annual Conference Southeastern Association of Fish and Wildlife Agencies, V38, P222; TAYLOR D, 1991, J WILDLIFE MANAGE, V55, P682, DOI 10.2307/3809518; THORBJARNARSON JB, 1993, J HERPETOL, V27, P363, DOI 10.2307/1564821; THORBJARNARSON JB, 1994, B FLORIDA STATE MUS, P907; THORN RS, 1988, SINGAPORE ECON REV, V33, P1; WEBB GJW, 1983, AUST WILDLIFE RES, V10, P383, DOI 10.1071/WR9830383; WEBB GJW, 1978, AUST J ZOOL, V26, P1; WEBB GJW, 1989, AM ZOOL, V29, P953; WEBB GJW, 1983, AUST WILDLIFE RES, V10, P607; WHITAKER R, 1984, Journal of the Bombay Natural History Society, V81, P297; WHITEHEAD PJ, 1987, THESIS U ADELAIDE AD; Wilbur H.M., 1988, Biology of Reptilia, V16, P387; Wilkinson P. M., 1984, NESTING ECOLOGY AM A; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 72 59 69 0 30 HERPETOLOGISTS LEAGUE EMPORIA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST, EMPORIA, KS 66801-5087 USA 0018-0831 1938-5099 HERPETOLOGICA Herpetologica MAR 1996 52 1 8 24 17 Zoology Zoology VG888 WOS:A1996VG88800002 2019-02-26 J Kalezic, ML; Cvetkovic, D; Djorovic, A; Dzukic, G Kalezic, ML; Cvetkovic, D; Djorovic, A; Dzukic, G Alternative life-history pathways: Paedomorphosis and adult fitness in European newts (Triturus vulgaris and T-alpestris) JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH English Article Adult fitness; paedomorphosis; Triturus alpestris; Triturus vulgaris SALAMANDER AMBYSTOMA-TALPOIDEUM; SMOOTH NEWT; PEDOMORPHOSIS; GROWTH; AGE; REPRODUCTION; POPULATION; CRISTATUS; AMPHIBIA; SIZE Paedomorphs and metamorphs of the smooth newt (Triturus vulgaris) and alpine newt (Triturus alpestris) were compared with respect to body size, age structure, age at sexual maturity, survivorship, and female and male fecundity. Paedomorphs were significantly smaller than metamorphs, except for the alpine newt males. Non-significant differences between morphs in both species in terms of the life span, age of sexual maturity, survival rates and male fecundity were found. The relationships concerning female-fecundity parameters were not so straightforward. The total number of oocytes was significantly higher in smooth-newt paedomorphs, while in the alpine newt the difference was insignificant. When ovary mass was compared, significant differences appeared only in the alpine newt, in favour of metamorphic females. Oviductal egg size was similar in both morphs of T. vulgaris. The maintenance of both life-history strategies in the species studied is discussed in the light of these findings. FAC BIOL,INST ZOOL,YU-11000 BELGRADE,YUGOSLAVIA; INST BIOL RES DR SINISA STANKOVIC,BELGRADE,YUGOSLAVIA Ivanovic, Ana/0000-0002-6247-8849 BAKER JMR, 1992, HERPETOL J, V2, P90; BELL G, 1977, ECOL MONOGR, V47, P279, DOI 10.2307/1942518; Breuil Michel, 1992, Bulletin de la Societe Herpetologique de France, V61, P11; CASTANET J, 1974, ZOOL SCR, V3, P137, DOI 10.1111/j.1463-6409.1974.tb00811.x; DJOROVIC A, 1996, IN PRESS SPIXIANA; Duellman W. E., 1986, BIOL AMPHIBIA; Dzukic G., 1990, BRIT HERPETOL SOC B, V34, P16; FRANCILLON H, 1979, ACTA ZOOL-STOCKHOLM, V60, P223; FRANCILLONVIEILLOT H, 1990, J HERPETOL, V24, P13, DOI 10.2307/1564284; GELLER S, 1983, STATISTIQUE; Gould S. J, 1977, ONTOGENY PHYLOGENY; HAGSTROM T, 1979, Holarctic Ecology, V2, P108; HARRIS RN, 1990, EVOLUTION, V44, P1588, DOI 10.1111/j.1558-5646.1990.tb03848.x; HARRIS RN, 1987, ECOLOGY, V68, P705, DOI 10.2307/1938476; HARRIS RN, 1989, COPEIA, V1, P35; HEALY WR, 1974, COPEIA, V2, P221; HEALY WR, 1973, COPEIA, V3, P641; Kalezic M. L., 1992, Alytes (Paris), V10, P63; Kalezic M. L., 1989, ARH BIOL NAUKA BEOGR, V41, P67; KALEZIC ML, 1994, HERPETOL J, V4, P151; Kalezic ML, 1985, ARH BIOL NAUKA, V37, P43; Krebs C. J., 1989, ECOLOGICAL METHODOLO; Miaud C., 1991, TISSUS DURS AGE INDI, P363; MOSEGAARD H, 1988, CAN J FISH AQUAT SCI, V45, P1514, DOI 10.1139/f88-180; Radovanovic M., 1951, British Journal of Herpetology, V1, P93; ROFF DA, 1994, EVOLUTION, V48, P1650, DOI 10.1111/j.1558-5646.1994.tb02202.x; *SAS I, 1989, SAS STAT US GUID VER; Schabetsberger Robert, 1994, Alytes (Paris), V12, P41; SCOTT DE, 1993, AM MIDL NAT, V129, P397, DOI 10.2307/2426520; SEMLITSCH RD, 1990, EVOLUTION, V44, P1604, DOI 10.1111/j.1558-5646.1990.tb03849.x; SEMLITSCH RD, 1990, ECOLOGY, V71, P1789, DOI 10.2307/1937586; SEMLITSCH RD, 1985, OECOLOGIA, V65, P305, DOI 10.1007/BF00378903; SEMLITSCH RD, 1989, EVOLUTION, V43, P105, DOI 10.1111/j.1558-5646.1989.tb04210.x; SEMLITSCH RD, 1987, ECOLOGY, V68, P1003, DOI 10.2307/1938371; SHAFFER HB, 1984, EVOLUTION, V38, P1207, DOI 10.1111/j.1558-5646.1984.tb05644.x; SMIRINA EM, 1985, ZOOL ZH, V64, P311; TUCIC N, 1985, ZOOL ANZ, V215, P102; VERRELL PA, 1986, J ZOOL, V210, P101; VERRELL PA, 1986, J ZOOL, V210, P89; WHITEMAN HH, 1994, Q REV BIOL, V69, P205, DOI 10.1086/418540 40 31 32 0 3 BLACKWELL WISSENSCHAFTS-VERLAG GMBH BERLIN KURFURSTENDAMM 57, D-10707 BERLIN, GERMANY 0947-5745 J ZOOL SYST EVOL RES J. Zool. Syst. Evol. Res. MAR 1996 34 1 1 7 7 Evolutionary Biology; Zoology Evolutionary Biology; Zoology UT698 WOS:A1996UT69800001 2019-02-26 J Ruzicka, JJ Ruzicka, JJ Comparison of the two alternative early life-history strategies of the Antarctic fishes Gobionotothen gibberifrons and Lepidonotothen larseni MARINE ECOLOGY PROGRESS SERIES English Article Gobionotothen gibberifrons; Notothenia gibberifrons; Lepidonotothen larseni; Nototheniops larseni; larvae; otoliths; hatch period; growth OTOLITH MICROSTRUCTURE; NOTOTHENIOPS-NUDIFRONS; BRANSFIELD STRAIT; COLD WATER; GROWTH; AGE; REPRODUCTION; LARVAE; INVERTEBRATES; PATTERNS Two major early life-history strategies of notothenioid fishes in the lower Antarctic are identified based upon the length of pelagic development: species that complete pelagic development within 1 summer season ('summer larvae') and species with extended pelagic development that continues over winter months ('winter larvae'). These 2 life-history strategies were compared using otolith techniques to reveal growth histories, hatching periods, and development rates of larval Gobionotothen gibberifrons (summer larvae) and Lepidonotothen larseni (winter larvae) from the Antarctic Peninsula (summer 1986/87) and South Georgia (summers 1987/88 and 1988/89). Back-calculated growth over the first 40 d after hatching was modeled exponentially and instantaneous growth rates (r) were calculated. Both species grew at similar rates with respect to length (r = 0.01) and with respect to weight (r = 0.02 to 0.03). The hatch period of both species was delayed off the Antarctic Peninsula (late-November to mid-December) compared to South Georgia (early to mid-November), as is the onset of the productive season at higher latitudes. Summer larvae have no growth advantage but do develop more quickly than winter larvae, offering the ability to reduce the time spent in a vulnerable life-history stage. As currently hypothesized, winter larvae may take advantage of an extended period for growth, using pelagic resources unavailable to summer larvae, or recruiting to the demersal environment when competition from summer recruits is lowest. Ruzicka, JJ (reprint author), UNIV HAWAII, SCH OCEAN & EARTH SCI & TECHNOL, DEPT OCEANOG, 1000 POPE RD, HONOLULU, HI 96822 USA. ARNAUD PM, 1977, ADAPTATIONS ANTARCTI, P135; BALBONTIN F., 1986, SER CIENT INACH, V35, P125; CAMPANA SE, 1990, CAN J FISH AQUAT SCI, V47, P2219, DOI 10.1139/f90-246; CAMPANA SE, 1989, CAN J ZOOL, V67, P1401, DOI 10.1139/z89-199; CLARKE A, 1988, COMP BIOCHEM PHYS B, V90, P461, DOI 10.1016/0305-0491(88)90285-4; CLARKE A, 1979, MAR BIOL, V55, P111, DOI 10.1007/BF00397306; CLARKE A, 1983, OCEANOGR MAR BIOL, V21, P341; EASTMAN JT, 1991, AM ZOOL, V31, P93; Eastman JT, 1993, ANTARCTIC FISH BIOL; Efremenko V.N., 1983, Cybium, V7, P1; EFREMENKO VN, 1979, J ICHTHYOLOGY, V19, P95; El-Sayed S.Z., 1985, KEY ENV ANTARCTICA, P135; Everson I., 1984, P491; FLEGLERBALON C, 1989, PERSP VERT, V6, P71; HOLLANDER M, 1973, NONPARAMETRIC STATIS; HOUDE ED, 1987, AM FISH SOC S, V2, P17; HOURIGAN TF, 1989, MAR BIOL, V100, P277, DOI 10.1007/BF00391969; HUNTLEY M, 1991, DEEP-SEA RES, V38, P911, DOI 10.1016/0198-0149(91)90090-3; JENKINS GP, 1990, MAR ECOL PROG SER, V63, P93, DOI 10.3354/meps063093; JONES C, 1986, FISH B-NOAA, V84, P91; KELLERMANN A, 1990, MAR BIOL, V106, P159, DOI 10.1007/BF01314796; KELLERMANN A, 1991, POLAR BIOL, V11, P117; KELLERMANN A, 1989, Archiv fuer Fischereiwissenschaft, V39, P81; Kellermann A., 1988, P147; KELLERMANN A, 1986, BER POLARFORSCH, V31; KELLERMANN A, 1989, BIOMASS SCI SER, V10, P45; Kock K, 1992, ANTARCTIC FISH FISHE; KOCK KH, 1991, ANTARCT SCI, V3, P125; KOCK KH, 1985, KEY ENV ANTARCTICA, P173; LOEB VJ, 1991, DEEP-SEA RES, V38, P1251, DOI 10.1016/0198-0149(91)90105-O; MARSHALL NB, 1953, EVOLUTION, V7, P328, DOI 10.2307/2405343; MAY HMA, 1992, MAR ECOL PROG SER, V79, P203; Moore D. S., 1989, INTRO PRACTICE STAT; NISHIMURA A, 1988, MAR BIOL, V97, P459, DOI 10.1007/BF00391041; North A.W., 1987, P381; NORTH A W, 1989, Cybium, V13, P357; North A.W., 1990, P299; North A. W., 1988, SCI COMM CONS ANT MA, P105; NORTH AW, 1990, THESIS MARINE ENV RE; OLSON RR, 1987, LIMNOL OCEANOGR, V32, P686, DOI 10.4319/lo.1987.32.3.0686; PEARSE JS, 1986, B MAR SCI, V39, P477; PEARSE JS, 1991, AM ZOOL, V31, P65; PEARSE JS, 1985, ANTARCT J US, V30, P138; PENNEY RW, 1985, CAN J FISH AQUAT SCI, V42, P1452, DOI 10.1139/f85-183; PICKEN GB, 1980, BIOL J LINN SOC, V14, P67, DOI 10.1111/j.1095-8312.1980.tb00098.x; RADTKE RL, 1990, FISH B-NOAA, V88, P557; RADTKE RL, 1984, POLAR BIOL, V3, P203, DOI 10.1007/BF00292624; RADTKE RL, 1989, MAR ECOL PROG SER, V57, P103, DOI 10.3354/meps057103; RICKER WE, 1973, J FISH RES BOARD CAN, V30, P409, DOI 10.1139/f73-072; RUZICKA JJ, 1995, POLAR BIOL, V15, P587; SECOR DH, 1989, RAP PROCES, V191, P431; SINQUE C, 1990, ARQ BIOL TECNOL, V33, P81; SINQUE C, 1988, ARQ BIOL TECNOL, V34, P515; Snedecor G. W., 1980, STAT METHODS; Sokal R.R., 1981, BIOMETRY PRINCIPLES; THOMAS RM, 1983, S AFRICAN J MARINE S, V1, P133; THORROLD SR, 1989, CAN J FISH AQUAT SCI, V46, P165; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; White M.G., 1991, P87; WHITE MG, 1977, ADAPTATIONS ANTARCTI, P197; WILSON KH, 1982, CAN J FISH AQUAT SCI, V39, P1335, DOI 10.1139/f82-179; Worner F.G., 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P196 62 9 9 0 9 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. MAR 1996 133 1-3 29 41 10.3354/meps133029 13 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography UG429 WOS:A1996UG42900003 Bronze 2019-02-26 J Frank, SA Frank, SA Models of parasite virulence QUARTERLY REVIEW OF BIOLOGY English Review GROUP SELECTION; VERTICAL TRANSMISSION; INCLUSIVE FITNESS; IMMUNE-SYSTEM; EVOLUTION; HOST; POPULATIONS; DISPERSAL; ORIGIN; COEVOLUTION Several evolutionary processes influence virulence, the amount of damage a parasite causes to its host. For example, parasites are favored to exploit their hosts prudently to prolong infection and avoid killing the host. Parasites also need to use some host resources to reproduce and transmit infections to new hosts. Thus parasites face a tradeoff between prudent exploitation and rapid reproduction-a life history tradeoff between longevity and fecundity. Other tradeoffs among components of parasite fitness also influence virulence. For example, competition among parasite genotypes favors rapid growth to achieve greater relative success within the host. Rapid growth may, however, lower the total productivity of the local group by over exploiting the host, which is a potentially renewable food supply. This is a problem of kin selection and group selection. I summarize models of parasite virulence with the theoretical tools of life history analysis, kin selection, and epidemiology. I then apply the theory to recent empirical studies and models of virulence. These applications, to nematodes, to the extreme virulence of hospital epidemics, and to bacterial meningitis, show the power of simple life history theory to highlight interesting questions and to provide a rich array of hypotheses. These examples also show the kinds of conceptual mistakes that commonly arise when only a few components of parasite fitness are analysed in isolation. The last part of the article connects standard models of parasite virulence to diverse topics, such as the virulence of bacterial plasmids, the evolution of genomes, and the processes that influenced conflict and cooperation among the earliest replicators near the origin of life. Frank, SA (reprint author), UNIV CALIF IRVINE, DEPT ECOL & EVOLUTIONARY BIOL, IRVINE, CA 92717 USA. Frank, Steven/0000-0001-7348-7794 NIGMS NIH HHS [GM42403] ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; ANDERSON RM, 1991, J ANIM ECOL, V60, P1, DOI 10.2307/5443; ANDERSON RM, 1981, PHILOS T R SOC B, V291, P451, DOI 10.1098/rstb.1981.0005; Anderson RM, 1991, INFECT DIS HUMANS DY; ANDERSSON M, 1984, ANNU REV ECOL SYST, V15, P165, DOI 10.1146/annurev.es.15.110184.001121; [Anonymous], 1993, TRENDS MICROBIOL; ANTIA R, 1994, AM NAT, V144, P457, DOI 10.1086/285686; AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; BIRGE EA, 1994, BACT BACTERIOPHAGE G; BONHOEFFER S, 1994, P ROY SOC B-BIOL SCI, V258, P133, DOI 10.1098/rspb.1994.0153; BONHOEFFER S, 1994, P NATL ACAD SCI USA, V91, P8062, DOI 10.1073/pnas.91.17.8062; BREMERMANN HJ, 1983, J THEOR BIOL, V100, P411, DOI 10.1016/0022-5193(83)90438-1; BREMERMANN HJ, 1989, J MATH BIOL, V27, P179, DOI 10.1007/BF00276102; BRESCH C, 1980, J THEOR BIOL, V85, P399, DOI 10.1016/0022-5193(80)90314-8; BULL JJ, 1991, J THEOR BIOL, V149, P63, DOI 10.1016/S0022-5193(05)80072-4; BULL JJ, 1991, EVOLUTION, V45, P875, DOI 10.1111/j.1558-5646.1991.tb04356.x; BULL JJ, 1994, EVOLUTION, V48, P1423, DOI 10.1111/j.1558-5646.1994.tb02185.x; CHARLESWORTH B, 1986, GENET RES, V48, P111, DOI 10.1017/S0016672300024836; CHARLESWORTH B, 1994, NATURE, V371, P215, DOI 10.1038/371215a0; CHARLESWORTH D, 1995, GENETICS, V140, P415; DAVIS B, 1990, MICROBIOLOGY; Dietz K., 1976, MATH MODELS MED, P1; Dietz K., 1975, EPIDEMIOLOGY, P104; DOOLITTLE WF, 1984, NATURE, V307, P501, DOI 10.1038/307501b0; EIGEN M, 1971, NATURWISSENSCHAFTEN, V58, P465, DOI 10.1007/BF00623322; Eigen M, 1979, HYPERCYCLE PRINCIPLE; Eigen Manfred, 1992, STEPS LIFE PERSPECTI; Ewald P.W., 1989, P21; Ewald P. W, 1994, EVOLUTION INFECT DIS; EWALD PW, 1987, ANN NY ACAD SCI, V503, P295, DOI 10.1111/j.1749-6632.1987.tb40616.x; EWALD PW, 1983, ANNU REV ECOL SYST, V14, P465, DOI 10.1146/annurev.es.14.110183.002341; FENNER F, 1956, J Hyg (Lond), V54, P284; FINE PEM, 1975, ANN NY ACAD SCI, V266, P173, DOI 10.1111/j.1749-6632.1975.tb35099.x; Fisher R. A, 1958, GENETICAL THEORY NAT; FRANK SA, 1986, J THEOR BIOL, V122, P303, DOI 10.1016/S0022-5193(86)80122-9; FRANK SA, 1992, P ROY SOC B-BIOL SCI, V250, P195, DOI 10.1098/rspb.1992.0149; FRANK SA, 1994, J THEOR BIOL, V170, P393, DOI 10.1006/jtbi.1994.1200; FRANK SA, 1995, J THEOR BIOL, V176, P403, DOI 10.1006/jtbi.1995.0208; FRANK SA, 1995, NATURE, V377, P520, DOI 10.1038/377520a0; FRANK SA, 1994, P ROY SOC B-BIOL SCI, V258, P153, DOI 10.1098/rspb.1994.0156; Garnett G. P., 1994, P51; Grafen A., 1984, BEHAV ECOLOGY EVOLUT, P62; Hamilton W.D., 1972, Annual Rev Ecol Syst, V3, P193; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hamilton WD, 1975, BIOSOCIAL ANTHR, P135; HARDIN G, 1968, SCIENCE, V162, P1243; HARDIN G, 1993, LIVING LIMITS; HARDY K, 1986, BACT PLASMIDS; HERRE EA, 1993, SCIENCE, V259, P1442, DOI 10.1126/science.259.5100.1442; Hoekstra R F, 1987, Experientia Suppl, V55, P59; Holt RD, 1996, EVOL ECOL, V10, P1, DOI 10.1007/BF01239342; HURST GDD, 1992, TRENDS ECOL EVOL, V7, P373, DOI 10.1016/0169-5347(92)90007-X; HURST LD, 1992, P ROY SOC B-BIOL SCI, V247, P189, DOI 10.1098/rspb.1992.0027; JANZEN DH, 1979, ANNU REV ECOL SYST, V10, P13, DOI 10.1146/annurev.es.10.110179.000305; KLECKNER N, 1990, GENETICS, V124, P449; KNOLLE H, 1989, J THEOR BIOL, V136, P199, DOI 10.1016/S0022-5193(89)80226-7; LENSKI RE, 1994, J THEOR BIOL, V169, P253, DOI 10.1006/jtbi.1994.1146; Levin B. R., 1983, COEVOLUTION, P99; LEVIN BR, 1990, PARASITOLOGY, V100, pS103, DOI 10.1017/S0031182000073054; LEVIN BR, IN PRESS MATH BIOSCI; Levin Bruce R., 1994, Trends in Microbiology, V2, P76, DOI 10.1016/0966-842X(94)90538-X; LEVIN S, 1981, AM NAT, V117, P308, DOI 10.1086/283708; Levin S.A., 1983, COEVOLUTION, P21; LEWIN B, 1977, GENE EXPRESSION, V3; Lewontin R. C., 1970, ANNU REV ECOL SYST, V1, P1, DOI DOI 10.1146/ANNUREV.ES.01.110170.000245; LIPSITCH M, 1995, EVOLUTION, V49, P743, DOI 10.1111/j.1558-5646.1995.tb02310.x; LIPSITCH M, 1995, P ROY SOC B-BIOL SCI, V260, P321, DOI 10.1098/rspb.1995.0099; LIPSITCH M, 1995, J THEOR BIOL, V174, P427, DOI 10.1006/jtbi.1995.0109; LIPSITCH M, IN PRESS EVOLUTION; MAY RM, 1994, J THEOR BIOL, V170, P95, DOI 10.1006/jtbi.1994.1171; MAY RM, 1986, PROC R SOC SER B-BIO, V228, P241, DOI 10.1098/rspb.1986.0054; MAY RM, 1990, PARASITOLOGY, V100, pS89, DOI 10.1017/S0031182000073042; MIEDEMA F, 1990, IMMUNOL TODAY, V11, P293, DOI 10.1016/0167-5699(90)90116-Q; MONTGOMERY EA, 1991, GENETICS, V129, P1085; MOTRO U, 1982, THEOR POPUL BIOL, V21, P394, DOI 10.1016/0040-5809(82)90026-0; NOWAK MA, 1994, P ROY SOC B-BIOL SCI, V255, P81, DOI 10.1098/rspb.1994.0012; NOWAK MA, 1991, SCIENCE, V254, P963, DOI 10.1126/science.1683006; QUELLER DC, 1992, AM NAT, V139, P540, DOI 10.1086/285343; RICK CM, 1984, APPL GENETICS, V4, P215; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SASAKI A, 1991, THEOR POPUL BIOL, V39, P201, DOI 10.1016/0040-5809(91)90036-F; Smith J. M., 1995, MAJOR TRANSITIONS EV; Smith J.M., 1982, EVOLUTION THEORY GAM; SMITH JM, 1979, NATURE, V280, P445, DOI 10.1038/280445a0; SMITH JM, 1993, J THEOR BIOL, V164, P437, DOI 10.1006/jtbi.1993.1165; SMITH JM, 1988, EVOLUTIONARY PROGR, P219; Stearns SC., 1992, EVOLUTION LIFE HIST; SZATHMARY E, 1987, J THEOR BIOL, V128, P463, DOI 10.1016/S0022-5193(87)80191-1; SZATHMARY E, 1989, TRENDS ECOL EVOL, V4, P200, DOI 10.1016/0169-5347(89)90073-6; Szathmary E., 1989, Oxford Surveys in Evolutionary Biology, V6, P169; TAYLOR PD, 1988, J THEOR BIOL, V130, P363, DOI 10.1016/S0022-5193(88)80035-3; TAYLOR PD, IN PRESS J THEORETIC; vanBaalen M, 1995, AM NAT, V146, P881, DOI 10.1086/285830; WADE MJ, 1978, Q REV BIOL, V53, P101, DOI 10.1086/410450; WERREN JH, 1988, TRENDS ECOL EVOL, V3, P297, DOI 10.1016/0169-5347(88)90105-X; WIEBES JT, 1979, ANNU REV ECOL SYST, V10, P1, DOI 10.1146/annurev.es.10.110179.000245; WILSON DS, 1980, NATURAL SELECTION PO; Wright S, 1969, EVOLUTION GENETICS P, V2; YAMAMURA N, 1993, THEOR POPUL BIOL, V44, P95, DOI 10.1006/tpbi.1993.1020; YORKE JA, 1979, AM J EPIDEMIOL, V109, P103, DOI 10.1093/oxfordjournals.aje.a112666; YOUNG RJ, 1994, GENETICS, V137, P581 104 871 877 10 270 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0033-5770 1539-7718 Q REV BIOL Q. Rev. Biol. MAR 1996 71 1 37 78 10.1086/419267 42 Biology Life Sciences & Biomedicine - Other Topics UE275 WOS:A1996UE27500002 8919665 2019-02-26 J Gems, D; Riddle, DL Gems, D; Riddle, DL Longevity in Caenorhabditis elegans reduced by mating but not gamete production NATURE English Article FERTILIZATION-DEFECTIVE MUTANTS; FEMALE DROSOPHILA-MELANOGASTER; LIFE-SPAN; WILD-TYPE; SPERM; EVOLUTION; MALES; GENE THEORIES Of life-history evolution propose that trade-offs occur between fitness components, including longevity and maximal reproduction(1-3). In Drosophila, female lifespan is shortened by increased egg production(4), receipt of male accessory fluid(5) and courting(6), Male lifespan is also reduced by courting and/or mating(7). Here we show that in the nematode Caenorhabditis elegans, mating with males reduces the lifespan of hermaphrodites by a mechanism independent of egg production or receipt of sperm, Conversely, males appear unaffected by mating, Thus, in C. elegans there is no apparent trade-off between longevity and increased egg or sperm production, but there is a substantial cost to hermaphrodites associated with copulation. UNIV MISSOURI,DIV BIOL SCI,COLUMBIA,MO 65211 Gems, D (reprint author), UNIV MISSOURI,PROGRAM MOLEC BIOL,COLUMBIA,MO 65211, USA. Gems, David/0000-0002-6653-4676 ARGON Y, 1980, GENETICS, V96, P413; BRENNER S, 1974, GENETICS, V77, P71; CHAPMAN T, 1992, J INSECT PHYSIOL, V38, P223, DOI 10.1016/0022-1910(92)90070-T; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; CHEN PS, 1988, CELL, V54, P291, DOI 10.1016/0092-8674(88)90192-4; FRIEDMAN DB, 1988, GENETICS, V118, P75; HARSHMAN LG, 1994, EVOLUTION, V48, P758, DOI 10.1111/j.1558-5646.1994.tb01359.x; HODGKIN J, 1983, GENETICS, V103, P43; KALB JM, 1993, P NATL ACAD SCI USA, V90, P8093, DOI 10.1073/pnas.90.17.8093; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; Kimble J, 1988, NEMATODE CAENORHABDI, P191; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KLASS MR, 1977, MECH AGEING DEV, V6, P413, DOI 10.1016/0047-6374(77)90043-4; LHEMAULT SW, 1988, GENETICS, V120, P435; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; SCHEDL T, 1988, GENETICS, V119, P43; SCOTT D, 1987, ANIM BEHAV, V35, P142, DOI 10.1016/S0003-3472(87)80219-1; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; WARD S, 1978, GENETICS, V88, P285; WARD S, 1981, J CELL BIOL, V91, P26, DOI 10.1083/jcb.91.1.26; WILKINSON L, 1989, SYSTAT SYSTEMS STATI; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x 24 134 140 1 25 MACMILLAN MAGAZINES LTD LONDON 4 LITTLE ESSEX STREET, LONDON, ENGLAND WC2R 3LF 0028-0836 NATURE Nature FEB 22 1996 379 6567 723 725 10.1038/379723a0 3 Multidisciplinary Sciences Science & Technology - Other Topics TW567 WOS:A1996TW56700051 8602217 2019-02-26 J Lasker, HR; Brazeau, DA; Calderon, J; Coffroth, MA; Coma, R; Kim, K Lasker, HR; Brazeau, DA; Calderon, J; Coffroth, MA; Coma, R; Kim, K In situ rates of fertilization among broadcast spawning gorgonian corals BIOLOGICAL BULLETIN English Article URCHIN STRONGYLOCENTROTUS-FRANCISCANUS; MARINE-INVERTEBRATES; MASS MORTALITY; SPERM DILUTION; SUCCESS; SETTLEMENT; ECOLOGY; CONSEQUENCES; EVOLUTION; HISTORY Fertilization rates among marine benthic taxa have implicitly been assumed to be uniformly high in most analyses of life history evolution, but in situ fertilization rates during natural spawning events are rarely measured. Fertilization rates of the Caribbean gorgonians Plexaura kuna and Pseudoplexaura porosa were measured at a site in the San Bias Islands, Panama, by collecting eggs downstream of colonies during synchronous spawning events during the summer months in the years 1988-1994. Eggs collected by divers were incubated, and the proportion of eggs that developed was determined. Proportions of eggs developing suggest fertilization rates that vary from 0% to 100%. Monthly means ranged from 0% to 60.4%. Failure of gametes to develop can be attributed to sperm limitation, as eggs collected during spawning had higher fertilization rates if incubated with an excess of sperm. Plexaura kuna fertilization rates were highest during the July spawning events. Fertilization of Plexaura kuna eggs was usually lower during the first two nights of the 4-6 night spawning event. The proportion of eggs being fertilized when collected from a given place and time was highly variable, with one peak in the frequency distribution at or below 20% fertilization, and a second group of samples with greater fertilization rates. High variance in fertilization rates is evident at all levels of analysis: between replicate samples, times within nights, and among nights and months. This variance can be attributed to a combination of the effects of heterogeneity in the water column as gametes are diluted, spawning behavior of the gorgonians, and the current regime. Fertilization rates are often low and may represent a limiting step in recruitment during some years. Low fertilization rates may also be an important component of the life history evolution of these species. Lasker, HR (reprint author), SUNY BUFFALO,DEPT BIOL SCI,BUFFALO,NY 14260, USA. Coma, Rafel/J-8987-2012 Coma, Rafel/0000-0001-6107-225X; Lasker, Howard/0000-0002-5280-0742 BABCOCK R, 1992, INVERTEBR REPROD DEV, V22, P213, DOI 10.1080/07924259.1992.9672274; BABCOCK RC, 1992, AUST J MAR FRESH RES, V43, P525; BABCOCK RC, 1994, BIOL BULL-US, V186, P17, DOI 10.2307/1542033; BENZIE JAH, 1994, BIOL BULL, V186, P153, DOI 10.2307/1542049; BENZIE JAH, 1994, BIOL BULL-US, V186, P139, DOI 10.2307/1542048; BRAZEAU DA, 1992, MAR BIOL, V114, P157; BRAZEAU DA, 1989, BIOL BULL, V176, P1, DOI 10.2307/1541882; COFFROTH MA, 1992, MAR BIOL, V114, P317, DOI 10.1007/BF00349534; CONNELL JH, 1961, ECOLOGY, V42, P710, DOI 10.2307/1933500; CONNELL JH, 1985, J EXP MAR BIOL ECOL, V93, P11, DOI 10.1016/0022-0981(85)90146-7; DENNY MW, 1989, AM NAT, V134, P859, DOI 10.1086/285018; DENNY MW, 1988, BIOL MECHANISMS WAVE; GAINES S, 1985, P NATL ACAD SCI USA, V82, P3707, DOI 10.1073/pnas.82.11.3707; GAINES S, 1985, OECOLOGIA, V67, P267, DOI 10.1007/BF00384297; GROSBERG RK, 1992, TRENDS ECOL EVOL, V7, P130, DOI 10.1016/0169-5347(92)90148-5; Lasker HR, 1996, B MAR SCI, V58, P277; LASKER HR, 1984, MAR ECOL PROG SER, V19, P261, DOI 10.3354/meps019261; LASKER HR, 1990, ECOLOGY, V71, P1578, DOI 10.2307/1938293; LASKER HR, 1993, P 7 INT COR REEF S, V1, P476; LASKER HR, 1985, 5TH P INT COR REEF C, V4, P331; LESSIOS HA, 1984, SCIENCE, V226, P335, DOI 10.1126/science.226.4672.335; LESSIOS HA, 1988, ANNU REV ECOL SYST, V19, P371, DOI 10.1146/annurev.es.19.110188.002103; Levitan D.R., 1988, P181; Levitan Don R., 1995, P123; LEVITAN DR, 1992, ECOLOGY, V73, P248, DOI 10.2307/1938736; LEVITAN DR, 1995, TRENDS ECOL EVOL, V10, P228, DOI 10.1016/S0169-5347(00)89071-0; LEVITAN DR, 1991, BIOL BULL, V181, P261, DOI 10.2307/1542097; LEVITAN DR, 1991, BIOL BULL, V181, P371, DOI 10.2307/1542357; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; LYUND PO, 1994, ECOLOGY, V75, P2168; MOORE PA, 1994, J CHEM ECOL, V20, P255, DOI 10.1007/BF02064435; MOORE PA, 1992, BIOL BULL, V183, P138, DOI 10.2307/1542414; Niklas K. J, 1994, PLANT ALLOMETRY SCAL; OLIVER J, 1992, BIOL BULL, V183, P409, DOI 10.2307/1542017; PENNINGTON JT, 1985, BIOL BULL-US, V169, P417, DOI 10.2307/1541492; PETERSEN CW, 1991, BIOL BULL, V181, P232, DOI 10.2307/1542094; PETERSEN CW, 1992, ECOLOGY, V73, P391, DOI 10.2307/1940747; Roughgarden J., 1989, P270; ROUGHGARDEN J, 1988, SCIENCE, V241, P1460, DOI 10.1126/science.11538249; SEWELL MA, 1992, B MAR SCI, V51, P161; SILANDER JA, 1985, POPULATION BIOL EVOL, P107; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; STRATHMANN RR, 1978, EVOLUTION, V32, P894, DOI 10.1111/j.1558-5646.1978.tb04642.x; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; THORSON GUNNAR, 1946, MEDDEL KOMM DANMARKS FISKERI OG HAVUNDERSOGELSER SER PLANKTON, V4, P1; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; YOUNG CM, 1990, OPHELIA, V32, P1; YOUNG CM, 1992, MAR BIOL, V113, P603, DOI 10.1007/BF00349704; YUND PO, 1990, J EXP ZOOL, V253, P102, DOI 10.1002/jez.1402530114 49 65 68 0 10 MARINE BIOL LAB WOODS HOLE BIOLOGICAL BULL MBL STREET, WOODS HOLE, MA 02543 0006-3185 BIOL BULL Biol. Bull. FEB 1996 190 1 45 55 10.2307/1542674 11 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology TY804 WOS:A1996TY80400006 2019-02-26 J Cunnington, DC; Brooks, RJ Cunnington, DC; Brooks, RJ Bet-hedging theory and eigenelasticity: A comparison of the life histories of loggerhead sea turtles (Caretta caretta) and snapping turtles (Chelydra serpentina) CANADIAN JOURNAL OF ZOOLOGY English Article POPULATION; CONSERVATION The life table for snapping turtles (Chelydra serpentina) generated from a 16-year study in Algonquin Park, Ontario, suggests that the population is declining. We use a stage-based matrix model based on this life table to simulate population management options. In addition we analyze the demographic sensitivities of the Algonquin Park population life table and a life table recently published for a population of snapping turtles at the E.S. George Reserve in Michigan. The results are compared with a similar study of loggerhead sea turtles (Caretta caretta). We use these inter- and intra-specific comparisons to test bet-hedging life-history theory. Bet-hedging theory predicts that the long lives and low annual reproductive effort of turtles reduces the effect of low, stochastic juvenile survival on an individual's reproductive success. We test this prediction using proportional sensitivity of the intrinsic rate of increase to variation in life-table parameters (eigenelasticity) to compare the two populations of snapping turtles with each other and with loggerhead sea turtles. Annual adult survival is shown to be the variable most predictive of sensitivity to variation in first-year survival. UNIV GUELPH, DEPT ZOOL, GUELPH, ON N1G 2W1, CANADA BOBYN ML, 1994, CAN J ZOOL, V72, P28, DOI 10.1139/z94-005; BROOKS RJ, 1991, CAN J ZOOL, V69, P1314, DOI 10.1139/z91-185; BROOKS RJ, 1988, MANAGEMENT AMPHIBIAN, P173; BROWN GP, 1994, J HERPETOL, V28, P405, DOI 10.2307/1564950; Caswell H., 1989, MATRIX POPULATION MO; Congdon J.D., 1982, Biology of Reptilia, V13, P233; Congdon J.D., 1990, P45; CONGDON JD, 1993, CONSERV BIOL, V7, P826, DOI 10.1046/j.1523-1739.1993.740826.x; CONGDON JD, 1994, AM ZOOL, V34, P397; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; FRAZER NB, 1992, CONSERV BIOL, V6, P179, DOI 10.1046/j.1523-1739.1992.620179.x; GALBRAIGH DA, 1993, CONSERVATION MANAGEM; GALBRAITH DA, 1987, CAN J ZOOL, V65, P1581, DOI 10.1139/z87-247; GALBRAITH DA, 1989, COPEIA, P896, DOI 10.2307/1445975; GROOMBIRDGE B, 1982, AMPHIBIA REPTILIA 1; KLIMA E. F., 1982, BIOL CONSERVATION SE, P481; MROSOVSKY N, 1983, CONSERVING SEA TURTL; OBBARD ME, 1981, CAN FIELD NAT, V95, P350; PARK E, 1971, WORLD OTTER JP LIPPI; PASSMORE HL, 1996, IN PRESS CONSERVATIO; PRITCHARD PCH, 1980, AM ZOOL, V20, P609; Roff Derek A., 1992; SMITH BT, 1976, LECTURE NOTES COMPUT, V6; STEARMS SC, 1976, Z REV BIOL, V51, P3; Wilbur H.M., 1988, Biology of Reptilia, V16, P387 25 50 50 1 24 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. FEB 1996 74 2 291 296 10.1139/z96-036 6 Zoology Zoology UB985 WOS:A1996UB98500012 2019-02-26 J Galatowitsch, SM; vanderValk, AG Galatowitsch, SM; vanderValk, AG The vegetation of restored and natural prairie wetlands ECOLOGICAL APPLICATIONS English Article colonization; dispersal; Iowa; life history strategies; plant communities; prairie potholes; revegetation; seed banks; species richness; succession; wetland restoration; zonation SEED BANKS; GLACIAL MARSHES; IMPACT; PLANTS Thousands of wetland restorations have been done in the glaciated midcontinent of the United States. Wetlands in this region revegetate by natural recolonization after hydrology is restored. The floristic composition of the vegetation and seed banks of 10 restored wetlands in northern Iowa were compared to those of 10 adjacent natural wetlands to test the hypothesis that communities rapidly develop through natural recolonization. Restoration programs in the prairie pothole region assume that the efficient-community hypothesis is true: all plant species that can become established and survive under the environmental conditions found at a site will eventually be found growing there and/or will be found in its seed bank. Three years after restoration, natural wetlands had a mean of 46 species compared to 27 species for restored wetlands. Some guilds of species have significantly fewer (e.g., sedge meadow) or more (e.g., submersed aquatics) species in restored than natural wetlands. The distribution and abundance of most species at different elevations were significantly different in natural and restored wetlands. The seed banks of restored wetlands contained fewer species and fewer seeds than those of natural wetlands. There were, however, some similarities between the vegetation of restored and natural wetlands. Emergent species richness in restored wetlands was generally similar to that in natural wetlands, although there were fewer shallow emergent species in restored wetlands. The seed banks of restored wetlands, however, were not similar to those of natural wetlands in composition, mean species richness, or mean total seed density. Submersed aquatic, wet prairie, and sedge meadow species were not present in the seed banks of restored wetlands. These patterns of recolonization seem related to dispersal ability, indicating the efficient-community hypothesis cannot be completely accepted as a basis for restorations in the prairie pothole region. IOWA STATE UNIV SCI & TECHNOL,DEPT BOT,AMES,IA 50011 COWARDIAN LM, 1979, US FISH WOLDIFE OFF, V31; DELPHEY PJ, 1993, WETLANDS, V13, P200, DOI 10.1007/BF03160881; DEVLAMING V, 1968, AM J BOT, V55, P20, DOI 10.2307/2440487; Fortin Marie-Josee, 1993, P342; GALATOWITSCH SM, 1995, RESTORATION OF TEMPERATE WETLANDS, P129; GALATOWITSCH SM, 1993, THESIS IOWA STATE U; Gill D., 1974, Journal Biogeogr, V1, P63, DOI 10.2307/3038069; Godwin H, 1923, J ECOL, V11, P160, DOI 10.2307/2255860; GREAT PLAINS FLORA ASSOCIATION [GPFA], 1986, FLORA GREAT PLAINS; HOLLANDER M, 1973, NONPARAMETRIC STATIS; LAGRANGE T G, 1989, Prairie Naturalist, V21, P39; MADSEN C, 1986, J SOIL WATER CONSERV, V41, P159; MADSEN CR, 1988, INCREASING OUR WETLA, P92; MANLEY BFJ, 1991, RANDOMIZATION MONTE; Mueller-Dombois D, 1974, AIMS METHODS VEGETAT; Pederson RL, 1983, THESIS IOWA STATE U; POWERS KD, 1978, J WILDLIFE MANAGE, V42, P598, DOI 10.2307/3800823; SEWELL RW, 1991, 18TH P ANN C WETL RE, P108; Stewart R. E., 1971, RES PUBLICATION, V92; VANDERVALK AG, 1976, CAN J BOT, V54, P1832, DOI 10.1139/b76-197; VANDERVALK AG, 1986, AQUAT BOT, V24, P13, DOI 10.1016/0304-3770(86)90113-0; VANDERVALK AG, 1978, ECOLOGY, V59, P322, DOI 10.2307/1936377; VANDERVALK AG, 1981, ECOLOGY, V62, P688, DOI 10.2307/1937737; VANDERVALK AG, 1979, AQUAT BOT, V6, P29, DOI 10.1016/0304-3770(79)90049-4; WIENHOLD CE, 1989, CAN J BOT, V67, P1878, DOI 10.1139/b89-238; WOLEK J, 1983, EKOL POL-POL J ECOL, V31, P173; 1992, RESTORATION AQUATIC 27 172 178 4 82 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 1051-0761 ECOL APPL Ecol. Appl. FEB 1996 6 1 102 112 10.2307/2269557 11 Ecology; Environmental Sciences Environmental Sciences & Ecology TU567 WOS:A1996TU56700021 2019-02-26 J MitchellOlds, T MitchellOlds, T Genetic constraints on life-history evolution: Quantitative-trait loci influencing growth and flowering in Arabidopsis thaliana EVOLUTION English Article Arabidopsis thaliana; flowering time; gigantea; life-history trade-offs; quantitative-trait locus (QTL); QTL mapping; recombinant inbred lines; resource allocation POPULATIONS; COMPONENTS; SELECTION; VERNALIZATION; CHARACTERS; MARKERS; MUTANTS; NUMBER; PLANT; RFLP We have mapped genes causing life-history trade-offs, and they behave as predicted by ecological theory. Energetic and quantitative-genetic models suggest a trade-off between age and size at first reproduction. Natural selection favored plants that flower early and attain large size at first reproduction. Response to selection was opposed by a genetic trade-off between these two components of fitness. Two quantitative-trait loci (QTLs) influencing flowering time were mapped in a recombinant inbred population of Arabinopsis. These QTLs also influenced size at first reproduction, but did not affect growth rate (resource acquisition). Substitutions of small chromosomal segments, which may represent allelic differences at flowering time loci, caused genetic trade-offs between life-history components. One QTL explained 22% of the genetic variation in flowering time. It is within a few centiMorgans (cM) of the gigantea (GI) locus, and may be allelic with GI. Sixteen percent of the genetic variation was explained by another QTL, FDR1, near 18 cM on chromosome II, which does not correspond to any previously identified flowering time locus. These life-history genes regulate patterns of resource allocation and life-history trade-offs in this population. BOYCE THOMPSON INST PLANT RES,ITHACA,NY 14853; CORNELL UNIV,ITHACA,NY 14853 MitchellOlds, T (reprint author), UNIV MONTANA,DIV BIOL SCI,MISSOULA,MT 59812, USA. Mitchell-Olds, Thomas/K-8121-2012 Mitchell-Olds, Thomas/0000-0003-3439-9921 ARAKI T, 1993, PLANT J, V3, P231, DOI 10.1046/j.1365-313X.1993.t01-15-00999.x; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.genet.23.1.337; BURR B, 1992, TRENDS GENET, V2, P55; DENG XW, 1994, PLANT CELL, V6, P613; DORN LA, 1991, EVOLUTION, V45, P371, DOI 10.1111/j.1558-5646.1991.tb04411.x; Fisher R. A, 1958, GENETICAL THEORY NAT; GALEN C, 1993, EVOLUTION, V47, P1073, DOI 10.1111/j.1558-5646.1993.tb02136.x; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; GLARKE JH, 1994, MOL GEN GENET, V242, P81; HALEY CS, 1992, HEREDITY, V69, P315, DOI 10.1038/hdy.1992.131; HALLIDAY KJ, 1994, PLANT PHYSIOL, V104, P1311, DOI 10.1104/pp.104.4.1311; HOLLOCHER H, 1992, GENETICS, V130, P355; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; KARLSSON BH, 1993, AM J BOT, V80, P646, DOI 10.2307/2445435; KELLY CA, 1993, EVOLUTION, V47, P88, DOI 10.1111/j.1558-5646.1993.tb01201.x; Kimura M, 1983, NEUTRAL THEORY MOL E; KING D, 1982, THEOR POPUL BIOL, V21, P194, DOI 10.1016/0040-5809(82)90013-2; KOORNNEEF M, 1991, MOL GEN GENET, V229, P57, DOI 10.1007/BF00264213; KOWALSKI SP, 1994, MOL GEN GENET, V245, P548; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1981, GENETICS, V99, P541; LANDER ES, 1989, GENETICS, V121, P185; LEE I, 1993, MOL GEN GENET, V237, P171; LEE I, 1994, PLANT CELL, V6, P75, DOI 10.1105/tpc.6.1.75; LISTER C, 1993, PLANT J, V4, P745, DOI 10.1046/j.1365-313X.1993.04040745.x; MARTINEZZAPATER JM, 1990, PLANT PHYSIOL, V92, P770, DOI 10.1104/pp.92.3.770; MEEKSWAGNER DR, 1991, PLANT J, V3, P877; MITCHELLOLDS T, 1990, GENETICS, V124, P407; MITCHELLOLDS T, 1995, TRENDS ECOL EVOL, V10, P324, DOI 10.1016/S0169-5347(00)89119-3; MITCHELLOLDS T, 1992, TRENDS ECOL EVOL, V7, P397, DOI 10.1016/0169-5347(92)90017-6; MITCHELLOLDS T, 1986, AM NAT, V127, P379, DOI 10.1086/284490; MITCHELLOLDS T, IN PRESS EVOLUTION, V50; ORR HA, 1992, AM NAT, V140, P725, DOI 10.1086/285437; PATERSON AH, 1991, GENETICS, V127, P181; PIPER LR, 1988, 2ND P INT C QUANT GE, P270; PLATENKAMP GAJ, 1992, EVOLUTION, V46, P341, DOI 10.1111/j.1558-5646.1992.tb02042.x; PUTTERILL J, 1995, CELL, V80, P847, DOI 10.1016/0092-8674(95)90288-0; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; SCHWAEGERLE KE, 1991, EVOLUTION, V45, P169, DOI 10.1111/j.1558-5646.1991.tb05275.x; SHAW RG, 1991, EVOLUTION, V45, P1287, DOI 10.1111/j.1558-5646.1991.tb04394.x; SOKAL R., 1981, BIOMETRY; Stearns SC., 1992, EVOLUTION LIFE HIST; STRATTON DA, 1992, EVOLUTION, V46, P107, DOI 10.1111/j.1558-5646.1992.tb01988.x; TANKSLEY SD, 1993, ANNU REV GENET, V27, P205, DOI 10.1146/annurev.ge.27.120193.001225; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WESTER L, 1994, PLANT J, V5, P261, DOI 10.1046/j.1365-313X.1994.05020261.x; WHITLOCK MC, 1993, EVOLUTION, V47, P1758, DOI 10.1111/j.1558-5646.1993.tb01267.x; WRIGHT S, 1980, EVOLUTION, V34, P825, DOI 10.1111/j.1558-5646.1980.tb04022.x 48 131 131 0 25 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution FEB 1996 50 1 140 145 10.1111/j.1558-5646.1996.tb04480.x 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TX891 WOS:A1996TX89100014 28568847 Bronze 2019-02-26 J Taylor, EB; Foote, CJ; Wood, CC Taylor, EB; Foote, CJ; Wood, CC Molecular genetic evidence for parallel life-history evolution within a Pacific salmon (sockeye salmon and kokanee, Oncorhynchus nerka) EVOLUTION English Article evolutionary genetics; life-history evolution; minisatellite DNA; mitochondrial DNA; Oncorhynchus nerka; sockeye salmon; zoogeography WHITEFISH COREGONUS-CLUPEAFORMIS; QUEEN-CHARLOTTE-ISLANDS; MITOCHONDRIAL-DNA; SYMPATRIC POPULATIONS; CHARACTER DISPLACEMENT; REPRODUCTIVE ISOLATION; ELECTROPHORETIC DATA; BRITISH-COLUMBIA; NORTH-AMERICA; SMELT OSMERUS The Pacific salmon Oncorhynchus nerka typically occurs as a sea-run form (sockeye salmon) or may reside permanently in lakes (kokanee) thoughout its native North Pacific. We tested whether such geographically extensive ecotypic variation resulted from parallel evolutionary divergence thoughout the North Pacific or whether the two forms are monophyletic groups by examining allelic variation between sockeye salmon and kokanee at two minisatellite DNA repeat loci and in mitochondrial DNA (mtDNA) Bgl II restriction sites. Our examination of over 750 fish from 24 populations, ranging from Kamchatka to the Columbia River, identified two major genetic groups of North Pacific O. nerka: a ''northwestern'' group consisting of fish from Kamchatka, western Alaska, and northwestern British Columbia, and a ''southern'' group consisting of sockeye salmon and kokanee populations from the Fraser and Columbia River systems. Maximum-likelihood analysis accompanied by bootstrapping provided strong support for these two genetic groups of O. nerka; the populations did not cluster by migratory form, but genetic affinities were organized more strongly by geographic proximity. The two major genetic groups resolved in our study probably stem from historical isolation and dispersal of O. nerka from two major Wisconsinan glacial refugia in the North Pacific. There were significant minisatellite DNA allele frequency differences between sockeye salmon and kokanee populations from different parts of the same watershed, between populations spawning in different tributaries of the same lake, and also between sympatric populations spawning in the same stream at the same time. MtDNA Bgl II restriction site variation was significant between sockeye salmon and kokanee spawning in different parts of the same major watershed but not between forms spawning in closer degrees of reproductive sympatry. Patterns of genetic affinity and allele sharing suggested that kokanee have arisen from sea-run sockeye salmon several times independently in the North Pacific. We conclude that sockeye salmon and kokanee are para- and polyphyletic, respectively, and that the present geographic distribution of the ecotypes results from parallel evolutionary origins of kokanee from sockeye (divergences between them) thoughout the North Pacific. FISHERIES & OCEANS CANADA, BIOL SCI BRANCH, PACIFIC BIOL STN, NANAIMO, BC V9R 5K6, CANADA; UNIV WASHINGTON, SCH FISHERIES, SEATTLE, WA 98195 USA AVISE JC, 1987, ANNU REV ECOL SYST, V18, P489, DOI 10.1146/annurev.es.18.110187.002421; BEHNKE RJ, 1972, J FISH RES BOARD CAN, V29, P639, DOI 10.1139/f72-112; BENTZEN P, 1993, J FISH BIOL, V43, P313, DOI 10.1006/jfbi.1993.1130; BERNATCHEZ L, 1990, EVOLUTION, V44, P1263, DOI 10.1111/j.1558-5646.1990.tb05230.x; BICKHAM JW, 1995, J HERED, V86, P140, DOI 10.1093/oxfordjournals.jhered.a111544; BRANNON EL, 1992, GENETIC ANAL ONCORHY; BRONSTEIN I, 1989, NATURE, V338, P599, DOI 10.1038/338599a0; BUSH GL, 1994, TRENDS ECOL EVOL, V9, P285, DOI 10.1016/0169-5347(94)90031-0; CAVALLISFORZA LL, 1967, EVOLUTION, V21, P550, DOI 10.1111/j.1558-5646.1967.tb03411.x; CROSS TF, 1992, J FISH BIOL, V40, P25, DOI 10.1111/j.1095-8649.1992.tb02550.x; DEGNAN SM, 1993, MOL ECOL, V2, P219, DOI 10.1111/j.1365-294X.1993.tb00011.x; FEINBERG AP, 1983, ANAL BIOCHEM, V132, P6, DOI 10.1016/0003-2697(83)90418-9; FELSENSTEIN J, 1981, EVOLUTION, V35, P1229, DOI 10.1111/j.1558-5646.1981.tb04991.x; FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x; FELSENSTEIN J, 1991, PHYLIP PHYLOGENY INF; FITCH WM, 1967, SCIENCE, V155, P279, DOI 10.1126/science.155.3760.279; FOOTE CJ, 1989, CAN J FISH AQUAT SCI, V46, P149, DOI 10.1139/f89-020; FOOTE CJ, 1992, CAN J FISH AQUAT SCI, V49, P99, DOI 10.1139/f92-012; FOOTE CJ, 1988, BEHAVIOUR, V106, P43, DOI 10.1163/156853988X00089; FOOTE CJ, 1992, CAN J FISH AQUAT SCI, V49, P760, DOI 10.1139/f92-085; GALBRAITH DA, 1991, ELECTROPHORESIS, V12, P210, DOI 10.1002/elps.1150120218; GEORGES M, 1988, CYTOGENET CELL GENET, V47, P127, DOI 10.1159/000132529; HANSON AJ, 1967, J FISH RES BOARD CAN, V24, P1955, DOI 10.1139/f67-160; HARRISON RG, 1989, TRENDS ECOL EVOL, V4, P6, DOI 10.1016/0169-5347(89)90006-2; HINDAR K, 1991, HEREDITY, V66, P83, DOI 10.1038/hdy.1991.11; HINDAR K, 1986, BIOL J LINN SOC, V27, P269, DOI 10.1111/j.1095-8312.1986.tb01737.x; HOLTKE HJ, 1992, BIOTECHNIQUES, V12, P104; JARMAN AP, 1989, TRENDS GENET, V5, P367, DOI 10.1016/0168-9525(89)90171-6; JEFFREYS AJ, 1985, NATURE, V316, P76, DOI 10.1038/316076a0; Kaeriyama Masahide, 1992, Scientific Reports of the Hokkaido Salmon Hatchery, V46, P157; KARL SA, 1992, SCIENCE, V256, P100, DOI 10.1126/science.1348870; KIM JY, 1988, EVOLUTION, V42, P596, DOI 10.1111/j.1558-5646.1988.tb04163.x; LESSA EP, 1990, SYST ZOOL, V39, P242, DOI 10.2307/2992184; LESSIOS HA, 1992, MAR BIOL, V112, P517, DOI 10.1007/BF00356299; Lindsey C.C., 1986, P639; LOSOS JB, 1992, SYST BIOL, V41, P403, DOI 10.2307/2992583; McCart P., 1970, THESIS U BRIT COLUMB; McDowall RM, 1987, AM FISH SOC S, V1, P1; MCELROY D, 1992, J HERED, V83, P157, DOI 10.1093/oxfordjournals.jhered.a111180; McPhail J.D., 1986, P615; MEYER A, 1994, GENETICS AND EVOLUTION OF AQUATIC ORGANISMS, P219; NAKAMURA Y, 1987, SCIENCE, V235, P1616, DOI 10.1126/science.3029872; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; NELSON JS, 1968, J FISH RES BOARD CAN, V25, P409, DOI 10.1139/f68-032; OKAZAKI T, 1984, JPN J ICHTHYOL, V31, P297; OREILLY P, 1993, EVOLUTION, V47, P678, DOI 10.1111/j.1558-5646.1993.tb02122.x; PIMENTEL RA, 1979, MORPHOMETRICS MULTIV; Pojar J., 1980, BOT SOC AM MISC SER, V158, P1; PRODOHL PA, 1992, HEREDITAS, V117, P45, DOI 10.1111/j.1601-5223.1992.tb00006.x; REYNOLDS J, 1983, GENETICS, V105, P767; RICE WR, 1984, EVOLUTION, V38, P1251, DOI 10.1111/j.1558-5646.1984.tb05647.x; RICE WR, 1993, EVOLUTION, V47, P1637, DOI 10.1111/j.1558-5646.1993.tb01257.x; Ricker W. E., 1940, Transactions of the Royal Society of Canada (3), V34, P121; ROFF DA, 1989, MOL BIOL EVOL, V6, P539; ROGERS JS, 1986, SYST ZOOL, V35, P297, DOI 10.2307/2413383; ROGERS JS, 1972, STUDIES GENETICS U T, V7213, P145; ROHLF FJ, 1970, SYST ZOOL, V19, P58, DOI 10.2307/2412027; ROHLF FJ, 1990, NTSYS NUMERICAL TAXO; ROY MS, 1994, MOL BIOL EVOL, V11, P553; SAITOU N, 1987, MOL BIOL EVOL, V4, P406; SCHAFFER HE, 1981, ANAL BIOCHEM, V115, P113, DOI 10.1016/0003-2697(81)90533-9; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; SCHLUTER D, 1993, TRENDS ECOL EVOL, V8, P197, DOI 10.1016/0169-5347(93)90098-A; SCOTT D, 1984, J ROY SOC NEW ZEAL, V14, P245, DOI 10.1080/03036758.1984.10426302; Sneath P. H. A., 1973, NUMERICAL TAXONOMY P; STAHL G, 1987, POPULATION GENETICS, P121; Swofford David L., 1990, P411; SWOFFORD DL, 1981, J HERED, V72, P281, DOI 10.1093/oxfordjournals.jhered.a109497; TAGGART JB, 1990, J FISH BIOL, V37, P991, DOI 10.1111/j.1095-8649.1990.tb03603.x; TAGGART JB, 1992, J FISH BIOL, V40, P963, DOI 10.1111/j.1095-8649.1992.tb02641.x; TAGGART JB, 1990, ANIM GENET, V21, P377, DOI 10.1111/j.1365-2052.1990.tb01982.x; TAYLOR EB, 1995, J HERED, V86, P354, DOI 10.1093/oxfordjournals.jhered.a111603; TAYLOR EB, 1993, MOL ECOL, V2, P345, DOI 10.1111/j.1365-294X.1993.tb00028.x; TAYLOR EB, 1991, J FISH BIOL, V38, P407, DOI 10.1111/j.1095-8649.1991.tb03130.x; TAYLOR EB, 1993, EVOLUTION, V47, P813, DOI 10.1111/j.1558-5646.1993.tb01236.x; TAYLOR EB, 1994, CAN J FISH AQUAT SCI, V51, P1430, DOI 10.1139/f94-143; Utter F., 1980, SALMONID ECOSYSTEMS, P285; VARNAVSKAYA NV, 1992, CAN J ZOOL, V70, P2115, DOI 10.1139/z92-284; VERSPOOR E, 1989, CAN J ZOOL, V67, P1453, DOI 10.1139/z89-206; WARNER BG, 1982, SCIENCE, V218, P675, DOI 10.1126/science.218.4573.675; WAYNE RK, 1991, EVOLUTION, V45, P1849, DOI 10.1111/j.1558-5646.1991.tb02692.x; Wilder D. G., 1947, Canadian Journal of Research Ottawa, V25D, P175; WOOD CC, 1990, CAN J FISH AQUAT SCI, V47, P2250, DOI 10.1139/f90-250; WOOD CC, 1994, CAN J FISH AQUAT SCI, V51, P114, DOI 10.1139/f94-299; WOOD CC, EVOLUTION, V50; WRIGHT JM, 1993, BIOCH MOL BIOL FISHE, V2, P59 86 139 140 0 28 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 1996 50 1 401 416 10.1111/j.1558-5646.1996.tb04502.x 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TX891 WOS:A1996TX89100036 28568856 Bronze 2019-02-26 J Martin, D; Cha, JH; Bhaud, M Martin, D; Cha, JH; Bhaud, M Consequences of oocyte form modifications in Eupolymnia nebulosa (Annelida; Polychaeta) INVERTEBRATE REPRODUCTION & DEVELOPMENT English Article gamete form; life-cycle strategy; spawning mechanism; speciation; Eupolymnia nebulosa; northwestern Mediterranean; English Channel REPRODUCTIVE ENERGETICS; TEREBELLIDAE; MONTAGU The changes in form of intracoelomic oocytes during their developmental stages and the change from mature to the external fertilized (i.e., egg) phases during the spawning process were analyzed in Eupolymnia nebulosa with reference to the life-history strategy of the species. Accurate description of the real form of both oocytes and eggs was the objective of the study. All developmental stages of oocytes floating freely in the coelom (solitary oocytes) showed a flattened form. Increase in oocyte thickness was not reflected in a proportional increase in diameter. Therefore, by simply measuring diameters, a significant component of oocyte growth would not have been recorded. Different relationships between diameter and thickness of oocytes for the Mediterranean (slope=0.436, intercept=-4.507) and English Channel (slope=0.321, intercept=-2.199) populations of E. nebulosa have been observed. The implications of this difference for the speciation problem of the ''cosmopolitan'' E. nebulosa are discussed. The development of flattened oocytes into spherical newly spawned eggs has also been noted. Although no direct demonstration has been made, our results provide strong supporting evidence for the operation of a size-dependent selection mechanism during the spawning process. This mechanism can be directly linked with the life-cycle strategy of the Mediterranean E. nebulosa populations, while the implications of its existence in the English Channel populations remain unclear. The results demonstrate the importance of considering the real form of gametes when dealing with the study of life-history strategies (viz. oocyte growth linked to different environmental or endogenous control mechanisms or to different spawning mechanisms). UNIV PARIS 06, CNRS URA 117, LAB ARAGO, OBSER OCEANOL, F-66650 BANYULS SUR MER, FRANCE; KOREAN OCEAN RES & DEV INST, DIV BIOL OCEANOG, SEOUL, SOUTH KOREA Martin, D (reprint author), CSIC, CTR ESTUDIS AVANCATS BLANES, CAMI SANTA BARBARA S-N, E-17300 BLANES, SPAIN. Martin, Daniel/G-5232-2010 Martin, Daniel/0000-0001-6350-7384 BHAUD M, 1988, ZOOL SCR, V17, P347, DOI 10.1111/j.1463-6409.1988.tb00111.x; BHAUD M, 1991, OPHELIA S, V5, P296; Clark R.B., 1973, Oceanography mar Biol, V11, P175; Clark R.B., 1977, P477; DUCHENE JC, 1992, ANN I OCEANOGR PARIS, V68, P15; DUCHENE JC, 1992, OLSEN INT S, P231; GREMARE A, 1986, J EXP MAR BIOL ECOL, V96, P287, DOI 10.1016/0022-0981(86)90208-X; GREMARE A, 1988, THESIS U PARIS 6; HERMAN GT, 1979, COMPUT VISION GRAPH, V9, P1, DOI 10.1016/0146-664X(79)90079-0; Herpin R., 1925, B SOC SCI NAT OUEST, V5, P1; HOWIE DID, 1984, FORTSCHR ZOOL, V29, P248; LANG F, 1986, THESIS U RENNES 1; LENAERS G, 1992, J MOL EVOL, V35, P429; MCHUGH D, 1993, BIOL BULL, V185, P153, DOI 10.2307/1541996; Olive P. J. W., 1980, ADV INVERTEBRATE REP, P37; OLIVE PJW, 1975, J MAR BIOL ASSOC UK, V55, P313, DOI 10.1017/S0025315400015964; OLIVE PJW, 1985, MAR BIOL, V88, P235, DOI 10.1007/BF00392586; OLIVE PJW, 1975, GEN COMP ENDOCR, V30, P397; PORCHET M, 1979, GEN COMP ENDOCR, V30, P378; SCOTT JW, 1911, BIOL BULL, V25, P252; SMITH RI, 1989, INVERTEBR REPROD DEV, V15, P7, DOI 10.1080/07924259.1989.9672015; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stephenson W., 1950, Report Dove Marine Laboratory Cullercoats Ser 3, V11, P21 23 5 5 0 1 INT SCIENCE SERVICES/BALABAN PUBLISHERS REHOVOT PO BOX 2039, REHOVOT 76120, ISRAEL 0792-4259 INVERTEBR REPROD DEV Invertebr. Reprod. Dev. FEB 1996 29 1 27 36 10.1080/07924259.1996.9672492 10 Reproductive Biology; Zoology Reproductive Biology; Zoology UQ574 WOS:A1996UQ57400004 2019-02-26 J Marrow, P; McNamara, JM; Houston, AI; Stevenson, IR; CluttonBrock, TH Marrow, P; McNamara, JM; Houston, AI; Stevenson, IR; CluttonBrock, TH State-dependent life history evolution in soay sheep: Dynamic modelling of reproductive scheduling PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article OPTIMAL CLUTCH SIZE; REACTION NORMS; POPULATION; BIRDS; ENVIRONMENTS; MORTALITY; SELECTION; UNGULATE; MAMMALS; CYCLES Adaptive decisions concerning the scheduling of reproduction in an animal's lifetime, including age at maturity and clutch or litter size, should depend on an animal's body condition or state. In this state-dependent case, we are concerned with the optimization of sequences of actions and so dynamic optimization techniques are appropriate. Here we show how stochastic dynamic programming can be used to study the reproductive strategies and population dynamics of natural populations, assuming optimal decisions. As examples we describe models based upon field data from an island population of Soay sheep on St. Kilda. This population shows persistent instability, with cycles culminating in high mortality every three or four years. We explore different assumptions about the extent to which Soay ewes use information about the population cycle in making adaptive decisions. We compare the observed distributions of strategies and population dynamics with model predictions; the results indicate that Soay ewes make optimal reproductive decisions given that they have no information about the population cycle. This study represents the first use of a dynamic optimization life history model of realistic complexity in the study of a field population. The techniques we use are potentially applicable to many other populations, and we discuss their extension to other species and other life history questions. UNIV BRISTOL, SCH MATH, BRISTOL BS8 1TW, AVON, ENGLAND; UNIV BRISTOL, SCH BIOL SCI, BRISTOL BS8 1UG, AVON, ENGLAND Marrow, P (reprint author), UNIV CAMBRIDGE, DEPT ZOOL, LARGE ANIM RES GRP, DOWNING ST, CAMBRIDGE CB2 3EJ, ENGLAND. Marrow, Paul/0000-0001-9335-6433 BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; BOYD J. MORTON, 1964, PROC ZOOL SOC LONDON, V142, P129; BOYD J. MORTON, 1953, ST KILDA SCOTTISH NAT, V65, P25; CAMPBELL RN, 1974, ISLAND SURVIVORS, P8; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Clutton-Brock T.H., 1988, P325; CLUTTONBROCK J, 1987, NATURAL HIST DOMESTI; CLUTTONBROCK TH, 1992, J ANIM ECOL, V61, P381, DOI 10.2307/5330; CLUTTONBROCK TH, 1991, J ANIM ECOL, V60, P593, DOI 10.2307/5300; CLUTTONBROCK TH, 1996, IN PRESS J ANIM ECOL; CLUTTONBROCK TH, 1996, UNPUB AM NAT; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; Cox D. R., 1970, ANAL BINARY DATA; DHONDT AA, 1990, NATURE, V348, P723, DOI 10.1038/348723a0; FINKE OM, 1988, REPRODUCTIVE SUCCESS, P24; Fitzpatrick J.W., 1988, P305; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.es.22.110191.002205; GRENFELL BT, 1992, NATURE, V355, P823, DOI 10.1038/355823a0; GRUBB P, 1974, ISLAND SURVIVORS ECO, P242; GUINNESS FE, 1978, J ANIM ECOL, V47, P817, DOI 10.2307/3673; GULLAND FMD, 1993, P ROY SOC B-BIOL SCI, V254, P7, DOI 10.1098/rspb.1993.0119; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HOUSTON AI, 1992, OIKOS, V63, P513, DOI 10.2307/3544979; HOUSTON AI, 1987, J THEOR BIOL, V129, P57, DOI 10.1016/S0022-5193(87)80203-5; Houston AI, 1988, EVOL ECOL, V2, P51, DOI 10.1007/BF02071588; Jewell P.A., 1974, P224; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; LACK D, 1948, J ANIM ECOL, V17, P45, DOI 10.2307/1608; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lessells C.M., 1991, P32; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LIOU LW, 1993, AM NAT, V141, P507, DOI 10.1086/285488; Mangel M., 1988, DYNAMIC MODELLING BE; McCleery R.H., 1988, P136; MCCULLAGH P, 1989, GENERALIZED LINEAR M; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; Milner C., 1974, ISLAND SURVIVORS ECO; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; NEWTON I, 1988, REPROD SUCCESS, P201; Owens-Smith RN, 1988, MEGAHERBIVORES INFLU; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; PRICE T, 1989, AM NAT, V134, P950, DOI 10.1086/285023; REIMERS E, 1968, J WILDLIFE MANAGE, V32, P957, DOI 10.2307/3799574; REISS MJ, 1989, ALLOMETRY GROWTH FOR; Roff Derek A., 1992; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHLUTER D, 1993, EVOLUTION, V47, P658, DOI 10.1111/j.1558-5646.1993.tb02119.