PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Lilleskov, EA; Bruns, TD Lilleskov, EA; Bruns, TD Root colonization dynamics of two ectomycorrhizal fungi of contrasting life history strategies are mediated by addition of organic nutrient patches NEW PHYTOLOGIST English Article life history strategy; ectomycorrhizas; organic nutrients; faecal pellets and fertilization; succession; co-inoculation; Rhizopogon occidentalis; Tomentella sublilacina; Pinus muricata PINUS-MURICATA FOREST; COMMUNITY STRUCTURE; MYCORRHIZAL FUNGI; BASIDIOSPORES; BIRCH; SEEDLINGS; WILDFIRE; NITROGEN; STAND; ESTABLISHMENT Here we investigated whether root colonization dynamics of ectomycorrhizal fungi (EMF) of contrasting life history strategies (i.e. early vs late successional dominants) were affected by resource availability, as mediated either directly via the soil, or indirectly via host nutrition. In a two phase experiment, Pinus muricata seedlings were co-inoculated with spores of early (Rhizopogon occidentalis ) and late (Tomentella sublilacina ) successional dominant EMF, with or without squirrel faecal pellets added as a nutrient source, in single chambers (Phase A) subsequently converted to split-root chambers (Phase B). R. occidentalis colonized seedlings earlier than T. sublilacina . R. occidentalis root tip numbers peaked then declined in both treatments, but earlier in the minus pellet treatment than the plus. T. sublilacina increased steadily regardless of treatment. In the split-root treatment, we found no response by R. occidentalis , and a complex response by T. sublilacina , suggesting that plant nutrition may affect colonization dynamics. The strategy of R. occidentalis may be to colonize roots early in high resource environments; whereas that of T. sublilacina may be based upon slower colonization rates and greater competitive ability. The effect of nutrient additions on R. occidentalis may be highly dependent upon their timing. Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA Lilleskov, EA (reprint author), US Forest Serv, USDA, N Cent Res Stn, 410 MacInnes Dr, Houghton, MI 49931 USA. Baar J, 1999, NEW PHYTOL, V143, P409, DOI 10.1046/j.1469-8137.1999.00452.x; BIRRAUX D, 1981, CAN J BOT, V59, P2026; BRUNS TD, 1995, PLANT SOIL, V170, P63, DOI 10.1007/BF02183055; CASTELLANO MA, 1985, CAN J FOREST RES, V15, P10, DOI 10.1139/x85-003; Deacon J. W., 1992, Mycorrhizal functioning: an integrative plant-fungal process., P249; DEACON JW, 1983, PLANT SOIL, V71, P257, DOI 10.1007/BF02182660; Dighton J., 1985, Developmental biology of higher fungi., P117; Fleming L. V., 1986, PHYSL GENETICAL ASPE, P259; FLEMING LV, 1985, SOIL BIOL BIOCHEM, V17, P591, DOI 10.1016/0038-0717(85)90034-3; FOX FM, 1986, T BRIT MYCOL SOC, V87, P371, DOI 10.1016/S0007-1536(86)80212-1; FOX FM, 1983, PLANT SOIL, V71, P269, DOI 10.1007/BF02182662; Gardes M, 1996, Methods Mol Biol, V50, P177; Gardes M, 1996, CAN J BOT, V74, P1572, DOI 10.1139/b96-190; GIBSON F, 1988, T BRIT MYCOL SOC, V91, P239, DOI 10.1016/S0007-1536(88)80211-0; GIBSON F, 1990, MYCOL RES, V94, P166, DOI 10.1016/S0953-7562(09)80608-4; Horton TR, 2001, MOL ECOL, V10, P1855, DOI 10.1046/j.0962-1083.2001.01333.x; Horton TR, 1998, MYCORRHIZA, V8, P11, DOI 10.1007/s005720050205; Horton TR, 1998, NEW PHYTOL, V139, P331, DOI 10.1046/j.1469-8137.1998.00185.x; KAREN O, 1997, THESIS SWEDISH U AGR; KOLJALG U, 1992, MYCOL RES, V96, P215; Lilleskov EA, 2002, ECOLOGY, V83, P104, DOI 10.1890/0012-9658(2002)083[0104:BEFCCO]2.0.CO;2; MILLER SL, 1994, MYCOLOGIA, V86, P89, DOI 10.2307/3760722; Molina R, 1999, ECTOMYCORRHIZAL FUNGI: KEY GENERA IN PROFILE, P129; Newton A. C., 1992, Mycorrhiza, V2, P75, DOI 10.1007/BF00203253; Peter M, 2001, NEW PHYTOL, V149, P311, DOI 10.1046/j.1469-8137.2001.00030.x; Smith S. E, 1997, MYCORRHIZAL SYMBIOSI; *SPSS INC, 1997, SPSS ADV STAT 7 5; Taylor DL, 1999, MOL ECOL, V8, P1837, DOI 10.1046/j.1365-294x.1999.00773.x; THEODOROU C, 1993, SOIL BIOL BIOCHEM, V25, P647, DOI 10.1016/0038-0717(93)90103-I; TRAPPE JM, 1977, ANNU REV PHYTOPATHOL, V15, P203, DOI 10.1146/annurev.py.15.090177.001223; Tronsmo A., 1998, PLANT MICROBE INTERA; Uitenbroek D. G., 1997, SISA BINOMIAL; VISSER S, 1995, NEW PHYTOL, V129, P389, DOI 10.1111/j.1469-8137.1995.tb04309.x; von Ende Carl N., 1993, P113 34 45 46 4 33 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 0028-646X NEW PHYTOL New Phytol. JUL 2003 159 1 141 151 10.1046/j.0028-646x.2003.00794.x 11 Plant Sciences Plant Sciences 689FL WOS:000183480900014 2019-02-26 J Ellers, J; Jervis, M Ellers, J; Jervis, M Body size and the timing of egg production in parasitoid wasps OIKOS English Article LIFE-HISTORY EVOLUTION; SEX-RATIO MANIPULATION; ASOBARA-TABIDA; HOST SIZE; HYMENOPTERAN PARASITOIDS; CLUTCH SIZE; SPALANGIA-CAMERONI; INSECT PARASITOIDS; APHYTIS-MELINUS; FEMALE SIZE In insects several key fitness-related variables are positively correlated with intraspecific variation in body size, but little is known about size-related variation in the timing of egg production within species. Female insects are known to vary in the degree to which they concentrate egg production into the early past of life. This variation has been quantified as the ovigeny index, defined as the proportion of the maximum potential lifetime complement of eggs that is mature following emergence from the pupa. We tested the hypothesis that the timing of egg production depends both on body size and on host availability, by means of a dynamic programming model that predicted optimal resource allocation to reproduction and survival together with the resulting ovigeny index, in non-feeding synovigenic: parasitoids of different sizes. As body size increases, the proportionate increase in resource allocation to initial egg load is less than the proportionate increase in allocation to lifetime fecundity and potential life span, leading to a deferred investment in reproduction as shown by a decrease in ovigeny index. High habitat quality and high habitat stochasticity in reproductive opportunities have a significant effect on the optimal allocation of resources to reproduction and survival, and thus select for early reproduction, i.e. an increased ovigeny index. The ovigeny concept - ovigeny index together with its life-history correlates - enables understanding of the general occurrence of size-related deferment of reproductive investment in parasitoid wasps and also helps explain a significant part of the considerable life-history variation found among such insects. Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA; Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3TL, S Glam, Wales Ellers, J (reprint author), Vrije Univ Amsterdam, Inst Ecol Sci, Dept Anim Ecol, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands. ellers@bio.vu.nl Jervis, Mark/A-4351-2010; Ellers, Jacintha/K-5823-2012 Ellers, Jacintha/0000-0003-2665-1971 BELLOWS TS, 1985, RES POPUL ECOL, V27, P65, DOI 10.1007/BF02515480; Bennett DM, 1998, J ANIM ECOL, V67, P580; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BLACKBURN TM, 1991, J ANIM ECOL, V60, P151, DOI 10.2307/5451; BLANCKENHORN WU, 1994, OECOLOGIA, V97, P354, DOI 10.1007/BF00317325; Boggs CL, 1997, ECOLOGY, V78, P181; BOGGS CL, 1986, ECOL ENTOMOL, V11, P7, DOI 10.1111/j.1365-2311.1986.tb00274.x; BOGGS CL, 1992, FUNCT ECOL, V6, P508, DOI 10.2307/2390047; Briegel H, 2001, J MED ENTOMOL, V38, P557, DOI 10.1603/0022-2585-38.4.557; COLLIER TR, 1995, ANN ENTOMOL SOC AM, V88, P206, DOI 10.1093/aesa/88.2.206; CORRIGAN JE, 1990, ENVIRON ENTOMOL, V19, P1496, DOI 10.1093/ee/19.5.1496; Eijs IEM, 1999, ECOL LETT, V2, P27, DOI 10.1046/j.1461-0248.1999.21045.x; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ellers J, 1996, NETH J ZOOL, V46, P227, DOI 10.1163/156854295X00186; Ellers J, 2000, NETH J ZOOL, V50, P29, DOI 10.1163/156854200505784; Ellers J, 1998, J ANIM ECOL, V67, P318, DOI 10.1046/j.1365-2656.1998.00195.x; Ellers J, 2001, OIKOS, V92, P309, DOI 10.1034/j.1600-0706.2001.920213.x; FLANDERS STANLEY E., 1950, CANADIAN ENT, V82, P134; Gauld I., 1988, HYMENOPTERA; GAULD ID, 1987, BIOL J LINN SOC, V30, P299, DOI 10.1111/j.1095-8312.1987.tb00304.x; Gilbert F, 1998, BIOL J LINN SOC, V63, P495, DOI 10.1006/bijl.1997.0208; Godfray H. C. J., 1994, PARASITOIDS BEHAV EV; HARDY ICW, 1992, J ANIM ECOL, V61, P121, DOI 10.2307/5515; Harvey JA, 2001, J INSECT BEHAV, V14, P573, DOI 10.1023/A:1012219116341; Heimpel GE, 1996, BIOL REV, V71, P373, DOI 10.1111/j.1469-185X.1996.tb01279.x; Heimpel GE, 1998, BIOL CONTROL, V11, P160, DOI 10.1006/bcon.1997.0587; HEIMPEL GE, 2003, IN PRESS PLANT PROVI; HEINRICH B, 1996, THERMAL WARRIORS; HEINZ KM, 1990, ANN ENTOMOL SOC AM, V83, P916, DOI 10.1093/aesa/83.5.916; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Jervis M.A., 1996, Biocontrol News and Information, V17, p11N; Jervis MA, 1998, BIOL J LINN SOC, V63, P461, DOI 10.1111/j.1095-8312.1998.tb00326.x; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; JERVIS MA, 1993, J NAT HIST, V27, P67, DOI 10.1080/00222939300770051; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; JERVIS MA, 2003, IN PRESS FUNCT ECOL; KAZMER DJ, 1995, ECOLOGY, V76, P412, DOI 10.2307/1941200; KING BH, 1994, BEHAV ECOL, V5, P448, DOI 10.1093/beheco/5.4.448; KING BH, 1988, EVOLUTION, V42, P1190, DOI 10.1111/j.1558-5646.1988.tb04179.x; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; LEMASURIER AD, 1991, J ANIM ECOL, V60, P107; LEWONTIN RC, 1965, GENETICS COLONIZING, P79; Mangel M, 1988, DYNAMIC MODELING BEH; Mayhew PJ, 1999, J ANIM ECOL, V68, P906, DOI 10.1046/j.1365-2656.1999.00338.x; Mayhew PJ, 2001, OIKOS, V92, P372, DOI 10.1034/j.1600-0706.2001.920221.x; Olson DM, 1998, ENVIRON ENTOMOL, V27, P508, DOI 10.1093/ee/27.2.508; ONEILL KM, 1990, J ZOOL, V220, P115, DOI 10.1111/j.1469-7998.1990.tb04297.x; OPP SB, 1986, ANN ENTOMOL SOC AM, V79, P700, DOI 10.1093/aesa/79.4.700; Papaj DR, 2000, ANNU REV ENTOMOL, V45, P423, DOI 10.1146/annurev.ento.45.1.423; Peters R.H., 1983, P1; Pexton JJ, 2002, BEHAV ECOL, V13, P690, DOI 10.1093/beheco/13.5.690; Price P.W., 1975, P87; Roff Derek A., 1992; Rosenheim JA, 2000, P ROY SOC B-BIOL SCI, V267, P1565, DOI 10.1098/rspb.2000.1179; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Sevenster JG, 1998, EVOLUTION, V52, P1241, DOI 10.1111/j.1558-5646.1998.tb01853.x; SPRADBERY JP, 1981, ENTOMOL EXP APPL, V30, P116, DOI 10.1111/j.1570-7458.1981.tb03084.x; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; VANDENASSEM J, 1989, BEHAVIOUR, V108, P160, DOI 10.1163/156853989X00114; VISSER ME, 1994, J ANIM ECOL, V63, P963, DOI 10.2307/5273; Weisser WW, 1997, J ANIM ECOL, V66, P386, DOI 10.2307/5984; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; West SA, 1996, J ANIM ECOL, V65, P631, DOI 10.2307/5742 66 84 85 2 28 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos JUL 2003 102 1 164 172 10.1034/j.1600-0706.2003.12285.x 9 Ecology Environmental Sciences & Ecology 693BD WOS:000183694000017 2019-02-26 J Nakagawa, N; Ohsawa, H; Muroyama, Y Nakagawa, N; Ohsawa, H; Muroyama, Y Life-history parameters of a wild group of West African patas monkeys (Erythrocebus patas patas) PRIMATES English Article age at first birth; Erythrocebits patas patas; interbirth intervals; life-history evolution; mortality rates CERCOPITHECUS-AETHIOPS-TANTALUS; REPRODUCTIVE SUCCESS; NATURAL INCREASE; INTRINSIC RATE; EVOLUTION; AGE; POPULATION; PRIMATES; CAMEROON; FOREST Based on long-term, although intermittent. observations (2 years 4 months of 14 years), we present data on birth seasonality, age at first birth, interbirth intervals, mortality rates, age at first emigration, and population change of a wild population of West African patas monkeys (Etythrocebus patas patas) in northern Cameroon. Birth season was from the end of December until the middle of February, corresponding to the mid-dry season. In spite of large body size.. the patas females had the earliest age at first birth (36.5 monthsold) and the shortest interbirth intervals (12 months) compared to the closely related wild forest guenons. Age at first emigration of the males was considered to occur between 2.5 and 4.5 years. The group size of the focal group drastically decreased between 1984 and 1987, and steadily increased until 1994, then decreased again in 1997. The neighboring group also showed a similar trend in group size. The population decreases were likely to be caused by drought over 3 years. Annual crude adult mortality rate was 4% during population increase periods (PIP) between 1987 and 1994. It rose to 22% during all the periods (AP), including drought over 3 years. Despite their smaller body size, the rate of the wild forest guenons (Cercopithecus mitis) (4%) was the same and much lower than those of the patas during PIP and AP, respectively. The annual average juvenile mortality rate was 13% during PIP and it also rose to 37% during AP. That of wild forest guenons (C. ascanius) (10-12%) was a little lower and much lower than those of the patas during PIP and AP, respectively. These findings were consistent with Charnov's theoretical model of mammalian life-history evolution in that patas with high adult and juvenile mortality showed early and frequent reproduction in spite of large body size. Charnov also considered high adult mortality as a selective force and high juvenile mortality as a density-dependent consequence of high fecundity. Our results support the former but not the latter research findings. Kobe City Coll Nursing, Fac Nursing, Dept Nursing, Nishi Ku, Kobe, Hyogo 6512103, Japan; Kyoto Univ, Primate Res Inst, Inuyama, Aichi 4848506, Japan Nakagawa, N (reprint author), Kobe City Coll Nursing, Fac Nursing, Dept Nursing, Nishi Ku, 3-4 Gakuen Nishimachi, Kobe, Hyogo 6512103, Japan. nakagawa@tr.kobe-ccn.ac.jp BRONSON FH, 1985, BIOL REPROD, V32, P1, DOI 10.1095/biolreprod32.1.1; Butynski T.M., 1988, P284; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; CHISM J, 1984, FEMALE PRIMATES STUD, P175; Cords M., 1987, P98; CORDS M, 1987, PRIMATES, V28, P277, DOI 10.1007/BF02382578; Dittus WPJ, 1975, SOCIOECOLOGY PSYCHOL, P125; Dunbar R. I. M., 1988, PRIMATE SOCIAL SYSTE; FOLLAND CK, 1986, NATURE, V320, P602, DOI 10.1038/320602a0; Harvey P.H., 1987, P181; Kavanagh M., 1978, Oryx, V14, P241; LEE PC, 1995, MOTHERHOOD IN HUMAN AND NONHUMAN PRIMATES, P47; LINDBURG DL, 1987, COMP PRIMATE BIOL, V2, P167; LOY J, 1981, ANIM BEHAV, V29, P714, DOI 10.1016/S0003-3472(81)80006-1; Milton K, 1996, J ZOOL, V239, P39, DOI 10.1111/j.1469-7998.1996.tb05435.x; NAKAGAWA N, 1989, PRIMATES, V30, P27, DOI 10.1007/BF02381208; Nakagawa N, 1999, AM J PRIMATOL, V49, P243, DOI 10.1002/(SICI)1098-2345(199911)49:3<243::AID-AJP3>3.0.CO;2-4; Nakagawa N, 2000, AM J PRIMATOL, V52, P169, DOI 10.1002/1098-2345(200012)52:4<169::AID-AJP2>3.3.CO;2-2; NAKAGAWA N, 1991, PRIMATOLOGY TODAY, P119; OHSAWA H, 1993, PRIMATES, V34, P533, DOI 10.1007/BF02382664; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; Ross C, 1998, EVOL ANTHROPOL, V6, P54, DOI 10.1002/(SICI)1520-6505(1998)6:2<54::AID-EVAN3>3.3.CO;2-D; ROSS C, 1988, J ZOOL, V214, P199, DOI 10.1111/j.1469-7998.1988.tb04717.x; ROSS C, 1992, OECOLOGIA, V90, P383, DOI 10.1007/BF00317695; ROSS C, 1992, PRIMATES, V33, P207, DOI 10.1007/BF02382750; Ross Caroline, 1999, P73, DOI 10.1017/CBO9780511542466.007; ROWELL TE, 1979, J MAMMAL, V60, P58, DOI 10.2307/1379758; RUTBERG AT, 1987, AM NAT, V130, P692, DOI 10.1086/284739; SADE DS, 1976, YEARB PHYS ANTHROPOL, V20, P253; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; STRUHSAKER TT, 1991, BEHAVIOUR, V117, P182, DOI 10.1163/156853991X00526; STRUM SC, 1982, AM J PRIMATOL, V3, P61, DOI 10.1002/ajp.1350030106; SUGIYAMA Y, 1982, FOLIA PRIMATOL, V39, P238, DOI 10.1159/000156080; SUGIYAMA Y, 1994, AM J PRIMATOL, V32, P311, DOI 10.1002/ajp.1350320408; SWART J, 1993, ECOL MODEL, V70, P289, DOI 10.1016/0304-3800(93)90062-W 38 14 14 1 19 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0032-8332 PRIMATES Primates JUL 2003 44 3 281 290 10.1007/s10329-003-0042-z 10 Zoology Zoology 706BJ WOS:000184431500010 12721784 2019-02-26 J Essington, TE Essington, TE Development and sensitivity analysis of bioenergetics models for skipjack tuna and albacore: A comparison of alternative life histories TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article EASTERN PACIFIC-OCEAN; KATSUWONUS-PELAMIS; THUNNUS-ALALUNGA; YELLOWFIN TUNA; METABOLIC-RATE; FISH POPULATIONS; FOOD-CONSUMPTION; TROPICAL TUNAS; SOUTH-PACIFIC; PREDATION This study aims to develop bioenergetics models for two pelagic predators, skipjack tuna Katsuwonus pelamis and albacore Thunnus alalunga by synthesizing existing data on metabolic rate, growth rate, and reproduction. My estimates were contrasted with those calculated from a previously developed bioenergetics model for yellowfin tuna T. albacares and with those from an empirical regression model based on fish morphometrics. Based on observed growth rates and metabolic costs and calculated population size structure, the models predict annual consumption: biomass (Q:B) ratios of 32.4, 19.8, and 13.4 for skipjack tuna, yellowfin tuna, and albacore, respectively. The models predict that skipjack and yellowfin tuna populations allocate 20-24% of consumed energy to somatic and gonad growth, compared with only 6% for albacore. The skipjack tuna model was fairly robust with respect to most parameter estimates, but the albacore model was sensitive to parameters describing swimming speed. Empirical regression models commonly used to predict Q:B ratios produced substantially lower estimates than those given above, possibly because those models are for ectothermic fishes and cannot predict the high metabolic demands of the active, endothermic fishes that I studied. The model results indicate that the different life history strategies of these fishes are manifest in their energy budgets and that contrasts in the population consumption rates are largely due to differences in the size structure of the populations. SUNY Stony Brook, Marine Sci Res Ctr, Stony Brook, NY 11794 USA Essington, TE (reprint author), SUNY Stony Brook, Marine Sci Res Ctr, Stony Brook, NY 11794 USA. ALVERSON FG, 1963, INT AM TROPICAL TUNA, V7; BARRETT I, 1964, NATURE, V203, P96, DOI 10.1038/203096b0; BARTELL SM, 1986, CAN J FISH AQUAT SCI, V43, P160, DOI 10.1139/f86-018; BARTOO N, 1994, 3361 FAO UN; Bertignac M, 1998, FISH OCEANOGR, V7, P326, DOI 10.1046/j.1365-2419.1998.00065.x; BOGGS CH, 1991, PHYSIOL ZOOL, V64, P502, DOI 10.1086/physzool.64.2.30158188; BRILL RW, 1979, FISH B-NOAA, V77, P494; BRILL RW, 1987, US NATL MARINE FISHE, V85, P5; CARY FG, 1971, AM ZOOL, V11, P137; Christensen V, 1993, INT CTR LIVING AQUAT, V26; Clemens H. B., 1961, CALIFORNIA DEP FISH, V115; DEWAR H, 1994, J EXP BIOL, V192, P13; DIZON AE, 1979, AM ZOOL, V19, P249; Dotson R.C., 1978, P343; DOTSON RC, 1976, US NATL MARINE FISHE, V74, P955; Essington TE, 2002, ECOL APPL, V12, P724; *FAO, 2000, STAT WORLD FISH AQ; Farley JH, 1998, FISH B-NOAA, V96, P223; Fournier DA, 1998, CAN J FISH AQUAT SCI, V55, P2105, DOI 10.1139/cjfas-55-9-2105; Froese R., 2003, FISHBASE GLOBAL INFO; GOODING RM, 1981, FISH B-NOAA, V79, P31; GRAHAM JB, 1989, EXP BIOL, V48, P89; GRAHAM JB, 1982, MAR BIOL, V72, P1, DOI 10.1007/BF00393941; GRAHAM JB, 1974, US NATL MARINE FISHE, V73, P219; Hall S. J., 1999, EFFECTS FISHING MARI; Hampton J, 2000, CAN J FISH AQUAT SCI, V57, P1002, DOI 10.1139/cjfas-57-5-1002; HAMPTON J, 2000, SCTB13; HOLLAND KN, 1990, FISH B-NOAA, V88, P493; HUNTER JR, 1986, FISH B-NOAA, V84, P895; IVERSEN ROBERT T. B., 1962, U S FISH AND WILDLIFE SERV FISH BULL, V62, P459; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; JARRE A, 1991, ICES MAR SC, V193, P99; Jennings S, 1998, ADV MAR BIOL, V34, P201, DOI 10.1016/S0065-2881(08)60212-6; KORSMEYER KE, 2001, TUNA PHYSL ECOLOGY E, P35; LAURS RM, 1977, FISH B-NOAA, V75, P347; Lehodey P, 1997, NATURE, V389, P715, DOI 10.1038/39575; MAGNUSON JJ, 1972, US NATL MARINE FISHE, V71, P337; NAKAMURA EL, 1966, P GOV C CENTR PAC FI, P197; OLSON RJ, 1986, CAN J FISH AQUAT SCI, V43, P1760, DOI 10.1139/f86-220; Palomares MLD, 1998, MAR FRESHWATER RES, V49, P447, DOI 10.1071/MF98015; PAULY D, 1989, J FISH BIOL, V35, P11; Pinkas L, 1971, CALIFORNIA DEP FISH, V152; Schaefer KM, 1996, FISH B-NOAA, V94, P98; SCHAEFER KM, 2001, TUNA PHYSL ECOLOGY E, P225, DOI DOI 10.1016/S1546-5098(01)19007-2; SCHAEFER KM, 1998, B INTERAMERICAN TROP, V21, P205; Schindler DE, 1998, CONSERV BIOL, V12, P56, DOI 10.1046/j.1523-1739.1998.96160.x; SHARP GD, 1977, US NATL MARINE FISHE, V75, P447; Stequert B, 1996, AQUAT LIVING RESOUR, V9, P235, DOI 10.1051/alr:1996027; STEWART DJ, 1991, CAN J FISH AQUAT SCI, V48, P909, DOI 10.1139/f91-107; UCHIYAMA JH, 1981, FISH B-NOAA, V79, P151; WALDRON KD, 1963, 6 FAO UN; WEIHS D, 1973, J MAR RES, V31, P194; WETHERALL JA, 1975, 16 US NAT MAR FISH S; Wild A., 1986, B INTERAMERICAN TROP, V18, P423; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; YUEN HSH, 1970, J FISH RES BOARD CAN, V27, P2071, DOI 10.1139/f70-231 56 25 26 0 17 AMER FISHERIES SOC BETHESDA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 USA 0002-8487 T AM FISH SOC Trans. Am. Fish. Soc. JUL 2003 132 4 759 770 10.1577/T02-094 12 Fisheries Fisheries 703NY WOS:000184287600011 2019-02-26 J Barrett, SCH Barrett, SCH Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article; Proceedings Paper Meeting on Mechanisms Regulating Gene Flow in Flowering Plants DEC 04-05, 2002 ROYAL SOC, LONDON, ENGLAND ROYAL SOC floral design; floral display; geitonogamy; gender strategies; pollen dispersal; selfing; outcrossing EICHHORNIA-PANICULATA PONTEDERIACEAE; SAGITTARIA-LATIFOLIA ALISMATACEAE; MIRROR-IMAGE FLOWERS; LIFE-HISTORY TRAITS; INBREEDING DEPRESSION; FLORAL DISPLAY; FITNESS-CONSEQUENCES; REPRODUCTIVE SUCCESS; NATURAL-POPULATIONS; BREEDING SYSTEMS Comparisons of the causes and consequences of cross- and self-fertilization have dominated research on plant mating since Darwin's seminal work on plant reproduction. Here, I provide examples of these accomplishments, but also illustrate new approaches that emphasize the role of floral design and display in pollen dispersal and fitness gain through male function. Wide variation in outcrossing rate characterizes animal-pollinated plants. In species with large floral displays, part of the selfing component of mixed mating can arise from geitonogamy and be maladaptive because of strong inbreeding depression and pollen discounting. Floral strategies that separate the benefits of floral display from the mating costs associated with geitonogamy can resolve these conflicts by reducing lost mating opportunities through male function. The results from experiments with marker genes and floral manipulations provide evidence for the function of herkogamy and dichogamy in reducing self-pollination and promoting pollen dispersal. Evidence is also presented indicating that increased selfing resulting from changes to floral design, or geitonogamy in large clones, can act as a stimulus for the evolution of dioecy. The scope of future research on mating strategies needs to be broadened to include investigations of functional links among flowers, inflorescences and plant architecture within the framework of life-history evolution. Univ Toronto, Dept Bot, Toronto, ON M5S 3B2, Canada Barrett, SCH (reprint author), Univ Toronto, Dept Bot, 25 Willcocks St, Toronto, ON M5S 3B2, Canada. barrett@botany.utoronto.ca Barrett, Spencer/M-3751-2013 BAKER HG, 1959, COLD SPRING HARB SYM, V24, P177, DOI 10.1101/SQB.1959.024.01.019; BARRETT S C H, 1990, Plant Species Biology, V5, P41, DOI 10.1111/j.1442-1984.1990.tb00191.x; BARRETT S. C. H, 1992, EVOLUTION FUNCTION H; BARRETT SCH, 1992, J EVOLUTION BIOL, V5, P423, DOI 10.1046/j.1420-9101.1992.5030423.x; Barrett SCH, 2002, HEREDITY, V88, P154, DOI 10.1038/sj/hdy/6800020; Barrett SCH, 2000, ANN BOT-LONDON, V85, P253, DOI 10.1006/anbo.1999.1067; Barrett SCH, 1996, PHILOS T ROY SOC B, V351, P1271, DOI 10.1098/rstb.1996.0110; BARRETT SCH, 1996, FLORAL BIOL STUDIES, P339; Barrett SCH, 1990, BIOL APPROACHES EVOL, P229; BARRETT SCH, 2003, UNPUB HEREDITY; BELAOUSSOFF S, 1995, EVOLUTION, V49, P545, DOI 10.1111/j.1558-5646.1995.tb02286.x; BERTIN RI, 1993, AM J BOT, V80, P557, DOI 10.2307/2445372; Bond WJ, 1999, EVOL ECOL, V13, P1, DOI 10.1023/A:1006581412580; Brunet J, 1998, FUNCT ECOL, V12, P596, DOI 10.1046/j.1365-2435.1998.00231.x; BURD M, 2002, J EVOLUTION BIOL, V13, P735; CASE AL, 2003, UNPUB SYST BIOL; CHARLESWORTH D, 1987, ANNU REV ECOL SYST, V18, P237, DOI 10.1146/annurev.ecolsys.18.1.237; CHARLESWORTH D, 1979, AM NAT, V114, P467, DOI 10.1086/283496; CHARLESWORTH D, 1990, EVOLUTION, V44, P1469, DOI 10.1111/j.1558-5646.1990.tb03839.x; Charlesworth D, 2001, CURR OPIN GENET DEV, V11, P685, DOI 10.1016/S0959-437X(00)00254-9; CHARLESWORTH D, 1999, GENDER SEXUAL DIMORP, P33; CHARNOV E L, 1982; Charpentier A, 2001, EVOL ECOL, V15, P521, DOI 10.1023/A:1016057503722; Cheptou PO, 2002, J EVOLUTION BIOL, V15, P753, DOI 10.1046/j.1420-9101.2002.00443.x; Cheptou PO, 2002, P ROY SOC B-BIOL SCI, V269, P1177, DOI 10.1098/rspb.2002.1997; Cheptou PO, 2001, AM NAT, V157, P361, DOI 10.1086/319320; Crowley PH, 2002, AM NAT, V159, P190, DOI 10.1086/324790; Darwin C, 1877, DIFFERENT FORMS FLOW; Darwin C., 1862, VARIOUS CONTRIVANCES; Darwin C, 1876, EFFECTS CROSS SELF F; Davis P. H, 1965, PRINCIPLES ANGIOSPER; DEJONG TJ, 1993, TRENDS ECOL EVOL, V8, P321, DOI 10.1016/0169-5347(93)90239-L; Diggle PK, 1997, INT J PLANT SCI, V158, pS99, DOI 10.1086/297510; Dorken ME, 2002, EVOLUTION, V56, P31; DORKEN ME, 2003, IN PRESS EVOLUTION; ECKERT CG, 1994, EVOLUTION, V48, P952, DOI 10.1111/j.1558-5646.1994.tb05285.x; Eckert CG, 2000, ECOLOGY, V81, P532, DOI 10.2307/177446; Elle E, 2000, AM NAT, V156, P622, DOI 10.1086/316997; Fetscher AE, 2001, P ROY SOC B-BIOL SCI, V268, P525, DOI 10.1098/rspb.2000.1395; Fishbein M, 1996, EVOLUTION, V50, P2165, DOI 10.1111/j.1558-5646.1996.tb03607.x; Gerber S, 2000, MOL ECOL, V9, P1037, DOI 10.1046/j.1365-294x.2000.00961.x; GOVINDARAJU DR, 1988, HEREDITY, V61, P401, DOI 10.1038/hdy.1988.130; Griffin SR, 2000, AM J BOT, V87, P1246, DOI 10.2307/2656717; Hamrick J. L., 1987, DIFFERENTIATION PATT, P53; Hamrick JL, 1996, PHILOS T ROY SOC B, V351, P1291, DOI 10.1098/rstb.1996.0112; HANDEL SN, 1985, AM NAT, V125, P367, DOI 10.1086/284348; Harder L. D., 1996, FLORAL BIOL STUDIES, P140; HARDER LD, 1995, NATURE, V373, P512, DOI 10.1038/373512a0; Harder LD, 2000, P ROY SOC B-BIOL SCI, V267, P315, DOI 10.1098/rspb.2000.1002; Herlihy CR, 2002, NATURE, V416, P320, DOI 10.1038/416320a; Holsinger KE, 1996, EVOL BIOL, V29, P107; Husband BC, 1996, EVOLUTION, V50, P54, DOI 10.1111/j.1558-5646.1996.tb04472.x; HUSBAND BC, 1991, HEREDITY, V66, P287, DOI 10.1038/hdy.1991.36; Ingvarsson PK, 2002, EVOLUTION, V56, P2368; Jesson LK, 2002, NATURE, V417, P707, DOI 10.1038/471107a; Jesson LK, 2002, P ROY SOC B-BIOL SCI, V269, P1835, DOI 10.1098/rspb.2002.2068; Jesson LK, 2002, AM J BOT, V89, P253, DOI 10.3732/ajb.89.2.253; JESSON LK, 2003, IN PRESS AM NAT; JESSON LK, 2003, IN PRESS INT J PLANT; Johnson SD, 2000, TRENDS ECOL EVOL, V15, P140, DOI 10.1016/S0169-5347(99)01811-X; Johnston MO, 1998, GENETICA, V102-3, P267, DOI 10.1023/A:1017039010191; Karron JD, 1997, HEREDITY, V79, P365, DOI 10.1038/hdy.1997.169; KOHN JR, 1994, EVOLUTION, V48, P1576, DOI 10.1111/j.1558-5646.1994.tb02197.x; Krauss SL, 1998, AUST J BOT, V46, P533, DOI 10.1071/BT97043; LANDE R, 1985, EVOLUTION, V39, P24, DOI 10.1111/j.1558-5646.1985.tb04077.x; LEVIN D A, 1974, EVOL BIOL, P139, DOI [DOI 10.1007/978-1-4615-6944-2_5, 10.1007/978-1-4615-944-2_5]; Lloyd D. G., 1980, Demography and evolution in plant populations., P67; LLOYD DG, 1986, NEW ZEAL J BOT, V24, P135, DOI 10.1080/0028825X.1986.10409725; Lloyd DG, 1992, EVOLUTION FUNCTION H, P179; Lloyd DG, 1992, EVOLUTION FUNCTION H, P151; LLOYD DW, 1992, J CHILD SEXUAL ABUSE, V1, P1; LOVETTDOUST L, 1981, J ECOL, V69, P743; LU Y, 2000, BIOL J LINN SOC, V75, P543; Morgan MT, 1997, AM NAT, V150, P618, DOI 10.1086/286085; Morgan MT, 1997, TRENDS ECOL EVOL, V12, P231, DOI 10.1016/S0169-5347(97)01045-8; Morgan MT, 2001, P ROY