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HIST; STEVENSON IR, 1994, THESIS U CAMBRIDGE; TINBERGEN JM, 1990, BEHAVIOUR, V114, P161, DOI 10.1163/156853990X00103; van Noordwijk A.J., 1988, P119; 1993, GENSTAT 5 RELEASE 3 63 36 36 0 10 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. JAN 29 1996 351 1335 17 32 10.1098/rstb.1996.0002 16 Biology Life Sciences & Biomedicine - Other Topics TV164 WOS:A1996TV16400002 8745420 2019-02-26 S Poulin, R Baker, JR; Muller, R; Rollinson, D Poulin, R The evolution of life history strategies in parasitic animals ADVANCES IN PARASITOLOGY, VOL 37 Advances in Parasitology English Review FRESH-WATER FISHES; SEASONAL OCCURRENCE; BOTHRIOCEPHALUS-ACHEILOGNATHI; ZOOPARASITIC NEMATODES; REPRODUCTIVE SUCCESS; HYMENOLEPIS-NANA; EGG-PRODUCTION; FECUNDITY; SIZE; MONOGENEA Poulin, R (reprint author), UNIV OTAGO, DEPT ZOOL, POB 56, DUNEDIN, NEW ZEALAND. Poulin, Robert/C-3117-2008 Poulin, Robert/0000-0003-1390-1206 ADAMSON ML, 1986, CAN J ZOOL, V64, P1375, DOI 10.1139/z86-206; AHMAD RA, 1986, INT J PARASITOL, V16, P541, DOI 10.1016/0020-7519(86)90090-1; AMIN O M, 1980, Systematic Parasitology, V2, P9, DOI 10.1007/BF00015091; AMIN OM, 1975, J PARASITOL, V61, P307, DOI 10.2307/3279011; ANDERSON RC, 1984, CAN J ZOOL, V62, P317, DOI 10.1139/z84-050; BAUER G, 1994, J ANIM ECOL, V63, P933, DOI 10.2307/5270; BEAMISH RJ, 1987, CAN J FISH AQUAT SCI, V44, P1779, DOI 10.1139/f87-219; BERRIE A. D., 1960, JOUR HELMINTHOL, V34, P205; BISSET SA, 1994, NEW ZEAL J ZOOL, V21, P9, DOI 10.1080/03014223.1994.9517972; BLACKBURN TM, 1991, AUK, V108, P209; Brooks DR, 1991, PHYLOGENY ECOLOGY BE; BROOKS DR, 1993, PARASCRIPT PARASITES; BUCHMANN K, 1990, FOLIA PARASIT, V37, P59; BUCHMANN K, 1988, PARASITOL RES, V75, P162, DOI 10.1007/BF00932717; BURT A, 1987, NATURE, V330, P118, DOI 10.1038/330118a0; CALOW P, 1983, PARASITOLOGY, V86, P197, DOI 10.1017/S0031182000050897; Chubb J.C., 1977, Advances in Parasitology, V15, P133, DOI 10.1016/S0065-308X(08)60528-X; Chubb J.C., 1980, Advances in Parasitology, V18, P1, DOI 10.1016/S0065-308X(08)60398-X; Chubb J.C., 1979, Advances in Parasitology, V17, P141, DOI 10.1016/S0065-308X(08)60551-5; CHUBB JC, 1982, ADV PARASIT, V20, P1, DOI 10.1016/S0065-308X(08)60539-4; CLARKE A, 1979, MAR BIOL, V55, P111, DOI 10.1007/BF00397306; COLWELL DA, 1973, J PARASITOL, V59, P216, DOI 10.2307/3278613; CONLEY DC, 1993, CAN J ZOOL, V71, P972, DOI 10.1139/z93-128; COYNE MJ, 1992, INT J PARASITOL, V22, P315, DOI 10.1016/S0020-7519(05)80009-8; DIXON KE, 1964, HELMINTHOLOGIA, V38, P203; DOBSON AP, 1986, PARASITOLOGY, V92, P675, DOI 10.1017/S0031182000065537; ESCH GW, 1975, AM MIDL NAT, V93, P339, DOI 10.2307/2424167; EVANS NA, 1982, INT J PARASITOL, V12, P363, DOI 10.1016/0020-7519(82)90040-6; EVANS NA, 1982, PARASITOLOGY, V85, P295, DOI 10.1017/S003118200005527X; Godfray H.C.J., 1987, Oxford Surveys in Evolutionary Biology, V4, P117; GOTTO R. V., 1962, ANN AND MAG NAT HIST, V5, P97; HANKEN J, 1993, ANNU REV ECOL SYST, V24, P501, DOI 10.1146/annurev.es.24.110193.002441; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1991, PHILOS T ROY SOC B, V332, P31, DOI 10.1098/rstb.1991.0030; HERRE EA, 1993, SCIENCE, V259, P1442, DOI 10.1126/science.259.5100.1442; HOAGLAND KE, 1978, EXP PARASITOL, V44, P36, DOI 10.1016/0014-4894(78)90078-4; HONZAKOVA E, 1975, Folia Parasitologica (Ceske Budejovice), V22, P37; ISHII AI, 1987, PARASITOL RES, V73, P159, DOI 10.1007/BF00536473; ITO A, 1986, INT J PARASITOL, V16, P81, DOI 10.1016/0020-7519(86)90069-X; IWUALA M O E, 1977, Folia Parasitologica (Ceske Budejovice), V24, P162; JENNINGS JB, 1975, OECOLOGIA, V21, P109, DOI 10.1007/BF00345553; JEWSBURY JM, 1968, EXP PARASITOL, V22, P50, DOI 10.1016/0014-4894(68)90078-7; JOHNSTON CE, 1987, CAN J ZOOL, V65, P415, DOI 10.1139/z87-062; JONES JT, 1989, INT J PARASITOL, V19, P769, DOI 10.1016/0020-7519(89)90065-9; KEARN GC, 1985, INT J PARASITOL, V15, P187, DOI 10.1016/0020-7519(85)90086-4; KEARN GC, 1986, ADV PARASIT, V25, P175; KEYMER A, 1983, INT J PARASITOL, V13, P561, DOI 10.1016/S0020-7519(83)80028-9; KHAMBOONRUANG C, 1971, J PARASITOL, V57, P289, DOI 10.2307/3278028; KINSELLA JM, 1971, J PARASITOL, V57, P62, DOI 10.2307/3277753; KIRCHNER TB, 1980, ECOLOGY, V61, P232, DOI 10.2307/1935179; KRUPP IM, 1961, J PARASITOL, V47, P957, DOI 10.2307/3275030; LEBEDEV BI, 1982, FOLIA PARASIT, V29, P97; LOKER ES, 1983, PARASITOLOGY, V87, P343, DOI 10.1017/S0031182000052689; MACKENZIE DI, 1980, J PARASITOL, V66, P145, DOI 10.2307/3280606; MCCAIG MLO, 1963, EXP PARASITOL, V13, P273, DOI 10.1016/0014-4894(63)90080-8; MCENROE WD, 1981, FOLIA PARASIT, V28, P381; MICHEL JF, 1978, INT J PARASITOL, V8, P437, DOI 10.1016/0020-7519(78)90060-7; MICHEL JF, 1971, J PARASITOL, V57, P1185, DOI 10.2307/3277964; MOORE J, 1987, EVOLUTION, V41, P882, DOI 10.1111/j.1558-5646.1987.tb05861.x; MOORE J, 1981, EVOLUTION, V35, P723, DOI 10.1111/j.1558-5646.1981.tb04932.x; MOSSINGER J, 1986, Z PARASITENKD, V72, P121, DOI 10.1007/BF00927743; NATH D, 1970, Z PARASITENK, V34, P343; NEUSER V, 1974, Z PARASITENKD, V44, P19, DOI 10.1007/BF00328829; NOBLE GA, 1967, J PARASITOL, V53, P645, DOI 10.2307/3276734; NOVAK M, 1986, INT J PARASITOL, V16, P13, DOI 10.1016/0020-7519(86)90059-7; OGILVIE BM, 1968, J PARASITOL, V54, P1073, DOI 10.2307/3276966; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; POULIN R, 1995, PARASITOL TODAY, V11, P342, DOI 10.1016/0169-4758(95)80187-1; POULIN R, 1995, BIOL J LINN SOC, V54, P231; POULIN R, 1995, EVOLUTION, V49, P325, DOI 10.1111/j.1558-5646.1995.tb02245.x; POULIN R, 1995, FUNCT ECOL, V9, P364, DOI 10.2307/2389998; POULIN R, 1996, IN PRESS CANADIAN J; PRICE PW, 1977, EVOLUTION, V31, P405, DOI 10.1111/j.1558-5646.1977.tb01021.x; PRICE PW, 1974, EVOLUTION, V28, P76, DOI 10.1111/j.1558-5646.1974.tb00728.x; Price PW, 1980, EVOLUTIONARY BIOL PA; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; QUINNELL RJ, 1988, J HELMINTHOL, V62, P158, DOI 10.1017/S0022149X00011421; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; READ AF, 1995, PARASITOLOGY, V111, P359, DOI 10.1017/S0031182000081919; READ AF, 1995, ECOLOGY SYMBIOSIS NE; Read Andrew F., 1994, Trends in Microbiology, V2, P73, DOI 10.1016/0966-842X(94)90537-1; READ CP, 1951, J PARASITOL, V37, P174, DOI 10.2307/3273449; RIGGS MR, 1987, J PARASITOL, V73, P893, DOI 10.2307/3282507; RIGGS MR, 1987, J PARASITOL, V73, P877, DOI 10.2307/3282506; Roff Derek A., 1992; ROHDE K, 1991, INT J PARASITOL, V21, P113, DOI 10.1016/0020-7519(91)90128-T; ROHDE K, 1993, ECOLOGY MARINE PARAS; RONDELAUD D, 1987, Z PARASITENKD, V74, P155; SHOSTAK AW, 1986, AM MIDL NAT, V115, P225, DOI 10.2307/2425858; SHOSTAK AW, 1987, CAN J ZOOL, V65, P2878, DOI 10.1139/z87-437; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SINNIAH B, 1991, J HELMINTHOL, V65, P141, DOI 10.1017/S0022149X00010609; SKORPING A, 1991, OIKOS, V60, P365, DOI 10.2307/3545079; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; SUKHDEO MVK, 1991, INT J PARASITOL, V21, P855, DOI 10.1016/0020-7519(91)90154-Y; SZALAI AJ, 1989, PARASITOLOGY, V98, P489, DOI 10.1017/S0031182000061588; TEDLA S, 1970, Crustaceana (Leiden), V19, P1, DOI 10.1163/156854070X00581; THONEY DA, 1988, J PARASITOL, V74, P999, DOI 10.2307/3282222; TRUESDALE FM, 1977, CRUSTACEANA, V32, P216, DOI 10.1163/156854077X00665; VANDAMME PA, 1993, J FISH BIOL, V42, P395, DOI 10.1006/jfbi.1993.1042; VLASSOFF A, 1994, NEW ZEAL J ZOOL, V21, P1; WAKELIN D, 1984, IMMUNITY PARASITES A; WENNER EL, 1979, CRUSTACEANA, V37, P293, DOI 10.1163/156854079X01176; WHARTON DA, 1986, FUNCTIONAL BIOL NEMA; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOTTEN R, 1974, J HELMINTHOL, V48, P269, DOI 10.1017/S0022149X00022951; YOSHIKAWA H, 1989, PARASITOL RES, V75, P649, DOI 10.1007/BF00930964 109 76 82 0 21 ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD LONDON 24-28 OVAL ROAD, LONDON NW1 7DX, ENGLAND 0065-308X 0-12-031737-0 ADV PARASIT Adv.Parasitol. 1996 37 107 134 10.1016/S0065-308X(08)60220-1 28 Parasitology Parasitology BF36Y WOS:A1996BF36Y00003 8881599 2019-02-26 J Hartwig, WC Hartwig, WC Perinatal life history traits in New World monkeys AMERICAN JOURNAL OF PRIMATOLOGY English Review Platyrrhini; ontogeny; neonate; growth and development SAGUINUS-OEDIPUS-OEDIPUS; URINARY ESTROGEN EXCRETION; GOLDEN LION TAMARINS; SQUIRREL-MONKEYS; SAIMIRI-SCIUREUS; CALLITHRIX-JACCHUS; CALLIMICO-GOELDII; COTTON-TOP; COMMON MARMOSET; MATERNAL INVESTMENT Gestation length, neonatal and maternal body weight, and neonatal and adult brain weight data were collected for New World monkeys in an attempt to establish typical patterns of perinatal life history. This study attempts to illuminate the most accurate values from the available data, which suggest that gestation length and prenatal growth rate are broadly conserved in relation to maternal size in New World monkeys. Exceptions to the patterns evident in the data point to derivations in life history strategies. In particular, this study suggests that the extended gestation length of callitrichines is a function of minimum viable neonate size and not exclusively energy minimization associated with simultaneous lactation. Cebus is shown to undergo more postnatal brain growth relative to other New World monkeys, but not as much as previously believed. Alouatta is shown to be relatively small brained at birth as well as in adulthood. Saimiri is shown to present the most,unusual package of perinatal life history traits, in which precocial neonates are gestated for a relatively long time and at a slightly faster growth rate than is typical for New World monkeys. (C) 1996 Wiley-Liss, Inc. Hartwig, WC (reprint author), UNIV CALIF BERKELEY, DEPT ANTHROPOL, BERKELEY, CA 94720 USA. ALLMAN J, 1993, P NATL ACAD SCI USA, V90, P118, DOI 10.1073/pnas.90.1.118; ARDITO G, 1976, J HUM EVOL, V5, P213, DOI 10.1016/0047-2484(76)90023-3; BAKER AJ, 1992, AM J PRIMATOL, V26, P1, DOI 10.1002/ajp.1350260104; BAUCHOT R, 1981, MAMMALIA, V45, P251, DOI 10.1515/mamm.1981.45.2.251; BAUCHOT R, 1969, Mammalia, V33, P225, DOI 10.1515/mamm.1969.33.2.225; Beck B.B., 1982, International Zoo Yearbook, V22, P106, DOI 10.1111/j.1748-1090.1982.tb02016.x; BEISCHER DE, 1964, ANAT REC, V148, P615, DOI 10.1002/ar.1091480414; BOINSKI S, 1989, ANIM BEHAV, V37, P415, DOI 10.1016/0003-3472(89)90089-4; BOINSKI S, 1987, BEHAV ECOL SOCIOBIOL, V21, P393, DOI 10.1007/BF00299934; BOWDEN D, 1967, FOLIA PRIMATOL, V5, P1, DOI 10.1159/000161936; BRAND HM, 1981, J REPROD FERTIL, V62, P467; BRAND HM, 1983, INT J PRIMATOL, V4, P275, DOI 10.1007/BF02735550; BRIZZEE KR, 1986, COMP PRIMATE BIOL, V3, P363; CARROLL JB, 1990, J REPROD FERTIL, V89, P149; CHAMBERS PL, J ZOOLOGY LONDON A, V207, P545; Charnov Eric L., 1993, P1; Chartin J., 1960, Mammalia Paris, V24, P153; CHASE JE, 1969, AM J PHYS ANTHROPOL, V30, P111, DOI 10.1002/ajpa.1330300111; CHRISTEN A, 1974, Z TIERPSYCHOL, V14, P5; CICMANEC JC, 1977, LAB ANIM SCI, V27, P512; COIMBRA-FILHO A F, 1979, Revista Brasileira de Biologia, V39, P83; Coimbra-Filho Adelmar F., 1993, Dodo, V29, P66; CORNER BD, 1992, AM J PHYS ANTHROPOL, V87, P67, DOI 10.1002/ajpa.1330870107; CROCKETT CM, 1982, AM J PRIMATOL, V3, P291, DOI 10.1002/ajp.1350030127; DIETZ JM, 1994, AM J PRIMATOL, V34, P115, DOI 10.1002/ajp.1350340204; Dixson A. F., 1980, NONHUMAN PRIMATE MOD, P61; DIXSON AF, 1983, REPROD NEW WORLD PRI, P29; DUKELOW WR, 1983, REPROD NEW WORLD PRI, P181; EISENBER.JF, 1973, J MAMMAL, V54, P954; EISENBERG JF, 1981, MAMMALIAN RAD; EISENBERG JF, 1977, BIOL CONSERVATION CA, P13; ELIAS MF, 1977, DEV PSYCHOBIOL, V10, P519, DOI 10.1002/dev.420100605; ELLIOTT MW, 1976, LAB ANIM SCI, V26, P1037; EPPLE G, 1970, FOLIA PRIMATOL, V13, P48, DOI 10.1159/000155308; EPPLE G, 1983, REPRODUCTION NEW WOR, P115; FEDIGAN LM, 1995, AM J PRIMATOL, V37, P9, DOI 10.1002/ajp.1350370103; FLEAGLE JG, 1975, GROWTH, V39, P35; FORD S M, 1980, Primates, V21, P31, DOI 10.1007/BF02383822; FORD SM, 1992, AM J PHYS ANTHROPOL, V88, P415, DOI 10.1002/ajpa.1330880403; FRAGASZY DM, 1990, FOLIA PRIMATOL, V54, P119, DOI 10.1159/000156435; FRENCH JA, 1983, FOLIA PRIMATOL, V40, P276, DOI 10.1159/000156110; Garber Paul A., 1993, P273; GENGOZIAN N, 1977, BIOL CONSERVATION CA, P207; Gensch W., 1965, International Zoo Yearbook, V5, P110, DOI 10.1111/j.1748-1090.1965.tb01591.x; GLANDER KE, 1980, AM J PHYS ANTHROPOL, V53, P25, DOI 10.1002/ajpa.1330530106; Goss C. M., 1968, P171; HALL RD, 1979, LAB ANIM SCI, V29, P345; HAMPTON SH, 1977, BIOL CONSERVATION CA, P193; HARTWIG WC, 1995, AM J PHYS ANTHROPOL, V97, P435, DOI 10.1002/ajpa.1330970409; HARTWIG WC, 1993, THESIS U CALIFORNIA; Harvey P.H., 1987, P181; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; HAYES K C, 1972, P122; Hearn J.P., 1983, P181; Hearn J.P., 1980, PROGRESS IN REPRODUCTIVE BIOLOGY, V7, P262; HEARN JP, 1977, BIOL CONSERVATION CA, P163; HEGER W, 1988, NONHUMAN PRIMATES DE, P53; HEISTERMANN M, 1995, AM J PRIMATOL, V35, P117, DOI 10.1002/ajp.1350350204; HEMMER B, 1971, P 3 INT C PRIM, V2, P99; Hershkovitz P, 1977, LIVING NEW WORLD MON, V1; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hopf S., 1967, Primates, V8, P323, DOI 10.1007/BF01792017; Hrdlicka A, 1925, AM J PHYS ANTHROPOL, V8, P201, DOI 10.1002/ajpa.1330080207; HUNTER J, 1979, FOLIA PRIMATOL, V31, P165, DOI 10.1159/000155881; JANSON CH, 1992, AM J PHYS ANTHROPOL, V88, P483, DOI 10.1002/ajpa.1330880405; Janson Charles H., 1993, P57; JAQUISH CE, 1995, AM J PRIMATOL, V36, P259, DOI 10.1002/ajp.1350360402; JAROSZ SJ, 1977, BIOL REPROD, V16, P97, DOI 10.1095/biolreprod16.1.97; JUNGERS WL, 1980, AM J PHYS ANTHROPOL, V53, P471, DOI 10.1002/ajpa.1330530403; JURKE MH, 1994, AM J PRIMATOL, V34, P319, DOI 10.1002/ajp.1350340404; KAACK B, 1979, GROWTH, V43, P116; KAPLAN J, 1974, DEV PSYCHOBIOL, V7, P7, DOI 10.1002/dev.420070103; KAPLAN JN, 1977, LAB ANIM SCI, V27, P557; KERBER WT, 1977, LAB ANIM SCI, V27, P700; KLEIMAN DG, 1977, BIOL CONSERVATION CA, P181; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; LEIGH SR, 1994, ZOO BIOL, V13, P21, DOI 10.1002/zoo.1430130105; LEIGH SR, 1994, EVOLUTIONARY ANTHR, V3, P106; Leutenegger W., 1982, P85; LEUTENEGGER W, 1970, FOLIA PRIMATOL, V12, P224, DOI 10.1159/000155292; Leutenegger W., 1980, International Journal of Primatology, V1, P95, DOI 10.1007/BF02692260; LEUTENEGGER W, 1973, FOLIA PRIMATOL, V20, P280, DOI 10.1159/000155580; Long J. O., 1968, P193; LORENZ R, 1967, FOLIA PRIMATOL, V6, P1, DOI 10.1159/000155064; MALAGA CA, 1991, J MED PRIMATOL, V20, P370; MANOCHA SL, 1979, EXPERIENTIA, V35, P96, DOI 10.1007/BF01917901; MARTIN RD, 1985, NATURE, V313, P220, DOI 10.1038/313220a0; MARTIN RD, 1992, J HUM EVOL, V22, P367, DOI 10.1016/0047-2484(92)90066-I; MARTIN RD, 1988, S ZOOL SOC LOND, V60, P39; Martin RD, 1990, PRIMATE ORIGINS EVOL; MISSLER M, 1992, J MED PRIMATOL, V21, P285; Mitchell S.J., 1975, Laboratory Animals, V9, P49, DOI 10.1258/002367775780994817; MOORE HDM, 1985, AM J ANAT, V172, P265, DOI 10.1002/aja.1001720402; NAGLE CA, 1983, REPROD NEW WORLD PRI, P39, DOI DOI 10.1007/978-94-009-7322-0_2; OERKE AK, 1995, AM J PRIMATOL, V36, P1, DOI 10.1002/ajp.1350360102; Pereira M. E., 1993, JUVENILE PRIMATES LI; PEREIRA ME, 1991, PHYSIOL BEHAV, V49, P47, DOI 10.1016/0031-9384(91)90228-G; PEREIRA ME, 1991, BEHAV ECOL SOCIOBIOL, V28, P141; PERES CA, 1994, J HUM EVOL, V26, P245, DOI 10.1006/jhev.1994.1014; PERES CA, 1993, FOLIA PRIMATOL, V61, P97, DOI 10.1159/000156735; Phillips I.R., 1976, Advances in Anatomy Embryology and Cell Biology, V52, P1; PLOOG D, 1967, PSYCHOL FORSCH, V31, P1, DOI 10.1007/BF00422383; PUCCIARELLI HM, 1990, AM J PHYS ANTHROPOL, V81, P535, DOI 10.1002/ajpa.1330810409; RABB GB, 1959, J MAMMAL, V41, P401; RASMUSSEN KM, 1980, LAB ANIM SCI, V30, P99; RIDLEY M, 1995, AM J PHYS ANTHROPOL, V97, P197, DOI 10.1002/ajpa.1330970209; Roff Derek A., 1992; ROSENBERGER AL, 1984, FOLIA PRIMATOL, V42, P149, DOI 10.1159/000156159; ROSENBERGER AL, 1992, AM J PHYS ANTHROPOL, V88, P525, DOI 10.1002/ajpa.1330880408; ROSENBERGER AL, 1979, THESIS U NEW YORK NE; ROSS C, 1991, INT J PRIMATOL, V12, P481, DOI 10.1007/BF02547635; ROTHE H, 1974, Zeitschrift fuer Saeugetierkunde, V39, P135; ROTHE H, 1973, FOLIA PRIMATOL, V19, P257, DOI 10.1159/000155543; ROTHE H, 1977, BIOL CONSERVATION CA, P193; RUSSO AR, 1980, GROWTH, V44, P271; SACHER GA, 1974, AM NAT, V108, P593, DOI 10.1086/282938; SCHMIDT U, 1968, Z VERGL PHYSIOL, V60, P176, DOI 10.1007/BF00878450; SHOEMAKER AH, 1980, INT ZOO YB, V22, P124; SMITH CA, 1987, ANAT EMBRYOL, V175, P399, DOI 10.1007/BF00309853; Snowdon C.T., 1988, P223; Soini P., 1988, P79; Stearns SC., 1992, EVOLUTION LIFE HIST; Stephan H., 1986, COMP PRIMATE BIOL, V4, P1; STEVENSON MF, 1976, J HUM EVOL, V5, P365, DOI 10.1016/0047-2484(76)90041-5; STOLZENBERG SJ, 1979, J MED PRIMATOL, V8, P29; STRIER KB, 1986, PRIMATOLOGIA BRASIL, V2, P163; SUSSMAN RW, 1984, AM J PHYS ANTHROPOL, V64, P419, DOI 10.1002/ajpa.1330640407; TARDIF SD, 1994, AM J PRIMATOL, V34, P133, DOI 10.1002/ajp.1350340205; Tardif Suzette D., 1993, P220; Ulmer F. A., 1961, Journal of Mammalogy, V42, P253, DOI 10.2307/1376839; WATTS ES, 1990, FOLIA PRIMATOL, V54, P217, DOI 10.1159/000156446; WILEN R, 1978, Primates, V19, P769, DOI 10.1007/BF02373644; Williams L., 1967, International Zoo Yearbook, V7, P86, DOI 10.1111/j.1748-1090.1967.tb00329.x; WILSON CG, 1977, BIOL CONSERVATION CA, P191; WOLFE L G, 1972, P145; WOLFE LG, 1975, LAB ANIM SCI, V25, P802; ZIEGLER TE, 1990, J REPROD FERTIL, V90, P563; ZIEGLER TE, 1990, AM J PRIMATOL, V22, P191, DOI 10.1002/ajp.1350220305; ZIEGLER TE, 1987, AM J PRIMATOL, V12, P127, DOI 10.1002/ajp.1350120202; ZIEGLER TE, 1990, J REPROD FERTIL, V89, P163; ZIEGLER TE, 1989, FOLIA PRIMATOL, V52, P206, DOI 10.1159/000156400 141 49 51 0 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0275-2565 1098-2345 AM J PRIMATOL Am. J. Primatol. 1996 40 2 99 130 10.1002/(SICI)1098-2345(1996)40:2<99::AID-AJP1>3.0.CO;2-V 32 Zoology Zoology VQ821 WOS:A1996VQ82100001 2019-02-26 J Benton, TG; Grant, A Benton, TG; Grant, A How to keep fit in the real world: Elasticity analyses and selection pressures on life histories ln a variable environment AMERICAN NATURALIST English Article POPULATION-DYNAMICS; FLUCTUATING ENVIRONMENT; EVOLUTION; DEMOGRAPHY; EXTINCTION; BIENNIALS; FITNESS; SIZE Most life-history theory assumes the environment is invariant. For the first time, analytical and numerical techniques were employed to investigate the impact of environmental variability on selection pressures (elasticities = proportional sensitivities) on a range of life histories. We find that the impact of variability is influenced significantly by the amount of variability an organism experiences (more variability affects selection pressures more), the correlations between variations among the vital rates (negative correlations are more likely to relax selection on fecundities and increase it on survival rates), and the life history in question (shorter life histories are more affected). In addition, the impact of a variable environment on the elasticities of life histories is sensitive to the sampling distribution used to generate the variability, and it is particularly sensitive to extreme values, such as those caused by occasional catastrophic events. The elasticities of life histories in highly variable environments may bear little relationship to those in a constant environment. In detailed optimality or evolutionarily stable strategy (ESS) modeling, variability in vital rates as small as a standard deviation being 10%-15% of the mean may appreciably alter the conclusions. Thus, it may be very important to consider the possible impact of environmental stochasticity and not to assume that it has no effect. UNIV E ANGLIA,SCH ENVIRONM SCI,NORWICH NR4 7TJ,NORFOLK,ENGLAND Grant, Alastair/L-7301-2018; Benton, Tim/C-6493-2009 Grant, Alastair/0000-0002-1147-2375; Benton, Tim/0000-0002-7448-1973 ABERG P, 1992, ECOLOGY, V73, P1488, DOI 10.2307/1940692; BENTON TG, 1992, ANIM BEHAV, V43, P125, DOI 10.1016/S0003-3472(05)80078-8; BENTON TG, IN PRESS EVOLUTIONAR; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COE WR, 1953, J MAR RES, V15, P212; Cushing D. H., 1975, MARINE ECOLOGY FISHE; DEJONG TJ, 1988, J ECOL, V76, P366; DOLMAN PM, 1995, IBIS, V137, pS538; Fisher R.A., 1930, GENETICAL THEORY NAT; FOX GA, 1993, EVOL ECOL, V7, P1, DOI 10.1007/BF01237731; GOTELLI NJ, 1991, ECOLOGY, V72, P457, DOI 10.2307/2937187; KALISZ S, 1991, ECOLOGY, V72, P575, DOI 10.2307/2937197; KLINKHAMER PGL, 1983, ECOL MODEL, V20, P223; Laevastu T, 1988, FISHING STOCK FLUCTU; LANDE R, 1988, P NATL ACAD SCI USA, V85, P7418, DOI 10.1073/pnas.85.19.7418; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LEVINTON JS, 1984, P NATL ACAD SCI-BIOL, V81, P5478, DOI 10.1073/pnas.81.17.5478; LOOSANOFF VL, 1964, BIOL BULL, V126, P423, DOI 10.2307/1539311; MAC ARTHUR ROBERT H., 1967; MAY RM, 1974, SCIENCE, V186, P645, DOI 10.1126/science.186.4164.645; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MIDDLETON DAJ, 1993, J APPL ECOL, V30, P1, DOI 10.2307/2404265; MOLONEY KA, 1988, ECOLOGY, V69, P1588, DOI 10.2307/1941656; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; MURRAY BG, 1994, OIKOS, V69, P520, DOI 10.2307/3545865; Norton HTJ, 1928, P LOND MATH SOC, V28, P1; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; ORZACK SH, 1985, AM NAT, V125, P550, DOI 10.1086/284362; Orzack Steven Hecht, 1993, Lecture Notes in Biomathematics, V98, P63; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SEBENS KP, 1985, J EXP MAR BIOL ECOL, V87, P55, DOI 10.1016/0022-0981(85)90192-3; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SIBLY RM, 1993, J THEOR BIOL, V160, P533, DOI 10.1006/jtbi.1993.1034; Stearns SC., 1992, EVOLUTION LIFE HIST; TAYLOR F, 1979, AM NAT, V113, P511, DOI 10.1086/283410; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P141, DOI 10.1016/0040-5809(82)90010-7; TULJAPURKAR SD, 1990, LECTURE NOTES BIOMAT, V85; WETHEY DS, 1985, ECOLOGY, V66, P445, DOI 10.2307/1940393; WIENER P, 1994, J THEOR BIOL, V166, P75, DOI 10.1006/jtbi.1994.1006 45 118 120 0 29 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. JAN 1996 147 1 115 139 10.1086/285843 25 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology TP423 WOS:A1996TP42300009 2019-02-26 J Jansen, WA Jansen, WA Plasticity in maturity and fecundity of yellow perch, Percaflavescens (Mitchill): Comparisons of stunted and normal-growing populations ANNALES ZOOLOGICI FENNICI English Article; Proceedings Paper 2nd International Percid Fish Symposium (PERCID II) AUG 21-25, 1995 VAASA, FINLAND Finnish Game & Fisheries Res Inst FLUVIATILIS L; GROWTH; LAKE; FLAVESCENS; EGG; DIFFERENTIATION; NORWAY; ROACH; FISH; SIZE Maturity, fecundity, and egg size of a stunted (mean length at age 5: 13.5 cm) and normal-growing (21.8 cm) population of yellow perch (Perca flavescens Mitchill) were studied in central Alberta, Canada. Stunted perch matured at a younger age and at a much smaller size than normal perch. Minimum size at initial maturation in stunted females was the smallest recorded in the literature for either perch (Perca) species. Relative fecundity, the slope of the fecundity-weight regression, and the gonado-somatic index were significantly higher in stunted perch. Mean dry weight of eggs, percentage connective tissue, gonad energy content, and gonad weight specific fecundity were similar for perch from both populations. Reproductive parameters of stunted perch are discussed in the context of life-history theory. UNIV ALBERTA,DEPT ZOOL,EDMONTON,AB T6G 2E9,CANADA ALM G, 1946, MEDD STATENS UNDERSO, V25, P1; ALM GUNNAR, 1952, REPT INST FRESHWATER RES DROTTNINGHOLM, V33, P17; ALM GUNNAR, 1959, REPT INST FRESHWATER RES DROTTNINGHOLM, V40, P5; BAGENAL T B, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P186; Bagenal T.B., 1978, P75; BOISCLAIR D, 1989, CAN J FISH AQUAT SCI, V46, P457, DOI 10.1139/f89-062; BRAZO DC, 1975, T AM FISH SOC, V104, P726, DOI 10.1577/1548-8659(1975)104<726:AGAFOY>2.0.CO;2; CRAIG JF, 1980, J ANIM ECOL, V49, P291, DOI 10.2307/4290; CRAIG JF, 1974, FRESHWATER BIOL, V4, P417, DOI 10.1111/j.1365-2427.1974.tb00106.x; CRAIG JF, 1982, REP FRESHWAT BIOL AS, V50, P49; Deelder C. L., 1951, Hydrobiologia, V3, P357, DOI 10.1007/BF00045560; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; HARTMANN J, 1975, ARCH HYDROBIOL, V76, P269; HASLER AD, 1945, ECOLOGY, V26, P90, DOI 10.2307/1931918; HEALEY MC, 1975, J FISH RES BOARD CAN, V32, P427, DOI 10.1139/f75-053; HEALEY MC, 1978, J FISH RES BOARD CAN, V35, P945, DOI 10.1139/f78-155; HEALY ANN, 1954, SCI PROC ROY DUBLIN SOC, V26, P397; HEATH D, 1987, T AM FISH SOC, V116, P98, DOI 10.1577/1548-8659(1987)116<98:TOGDIG>2.0.CO;2; HERMAN E, 1959, PUBL WISC CONS DEP, V228, P1; Holcik J., 1969, PRACE LAB RYBARSTVA, V2, P269; JAMET JL, 1994, INT REV GES HYDROBIO, V79, P305, DOI 10.1002/iroh.19940790216; JANSEN W, 1991, VERH INT VEREIN LIMN, V24, P2356; JELLYMAN DJ, 1980, NEW ZEAL J MAR FRESH, V14, P391, DOI 10.1080/00288330.1980.9515881; JOBES F, 1952, US FISH WILDL SERV F, V70, P205; Kennedy W. A., 1949, Bulletin Fisheries Research Board of Canada, V81, P1; LABEELUND JH, 1990, CAN J ZOOL, V68, P1983, DOI 10.1139/z90-279; LANG B, 1983, SCHWEIZ Z HYDROL, V45, P480, DOI 10.1007/BF02538135; LAPPALAINEN A, 1988, ENVIRON BIOL FISH, V21, P231, DOI 10.1007/BF00004866; LASKAR K, 1945, ARCH HYDROBIOL, V15, P1009; Le Cren E. D., 1947, JOUR ANIMAL ECOL, V16, P188; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LIND EA, 1974, ICHTHYOL FENN BOREAL, V3, P116; LINLOKKEN A, 1991, HYDROBIOLOGIA, V220, P179, DOI 10.1007/BF00006574; Makanova N. P., 1984, Journal of Ichthyology, V24, P163; MAKAROVA N, 1986, J ICHTHYOLOGY, V26, P157; MALISON JA, 1986, CAN J FISH AQUAT SCI, V43, P26, DOI 10.1139/f86-004; MANCE C, 1988, THESIS U ALBERTA EDM; MANN RHK, 1978, FRESHWATER BIOL, V8, P229, DOI 10.1111/j.1365-2427.1978.tb01444.x; MANSUETI ALICE JANE, 1964, CHESAPEAKE SCI, V5, P46, DOI 10.2307/1350790; Mitchell P, 1990, ATLAS ALBERTA LAKES; MUNCY ROBERT J., 1962, CHEASAPEAKE SCI, V3, P143, DOI 10.2307/1350992; NYBERG P, 1979, REP I FRESHWATER RES, V58, P139; PAPAGEORGIOU NK, 1977, FRESHWATER BIOL, V7, P559, DOI 10.1111/j.1365-2427.1977.tb01707.x; PERSSON L, 1990, J FISH BIOL, V37, P899, DOI 10.1111/j.1095-8649.1990.tb03593.x; PREPAS EE, 1988, HYDROBIOLOGIA, V159, P269, DOI 10.1007/BF00008240; RASK M, 1983, HYDROBIOLOGIA, V101, P139, DOI 10.1007/BF00008666; RIDGWAY LL, 1994, CAN J ZOOL, V72, P1576, DOI 10.1139/z94-209; ROPER K, 1936, Z FISCH, V34, P567; SANDSTROM O, 1995, J FISH BIOL, V47, P652, DOI 10.1111/j.1095-8649.1995.tb01932.x; *SAS I, 1984, SAS US GUID; SCHNEIDER J, 1984, 1915 MICH DEP NAT RE, P1; SHAFI M, 1971, J FISH BIOL, V3, P39, DOI 10.1111/j.1095-8649.1971.tb05904.x; SHERI AN, 1969, CAN J ZOOLOG, V47, P55, DOI 10.1139/z69-012; Sokal R.R., 1981, BIOMETRY PRINCIPLES; Stearns S.C., 1984, P13; STEHLIK J, 1968, VESTNIK CESKOSLOVENS, V33, P88; SZTRAMKO L, 1977, T AM FISH SOC, V106, P578, DOI 10.1577/1548-8659(1977)106<578:AVITFO>2.0.CO;2; Tesch F. W., 1955, Zeitschrift fuer Fischerei, V4, P321; Thorpe J., 1977, FAO FISHERIES SYNOPS, V113; THORPE JE, 1977, J FISH RES BOARD CAN, V34, P1504, DOI 10.1139/f77-215; Trautman M. B, 1981, FISHES OHIO; TREASURER JW, 1981, J FISH BIOL, V18, P359, DOI 10.1111/j.1095-8649.1981.tb03778.x; TREASURER JW, 1981, J FISH BIOL, V18, P729, DOI 10.1111/j.1095-8649.1981.tb03814.x; TREASURER JW, 1983, ENVIRON BIOL FISH, V8, P3, DOI 10.1007/BF00004941; TSAI C-F, 1971, Chesapeake Science, V12, P270, DOI 10.2307/1350914; Van Valen L., 1976, EVOL THEORY, V1, P179; VILJANEN M, 1982, ANN ZOOL FENN, V19, P39; VOGEL DA, 1987, LIMNOLOGICAL FISHERI, P61; WARE DM, 1982, CAN J FISH AQUAT SCI, V39, P3, DOI 10.1139/f82-002; WELLS L, 1983, US FISH WILDL SERV T, P109; WOODHEAD AD, 1979, S ZOOL SOC LOND, V44, P179; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133 72 17 19 1 14 FINNISH ZOOLOGICAL BOTANICAL PUBLISHING BOARD HELSINKI UNIV HELSINKI P O BOX 17 (P. RAUTATIEKATU 13), FIN-00014 HELSINKI, FINLAND 0003-455X ANN ZOOL FENN Ann. Zool. Fenn. 1996 33 3-4 403 415 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology WB445 WOS:A1996WB44500015 2019-02-26 J Bruton, MN Bruton, MN Alternative life-history strategies of catfishes AQUATIC LIVING RESOURCES English Article; Proceedings Paper International Workshop on the Biological Bases for Aquaculture of SILuriformes (BASIL) MAY 24-27, 1994 MONTPELLIER, FRANCE GAMET, CEMAGREF, CIRAD, ORSTOM catfish; morphology; ecology; behaviour; physiology; breeding guild; life-history; adaptations LAKE-MALAWI; FISHES; AFRICA; YOUNG Siluriformes, as well as Characiformes and Cypriniformes, are a diverse and widespread group of Ostariophysan fishes, but Siluriformes have a probable ancestral benthic feeding habit. They have a unique suite of morphological, physiological, ecological and behavioural traits that equip them to succeed in freshwaters but only to a limited extent in the sea. They are typically, non-aggressive stalking predators that hunt at night or in turbid water using primarily nonvisual sense organs, although there are many exceptions. The modification of the Weberian apparatus for sound production has probably resulted in some loss of buoyancy control. Catfishes are represented in all the different breeding guild categories and exhibit diverse and sometimes bizarre breeding methods. Catfishes tend towards the altricial end of the altricial-precocial life-history continuum. Only two families (Ariidae and Plotosidae) have successfully colonised the sea; physiological constraints and strong competition from Elasmobranchii and Actinopterygii fishes are probable reasons, and it is notable that the two families that have succeeded have precocial life histories that are more suited to highly competitive environments. JLB SMITH INST ICHTHYOL,ZA-6140 GRAHAMSTOWN,SOUTH AFRICA BALON EK, 1981, AM ZOOL, V21, P573; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; BREDER CM, 1966, MODES REPRODUCTION F; BRUTON M N, 1979, Transactions of the Zoological Society of London, V35, P1; Bruton M.N., 1979, TRANSACTIONS OF THE ZOOLOGICAL SOCIETY OF LONDON, V35, P47; BRUTON MN, 1989, PERSP VERT, V6, P503; Burgess WE, 1989, ATLAS FRESHWATER MAR; FINLEY L, 1988, AQUAR DIG INT, V47, P12; FLEGLERBALON C, 1989, PERSP VERT, V6, P71; JOCKEL S, 1988, AQUARIUM DIGEST INT, V47, P41; KOHDA M, 1995, ENVIRON BIOL FISH, V42, P1, DOI 10.1007/BF00002344; LOISELLE PV, 1988, AQUAR DIG INT, V47, P18; MCKAYE KR, 1986, OECOLOGIA, V69, P367, DOI 10.1007/BF00377058; MCKAYE KR, 1985, OECOLOGIA, V66, P358, DOI 10.1007/BF00378298; Mol JHA, 1993, FRESHWATER ECOSYSTEM, P167; Nelson J, 1994, FISHES WORLD; PAXTON JR, 1994, ENCY FISHES; RAMNARINE I, 1990, LIVING WORLD J TRINI, P46; RIMMER MA, 1983, P LINN SOC N S W, V107, P41; Sakurai J., 1985, AQUARIUM FISHES WORL; SCHEHR D, 1988, AQUAR DIG INT, V47, P35; TEUGELS GG, 1996, AQUAT LIVING RESOUR, P9; TINLEY RL, 1993, J FISH BIOL, V43, P183; TRAJANO E, 1991, ENVIRON BIOL FISH, V30, P407, DOI 10.1007/BF02027984 24 26 28 0 8 GAUTHIER-VILLARS PARIS 120 BLVD SAINT-GERMAIN, 75280 PARIS, FRANCE 0990-7440 AQUAT LIVING RESOUR Aquat. Living Resour. 1996 9 SI 35 41 10.1051/alr:1996040 7 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology XJ355 WOS:A1996XJ35500003 2019-02-26 J Hecht, T Hecht, T An alternative life history approach to the nutrition and feeding of Siluroidei larvae and early juveniles AQUATIC LIVING RESOURCES English Review International Workshop on the Biological Bases for Aquaculture of SILuriformes (BASIL) MAY 24-27, 1994 MONTPELLIER, FRANCE GAMET, CEMAGREF, CIRAD, ORSTOM Siluroidei; nutrition; feeding CLARIAS-GARIEPINUS BURCHELL; DIETARY-PROTEIN LEVEL; CHANNEL CATFISH; HETEROBRANCHUS-LONGIFILIS; HETEROPNEUSTES-FOSSILIS; AFRICAN CATFISH; GROWTH-RATE; CLARIIDAE; PISCES; REQUIREMENTS Successful commercial production of most cultured fish species has been facilitated by the intensification of larval rearing techniques. Siluroidei species are no exception and early attempts at larval rearing in ponds were soon superseded by intensive hatchery production, at least for those species that are farmed on a commercial scale. The review focuses on alternative life history strategies and how these may provide clues to the early nutrition and feeding of siluroid fishes, as well as on the development and efficacy of practical feeds and feed application. The paper highlights several commonalities in terms of the nutritional and feeding requirements of the larvae of the various species cultured on a commercial and subsistence basis. The requirement for live feed for some species appears to be of short duration and all species can be successfully weaned onto dry feed at a relatively early stage, This is considered to be one of the reasons why the intensification of larval rearing of Siluroidei fishes has, in general been highly successful. The review also comments on the live food/dry food debate and clearly reveals that our knowledge of Siluroidei larval nutrition and feeding is sorely lacking for many species, in comparison to other groups of fish. this emphasises the need for a concerted fundamental research effort. Hecht, T (reprint author), RHODES UNIV, DEPT ICHTHYOL & FISHERIES SCI, POB 94, ZA-6140 GRAHAMSTOWN, SOUTH AFRICA. AKAND AM, 1989, AQUACULTURE, V77, P175, DOI 10.1016/0044-8486(89)90200-7; ANDERSON M J, 1991, Aquaculture and Fisheries Management, V22, P435, DOI 10.1111/j.1365-2109.1991.tb00756.x; APPELBAUM S, 1988, J APPL ICHTHYOL, V4, P105, DOI 10.1111/j.1439-0426.1988.tb00549.x; APPELBAUM S, 1978, BAMIDGEH, V30, P85; APPELBAUM S, 1976, ARCH FISCHEREIWISS, V29, P85; APPELBAUM S, 1976, ARCH FISCHEREIWISS, V28, P31; BAIRAGE SK, 1988, BANGLADESH J FISH, V11, P41; Balon E.K., 1984, P35; BALON EK, 1984, T AM FISH SOC, V113, P178, DOI 10.1577/1548-8659(1984)113<178:ROSDEI>2.0.CO;2; BRUTON M N, 1979, Transactions of the Zoological Society of London, V35, P1; BRUTON MN, 1989, PERSP VERT, V6, P503; BRYANT PL, 1981, AQUACULTURE, V23, P275, DOI 10.1016/0044-8486(81)90021-1; CHUAPOEHUK W, 1987, AQUACULTURE, V63, P215, DOI 10.1016/0044-8486(87)90073-1; CONCEICAO L, 1993, AQUAC FISH MANAG, V64, P431; COWEY CB, 1972, ADV MAR BIOL, V10, P383, DOI 10.1016/S0065-2881(08)60419-8; COWEY CB, 1985, NUTR FEEDING FISH; DABROWSKI K, 1984, REPROD NUTR DEV, V24, P807, DOI 10.1051/rnd:19840701; Dabrowski K., 1991, Aquaculture Magazine, V17, P49; DABROWSKI K, 1978, AQUACULTURE, V13, P257, DOI 10.1016/0044-8486(78)90007-8; DABROWSKI K, 1977, HYDROBIOLOGIA, V54, P129, DOI 10.1007/BF00034986; DABROWSKI K, 1988, AQUACULTURE, V69, P317, DOI 10.1016/0044-8486(88)90339-0; DIAMOND J, 1991, NEWS PHYSIOL SCI, V6, P92; FAGBENRO OA, 1992, ISR J AQUACULT-BAMID, V44, P87; FAGBERO OA, 1992, J APPL ICHTHYOL, V8, P155; FERMIN AC, 1991, ISR J AQUACULT-BAMID, V43, P87; FOWLER LG, 1971, PROG FISH CULT, V33, P67, DOI 10.1577/1548-8640(1971)33[67:TASD]2.0.CO;2; Halver J. E., 1953, T AM FISH SOC, V83, P254; HALVER JE, 1957, J NUTR, V62, P225; HALVER JE, 1957, J NUTR, V62, P245; Halver JE, 1989, FISH NUTR; Halver JE., 1972, FISH NUTR; HASTINGS W, 1969, PROGR FISH CULT, V3, P187; Haylor G. S., 1993, Aquaculture and Fisheries Management, V24, P473, DOI 10.1111/j.1365-2109.1993.tb00622.x; HAYLOR G S, 1991, Aquaculture and Fisheries Management, V22, P405, DOI 10.1111/j.1365-2109.1991.tb00754.x; HECHT T, 1982, S AFR J WILDL RES, V12, P101; HECHT T, 1981, AQUACULTURE, V24, P301, DOI 10.1016/0044-8486(81)90064-8; HECHT T, 1985, S AFR J SCI, V81, P620; HECHT T, 1987, AQUACULTURE, V63, P195, DOI 10.1016/0044-8486(87)90071-8; HECHT T, 1991, S AFR J WILDL RES, V21, P123; HECHT T, 1988, J ZOOL, V214, P21, DOI 10.1111/j.1469-7998.1988.tb04984.x; HECHT T, 1988, 153 S AFR NAT SC; Hecht Thomas, 1993, Journal of the World Aquaculture Society, V24, P246, DOI 10.1111/j.1749-7345.1993.tb00014.x; HILGE V, 1986, INF FISCHWIRTSCH, V33, P172; HOGENDOORN H, 1980, AQUACULTURE, V21, P233, DOI 10.1016/0044-8486(80)90133-7; HOGENDOORN H, 1983, AQUACULTURE, V34, P265, DOI 10.1016/0044-8486(83)90208-9; HORVATH L, 1979, EIFAC WORKSH MASS RE, P85; HUBLOU WF, 1963, PROGRESSIVE FISH CUL, V25, P175; Jancarik A, 1964, Z FISCH, V12, P601; KRUGER EJ, 1984, WATER SA, V10, P97; LAUFF M, 1984, AQUACULTURE, V37, P35; Lee D. J., 1972, FISH NUTRITION, P145; LEGENDRE M, 1992, J FISH BIOL, V40, P59, DOI 10.1111/j.1095-8649.1992.tb02554.x; LOVELL RT, 1977, SO COOPERATIVE SERIE, V218, P50; LOVELL RT, 1989, FISH NUTRITION, P550; LOVELL RT, 1984, SO COOP SER B, V296, P12; LOVELL RT, 1984, SO COOP SER B, V296, P50; MERTZ ET, 1972, FISH NUTRITION, P106; MOLLAH M F A, 1982, Indian Journal of Fisheries, V29, P1; MOLLAH M.F.A., 1990, INDIAN J FISH, V37, P243; National Research Council, 1977, NUTR REQ WARMW FISH; NOSE T, 1979, S FINF NUTR FISH FEE, V1, P284; OSTROWSKI AC, 1989, AQUACULTURE, V80, P285, DOI 10.1016/0044-8486(89)90176-2; PAGE JW, 1973, J NUTR, V103, P1339; Phillips A. M, 1972, FISH NUTR, P2; PHILLIPS AM, 1956, PROGR FISH CULT, V18, P113; POLLING L, 1988, WATER SA, V14, P19; PRINSLOO JF, 1988, WATER SA S AFR, V3, P163; Rahman MA, 1982, BANGLADESH J FISH, V2-5, P65; REDDY SR, 1979, AQUACULTURE, V18, P35, DOI 10.1016/0044-8486(79)90098-X; ROBINSON E H, 1989, Journal of the World Aquaculture Society, V20, P256, DOI 10.1111/j.1749-7345.1989.tb01012.x; ROBINSON E H, 1989, Reviews in Aquatic Sciences, V1, P365; ROBINSON EH, 1984, SO COOP SER B, V296, P21; Ronyai A., 1990, Aquacultura Hungarica, V6, P193; SANTANA S, 1986, ACUICULTURA B TEC, V40; SANTHA CR, 1991, PROG FISH CULT, V53, P135, DOI 10.1577/1548-8640(1991)053<0135:GRAFAC>2.3.CO;2; SARGENT J, 1989, FISH NUTR, P154; Segner Helmut, 1993, Journal of the World Aquaculture Society, V24, P121, DOI 10.1111/j.1749-7345.1993.tb00001.x; SEIDEL CR, 1980, B JPN SOC SCI FISH, V46, P237; Shang YC, 1981, AQUACULTURE EC BASIC; Shcherbina M. A., 1988, Journal of Ichthyology, V28, P63; Steffens W, 1989, PRINCIPLES FISH NUTR; STROBAND HWJ, 1981, CELL TISSUE RES, V215, P387; TANAKA M, 1971, Japanese Journal of Ichthyology, V18, P164; TOLEDO J, 1986, ACUICULT B TEC, V39; TOLEDO J, 1989, REV LATINOAM ACUICUL, V36, P6; Tucker C. S., 1990, CHANNEL CATFISH FARM; UYS W, 1985, AQUACULTURE, V47, P173, DOI 10.1016/0044-8486(85)90063-8; UYS W, 1984, THESIS RHODES U GRAH; UYS W, 1989, THESIS RHODES U GRAH; VANDAMME P, 1990, SECOND ASIAN FISHERIES FORUM, P303; VANDAMME P, 1989, AQUACULTURE BIOTECHN, P701; VANDAMME P, 1989, AQUACULTURE EUROPE 8, P255; Verreth J., 1993, Journal of the World Aquaculture Society, V24, P135, DOI 10.1111/j.1749-7345.1993.tb00002.x; VERRETH J, 1989, AQUACULTURE, V83, P81, DOI 10.1016/0044-8486(89)90062-8; VERRETH J, 1987, AQUACULTURE, V63, P269, DOI 10.1016/0044-8486(87)90078-0; VERRETH J, 1987, AQUACULTURE, V63, P251, DOI 10.1016/0044-8486(87)90077-9; Verreth Johan A. J., 1992, Journal of the World Aquaculture Society, V23, P286, DOI 10.1111/j.1749-7345.1992.tb00792.x; Viveen W. J. A. R., 1985, PRACTICAL MANUAL CUL; Wilson R. P., 1989, FISH NUTR, P112; WILSON RP, 1991, HDB NUTR REQUIREMENT, P35; WINFREE RA, 1984, PROG FISH CULT, V46, P79, DOI 10.1577/1548-8640(1984)46<79:SDFCC>2.0.CO;2; WINFREE RA, 1984, AQUACULTURE, V41, P311, DOI 10.1016/0044-8486(84)90199-6 102 12 12 0 3 EDP SCIENCES S A LES ULIS CEDEX A 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE 0990-7440 AQUAT LIVING RESOUR Aquat. Living Resour. 1996 9 SI 121 133 10.1051/alr:1996047 13 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology XJ355 WOS:A1996XJ35500010 2019-02-26 J Stadler, B; Mackauer, M Stadler, B; Mackauer, M Influence of plant quality on interactions between the aphid parasitoid Ephedrus californicus Baker (Hymenoptera: Aphidiidae) and its host, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) CANADIAN ENTOMOLOGIST English Article 3 TROPHIC LEVELS; REPRODUCTIVE INVESTMENT; NUTRITIONAL ECOLOGY; PEA APHID; INSECT; WASP; SIZE; VIRGINOPARAE; BRASSICAE; ERVI We determined variations in selected life-history parameters in a tritrophic system that consisted of a plant (broad bean, Vicia faba L.), an aphid (pea aphid, Acyrthosiphon pisum), and an aphid parasitoid (Ephedrus californicus). We manipulated plant and aphid quality by growing bean plants in a high- and a low-quality nutrient solution for three generations. Pea aphids adapted to reduced nutrient availability by differentially allocating resources to somatic and gonadal growth across generations. On low-quality plants, time from birth to adult increased and dry mass decreased. The number of sclerotized embryos was correlated with adult dry mass. By contrast, in E. californicus, variations in dry mass, rate of development, and number of ovarial eggs did not suggest transgenerational adaptations to resource quality as measured by aphid size. The number of mature eggs was dependent on female age. Development time varied with parasitoid sex and was independent of aphid stage at the time of death. In the low-quality treatment, males survived on average longer than females eclosing from the same kinds of hosts. Aphids and their parasitoids have evolved flexible life-history strategies in response to variations in plant quality. Pea aphids adapted to qualitatively variable resources by optimizing the balance between somatic and gonadal investment across successive generations. But E. californicus responded to low host quality at the level of the individual, rather than across generations; the trade-off pattern was influenced by the host's growth potential after parasitization. SIMON FRASER UNIV,DEPT BIOL SCI,BURNABY,BC V5A 1S6,CANADA; UNIV BAYREUTH,DEPT ANIM ECOL 1,D-95440 BAYREUTH,GERMANY BAI B, 1990, ECOL ENTOMOL, V15, P9, DOI 10.1111/j.1365-2311.1990.tb00778.x; BLOEM KA, 1990, ENTOMOL EXP APPL, V54, P141, DOI 10.1111/j.1570-7458.1990.tb01323.x; Boethel D. J., 1986, INTERACTIONS PLANT R; BROUGH CN, 1989, ENTOMOL EXP APPL, V52, P215, DOI 10.1111/j.1570-7458.1989.tb01270.x; CAMPBELL BC, 1979, SCIENCE, V205, P700, DOI 10.1126/science.205.4407.700; CHOW FJ, 1986, ENTOMOL EXP APPL, V41, P243, DOI 10.1111/j.1570-7458.1986.tb00535.x; COHEN MB, 1987, CAN ENTOMOL, V119, P231, DOI 10.4039/Ent119231-3; DIXON AFG, 1987, APHIDS THEIR BIOL A, V2, P269; FOX LR, 1990, OECOLOGIA, V83, P414, DOI 10.1007/BF00317569; GANGE AC, 1989, OECOLOGIA, V81, P38, DOI 10.1007/BF00377007; GOMEZ JM, 1994, ECOLOGY, V75, P1023, DOI 10.2307/1939426; HENKELMAN DH, 1979, THESIS S FRASER U BU; Hoagland D. R, 1950, CALIF AES C, V347, P1, DOI DOI 10.1007/S12374-010-9112-0; KAROWE DN, 1992, ENTOMOL EXP APPL, V62, P241, DOI 10.1111/j.1570-7458.1992.tb00664.x; KOUAME KL, 1992, CAN ENTOMOL, V124, P87, DOI 10.4039/Ent12487-1; KOUAME KL, 1991, OECOLOGIA, V88, P197, DOI 10.1007/BF00320811; LEATHER SR, 1987, J APPL ENTOMOL, V104, P87; MACKAUER M, 1967, CAN ENTOMOL, V99, P1051, DOI 10.4039/Ent991051-10; MACKAUER M, 1984, CAN ENTOMOL, V116, P1605, DOI 10.4039/Ent1161605-12; MACKAUER M, 1990, CRITICAL ISSUES IN BIOLOGICAL CONTROL, P41; NORUSIS MJ, 1986, SPSS PC PLUS USERS G; Price P.W., 1986, P11; PRICE PW, 1980, ANNU REV ECOL SYST, V11, P41, DOI 10.1146/annurev.es.11.110180.000353; SCHOENLY K, 1991, AM NAT, V137, P597, DOI 10.1086/285185; SEQUEIRA R, 1993, CAN ENTOMOL, V125, P423, DOI 10.4039/Ent125423-3; SEQUEIRA R, 1992, EVOL ECOL, V6, P34, DOI 10.1007/BF02285332; SEQUEIRA R, 1992, ECOLOGY, V73, P183, DOI 10.2307/1938730; SERVICE P, 1984, ECOL ENTOMOL, V9, P321, DOI 10.1111/j.1365-2311.1984.tb00855.x; SOKAL R., 1981, BIOMETRY; STADLER B, 1994, J ANIM ECOL, V63, P419, DOI 10.2307/5559; STADLER B, 1992, OECOLOGIA, V91, P273, DOI 10.1007/BF00317796; TSCHARNTKE T, 1992, ECOLOGY, V73, P1689, DOI 10.2307/1940020; VANEMDEN HF, 1969, ENTOMOL EXP APPL, V12, P351; VINSON SB, 1980, Q REV BIOL, V55, P143, DOI 10.1086/411731; VOLKL W, 1992, J ANIM ECOL, V61, P273, DOI 10.2307/5320; WALTERS KFA, 1983, OECOLOGIA, V58, P70, DOI 10.1007/BF00384544; WALTERS KFA, 1988, ECOL ENTOMOL, V13, P337, DOI 10.1111/j.1365-2311.1988.tb00364.x; WARD SA, 1983, J ANIM ECOL, V52, P305, DOI 10.2307/4602; WARD SA, 1982, J ANIM ECOL, V51, P589; WELLINGS PW, 1980, J ANIM ECOL, V49, P975, DOI 10.2307/4239; WELLINGS PW, 1983, ENTOMOL EXP APPL, V34, P227, DOI 10.1111/j.1570-7458.1983.tb03326.x; WHITHAM TG, 1991, PLANT ANIMAL INTERAC, P227; 1985, SAS USERS GUIDE BASI 43 31 32 1 9 ENTOMOL SOC CANADA OTTAWA 393 WINSTON AVE, OTTAWA ON K2A 1Y8, CANADA 0008-347X CAN ENTOMOL Can. Entomol. JAN-FEB 1996 128 1 27 39 10.4039/Ent12827-1 13 Entomology Entomology UB352 WOS:A1996UB35200003 2019-02-26 J Minns, CK; Randall, RG; Moore, JE; Cairns, VW Minns, CK; Randall, RG; Moore, JE; Cairns, VW A model simulating the impact of habitat supply limits on northern pike, Esox lucius, in Hamilton harbour, Lake Ontario CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article; Proceedings Paper Workshop on the Science and Management for Habitat Conservation and Restoration Strategies (HabCARES) in the Great Lakes NOV, 1994 KEMPENFELT, CANADA LIFE-HISTORY STRATEGIES; FISH POPULATIONS; GROWTH; SIZE; TEMPERATURE; RIVERS; REPRODUCTION; PERSPECTIVE; EXTINCTION; MORTALITY The effects of life-stage habitat supply limits on fish populations are examined using a simple model of northern pike (Esox lucius). The model has submodels for spawning, fry, and juveniles + adults (1+). The modelling approach assumes the habitat supply for life stages can be estimated and the key population processes in each life stage are controlled by a saturation function of habitat supply. Only one life stage can limit the population at a time. Baseline simulations show that fry and juvenile-adult habitat supplies are more limiting than spawning habitat, contrary to conventional wisdom. Paradoxically, spawning habitat may be rarer in absolute terms but other life stages need more of the total lake ecosystem area to be suitable for the population to succeed. Simulations based on a simple depth-based model of suitable habitat show how lake depth and hypsographic shape can affect population size and structure. Population sizes generated with various habitat supply scenarios overlap the reported range of values. The application to Hamilton Harbour shows how a dynamic model with habitat supply limitations can guide restoration efforts. Habitat management and conservation assessments must consider the dynamic population responses to varying life-stage habitat supplies. Minns, CK (reprint author), BAYFIELD INST, GREAT LAKES LAB FISHERIES & AQUAT SCI, POB 5050, 867 LAKESHORE RD, BURLINGTON, ON L7R 4A6, CANADA. *BBN SOFTW PROD CO, 1986, RSI VERS 12 1 IBM PE; BEDDINGTON JR, 1993, PHILOS T R SOC LON B, V343, P87; BEVERTON RJH, 1957, FISH INVEST LOND 2, V19; BOVEE KD, 1982, 12 US FISH WILDL SER; BREGAZZI PR, 1980, J FISH BIOL, V17, P91, DOI 10.1111/j.1095-8649.1980.tb02745.x; CAMPBELL RR, 1993, CAN FIELD NAT, V107, P395; CHESLAK E F, 1990, Rivers, V1, P264; CHRISTIE GC, 1988, CAN J FISH AQUAT SCI, V45, P301, DOI 10.1139/f88-036; CROSSMAN EJ, 1987, MISC PUBL ROYAL ONTA; CUSHING DH, 1994, J PLANKTON RES, V16, P291, DOI 10.1093/plankt/16.3.291; DEANGELIS DL, 1975, ECOLOGY, V56, P881, DOI 10.2307/1936298; FAGO DM, 1977, WID DEP NAT RESOUR T, V96; FORTIN R, 1982, CAN J ZOOL, V60, P227, DOI 10.1139/z82-031; FRANKLIN DONALD R., 1963, TRANS AMER FISH SOC, V92, P91, DOI 10.1577/1548-8659(1963)92[91:ELHOTN]2.0.CO;2; FRETWELL S D, 1969, Acta Biotheoretica, V19, P16, DOI 10.1007/BF01601953; FRISK T, 1988, Finnish Fisheries Research, V9, P467; FROST WE, 1967, J ANIM ECOL, V36, P651, DOI 10.2307/2820; GILES N, 1986, J FISH BIOL, V29, P107, DOI 10.1111/j.1095-8649.1986.tb04930.x; GRIMM MP, 1981, FISH MANAGE, V12, P61; HANNAH L, 1994, AMBIO, V23, P246; HOLMES JA, 1984, 1257 FISH AQUAT SCI; INSKIP PD, 1982, FWSOBS821017 US FISH; KOLASA J, 1988, OIKOS, V53, P235, DOI 10.2307/3566068; KOLASA J, 1989, ECOLOGY, V70, P36, DOI 10.2307/1938410; KOZLOWSKI J, 1985, EKISTICS, V311, P146; Kozlowski J., 1986, THRESHOLD APPROACH U; MAGNUSON JJ, 1979, AM ZOOL, V19, P331; MANN RHK, 1976, J FISH BIOL, V8, P179, DOI 10.1111/j.1095-8649.1976.tb03930.x; MANN RHK, 1980, J ANIM ECOL, V49, P899, DOI 10.2307/4234; McCARRAHER D. BRUCE, 1957, PROG FISH CULTURIST, V19-2, P185, DOI 10.1577/1548-8659(1957)19[185:TNPONP]2.0.CO;2; MINNS CK, 1992, CLIMATIC CHANGE, V22, P327, DOI 10.1007/BF00142432; MINNS CK, 1995, CAN J FISH AQUAT SCI, V52, P1499, DOI 10.1139/f95-144; MINNS CK, 1990, P NAT C GIS 1990S 5, P1020; MINNS CK, 1993, PLANNING SUSTAINABLE, P246; Moore J. E., 1993, PLANNING SUSTAINABLE, P236; OGAWA H, 1979, ENVIRON MANAGE, V3, P321, DOI 10.1007/BF01867439; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; PULLIAM HR, 1991, AM NAT, V137, pS50, DOI 10.1086/285139; RAAT AJP, 1988, FAO FISH SYNOPSIS, V30; RANDALL RG, 1995, CAN J FISH AQUAT SCI, V52, P631, DOI 10.1139/f95-063; Ricker W. E., 1975, B FISH RES BOARD CAN, V191; Ricker W. E., 1958, B FISH RES BOARD CAN, V119; SCHAAF WE, 1987, ESTUARIES, V10, P267, DOI 10.2307/1351854; SCHAAF WE, 1993, ESTUARIES, V16, P697, DOI 10.2307/1352428; SCOTT JM, 1993, WILDLIFE MONOGR, P1; SHUTER BJ, 1990, T AM FISH SOC, V119, P314, DOI 10.1577/1548-8659(1990)119<0314:CPVATZ>2.3.CO;2; SHUTER BJ, 1990, AM FISH SOC S, V8, P145; Souchon Y., 1983, P21; Soule ME, 1987, VIABLE POPULATIONS C; Taylor R.J., 1984, PREDATION; TERRELL JW, 1982, FWSOBS8210A US FISH; THOMAS CD, 1994, CONSERV BIOL, V8, P373, DOI 10.1046/j.1523-1739.1994.08020373.x; TILMAN D, 1994, NATURE, V371, P65, DOI 10.1038/371065a0; TYLER JA, 1994, REV FISH BIOL FISHER, V4, P91, DOI 10.1007/BF00043262; USFWS, 1981, STAND DEV HAB SUIT I; VANWINKLE W, 1993, T AM FISH SOC, V122, P459, DOI 10.1577/1548-8659(1993)122<0459:LLHTES>2.3.CO;2; WALTERS CJ, 1993, T AM FISH SOC, V122, P34, DOI 10.1577/1548-8659(1993)122<0034:DDGACA>2.3.CO;2; WARE DM, 1975, J FISH RES BOARD CAN, V32, P2503, DOI 10.1139/f75-288; WILLIAMSON SC, 1993, REGUL RIVER, V8, P15, DOI 10.1002/rrr.3450080106; Willis D.W., 1989, North American Journal of Fisheries Management, V9, P203, DOI 10.1577/1548-8675(1989)009<0203:PSLWEF>2.3.CO;2; WRIGHT RM, 1990, J FISH BIOL, V36, P215, DOI 10.1111/j.1095-8649.1990.tb05597.x 61 42 46 1 13 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. 