SOC B-BIOL SCI, V268, P1817, DOI 10.1098/rspb.2001.1741; Morgan MT, 2001, EVOLUTION, V55, P272; MUIS CA, 2003, IN PRESS EVOLUTION; Reusch TBH, 2001, J EVOLUTION BIOL, V14, P129, DOI 10.1046/j.1420-9101.2001.00257.x; Reusch TBH, 2000, HEREDITY, V85, P459, DOI 10.1046/j.1365-2540.2000.00783.x; Ritland K, 2002, HEREDITY, V88, P221, DOI 10.1038/sj/hdy/6800029; RITLAND K, 1990, EVOLUTION, V44, P1230, DOI 10.1111/j.1558-5646.1990.tb05227.x; Routley MB, 2003, EVOLUTION, V57, P240; Sarkissian TS, 2001, ECOLOGY, V82, P360, DOI 10.1890/0012-9658(2001)082[0360:GVISLA]2.0.CO;2; SCHOEN DJ, 1990, AM NAT, V135, P841, DOI 10.1086/285077; SLATKIN M, 1985, ANNU REV ECOL SYST, V16, P393, DOI 10.1146/annurev.ecolsys.16.1.393; SNOW AA, 1993, ANNU REV ECOL SYST, V24, P331, DOI 10.1146/annurev.es.24.110193.001555; Thompson JD, 2003, P ROY SOC B-BIOL SCI, V270, P949, DOI 10.1098/rspb.2002.2318; Vaughton G, 2002, PLANT SYST EVOL, V232, P167, DOI 10.1007/s006060200040; Venable DL, 1996, PHILOS T ROY SOC B, V351, P1319, DOI 10.1098/rstb.1996.0115; Vogler DW, 2001, EVOLUTION, V55, P202; WEBB CJ, 1986, NEW ZEAL J BOT, V24, P163, DOI 10.1080/0028825X.1986.10409726; Worley AC, 2000, EVOLUTION, V54, P1533; Worley AC, 2003, AM NAT, V161, P153, DOI 10.1086/345461; Worley AC, 2001, J EVOLUTION BIOL, V14, P469, DOI 10.1046/j.1420-9101.2001.00296.x; Worley AC, 2000, INT J PLANT SCI, V161, P69, DOI 10.1086/314225 96 264 297 3 133 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. JUN 29 2003 358 1434 991 1004 10.1098/rstb.2003.1301 14 Biology Life Sciences & Biomedicine - Other Topics 696MX WOS:000183891600002 12831464 Green Published 2019-02-26 J Sagar, R; Raghubanshi, AS; Singh, JS Sagar, R; Raghubanshi, AS; Singh, JS Asymptotic models of species-area curve for measuring diversity of dry tropical forest tree species CURRENT SCIENCE English Article LIFE-HISTORY STRATEGIES; RICHNESS; BIODIVERSITY; SCALE In a dry tropical forest, we examine the fitness and predictability of two non-asymptotic models (log-linear and power) of species-area curve, and the effect of sample location and scale on their regression-derived coefficients (c, z) for measuring tree diversity. Results indicate that, the log-linear model relatively better fits the data set, and yields better prediction of number of species on a small scale (i.e. predicted number of species for 3 ha using an equation based on 1 ha data). On the other hand, predictions from power function model for a larger area (i.e. predicted number of species for 15 ha using 1 ha and 3 ha equations) were closer to the observed values. The suitability of the model to fit the data was strongly influenced by the site and the scale of the plot size. The equations for the two models derived from data of small area (1 ha plot size) yielded inconsistent results, but those derived from a larger plot size (3 ha) consistently underestimated the number of species for 15 ha. The underestimation by power function model was lower compared to that by log-normal model for predicting the number of tree species. The study also shows that the coefficient z is site- as well as scale-dependent. The coefficient c can be used to predict a-diversity, and the number of species per individual can adequately describe the coefficient z. The results support discrete community concept for the dry tropical forests along a disturbance gradient and indicate that higher the z, greater would be the impact of harvest of individuals on biodiversity. Banaras Hindu Univ, Dept Bot, Varanasi 221005, Uttar Pradesh, India Raghubanshi, AS (reprint author), Banaras Hindu Univ, Dept Bot, Varanasi 221005, Uttar Pradesh, India. Raghubanshi, Akhilesh/B-1798-2008 Colwell R. K., 1995, BIODIVERSITY MEASURE, P101; CONNOR EF, 1979, AM NAT, V113, P791, DOI 10.1086/283438; Crawley MJ, 2001, SCIENCE, V291, P864, DOI 10.1126/science.291.5505.864; DIAMOND J, 1988, ANN MO BOT GARD, V75, P117, DOI 10.2307/2399469; ERICKSSON O, 1993, OIKOS, V68, P371; Harte J, 1999, SCIENCE, V284, P334, DOI 10.1126/science.284.5412.334; Hill MO, 2001, J VEG SCI, V12, P143; Huber R, 1999, APPL VEG SCI, V2, P257, DOI 10.2307/1478989; JHA CS, 1990, J VEG SCI, V1, P609, DOI 10.2307/3235566; LEPS J, 1989, VEGETATIO, V83, P249, DOI 10.1007/BF00031697; May RM, 2000, SCIENCE, V290, P2084, DOI 10.1126/science.290.5499.2084; McCune B., 1999, PC ORD MULTIVARIATE; Oksanen J, 1996, J ECOL, V84, P293, DOI 10.2307/2261364; PALMER MW, 1990, ECOLOGY, V71, P1195, DOI 10.2307/1937387; PIMM SL, 1995, SCIENCE, V269, P347, DOI 10.1126/science.269.5222.347; SOBERON J, 1993, CONSERV BIOL, V7, P480, DOI 10.1046/j.1523-1739.1993.07030480.x; *SPSS INC, 1997, SPSS BAS 7 5 APPL GU; TAYLOR DR, 1990, OIKOS, V58, P239, DOI 10.2307/3545432; VERMA DM, 1985, FLORA RAIPUR DURG RA; Weiher E, 1999, J ECOL, V87, P1005, DOI 10.1046/j.1365-2745.1999.00412.x; Williams CB, 1943, NATURE, V152, P264, DOI 10.1038/152264a0; Wilson E.O., 1988, P3; Wilson JB, 2000, J VEG SCI, V11, P773, DOI 10.2307/3236582 23 10 11 0 11 CURRENT SCIENCE ASSN BANGALORE C V RAMAN AVENUE, PO BOX 8005, BANGALORE 560 080, INDIA 0011-3891 CURR SCI INDIA Curr. Sci. JUN 25 2003 84 12 1555 1560 6 Multidisciplinary Sciences Science & Technology - Other Topics 697EP WOS:000183929500019 DOAJ Gold 2019-02-26 J Lozano, GA; Lank, DB Lozano, GA; Lank, DB Seasonal trade-offs in cell-mediated immunosenescence in ruffs (Philomachus pugnax) PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article immunoecology; life history; immunosenescence; age; ruff; Philomachus pugnax SWALLOWS TACHYCINETA-BICOLOR; REPRODUCTIVE EFFORT; IMMUNE FUNCTION; GREAT TITS; AGE; IMMUNOCOMPETENCE; ENVIRONMENT; STRATEGIES; CHALLENGE; BEHAVIOR The immune system is an energetically expensive self-maintenance complex that, given the risks of parasitism, cannot be carelessly compromised. Life-history theory posits that trade-offs between fitness components, such as self-maintenance and reproduction, vary between genders and age classes depending on their expected residual lifetime reproductive success, and seasonally as energetic requirements change. Using ruff (Philomachus pugnax), a bird with two genetically distinct male morphs, we demonstrate here a decrease in male immunocompetence during the breeding season, greater variance in immune response among males than females, immunosenescence in both sexes and male morphs, and a seasonal shift in the age range required to detect senescence. Using a phytohaemagglutinin delayed hypersensitivity assay, we assessed cell-mediated immunity (CMI) of males of typical breeding age during the breeding and nonbreeding seasons, and of a larger sample that included females and birds of a greater age range during the non-breeding period. CMI was higher for breeding-aged males in May than in November, but the increase was not related to age or male morph. In November, mean CMI did not differ between the sexes, but the variance was higher for males than for females, and there were no differences in mean or variance between the two male morphs. For both sexes and male morphs, CMI was lower for young birds than for birds of typical breeding ages, and it declined again for older birds. In males, senescence was detected in the non-breeding season only when very old birds were included. These results, generally consistent with expectations from life-history theory, indicate that the immune system can be involved in multifarious trade-offs within a yearly cycle and along an individual's lifetime, and that specific predictions about means and variances in immune response should be considered in future immunoecological research. Simon Fraser Univ, Dept Biosci, Behav Ecol Res Grp, Burnaby, BC V5A 1S6, Canada Lank, DB (reprint author), Simon Fraser Univ, Dept Biosci, Behav Ecol Res Grp, Burnaby, BC V5A 1S6, Canada. dlank@sfu.ca Lozano, George A/0000-0002-1369-1408 Alonso-Alvarez C, 2001, CAN J ZOOL, V79, P101, DOI 10.1139/cjz-79-1-101; Apanius V, 1998, AVIAN GROWTH DEV EVO, P203; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; CARROLL SB, 1983, J BIOL CHEM, V258, P24; Cichon M, 2001, ACTA OECOL, V22, P71, DOI 10.1016/S1146-609X(00)01094-8; COLLIAS NE, 1986, AUK, V103, P408; Corner D E, 1990, POULTRY SCI, V69, P403, DOI DOI 10.3382/PS.0690403; DASILVA J, 1992, P ROY SOC B-BIOL SCI, V249, P227; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; DHONDT AA, 1989, IBIS, V131, P268, DOI 10.1111/j.1474-919X.1989.tb02770.x; DRENT RH, 1980, ARDEA, V68, P225; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Galbraith H, 1999, J AVIAN BIOL, V30, P85, DOI 10.2307/3677247; Godfrey-Faussett P., 1993, Immunology and molecular biology of parasitic infections., P100; Heeb P, 1998, P ROY SOC B-BIOL SCI, V265, P51, DOI 10.1098/rspb.1998.0263; HOGANWAR.AJ, 1966, ARDEA, V54, P109; Hoi-Leitner M, 2001, BEHAV ECOL SOCIOBIOL, V49, P333, DOI 10.1007/s002650000310; Hugie DM, 1997, BEHAV ECOL, V8, P218, DOI 10.1093/beheco/8.2.218; JOHN JL, 1994, Q REV BIOL, V69, P327, DOI 10.1086/418649; Kilpelainen M, 2000, CLIN EXP ALLERGY, V30, P201; Klein SL, 2000, NEUROSCI BIOBEHAV R, V24, P627, DOI 10.1016/S0149-7634(00)00027-0; Lank DB, 1999, P ROY SOC B-BIOL SCI, V266, P2323, DOI 10.1098/rspb.1999.0926; LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; Lank DB, 2002, BEHAV ECOL, V13, P209, DOI 10.1093/beheco/13.2.209; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lozano GA, 1999, WILSON BULL, V111, P381; Lozano GA, 2002, CAN J ZOOL, V80, P918, DOI 10.1139/Z02-063; LOZANO GA, 2003, UNPUB ECOL LETT; Male D. K., 1996, IMMUNOLOGY; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Nafstad P, 2001, ALLERGY, V56, P307, DOI 10.1034/j.1398-9995.2001.00881.x; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; Ots I, 2001, P ROY SOC B-BIOL SCI, V268, P1175, DOI 10.1098/rspb.2001.1636; PATTERSON R, 1962, J GEN PHYSIOL, V45, P501, DOI 10.1085/jgp.45.3.501; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Prendergast BJ, 2001, P ROY SOC B-BIOL SCI, V268, P2221, DOI 10.1098/rspb.2001.1784; Roff Derek A., 1992; Saether B.-E., 1990, Current Ornithology, V7, P251; SCHULZ H, 1990, CATAL LETT, V7, P157; SHELDON BC, 1993, PHILOS T ROY SOC B, V339, P491, DOI 10.1098/rstb.1993.0044; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; Stearns SC., 1992, EVOLUTION LIFE HIST; Svanes C, 1999, J ALLERGY CLIN IMMUN, V103, P415, DOI 10.1016/S0091-6749(99)70465-3; Svensson E, 1998, FUNCT ECOL, V12, P912, DOI 10.1046/j.1365-2435.1998.00271.x; VANRHIJN JG, 1991, RUFF; WHEELWRIGHT NT, 1991, CAN J ZOOL, V69, P2540, DOI 10.1139/z91-358; Widemo F, 1998, ANIM BEHAV, V56, P329, DOI 10.1006/anbe.1998.0792; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMS J, 1962, BIOCHEM J, V83, P346, DOI 10.1042/bj0830346; Zuk M, 1998, P ROY SOC B-BIOL SCI, V265, P1631, DOI 10.1098/rspb.1998.0481 53 44 44 0 12 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 7 2003 270 1520 1203 1208 10.1098/rspb.2002.2309 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 687WX WOS:000183400900014 12816660 Green Published 2019-02-26 J Harwood, AJ; Griffiths, SW; Metcalfe, NB; Armstrong, JD Harwood, AJ; Griffiths, SW; Metcalfe, NB; Armstrong, JD The relative influence of prior residency and dominance on the early feeding behaviour of juvenile Atlantic salmon ANIMAL BEHAVIOUR English Article LIFE-HISTORY STRATEGIES; RED-WINGED BLACKBIRDS; GREEN SWORDTAIL FISH; BODY-SIZE; TERRITORIAL CONTESTS; XIPHOPHORUS-HELLERI; SOCIAL-DOMINANCE; SALAR L; EMERGENCE; TROUT In many species where social hierarchy mediates conflict over resources, dominant individuals monopolize food, shelter and reproductive opportunities. The benefits of social dominance, however, can often be offset by a prior residence advantage, whereby individuals arriving first in a new habitat obtain, and subsequently defend, the most profitable sites. We investigated the relative influence of these two factors on the acquisition of feeding territories by juvenile Atlantic salmon, Salmo salar L., by placing groups of six individuals of known dominance rank sequentially into an experimental arena with feeding sites of varying quality. Dominants had an advantage over subordinates in the percentage of time spent in a good-quality feeding site and individual feeding rate. There was also a significant time of arrival effect: those individuals that arrived first in a habitat monopolized the resource. The two effects were of approximately equal strength, so that late-arriving dominant fish had similar success as prior resident subordinates. These results indicate that both dominance and prior residence are important in the feeding behaviour of juvenile Atlantic salmon, and that the two factors can have independent and additive effects. (C) 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour. Cardiff Univ, Sch Biosci, Cardiff CF10 3TL, S Glam, Wales; Univ Glasgow, Inst Biomed & Life Sci, Fish Biol Grp, Glasgow G12 8QQ, Lanark, Scotland; Fisheries Res Serv Freshwater Lab, Pitlochry PH16 5LB, Perth, Scotland Harwood, AJ (reprint author), Univ British Columbia, W Vancouver Lab, 4160 Marine Dr, W Vancouver, BC V7V 1N6, Canada. andrewh@interchange.ubc.ca Griffiths, Sian/A-5240-2010; Metcalfe, Neil/C-5997-2009; Piper, Walter/B-7908-2009 Metcalfe, Neil/0000-0002-1970-9349; Armstrong, John/0000-0003-2015-0500 Armstrong JD, 1997, J ANIM ECOL, V66, P203, DOI 10.2307/6022; ARMSTRONG JD, 1994, J FISH BIOL, V45, P1027; BAUGH JR, 1994, BEHAVIOUR, V131, P207, DOI 10.1163/156853994X00442; BEAUGRAND J, 1991, ANIM BEHAV, V41, P417, DOI 10.1016/S0003-3472(05)80842-5; Beaugrand JP, 1996, BEHAVIOUR, V133, P303, DOI 10.1163/156853996X00161; BELETSKY LD, 1989, BEHAV ECOL SOCIOBIOL, V24, P333, DOI 10.1007/BF00290910; BELETSKY LD, 1987, BEHAV ECOL SOCIOBIOL, V20, P339, DOI 10.1007/BF00300680; BRANNAS E, 1995, EVOL ECOL, V9, P411, DOI 10.1007/BF01237763; CHANDLER GL, 1988, T AM FISH SOC, V117, P432, DOI 10.1577/1548-8659(1988)117<0432:AGAIOJ>2.3.CO;2; CRECCO VA, 1985, CAN J FISH AQUAT SCI, V42, P1640, DOI 10.1139/f85-205; Currie D, 2000, IBIS, V142, P389, DOI 10.1111/j.1474-919X.2000.tb04435.x; Cutts CJ, 1999, OIKOS, V86, P479, DOI 10.2307/3546652; Cutts CJ, 1999, J FISH BIOL, V55, P784, DOI 10.1111/j.1095-8649.1999.tb00717.x; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; ELLIOTT JM, 1990, J ANIM ECOL, V59, P803, DOI 10.2307/5015; EVANS DL, 1988, ANIM BEHAV, V36, P452, DOI 10.1016/S0003-3472(88)80015-0; GRANT JWA, 1990, CAN J FISH AQUAT SCI, V47, P1724, DOI 10.1139/f90-197; GUSTAFSONMARJANEN KI, 1983, CAN J FISH AQUAT SCI, V40, P813, DOI 10.1139/f83-106; Huntingford FA, 1997, J FISH BIOL, V51, P1009, DOI 10.1006/jfbi.1997.0510; Huntingford FA, 1987, ANIMAL CONFLICT; Johnsson JI, 2000, BEHAV ECOL SOCIOBIOL, V48, P373, DOI 10.1007/s002650000244; Johnsson JI, 1999, J FISH BIOL, V54, P469, DOI 10.1006/jfbi.1998.0881; Johnsson JI, 2002, BEHAV ECOL SOCIOBIOL, V51, P282, DOI 10.1007/S00265-001-0430-6; KEENLEYSIDE MILES H. A., 1962, BEHAVIOUR, V19, P139, DOI 10.1163/156853961X00231; KOIVULA K, 1993, BEHAV ECOL SOCIOBIOL, V33, P283, DOI 10.1007/BF02027126; KREBS JR, 1982, BEHAV ECOL SOCIOBIOL, V11, P185, DOI 10.1007/BF00300061; Krebs JR, 1993, INTRO BEHAV ECOLOGY; MASON JC, 1965, J FISH RES BOARD CAN, V22, P173, DOI 10.1139/f65-015; MAYNARDSMITH J, 1976, ANIM BEHAV, V24, P159, DOI DOI 10.1016/S0003-3472(76)80110-8); METCALFE NB, 1992, J FISH BIOL, V41, P93, DOI 10.1111/j.1095-8649.1992.tb03871.