1996 53 1 20 34 10.1139/f95-258 15 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology VK062 WOS:A1996VK06200004 2019-02-26 J Morris, DW Morris, DW State-dependent life history and senescence of white-footed mice ECOSCIENCE English Article; Proceedings Paper Symposium on Life History Strategies, at the Meeting of the Canadian-Society-of-Zoologists MAY, 1994 UNIV MANITOBA, WINNIPEG, CANADA Canadian Soc Zoologists UNIV MANITOBA body size; evolution; life history; litter size; Peromyscus; senescence CLUTCH SIZE; HABITAT SELECTION; PEROMYSCUS; FITNESS; REPRODUCTION; DISPERSAL; EVOLUTION; PATTERNS; MAMMALS The application of a state-dependent approach to life-history evolution is assessed by determining the state variables, and their interactions, that influence litter-size distributions produced by a free-living population of white-footed mice. State-dependent theory explains why the most productive litter size is nor as frequent in the population as expected by the number of recruits. Yet female age, size, and body condition interact with reproductive season in ways that defy a simple state-dependent approach to the life history of this species. Maternal age and reproductive season are confounded by the inability of young females to reproduce in spring. The biased production of small litter-size classes by large-bodied females in autumn appears to be a senescent effect resulting from old, large females in poor condition relative to young, small ones. Senescence implicates long-term cumulative reproductive costs in this, and perhaps other, populations of small mammals. LAKEHEAD UNIV,FAC FORESTRY,THUNDER BAY,ON P7B 5E1,CANADA Morris, DW (reprint author), LAKEHEAD UNIV,DEPT BIOL,CTR NO STUDIES,THUNDER BAY,ON P7B 5E1,CANADA. APARICIO JM, 1993, OIKOS, V68, P186, DOI 10.2307/3545327; Boyce M. S., 1988, EVOLUTION LIFE HIST, P3; Charlesworth B., 1980, EVOLUTION AGE STRUCT; DRICKAMER LC, 1973, J MAMMAL, V54, P523, DOI 10.2307/1379147; EISENBERG JF, 1981, MAMMALIAN RAD; FLEMING TH, 1978, EVOLUTION, V32, P45, DOI 10.1111/j.1558-5646.1978.tb01097.x; GOUNDIE TR, 1986, J MAMMAL, V67, P53, DOI 10.2307/1381001; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1991, EVOLUTION REPRODUCTI, P15; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; Layne J. N., 1968, P148; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; Millar JS, 1994, ECOSCIENCE, V1, P317, DOI 10.1080/11956860.1994.11682257; MORRIS DW, 1992, EVOL ECOL, V6, P1, DOI 10.1007/BF02285330; Morris DW, 1996, J ANIM ECOL, V65, P43, DOI 10.2307/5698; MORRIS DW, 1986, EVOLUTION, V40, P169, DOI 10.1111/j.1558-5646.1986.tb05728.x; MORRIS DW, 1991, AM NAT, V138, P702, DOI 10.1086/285244; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; MORRIS DW, 1989, EVOL ECOL, V3, P80, DOI 10.1007/BF02147934; MORRIS DW, 1985, OIKOS, V45, P290, DOI 10.2307/3565719; MORRIS DW, 1992, EVOLUTION, V46, P1848, DOI 10.1111/j.1558-5646.1992.tb01173.x; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; MYERS P, 1983, J MAMMAL, V64, P1, DOI 10.2307/1380746; NORUSIS M, 1992, SPSS PC PLUS ADV STA; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; RINTAMAA DL, 1976, J MAMMAL, V57, P593, DOI 10.2307/1379313; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WOLFF J O, 1986, Virginia Journal of Science, V37, P208; WOLFF JO, 1988, ANIM BEHAV, V36, P456, DOI 10.1016/S0003-3472(88)80016-2 33 27 28 0 5 UNIVERSITE LAVAL ST FOY PAVILLON ALEXANDRE-VACHON, UNIV LAVAL, ST FOY PQ G1K 7P4, CANADA 1195-6860 ECOSCIENCE Ecoscience 1996 3 1 1 6 6 Ecology Environmental Sciences & Ecology TY987 WOS:A1996TY98700002 2019-02-26 J Korpimaki, E; Rita, H Korpimaki, E; Rita, H Effects of brood size manipulations on offspring and parental survival in the European kestrel under fluctuating food conditions ECOSCIENCE English Article intra-individual and inter-individual trade-offs; reproductive effort; clutch size; vole cycle; raptor LIFE-HISTORY EVOLUTION; TITS PARUS-CAERULEUS; LONG-EARED OWLS; CLUTCH-SIZE; FALCO-TINNUNCULUS; TENGMALMS OWL; GREAT TIT; REPRODUCTIVE EFFORT; NATURAL-SELECTION; SOUTH SCOTLAND The hypothesis of reproductive costs suggests an intra-individual trade-off between current parental effort and future adult survival, whereas intergenerational trade-offs Link current parental effort with the number and size of offspring which thus affects offspring reproductive value. The consequences of brood size manipulations for offspring and parental survival were studied in European kestrels (Falco tinnunculus) living in western Finland where the abundance of their main food (voles) fluctuates in 3-year population cycles. In 12 cases in 1986 (a year of decreasing vole abundance), 8 cases in 1987 (a low year) and 20 cases in 1988 (an increase year), one 2-4 day-old chick was transferred between reduced and enlarged nests. In control nests, one chick was exchanged for a chick from another brood. The number of fledglings was not affected by brood size manipulation but was mainly determined by the study year (vole abundance). parents did not raise all young in enlarged broods even in the year of increasing vole supply, and in the low vole year, nestling survival of reduced broods tended to be better than that of control and enlarged broods. The brood treatment significantly altered body condition (as estimated by the body mass, wing length and tarsus length) of fledglings, but did not affect body mass of parents. Female parents were significantly lighter in a poor vole year than in other years. The subsequent breeding success of both sexes and future survival of males were unaffected by the manipulation, whereas future survival of females tended to be slightly decreased by brood enlargements and weakly improved by brood reductions. In Finnish kestrels breeding in an environment with unpredictable within- and between-year variation in food abundance, intra-individual trade-off apparently was less important in determining clutch size than in Dutch kestrels breeding in an environment with a more stable food abundance. Instead, the intergenerational trade-off through the reduced survival of offspring from enlarged broods apparently limited clutch size. UNIV HELSINKI, DEPT FOREST RESOURCE MANAGEMENT, FIN-00170 HELSINKI, FINLAND Korpimaki, E (reprint author), UNIV TURKU, DEPT BIOL, ECOL ZOOL LAB, FIN-20014 TURKU, FINLAND. ANDERSSON M, 1978, AM NAT, V112, P762, DOI 10.1086/283317; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; CAVE A J, 1968, Netherlands Journal of Zoology, V18, P313; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; COHEN J., 1977, STAT POWER ANAL BEHA; Collett D, 1991, MODELLING BINARY DAT; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; DIJKSTRA C, 1982, IBIS, V124, P210, DOI 10.1111/j.1474-919X.1982.tb03766.x; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DIJKSTRA C, 1988, ARDEA, V76, P127; DRENT RH, 1980, ARDEA, V68, P225; GARD NW, 1992, CAN J ZOOL, V70, P2421, DOI 10.1139/z92-325; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.es.22.110191.002205; GRAVES J, 1991, AUK, V108, P967; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HAKKARAINEN H, 1993, BEHAV ECOL SOCIOBIOL, V33, P247, DOI 10.1007/BF02027121; HANSKI I, 1993, NATURE, V364, P232, DOI 10.1038/364232a0; HANSSON L, 1988, TRENDS ECOL EVOL, V3, P195, DOI 10.1016/0169-5347(88)90006-7; HANSSON L, 1985, OECOLOGIA, V67, P394, DOI 10.1007/BF00384946; HANSSON L, 1973, OIKOS, V24, P477, DOI 10.2307/3543827; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; KORPIMAKI E, 1987, OECOLOGIA, V74, P277, DOI 10.1007/BF00379371; KORPIMAKI E, 1991, ECOLOGY, V72, P814, DOI 10.2307/1940584; KORPIMAKI E, 1986, Ornis Fennica, V63, P84; KORPIMAKI E, 1988, J ANIM ECOL, V57, P1027, DOI 10.2307/5109; KORPIMAKI E, 1985, Ornis Fennica, V62, P130; KORPIMAKI E, 1988, J ANIM ECOL, V57, P433, DOI 10.2307/4915; KORPIMAKI E, 1984, ANN ZOOL FENN, V21, P287; KORPIMAKI E, 1988, OECOLOGIA, V77, P278, DOI 10.1007/BF00379199; Korpimaki E, 1981, ACTA U OUL A, V118, P1, DOI DOI 10.1897/IEAM_2009-053.1; LACK D, 1948, EVOLUTION, V2, P95, DOI 10.1111/j.1558-5646.1948.tb02734.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LINDEN M, 1990, THESIS U UPPSALA UPP; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MARTINS TLF, 1993, BEHAV ECOL, V4, P213, DOI 10.1093/beheco/4.3.213; MOLLER AP, 1989, OIKOS, V56, P421, DOI 10.2307/3565628; MYLLYMAKI A, 1971, Annales Zoologici Fennici, V8, P177; NOER H, 1983, ORNIS SCAND, V14, P104, DOI 10.2307/3676013; NORRDAHL K, 1993, OIKOS, V67, P149, DOI 10.2307/3545105; NORRDAHL K, 1990, THESIS U HELSINKI HE; PALOKANGAS P, 1992, ANIM BEHAV, V43, P659, DOI 10.1016/0003-3472(92)90087-P; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Partridge L., 1989, P421; PERRINS C, 1964, NATURE, V201, P1147, DOI 10.1038/2011147b0; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PETTIFOR RA, 1993, J ANIM ECOL, V62, P131, DOI 10.2307/5488; PETTIFOR RA, 1993, J ANIM ECOL, V62, P145, DOI 10.2307/5489; POIANI A, 1993, EVOL ECOL, V7, P329, DOI 10.1007/BF01237866; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; SALONEN V, 1988, ORNIS FENNICA, V65, P13; *SAS I INC, 1990, SAS STAT US GUID REL; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; SPEAKMAN JR, 1988, SCI PROG, V72, P227; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HIST; TOLONEN P, 1994, BEHAV ECOL SOCIOBIOL, V35, P355; Tolonen P, 1996, ECOSCIENCE, V3, P165, DOI 10.1080/11956860.1996.11682327; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; VILLAGE A, 1985, J ZOOL, V206, P175; VILLAGE A, 1986, J ZOOL, V208, P367; Village A., 1990, THE KESTREL; WALLIN K, 1983, OECOLOGIA, V60, P302, DOI 10.1007/BF00376842; WIEBE KL, 1994, J ANIM ECOL, V63, P551, DOI 10.2307/5221; WIEBE KL, 1994, ECOLOGY, V75, P813, DOI 10.2307/1941737; WILKINSON L, 1989, SYSTAT SYSTEM STAT; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 75 30 32 5 24 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 1195-6860 2376-7626 ECOSCIENCE Ecoscience 1996 3 3 264 273 10.1080/11956860.1996.11682341 10 Ecology Environmental Sciences & Ecology VJ708 WOS:A1996VJ70800004 2019-02-26 J DeMeester, L DeMeester, L Local genetic differentiation and adaptation in freshwater zooplankton populations: Patterns and processes ECOSCIENCE English Review local adaptation; evolution; genetic polymorphism; habitat selection; zooplankton; cyclic parthenogenesis ROTIFER BRACHIONUS-PLICATILIS; DAPHNIA-MAGNA CLONES; LIFE-HISTORY EVOLUTION; NATURAL-POPULATIONS; INTERSPECIFIC HYBRIDIZATION; ENZYME VARIABILITY; PHOTOTACTIC BEHAVIOR; CYCLICAL PARTHENOGEN; SEXUAL REPRODUCTION; ECOLOGICAL GENETICS Literature on local genetic differentiation in freshwater zooplankton populations is reviewed The island-like nature of limnetic habitats creates opportunities for local genetic differentiation and adaptation to develop. There is a wealth of data available on genetic differentiation among populations of zooplankton with respect to allozyme markers. Data from well-designed studies on ecologically relevant, quantitative traits are less abundant and indicate a different pattern from that obtained using electrophoretic markers. It is argued that whereas the analysis of (quasi) neutral markers emphasizes the importance of long-lasting founder effects and genetic drift, the pattern of local genetic differentiation of ecologically relevant traits may often reflect local adaptation. In reviewing the data, the importance of temporal and spatial habitat selection in maintaining genetic polymorphism for ecologically relevant traits is emphasized, without denying the importance of stochasticity. Most available data are on Daphnia, but studies on other organisms in general confirm the patterns observed in this genus. A hypothetical scheme of the processes leading to local genetic differentiation and adaptation in zooplankton is discussed, with an indication of the data necessary to fill certain gaps in our knowledge. Attention is drawn to the frequent opportunities for local adaptation in cyclically parthenogenetic organisms (e.g., Daphnia, monogonont rotifers) and the processes leading to local adaptation in cyclically parthenogenetic, obligately parthenogenetic and obligately sexual species are compared. DeMeester, L (reprint author), CATHOLIC UNIV LEUVEN,LAB ECOL & AQUACULTURE,NAAMESESTR 59,B-3000 LOUVAIN,BELGIUM. De Meester, Luc/F-3832-2015 De Meester, Luc/0000-0001-5433-6843 ADLER FR, 1990, TRENDS ECOL EVOL, V5, P407, DOI 10.1016/0169-5347(90)90025-9; AYRE DJ, 1985, EVOLUTION, V39, P1250, DOI 10.1111/j.1558-5646.1985.tb05691.x; BACHIORRI A, 1991, VERH INT VER LIMNOL, V24, P2813; BAIRD DJ, 1991, ECOTOX ENVIRON SAFE, V21, P257, DOI 10.1016/0147-6513(91)90064-V; BELL G, 1981, MASTERPIECE NATURE; BERG DJ, 1994, LIMNOL OCEANOGR, V39, P1503, DOI 10.4319/lo.1994.39.7.1503; BOILEAU MG, 1992, J EVOLUTION BIOL, V5, P25, DOI 10.1046/j.1420-9101.1992.5010025.x; BROWN AF, 1991, BIOL BULL, V181, P123, DOI 10.2307/1542494; BURTON RS, 1987, EVOLUTION, V41, P504, DOI 10.1111/j.1558-5646.1987.tb05821.x; Carvalho GR, 1988, FUNCT ECOL, V2, P453, DOI 10.2307/2389388; CARVALHO GR, 1994, GENETICS AND EVOLUTION OF AQUATIC ORGANISMS, P291; CARVALHO GR, 1989, FRESHWATER BIOL, V22, P459, DOI 10.1111/j.1365-2427.1989.tb01118.x; CARVALHO GR, 1987, J ANIM ECOL, V56, P453, DOI 10.2307/5060; CARVALHO GR, 1987, J ANIM ECOL, V56, P469, DOI 10.2307/5061; CARVALHO GR, 1983, FRESHWATER BIOL, V13, P37, DOI 10.1111/j.1365-2427.1983.tb00655.x; CREASE TJ, 1990, MOL BIOL EVOL, V7, P444; DAVISON J, 1969, J GEN PHYSIOL, V53, P565; de Meester L., 1991, Biologisch Jaarboek, V58, P84; DEMEESTER L, 1991, HYDROBIOLOGIA, V225, P217, DOI 10.1007/BF00028400; deMeester L, 1996, EVOLUTION, V50, P1293, DOI 10.1111/j.1558-5646.1996.tb02369.x; DEMEESTER L, 1993, LIMNOL OCEANOGR, V38, P1193; DEMEESTER L, 1993, FRESHWATER BIOL, V30, P219; DEMEESTER L, 1993, FRESHWATER BIOL, V30, P227; DEMEESTER L, 1995, HYDROBIOLOGIA, V307, P167, DOI 10.1007/BF00032009; DEMEESTER L, 1994, OECOLOGIA, V97, P333, DOI 10.1007/BF00317323; DEMEESTER L, 1993, OECOLOGIA, V96, P80, DOI 10.1007/BF00318033; DEMEESTER L, 1994, BELG J ZOOL, V124, P3; DEMEESTER L, 1993, ECOLOGY, V74, P1467; DEMEESTER L, 1995, NATURE, V378, P483; DEMEESTER L, 1996, IN PRESS MARINE FRES; DEMELO R, 1994, CAN J FISH AQUAT SCI, V51, P873; EBERT D, 1993, HEREDITY, V70, P335, DOI 10.1038/hdy.1993.48; EBERT D, 1994, SCIENCE, V265, P1084, DOI 10.1126/science.265.5175.1084; Endler JA, 1986, NATURAL SELECTION WI; ENGLE DL, 1985, FRESHWATER BIOL, V15, P631, DOI 10.1111/j.1365-2427.1985.tb00233.x; Falconer D. S., 1989, INTRO QUANTITATIVE G; FERRARI DC, 1982, CAN J ZOOL, V60, P2143, DOI 10.1139/z82-274; FRYER G, 1985, J NAT HIST, V19, P97, DOI 10.1080/00222938500770051; FU Y, 1991, J EXP MAR BIOL ECOL, V151, P29, DOI 10.1016/0022-0981(91)90013-M; FU Y, 1991, J EXP MAR BIOL ECOL, V151, P43, DOI 10.1016/0022-0981(91)90014-N; GOMEZ A, 1995, J EVOLUTION BIOL, V8, P601, DOI 10.1046/j.1420-9101.1995.8050601.x; Hairston N.G. Jr, 1987, P281; HAIRSTON NG, 1990, ECOLOGY, V71, P2218, DOI 10.2307/1938634; HAIRSTON NG, 1988, NATURE, V336, P239, DOI 10.1038/336239a0; HAIRSTON NG, 1984, AM NAT, V123, P733, DOI 10.1086/284236; HAIRSTON NG, 1984, OECOLOGIA, V61, P42, DOI 10.1007/BF00379086; HAIRSTON NG, 1990, EVOLUTION, V44, P1796, DOI 10.1111/j.1558-5646.1990.tb05250.x; HAIRSTON NG, 1987, OECOLOGIA, V71, P339, DOI 10.1007/BF00378705; HANN BJ, 1982, GENETICS, V102, P101; HANN BJ, 1986, CAN J ZOOL, V64, P2246, DOI 10.1139/z86-338; Hartl D. L., 1989, PRINCIPLES POPULATIO; HEBERT PDN, 1985, EVOLUTION, V39, P216, DOI 10.1111/j.1558-5646.1985.tb04097.x; HEBERT PDN, 1976, HEREDITY, V36, P331, DOI 10.1038/hdy.1976.40; HEBERT PDN, 1974, GENETICS, V77, P323; HEBERT PDN, 1980, SCIENCE, V207, P1363, DOI 10.1126/science.207.4437.1363; HEBERT PDN, 1974, GENETICS, V77, P335; HEBERT PDN, 1987, HYDROBIOLOGIA, V145, P183, DOI 10.1007/BF02530279; HEBERT PDN, 1974, EVOLUTION, V28, P546, DOI 10.1111/j.1558-5646.1974.tb00788.x; HEBERT PDN, 1983, HEREDITY, V51, P353, DOI 10.1038/hdy.1983.40; HEBERT PDN, 1982, ANN ZOOL FENN, V19, P349; HEBERT PDN, 1972, GENET RES, V19, P173, DOI 10.1017/S0016672300014403; HEBERT PDN, 1974, HEREDITY, V33, P327, DOI 10.1038/hdy.1974.99; HEBERT PDN, 1982, AM NAT, V119, P427, DOI 10.1086/283921; HEBERT PDN, 1980, HEREDITY, V45, P313, DOI 10.1038/hdy.1980.74; HEBERT PDN, 1987, DAPHNIA, P439; HOBAEK A, 1990, ECOLOGY, V71, P2255, DOI 10.2307/1938637; HUGHES RN, 1989, FUNCTIONAL BIOL CLON; INNES DJ, 1991, CAN J ZOOL, V69, P995, DOI 10.1139/z91-144; INNES DJ, 1989, J HERED, V80, P6, DOI 10.1093/oxfordjournals.jhered.a110791; JACOBS J, 1990, J EVOLUTION BIOL, V3, P257, DOI 10.1046/j.1420-9101.1990.3030257.x; KING CE, 1972, ECOLOGY, V53, P408, DOI 10.2307/1934226; KING CE, 1995, LIMNOL OCEANOGR, V40, P226, DOI 10.4319/lo.1995.40.2.0226; KING CE, 1995, HYDROBIOLOGIA, V307, P15, DOI 10.1007/BF00031993; KING CE, 1977, HEREDITY, V39, P357, DOI 10.1038/hdy.1977.76; King CE, 1980, EVOLUTION ECOLOGY ZO, P315; King CE, 1977, ARCH HYDROBIOL ERGEB, V8, P187; KLEIVEN OT, 1992, OIKOS, V65, P197, DOI 10.2307/3545010; KORPELAINEN H, 1984, HEREDITAS, V101, P209, DOI 10.1111/j.1601-5223.1984.tb00917.x; KORPELAINEN H, 1986, Z ZOOL SYST EVOL, V24, P291; KORPELAINEN H, 1986, HEREDITAS, V105, P29, DOI 10.1111/j.1601-5223.1986.tb00637.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDON MS, 1983, LIMNOL OCEANOGR, V28, P731, DOI 10.4319/lo.1983.28.4.0731; LARSSON P, 1993, ARCH HYDROBIOL, V129, P129, DOI 10.1127/archiv-hydrobiol/129/1993/129; LEIBOLD M, 1991, OECOLOGIA, V86, P342, DOI 10.1007/BF00317599; LEIBOLD MA, 1994, EVOLUTION, V48, P1324, DOI 10.1111/j.1558-5646.1994.tb05316.x; LYNCH M, 1987, AM NAT, V129, P283, DOI 10.1086/284635; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; LYNCH M, 1983, AM NAT, V122, P745, DOI 10.1086/284169; LYNCH M, 1983, EXP GERONTOL, V18, P147, DOI 10.1016/0531-5565(83)90008-6; LYNCH M, 1987, GENETICS, V115, P657; LYNCH M, 1984, EVOLUTION, V38, P186, DOI 10.1111/j.1558-5646.1984.tb00271.x; LYNCH M, 1983, EVOLUTION, V37, P358, DOI 10.1111/j.1558-5646.1983.tb05545.x; LYNCH M, 1994, AM NAT, V144, P242, DOI 10.1086/285673; Lynch Michael, 1994, P86; Lynch Michael, 1994, P109; MELLORS WK, 1975, ECOLOGY, V56, P974, DOI 10.2307/1936308; MITCHELL SE, 1995, J ANIM ECOL, V64, P777, DOI 10.2307/5856; MORT MA, 1986, EVOLUTION, V40, P756, DOI 10.1111/j.1558-5646.1986.tb00535.x; MORT MA, 1985, HEREDITY, V55, P27, DOI 10.1038/hdy.1985.68; MORT MA, 1991, TRENDS ECOL EVOL, V6, P41, DOI 10.1016/0169-5347(91)90120-M; MULLER J, 1995, HYDROBIOLOGIA, V307, P25, DOI 10.1007/BF00031994; Muller Jakob, 1993, Advances in Limnology, V39, P167; PACE ML, 1984, OECOLOGIA, V63, P43, DOI 10.1007/BF00379783; PAJUNEN VI, 1986, ANN ZOOL FENN, V23, P131; PAREJKO K, 1991, EVOLUTION, V45, P1665, DOI 10.1111/j.1558-5646.1991.tb02671.x; PIJANOWSKA J, 1994, PROC INT ASSOC THEOR, V25, P2366; Pijanowska Joanna, 1993, Advances in Limnology, V39, P89; PREPAS E, 1978, LIMNOL OCEANOGR, V23, P970, DOI 10.4319/lo.1978.23.5.0970; PROCTOR VW, 1964, ECOLOGY, V45, P656, DOI 10.2307/1936124; PROCTOR VW, 1965, ECOLOGY, V46, P728, DOI 10.2307/1935013; RINGELBERG J, 1991, J PLANKTON RES, V13, P17, DOI 10.1093/plankt/13.1.17; ROSSI V, 1990, OIKOS, V57, P388, DOI 10.2307/3565969; RUVINSKY AO, 1986, THEOR APPL GENET, V72, P811, DOI 10.1007/BF00266550; RUVINSKY AO, 1986, HEREDITY, V57, P15, DOI 10.1038/hdy.1986.81; SCHMITT J, 1990, EVOLUTION, V44, P2022, DOI 10.1111/j.1558-5646.1990.tb04308.x; SCHWENK K, 1993, MOL BIOL EVOL, V10, P1289; SCHWENK K, 1995, EXPERIENTIA, V51, P465, DOI 10.1007/BF02143199; Segers H, 1995, HYDROBIOLOGIA, V313, P121, DOI 10.1007/BF00025939; Shields W., 1988, EVOLUTION SEX, P253; SLATKIN M, 1985, ANNU REV ECOL SYST, V16, P393, DOI 10.1146/annurev.ecolsys.16.1.393; SNELL TW, 1983, EVOLUTION, V37, P1294, DOI 10.1111/j.1558-5646.1983.tb00245.x; SNELL TW, 1979, ECOLOGY, V60, P494, DOI 10.2307/1936069; SNELL TW, 1989, HYDROBIOLOGIA, V186, P299, DOI 10.1007/BF00048925; SPAAK P, 1995, ECOLOGY, V76, P553, DOI 10.2307/1941213; Spaak P., 1993, Advances in Limnology, V39, P157; Spaak P, 1996, HEREDITY, V76, P539, DOI 10.1038/hdy.1996.77; SPAAK P, 1994, THESIS U UTRECHT UTR; SPITZE K, 1993, GENETICS, V135, P367; STIBOR H, 1995, THESIS U KIEL KIEL; TALLING JF, 1951, NATURALIST, P157; TAYLOR DJ, 1992, LIMNOL OCEANOGR, V37, P658, DOI 10.4319/lo.1992.37.3.0658; TAYLOR DJ, 1993, CAN J FISH AQUAT SCI, V50, P2137, DOI 10.1139/f93-239; TAYLOR DJ, 1993, P NATL ACAD SCI USA, V90, P7079, DOI 10.1073/pnas.90.15.7079; TEMPLETON AR, 1982, EVOLUTION GENETICS L, P269; TESSIER AJ, 1991, ECOLOGY, V72, P468, DOI 10.2307/2937188; TESSIER AJ, 1992, LIMNOL OCEANOGR, V37, P1; Via Sara, 1994, P58; VRIJENHOEK RC, 1993, J HERED, V84, P388, DOI 10.1093/oxfordjournals.jhered.a111359; VRIJENHOEK RC, 1979, AM ZOOL, V19, P787; WADE MJ, 1990, EVOLUTION, V44, P2004, DOI 10.1111/j.1558-5646.1990.tb04306.x; Weider LJ, 1985, OECOLOGIA, V65, P487, DOI 10.1007/BF00379661; WEIDER LJ, 1987, ECOLOGY, V68, P188, DOI 10.2307/1938819; WEIDER LJ, 1992, LIMNOL OCEANOGR, V37, P1327, DOI 10.4319/lo.1992.37.6.1327; WEIDER LJ, 1984, LIMNOL OCEANOGR, V29, P225, DOI 10.4319/lo.1984.29.2.0225; WEIDER LJ, 1991, J GREAT LAKES RES, V17, P141, DOI 10.1016/S0380-1330(91)71349-X; WEIDER LJ, 1985, J PLANKTON RES, V7, P101, DOI 10.1093/plankt/7.1.101; WEIDER LJ, 1987, HEREDITY, V58, P391, DOI 10.1038/hdy.1987.67; WEIDER LJ, 1994, MOL ECOL, V3, P497, DOI 10.1111/j.1365-294X.1994.tb00128.x; WEIDER LJ, 1989, HEREDITY, V62, P1, DOI 10.1038/hdy.1989.1; WILSON CC, 1993, LIMNOL OCEANOGR, V38, P1304, DOI 10.4319/lo.1993.38.6.1304; WILSON CC, 1992, ECOLOGY, V73, P1462, DOI 10.2307/1940690; WILSON DS, 1994, AM NAT, V144, P692, DOI 10.1086/285702; WILSON DS, 1989, SPECIATION ITS CONSE, P366; WOLF HG, 1986, OECOLOGIA, V68, P507, DOI 10.1007/BF00378763; WOLF HG, 1987, HYDROBIOLOGIA, V145, P213, DOI 10.1007/BF02530282; WOLF HG, 1988, VERH INT VEREIN LIMN, V23, P2056; WOLF HG, 1985, VERHANDLUNGEN INT VE, V22, P3058; WOOD THELMA R., 1933, INTERNAT REV GES HYDROBIOL U HYDROGRAPH, V29, P437, DOI 10.1002/iroh.19330290505; Wright S, 1978, EVOLUTION GENETICS P, V4; YOUNG JPW, 1979, GENETICS, V92, P971; YOUNG JPW, 1979, GENETICS, V92, P953; ZHAO Y, 1989, HYDROBIOLOGIA, V185, P175, DOI 10.1007/BF00036605 162 157 163 2 32 UNIVERSITE LAVAL ST FOY PAVILLON ALEXANDRE-VACHON, UNIV LAVAL, ST FOY PQ G1K 7P4, CANADA 1195-6860 ECOSCIENCE Ecoscience 1996 3 4 385 399 10.1080/11956860.1996.11682356 15 Ecology Environmental Sciences & Ecology WD616 WOS:A1996WD61600003 2019-02-26 J Heinze, J; Stahl, M; Holldobler, B Heinze, J; Stahl, M; Holldobler, B Ecophysiology of hibernation in boreal Leptothorax ants (Hymenoptera: Formicidae) ECOSCIENCE English Article hibernation; cold resistance; Formicidae; Leptothorax URSUS-AMERICANUS; QUEEN NUMBER; FOOD-HABITS; BLACK BEAR; LONGISPINOSUS; ECOLOGY; SIZE; COLD We examined the ecophysiology of hibernation in boreal Leptothorax (sensu stricto), the ant genus which ranges farthest north in Eurasia and North America. In laboratory experiments, overwintering workers and queens of L. cf. canadensis from Quebec and New England survived -15 degrees C without increased mortality, and one fifth of all individuals were alive even after 48 hours at -25 degrees C. Mortality rates were significantly higher in solitarily overwintering ants than in ants hibernating in the winter clusters of their colonies. This is probably due to an increased starvation risk in isolation. Dissections showed that the crop was empty in all workers surviving solitary hibernation for 110 days, but only in approximately 2/3 of the workers hibernating in groups. Food exchange by trophallaxis was observed in overwintering groups. Though ants are generally considered to be inactive in winter, workers and queens of L. cf. canadensis exhibited basically the same behavioral repertoire as in other seasons, with the exception of foraging and egg laying. Especially later in winter, the percentage of individuals immobile in the hibernation cluster increased. The results of our study are discussed in respect to the life history strategies of Leptothorax (sensu stricto) and the frequent occurrence of multiply-queened societies in subarctic and boreal habitats. Heinze, J (reprint author), THEODOR BOVERI INST,LS VERHALTENSPHYSIOL & SOZIOBIOL,AM HUBLAND,D-97074 WURZBURG,GERMANY. ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; ARNOLDI KV, 1968, ZOOLOGICHESKI ZH, V47, P115; BERMAN DI, 1982, ZOOL ZH, V61, P1509; BERMAN DI, 1980, GORNYE TRUNDRY KHREB, P110; Bernard F., 1968, FOURMIS HYMENOPTERA; BOILEAU F, 1994, CAN FIELD NAT, V108, P162; BOLTON B, 1986, J NAT HIST, V20, P267, DOI 10.1080/00222938600770211; BOURKE AFG, 1994, PHILOS T ROY SOC B, V345, P359, DOI 10.1098/rstb.1994.0115; BROWN W. L., 1955, ENT NEWS, V66, P43; BUSCHINGER A, 1974, INSECT SOC, V21, P381, DOI 10.1007/BF02331567; BUSCHINGER A, 1973, EFFECTS TEMPERATURE, P229; BUSCHINGER A, 1974, SOZIALPOLYMORPHISMUS, P882; CUSHMAN JH, 1993, OECOLOGIA, V95, P30, DOI 10.1007/BF00649503; Danks H.V., 1991, P231; Duman J.G., 1991, P94; Eidmann H, 1943, Z MORPHOL OKOL TIERE, V39, P217; ERPENBECK A, 1983, Z ANGEW ENTOMOL, V96, P271; Francoeur A., 1983, NORDICANA, P177; Heinrich B., 1993, HOT BLOODED INSECTS; HEINZE J, 1991, Psyche (Cambridge), V98, P227, DOI 10.1155/1991/21921; HEINZE J, 1993, OECOLOGIA, V96, P32, DOI 10.1007/BF00318027; HEINZE J, 1989, BIOCHEM SYST ECOL, V17, P595, DOI 10.1016/0305-1978(89)90105-1; HEINZE J, 1989, INSECT SOC, V36, P139, DOI 10.1007/BF02225909; HEINZE J, 1993, ARCTIC, V46, P354; HEINZE J, 1988, Psyche (Cambridge), V95, P309, DOI 10.1155/1988/60604; Heinze Jurgen, 1994, Memorabilia Zoologica, V48, P99; HERBERS JM, 1986, J KANSAS ENTOMOL SOC, V59, P675; HERBERS JM, 1986, BEHAV ECOL SOCIOBIOL, V19, P115, DOI 10.1007/BF00299946; HOLCROFT AC, 1991, CAN FIELD NAT, V105, P335; HOLGERSEN H, 1942, TROMSO MUSEUMS ARSHE, V63, P3; HOLLDOBLER B, 1977, NATURWISSENSCHAFTEN, V64, P8, DOI 10.1007/BF00439886; Holldobler B, 1990, ANTS; KASPARI M, 1995, AM NAT, V145, P610, DOI 10.1086/285758; KELLER L, 1994, TRENDS ECOL EVOL, V9, P98, DOI 10.1016/0169-5347(94)90204-6; Keller L., 1993, QUEEN NUMBER SOCIALI; KONDOH M, 1977, P 8 INT C IUSSI WAG, P68; Lee R.E. Jr, 1991, P17; LEE RE, 1985, PHYSIOL ENTOMOL, V10, P309, DOI 10.1111/j.1365-3032.1985.tb00052.x; LEIRIKH AN, 1989, IZVESTIYA AKAD NAUK, V5, P752; Marchand P.J., 1987, LIFE COLD; MATTSON DJ, 1991, CAN J ZOOL, V69, P2430, DOI 10.1139/z91-341; NIELSEN MG, 1987, ENTOMOL NEWS, V98, P74; OHYAMA Y, 1972, J INSECT PHYSIOL, V18, P267, DOI 10.1016/0022-1910(72)90127-8; SALT R. W., 1963, CANADIAN ENTOMOL, V95, P1190; SALT R. W., 1953, CANADIAN ENT, V85, P261; SALT R. W., 1956, CANADIAN JOUR ZOOL, V34, P1, DOI 10.1139/z56-001; SALT RW, 1966, CAN J ZOOLOG, V44, P117, DOI 10.1139/z66-009; SALT RW, 1958, J INSECT PHYSIOL, V2, P178, DOI 10.1016/0022-1910(58)90003-9; SOMME L, 1982, COMP BIOCHEM PHYS A, V73, P519, DOI 10.1016/0300-9629(82)90260-2; SUNDSTROM L, 1995, BEHAV ECOL, V6, P132, DOI 10.1093/beheco/6.2.132; TINAUT A, 1992, NATURWISSENSCHAFTEN, V79, P84, DOI 10.1007/BF01131809; VONNAZMER G, 1914, ENTOMOLOGISCHE Z, V7, P274 52 12 14 0 8 UNIVERSITE LAVAL ST FOY PAVILLON ALEXANDRE-VACHON, UNIV LAVAL, ST FOY PQ G1K 7P4, CANADA 1195-6860 ECOSCIENCE Ecoscience 1996 3 4 429 435 10.1080/11956860.1996.11682360 7 Ecology Environmental Sciences & Ecology WD616 WOS:A1996WD61600007 2019-02-26 J Convey, P Convey, P Overwintering strategies of terrestrial invertebrates in Antarctica - The significance of flexibility in extremely seasonal environments EUROPEAN JOURNAL OF ENTOMOLOGY English Article; Proceedings Paper 2nd European Workshop of Invertebrate Ecophysiology SEP 10-15, 1995 CESKE BUDEJOVICE, CZECH REPUBLIC Czech Acad Sci, Inst Entomol, Univ S Bohemia, Fac Biol Sci Antarctica; invertebrate; life history flexibility; diapause; quiescence COLLEMBOLAN CRYPTOPYGUS-ANTARCTICUS; NEMATODE PANAGROLAIMUS-DAVIDI; MITE ALASKOZETES-ANTARCTICUS; DRONNING-MAUD-LAND; SOUTH-GEORGIA; COLD-TOLERANCE; MARION ISLAND; HYDROMEDION-SPARSUTUM; RESPIRATORY METABOLISM; PERIMYLOPS-ANTARCTICUS Antarctic terrestrial communities are characterised by their geographical isolation and the survival of extreme environmental stresses. Of particular significance to life history strategies of organisms in continental and maritime. Antarctic zones is the pronounced seasonality, with short (1-4 month) cold summers and long (8-11 month) winters. Activity and growth are largely limited to the summer period, although maintenance costs, undetectable in the short-term, may become significant over winter. Sub-Antarctic invertebrate communities experience a less rigorous regime, as climatic extremes are ameliorated by their oceanic environment, with positive mean temperatures occurring over 6-12 months. Here, year-round activity and growth of invertebrates are common. This paper considers our limited knowledge of the life histories of sub-Antarctic and Antarctic terrestrial invertebrates, to identify features correlated with seasonal and/or climatic cues. There is little evidence for diapause, although seasonal patterns of variation in cold tolerance and cryoprotectant production in direct response to desiccation and decreasing temperatures have been reported. A rapid response to feeding and growth opportunity is shown by maritime. Antarctic species, irrespective of season, although moulting does not occur over winter. Associated reduction of feeding, along with arrested growth and reproductive activity due to the low thermal energy budget over winter are probably sufficient to explain the peaks of moulting and reproduction often observed at the end of winter. Generally there is a high level of flexibility in the observed species life histories, with varying developmental duration and much overlap of generations being the norm, particularly in maritime and continental Antarctica. A formal diapause may be a disadvantage in maritime and continental Antarctic zones, as it would be erroneously triggered by severe conditions during summer. In contrast, the development of specific overwintering strategies including diapause may be unnecessary or even irrelevant in much of the sub-Antarctic, where seasonality is greatly reduced and the risk of severe of stressful environmental conditions during winter is negligible. Convey, P (reprint author), BRITISH ANTARCTIC SURVEY, NAT ENVIRONM RES COUNCIL, HIGH CROSS, MADINGLEY RD, CAMBRIDGE CB3 0ET, ENGLAND. BALE JS, 1993, FUNCT ECOL, V7, P751; BAUST JG, 1982, COMP BIOCHEM PHYS A, V73, P563, DOI 10.1016/0300-9629(82)90263-8; BAUST JG, 1985, J INSECT PHYSIOL, V31, P755, DOI 10.1016/0022-1910(85)90067-8; BAUST JG, 1983, OIKOS, V40, P120, DOI 10.2307/3544206; BAUST JG, 1980, CRYO-LETT, V1, P360; BAUST JG, 1979, PHYSIOL ENTOMOL, V4, P1, DOI 10.1111/j.1365-3032.1979.tb00171.x; BLOCK W, 1990, PHILOS T ROY SOC B, V326, P613, DOI 10.1098/rstb.1990.0035; BLOCK W, 1984, BIOL J LINN SOC, V23, P33, DOI 10.1111/j.1095-8312.1984.tb00804.x; BLOCK W, 1983, POLAR BIOL, V2, P109, DOI 10.1007/BF00303176; Block W., 1984, P163; BLOCK W, 1982, OIKOS, V38, P157, DOI 10.2307/3544015; BLOCK W, 1980, BIOL J LINN SOC, V14, P29, DOI 10.1111/j.1095-8312.1980.tb00095.x; BLOCK W, 1977, J EXP BIOL, V68, P69; BLOCK W, 1982, BR ANTARCT SURV B, V55, P33; Block W, 1985, BR ANTARCT SURV B, V68, P115; BOOTH RG, 1986, PEDOBIOLOGIA, V29, P209; BURN AJ, 1984, OECOLOGIA, V64, P223, DOI 10.1007/BF00376874; BURN AJ, 1984, ECOL ENTOMOL, V9, P11, DOI 10.1111/j.1365-2311.1984.tb00693.x; BURN AJ, 1981, OIKOS, V36, P59, DOI 10.2307/3544379; BURN AJ, 1982, COMITE NATL FRANCAIS, V51, P209; Cannon R.J.C., 1985, BR ANTARCT SURV B, V67, P1; CANNON RJC, 1986, J INSECT PHYSIOL, V32, P523, DOI 10.1016/0022-1910(86)90067-3; CANNON RJC, 1988, BIOL REV, V63, P23, DOI 10.1111/j.1469-185X.1988.tb00468.x; CANNON RJC, 1985, CRYO-LETT, V6, P73; CHAUVIN G, 1982, COM NATN FR RECH ANT, V51, P101; Chown S. L., 1992, South African Journal of Antarctic Research, V22, P51; CHOWN SL, 1990, S AFR J SCI, V86, P386; CHOWN SL, 1992, POLAR BIOL, V12, P527, DOI 10.1007/BF00238192; CHOWN SL, 1989, COLEOPTS BULL, V43, P165; CHOWN SL, 1989, OECOLOGIA, V80, P93, DOI 10.1007/BF00789937; CONVEY P, 1994, ECOGRAPHY, V17, P97, DOI 10.1111/j.1600-0587.1994.tb00081.x; Convey P, 1996, EUR J ENTOMOL, V93, P1; CONVEY P, 1994, ACTA OECOL, V15, P43; CONVEY P, 1992, EXP APPL ACAROL, V15, P219, DOI 10.1007/BF01246564; Convey Peter, 1994, Acta Zoologica Fennica, V195, P18; CORBET PS, 1964, CAN ENTOMOL, V96, P264, DOI 10.4039/Ent96264-1; CRAFFORD J E, 1984, South African Journal of Antarctic Research, V14, P18; CRAFFORD JE, 1987, J ENTOMOL SOC S AFR, V50, P259; CRAFFORD JE, 1993, POLAR BIOL, V13, P411, DOI 10.1007/BF01681983; CRAFFORD JE, 1986, POLAR BIOL, V6, P191, DOI 10.1007/BF00443395; CRAFFORD JE, 1986, S AFR J ANTARCT RES, V16, P41; Danks H.V., 1991, P231; Danks H.V., 1990, P444; Danks H.V., 1987, INSECT DORMANCY ECOL; DANKS HV, 1992, CAN ENTOMOL, V124, P167, DOI 10.4039/Ent124167-1; DAVEY MC, 1992, ANTARCT SCI, V4, P383; DAVIES L, 1987, ECOL ENTOMOL, V12, P149, DOI 10.1111/j.1365-2311.1987.tb00994.x; ERNSTING G, 1995, OECOLOGIA, V103, P34, DOI 10.1007/BF00328422; FRECKMAN DW, 1991, ANTARCT J US, V26, P233; GREENSLADE P, 1990, Papers and Proceedings of the Royal Society of Tasmania, V124, P35; GRESSITT J L, 1970, Pacific Insects Monograph, V23, P1; Hadley N. F., 1994, WATER RELATIONS TERR; HARRISON RA, 1970, PAC INSECTS MONOGR, V2, P285; HARRISSON PM, 1988, CRYOLETT, V9, P433; Heilbronn T.D., 1984, BRIT ANTARCTIC SURVE, V64, P21; HOLDGATE MW, 1977, PHILOS T R SOC B, V279, P5, DOI 10.1098/rstb.1977.0068; HORWATH KL, 1983, J INSECT PHYSIOL, V29, P907, DOI 10.1016/0022-1910(83)90054-9; Janetschek H., 1970, P871; JANETSCHEK H, 1967, Antarctic Research Series, V10, P205; JANETSCHEK HEINZ, 1967, ANTARCTIC RES SER, V10, P295; Jeannel R., 1940, Memoires Museum Histoire Nat Paris NS, V14, P63; KENNEDY AD, 1995, FUNCT ECOL, V9, P340, DOI 10.2307/2390583; KENNEDY AD, 1993, ARCTIC ALPINE RES, V25, P308, DOI 10.2307/1551914; Leather SR, 1993, ECOLOGY INSECT OVERW; LEE RE, 1981, COMP BIOCHEM PHYS A, V70, P579; Lewis Smith R.I., 1984, ANTARCT ECOL, V1, P61; Lewis Smith R.I., 1975, STRUCTURE FUNCTION T, P399; LISTER A, 1984, THESIS U YORK; Longton RE, 1988, BIOL POLAR BRYOPHYTE; MANSINGH A, 1971, CAN ENTOMOL, V103, P983, DOI 10.4039/Ent103983-7; MARSHALL DJ, 1995, POLAR BIOL, V15, P41; MELICK DR, 1994, BRYOLOGIST, V97, P13, DOI 10.2307/3243343; MEYERARNDT S, 1984, POLAR BIOL, V3, P73, DOI 10.1007/BF00258150; NEWTON IP, 1996, S AFR J ANTARCT RES, V24, P103; NICOLAI V, 1984, POLAR BIOL, V3, P39, DOI 10.1007/BF00265566; OLIVER D R, 1968, Annales Zoologici Fennici, V5, P111; PICKUP J, 1990, FUNCT ECOL, V4, P257, DOI 10.2307/2389345; PICKUP J, 1991, OIKOS, V61, P379, DOI 10.2307/3545245; PICKUP J, 1990, POLAR BIOL, V10, P307; POWERS LE, 1995, POLAR BIOL, V15, P325; PRYOR MADISON E., 1962, PACIFIC INSECTS, V4, P681; PUGH PJA, 1993, J NAT HIST, V27, P323, DOI 10.1080/00222939300770171; RAMLOV H, 1992, CRYOBIOLOGY, V29, P125, DOI 10.1016/0011-2240(92)90012-Q; REMMERT H, 1986, 3RD P EUR C ENT, P5; RICHARD KJ, 1994, POLAR BIOL, V14, P371; RING RA, 1990, POLAR BIOL, V10, P581, DOI 10.1007/BF00239369; Schuster R., 1991, ACARI REPROD DEV LIF; SHIMADA K, 1991, POLAR BIOL, V11, P311; SMITH AP, 1982, ACTA PSYCHOL, V51, P257, DOI 10.1016/0001-6918(82)90038-5; SMITH HG, 1983, REV ECOL BIOL SOL, V20, P269; SMITH R.I.L., 1988, METHODS BRYOLOGY, P275; SMITH RIL, 1972, BRIT ANTARCTIC SURVE, V68, P1; SOMME L, 1989, POLAR BIOL, V10, P141; SOMME L, 1989, POLAR BIOL, V10, P135; SOMME L, 1982, OIKOS, V38, P168, DOI 10.2307/3544016; SOMME L, 1995, POLAR BIOL, V15, P221; SOMME L, 1986, POLAR BIOL, V6, P179, DOI 10.1007/BF00274881; SOMME L, 1989, BIOL REV, V64, P367, DOI 10.1111/j.1469-185X.1989.tb00681.x; SOMMEL L, 1995, INVERTEBRATES HOT CO; SUGG P, 1983, ECOL ENTOMOL, V8, P105, DOI 10.1111/j.1365-2311.1983.tb00487.x; Tauber MJ, 1986, SEASONAL ADAPTATIONS; TREHEN P, 1982, REV ECOL BIOL SOL, V19, P105; TREHEN P, 1978, B SOC ZOOL FR, V103, P411; TREHEN P, 1982, CNFRA, V51, P149; VANNIER G, 1987, CRYO-LETT, V8, P47; VERNON P, 1987, COM NATN FR RECH ANT, V58, P151; Vernon P., 1986, B SOC ECOPHYSIOL, V11, P95; Walton D.W.H., 1984, P1; Walton D.W.H., 1982, BRIT ANTARCTIC SURVE, V55, P111; WEST CW, 1984, THESIS U LONDON; WESTERLING D, 1982, EUR J CLIN PHARMACOL, V23, P59, DOI 10.1007/BF01061378; WESTH P, 1992, POLAR BIOL, V12, P693; WHARTON DA, 1995, J EXP BIOL, V198, P1381; WHARTON DA, 1995, BIOL REV, V70, P161, DOI 10.1111/j.1469-185X.1995.tb01442.x; WHARTON DA, 1991, J EXP BIOL, V155, P629; WORLAND R, 1993, POLAR BIOL, V13, P105; WORLAND R, 1992, POLAR BIOL, V11, P607; YOUNG SR, 1980, J INSECT PHYSIOL, V26, P189, DOI 10.1016/0022-1910(80)90080-3; YOUNG SR, 1979, ASPECTS ENV PHYSL AN; ZACHARIASSEN KE, 1982, COMP BIOCHEM PHYS A, V73, P557, DOI 10.1016/0300-9629(82)90262-6; ZACHARIASSEN KE, 1985, PHYSIOL REV, V65, P799 121 69 75 0 10 CZECH ACAD SCI, INST ENTOMOLOGY CESKE BUDEJOVICE BRANISOVSKA 31, CESKE BUDEJOVICE 370 05, CZECH REPUBLIC 1210-5759 1802-8829 EUR J ENTOMOL Eur. J. Entomol. 1996 93 3 489 505 17 Entomology Entomology VN627 WOS:A1996VN62700020 2019-02-26 J Silvertown, J Silvertown, J Are sub-alpine firs evolving towards semelparity? EVOLUTIONARY ECOLOGY English Article Abies; semelparity; life history evolution; wave regeneration LIFE-HISTORY; FORESTS; WAVE; REGENERATION; POPULATION; EVOLUTION; TREE In sub-alpine forests of Northeast America and Japan pure stands of trees in the genus Abies exhibit wave regeneration. Opportunities for recruitment in such forests are confined to a window in time and space that coincides with the death of an even-aged cohort of adult trees. I suggest that the coincidence of this recruitment window with the death of adults at a predictable age should select for convergence between age at first reproduction and age at death. Ultimately this would lead to the evolution of semelparity. The available evidence supports this hypothesis for wave-regenerated Abies populations in Japan. A field test of the hypothesis is also suggested. Silvertown, J (reprint author), OPEN UNIV,DEPT BIOL,MILTON KEYNES MK7 6AA,BUCKS,ENGLAND. Charnov Eric L., 1993, P1; FOSTER RB, 1977, NATURE, V268, P624, DOI 10.1038/268624b0; Grime J. P, 1979, PLANT STRATEGIES VEG; KOHYAMA T, 1984, OECOLOGIA, V62, P156, DOI 10.1007/BF00379008; KOHYAMA T, 1981, BOT MAG TOKYO, V94, P55, DOI 10.1007/BF02490203; KOHYAMA T, 1982, BOT MAG TOKYO, V95, P167, DOI 10.1007/BF02488583; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; MARCHAND PJ, 1984, CAN J FOREST RES, V14, P51, DOI 10.1139/x84-011; MARKS PL, 1974, ECOL MONOGR, V44, P73, DOI 10.2307/1942319; SATO K, 1993, ECOLOGY, V74, P1538, DOI 10.2307/1940081; SATO T, 1994, ECOL RES, V9, P77, DOI 10.1007/BF02347244; SCHAFFER WM, 1979, ECOLOGY, V60, P1051, DOI 10.2307/1936872; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; SILVERTOWN J, 1989, EVOL TREND PLANT, V3, P87; SILVERTOWN JW, 1983, AM NAT, V121, P448, DOI 10.1086/284074; SPRUGEL DG, 1976, J ECOL, V64, P889, DOI 10.2307/2258815; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 19 9 9 1 8 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. JAN 1996 10 1 77 80 10.1007/BF01239348 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TT492 WOS:A1996TT49200007 2019-02-26 J Blarer, A; Doebeli, M Blarer, A; Doebeli, M Heuristic optimization of the general life history problem: A novel approach EVOLUTIONARY ECOLOGY English Article heuristic optimization; resource allocation; reproductive effort; maturation; lifespan; simulated annealing ENERGY ALLOCATION; DYNAMIC-MODELS; EVOLUTION; ALGORITHM; SENESCENCE; MORTALITY; FITNESS The general life history problem concerns the optimal allocation of resources to growth, survival and reproduction. We analysed this problem for a perennial model organism that decides once each year to switch from growth to reproduction. As a fitness measure we used the Malthusian parameter r, which we calculated from the Euler-Lotka equation. Trade-offs were incorporated by assuming that fecundity is size dependent, so that increased fecundity could only be gained by devoting more time to growth and less time to reproduction. To calculate numerically the optimal r for different growth dynamics and mortality regimes, we used a simplified version of the simulated annealing method. The major differences among optimal life histories resulted from different accumulation patterns of intrinsic mortalities resulting from reproductive costs. If these mortalities were accumulated throughout life, i.e. if they were senescent, a bang-bang strategy was optimal, in which there was a single switch from growth to reproduction: after the age at maturity all resources were allocated to reproduction. If reproductive costs did not carry over from year to year, i.e. if they were not senescent, the optimal resource allocation resulted in a graded switch strategy and growth became indeterminate. Our numerical approach brings two major advantages for solving optimization problems in life history theory. First, its implementation is very simple, even for complex models that are analytically intractable. Such intractability emerged in our model when we introduced reproductive costs representing an intrinsic mortality. Second, it is not a backward algorithm. This means that lifespan does not have to be fixed at the begining of the computation. Instead, lifespan itself is a trait that can evolve. We suggest that heuristic algorithms are good tools for solving complex optimality problems in life history theory, in particular questions concerning the evolution of lifespan and senescence. Blarer, A (reprint author), UNIV BASEL, INST ZOOL, RHEINSPRUNG 9, CH-4051 BASEL, SWITZERLAND. Doebeli, Michael/D-5391-2012 ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ABRAMS PA, 1991, EVOL ECOL, V5, P343, DOI 10.1007/BF02214152; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Caswell H., 1989, P285; CHARLESWORTH B, 1990, NATURE, V346, P313, DOI 10.1038/346313a0; Charlesworth B., 1980, EVOLUTION AGE STRUCT; DUECK G, 1993, J COMPUT PHYS, V104, P86, DOI 10.1006/jcph.1993.1010; DUECK G, 1990, J COMPUT PHYS, V90, P161, DOI 10.1016/0021-9991(90)90201-B; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Helsgaun K, 2000, EUR J OPER RES, V126, P106, DOI 10.1016/S0377-2217(99)00284-2; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; JONES JS, 1990, NATURE, V348, P288, DOI 10.1038/348288d0; KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; Mangel M, 1988, DYNAMIC MODELING BEH; MCNAMARA JM, 1993, J THEOR BIOL, V161, P23, DOI 10.1006/jtbi.1993.1037; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Press W. H., 1988, NUMERICAL RECIPES C; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff Derek A., 1992; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHAFFER WM, 1982, AM NAT, V120, P787, DOI 10.1086/284030; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HIST; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 30 8 9 1 3 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JAN 1996 10 1 81 96 10.1007/BF01239349 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TT492 WOS:A1996TT49200008 2019-02-26 B Smith, MS; West, J; Thiele, K Morton, SR; Mulvaney, DJ Smith, MS; West, J; Thiele, K Biogeographic patterns in inland Australia: The role of isolation and uncertainty EXPLORING CENTRAL AUSTRALIA: SOCIETY, THE ENVIRONMENT AND THE 1894 HORN EXPEDITION English Proceedings Paper Symposium on Exploring Central Australia - Society, the Environment and the 1894 Horn Expedition SEP 25-27, 1994 ARALUEN CTR, ALICE SPRINGS, AUSTRALIA No Territory Govt, Austr, Magellan ARALUEN CTR A century ago, the members of the Horn Expedition developed the first opinions about the biogeographic relationships of the arid-zone biota of Australia, From the start, there was debate about the degree to which this biota had an endogenous origin, or was little differentiated from the regions surrounding arid Australia, In general, those working on the flora supported an exogenous origin; those examining the fauna favoured endogenous evolution. This debate still exists in the literature today. We discuss how the understanding of spatial and temporal variability - in terms of isolation and uncertainty - has changed since the time of the Expedition, Expedition members had only a hazy appreciation of the importance of spatial patchiness varying over time, incarcerating some species in refugia where selection can trigger divergence, then releasing them again to intermingle across the landscape. Species with different life history strategies, especially in terms of dispersal characteristics, respond differentially to these variations. These differences can help to resolve the debate about the origin of the biota. We hypothesize that selection for isolation and the effects of reticulate evolution could be widespread in the arid zone, causing problems for our interpretations of biogeographic patterns. We discuss how these problems could be examined. Finally, we reflect on what may be learned from the way in which these concepts have changed since the Expedition, both for science and for society in the future. CSIRO,DIV WILDLIFE & ECOL,ALICE SPRINGS,NT 0871,AUSTRALIA Stafford Smith, Mark/G-1680-2010 Stafford Smith, Mark/0000-0002-1333-3651 0 2 2 0 1 SURREY BEATTY & SONS CHIPPING NORTON NSW 43 RICKARD ROAD, CHIPPING NORTON NSW 2170, AUSTRALIA 0-949324-67-1 1996 368 378 11 Anthropology; History Anthropology; History BJ09G WOS:A1996BJ09G00026 2019-02-26 B Sinclair, ARE Floyd, RB; Sheppard, AW; DeBarro, PJ Sinclair, ARE Mammal populations: Fluctuation, regulation, life history theory and their implications for conservation FRONTIERS OF POPULATION ECOLOGY English Proceedings Paper Frontiers of Population Ecology Conference to Celebrate the Centenary of the Birth of the Population Ecologist A J Nicholson (1895-1969) APR, 1995 CANBERRA, AUSTRALIA body size; population variability; intrinsic rate of increase; density dependence; viable population size Mammal populations exhibit a range of variability inversely related to body size when considered over absolute time. However, there is no relationship between population variability and body size over the length of a generation, so all species show the same intrinsic degree of variability Small species are not subject to more severe extrinsic perturbations than larger species. Therefore, the variability seen in small species is due to their high intrinsic rates of increase (r(m)) which allows them to recover faster from extrinsic perturbations. At the same time, the magnitude of decrease in a population must also be determined intrinsically, since the populations (in this analysis) were stationary in the longterm. Thus, in a given environment, both large and small species experience the same negative environmental effects, and the degree to which the species are buffered from these effects is inversely related to r(m) and positively related to body size. This implies that species are not simply passive responders to a stochastic environment, but are adapted to tolerate decline, or resist it, as a function of r(m), as predicted by life history theory. Since this tolerance or resistance to decline is a measure of density dependence in the population, it follows that small species must have high overcompensating density dependence while large species have weaker stabilising density dependence. This conclusion, which is in agreement with empirical studies, provides a generalisation on both the prevalence and intensity of density dependence in mammal populations. Thus, the evidence supports the hypothesis that population fluctuations are explained more by strong, overcompensating density dependence than by weak density dependence and high extrinsic stochasticity The intrinsic (density dependent) response to fluctuations appears to occur earlier in life (through fecundity and early juvenile mortality) in larger species, later (through juvenile and adult mortality) in smaller species. This trend may explain the inverse relationship of the strength of density dependence with body size seen above, because mortality responds faster to environmental change than does reproduction. Behaviour, particularly, social organisation and dispersal, is part of the specific intrinsic response or adaptation to perturbation, and contributes to the overcompensating density dependence in small species. A strong overcompensating behavioural response leads to population cycles or chaotic fluctuations (which appear cyclic) and their frequency is inversely related to body size. Causes of mortality involving food shortage affect all species but especially large ones. Predation causing regulation appears more frequently in small species, and because it produces delayed effects, it contributes to population cycles. The role of disease remains obscure. Since the strength of density dependence is inversely related to body size, it is the larger species which ore the most prone to extinction when at low density. Thus, large species must be conserved at relatively higher population size, In contrast, smaller species should be conserved by allowing dispersal between subpopulations. Sinclair, ARE (reprint author), UNIV BRITISH COLUMBIA,DEPT ZOOL,6270 UNIV BLVD,VANCOUVER,BC V6T 1Z4,CANADA. Sheppard, Andy/C-1045-2009 0 83 89 0 16 C S I R O EAST MELBOURNE PO BOX 89 (EAST ALBERT ST), EAST MELBOURNE 3002, AUSTRALIA 0-643-05781-1 1996 127 154 28 Ecology Environmental Sciences & Ecology BH90D WOS:A1996BH90D00011 2019-02-26 J Chisholm, JS Chisholm, JS The evolutionary ecology of attachment organization HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article; Proceedings Paper Symposium on Childhood in Life-History Perspective - Developing Views, at the Annual Meeting of the Society-for-Cross-Cultural-Research FEB 16-20, 1994 SANTA FE, NM Soc Cross Cultural Res life history theory; attachment theory; individual differences; reproductive strategies; environment of evolutionary adaptedness INFANT-MOTHER ATTACHMENT; REPRODUCTIVE STRATEGIES; CHILDHOOD EXPERIENCE; NATURAL-SELECTION; ECONOMIC HARDSHIP; BEHAVIOR; HISTORY; TEMPERAMENT; SECURITY; YOUNG Life history theory's principle of allocation suggests that because immature organisms cannot expend reproductive effort, the major trade-off facing juveniles will be the one between survival, on one hand, and growth and development, on the other. As a consequence, infants and children might be expected to possess psychobiological mechanisms for optimizing this trade-off. The main argument of this paper is that the attachment process serves this function and that individual differences in attachment organization (secure, insecure, and possibly others) may represent facultative adaptations to conditions of risk and uncertainty that were probably recurrent in the environment of human. evolutionary adaptedness. Chisholm, JS (reprint author), UNIV WESTERN AUSTRALIA, DEPT ANAT & HUMAN BIOL, NEDLANDS, WA 6907, AUSTRALIA. AINSWORTH M, 1969, INFANCY UGANDA INFAN; AINSWORTH M. D. S, 1971, ORIGINS HUMAN SOCIAL, P17; Ainsworth MD, 1978, PATTERNS ATTACHMENT; AINSWORTH MDS, 1979, AM PSYCHOL, V34, P932, DOI 10.1037/0003-066X.34.10.932; Ainsworth MDS, 1979, ADV STUD BEHAV, P1; ALEXANDER R, 1979, SEXUAL SELECTION REP, P413; ANDREWS MW, 1991, CHILD DEV, V62, P686, DOI 10.2307/1131170; APTER D, 1983, J CLIN ENDOCR METAB, V57, P82, DOI 10.1210/jcem-57-1-82; BARKOW J, 1992, APAPTED MIN EVOLUTIO; BATES JE, 1985, MONOGR SOC RES CHILD, V50, P167, DOI 10.2307/3333832; BATESON P, 1994, TRENDS ECOL EVOL, V9, P399, DOI 10.1016/0169-5347(94)90066-3; Bateson P., 1982, P133; BATESON P, 1990, ANIM BEHAV, V40, P514, DOI 10.1016/S0003-3472(05)80532-9; Bateson P. P. G., 1976, GROWING POINTS ETHOL, P401; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.1111/j.1467-8624.1991.tb01558.x; Belsky J., 1994, DEV LIFE HDB CLIN, P373; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; BLAFFERHRDY S, 1977, AM SCI, V65, P40; Blurton J. N., 1993, JUVENILE PRIMATES LI, P309; BOGIN B, 1994, ACTA PAEDIATR, V83, P29, DOI 10.1111/j.1651-2227.1994.tb13418.x; Bogin B., 1995, BIOL ANTHR STATE SCI, P49; BONNER JT, 1965, SIZE CYCLE; BORGERHOFF MM, 1992, EVOLUTIONARY ECOLOGY, P339; Boswell J., 1988, KINDNESS STRANGERS; Bowlby J, 1973, ATTACHMENT LOSS, V2; Bowlby J., 1980, ATTACHMENT AND LOSS, V3; Bowlby J., 1969, ATTACHMENT LOSS, V1; Bowlby J., 1965, CHILD CARE GROWTH LO; Boyd R., 1985, CULTURE EVOLUTIONARY; Brazelton TB, 1974, EFFECT INFANT ITS CA, P49; Brenner M. H., 1973, MENTAL ILLNESS EC; BRETHERTON I, 1985, MONOGR SOC RES CHILD, V50, P3, DOI 10.2307/3333824; BRETHERTON I, 1974, ORIGINS FEAR, P131; BRETHERTON I, 1985, MONOGRAPHS SOC RES C, V50; Campos J., 1983, HDB CHILD PSYCHOL, VII, P783; CARO TM, 1986, ANIM BEHAV, V34, P1483, DOI 10.1016/S0003-3472(86)80219-6; CASSIDY J, 1994, CHILD DEV, V65, P971, DOI 10.2307/1131298; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; CHISHOLM J, 1995, PERSPECTIVES HUMAN B, V1, P19; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1995, ROMANTIC PASSION UNI; COHN JF, 1983, CHILD DEV, V54, P185, DOI 10.2307/1129876; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CONGER RD, 1984, CHILD DEV, V55, P2234, DOI 10.1111/j.1467-8624.1984.tb03918.x; CROCKENBERG SB, 1981, CHILD DEV, V52, P857, DOI 10.2307/1129087; DEROUSSEAU CJ, 1990, MG PRIMATOL, V14, P1; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; DROTAR D, 1991, AM J ORTHOPSYCHIAT, V61, P23, DOI 10.1037/h0079231; DUNCAN GJ, 1994, CHILD DEV, V65, P296, DOI 10.2307/1131385; DUNN J, 1976, GROWING POINTS ETHOL, P481; Edgerton R. B., 1992, SICK SOC CHALLENGING; Egeland B, 1987, CHILD ABUSE NEGLECT, P255; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; EMLEN S, 1985, LATEST BEST ESSAYS E, P163; ERICKSON MF, 1985, MONOGR SOC RES CHILD, V50, P147, DOI 10.2307/3333831; Eveleth P. B., 1990, WORLDWIDE VARIATION; Fagen R., 1982, Perspectives in Ethology, V5, P365; Fagen Robert, 1993, P182; Foley R.A., 1992, P131; FOX R, 1989, SEARCH SOC QUEST BIO; FREEDMAN DG, 1993, J SOC EVOL SYST, V16, P297, DOI 10.1016/1061-7361(93)90037-R; Freud S., 1940, OUTLINE PSYCHOANALYS; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARDNER W, 1993, ADOLESCENT RISK TAKI, P66; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GOLDSMITH HH, 1994, CURR DIR PSYCHOL SCI, V3, P53, DOI 10.1111/1467-8721.ep10769948; GOMENDIO M, 1991, ANIM BEHAV, V42, P993, DOI 10.1016/S0003-3472(05)80152-6; GOTTLIEB G, 1991, DEV PSYCHOL, V27, P4, DOI 10.1037/0012-1649.27.1.4; GOULD SJ, 1991, J SOC ISSUES, V47, P43, DOI 10.1111/j.1540-4560.1991.tb01822.x; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.1111/j.1467-8624.1995.tb00875.x; Grafen A., 1984, BEHAV ECOLOGY EVOLUT, P62; GUNNAR MR, 1989, DEV PSYCHOL, V25, P355, DOI 10.1037/0012-1649.25.3.355; Hall B. K., 1992, EVOLUTIONARY DEV BIO; HARLOW HF, 1958, AM PSYCHOL, V13, P673, DOI 10.1037/h0047884; Harpending HC, 1990, DIS POPULATIONS TRAN, P251; Hausfater Glenn, 1984, INFANTICIDE COMP EVO; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HERMANGIDDENS ME, 1988, AM J DIS CHILD, V142, P431, DOI 10.1001/archpedi.1988.02150040085025; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hinde R., 1987, INDIVIDUALS RELATION; Hinde R., 1983, HDB CHILD PSYCHOL, P27; Hinde R. A., 1982, PLACE ATTACHMENT HUM, P60; Hinde RA, 1961, CURRENT PROBLEMS ANI, P175; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; HRDY SB, 1979, ETHOL SOCIOBIOL, V1, P13, DOI 10.1016/0162-3095(79)90004-9; ISABELLA RA, 1991, CHILD DEV, V62, P373, DOI 10.1111/j.1467-8624.1991.tb01538.x; Janson Charles H., 1993, P57; JOHNSTON TD, 1982, ADV STUD BEHAV, V12, P65, DOI 10.1016/S0065-3454(08)60046-7; JONES B, 1972, MED J AUSTRALIA, V2, P533; KAGAN J, 1982, PSYCHOL RES HUMAN IN; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kleiman D.G., 1981, P347; Lamb M., 1985, INFANT MOTHER ATTACH; LAWRANCE EC, 1991, J POLIT ECON, V99, P54, DOI 10.1086/261740; LEMPERS JD, 1989, CHILD DEV, V60, P25, DOI 10.2307/1131068; LEVINE NE, 1987, POPUL DEV REV, V13, P281, DOI 10.2307/1973194; Levins R., 1968, EVOLUTION CHANGING E; LIESEN LT, 1995, POLIT LIFE SCI, V14, P145; LORENZ K., 1935, Journal fur Ornithologie, V83, P137, DOI 10.1007/BF01905355; Lott D. F., 1991, INTRASPECIFIC VARIAT; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; MAIN M, 1985, MONOGR SOC RES CHILD, V50, P66, DOI 10.2307/3333827; MAIN M, 1990, HUM DEV, V33, P48, DOI 10.1159/000276502; Main M., 1991, ATTACHMENT LIFE CYCL, P127; Main M., 1981, BEHAV DEV BIELEFELD, P651; MAITAL S, 1977, ESSAYS LABOR MARKET, P179; MARRIS P, 1991, ATTACHMENT LIFE CYCL, P77; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.2307/1131096; Miller GA, 1960, PLANS STRUCTURE BEHA; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MONCKBERG F, 1992, HUMAN GROWTH BASIC C, P117; Nesse R. M., 1995, WHY WE GET SICK NEW; ORAND