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; METZGAR LH, 1967, J MAMMAL, V48, P387, DOI 10.2307/1377771; Nijman V, 2000, BEHAV PROCESS, V49, P77, DOI 10.1016/S0376-6357(00)00078-4; NILSSON JA, 1989, ANIM BEHAV, V38, P586, DOI 10.1016/S0003-3472(89)80003-X; O'Connor KI, 1999, ANIM BEHAV, V58, P1269, DOI 10.1006/anbe.1999.1260; O'Connor KI, 2000, BEHAV ECOL, V11, P13, DOI 10.1093/beheco/11.1.13; Papaj DR, 1998, BEHAVIOUR, V135, P1013, DOI 10.1163/156853998792913546; RIMMER DM, 1983, CAN J FISH AQUAT SCI, V40, P671, DOI 10.1139/f83-090; Tobias J, 1997, ANIM BEHAV, V54, P9, DOI 10.1006/anbe.1996.0383; WAZLAVEK BE, 1989, AGGRESSIVE BEHAV, V15, P235, DOI 10.1002/1098-2337(1989)15:3<235::AID-AB2480150305>3.0.CO;2-C; Wilson E.O., 1975, P1; YASUKAWA K, 1980, BEHAV ECOL SOCIOBIOL, V7, P233, DOI 10.1007/BF00299369 43 31 32 2 21 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. JUN 2003 65 6 1141 1149 10.1006/anbe.2003.2125 9 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 707DQ WOS:000184494500010 2019-02-26 J Moran, AL; Manahan, DT Moran, AL; Manahan, DT Energy metabolism during larval development of green and white abalone, Haliotis fulgens and H-sorenseni BIOLOGICAL BULLETIN English Article MARINE INVERTEBRATE LARVAE; BIOCHEMICAL-COMPOSITION; LECITHOTROPHIC LARVAE; OYSTER LARVAE; OSTREA-EDULIS; GROWTH; RUFESCENS; EVOLUTION; METAMORPHOSIS; SEAWATER An understanding of the biochemical and physiological energetics of lecithotrophic development is useful for interpreting patterns of larval development, dispersal potential, and life-history evolution. This study investigated the metabolic rates and use of biochemical reserves in two species of abalone, Haliotis fulgens (the green abalone) and H. sorenseni (the white abalone). Larvae of H. fulgens utilized triacylglycerol as a primary source of endogenous energy reserves for development (similar to50% depletion from egg to metamorphic competence). Amounts of phospholipid remained constant, and protein dropped by about 30%. After embryogenesis, larvae of H. fulgens had oxygen consumption rates of 81.7 +/- 5.9 (SE) pmol larva(-1) h(-1) at 15 degreesC through subsequent development. The loss of biochemical reserves fully met the needs of metabolism, as measured by oxygen consumption. Larvae of H. sorenseni were examined during later larval development and were metabolically and biochemically similar to H. fulgens larvae at a comparable stage. Metabolic rates of both species were very similar to previous data for a congener, H. rufescens, suggesting that larval metabolism and energy utilization may be conserved among closely related species that also share similar developmental morphology and feeding modes. Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA; Univ So Calif, Wrigley Inst Environm Studies, Los Angeles, CA 90089 USA Moran, AL (reprint author), Univ N Carolina, Dept Marine Sci, 12-7 Venable Hall,CB 3300, Chapel Hill, NC 27599 USA. Moran, Amy/F-7072-2011 ABBOTT DP, 1980, INTERTIDAL INVERTEBR, P231; Anger K, 1996, MAR BIOL, V126, P283, DOI 10.1007/BF00347453; ANGER K, 1989, HELGOLANDER MEERESUN, V43, P224; BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911; BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3; Buchal M, 1998, AQUACULTURE, V165, P243, DOI 10.1016/S0044-8486(98)00265-8; Byrne M, 2000, DEV GROWTH DIFFER, V42, P79; CASWELL H, 1981, AM NAT, V117, P529, DOI 10.1086/283733; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; Crisp D.J., 1974, Thalassia Jugosl, V10, P103; CRISP DJ, 1985, J MAR BIOL ASSOC UK, V65, P759, DOI 10.1017/S0025315400052589; Crofts D. R., 1937, Philosophical Transactions London, V228B, P219, DOI 10.1098/rstb.1937.0012; DAWIRS RR, 1986, MAR ECOL PROG SER, V31, P301, DOI 10.3354/meps031301; Emlet R.B., 1987, Echinoderm Studies, V2, P55; Emlet R.B., 1990, Advances in Invertebrate Reproduction, V5, P329; EMLET RB, 1995, DEV BIOL, V167, P405, DOI 10.1006/dbio.1995.1037; GALLAGER SM, 1986, AQUACULTURE, V56, P81, DOI 10.1016/0044-8486(86)90020-7; GNAIGER E, 1984, OECOLOGIA, V62, P289, DOI 10.1007/BF00384259; Gnaiger E, 1983, POLAROGRAPHIC OXYGEN, P337, DOI [10.1007/978-3-642-81863-9, DOI 10.1007/978-3-642-81863-9_30]; Hadfield MG, 1997, INVERTEBR BIOL, V116, P313, DOI 10.2307/3226863; Havenhand Jon N., 1995, P79; HIS E, 1988, AQUACULTURE, V69, P185, DOI 10.1016/0044-8486(88)90195-0; HoeghGuldberg O, 1997, BIOL BULL, V192, P27, DOI 10.2307/1542573; HOLLAND DL, 1973, J MAR BIOL ASSOC UK, V53, P287, DOI 10.1017/S002531540002227X; HOLLAND DL, 1971, J MAR BIOL ASSOC UK, V51, P659, DOI 10.1017/S0025315400015034; HOLLAND DL, 1978, BIOCH BIOPHYSICAL PE, P85; Ino T., 1952, Bulletin of the Tokai Fisheries Research Laboratory, VNo. 5, P1; JAECKLE WB, 1989, MAR BIOL, V103, P87, DOI 10.1007/BF00391067; JAECKLE WB, 1989, BIOL BULL, V177, P237, DOI 10.2307/1541939; JAECKLE WB, 1992, J EXP MAR BIOL ECOL, V156, P273, DOI 10.1016/0022-0981(92)90251-5; Leighton D. L., 2000, BIOL CULTURE CALIFOR; MANAHAN DT, 1990, AM ZOOL, V30, P147; Marsh AG, 1999, MAR ECOL PROG SER, V184, P1, DOI 10.3354/meps184001; Marsh AG, 2001, NATURE, V411, P77, DOI 10.1038/35075063; MARTINDALE MQ, 1995, DEVELOPMENT, V121, P3175; MILLAR RH, 1967, J MAR BIOL ASSOC UK, V47, P475, DOI 10.1017/S0025315400035104; Moreno G, 2001, LIMNOL OCEANOGR, V46, P1214, DOI 10.4319/lo.2001.46.5.1214; Moreno G, 1999, J EXP MAR BIOL ECOL, V235, P1, DOI 10.1016/S0022-0981(98)00031-8; Nates SF, 2000, COMP BIOCHEM PHYS B, V127, P459, DOI 10.1016/S0305-0491(00)00283-2; Nelson MM, 2002, COMP BIOCHEM PHYS B, V131, P695, DOI 10.1016/S1096-4959(02)00042-8; OLSON RR, 1993, BIOL BULL, V185, P77, DOI 10.2307/1542131; Paine R. T., 1971, ANNU REV ECOL SYST, V2, P145, DOI DOI 10.1146/ANNUREV.ES.02.110171.001045; Pechenik J.A., 1987, P551; RAFF RA, 1987, DEV BIOL, V119, P6, DOI 10.1016/0012-1606(87)90201-6; Seki T, 1981, B TOHOKU REG FISH R, V42, P31; Shilling FM, 1996, BIOL BULL, V191, P402, DOI 10.2307/1543013; SHILLING FM, 1994, BIOL BULL, V187, P398, DOI 10.2307/1542296; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Takii K, 1997, FISHERIES SCI, V63, P1014, DOI 10.2331/fishsci.63.1014; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Vavra J, 1999, BIOL BULL, V196, P177, DOI 10.2307/1542563; Wendt DE, 2000, BIOL BULL, V198, P346, DOI 10.2307/1542690; WHERTMANN IS, 1998, COMP BIOCH PHYSL B, V121, P457; Wray Gregory A., 1995, P413 55 40 41 3 19 MARINE BIOLOGICAL LABORATORY WOODS HOLE 7 MBL ST, WOODS HOLE, MA 02543 USA 0006-3185 BIOL BULL-US Biol. Bull. JUN 2003 204 3 270 277 10.2307/1543598 8 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology 692TU WOS:000183677000005 12807704 2019-02-26 J Ashley, MV; Willson, MF; Pergams, ORW; O'Dowd, DJ; Gende, SM; Brown, JS Ashley, MV; Willson, MF; Pergams, ORW; O'Dowd, DJ; Gende, SM; Brown, JS Evolutionarily enlightened management BIOLOGICAL CONSERVATION English Review microevolution; rapid evolution; evolutionarily enlightened management; conservation SALMON ONCORHYNCHUS-TSHAWYTSCHA; GUPPIES POECILIA-RETICULATA; POPULATION VIABILITY ANALYSIS; INTENSE NATURAL-SELECTION; LIFE-HISTORY EVOLUTION; RAPID EVOLUTION; SOCKEYE-SALMON; NEW-ZEALAND; PACIFIC SALMON; CONTEMPORARY MICROEVOLUTION Here we review growing evidence that microevolutionary changes may often be rapid and, in many cases, occur on time frames comparable to human disturbance and anthropogenic change. Contemporary evolutionary change has been documented in relatively pristine habitats, in disturbed populations, under captive management, and in association with both intentional and inadvertent introductions. We argue that evolutionary thinking is thus relevant to conservation biology and resource management but has received insufficient consideration. Ignoring evolution may have a variety of consequences, including unpredicted evolutionary responses to disturbance and naive or inappropriate management decisions. Philosophically, we must also grapple with the issue of whether the evolution of adaptations to disturbance and degraded habitats is sometimes beneficial or something to be rigorously avoided. We advocate promoting evolutionarily enlightened management [Lecture Notes in Biomathematics 99 (1994) 248], in which both the ecological and evolutionary consequences of resource management decisions are considered. (C) 2003 Elsevier Science Ltd. All rights reserved. Univ Illinois, Dept Biol Sci, Chicago, IL 60608 USA; Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia; Pacific NW Res Stn, Forestry Sci Lab, Juneau, AK 99801 USA Ashley, MV (reprint author), Univ Illinois, Dept Biol Sci, 845 W Taylor St, Chicago, IL 60608 USA. Brown, Joel/J-2624-2012 Able KP, 1998, P ROY SOC B-BIOL SCI, V265, P2063, DOI 10.1098/rspb.1998.0541; Abrams PA, 1996, ECOLOGY, V77, P1321, DOI 10.2307/2265529; ADAMS PB, 1980, FISH B-NOAA, V78, P1; Allendorf F, 1987, POPULATION GENETICS, P1; ALLENDORF FW, 1993, CONSERV BIOL, V7, P416, DOI 10.1046/j.1523-1739.1993.07020416.x; ANTONOVICS J, 1970, HEREDITY, V25, P349, DOI 10.1038/hdy.1970.36; Badyaev AV, 2000, EVOLUTION, V54, P2134; Beissinger SR, 1998, J WILDLIFE MANAGE, V62, P821, DOI 10.2307/3802534; BENKMAN CW, 1995, EVOLUTION, V49, P585, DOI 10.1111/j.1558-5646.1995.tb02295.x; Berejikian BA, 1996, CAN J FISH AQUAT SCI, V53, P2004, DOI 10.1139/cjfas-53-9-2004; BERRY RJ, 1986, BIOL J LINN SOC, V28, P205, DOI 10.1111/j.1095-8312.1986.tb01754.x; BERRY RJ, 1978, J ZOOL, V185, P73; BERRY RJ, 1964, EVOLUTION, V18, P468, DOI 10.2307/2406357; BERTHOLD P, 1992, NATURE, V360, P668, DOI 10.1038/360668a0; BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; BOAG PT, 1981, SCIENCE, V214, P82, DOI 10.1126/science.214.4516.82; Bone E, 2001, GENETICA, V112, P165, DOI 10.1023/A:1013378014069; Browman HI, 2000, MAR ECOL PROG SER, V208, P299, DOI 10.3354/meps208299; Brown CR, 1998, EVOLUTION, V52, P1461, DOI 10.1111/j.1558-5646.1998.tb02027.x; Brown Joel S., 1994, P355, DOI 10.1017/CBO9780511623325.019; BROWN JS, 1992, EVOL ECOL, V6, P360, DOI 10.1007/BF02270698; BROWN JS, 1994, LECT NOTES BIOMATH, V99, P248; BURRIS OE, 1973, ALASKA DEPT FISH GAM, V4, P1; Byrne K, 1999, HEREDITY, V82, P7, DOI 10.1038/sj.hdy.6884120; CARROLL SP, 1992, EVOLUTION, V46, P1052, DOI 10.1111/j.1558-5646.1992.tb00619.x; Carroll SP, 1997, EVOLUTION, V51, P1182, DOI 10.1111/j.1558-5646.1997.tb03966.x; Cody ML, 1996, J ECOL, V84, P53, DOI 10.2307/2261699; Daehler CC, 1997, OECOLOGIA, V110, P99, DOI 10.1007/s004420050138; DAVIES MS, 1976, HEREDITY, V36, P59, DOI 10.1038/hdy.1976.6; Davis MB, 2001, SCIENCE, V292, P673, DOI 10.1126/science.292.5517.673; DAVISON AW, 1995, NEW PHYTOL, V131, P337, DOI 10.1111/j.1469-8137.1995.tb03069.x; DOBZHANSKY TG, 1941, GENETICS ORIGIN SPEC; Ellner SP, 2002, CONSERV BIOL, V16, P258, DOI 10.1046/j.1523-1739.2002.00553.x; Faith DP, 1996, CONSERV BIOL, V10, P1286, DOI 10.1046/j.1523-1739.1996.10041286.x; Fieberg J, 2000, ECOLOGY, V81, P2040; FLEMING IA, 1994, EVOLUTION, V48, P637, DOI 10.1111/j.1558-5646.1994.tb01350.x; FLEMING IA, 1989, EVOLUTION, V43, P141, DOI 10.1111/j.1558-5646.1989.tb04213.x; FOOTE CJ, 1988, BEHAVIOUR, V106, P63, DOI 10.1163/156853988X00098; Ford MJ, 2002, CONSERV BIOL, V16, P815, DOI 10.1046/j.1523-1739.2002.00257.x; FRANKHAM R, 1992, ZOO BIOL, V11, P333, DOI 10.1002/zoo.1430110505; Frankham R, 1995, ANNU REV GENET, V29, P305, DOI 10.1146/annurev.ge.29.120195.001513; GEBER MA, 1993, BIOTIC INTERACTIONS AND GLOBAL CHANGE, P179; GIBBS HL, 1987, NATURE, V327, P511, DOI 10.1038/327511a0; Gilchrist GW, 2001, GENETICA, V112, P273, DOI 10.1023/A:1013358931816; GINGERICH PD, 1993, AM J SCI, V293A, P453, DOI 10.2475/ajs.293.A.453; GRANT PR, 1995, EVOLUTION, V49, P241, DOI 10.1111/j.1558-5646.1995.tb02236.x; Groman JD, 2000, J EVOLUTION BIOL, V13, P223, DOI 10.1046/j.1420-9101.2000.00159.x; HAMILTON MB, 1994, CONSERV BIOL, V8, P39, DOI 10.1046/j.1523-1739.1994.08010039.x; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Healey M.C., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P39; Hendry A. P., 2000, SCIENCE, V290, P515; Hendry AP, 1997, CAN J FISH AQUAT SCI, V54, P75, DOI 10.1139/cjfas-54-1-75; Hendry AP, 1998, CAN J FISH AQUAT SCI, V55, P1387, DOI 10.1139/f98-020; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Hitchings SP, 1997, HEREDITY, V79, P117, DOI 10.1038/sj.hdy.6882010; HOLT RD, 1992, EVOL ECOL, V6, P433, DOI 10.1007/BF02270702; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; Hughes L, 2000, TRENDS ECOL EVOL, V15, P56, DOI 10.1016/S0169-5347(99)01764-4; Iverson LR, 1999, ECOL MODEL, V115, P77, DOI 10.1016/S0304-3800(98)00200-2; Johnson GD, 2001, ENVIRON ECOL STAT, V8, P5, DOI 10.1023/A:1009651914734; JOHNSTON RF, 1964, SCIENCE, V144, P548, DOI 10.1126/science.144.3618.548; Kettlewell B, 1973, EVOLUTION MELANISM S; Kinnison M, 1998, CAN J FISH AQUAT SCI, V55, P554, DOI 10.1139/cjfas-55-3-554; Kinnison MT, 1998, CAN J ZOOL, V76, P2219, DOI 10.1139/cjz-76-12-2219; Kinnison MT, 1998, CAN J FISH AQUAT SCI, V55, P1946, DOI 10.1139/cjfas-55-8-1946; Kinnison MT, 2001, GENETICA, V112, P145, DOI 10.1023/A:1013375419520; Labelle M, 1997, CAN J FISH AQUAT SCI, V54, P1433, DOI 10.1139/cjfas-54-7-1433; LACY RC, 1993, WILDLIFE RES, V20, P45, DOI 10.1071/WR9930045; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Lee CE, 1999, EVOLUTION, V53, P1423, DOI 10.1111/j.1558-5646.1999.tb05407.x; Losos JB, 2001, GENETICA, V112, P399, DOI 10.1023/A:1013387705408; Ludwig D, 1999, ECOLOGY, V80, P298, DOI 10.1890/0012-9658(1999)080[0298:IIMTEA]2.0.CO;2; Lynch M, 2001, CONSERV GENET, V2, P363, DOI 10.1023/A:1012550620717; Lynch Michael, 1996, P471; MAGURRAN AE, 1995, ADV STUD BEHAV, V24, P155, DOI 10.1016/S0065-3454(08)60394-0; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; McCarthy MA, 2001, CONSERV BIOL, V15, P1030, DOI 10.1046/j.1523-1739.2001.0150041030.x; Morgan KK, 2001, EVOLUTION, V55, P1753; NELSON K, 1987, POPULATION GENETICS, P345; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1111/j.0014-3820.2002.tb01388.x; ORIANS GH, 1998, B ECOL SOC AM, V79, P15; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; PARNELL J, 1995, CONSERV BIOL, V9, P972; PATTON JL, 1975, SYST ZOOL, V24, P296, DOI 10.2307/2412717; Pergams ORW, 1999, EVOLUTION, V53, P1573, DOI 10.1111/j.1558-5646.1999.tb05420.x; Pergams ORW, 2001, GENETICA, V112, P245, DOI 10.1023/A:1013343923155; PIMM SL, 1990, TRENDS ECOL EVOL, V5, P350, DOI 10.1016/0169-5347(90)90092-R; Podolsky RH, 2001, CONSERV BIOL, V15, P412, DOI 10.1046/j.1523-1739.2001.015002412.x; QUINN TP, 1994, ANIM BEHAV, V48, P751, DOI 10.1006/anbe.1994.1300; Quinn TP, 1996, ECOLOGY, V77, P1151, DOI 10.2307/2265584; Quinn TP, 1999, OECOLOGIA, V121, P273, DOI 10.1007/s004420050929; Quinn TP, 2000, EVOLUTION, V54, P1372; Quinn TP, 2001, GENETICA, V112, P493, DOI 10.1023/A:1013348024063; Reed DH, 2001, EVOLUTION, V55, P1095; Reisenbichler Reginald R., 1997, P223; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rodriguez-Trelles F, 1998, EVOL ECOL, V12, P829, DOI 10.1023/A:1006546616462; Rogers D.E., 1987, Canadian Special Publication of Fisheries and Aquatic Sciences, V96, P78; SCHOLZ F, 1989, GENETIC EFFECTS AIR; Schwartz MW, 2001, ECOSYSTEMS, V4, P568, DOI 10.1007/s10021-001-0030-3; Sieving KE, 1998, ECOLOGY, V79, P2391, DOI 10.2307/176830; SMITH MJ, 1989, EVOLUTIONARY GENETIC; SMITH TB, 1995, CONSERV BIOL, V9, P107, DOI 10.1046/j.1523-1739.1995.09010107.x; Soltis PS, 1999, CONSERV BIOL, V13, P471, DOI 10.1046/j.1523-1739.1999.97286.x; STEARNS SC, 1983, AM ZOOL, V23, P65; Stockwell CA, 1998, EVOLUTION, V52, P1856, DOI 10.1111/j.1558-5646.1998.tb02264.x; Stockwell CA, 1999, ANIM CONSERV, V2, P103, DOI 10.1111/j.1469-1795.1999.tb00055.x; STOKES K, 2000, MARINE ECOLOGY PROGR, V208, P299; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0; Unwin MJ, 1997, CAN J FISH AQUAT SCI, V54, P1235, DOI 10.1139/cjfas-54-6-1235; Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494; Ward JK, 2000, OECOLOGIA, V123, P330, DOI 10.1007/s004420051019; Willson MF, 2002, CONSERV BIOL, V16, P557, DOI 10.1046/j.1523-1739.2002.00418.x; WU L, 1985, NEW PHYTOL, V99, P565, DOI 10.1111/j.1469-8137.1985.tb03684.x 118 200 204 2 77 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0006-3207 BIOL CONSERV Biol. Conserv. JUN 2003 111 2 115 123 PII S0006-3207(02)00279-3 10.1016/S0006-3207(02)00279-3 9 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 660EW WOS:000181821700001 2019-02-26 J Crews, DE; Gerber, LM Crews, DE; Gerber, LM Reconstructing life history of hominids and humans COLLEGIUM ANTROPOLOGICUM English Article biocultural adaptations; evolution; growth and development; senescence HUMAN LONGEVITY; EVOLUTION; MENOPAUSE; GROWTH; PERSPECTIVE; MAMMALS Aspects of life history, such as processes and timing of development, age at maturation, and life span are consistently associated with one another across the animal kingdom. Species that develop rapidly tend to mature and reproduce early, have many offspring, and exhibit shorter life spans (r-selection) than those that develop slowly, have extended periods of premature growth, mature later in life, reproduce later and less frequently, have few offspring and/or single births, and exhibit extended life spans (K-selection). In general, primates are among the most K-selected of species. A suite of highly derived life history traits characterizes humans. Among these are physically immature neonates, slowed somatic development both in utero and post-natally, late attainment of reproductive maturity and first birth, and extended post-mature survival. Exactly when, why, and through what types of evolutionary interactions this suite arose is currently the subject of much conjecture and debate. Humankind's biocultural adaptations have helped to structure human life history evolution in unique ways not seen in other animal species. Among all species, life history traits may respond rapidly to alterations in selective pressures through hormonal processes. Selective pressures on life history likely varied widely among hominids and humans over their evolutionary history. This suggests that current patterns of human growth, development, maturation, reproduction, and post-mature survival may be of recent genesis, rather then long-standing adaptations. Thus, life history patterns observed among contemporary human and chimpanzee populations may provide little insight to those that existed earlier in hominid human evolution. Ohio State Univ, Dept Anthropol, Columbus, OH 43210 USA; Ohio State Univ, Sch Publ Hlth, Columbus, OH 43210 USA; Cornell Univ, Weill Med Coll, Dept Publ Hlth & Med, New York, NY USA Crews, DE (reprint author), Ohio State Univ, Dept Anthropol, 244 Lord Hall,124 W 17th Ave, Columbus, OH 43210 USA. Austad SN, 1997, EXP GERONTOL, V32, P23, DOI 10.1016/S0531-5565(96)00059-9; AUSTAD SN, 1994, EXP GERONTOL, V29, P255, DOI 10.1016/0531-5565(94)90005-1; Barker D, 1998, MOTHERS BABIES HLTH; BERCOVITCH FB, 1993, FOLIA PRIMATOL, V61, P15; BIRD DW, 2002, HUMAN NATURE, V42, P239; BLURTONJONES NG, 2002, HUMAN NATURE, V42, P199; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; Bogin B, 1999, PATTERNS HUMAN GROWT; BOGIN B, 2000, HUMAN BIOL EVOLUTION; Charnov Eric L., 1993, P1; CREWS DE, 1992, AM J HUM BIOL, V4, P9, DOI 10.1002/ajhb.1310040104; Crews DE, 2003, HUMAN SENESCENCE EVO; CREWS DE, 1993, GENERATIONS, V17, P29; CUTLER RG, 1975, P NATL ACAD SCI USA, V72, P4664, DOI 10.1073/pnas.72.11.4664; CUTLER RG, 1976, J HUM EVOL, V5, P169, DOI 10.1016/0047-2484(76)90020-8; CUTLER RG, 1980, AGING CANC CELL MEMB; DEAN C, 2001, NATURE, V414; DUNNELL RC, 1978, EVOLUTIONARY ARCHAEO; Erhardt Carl L., 1974, MORTALITY MORBIDITY; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Garruto R. M., 1994, BIOL ANTHR AGING PER; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HAYFLICK L, 1988, GERIATRICS, V43, P77; Hill K, 1991, Hum Nat, V2, P313, DOI 10.1007/BF02692196; Hill K., 1996, ACHE LIFE HIST ECOLO; HOWELL N, 1982, AM J PHYS ANTHROPOL, V59, P263, DOI 10.1002/ajpa.1330590305; Johnson-Hanks J, 2002, AM ANTHROPOL, V104, P865, DOI 10.1525/aa.2002.104.3.865; KAPLAN HJ, 2001, EVOLUTIONARY A NTHR, V10, P156; Kondo O, 2000, J HUM EVOL, V38, P457, DOI 10.1006/jhev.1999.0347; LANCASTER JB, HER PRIME; Leigh SR, 1996, AM J PHYS ANTHROPOL, V101, P455, DOI 10.1002/(SICI)1096-8644(199612)101:4<455::AID-AJPA2>3.0.CO;2-V; Leigh SR, 1998, AM J PHYS ANTHROPOL, V107, P331; Marlowe FW, 2000, HUM NATURE-INT BIOS, V11, P27, DOI 10.1007/s12110-000-1001-7; McKeown Thomas, 1976, MODERN RISE POPULATI; MILNER GR, 1989, AM J PHYS ANTHROPOL, V80, P49, DOI 10.1002/ajpa.1330800107; O'Connell James F., 2000, ADAPTATION HUMAN BEH; Olshansky SJ, 1998, AM SCI, V86, P52, DOI 10.1511/1998.17.914; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PACKER C, 1998, NAT HIST, V7, P24; SHEA B, 1998, CAMBRIDGE ENCY HUMAN; SHEA BT, 1989, YEARB PHYS ANTHROPOL, V32, P69; SMITH BH, 1991, AM J PHYS ANTHROPOL, V86, P157, DOI 10.1002/ajpa.1330860206; SMITH BH, 1995, ANNU REV ANTHROPOL, V24, P257, DOI 10.1146/annurev.an.24.100195.001353; Smith DW, 1993, HUMAN LONGEVITY; STAHL AB, 1993, AM ANTIQUITY, V58, P235, DOI 10.2307/281967; Thompson JL, 2000, J HUM EVOL, V38, P475, DOI 10.1006/jhev.1999.0364; WEISS K M, 1989, American Journal of Human Biology, V1, P307, DOI 10.1002/ajhb.1310010311; WEISS KM, 1984, HUM BIOL, V56, P637; WEISS KM, 1973, MEMOIRS SOC AM ARCHA, V27, P1; WEISSMANN A, 1889, ESSAYS HEREDITY KIND; 1948, DEMOGRAPHIC YB 52 6 6 1 16 COLLEGIUM ANTROPOLOGICUM ZAGREB INST ANTHROPOLOGICAL RESEARCH, GAJEVA 32, PO BOX 290, HR-10000 ZAGREB, CROATIA 0350-6134 COLLEGIUM ANTROPOL Coll. Anthropol. JUN 2003 27 1 7 22 16 Anthropology Anthropology 706QE WOS:000184463900003 12974130 2019-02-26 J Ylonen, H; Sundell, J; Tiilikainen, R; Eccard, JA; Horne, T Ylonen, H; Sundell, J; Tiilikainen, R; Eccard, JA; Horne, T Weasels' (Mustela nivalis nivalis) preference for olfactory cues of the vole (Clethrionomys glareolus) ECOLOGY English Article bank vole; Clethrionomys glareolus; coevolution; least weasel; Mustela nivalis nivalis; odors; olfactory cues; predation MALE BANK VOLES; PREDATION RISK; PREY SELECTION; LEAST WEASELS; DEER MICE; MOBILITY; MICROTUS; ECOLOGY Many studies on life history strategies of small mammals under predation risk are based on assumptions that mammalian predators use scent marking from prey in searching and hunting. This is especially true for small mustelids hunting in the tunnels and cavities of their prey. It is assumed that weasels use the estrous signs of female voles as hunting cues, which exposes such females to a more pronounced risk of predation. We studied the preferences of 57 least weasels (Mustela nivalis nivalis) toward odor cues from four different reproductive categories of the bank vole (Clethrionomys glareolus). In the first experiment, weasels selected clearly for vole odors over clean bedding in a Y-maze arena. The second experiment demonstrated that there was no difference in weasel preference between estrous and pregnant or lactating females. Thirdly, there was no preference for odors from dominant vs. subordinate males. Finally, we offered weasels a dyadic choice between olfactory signs of six possible combinations of four prey categories: reproductive females, reproductive males, immature females, and immature males. There was no clear preference for any of the categories; only immature males seemed to be preferred less than females of the same age. Our study does not support the hypothesis that the weasel would have clear olfactory preference for some reproductive category of voles. However, in the field, factors like spacing behavior, mobility and acoustic cues of the prey, and conspicuousness of the nest site might affect the behavior of hunting weasels and individual vulnerability of prey. Univ Jyvaskyla, Dept Biol & Environm Sci, FIN-40351 Jyvaskyla, Finland; Univ Helsinki, Div Populat Biol, Dept Ecol & Systemat, FIN-00014 Helsinki, Finland Ylonen, H (reprint author), Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FIN-40351 Jyvaskyla, Finland. Banks PB, 2000, P ROY SOC B-BIOL SCI, V267, P1621, DOI 10.1098/rspb.2000.1187; CUSHING BS, 1984, ANIM BEHAV, V32, P1263, DOI 10.1016/S0003-3472(84)80250-X; CUSHING BS, 1985, ECOLOGY, V66, P1976, DOI 10.2307/2937393; DERTING TL, 1989, AM MIDL NAT, V122, P394, DOI 10.2307/2425926; ERLINGE S, 1975, OIKOS, V26, P378, DOI 10.2307/3543510; Horne TJ, 1996, BEHAV ECOL SOCIOBIOL, V38, P401, DOI 10.1007/s002650050257; Horne TJ, 1998, EVOLUTION, V52, P894, DOI 10.1111/j.1558-5646.1998.tb03714.x; King C, 1989, NATURAL HIST WEASELS; Lambin X, 1997, ANN ZOOL FENN, V34, P23; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; MacDonald DW, 1993, MAMMALS BRITAIN EURO; Norrdahl K, 1998, ECOLOGY, V79, P226; Norrdahl K, 2000, MAMMAL REV, V30, P147, DOI 10.1046/j.1365-2907.2000.00064.x; NORRDAHL K, 1995, P ROY SOC B-BIOL SCI, V261, P49, DOI 10.1098/rspb.1995.0116; Pekkarinen P, 1997, ACTA THERIOL, V42, P179, DOI 10.4098/AT.arch.97-20; Roberts SC, 2001, BEHAV ECOL, V12, P698, DOI 10.1093/beheco/12.6.698; ROZENFELD FM, 1991, ANIM BEHAV, V41, P839, DOI 10.1016/S0003-3472(05)80351-3; SHARPE ST, 1990, CAN J ZOOL, V68, P2364, DOI 10.1139/z90-328; SUNDELL J, 2003, IN PRESS OIKOS, V100; VERMEJ G, 1987, ESCALATION EVOLUTION; VIITALA J, 1985, ANN ZOOL FENN, V22, P359; YLONEN H, 1994, TRENDS ECOL EVOL, V9, P426, DOI 10.1016/0169-5347(94)90125-2; YLONEN H, 1994, EVOL ECOL, V8, P658, DOI 10.1007/BF01237848; Ylonen H, 1999, TRENDS ECOL EVOL, V14, P82, DOI 10.1016/S0169-5347(98)01553-5; Ylonen H, 2001, ADV VERTEBRATE PEST, P123; YLONER H, 1989, OIKOS, V55, P138, DOI 10.2307/3565886 27 30 31 0 22 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology JUN 2003 84 6 1447 1452 10.1890/0012-9658(2003)084[1447:WMNNPF]2.0.CO;2 6 Ecology Environmental Sciences & Ecology 706KB WOS:000184451900014 2019-02-26 J Alonzo, SH; Switzer, PV; Mangel, M Alonzo, SH; Switzer, PV; Mangel, M Ecological games in space and time: The distribution and abundance of Antarctic krill and penguins ECOLOGY English Article Antarctic krill; dynamic game model; Euphausia superba; life-history theory; penguin foraging; predator-prey interactions EUPHAUSIA-SUPERBA; HABITAT SELECTION; CHINSTRAP PENGUINS; EVOLUTIONARY GAME; SOUTH-GEORGIA; PREDATORS; PREY; ZOOPLANKTON; TEMPERATURE; SEGREGATION The distribution and abundance of organisms are affected by behaviors, such as habitat selection, foraging, and reproduction. These behaviors are driven by interactions within and between species, environmental conditions, and the biology of the species involved. Although extensive theoretical work has explored predator-prey dynamics, these models have not considered the impact of behavioral plasticity and life-history trade-offs on predicted patterns. We apply a modeling method that allows the consideration of a spatial, dynamic ecological game between predators and prey using a life-history perspective. As an illustrative example, we model the habitat selection of Antarctic krill- and penguins during the time when penguins are land-based for reproduction. Although environmental conditions and the life-history constraints of each species have both direct and indirect effects on both species, the penguin's foraging rule (whether food-maximizing or time-minimizing) has the greatest effect on the qualitative distribution pattern of both species. Size-dependent-diel vertical migration of krill also strongly affects penguin foraging patterns. This model generates suggestions for future research and qualitative predictions that can be tested in the field. The application of this method to a specific problem also demonstrates its ability to increase our understanding of important ecological interactions in general. Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA; Eastern Illinois Univ, Dept Sci Biol, Charleston, IL 61920 USA; Univ Calif Santa Cruz, Jack Baskin Sch Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA Alonzo, SH (reprint author), Univ Calif Santa Cruz, Inst Marine Sci, 1156 High St, Santa Cruz, CA 95064 USA. ABRAMSKY Z, 1991, ECOLOGY, V72, P329, DOI 10.2307/1938926; Alonzo SH, 2002, EVOL ECOL RES, V4, P759; Alonzo SH, 2001, MAR ECOL PROG SER, V209, P203, DOI 10.3354/meps209203; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Boyd IL, 2001, J ANIM ECOL, V70, P747, DOI 10.1046/j.0021-8790.2001.00534.x; BROWN JS, 1992, EVOLUTION, V46, P1269, DOI 10.1111/j.1558-5646.1992.tb01123.x; BROWN JS, 1990, EVOLUTION, V44, P732, DOI 10.1111/j.1558-5646.1990.tb05951.x; Clark C, 2000, DYNAMIC STATE VARIAB; CROXALL JP, 1980, BIOL J LINN SOC, V14, P103, DOI 10.1111/j.1095-8312.1980.tb00101.x; Folt CL, 1999, TRENDS ECOL EVOL, V14, P300, DOI 10.1016/S0169-5347(99)01616-X; Fretwell SD, 1972, POPULATIONS SEASONAL; Fryxell J. M., 1998, INDIVIDUAL BEHAV COM; Hernandez-Leon S, 2001, MAR ECOL PROG SER, V223, P235, DOI 10.3354/meps223235; Hill HJ, 1996, MAR ECOL PROG SER, V140, P1, DOI 10.3354/meps140001; HOLMHANSEN O, 1984, J CRUSTACEAN BIOL, V4, P156; Houston A. I., 1999, MODELS ADAPTIVE BEHA; HUGIE DM, 1994, J FISH BIOL, V45, P151, DOI 10.1006/jfbi.1994.1220; IKEDA T, 1985, MAR BIOL, V85, P1, DOI 10.1007/BF00396409; KERFOOT WC, 1980, EVOLUTION ECOLOGY ZO; Kingsland Sharon, 1985, MODELING NATURE EPIS; Lima SL, 2002, TRENDS ECOL EVOL, V17, P70, DOI 10.1016/S0169-5347(01)02393-X; MACKINTOSH N A, 1972, Discovery Reports, V36, P1; Mangel M, 1998, ECOL MODEL, V105, P235, DOI 10.1016/S0304-3800(97)00167-1; Mangel M, 1988, DYNAMIC MODELING BEH; Mauchline J., 1980, Advances in Marine Biology, V18, P1; May R. M., 1973, STABILITY COMPLEXITY; MCNAMARA JM, 1990, EVOL ECOL, V4, P298, DOI 10.1007/BF02270929; McNamara JM, 1997, J THEOR BIOL, V189, P211, DOI 10.1006/jtbi.1997.0511; MORRIS DJ, 1984, MAR ECOL PROG SER, V20, P203, DOI 10.3354/meps020203; MORRIS DJ, 1983, POLAR BIOL, V2, P21, DOI 10.1007/BF00258281; PAKHOMOV EA, 1995, MAR ECOL PROG SER, V119, P45, DOI 10.3354/meps119045; Reid K, 1996, MAR ECOL PROG SER, V140, P13, DOI 10.3354/meps140013; Rosenzweig M.L., 1991, American Naturalist, V137, P5; SIEGEL V, 1987, MAR BIOL, V96, P483, DOI 10.1007/BF00397966; SIEGEL V, 1985, ARCH FISCHEREIWISS, V36, P185; Sih Andrew, 1998, P221; TRIVELPIECE WZ, 1987, ECOLOGY, V68, P351, DOI 10.2307/1939266; TRIVELPIECE WZ, 1986, AUK, V103, P777 38 43 45 1 17 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology JUN 2003 84 6 1598 1607 10.1890/0012-9658(2003)084[1598:EGISAT]2.0.CO;2 10 Ecology Environmental Sciences & Ecology 706KB WOS:000184451900028 2019-02-26 J Ali, M; Nicieza, A; Wootton, RJ Ali, M; Nicieza, A; Wootton, RJ Compensatory growth in fishes: a response to growth depression FISH AND FISHERIES English Review growth efficiency; growth regulation; hyperphagia; storage levels; trade-offs SALMO-SALAR L; TROUT ONCORHYNCHUS-MYKISS; JUVENILE ATLANTIC SALMON; CATFISH ICTALURUS-PUNCTATUS; SIZE-SELECTIVE MORTALITY; HERRING CLUPEA-HARENGUS; CARP CYPRINUS-CARPIO; COD GADUS-MORHUA; HEPATIC 5'-MONODEIODINASE ACTIVITY; PHOXINUS-PHOXINUS CYPRINIDAE Compensatory growth (CG) is a phase of accelerated growth when favourable conditions are restored after,a period of growth depression. CG reduces variance in size by causing growth trajectories to converge and is important to fisheries management, aquaculture and life history analysis because it can offset the effects of growth arrests. Compensatory growth has been demonstrated in both individually housed and grouped fish, typically after growth depression has been induced by complete or partial food deprivation. Partial, full and over-compensation have all been evoked in fish, although over-compensation has only been demonstrated when cycles of deprivation and satiation feeding have been imposed. Individually housed fish have shown that CG is partly a response to hyperphagia when rates of food consumption are significantly higher than those in fish that have not experienced growth depression. The severity of the growth depression increases the duration of the hyperphagic phase rather than maximum daily feeding rate. In many studies, growth efficiencies were higher during CG. Changes in metabolic rate and swimming activity have not been demonstrated yet to play a role. Periods of food deprivation induce changes in the storage reserves, particularly lipids, of fish. Apart from the strong evidence for the restoration of somatic growth trajectories, CG is a response to restore lipid levels. Although several neuro-peptides, including neuropeptide-Y, are probably involved in the control of appetite, their role and the such as growth hormone (GH) and insulin-like growth factor (IGF), role of hormones, in the hyperphagia associated with CG are still unclear. The advantages of CG probably relate to size dependencies of mortality, fecundity and diet that are characteristic of teleosts. These size dependencies favour a recovery from the effects of growth depression if environmental factors allow. High growth rates may also impose costs, including adverse effects on future development, growth. reproduction and swimming performance. Hyperphagia may lead to riskier behaviour in the presence of predators. CGs evolutionary consequences are largely unexplored. An understanding of why animals grow at rates below their physiological capacity, an evaluation of the costs of rapid growth and the identification of the constraints on growth trajectories represent major challenges for life-history theory. Aberystwyth Univ, Inst Biol Sci, Aberystwyth SY23 3DA, Dyfed, Wales; Univ Oviedo, Dept Biol Organism & Sistemas, E-33071 Oviedo, Spain Wootton, RJ (reprint author), Aberystwyth Univ, Inst Biol Sci, Aberystwyth SY23 3DA, Dyfed, Wales. rjw@abor.ac.uk Ali, Muhammad/B-6434-2009 Ali, Muhammad/0000-0002-6852-3903; Gonzalez-Nicieza, Alfredo Cesar/0000-0003-4062-569X Abrahams MV, 1999, ANIM BEHAV, V58, P933, DOI 10.1006/anbe.1999.1229; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ADAMS SM, 1982, CAN J FISH AQUAT SCI, V39, P1175, DOI 10.1139/f82-155; Ali M, 1998, J FISH BIOL, V52, P223, DOI 10.1111/j.1095-8649.1998.tb00794.x; Ali M, 2001, AQUAC RES, V32, P443, DOI 10.1046/j.1365-2109.2001.00594.x; Ali M, 2001, J FISH BIOL, V58, P1531, DOI 10.1006/jfbi.2001.1555; Ali M, 1999, J FISH BIOL, V55, P211, DOI 10.1006/jfbi.1999.0991; Ali M, 1998, J FISH BIOL, V53, P1006, DOI 10.1111/j.1095-8649.1998.tb00459.x; ALVAREZ D, 2002, THESIS U OVIEDO SPAI; Aranda A, 2001, PHYSIOL BEHAV, V73, P105, DOI 10.1016/S0031-9384(01)00464-4; ARANYAKANANDA P, 1996, ARRI NEWSL, V3, P11; Arendt J, 2001, OIKOS, V93, P95, DOI 10.1034/j.1600-0706.2001.930110.x; Arendt JD, 1997, EVOLUTION, V51, P1946, DOI 10.1111/j.1558-5646.1997.tb05116.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arendt JD, 2000, CAN J FISH AQUAT SCI, V57, P351, DOI 10.1139/cjfas-57-2-351; Arndt SKA, 1996, J FISH BIOL, V49, P257; ATCHLEY WR, 1984, AM NAT, V123, P519, DOI 10.1086/284220; Basiao ZU, 1996, J FISH BIOL, V49, P277; BASTROP R, 1991, COMP BIOCHEM PHYS A, V98, P143, DOI 10.1016/0300-9629(91)90592-Z; BEACHAM TD, 1981, CAN J ZOOL, V59, P614, DOI 10.1139/z81-090; BEAMISH FWH, 1964, T AM FISH SOC, V50, P153; BELL G, 1974, J ANIM ECOL, V43, P115, DOI 10.2307/3161; BELLAMY D, 1968, COMP BIOCHEM PHYSIOL, V25, P343, DOI 10.1016/0010-406X(68)90942-0; BERTRAM DF, 1993, MAR ECOL PROG SER, V96, P209, DOI 10.3354/meps096209; Billerbeck JM, 2001, EVOLUTION, V55, P1863; BILTON HT, 1982, CAN J FISH AQUAT SCI, V39, P426, DOI 10.1139/f82-060; BILTON HT, 1973, J FISH RES BOARD CAN, V30, P1, DOI 10.1139/f73-001; Bjornsson B., 1992, Fiskeridirektoratets Skrifter. Serie Ernaring, V5, P25; BLASCO J, 1992, COMP BIOCHEM PHYS A, V103, P357, DOI 10.1016/0300-9629(92)90594-G; BLASCO J, 1992, J COMP PHYSIOL B, V162, P539; Blaxter J.H.S., 1974, P575; BLAXTER J. H. S., 1963, JOUR CONS CONS PERM INTERNATL EXPLOR MER, V28, P211; Boujard T, 2000, AQUAT LIVING RESOUR, V13, P129, DOI 10.1016/S0990-7440(00)00149-2; BRETT JR, 1971, J FISH RES BOARD CAN, V28, P409, DOI 10.1139/f71-053; BROEKHUIZEN N, 1994, FUNCT ECOL, V8, P770, DOI 10.2307/2390237; BROWN CR, 1991, PHYSIOL ZOOL, V64, P298, DOI 10.1086/physzool.64.1.30158525; BROWN ME, 1946, J EXP BIOL, V22, P130; Brown MR, 1957, PHYSIOL FISHES, V1, P361, DOI DOI 10.1016/B978-1-4832-2817-4.50015-9; Buckel JA, 1998, T AM FISH SOC, V127, P576, DOI 10.1577/1548-8659(1998)127<0576:EOADOO>2.0.CO;2; BUCKLEY LJ, 1979, J FISH RES BOARD CAN, V36, P1497, DOI 10.1139/f79-217; Bull CD, 1997, J FISH BIOL, V50, P498, DOI 10.1006/jfbi.1996.0314; Bull CD, 1996, P ROY SOC B-BIOL SCI, V263, P13, DOI 10.1098/rspb.1996.0003; Carter Chris, 2001, P297, DOI 10.1002/9780470999516.ch13; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CHAMBERS RC, 1988, MAR ECOL PROG SER, V47, P1, DOI 10.3354/meps047001; Chatakondi NG, 2001, J WORLD AQUACULT SOC, V32, P278, DOI 10.1111/j.1749-7345.2001.tb00451.x; CHAVIN W, 1970, COMP BIOCHEM PHYSIOL, V33, P629, DOI 10.1016/0010-406X(70)90376-2; Chmilevskii D. A., 1994, Voprosy Ikhtiologii, V34, P675; CHMILEVSKII DA, 1998, J ICHTHYOLOGY, V38, P86; CHMILEVSKIY DA, 1996, J ICHTHYOL, V36, P615; CHO CY, 1976, J NUTR, V106, P1547; CHRISTENSEN SM, 1998, RIBARSTVO, V56, P3; CHRISTIANSEN JS, 1992, BAM, V2, P235; Collins AL, 1995, J FISH BIOL, V47, P1004, DOI 10.1111/j.1095-8649.1995.tb06024.x; CONOVER DO, 1982, ESTUARIES, V5, P275, DOI 10.2307/1351750; CONOVER DO, 1992, J FISH BIOL, V41, P161, DOI 10.1111/j.1095-8649.1992.tb03876.x; CUI Y, 1989, J FISH BIOL, V34, P47, DOI 10.1111/j.1095-8649.1989.tb02957.x; CUTTS CJ, 2002, FUNCTIONAL ECOLOGY, V16, P74; DABROWSKI K, 1986, B JPN SOC SCI FISH, V52, P1869; Damsgard B, 1998, AQUACULTURE, V168, P7, DOI 10.1016/S0044-8486(98)00335-4; Damsgard B, 1998, BEHAV ECOL, V9, P26, DOI 10.1093/beheco/9.1.26; De Pedro N., 2001, FEED INTAKE FISH, P297; DOBSON SH, 1984, J FISH BIOL, V25, P649, DOI 10.1111/j.1095-8649.1984.tb04911.x; DUNBRACK RL, 1988, CAN J FISH AQUAT SCI, V45, P1191, DOI 10.1139/f88-141; DUNBRACK RL, 1983, ENVIRON BIOL FISH, V8, P203, DOI 10.1007/BF00001086; DUPREEZ HH, 1986, COMP BIOCHEM PHYS A, V84, P61, DOI 10.1016/0300-9629(86)90043-5; DUPREEZ HH, 1986, COMP BIOCHEM PHYS A, V85, P313, DOI 10.1016/0300-9629(86)90257-4; DUPREEZ HH, 1987, COMP BIOCHEM PHYS A, V88, P523; EGGLISHAW HJ, 1977, J FISH BIOL, V11, P647, DOI 10.1111/j.1095-8649.1977.tb05722.x; ELLIOTT JM, 1976, J ANIM ECOL, V45, P561, DOI 10.2307/3891; ELLIOTT JM, 1975, FRESHWATER BIOL, V5, P287, DOI 10.1111/j.1365-2427.1975.tb00142.x; ELLIOTT JM, 1975, FRESHWATER BIOL, V5, P51, DOI 10.1111/j.1365-2427.1975.tb00120.x; ELLIOTT JM, 1972, FRESHWATER BIOL, V2, P1, DOI DOI 10.1111/J.1365-2427.1972.TB01575.X; Emerson S.B., 1986, AM NAT, V127, P163; FARBRIDGE KJ, 1992, AQUACULTURE, V104, P157, DOI 10.1016/0044-8486(92)90146-C; FARBRIDGE KJ, 1992, FISH PHYSIOL BIOCHEM, V10, P245, DOI 10.1007/BF00004518; FARBRIDGE KJ, 1992, FISH PHYSIOL BIOCHEM, V10, P67, DOI 10.1007/BF00004655; Farrell AP, 1997, CAN J ZOOL, V75, P335, DOI 10.1139/z97-043; Ferreri CP, 1996, J FISH BIOL, V49, P763, DOI 10.1111/j.1095-8649.1996.tb00077.x; FLETCHER DJ, 1984, COMP BIOCHEM PHYS A, V78, P617, DOI 10.1016/0300-9629(84)90608-X; Foss A, 2002, AQUAC RES, V33, P1097, DOI 10.1046/j.1365-2109.2002.00768.x; From J., 1984, DANA, V3, P61; GARDINER WR, 1980, HYDROBIOLOGIA, V69, P67, DOI 10.1007/BF00016537; Gaylord TG, 2001, FISH PHYSIOL BIOCHEM, V24, P73, DOI 10.1023/A:1011199518135; Gaylord TG, 2001, AQUACULTURE, V194, P337, DOI 10.1016/S0044-8486(00)00523-8; Gerking S. D., 1994, FEEDING ECOLOGY FISH; GERKING SD, 1979, ERGEBNIS LIMNOLOGIE, P181; Goddard J.S., 1974, Ichthyologia, V6, P49; GODIN JGJ, 1981, J FISH BIOL, V19, P63, DOI 10.1111/j.1095-8649.1981.tb05811.x; GORMAN GC, 1982, CANADIAN J FISHERIES, V39, P862; Gross M.R., 1987, AM FISH SOC S, V1, P14; GROSS MR, 1988, SCIENCE, V239, P1291, DOI 10.1126/science.239.4845.1291; GROVE DJ, 1985, J FISH BIOL, V26, P339, DOI 10.1111/j.1095-8649.1985.tb04272.x; GROVE DJ, 1978, J FISH BIOL, V12, P507, DOI 10.1111/j.1095-8649.1978.tb04195.x; HAWEET A, 1996, FISHERIES SCI, V62, P529; Hawkins DK, 1996, CAN J FISH AQUAT SCI, V53, P1487, DOI 10.1139/cjfas-53-7-1487; Hayward RS, 1997, T AM FISH SOC, V126, P316, DOI 10.1577/1548-8659(1997)126<0316:NUOCGT>2.3.CO;2; Hayward RS, 2000, AQUACULTURE, V183, P299, DOI 10.1016/S0044-8486(99)00301-4; Hayward RS, 2001, J FISH BIOL, V59, P126, DOI 10.1006/jfbi.2001.1634; HEALEY MC, 1982, CAN J FISH AQUAT SCI, V39, P952, DOI 10.1139/f82-130; HENDERSON MA, 1991, CAN J FISH AQUAT SCI, V48, P988, DOI 10.1139/f91-115; HENDERSON PA, 1988, J FISH BIOL, V33, P221, DOI 10.1111/j.1095-8649.1988.tb05465.x; HEPHER B, 1983, AQUACULTURE, V32, P255, DOI 10.1016/0044-8486(83)90223-5; Hoebel BG, 1997, APPETITE, V29, P119, DOI 10.1006/appe.1997.0126; Houlihan D. F., 1993, FISH ECOPHYSIOLOGY, P45; Houston A. I., 1999, MODELS ADAPTIVE BEHA; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; HUBBELL SP, 1971, SYSTEMS ANAL SIMULAT, P269; HUNT RL, 1969, J FISH RES BOARD CAN, V26, P1473, DOI 10.1139/f69-138; HUTCHINGS JA, 1994, OIKOS, V70, P12, DOI 10.2307/3545693; INCE