A, 1974, SOC FORCES, V53, P53, DOI 10.2307/2576837; ORZACK SH, 1994, AM NAT, V143, P361, DOI 10.1086/285608; OYAMA S, 1985, ONTOGENY INFORMATION; OYAMA S, 1994, PSYCHOL ANTHR, P185; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; PEACOCK NR, 1990, MG PRIMATOL, V14, P195; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PROMISLOW D, 1991, ACTA OECOL, V12, P94; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Radke-Yarrow M., 1991, ATTACHMENT LIFE CYCL, P115; RICKS MH, 1985, MONOGR SOC RES CHILD, V50, P211, DOI 10.2307/3333834; Roff Derek A., 1992; ROGERS AR, 1994, AM ECON REV, V84, P460; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; ROSENBLUM LA, 1994, BIOL PSYCHIAT, V35, P221, DOI 10.1016/0006-3223(94)91252-1; ROSENBLUM LA, 1994, ACTA PAEDIATR, V83, P57, DOI 10.1111/j.1651-2227.1994.tb13266.x; Rubenstein D.I., 1982, P91; Rubenstein Daniel I., 1993, P38; Ruddick Sara., 1989, MATERNAL THINKING PO; SAMPSON RJ, 1994, CHILD DEV, V65, P523, DOI 10.2307/1131400; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Scheper- Hughes N., 1992, DEATH WEEPING VIOLEN; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Shaver P. R., 1993, ADV PERSONAL RELATIO, P29; SMITH EA, 1992, EVOLUTIONARY ECOLOGY, P25; SMITH EFS, 1991, ANIM BEHAV, V41, P513, DOI 10.1016/S0003-3472(05)80854-1; SMUTS B, 1995, HUM NATURE-INT BIOS, V6, P1, DOI 10.1007/BF02734133; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Spitz RA, 1945, PSYCHOANAL STUD CHIL, V1, P53; Sroufe L. A., 1988, CLIN IMPLICATIONS AT, P18; SROUFE LA, 1977, CHILD DEV, V48, P1184, DOI 10.2307/1128475; STAMPS JA, 1991, AM ZOOL, V31, P338; STEARNS SC, 1982, EVOL DEV, P237; Stearns SC., 1992, EVOLUTION LIFE HIST; Suomi S. J., 1991, NEUROBIOLOGY LEARNIN, P195; SURBEY MK, 1990, MG PRIMATOL, V13, P11; TAUBER AI, 1994, J ROY SOC MED, V87, P27; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; TRICKETT PK, 1993, PSYCHOL SCI, V4, P81, DOI 10.1111/j.1467-9280.1993.tb00465.x; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V14, P249; TRONICK EZ, 1987, AM ANTHROPOL, V89, P96, DOI 10.1525/aa.1987.89.1.02a00050; VALENZUELA M, 1990, CHILD DEV, V61, P1984, DOI 10.1111/j.1467-8624.1990.tb03580.x; VANSCHAIK CP, 1990, BEHAVIOUR, V115, P30, DOI 10.1163/156853990X00284; VAUGHN BE, 1990, CHILD DEV, V61, P1965, DOI 10.1111/j.1467-8624.1990.tb03578.x; VILA B, 1994, CRIMINOLOGY, V32, P311, DOI 10.1111/j.1745-9125.1994.tb01157.x; VITZTHUM V, 1994, IN PRESS HUMAN BIOL; WACHS TD, 1993, INFANT BEHAV DEV, V16, P391, DOI 10.1016/0163-6383(93)80044-9; WATERS E, 1985, MONOGR SOC RES CHILD, V50, P41, DOI 10.2307/3333826; WELLENS R, 1992, AM J HUM BIOL, V4, P783, DOI 10.1002/ajhb.1310040610; WILEY A, 1994, 93 ANN M AM ANTHR AS; WILEY AS, 1992, MED ANTHROPOL Q, V6, P216, DOI 10.1525/maq.1992.6.3.02a00030; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; Williams GC, 1966, ADAPTATION NATURAL S; Wolkind S, 1985, CHILD ADOLESCENT PSY, P34; WORTHMAN C, 1994, HUM GROWTH DEV MOD R; WORTHMAN C, 1993, ANN M AM ASS ADV SCI; WYATT G, 1990, KINSEY I SERIES, V3, P182; YARROW LJ, 1967, EXCEPT INFANT, V1, P227 176 135 142 1 16 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1996 7 1 1 37 37 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences TW817 WOS:A1996TW81700001 24203250 2019-02-26 J Loumbourdis, N; KyriakopoulouSklavounou, P Loumbourdis, N; KyriakopoulouSklavounou, P Follicle growth during hibernation in the frog Rana ridibunda in northern Greece ISRAEL JOURNAL OF ZOOLOGY English Article ANNUAL OVARIAN CYCLE; LIFE-HISTORY EVOLUTION; TEMPERATE ZONE ANURAN; TOAD BUFO-BUFO; FAT-BODY; CYANOPHLYCTIS; REPRODUCTION; KINETICS; VIRIDIS; OVIDUCT The seasonal ovarian dynamics from September to June in natural populations of the frog Rana ridibunda in Northern Greece have been studied. A continuous change in the percentage and diameter size of the ovarian follicles during the hibernating season was found. Early vitellogenic follicles reached their maximum percentage in April-May and were lowest in February. A small increase of their percentage during December and January compared to the three previous months indicated continuous growth of the ovarian follicles during hibernation. Advanced vitellogenic follicles reached their maximum percentage in September and were lowest in March. Postvitellogenic follicles appeared from September onwards and their percentage increased continuously until February, except for a small decrease in December and a stable level during January. A negative correlation between body length and percentage of postvitellogenic follicles was found in March. Loumbourdis, N (reprint author), UNIV THESSALONIKI,DEPT ZOOL,BOX 134,GR-54006 THESSALONIKI,GREECE. ANASTASIADIS AI, 1976, ELEMENTS ADVANCED MA; BERGER I, 1980, FOLIA BIOL KRAKOSW, V28, P3; BERVEN AK, 1988, COPEIA, V3, P605; CHINTIROGLOU C, 1992, HELGOLANDER MEERESUN, V46, P53, DOI 10.1007/BF02366212; DELGADO MJ, 1990, PHYSIOL ZOOL, V63, P373, DOI 10.1086/physzool.63.2.30158502; Duellman W. E., 1994, BIOL AMPHIBIANS; Guarino Fabio Maria, 1993, Animal Biology, V2, P25; JORGENSEN CB, 1975, GEN COMP ENDOCR, V25, P264, DOI 10.1016/0016-6480(75)90116-1; JORGENSEN CB, 1974, GEN COMP ENDOCR, V23, P170, DOI 10.1016/0016-6480(74)90126-9; JORGENSEN CB, 1984, ACTA ZOOL-STOCKHOLM, V65, P239, DOI 10.1111/j.1463-6395.1984.tb01045.x; JORGENSEN CB, 1986, OIKOS, V46, P379, DOI 10.2307/3565838; JORGENSEN CB, 1981, J ZOOL, V195, P449; JORGENSEN CB, 1984, OIKOS, V43, P309, DOI 10.2307/3544148; JORGENSEN CB, 1973, GEN COMP ENDOCR, V21, P152, DOI 10.1016/0016-6480(73)90166-4; JORGENSEN CB, 1982, J EXP ZOOL, V224, P437, DOI 10.1002/jez.1402240317; JORGENSEN CB, 1979, BIOL SKR, V22, P1; KYRIAKOPOULOU-SKLAVOUNOU P, 1990, Amphibia-Reptilia, V11, P23, DOI 10.1163/156853890X00285; KYRIAKOPOULOUSK.P, 1983, THESIS U THESSALONIK; KYRIAKOPOULOUSKLAVOUNOU P, 1990, J HERPETOL, V24, P185, DOI 10.2307/1564226; Lofts B., 1974, P107; LOUMBOURDIS NS, 1991, COMP BIOCHEM PHYS A, V99, P577, DOI 10.1016/0300-9629(91)90133-W; PANCHARATNA K, 1992, J MORPHOL, V214, P123, DOI 10.1002/jmor.1052140202; PANCHARATNA M, 1985, J MORPHOL, V186, P135, DOI 10.1002/jmor.1051860202; RASTOGI RK, 1983, J ZOOL, V200, P233; SILVERIN B, 1992, Amphibia-Reptilia, V13, P177, DOI 10.1163/156853892X00364; Sofianidou T.S., 1984, Amphibia-Reptilia, V4, P125; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TEKAIA F, 1985, LOGISTAT ANAL STAT D; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956 30 6 6 0 1 LASER PAGES PUBL LTD JERUSALEM PO BOX 50257, JERUSALEM 91502, ISRAEL 0021-2210 ISRAEL J ZOOL Isr. J. Zool. 1996 42 3 275 285 11 Zoology Zoology VR801 WOS:A1996VR80100006 2019-02-26 J Morris, DW Morris, DW State-dependent life histories, Mountford's hypothesis, and the evolution of brood size JOURNAL OF ANIMAL ECOLOGY English Article body size; brood size; habitat; individual optimization; life history; littersize; Peromyscus WHITE-FOOTED MICE; CLUTCH-SIZE; PARENTAL INVESTMENT; HABITAT SELECTION; LITTER SIZE; GREAT TITS; REPRODUCTION; PEROMYSCUS; DISPERSAL; SURVIVAL 1. Mountford's cliff-edge hypothesis states that asymmetrically low survivorship in large broods can account for the common observation that mean brood size is less than the most productive size. A graphical model demonstrates how state-dependent life histories can explain Mountford's hypothesis. The model is based on the optimal allocation of parental resources to reproduction. It assumes that the optimum brood size depends upon the state of each phenotype in the population. 2. Variability among individuals will cause some to produce either smaller or larger broods than their optimum. Juvenile survival is expected to decline with increases in brood size beyond the parental optimum. Juvenile survival from large broods produced by low-quality parents will be exceptionally low, thereby generating Mountford's cliff-edge effect. 3. I tested the model with field data on the success of litters produced by small and large females of the white-footed mouse. The data, in this initial test of state-dependent life history theory, were consistent with the state-dependent explanation. Small females that produced large litters had significantly lower recruitment from those litters than did larger females that produced litters of the same size. 4. Interactions among litter size, juvenile survival, maternal body size and the timing of reproduction document that detailed natural history will be an essential feature in future tests of state-dependent theories. LAKEHEAD UNIV, FAC FORESTRY, THUNDER BAY, ON P7B 5E1, CANADA Morris, DW (reprint author), LAKEHEAD UNIV, DEPT BIOL, CTR NO STUDIES, THUNDER BAY, ON P7B 5E1, CANADA. Morris, Douglas/0000-0003-4515-9261 APARICIO JM, 1993, OIKOS, V68, P186, DOI 10.2307/3545327; BOUTIN S, 1988, J ANIM ECOL, V57, P455, DOI 10.2307/4917; Boyce M. S., 1988, EVOLUTION LIFE HIST, P3; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Calder W. A, 1984, SIZE FUNCTION LIFE H; COLEMAN RM, 1991, TRENDS ECOL EVOL, V6, P404, DOI 10.1016/0169-5347(91)90163-R; DAWKINS R, 1976, NATURE, V262, P131, DOI 10.1038/262131a0; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DRICKAMER LC, 1973, J MAMMAL, V54, P523, DOI 10.2307/1379147; EISENBERG JF, 1981, MAMMALIAN RAD; FLEMING TH, 1978, EVOLUTION, V32, P45, DOI 10.1111/j.1558-5646.1978.tb01097.x; GOUNDIE TR, 1986, J MAMMAL, V67, P53, DOI 10.2307/1381001; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; KLOMP H, 1970, ARDEA, V58, P1; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; Layne J. N., 1968, P148; Lessells C.M., 1991, P32; LIOU LW, 1993, AM NAT, V141, P507, DOI 10.1086/285488; MCLOSKEY RT, 1975, ECOLOGY, V56, P467, DOI 10.2307/1934978; MCLOSKEY RT, 1975, J MAMMAL, V56, P950, DOI 10.2307/1379675; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MOLLER AP, 1991, ECOLOGY, V72, P1336, DOI 10.2307/1941106; MORRIS DW, 1992, EVOL ECOL, V6, P1, DOI 10.1007/BF02285330; MORRIS DW, 1986, EVOLUTION, V40, P169, DOI 10.1111/j.1558-5646.1986.tb05728.x; MORRIS DW, 1991, AM NAT, V138, P702, DOI 10.1086/285244; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; MORRIS DW, 1989, EVOL ECOL, V3, P80, DOI 10.1007/BF02147934; MORRIS DW, 1985, OIKOS, V45, P290, DOI 10.2307/3565719; MORRIS DW, 1992, EVOLUTION, V46, P1848, DOI 10.1111/j.1558-5646.1992.tb01173.x; MORRIS DW, IN PRESS ECOSCIENCE; MORRIS DW, IN PRESS OIKOS; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; MYERS P, 1983, J MAMMAL, V64, P1, DOI 10.2307/1380746; NORUSIS M, 1992, SPSS PC PLUS ADV STA; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; Peters R.H., 1983, P1; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; RINTAMAA DL, 1976, J MAMMAL, V57, P593, DOI 10.2307/1379313; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; WOLFF J O, 1986, Virginia Journal of Science, V37, P208; WOLFF JO, 1988, ANIM BEHAV, V36, P456, DOI 10.1016/S0003-3472(88)80016-2; WOLFF JO, 1992, NATURE, V359, P409, DOI 10.1038/359409a0 44 25 26 0 9 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 1996 65 1 43 51 10.2307/5698 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology TR130 WOS:A1996TR13000004 2019-02-26 J McCleery, RH; Clobert, J; Julliard, R; Perrins, CM McCleery, RH; Clobert, J; Julliard, R; Perrins, CM Nest predation and delayed cost of reproduction in the great tit JOURNAL OF ANIMAL ECOLOGY English Article age-specific mortality; ageing; cost of reproduction; nest predation; life history; great tit LIFE-HISTORY EVOLUTION; INTERSPECIFIC COMPETITION; SITE SELECTION; BREEDING BLUE; SURVIVAL RATE; PARUS-MAJOR; CLUTCH SIZE; BIRDS; AGE; POPULATION 1. During a study on the great tit at Wytham Wood, Oxfordshire, nest predation by weasels was as high as 50% in some years prior to 1976. In 1976, nest-boxes were made virtually predator proof. 2. The change in nest-box type increased local recruitment rate and total population size of great and blue tits. We examined here the consequences of reduced nest predation on the survival rate of the great tit late in life. 3. Prior to 1976 (during the nest predation period), survival rate after the age of 5 years showed no decline and no relationship to the number of successful breeding attempts in either sex. 4. After 1976 (predator-proof period), both sexes showed increased mortality rates after the age of 5. However, only female survival was related to the number of successful breeding attempts, with a negative correlation. 5. This enhanced mortality late in life is likely to result from an increased cost of reproduction due to the combined effects of increased competition (higher adult density) and increased investment in reproduction (more young to raise because of reduced nest predation). These results fit predictions from life history theory, where increased effort early in life is predicted to trade with survival late in life. EDWARD GREY INST FIELD ORNITHOL,DEPT ZOOL,OXFORD,ENGLAND ANDERSON DR, 1994, ECOLOGY, V75, P1780, DOI 10.2307/1939637; BULMER MG, 1984, J THEOR BIOL, V106, P529, DOI 10.1016/0022-5193(84)90005-5; Burnham K P, 1987, MONOGRAPH, V5; BURNHAM KP, 1993, BIOMETRICS, V49, P1194, DOI 10.2307/2532261; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CLOBERT J, 1987, ARDEA, V75, P133; CLOBERT J, 1988, J ANIM ECOL, V57, P287, DOI 10.2307/4779; CLOBERT J, 1993, STUDY BIRD POPULATIO, P281; CLOBERT J, 1995, IN PRESS J APPLIED S; CLOBERT J, 1991, BIRD POPULATION STUD, P75; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; CURIO E, 1987, ARDEA, V75, P35; Dhondt A. A., 1971, Gerfaut, V61, P125; DHONDT AA, 1989, IBIS, V131, P268, DOI 10.1111/j.1474-919X.1989.tb02770.x; DHONDT AA, 1985, AUK, V102, P870; DHONDT AA, 1989, WILSON BULL, V101, P198; DHONDT AA, 1977, NATURE, V268, P521, DOI 10.1038/268521a0; DUNN E, 1977, J ANIM ECOL, V46, P633, DOI 10.2307/3835; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; JOHNSON DH, 1986, 13TH P INT BIOM C, P1; KEYFITZ N, 1985, APPLIED MATH DEMOGRA; LACK D, 1954, NATURAL REGULATION A; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEBRETON JD, 1993, TRENDS ECOL EVOL, V8, P91, DOI 10.1016/0169-5347(93)90058-W; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LI PJ, 1991, AUK, V108, P405; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LOERY G, 1987, ECOLOGY, V68, P1038, DOI 10.2307/1938375; Lynch M., 1980, EVOLUTION ECOLOGY ZO, P367; Martin T.E., 1992, Current Ornithology, V9, P163; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McCleery R.H., 1990, NATO ASI Series Series G Ecological Sciences, V24, P423; McCleery R. H., 1991, BIRD POPULATION STUD, P129; MCCULLAGH P, 1983, GENERALIZED LINEAR M; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MINOT EO, 1981, J ANIM ECOL, V50, P375, DOI 10.2307/4061; MINOT EO, 1986, J ANIM ECOL, V55, P331, DOI 10.2307/4712; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; NICHOLS JD, 1992, BIOSCIENCE, V42, P94, DOI 10.2307/1311650; NILSSON SG, 1986, AUK, V103, P432; NILSSON SG, 1984, ORNIS SCAND, V15, P167, DOI 10.2307/3675958; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Perrins C.M., 1977, P181; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1988, REPRODUCTIVE SUCCESS, P136; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Pollock K.H., 1990, WILDLIFE MONOGR, V107, P1; Pradel R., 1990, Ring International Ornithological Bulletin, V13, P193; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; TINBERGEN JM, 1985, ARDEA, V73, P38; WEBBER MI, 1975, THESIS OXFORD; YDENBERG RC, 1984, BEHAV ECOL SOCIOBIOL, V15, P103, DOI 10.1007/BF00299376 59 54 56 0 12 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. JAN 1996 65 1 96 104 10.2307/5703 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology TR130 WOS:A1996TR13000009 2019-02-26 J Thomas, DL; McClintock, JB Thomas, DL; McClintock, JB Aspects of the population dynamics and physiological ecology of the gastropod Physella cubensis (Pulmonata: Physidae) living in a warm-temperate stream and ephemeral pond habitat MALACOLOGIA English Article Physella cubensis; population dynamics; physiological ecology; temperature; food quality FRESH-WATER SNAIL; LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; LYMNAEA-ELODES; GROWTH-RATES; STRATEGIES; FECUNDITY; SELECTION; LEVEL; SIZE Population density, size frequency, and reproduction of the pulmonate gastropod Physella cubensis living in a central Alabama stream and ephemeral pond habitat were assessed over a three-year period from January 1989 through December 1991. These parameters covaried seasonally and from year to year with fluctuating environmental temperature and precipitation. Population dynamics of ephemeral pond snails were also affected by episodic drying events. Physella cubensis is able to survive habitat desiccation in ephemeral pond habitats by burrowing into the hypopheric zone of the sediments. This behavior is displayed only by juvenile snails (1-5 mm shell length). Overwintering in the sediments is restricted to young adult snails (5-8 mm shell length). Food quality and particularly temperature were found to influence growth and survivorship. Optimum temperature for growth and survivorship was 25 degrees C (vs. 15 degrees C and 35 degrees C). Snails raised at 15 degrees C and 25 degrees C exhibited a dramatic shift in the timing of first oviposition (60 vs. 18 days, respectively), but did not differ significantly in body size at first reproduction. Snails raised at 35 degrees C appeared thermally stressed and failed to oviposit. Food quality influenced reproductive output, with only snails fed medium- and high-quality diets producing eggs. Both field and laboratory studies indicate that P. cubensis living in a warm-temperate climate exemplify an opportunistic life history strategy in which such traits as rapid juvenile growth and attainment of maturity, shortened lifespan, high fecundity, and constant reproduction over the duration of the adult lifespan are favored. Thomas, DL (reprint author), UNIV ALABAMA,DEPT BIOL,UAB STN,BIRMINGHAM,AL 35294, USA. BEAMES CG, 1967, P OKLAHOMA ACADEMY S, P12; BEDDINGFIELD SD, 1993, MAR BIOL, V115, P669, DOI 10.1007/BF00349375; BEDDINY E A M, 1977, Bulletin of the Faculty of Science Assiut University, V6, P35; BLANDENIER P, 1989, REV SUISSE ZOOL, V96, P325, DOI 10.5962/bhl.part.117767; BOVBJERG RV, 1968, PHYSIOL ZOOL, V41, P412, DOI 10.1086/physzool.41.4.30155476; BRACKENBURY TD, 1991, J MOLLUS STUD, V57, P461, DOI 10.1093/mollus/57.4.461; BROWN KM, 1989, J N AM BENTHOL SOC, V8, P222, DOI 10.2307/1467325; BROWN KM, 1982, ECOLOGY, V63, P412, DOI 10.2307/1938959; BROWN KM, 1985, EVOLUTION, V39, P387, DOI 10.1111/j.1558-5646.1985.tb05675.x; BROWN KM, 1985, MALACOLOGIA, V26, P191; BROWN KM, 1979, HYDROBIOLOGIA, V65, P165, DOI 10.1007/BF00017422; BROWN KM, 1979, EVOLUTION, V33, P417, DOI 10.1111/j.1558-5646.1979.tb04695.x; BROWN KM, 1983, AM NAT, V121, P871, DOI 10.1086/284109; BROWNE RA, 1978, OECOLOGIA, V37, P23, DOI 10.1007/BF00349988; BROWNE RA, 1978, ECOLOGY, V59, P742, DOI 10.2307/1938778; CALOW P, 1978, MALACOLOGIA, V17, P351; CASWELL H, 1983, AM ZOOL, V23, P35; CLAMPITT P T, 1973, Malacologia, V12, P379; CLAMPITT P T, 1970, Malacologia, V10, P113; CRIDLAND CC, 1957, J TROPICAL MED HYGIE, V57, P287; CROWL TA, 1990, OECOLOGIA, V84, P238, DOI 10.1007/BF00318278; CROWL TA, 1990, OIKOS, V59, P359, DOI 10.2307/3545147; DEWITT RM, 1955, ECOLOGY, V36, P40, DOI 10.2307/1931429; DEWITT ROBERT M., 1954, TRANS AMER MICROSC SOC, V73, P124, DOI 10.2307/3223750; DIAMOND JM, 1982, J FRESHWATER ECOL, V1, P577, DOI 10.1080/02705060.1982.9664079; DUNCAN CJ, 1959, J ANIM ECOL, V28, P97, DOI 10.2307/2017; ECKBLAD J W, 1973, Hydrobiologia, V41, P199, DOI 10.1007/BF00016446; EISENBER.RM, 1966, ECOLOGY, V47, P889, DOI 10.2307/1935637; EISENBERG RM, 1970, ECOLOGY, V51, P680, DOI 10.2307/1934048; GIESEL JT, 1976, ANNU REV ECOL SYST, V7, P57, DOI 10.1146/annurev.es.07.110176.000421; GRAY S, 1987, THESIS FLORIDA STATE; HERNANDEZ S, 1981, Revista de Salud Animal, V3, P69; HORNBACH DJ, 1980, OECOLOGIA, V44, P164, DOI 10.1007/BF00572674; HUNTER RD, 1975, ECOLOGY, V56, P50, DOI 10.2307/1935299; KRKAC N, 1982, MALACOLOGIA, V22, P167; LAM PKS, 1990, J MOLLUS STUD, V56, P17, DOI 10.1093/mollus/56.1.17; LODGE DM, 1985, FRESHWATER BIOL, V15, P695, DOI 10.1111/j.1365-2427.1985.tb00243.x; LODGE DM, 1986, FRESHWATER BIOL, V16, P831, DOI 10.1111/j.1365-2427.1986.tb01020.x; MCGRAW BM, 1970, MALACOLOGIA, V10, P399; MCMAHON RF, 1980, AM MIDL NAT, V103, P218, DOI 10.2307/2424620; MCMAHON RF, 1975, ECOLOGY, V56, P1167, DOI 10.2307/1936156; MCNEIL CW, 1963, ECOLOGY, V44, P187, DOI 10.2307/1933202; PATERSON CG, 1969, CAN J ZOOLOG, V47, P589, DOI 10.1139/z69-102; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; QUIAN PY, 1991, J EXPT MARINE BIOL E, V148, P11; ROLLO CD, 1988, ECOLOGY, V69, P146, DOI 10.2307/1943169; ROSS MJ, 1980, AM MIDL NAT, V103, P209, DOI 10.2307/2424619; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SOKAL R., 1981, BIOMETRY; SPIGHT TM, 1976, ECOLOGY, V57, P1162, DOI 10.2307/1935042; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; THOMAS DL, 1990, INVERTEBR REPROD DEV, V17, P65, DOI 10.1080/07924259.1990.9672089; VANDERSCHALIE H, 1973, R373021 USEPA; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WYNGAARD GA, 1991, FRESHWATER BIOL, V25, P219, DOI 10.1111/j.1365-2427.1991.tb00487.x; Zar J. H, 1974, BIOSTATISTICAL ANAL 56 8 8 0 10 INST MALACOL ANN ARBOR 2415 SOUTH CIRCLE DR, ANN ARBOR, MI 48103 0076-2997 MALACOLOGIA Malacologia 1996 37 2 333 348 16 Zoology Zoology TZ757 WOS:A1996TZ75700002 2019-02-26 J Juanes, F; Hare, JA; Miskiewicz, AG Juanes, F; Hare, JA; Miskiewicz, AG Comparing early life history strategies of Pomatomus saltatrix: A global approach MARINE AND FRESHWATER RESEARCH English Article; Proceedings Paper International Larval Fish Conference 1995 SYDNEY, AUSTRALIA Amer Fisheries Soc, Early Life Hist Sect, Austr Soc Fish Biol THE-YEAR BLUEFISH; CAPE SOUTH COAST; NEW-YORK BIGHT; JUVENILE BLUEFISH; UNITED-STATES; THERAGRA-CHALCOGRAMMA; WESTERN AUSTRALIA; WALLEYE POLLOCK; LEEUWIN CURRENT; ATLANTIC COAST Pomatomus saltatrix (Pisces: Pomatomidae) is a highly migratory, continental-shelf species with a worldwide subtropical distribution including the eastern coast of North America, the Gulf of Mexico, Mediterranean Sea, Black Sea, north-western Africa, the eastern coast of South America, the south-eastern coast of South Africa, and the south-eastern and south-western coasts of Australia. This paper summarizes available life history information from the different regions where P. saltatrix occurs, with a focus on the early life history. The basic physical oceanography of these regions is also reviewed to elucidate patterns in larval transport. Comparison of these populations suggests that there are commonalties: adults migrate to spawning grounds; eggs and larvae are typically advected along-shore to juvenile nursery habitats; juveniles recruit to inshore habitats at a similar size, and there they grow rapidly and are mainly piscivorous, feeding primarily on atherinids and engraulids. There are also a number of life history traits that are quite variable among populations: the number of annual reproductive peaks, the number of juvenile cohorts, adult growth patterns and reproductive parameters. Comparison of these life history patterns leads to several non-exclusive hypotheses as to the adaptive significance of variations in life history traits. The goal is to identify areas where more research is needed to assess the degree to which populations of a global species are adapted to their local environment. NOAA, NATL MARINE FISHERIES SERV, BEAUFORT LAB, BEAUFORT, NC 28516 USA; AWT ENSIGHT, W RYDE, NSW 2114, AUSTRALIA Juanes, F (reprint author), UNIV MASSACHUSETTS, DEPT FORESTRY & WILDLIFE MANAGEMENT, AMHERST, MA 01003 USA. ARIAS AM, 1990, ESTADOS JVUENILES IC; ATKINSON LP, 1985, OCEANOGRAPHY SE US C; ATWOOD NE, 1869, P BOSTON SOC NATURAL, P402; AYRES WO, 1852, P BOSTON SOC NATURAL, P289; AYVAZIAN SG, 1995, MAR BIOL, V122, P527, DOI 10.1007/BF00350675; BADANDANGON A, 1982, CONSEIL INT EXPLORAT, V180, P78; Bade T.M., 1977, THESIS U QUEENSLAND; BAIRD SF, 1873, ANN REP US COMM FISH, P235; Baker RR, 1978, EVOLUTIONARY ECOLOGY; BARGER L E, 1978, Northeast Gulf Science, V2, P145; BARGER LE, 1990, FISH B-NOAA, V88, P805; BECKLEY LE, 1996, MARINE FRESHWATER RE, V47; BENNETT BA, 1989, S AFR J ZOOL, V24, P163; BENNETT BA, 1989, S AFR J MARINE SCI, V8, P43, DOI 10.2989/02577618909504550; BENNETT BA, 1989, ESTUAR COAST SHELF S, V28, P293, DOI 10.1016/0272-7714(89)90019-X; BLABER SJM, 1980, J FISH BIOL, V17, P143, DOI 10.1111/j.1095-8649.1980.tb02749.x; Borcea I., 1929, Ann Sci Univ Jassy, V15, P656; BORCEA I., 1933, ANN SCI UNIV JASSY, V17, P503; Borcea I., 1936, Compte Rendu Acad Sci Roumanie Bucuresti, V1, P222; BOWKER DW, 1995, J FISH BIOL, V46, P469, DOI 10.1111/j.1095-8649.1995.tb05988.x; BRIGGS JC, 1960, COPEIA, V3, P171; BUCKEL JA, 1995, J FISH BIOL, V47, P696, DOI 10.1111/j.1095-8649.1995.tb01935.x; Buckel JA, 1996, T AM FISH SOC, V125, P591, DOI 10.1577/1548-8659(1996)125<0591:GEROPY>2.3.CO;2; Bumpus D. F, 1973, PROGR OCEANOGR, V6, P111, DOI DOI 10.1016/0079-6611(73)90006-2; CARLSON HR, 1995, FISH B-NOAA, V93, P386; Cervigon F., 1966, PECES MARINOS VENEZU; CHAMPAGNAT C, 1983, PECHE BIOL DYNAMIQUE; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; CHEW F, 1962, LIMNOL OCEANOGR, V7, P252, DOI 10.4319/lo.1962.7.2.0252; CHIARELLA LA, 1990, T AM FISH SOC, V119, P455, DOI 10.1577/1548-8659(1990)119<0455:SSAFGO>2.3.CO;2; COETZEE PS, 1981, S AFR J WILDL RES, V11, P14; COLLINS MR, 1987, B MAR SCI, V41, P822; Conand C., 1976, Bulletin Inst fond Mr noire (Sci nat), V38, P898; Conand C., 1975, Bulletin Inst fond Mr noire (Sci nat), V37, P395; CONAND F, 1973, Bulletin de l'Institut Fondamental d'Afrique Noire Serie A Sciences Naturelles, V35, P951; CREASER EP, 1994, FISH B-NOAA, V92, P494; CURY P, 1989, CAN J FISH AQUAT SCI, V46, P670, DOI 10.1139/f89-086; CZAPLA TC, 1991, 7 ELMR NOAANOS STAT; Day J. W., 1989, ESTUARINE ECOLOGY; DESYLVA DP, 1962, U DEAWARE MARINE LAB, V5; DEUEL DG, 1966, T AM FISH SOC, V95, P264, DOI 10.1577/1548-8659(1966)95[264:DOEAEL]2.0.CO;2; DINNEL SP, 1986, CONT SHELF RES, V6, P765, DOI 10.1016/0278-4343(86)90036-1; DITTY JG, 1995, B MAR SCI, V56, P592; EPIFANIO CE, 1989, MAR ECOL PROG SER, V54, P35, DOI 10.3354/meps054035; ERZINI K, 1994, J APPL ICHTHYOL, V10, P17, DOI 10.1111/j.1439-0426.1994.tb00140.x; FIEDLER P C, 1986, California Cooperative Oceanic Fisheries Investigations Reports, V27, P144; FINUCANE J H, 1980, Northeast Gulf Science, V4, P57; FISHER A, 1972, J GEOPHYS RES, V77, P3248, DOI 10.1029/JC077i018p03248; FONT J, 1990, MAR GEOL, V95, P165, DOI 10.1016/0025-3227(90)90114-Y; FORD WL, 1952, J MAR RES, V11, P281; FOWLER HW, 1954, B I CIENCIAS NATURAL, V6, P43; FRIEDLAND KD, 1988, T AM FISH SOC, V117, P474, DOI 10.1577/1548-8659(1988)117<0474:IVIDAC>2.3.CO;2; GOBERNA E, 1987, PUBLICACIONES COMISI, V3, P93; Goodbred CO, 1996, MAR FRESHWATER RES, V47, P347, DOI 10.1071/MF9960347; Gordina AD, 1996, MAR FRESHWATER RES, V47, P315, DOI 10.1071/MF9960315; GRANT GEORGE C., 1962, CHESAPEAKE SCI, V3, P45, DOI 10.2307/1350413; Haedrich R.L., 1983, P183; Haimovici M, 1996, MAR FRESHWATER RES, V47, P357, DOI 10.1071/MF9960357; Haimovici Manuel, 1992, Revista Brasileira de Biologia, V52, P503; HALLIWELL GR, 1979, J GEOPHYS RES-OCEANS, V84, P7707, DOI 10.1029/JC084iC12p07707; HAMER PE, 1959, THESIS RUTGERS U NEW; HAMILTON LJ, 1992, AUST J MAR FRESH RES, V43, P793; HAMILTON P, 1992, J GEOPHYS RES-OCEANS, V97, P2185, DOI 10.1029/91JC01496; HANSEN JE, 1988, PUBLICACIONES COMISI, V4, P67; Harden Jones F, 1968, FISH MIGRATION; HARE JA, 1993, MAR ECOL PROG SER, V98, P1, DOI 10.3354/meps098001; HARE JA, 1995, CAN J FISH AQUAT SCI, V52, P1909, DOI 10.1139/f95-783; HARE JA, 1994, MAR BIOL, V118, P541, DOI 10.1007/BF00347500; HARE JA, 1996, IN PRESS LIMNOLOGY O; HOLLIDAY MC, 1986, MARINE RECREATIONAL; Ivanov L., 1985, STUD REV GEN FISH CO, V60, P1; JEFFERTS K, 1986, N PAC WORKSH STOCK A, P34; Juanes F, 1995, MAR ECOL PROG SER, V128, P287, DOI 10.3354/meps128287; JUANES F, 1994, CAN J FISH AQUAT SCI, V51, P1752, DOI 10.1139/f94-176; JUANES F, 1993, T AM FISH SOC, V122, P348, DOI 10.1577/1548-8659(1993)122<0348:PBABOA>2.3.CO;2; JUANES F, 1994, J FISH BIOL, V45, P41, DOI 10.1111/j.1095-8649.1994.tb01083.x; JUANES F, 1994, MAR ECOL PROG SER, V114, P59, DOI 10.3354/meps114059; KEDIDI MS, 1975, CONTRIBUTION ETUDE M; KENDALL AW, 1981, FISH B-NOAA, V79, P705; KENDALL AW, 1992, FISH B-NOAA, V90, P129; KENDALL AW, 1979, FISH B-NOAA, V77, P213; Kocatas A., 1993, STUDIES REV GEN FISH, V64, P87; KOLAROV P, 1964, B I PISCICULTURE PEC, V4, P207; Krug L C, 1989, ATLANTICA, V11, P47; KRUG LC, 1991, ATLANTICA, V13, P119; Ktari M. H, 1977, Bulletin Inst natn scient tech Oceanogr Peche Salammbo, V4, P307; Lassiter R. R., 1962, THESIS N CAROLINA ST; LEGALL J, 1934, REV TRAV I PECHES, V7, P27; LEGECKIS R, 1982, DEEP-SEA RES, V29, P375, DOI 10.1016/0198-0149(82)90101-7; Leis JM, 1996, MAR FRESHWATER RES, V47, P401, DOI 10.1071/MF9960401; Lenanton RC, 1996, MAR FRESHWATER RES, V47, P337, DOI 10.1071/MF9960337; LENANTON RCJ, 1987, ESTUARIES, V10, P28, DOI 10.2307/1352022; LENANTON RCJ, 1977, FISHERIES RES B W AU, V19, P1; LUND WA, 1970, T AM FISH SOC, V99, P719, DOI 10.1577/1548-8659(1970)99<719:MAMOTB>2.0.CO;2; LUND WILLIAM ALBERT, 1961, BOL INST OCEANOGR, V1, P73; LUTJEHARMS JRE, 1981, S AFR J SCI, V77, P231; MALCHOFF MH, 1993, THESIS BARD COLLEGE; MARAIS JFK, 1984, S AFR J ZOOL, V19, P210; MARKS RE, 1993, FISH B-NOAA, V91, P97; MCBRIDE RS, 1995, T AM FISH SOC, V124, P898, DOI 10.1577/1548-8659(1995)124<0898:CVIASG>2.3.CO;2; MCBRIDE RS, 1991, MAR ECOL PROG SER, V78, P205, DOI 10.3354/meps078205; MCBRIDE RS, 1993, FISH B-NOAA, V91, P389; MCBRIDE RS, 1989, THESIS STATE U NEW Y; McDERMOTT J. J., 1983, SANDY BEACHES ECOSYS, P529; Miskiewicz AG, 1996, MAR FRESHWATER RES, V47, P331, DOI 10.1071/MF9960331; Mittelstaedt E., 1982, RAPP P V REUN CONS I, V180, P50; MORTON RM, 1993, AUST J MAR FRESH RES, V44, P811; Muelbert JH, 1996, MAR FRESHWATER RES, V47, P311, DOI 10.1071/MF9960311; MULHEARN PJ, 1987, J PHYS OCEANOGR, V17, P1148, DOI 10.1175/1520-0485(1987)017<1148:TTFASU>2.0.CO;2; MULHEARN PJ, 1988, J GEOPHYS RES-OCEANS, V93, P13925, DOI 10.1029/JC093iC11p13925; Naughton S. P., 1984, NMFSSEFC150 NOAA, VNMFS-SEFC-150; NELSON DM, 1992, 10 ELMR NOAA NOS STR; NILSSON C S, 1980, Progress in Oceanography, V9, P133, DOI 10.1016/0079-6611(80)90008-7; NINNI E, 1932, ATT SOC IT SCI NAT M, V71, P210; NION H, 1991, ATLANTICA, V13, P201; NORCROSS JJ, 1974, T AM FISH SOC, V103, P477, DOI 10.1577/1548-8659(1974)103<477:DOYBPS>2.0.CO;2; NYMAN RM, 1988, FISH B-NOAA, V86, P237; OKUTANI T, 1983, CEPHALOPOD LIFE CYCL, V1, P201; OLIVER JD, 1989, EL824 TR US ARM CORP; OLSON DB, 1988, DEEP-SEA RES, V35, P1971, DOI 10.1016/0198-0149(88)90120-3; OVEN LS, 1957, P KARADAG BIOL STAT, V14, P155; Parrish R.H., 1981, Biological Oceanography, V1, P175; PEARCE AF, 1991, J GEOPHYS RES-OCEANS, V96, P16739, DOI 10.1029/91JC01712; PERIER MR, 1995, THESIS U NACIONAL PL; PIETRAFESA LJ, 1989, 892 NOAA NAT UND, P89; Pollock B. R, 1984, P ROYAL SOC QUEENSLA, V95, P23; Porumb I. I., 1968, Rapp P-v Rein Commn int Explor scient Mer Mediterr, V19, P303; PORUMB II, 1959, CONTRIBUTION CONNAIS, P511; PORUMB II, 1971, I ROMAN CERCETARI MA, V2, P75; POTTERN GB, 1989, EL824 TR US ARM CORP; POWLES H, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P207; PROVOST C, 1992, J GEOPHYS RES-OCEANS, V97, P17841, DOI 10.1029/92JC01693; REGO AA, 1982, CIEN IA CULTURA SAO, V35, P1329; RICHARDS SW, 1976, T AM FISH SOC, V105, P523, DOI 10.1577/1548-8659(1976)105<523:AGAFOB>2.0.CO;2; ROFF DA, 1991, NETH J SEA RES, V27, P197, DOI 10.1016/0077-7579(91)90024-U; Roff Derek A., 1992; SABATES A, 1990, MAR ECOL PROG SER, V59, P75, DOI 10.3354/meps059075; SABATES A, 1993, J FISH BIOL, V42, P109; SALAT J, 1992, J GEOPHYS RES-OCEANS, V97, P7277, DOI 10.1029/92JC00588; SALEKHOVA LP, 1959, P SEV BIOL STAT 10, P182; SAMBA A, 1991, PECHERIES OUEST AFRI, P307; SANTOS RS, 1995, ESTUAR COAST SHELF S, V41, P579, DOI 10.1016/0272-7714(95)90028-4; SCHUMANN EH, 1987, T ROY SOC S AFR, V46, P215, DOI 10.1080/00359198709520125; Schumann EH, 1988, COASTAL OCEAN STUDIE, P101; SHAW RF, 1985, T AM FISH SOC, V114, P452, DOI 10.1577/1548-8659(1985)114<452:TOLGMB>2.0.CO;2; SHIMA M, 1989, THESIS STATE U NEW Y; SMALE M J, 1986, Journal of Zoology Series B, V1, P357; SMALE MJ, 1983, S AFR J ZOOL, V18, P337; SMALE MJ, 1984, S AFR J ZOOL, V19, P170; SMITH W, 1994, B MAR SCI, V54, P8; Sorokin Yu.I., 1983, P253; SPARTA A, 1963, B PESCA PISCICOLTURA, V17, P5; STOBUTZKI IC, 1994, J EXP MAR BIOL ECOL, V175, P275, DOI 10.1016/0022-0981(94)90031-0; Stommel H., 1965, GULF STREAM; TERCEIRO M, 1993, FISH B-NOAA, V91, P534; THOMSON J. M., 1959, AUSTRALIAN JOUR MARINE AND FRESHWATER RES, V10, P365; THOMSON JM, 1957, W AUSTR MARINE RES L, V7, P1; THOMSON JM, 1957, W AUSTR MARINE RES L, V8; TOLMAZIN D, 1985, PROG OCEANOGR, V15, P217, DOI 10.1016/0079-6611(85)90038-2; Tortonese E., 1954, Rapp Comm Int Mer Medit, V12, P113; TORTONESE E, 1984, FISHES NE ATLANTIC M, V2, P812; TURGAN G, 1959, INT COMMISSION SCI E, V15, P409; van der Elst RP, 1976, 44 OC RES I; VUKOVICH FM, 1979, J GEOPHYS RES-OCEANS, V84, P7749, DOI 10.1029/JC084iC12p07749; WALLACE JH, 1984, S AFR J ZOOL, V19, P164; WANG DP, 1988, J MAR RES, V46, P321, DOI 10.1357/002224088785113586; WARLEN SM, 1994, FISH B-NOAA, V92, P420; Wilk S.J., 1977, 11 NAT MAR FISH SERV, V11; WILLIAMS CD, 1990, 7 ELMR NOAA NOS STRA; WISEMAN WJ, 1994, ESTUARIES, V17, P732, DOI 10.2307/1352743; ZAITSEV Yu. P., 1964, NAUK ZAP ODES KOYI BIOL STA AKAD NAUK UKR SSR, V5, P100; Zeller BM, 1996, MAR FRESHWATER RES, V47, P323, DOI 10.1071/MF9960323; 1993, NOAA TECHNICAL MEMOR; 1988, NMFSFNEC63 US DEP CO; 1981, ECOLOGY FISH BOTANY 175 60 62 0 10 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 1323-1650 1448-6059 MAR FRESHWATER RES Mar. Freshw. Res. 1996 47 2 365 379 10.1071/MF9960365 15 Fisheries; Limnology; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography VD749 WOS:A1996VD74900035 2019-02-26 J Verity, PG; Smetacek, V Verity, PG; Smetacek, V Organism life cycles, predation, and the structure of marine pelagic ecosystems MARINE ECOLOGY PROGRESS SERIES English Review morphology; life history; plankton; pelagic; top-down; trophic cascade; predation; ecosystem structure; bottom-up DIEL VERTICAL MIGRATION; ZOOPLANKTON-PHYTOPLANKTON INTERACTIONS; TROPHIC INTERACTIONS; COMMUNITY STRUCTURE; NARRAGANSETT BAY; BOTTOM-UP; TOP-DOWN; HERBIVOROUS ZOOPLANKTON; PLANKTIVOROUS FISH; CALANOID COPEPODS This paper explores the notion that the theoretical basis for contemporary research concerning the structure and function of marine pelagic ecosystems is self-limiting. While some findings such as the microbial food web have extended our knowledge of the biological components of the upper water column and their relationships to fluxes of materials and energy, they have not advanced our understanding of why specific pelagic forms occur in time and space, and why only some attain dominant status and contribute the bulk of biogenic fluxes emanating from the mixed layer. It is argued here that a major impediment to improved conceptual models is the historic focus on resource-driven or 'bottom-up' factors as being the dominant variables structuring planktonic ecosystems. Evidence is presented that predation or 'top-down' trophic effects may be equally important in specifying the occurrence of particular taxa, the biomass within adjacent trophic levels, and the morphology of dominant herbivores and carnivores. It is suggested that key species, because of unique combinations of life history strategies, metabolic demands, and physiological performance, may exert a dominant role in the extent to which predatory interactions cascade through pelagic food webs. There is considerable evidence of evolution of predation avoidance strategies among phytoplankton and zooplankton. It is proposed that future research might profitably be directed toward the question of how the pelagic environment selects for life histories and morphologies of organisms under conditions when resource availability and predation are both significant structural buttresses. Methodological approaches should include detailed studies of dominant key taxa from different environments, with the goal of identifying the critical aspects of life history, behavior, or morphology which account for their success. ALFRED WEGENER INST POLAR & MARINE RES, D-27570 BREMERHAVEN, GERMANY Verity, PG (reprint author), SKIDAWAY INST OCEANOG, 10 OCEAN SCI CIRCLE, SAVANNAH, GA 31411 USA. ABRAHAMS MV, 1993, ECOLOGY, V74, P258, DOI 10.2307/1939521; AEBISCHER NJ, 1990, NATURE, V347, P753, DOI 10.1038/347753a0; AKSNES DL, 1993, ECOL MODEL, V67, P233, DOI 10.1016/0304-3800(93)90007-F; ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; ARENOVSKI AL, 1994, WHOI9422 MASS I TECH; BAIRD D, 1989, ECOL MONOGR, V59, P329, DOI 10.2307/1943071; BANSE K, 1990, BROCK SPR S, P556; BANSE K, 1994, OCEANOGRAPHY, V7, P13, DOI DOI 10.5670/OCEANOG.1994.10; BARKER GLA, 1994, SARSIA, V79, P301, DOI 10.1080/00364827.1994.10413562; BATHMANN U, 1994, BER POLARFORSCH, V135, P235; BAUMANN MEM, 1994, J MARINE SYST, V5, P5, DOI 10.1016/0924-7963(94)90013-2; BAUMOL WJ, 1984, AM ECON, V28, P5; BERGE GRIM, 1962, SARSIA, V6, P27; BOLLENS SM, 1994, J PLANKTON RES, V16, P555, DOI 10.1093/plankt/16.5.555; BOLLENS SM, 1989, J PLANKTON RES, V11, P1047, DOI 10.1093/plankt/11.5.1047; BOND WJ, 1993, ECOL STU AN, V99, P237; Bone Q., 1978, FISH PHYSIOL, P361; BRATBAK G, 1993, MAR ECOL PROG SER, V93, P39, DOI 10.3354/meps093039; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; BROWN CW, 1994, J GEOPHYS RES-OCEANS, V99, P7467, DOI 10.1029/93JC02156; BUCKLIN A, 1995, MAR BIOL, V121, P655, DOI 10.1007/BF00349301; Buhler H., 1930, Zeitschrift fuer Morphologie und Oekologie der Tiere Berlin, V19, P59, DOI 10.1007/BF00412290; BUNDY MH, 1993, MAR ECOL PROG SER, V102, P1, DOI 10.3354/meps102001; BURCKLE LH, 1987, MICROPALEONTOLOGY, V33, P82, DOI 10.2307/1485529; BUSKEY EJ, 1986, J EXP MAR BIOL ECOL, V103, P65, DOI 10.1016/0022-0981(86)90132-2; BUTLER NM, 1989, OECOLOGIA, V78, P368, DOI 10.1007/BF00379111; CARIOU V, 1994, J PLANKTON RES, V16, P457, DOI 10.1093/plankt/16.5.457; CARMICHAEL WW, 1986, ADV BOT RES, V12, P47, DOI 10.1016/S0065-2296(08)60193-7; CARPENTER SR, 1987, ECOLOGY, V68, P1863, DOI 10.2307/1939878; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; CONFER JL, 1975, LIMNOL OCEANOGR, V20, P571, DOI 10.4319/lo.1975.20.4.0571; COUGHLIN DJ, 1990, ENVIRON BIOL FISH, V29, P35, DOI 10.1007/BF00000566; COWLES TJ, 1988, MAR BIOL, V100, P41, DOI 10.1007/BF00392953; Cushing D. H., 1975, MARINE ECOLOGY FISHE; DAWKINS R, 1987, BLIND WATCHMAKER; DEASON EE, 1982, J PLANKTON RES, V4, P203, DOI 10.1093/plankt/4.2.203; DEASON EE, 1982, J PLANKTON RES, V4, P219, DOI 10.1093/plankt/4.2.219; DENMAN KL, 1984, OCEANOGR MAR BIOL, V22, P125; DODSON S, 1988, LIMNOL OCEANOGR, V33, P1431, DOI 10.4319/lo.1988.33.6_part_2.1431; DODSON SI, 1989, OECOLOGIA, V78, P361, DOI 10.1007/BF00379110; DOLAN JR, 1991, MAR ECOL PROG SER, V77, P147, DOI 10.3354/meps077147; DRENNER RW, 1978, J FISH RES BOARD CAN, V35, P1370, DOI 10.1139/f78-215; Driedzic W. R, 1978, FISH PHYSIOL, V7, P503; DWYER RL, 1983, AM NAT, V121, P305, DOI 10.1086/284063; EHRLICH PR, 1964, EVOLUTION, V18, P586, DOI 10.2307/2406212; EMILIANI C, 1993, NATURE, V366, P217, DOI 10.1038/366217a0; FAULKNER DJ, 1984, NAT PROD REP, V1, P251, DOI 10.1039/np9840100251; FROST BW, 1991, LIMNOL OCEANOGR, V36, P1616, DOI 10.4319/lo.1991.36.8.1616; FULTON RS, 1987, J PLANKTON RES, V9, P837, DOI 10.1093/plankt/9.5.837; GAMBLE JC, 1977, B MAR SCI, V27, P146; GIFFORD DJ, 1981, LIMNOL OCEANOGR, V26, P1057, DOI 10.4319/lo.1981.26.6.1057; GILL CW, 1985, MAR ECOL PROG SER, V21, P221, DOI 10.3354/meps021221; GLIWICZ MZ, 1986, NATURE, V320, P746, DOI 10.1038/320746a0; GREENE CH, 1985, ECOLOGY, V66, P1408, DOI 10.2307/1938003; GREENE CH, 1985, J PLANKTON RES, V7, P35, DOI 10.1093/plankt/7.1.35; GREVE W, 1980, ESTUARINE PERSPECTIV, P405; Hairston N.G. Jr, 1987, P281; HAIRSTON NG, 1960, AM NAT, V94, P421, DOI 10.1086/282146; HAIRSTON NG, 1993, AM NAT, V142, P379, DOI 10.1086/285546; HAMBRIGHT KD, 1991, ARCH HYDROBIOL, V121, P389; HANSEN B, 1994, J PLANKTON RES, V16, P487, DOI 10.1093/plankt/16.5.487; HANSEN FC, 1993, MAR ECOL PROG SER, V102, P51, DOI 10.3354/meps102051; HARDY AC, 1956, OPEN SEA ITS NATUR 1; HARGRAVE BT, 1970, J FISH RES BOARD CAN, V27, P1395, DOI 10.1139/f70-165; HAURY L R, 1980, Journal of Plankton Research, V2, P187, DOI 10.1093/plankt/2.3.187; Havel J.E., 1987, P263; HAYS GC, 1994, LIMNOL OCEANOGR, V39, P1621, DOI 10.4319/lo.1994.39.7.1621; HERTZ PE, 1988, AM ZOOL, V28, P927; HESSEN DO, 1993, ARCH HYDROBIOL, V127, P129; HOBSON ES, 1976, FISH B-NOAA, V74, P567; HORN MH, 1972, FISH B-NOAA, V70, P1295; HORSTED SJ, 1988, MAR ECOL PROG SER, V48, P217, DOI 10.3354/meps048217; HRBACEK J, 1962, ROZPRAVY CESKOSLOVEN, V72, P1; HUNTER MD, 1992, ECOLOGY, V73, P724; HUNTLEY M, 1986, MAR ECOL PROG SER, V28, P105, DOI 10.3354/meps028105; HUNTLEY M, 1984, AM NAT, V124, P455, DOI 10.1086/284288; HUNTLEY ME, 1994, MAR ECOL PROG SER, V107, P23, DOI 10.3354/meps107023; HUNTLEY ME, 1992, AM NAT, V140, P201, DOI 10.1086/285410; HUNTLEY ME, 1978, J FISH RES BOARD CAN, V35, P257, DOI 10.1139/f78-042; IKEDA T, 1982, J EXP MAR BIOL ECOL, V62, P143, DOI 10.1016/0022-0981(82)90088-0; JUNGMANN D, 1991, INT REV GES HYDROBIO, V76, P47, DOI 10.1002/iroh.19910760106; JURGENS K, 1994, MAR ECOL PROG SER, V112, P169, DOI 10.3354/meps112169; JURGENS K, 1994, MARINE MICROBIAL FOOD WEBS, 1994, VOL 8, NO 1 AND 2, P295; KASHKIN N. I., 1963, OKEANOLOGIYA, V3, P697; Kerfoot WC, 1987, PREDATION DIRECT IND; KIDEYS AE, 1994, J MARINE SYST, V5, P171, DOI 10.1016/0924-7963(94)90030-2; KILS U, 1990, EOS, V71, P94; KIORBOE T, 1993, ADV MAR BIOL, V29, P1, DOI 10.1016/S0065-2881(08)60129-7; KIORBOE T, 1991, B PLANKTON SOC JAPAN, V229; Kitchell J.F., 1987, P132; KLEPPEL GS, 1993, MAR ECOL PROG SER, V99, P183, DOI 10.3354/meps099183; KNOX GA, 1994, BIOL SO OCEAN; KONCHINA YV, 1991, 1991 INT S BENG TROP, P74; KORNMANN P, 1955, HELGOLANDER WISS MEE, V5, P218; KOSLOW JA, 1983, CAN J FISH AQUAT SCI, V40, P1912, DOI 10.1139/f83-222; KUHLMANN HW, 1985, SCIENCE, V227, P1347, DOI 10.1126/science.227.4692.1347; LAMPERT W, 1994, LIMNOL OCEANOGR, V39, P1543, DOI 10.4319/lo.1994.39.7.1543; Lampert W., 1987, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V45, P143; LANDRY MR, 1978, INT REV GES HYDROBIO, V63, P77, DOI 10.1002/iroh.19780630106; LANDRY MR, 1977, HELGOLAND WISS MEER, V30, P8, DOI 10.1007/BF02207821; LEDFORDHOFFMAN PA, 1986, GEOCHIM COSMOCHIM AC, V50, P2099, DOI 10.1016/0016-7037(86)90263-2; LEHMAN JT, 1988, LIMNOL OCEANOGR, V33, P931, DOI 10.4319/lo.1988.33.4_part_2.0931; LENZ J, 1993, DEEP-SEA RES PT II, V40, P559, DOI 10.1016/0967-0645(93)90032-I; Lenz J., 1992, ARCH HYDROBIOL S, V37, P265; LEWIS WM, 1986, AM NAT, V127, P184, DOI 10.1086/284477; LINDAHL O, 1983, MAR ECOL PROG SER, V10, P119, DOI 10.3354/meps010119; LISS PS, 1994, J MARINE SYST, V5, P41, DOI 10.1016/0924-7963(94)90015-9; LONGHURST AR, 1991, LIMNOL OCEANOGR, V36, P1507, DOI 10.4319/lo.1991.36.8.1507; LONGHURST AR, 1989, PROG OCEANOGR, V22, P47, DOI 10.1016/0079-6611(89)90010-4; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; MACHACEK J, 1993, LIMNOL OCEANOGR, V38, P1544, DOI 10.4319/lo.1993.38.7.1544; MACKENZIE BR, 1991, MAR ECOL PROG SER, V73, P149, DOI 10.3354/meps073149; MALEJ A, 1993, MAR ECOL PROG SER, V96, P33, DOI 10.3354/meps096033; MARGALEF R, 1978, OCEANOL ACTA, V1, P493; MARSCHALL HP, 1988, POLAR BIOL, V9, P129, DOI 10.1007/BF00442041; MCCAULEY E, 1979, LIMNOL OCEANOGR, V24, P243, DOI 10.4319/lo.1979.24.2.0243; MCCOMAS SR, 1982, CAN J FISH AQUAT SCI, V39, P815, DOI 10.1139/f82-111; MCLAREN BE, 1994, SCIENCE, V266, P1555, DOI 10.1126/science.266.5190.1555; MCQUEEN DJ, 1986, CAN J FISH AQUAT SCI, V43, P1571, DOI 10.1139/f86-195; MCQUEEN DJ, 1989, ECOL MONOGR, V59, P289, DOI 10.2307/1942603; MEDLIN LK, 1994, PHYCOLOGIA, V33, P199, DOI 10.2216/i0031-8884-33-3-199.1; MENGE BA, 1994, ECOL MONOGR, V64, P249, DOI 10.2307/2937163; MOLLER H, 1979, MEERESFORSCHUNG, V27, P1; Mullin M. M., 1969, Oceanography and Marine Biology, V7, P293; NIELSEN TG, 1991, LIMNOL OCEANOGR, V36, P1091, DOI 10.4319/lo.1991.36.6.1091; OHMAN MD, 1983, SCIENCE, V220, P1404, DOI 10.1126/science.220.4604.1404; OHMAN MD, 1990, ECOL MONOGR, V60, P257, DOI 10.2307/1943058; PAFFENHOFER GA, 1990, J PLANKTON RES, V12, P933, DOI 10.1093/plankt/12.5.933; PAFFENHOFER GA, 1988, B MAR SCI, V43, P430; PERSSON L, 1992, AM NAT, V140, P59, DOI 10.1086/285403; PIERCE RW, 1992, REV AQUAT SCI, V6, P139; PILSON MEQ, 1985, ESTUARIES, V8, P2, DOI 10.2307/1352116; PIMM SL, 1992, NATURE, V360, P298, DOI 10.1038/360298a0; POMEROY LR, 1974, BIOSCIENCE, V24, P542; POULET SA, 1994, MAR ECOL PROG SER, V111, P79, DOI 10.3354/meps111079; Powell T.M., 1989, P157; POWER ME, 1992, ECOLOGY, V73, P733, DOI 10.2307/1940153; PURCELL JE, 1994, LIMNOL OCEANOGR, V39, P263, DOI 10.4319/lo.1994.39.2.0263; PUTT M, 1990, DEEP-SEA RES, V37, P1713, DOI 10.1016/0198-0149(90)90073-5; RAMCHARAN CW, 1992, CAN J FISH AQUAT SCI, V49, P159, DOI 10.1139/f92-019; RIEMANN B, 1990, MAR ECOL-PROG SER, V65, P169; ROFF JC, 1988, J MAR BIOL ASSOC UK, V68, P143, DOI 10.1017/S0025315400050153; ROTH JC, 1968, LIMNOL OCEANOGR, V13, P242, DOI 10.4319/lo.1968.13.2.0242; ROUSSEAU V, 1994, J MARINE SYST, V5, P23, DOI 10.1016/0924-7963(94)90014-0; RUDSTAM LG, 1994, ANA, V10, P105; RUNGE JA, 1987, MAR BIOL, V94, P329, DOI 10.1007/BF00428238; SANDERS RW, 1991, J PROTOZOOL, V38, P76, DOI 10.1111/j.1550-7408.1991.tb04805.x; SCHELSKE CL, 1994, CAN J FISH AQUAT SCI, V51, P2147; SCHULTZ JC, 1988, ECOLOGY, V69, P896, DOI 10.2307/1941239; SIERACKI ME, 1993, DEEP-SEA RES PT II, V40, P213, DOI 10.1016/0967-0645(93)90014-E; SIGNOR PW, 1994, PALEOBIOLOGY, V20, P297; Sih A., 1987, P203; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; Singarajah K. V., 1969, Journal of Experimental Marine Biology and Ecology, V3, P171, DOI 10.1016/0022-0981(69)90015-X; Smetacek V., 1990, P103; SMETACEK V, 1985, ESTUARIES, V8, P145, DOI 10.2307/1351864; Smith F.E., 1969, EUTROPHICATION CAUSE, P631; Smith S.L., 1990, P527; SMITH WO, 1991, NATURE, V352, P514, DOI 10.1038/352514a0; Steele J.H., 1974, STRUCTURE MARINE ECO; STEELE JH, 1991, J THEOR BIOL, V153, P425, DOI 10.1016/S0022-5193(05)80579-X; STEELE JH, 1991, BIOSCIENCE, V41, P470, DOI 10.2307/1311804; STEFELS J, 1993, MAR ECOL PROG SER, V97, P11, DOI 10.3354/meps097011; STEINBERG DK, 1994, LIMNOL OCEANOGR, V39, P1606, DOI 10.4319/lo.1994.39.7.1606; Stemberger R.S., 1987, P227; STOECKER DK, 1989, MAR ECOL PROG SER, V50, P241, DOI 10.3354/meps050241; STOECKER DK, 1985, MAR ECOL PROG SER, V25, P159, DOI 10.3354/meps025159; STRICKLER JR, 1975, SWIMMING FLYING NATU, V2, P599; Strong D. R., 1984, INSECTS PLANTS; STRONG DR, 1992, ECOLOGY, V73, P747, DOI 10.2307/1940154; TANIGUCHI A, 1988, Marine Microbial Food Webs, V3, P21; TOLLRIAN R, 1993, J PLANKTON RES, V15, P1309, DOI 10.1093/plankt/15.11.1309; TRAGER G, 1994, MAR BIOL, V120, P251, DOI 10.1007/BF00349685; TREGUER P, 1995, SCIENCE, V268, P375, DOI 10.1126/science.268.5209.375; TURNER JT, 1991, REV AQUAT SCI, V5, P101; Valiela I., 1984, MARINE ECOLOGICAL PR; VANALSTYNE KL, 1986, MAR ECOL PROG SER, V34, P187, DOI 10.3354/meps034187; VERITY PG, 1982, MAR BIOL, V72, P79, DOI 10.1007/BF00393951; VERITY PG, 1991, J PROTOZOOL, V38, P69, DOI 10.1111/j.1550-7408.1991.tb04804.x; VERITY PG, 1986, ARCH PROTISTENKD, V131, P71, DOI 10.1016/S0003-9365(86)80064-1; VERITY PG, 1993, DEEP-SEA RES PT I, V40, P1793, DOI 10.1016/0967-0637(93)90033-Y; VERITY PG, 1988, J PLANKTON RES, V10, P749, DOI 10.1093/plankt/10.4.749; VERITY PG, 1987, 127 CHES RES CONS PU, P35; VERMEIJ GJ, 1994, ANNU REV ECOL SYST, V25, P219, DOI 10.1146/annurev.es.25.110194.001251; VINYARD GL, 1982, CAN J FISH AQUAT SCI, V39, P208, DOI 10.1139/f82-025; WALSH JJ, 1977, SEA, V6, P923; WASSMANN P, 1994, J MARINE SYST, V5, P81, DOI 10.1016/0924-7963(94)90018-3; WERNER EE, 1988, ECOLOGY, V69, P1352, DOI 10.2307/1941633; WHITE HH, 1979, J EXP MAR BIOL ECOL, V36, P217, DOI 10.1016/0022-0981(79)90117-5; Yen J., 1992, Advances in Limnology, V36, P123; Zaret T. M., 1980, PREDATION FRESHWATER; ZARET TM, 1976, LIMNOL OCEANOGR, V21, P804, DOI 10.4319/lo.1976.21.6.0804; 1989, MAR ECOL-PROG SER, V55, P197; 1994, CMICES 1994L REP WOR, P10 194 421 432 5 185 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. JAN 1996 130 1-3 277 293 10.3354/meps130277 17 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography TW295 WOS:A1996TW29500025 Bronze 2019-02-26 S Purvis, A; Harvey, PH Miller, PJ Purvis, A; Harvey, PH Miniature mammals: Life-history strategies and macroevolution MINIATURE VERTEBRATES: THE IMPLICATIONS OF SMALL BODY SIZE SYMPOSIA OF THE ZOOLOGICAL SOCIETY OF LONDON English Proceedings Paper Symposium on Miniature Vertebrates - the Implications of Small Body Size NOV 11-12, 1994 ZOOL SOC LONDON, LONDON, ENGLAND Zool Soc London ZOOL SOC LONDON Most mammal species are smaller than 60 g. The smallest species are mainly shrews, myomorph rodents, and insectivorous bats. A bias in data availability has led most previous work on patterns of mammal life-history evolution to focus on unusually large species. We review the major findings of such comparative studies, beginning with allometries of key variables and moving on to patterns of correlations among residuals. Every date, weight, and rate scales tightly with adult size across mammal species: small mammals tend to live faster and die younger than large species. This fast-slow continuum is also apparent when body size is factored out. We discuss two very different optimality models, one aiming to understand the driving forces behind life-history variation, the other trying to explain the macroevolutionary pattern of body size among species. Our comparative analysis finds that, among small mammals, most of the variation in life histories is independent of body size, but that correlations among residuals are broadly similar to those in mammals as a whole: the slow-fast continuum is still present. The size independence of the variation shows that quite radical life-history changes are possible without any change in body size being necessary: mammals are not tightly constrained by allometry. Interestingly, mammals that are smaller than their relatives have relatively small litters of large offspring. Our findings lend at best qualified support to the models we discuss. Purvis, A (reprint author), UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED,DEPT BIOL,SILWOOD PK,ASCOT SL5 7PY,BERKS,ENGLAND. Purvis, Andy/A-7529-2008 Purvis, Andy/0000-0002-8609-6204 0 7 7 0 5 OXFORD UNIVERSITY PRESS OXFORD WALTON ST, OXFORD, ENGLAND OX2 6DP 0084-5612 0-19-857787-7 SYM ZOOL S 1996 69 159 174 16 Zoology Zoology BH07N WOS:A1996BH07N00009 2019-02-26 J Reznick, D Reznick, D Life history evolution in guppies: A model system for the empirical study of adaptation NETHERLANDS JOURNAL OF ZOOLOGY English Article Poecilia reticulata; evolution; adaptation; natural selection; life history predation POECILIA-RETICULATA; COLOR PATTERNS; PREDATION; POPULATIONS; SELECTION; BEHAVIOR I have used a diversity of observations and experiments to evaluate whether or not guppy life histories represent an adaptation to predator-induced mortality rates. I have primarily worked on natural populations of guppies from Trinidad, but have also considered populations from Tobago and Venezuela. My first step was to compare the life histories of guppies from high and low predation environments. I found that guppies from high predation elements matured moro quickly, reproduced more often, and devoted more of their consumed resources to reproduction. They also produced more and smaller offspring in each litter. All of these differences had a genetic basis and many conform to theoretical predictions For how thr life history should evolve in response to differences in mortality patterns. I also found that these same patterns were obtained in a new series of localities that had a completely different suite of predators, but had the same contrast between high and low predation communities. I employed mark-recapture techniques to demonstrate that guppies from high predation localities also have significantly higher mortality rates than their counterparts from low predation localities. Such differences in mortality rate provide a potential mechanism for the evolution of these life history patterns. Finally, I have introduced guppies from high predation communities into low predation communities from which they had previously been excluded by waterfalls. These introduced populations evolved in the predicted fashion (delayed maturity, reduced resource allocation to reproduction). Some variables changed significantly in as little as four years, or approximately six generations. While each observation by itself represents an incomplete argument for adaptation, together they make a very strong case for predation and mortality playing a significant role in selecting for interpopulation differences in life histories. Reznick, D (reprint author), UNIV CALIF RIVERSIDE, DEPT BIOL, RIVERSIDE, CA 92521 USA. Langerhans, R./A-7205-2009 CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; Charlesworth B, 1994, EVOLUTION AGE STRUCT; Darwin C, 1859, ORIGIN SPECIES; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; Grant B. R., 1989, EVOLUTIONARY DYNAMIC; Grant P. R., 1986, ECOLOGY EVOLUTION DA; HALDANE JBS, 1949, EVOLUTION, V3, P51, DOI 10.2307/2405451; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; INGERICH PD, 1983, SCIENCE, V222, P129; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; PETERS RH, 1976, AM NAT, V110, P1, DOI 10.1086/283045; Provine WB, 1971, ORIGINS THEORETICAL; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1996, IN PRESS EVOLUTION; REZNICK DN, 1996, IN PRESS EVOLUTIONAR; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1974, OECOLOGIA, V14, P93, DOI 10.1007/BF00344900; SEGHERS BH, 1973, THESIS U BRIT COLUMB; Stearns SC., 1992, EVOLUTION LIFE HIST; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 39 26 27 0 25 BRILL ACADEMIC PUBLISHERS LEIDEN PLANTIJNSTRAAT 2, P O BOX 9000, 2300 PA LEIDEN, NETHERLANDS 0028-2960 NETH J ZOOL Neth.