BW, 1976, J FISH BIOL, V8, P79, DOI 10.1111/j.1095-8649.1976.tb03909.x; JEZIERSKA B, 1982, J FISH BIOL, V21, P681, DOI 10.1111/j.1095-8649.1982.tb02872.x; JOBLING M, 1993, J FISH BIOL, V43, P409, DOI 10.1006/jfbi.1993.1143; JOBLING M, 1980, J FISH BIOL, V17, P325, DOI 10.1111/j.1095-8649.1980.tb02766.x; Jobling M, 1996, J FISH BIOL, V49, P658; JOBLING M, 1982, J FISH BIOL, V20, P431, DOI 10.1111/j.1095-8649.1982.tb03936.x; Jobling M, 1999, AQUAC RES, V30, P473, DOI 10.1046/j.1365-2109.1999.00358.x; Jobling M., 1994, FISH BIOENERGETICS; Jobling M, 1994, AQUACULT INT, V2, P75, DOI DOI 10.1007/BF00128802; JOBLING M, 1993, FISH ECOPHYSIOLOGY, P1; JOHAL M S, 1986, Indian Journal of Ecology, V13, P350; Johansen SJS, 2002, AQUAC RES, V33, P515, DOI 10.1046/j.1365-2109.2002.00736.x; Johansen SJS, 2001, AQUAC RES, V32, P963, DOI 10.1046/j.1365-2109.2001.00632.x; Johnson RW, 2001, J ANTIMICROB CHEMOTH, V47, P1, DOI 10.1093/jac/47.suppl_1.1; JOHNSON TB, 1990, T AM FISH SOC, V119, P301, DOI 10.1577/1548-8659(1990)119<0301:SWMOYW>2.3.CO;2; JOHNSON TB, 1991, CAN J FISH AQUAT SCI, V48, P672, DOI 10.1139/f91-084; Johnsson JI, 1996, CAN J FISH AQUAT SCI, V53, P1546, DOI 10.1139/cjfas-53-7-1546; Johnsson JI, 1999, FUNCT ECOL, V13, P514, DOI 10.1046/j.1365-2435.1999.00341.x; JOHNSSON JI, 1993, ANIM BEHAV, V45, P1219, DOI 10.1006/anbe.1993.1143; JOHNSTON IA, 1981, CELL TISSUE RES, V214, P369; Jonsson E, 1996, P ROY SOC B-BIOL SCI, V263, P647, DOI 10.1098/rspb.1996.0097; KARLSEN O, 1995, AQUACULTURE, V133, P159, DOI 10.1016/0044-8486(94)00399-9; Kim MK, 1995, AQUACULTURE, V135, P285, DOI 10.1016/0044-8486(95)01027-0; KINDSCHI G A, 1988, Aquaculture and Fisheries Management, V19, P213, DOI 10.1111/j.1365-2109.1988.tb00424.x; Kinne O., 1960, Physiological Zoology, V33, P288; KITCHELL JF, 1977, J FISH RES BOARD CAN, V34, P1922, DOI 10.1139/f77-258; Koppe Wolfgang, 1993, P263; LAGARDERE F, 1989, RAP PROCES, V191, P390; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; LARSSON A, 1973, COMP BIOCHEM PHYSIOL, V44, P367, DOI 10.1016/0300-9629(73)90489-1; Le Bail PY, 1997, AQUAT LIVING RESOUR, V10, P371, DOI 10.1051/alr:1997041; LEAMY L, 1985, GROWTH, V49, P8; LEATHERLAND JF, 1992, GEN COMP ENDOCR, V87, P342, DOI 10.1016/0016-6480(92)90040-Q; LEBAIL PY, 1993, AQUACULTURE FUNDAMEN, P137; LEE DJ, 1973, J NUTR, V103, P916; Letcher BH, 1996, T AM FISH SOC, V125, P14, DOI 10.1577/1548-8659(1996)125<0014:SDEOCA>2.3.CO;2; Letcher BH, 2001, N AM J FISH MANAGE, V21, P102, DOI 10.1577/1548-8675(2001)021<0102:EODSAS>2.0.CO;2; LITVAK MK, 1992, MAR ECOL PROG SER, V81, P13, DOI 10.3354/meps081013; LOVE RM, 1980, CHEM BIOL FISHES, V2; LOVE RM, 1970, CHEM BIOL FISHES; Lovell R.T., 1979, Proceedings of the Annual Conference Southeastern Association of Fish and Wildlife Agencies, V33, P563; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; LUNDQVIST H, 1994, AQUACULTURE, V121, P245, DOI 10.1016/0044-8486(94)90024-8; Luquet P, 1995, AQUAT LIVING RESOUR, V8, P389, DOI 10.1051/alr:1995045; MACCHIUSI F, 1991, FRESHWATER BIOL, V25, P533, DOI 10.1111/j.1365-2427.1991.tb01396.x; MACHIELS MAM, 1987, AQUACULTURE, V60, P55, DOI 10.1016/0044-8486(87)90357-7; MACKAS DL, 1985, B MAR SCI, V37, P652; Maclean A, 2001, J FISH BIOL, V58, P1331, DOI 10.1006/jfbi.2000.1545; MAGNUSON JJ, 1969, T AM FISH SOC, V98, P379, DOI 10.1577/1548-8659(1969)98[379:DAFCBS]2.0.CO;2; MARAIS JFK, 1979, AQUACULTURE, V17, P203, DOI 10.1016/0044-8486(79)90124-8; McDowall RM, 2001, FISH FISH, V2, P78, DOI 10.1046/j.1467-2979.2001.00036.x; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; MCLEAN E, 1992, AQUACULTURE, V103, P377, DOI 10.1016/0044-8486(92)90180-S; MCMILLAN DN, 1992, FISH PHYSIOL BIOCHEM, V10, P23, DOI 10.1007/BF00004651; MENDEZ G, 1993, ENVIRON BIOL FISH, V36, P73, DOI 10.1007/BF00005981; METCALFE NB, 1992, J ANIM ECOL, V61, P175, DOI 10.2307/5520; Metcalfe NB, 2002, EVOL ECOL RES, V4, P871; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MIGLAVS I, 1989, J FISH BIOL, V34, P947; MIGLAVS I, 1989, J FISH BIOL, V35, P1, DOI 10.1111/j.1095-8649.1989.tb03387.x; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; Mommsen Thomas P., 1998, P65; MONTEIRO LS, 1966, ANIM PROD, V8, P179, DOI 10.1017/S0003356100034565; MOORES JA, 1982, CAN J FISH AQUAT SCI, V39, P454, DOI 10.1139/f82-062; Morgan IJ, 2001, P ROY SOC B-BIOL SCI, V268, P295, DOI 10.1098/rspb.2000.1365; MORTENSEN A, 1993, AQUACULTURE, V114, P261, DOI 10.1016/0044-8486(93)90301-E; Nagai M, 1971, NIPPON SUISAN GAKK, V37, P404; Nicieza A.G., 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V118, P225; NICIEZA AG, 1994, CAN J ZOOL, V72, P1603, DOI 10.1139/z94-213; NICIEZA AG, 1994, OECOLOGIA, V99, P243, DOI 10.1007/BF00627736; Nicieza AG, 1997, ECOLOGY, V78, P2385; NICIEZA AG, 1993, CAN J FISH AQUAT SCI, V50, P1632, DOI 10.1139/f93-184; Nicieza AG, 1999, FUNCT ECOL, V13, P793, DOI 10.1046/j.1365-2435.1999.00371.x; NICIEZA AG, 1993, THESIS U OVIEDO; NORTON SF, 1991, ECOLOGY, V72, P1807, DOI 10.2307/1940980; OLIVER JD, 1979, T AM FISH SOC, V108, P130, DOI 10.1577/1548-8659(1979)108<130:OMOFSB>2.0.CO;2; OWEN RW, 1989, J MAR RES, V47, P197, DOI 10.1357/002224089785076415; PAGE JW, 1973, J NUTR, V103, P1339; PANDIAN TJ, 1967, MAR BIOL, V1, P107, DOI 10.1007/BF00386513; PARKER GA, 1992, J FISH BIOL, V41, P1, DOI 10.1111/j.1095-8649.1992.tb03864.x; PARKER RR, 1971, J FISH RES BOARD CAN, V28, P1503, DOI 10.1139/f71-231; PAUL AJ, 1995, J FISH BIOL, V46, P442, DOI 10.1111/j.1095-8649.1995.tb05984.x; PEDERSEN BH, 1993, MAR BIOL, V117, P547, DOI 10.1007/BF00349764; PEDERSEN BH, 1990, MAR BIOL, V107, P61, DOI 10.1007/BF01313242; Perez-Sanchez J, 1999, AQUACULTURE, V177, P117, DOI 10.1016/S0044-8486(99)00073-3; PETER RE, 1979, FISH PHYSIOL, V8, P121; Pirhonen J, 1998, AQUACULTURE, V162, P203, DOI 10.1016/S0044-8486(98)00215-4; PLANK J, 1985, Z TIERPHYSIOL TIERER, V53, P138; POST JR, 1989, CAN J FISH AQUAT SCI, V46, P1958, DOI 10.1139/f89-246; PRIEDE LG, 1985, FISH ENERGETICS, P33; Purchase CF, 2001, J FISH BIOL, V58, P36, DOI 10.1006/jfbi.2000.1424; Qian X, 2000, J FISH BIOL, V56, P228, DOI 10.1006/jfbi.1999.1154; QUINTON JC, 1990, J FISH BIOL, V37, P33, DOI 10.1111/j.1095-8649.1990.tb05924.x; Raikova-Petrova GN, 1998, INT REV HYDROBIOL, V83, P599; REIMERS E, 1993, J FISH BIOL, V43, P805; REINHARDT UG, 1998, N PACIFIC ANADROMOUS, V1, P403; Ricker W. E, 1975, B FISH RES BOARD CAN, V191, P1; RICKER WE, 1969, J FISH RES BOARD CAN, V26, P479, DOI 10.1139/f69-051; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; RISKA B, 1984, GENETICS, V107, P79; Robinson BW, 2002, ENVIRON BIOL FISH, V63, P67, DOI 10.1023/A:1013820101348; Roff Derek A., 1992; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; ROWE DK, 1990, AQUACULTURE, V86, P291, DOI 10.1016/0044-8486(90)90121-3; ROZIN P, 1961, AM J PHYSIOL, V201, P968; Rueda FM, 1998, AQUAC RES, V29, P447, DOI 10.1111/j.1365-2109.1998.tb01152.x; RUOHONEN K, 1992, AQUACULTURE, V105, P353, DOI 10.1016/0044-8486(92)90099-7; Ruohonen Kari, 2001, P88, DOI 10.1002/9780470999516.ch4; RUSSELL NR, 1993, ENVIRON BIOL FISH, V38, P385, DOI 10.1007/BF00007533; RUSSELL NR, 1992, ENVIRON BIOL FISH, V34, P277, DOI 10.1007/BF00004774; RUSSELL NR, 1991, THESIS U WALES; Ryan W. J., 1990, Nutrition Abstracts and Reviews. Series B, Livestock Feeds and Feeding, V60, P653; Saether BS, 1999, AQUAC RES, V30, P647, DOI 10.1046/j.1365-2109.1999.00368.x; Sanchez-Vazquez FJ, 1999, PHYSIOL BEHAV, V66, P45, DOI 10.1016/S0031-9384(98)00313-8; Sanchez-Vazquez FJ, 1998, PHYSIOL BEHAV, V65, P211, DOI 10.1016/S0031-9384(98)00047-X; SATOH S, 1984, B JPN SOC SCI FISH, V50, P79; SAUNDERS RL, 1992, CAN J FISH AQUAT SCI, V49, P878, DOI 10.1139/f92-098; Schultz ET, 2002, OECOLOGIA, V133, P501, DOI 10.1007/s00442-002-1076-4; Schultz ET, 1999, OECOLOGIA, V119, P474, DOI 10.1007/s004420050810; SCHWARZ FJ, 1985, AQUACULTURE, V48, P23, DOI 10.1016/0044-8486(85)90049-3; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; Siems DP, 1998, ENVIRON BIOL FISH, V53, P319, DOI 10.1023/A:1007407925835; Silverstein JT, 2000, AM ZOOL, V40, P296, DOI 10.1668/0003-1569(2000)040[0296:TEONAI]2.0.CO;2; SINGH RP, 1985, AQUACULTURE, V49, P307, DOI 10.1016/0044-8486(85)90087-0; SKILBREI OT, 1990, J FISH BIOL, V37, P425, DOI 10.1111/j.1095-8649.1990.tb05873.x; SMITH RR, 1987, PROG FISH CULT, V49, P248, DOI 10.1577/1548-8640(1987)49<248:MOCGOS>2.0.CO;2; Sogard SM, 1997, B MAR SCI, V60, P1129; Sogard SM, 2002, MAR ECOL PROG SER, V243, P165, DOI 10.3354/meps243165; SOLOMON DJ, 1972, J ANIM ECOL, V41, P699, DOI 10.2307/3204; Speare DJ, 1997, CAN J FISH AQUAT SCI, V54, P2653, DOI 10.1139/cjfas-54-11-2653; STIRLING HP, 1976, MAR BIOL, V34, P85, DOI 10.1007/BF00390791; SWAIN DP, 1992, EVOLUTION, V46, P998, DOI 10.1111/j.1558-5646.1992.tb00615.x; Takagi Y, 2001, ZOOL SCI, V18, P623, DOI 10.2108/zsj.18.623; TALBOT C, 1984, J FISH BIOL, V25, P551, DOI 10.1111/j.1095-8649.1984.tb04901.x; Talbot C., 1985, P125; TANDON K K, 1983, Indian Journal of Fisheries, V30, P180; TANDON K K, 1983, Indian Journal of Fisheries, V30, P171; TANNER JM, 1963, NATURE, V199, P845, DOI 10.1038/199845a0; TASHIMA L, 1968, GEN COMP ENDOCR, V11, P262, DOI 10.1016/0016-6480(68)90081-6; TAYLOR EB, 1985, T AM FISH SOC, V114, P546, DOI 10.1577/1548-8659(1985)114<546:BSASPO>2.0.CO;2; TESKEREDZIC Z, 1995, WATER SCI TECHNOL, V31, P219; Thorpe J.E., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P7; THORPE JE, 1990, AQUACULTURE, V86, P315, DOI 10.1016/0044-8486(90)90122-4; THORPE JE, 1984, AQUACULTURE, V43, P289, DOI 10.1016/0044-8486(84)90030-9; TOLEDO MM, 1996, THESIS U OVIEDO; TONEYS ML, 1979, T AM FISH SOC, V108, P415, DOI 10.1577/1548-8659(1979)108<415:SFWMOF>2.0.CO;2; TRAVIS J, 1989, ANNU REV ECOL SYST, V20, P279; TYLER AV, 1976, J FISH RES BOARD CAN, V33, P63, DOI 10.1139/f76-008; Underwood A. J., 1997, EXPT ECOLOGY THEIR L; van Dijk PLM, 2002, OECOLOGIA, V130, P496, DOI 10.1007/s00442-001-0830-3; Vera Cruz Emmanuel M., 1994, Aquaculture, V122, P237, DOI 10.1016/0044-8486(94)90513-4; VONBERTALANFFY L, 1960, FUNDAMENTAL ASPECTS, P137; WAINWRIGHT PC, 1987, J ZOOL, V213, P283, DOI 10.1111/j.1469-7998.1987.tb03704.x; WAINWRIGHT PC, 1995, ENVIRON BIOL FISH, V44, P97, DOI 10.1007/BF00005909; Wang Y, 2000, AQUACULTURE, V189, P101, DOI 10.1016/S0044-8486(00)00353-7; Weatherley A. H., 1987, BIOL FISH GROWTH; WEATHERLEY AH, 1981, J FISH BIOL, V18, P195, DOI 10.1111/j.1095-8649.1981.tb02814.x; Webb PW, 1996, ENVIRON BIOL FISH, V46, P7, DOI 10.1007/BF00001692; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WESTERMAN M E, 1988, Contributions in Marine Science, V30, P117; Whitledge GW, 1998, T AM FISH SOC, V127, P740, DOI 10.1577/1548-8659(1998)127<0740:TBMUFR>2.0.CO;2; WIESER W, 1991, FUNCT ECOL, V5, P234, DOI 10.2307/2389261; WIESER W, 1992, ENVIRON BIOL FISH, V33, P63, DOI 10.1007/BF00002554; WILSON PN, 1960, BIOL REV, V35, P324, DOI 10.1111/j.1469-185X.1960.tb01327.x; WOOTTON RJ, 1980, J FISH BIOL, V17, P695, DOI 10.1111/j.1095-8649.1980.tb02803.x; WOOTTON RJ, 1982, REPROD PHYSL FISH, P201; WOOTTON RJ, 1998, ECOLOGY TELEOST FISH; Wu L, 2003, J FISH BIOL, V62, P184, DOI 10.1046/j.1095-8649.2003.00018.x; Wu L, 2002, AQUAC RES, V33, P481, DOI 10.1046/j.1365-2109.2002.00733.x; Xie S, 2001, J FISH BIOL, V58, P999, DOI 10.1006/jfbi.2000.1505; ZAMAL H, 1995, J FISH BIOL, V46, P404, DOI 10.1111/j.1095-8649.1995.tb05980.x; Zhu X, 2003, J FISH BIOL, V62, P195, DOI 10.1046/j.1095-8649.2003.00019.x; Zhu X, 2001, J FISH BIOL, V58, P1149, DOI 10.1006/jfbi.2000.1521; Zivkov M, 1996, ENVIRON BIOL FISH, V46, P309, DOI 10.1007/BF00005008; ZIVKOV M., 1982, VET CESK SPOL ZOOL, V46, P142; ZIVKOV MT, 1991, DOKL BOLG AKAD NAUK, V44, P45; Zivkov MT, 1999, ENVIRON BIOL FISH, V54, P67, DOI 10.1023/A:1007425005491 287 442 468 10 167 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. JUN 2003 4 2 147 190 10.1046/j.1467-2979.2003.00120.x 44 Fisheries Fisheries 755CL WOS:000187386100004 2019-02-26 J Jervis, MA; Ferns, PN; Heimpel, GE Jervis, MA; Ferns, PN; Heimpel, GE Body size and the timing of egg production in parasitoid wasps: a comparative analysis FUNCTIONAL ECOLOGY English Article life-history trade-offs; pro-ovigeny; reproductive strategies; size-fitness relationships; synovigeny LIFE-HISTORY EVOLUTION; BREEDING BLUE TITS; HOST SIZE; HYMENOPTERAN PARASITOIDS; INDEPENDENT CONTRASTS; BIOLOGICAL-CONTROL; CLUTCH SIZE; BROOD SIZE; REPRODUCTION; ALLOCATION 1. The ovigeny index, previously identified as both a significant fitness variable in parasitoid wasps and an important factor in parasitoid-host population dynamics, is the proportion of the maximum potential lifetime complement of eggs that is mature when the female emerges into the environment following pupal development. We tested the hypothesis that ovigeny index varies with female body size in parasitoid wasps. Body size measurements were obtained for 40 species in 13 families, representing a broad taxonomic and morphological diversity of parasitoid wasps. There was an almost 18-fold difference in size between the smallest and the largest species. 2. Ovigeny index is shown to be negatively correlated with body size across species - smaller wasps have a higher proportion of eggs mature at emergence than do larger wasps - a result supporting the hypothesis. This relationship has previously been observed within species. 3. The previously reported cross-species negative correlation between life-span and ovigeny index is robust, as it still holds when variation in body size is controlled for. 4. We discuss the likely selective factors in the evolution of a link between ovigeny index and body size across species. Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3TL, S Glam, Wales; Univ Minnesota, Dept Entomol, St Paul, MN 55108 USA Jervis, MA (reprint author), Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3TL, S Glam, Wales. Ferns, Peter/A-5902-2010; Jervis, Mark/A-4351-2010 BARTLETT BR, 1962, J ECON ENTOMOL, V55, P749, DOI 10.1093/jee/55.5.749; Begon M., 1990, ECOLOGY INDIVIDUALS; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; Belshaw R, 2000, P ROY SOC B-BIOL SCI, V267, P491, DOI 10.1098/rspb.2000.1027; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; Bjorklund M, 1997, OIKOS, V80, P607, DOI 10.2307/3546637; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BLACKBURN TM, 1991, J ANIM ECOL, V60, P151, DOI 10.2307/5451; Boggs CL, 1997, ECOLOGY, V78, P181; BOGGS CL, 1992, FUNCT ECOL, V6, P508, DOI 10.2307/2390047; Campbell B., 2000, P59; Chapman RF, 1998, INSECTS STRUCTURE FU; Charnov Eric L., 1993, P1; CORRIGAN JE, 1990, ENVIRON ENTOMOL, V19, P1496, DOI 10.1093/ee/19.5.1496; Dowton M, 2001, BIOL J LINN SOC, V74, P87, DOI 10.1006/bijl.2001.0577; DRENT RH, 1980, ARDEA, V68, P225; EDNEY EB, 1971, PHYSIOL ZOOL, V44, P61, DOI 10.1086/physzool.44.2.30155557; Eijs IEM, 1999, ECOL LETT, V2, P27, DOI 10.1046/j.1461-0248.1999.21045.x; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; ELLERS J, 2003, IN PRESS OIKOS; FLANDERS STANLEY E., 1950, CANADIAN ENT, V82, P134; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gauld I., 1988, HYMENOPTERA; GAULD ID, 1987, BIOL J LINN SOC, V30, P299, DOI 10.1111/j.1095-8312.1987.tb00304.x; GAULD ID, 1987, BIOL J LINN SOC, V31, P291, DOI 10.1111/j.1095-8312.1987.tb01994.x; Gauthier N, 2000, SYST ENTOMOL, V25, P521, DOI 10.1046/j.1365-3113.2000.00134.x; Godfray H. C. J., 1994, PARASITOIDS BEHAV EV; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; HARDY ICW, 1992, J ANIM ECOL, V61, P121, DOI 10.2307/5515; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Heimpel GE, 1997, OECOLOGIA, V110, P346, DOI 10.1007/s004420050168; Heimpel GE, 1998, BIOL CONTROL, V11, P160, DOI 10.1006/bcon.1997.0587; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; Jervis M. A., 1996, P63; Jervis MA, 1996, ECOL ENTOMOL, V21, P41, DOI 10.1111/j.1365-2311.1996.tb00264.x; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis Mark A., 1999, P131, DOI 10.1017/CBO9780511542077.011; KARLSSON B, 1994, OIKOS, V69, P224, DOI 10.2307/3546142; KAZMER DJ, 1995, ECOLOGY, V76, P412, DOI 10.2307/1941200; KIDD NAC, 1989, RES POPUL ECOL, V31, P235, DOI 10.1007/BF02513204; KING BH, 1994, BEHAV ECOL, V5, P448, DOI 10.1093/beheco/5.4.448; KING BH, 1988, EVOLUTION, V42, P1190, DOI 10.1111/j.1558-5646.1988.tb04179.x; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; LEMASURIER AD, 1991, J ANIM ECOL, V60, P107; LeRalec A, 1995, ENTOMOPHAGA, V40, P87; LOVERIDG.JP, 1968, J EXP BIOL, V49, P1; Mayhew PJ, 1999, J ANIM ECOL, V68, P906, DOI 10.1046/j.1365-2656.1999.00338.x; Miller WE, 1996, ENVIRON ENTOMOL, V25, P213, DOI 10.1093/ee/25.2.213; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; Olson DM, 1998, ENVIRON ENTOMOL, V27, P508, DOI 10.1093/ee/27.2.508; OPP SB, 1986, ANN ENTOMOL SOC AM, V79, P700, DOI 10.1093/aesa/79.4.700; Papaj DR, 2000, ANNU REV ENTOMOL, V45, P423, DOI 10.1146/annurev.ento.45.1.423; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Pexton JJ, 2002, BEHAV ECOL, V13, P690, DOI 10.1093/beheco/13.5.690; Price P.W., 1975, P87; Price T, 1997, PHILOS T ROY SOC B, V352, P519, DOI 10.1098/rstb.1997.0036; Quicke D.L.J., 2000, P74; Ricklefs RE, 1996, OIKOS, V77, P167, DOI 10.2307/3545598; Rivero A, 2002, EVOL ECOL RES, V4, P407; Roitberg BD, 2000, PARASITOID POPULATION BIOLOGY, P254; Ronquist F, 1999, ZOOL SCR, V28, P139, DOI 10.1046/j.1463-6409.1999.00022.x; Rosenheim JA, 1998, ANNU REV ENTOMOL, V43, P421, DOI 10.1146/annurev.ento.43.1.421; Rosenheim JA, 2000, P ROY SOC B-BIOL SCI, V267, P1565, DOI 10.1098/rspb.2000.1179; Shea K, 1996, J ANIM ECOL, V65, P743, DOI 10.2307/5673; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH RH, 1991, ADV ECOL RES, V21, P63, DOI 10.1016/S0065-2504(08)60097-5; STEARNS SC, 2000, EVOLUTION; Stearns SC., 1992, EVOLUTION LIFE HIST; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VISSER ME, 1994, J ANIM ECOL, V63, P963, DOI 10.2307/5273; Weisser WW, 1997, J ANIM ECOL, V66, P386, DOI 10.2307/5984; West SA, 1996, J ANIM ECOL, V65, P631, DOI 10.2307/5742; WICKMAN PO, 1989, OIKOS, V56, P209, DOI 10.2307/3565338 78 72 76 4 23 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 0269-8463 FUNCT ECOL Funct. Ecol. JUN 2003 17 3 375 383 10.1046/j.1365-2435.2003.00742.x 9 Ecology Environmental Sciences & Ecology 687FA WOS:000183364400011 Bronze 2019-02-26 J Aarts, BGW; Nienhuis, PH Aarts, BGW; Nienhuis, PH Fish zonations and guilds as the basis for assessment of ecological integrity of large rivers HYDROBIOLOGIA English Article ecological integrity; longitudinal zonation; fish guilds; Red Lists; large rivers RHINE; NETHERLANDS; REHABILITATION; RESTORATION; ASSEMBLAGES; COMMUNITIES; PROTECTION; CONTINUUM; FRANCE; EUROPE Longitudinal zonation concepts describe the downstream changes in chemico-physical and biological properties of rivers. Including information on ecological fish guilds can enhance the usefulness of fish zonation concepts, in a way that they can be used as tools for assessment and management of the ecological integrity of large rivers. We present an ecological characterization of fish zones and fish communities in near-natural and in regulated large rivers in Europe ( the River Doubs in France and the Rivers Rhine and Meuse in the Netherlands), using guild classifications of several life-history traits of fish and national Red Lists of threatened species. The Doubs data set was also analyzed using indices of the sensitivity of fish species to environmental degradation and indices for eurytopy. In these rivers, the number of ecological guilds per zone increases downstream, and there are clear shifts in the structure of the guilds. Flow preference and reproduction ecology of river fish are closely linked. The proportion of rheophilic species in the fish community decreases downstream, and the proportions of limnophilic and eurytopic species increase. Lithophilic and psammophilic spawners are dominant in the upper zones, whereas the lower zones are dominated by phytophilic and phytolithophilic spawners. The proportion of zoobenthivorous and periphytivorous species decreases downstream, and the proportion of zooplanktivorous and phytivorous species increases. However, because the European fish fauna mainly consists of feeding generalists, the discriminative abilities of simplistic feeding guild classifications are not very high. Guilds of sensitive, stenoecious species that share life history strategies that are highly adapted to specific riverine conditions ( rheophils and limnophils) have declined far more than generalist species that can survive in a wide range of habitats that are not characteristic of natural river ecosystems. Because of the subsequent over-abundance of the eurytopic species the original longitudinal fish zonations are hardly recognizable anymore in heavily impacted large rivers such as the River Rhine. Hence these rivers do not meet the criteria for ecological integrity. Within a specific fish region, a suitable way of analyzing and monitoring the impact of human disturbance on the structure of the fish community is by comparing the guild structure of the present state of a fish zone with that of the reference situation. Univ Nijmegen, Dept Environm Studies, Nijmegen, Netherlands Aarts, BGW (reprint author), Univ Nijmegen, Dept Environm Studies, Nijmegen, Netherlands. Aarts BGW, 1999, INT J SUST DEV WORLD, V6, P89, DOI 10.1080/13504509909469998; AARTS BGW, IN PRESS RIVER RES A; ADMIRAAL W, 1993, HYDROBIOLOGIA, V265, P97, DOI 10.1007/BF00007264; Allan JD, 1995, STREAM ECOLOGY STRUC; BAIN MB, 1988, ECOLOGY, V69, P382, DOI 10.2307/1940436; Balon E.K., 1975, Verhandlungen Int Verein Theor Angew Limnol, V19, P2430; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; BALON EK, 1981, ENVIRON BIOL FISH, V6, P377, DOI 10.1007/BF00005769; Bayley PB, 1992, RIVERS HDB, V1, P251; BERGER JO, 1991, J STAT PLAN INFER, V28, P1, DOI 10.1016/0378-3758(91)90055-J; Buijse AD, 2002, FRESHWATER BIOL, V47, P889, DOI 10.1046/j.1365-2427.2002.00915.x; Chovanec A, 2000, HYDROBIOLOGIA, V422, P445, DOI 10.1023/A:1017079629534; COPP G H, 1991, Regulated Rivers Research and Management, V6, P135, DOI 10.1002/rrr.3450060209; COPP GH, 1989, ENVIRON BIOL FISH, V26, P1, DOI 10.1007/BF00002472; de Groot SJ, 2002, HYDROBIOLOGIA, V478, P205, DOI 10.1023/A:1021038916271; De Nie H. W., 1997, BEDREIGDE KWETSBARE; de Nie H.W., 1996, ATLAS NEDERLANDSE ZO; de Nie HW, 1998, BEDREIGDE KWETSBARE; DENIE HW, 1998, CURSUS WATERKWALITEI, P132; DYNESIUS M, 1994, SCIENCE, V266, P753, DOI 10.1126/science.266.5186.753; Goldstein Robert M., 1999, P123; Grandmottet J.P., 1983, Annales Scientifiques de l'Universite de Besancon Biologie Animale, V4, P3; GRIFT RE, 2000, ARCH HYDROBIOL S135, V12, P1; GRIFT RE, 2001, THESIS WAGENINGEN U; HAWKES HA, 1975, RIVER ECOLOGY, P312; Hengeveld R., 1996, Biodiversity Letters, V3, P58, DOI 10.2307/2999770; Holcik J, 1989, FRESHWATER FISHES 2, V1; HORWITZ RJ, 1978, ECOL MONOGR, V48, P307, DOI 10.2307/2937233; Huet M., 1949, SCHWEIZ Z HYDROL, V11, P333; Huet M, 1959, T AM FISH SOC, V88, P155, DOI [DOI 10.1577/1548-8659(1959)88[155:PABOWE]2.0.CO;2, 10.1577/1548-8659(1959)88[155:PABOWE]2.0.CO;2]; HUET M, 1962, SCHWEIZ Z HYDROL, V24, P413; Illies J., 1963, Mitt int Ver Limnol Stuttgart, VNo. 12, P1; JUNGWIRTH M, 1995, HYDROBIOLOGIA, V303, P195, DOI 10.1007/BF00034056; KARR JR, 1981, FISHERIES, V6, P21, DOI 10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2; KARR JR, 1995, NATO ASI SERIES I, V28, P137; KEITH P, 1994, INVENTAIRE FAUNE MEN, P100; Kirchhofer A., 1996, CONSERVATION ENDANGE; Lelek A., 1989, Fischoekologie, V1, P47; LELEK A, 1992, FISCHE RHEINS; Lelek A., 1987, FRESHWATER FISHES EU, V9; LELEK A, 1991, VERH INT VEREIN LIMN, V24, P2455; Lenders HJR, 1999, REGUL RIVER, V15, P325, DOI 10.1002/(SICI)1099-1646(199907/08)15:4<325::AID-RRR545>3.0.CO;2-G; Lenders HJR, 1998, NEW CONCEPTS FOR SUSTAINABLE MANAGEMENT OF RIVER BASINS, P35; Leuven RSEW, 2002, APPLICATION OF GEOGRAPHIC INFORMATION SYSTEMS AND REMOTE SENSING IN RIVER STUDIES, P201; Lorenz CM, 1997, REGUL RIVER, V13, P501; MORIN R, 1990, Polskie Archiwum Hydrobiologii, V37, P135; Nienhuis PH, 2002, HYDROBIOLOGIA, V478, P53, DOI 10.1023/A:1021070428566; Nienhuis PH, 2001, HYDROBIOLOGIA, V444, P85, DOI 10.1023/A:1017509410951; OBERDORFF T, 1992, HYDROBIOLOGIA, V228, P117, DOI 10.1007/BF00006200; PENAZ M, 1993, FOLIA ZOOL, V42, P317; QUAK J, 1994, VISMIGRATIE VISGELEI, P59; Raat AJP, 2001, REGUL RIVER, V17, P131, DOI 10.1002/rrr.608; Redeke H.C., 1941, FAUNA NEDERLAND, V10; Schiemer F., 1988, Natur und Landschaft, V63, P370; Schiemer F., 1992, P363; SCHIEMER F, 1989, Regulated Rivers Research and Management, V4, P397, DOI 10.1002/rrr.3450040407; Schmutz S, 2000, HYDROBIOLOGIA, V422, P279, DOI 10.1023/A:1017038820390; SCHOLL F, 2000, HYDROLOGIE WASSERBEW, V44, P32; SCHOUTEN WJ, 1994, 199301 RIZAOVB VO I; SIEPEL H, 1993, INT BETEKENIS NEDERL, V2; SIMBERLOFF D, 1991, ANNU REV ECOL SYST, V22, P115, DOI 10.1146/annurev.ecolsys.22.1.115; Simon T. P, 1999, ASSESSING SUSTAINABI; Thomas RBD, 1998, B FR PECHE PISCIC, P47; TITTIZER T, 1996, OKOSYSTEMFORSCHUNG R; Van Den Brink F. W. B., 1996, Netherlands Journal of Aquatic Ecology, V30, P129; VANDENBRINK FWB, 1994, THESIS U NIJMEGEN NI; VANDERVELDE G, 1994, WATER SCI TECHNOL, V29, P1; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Verneaux J, 2003, HYDROBIOLOGIA, V490, P63, DOI 10.1023/A:1023454227671; Verneaux J., 1981, Annales Scientifiques de l'Universite de Besancon Biologie Animale, V2, P33; VERNEAUX J., 1973, THESIS U BESANCON; Volz J., 1991, Fischoekologie, V5, P3; VRIESE FT, 1994, WATER SCI TECHNOL, V29, P297 73 74 81 3 40 KLUWER ACADEMIC PUBL DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia JUN 2003 500 1-3 157 178 10.1023/A:1024638726162 22 Marine & Freshwater Biology Marine & Freshwater Biology 699TE WOS:000184071400011 2019-02-26 J Ghalambor, CK; Walker, JA; Reznick, DN Ghalambor, CK; Walker, JA; Reznick, DN Multi-trait selection, adaptation, and constraints on the evolution of burst swimming performance INTEGRATIVE AND COMPARATIVE BIOLOGY English Article; Proceedings Paper Annual Meeting of the Society-for-Integrative-and-Comparative-Biology JAN 04-08, 2003 TORONTO, CANADA Soc Integrat & Comparat Biol GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; STICKLEBACK GASTEROSTEUS-ACULEATUS; ENERGY ACQUISITION RATES; NATURAL-SELECTION; INTRINSIC GROWTH; MENIDIA-MENIDIA; DARWIN FINCHES; COUNTERGRADIENT VARIATION; FUNCTIONAL-MORPHOLOGY Whole organism performance represents the integration of numerous physiological, morphological, and behavioral traits. How adaptive changes in performance evolve therefore requires an understanding of how selection acts on multiple integrated traits. Two approaches that lend themselves to studying the evolution of performance in natural populations are the use of quantitative genetics models for estimating the strength of selection acting on multiple quantitative traits and ecological genetic comparisons of populations exhibiting phenotypic differences correlated with environmental variation. In both cases, the ultimate goal is to understand how suites of traits and trade-offs between competing functions respond to natural selection. Here we consider how these two complimentary approaches can be applied to study the adaptive evolution of escape performance in fish. We first present an extension of Arnold's (1983) quantitative genetic approach that explicitly considers how trade-offs between different components of performance interact with the underlying genetics. We propose that such a model can reveal the conditions under which multiple selection pressures will cause adaptive change in traits that influence more than one component of fitness. We then review work on the Atlantic silversides and Trinidadian guppies as two case studies where an ecological genetics approach has been successfully applied to evaluate how the evolution of escape performance trades-off with other components of fitness. We conclude with the general lesson that whole organism performance is embedded in a complex phenotype, and that the net outcome of selection acting on different aspects of the organism will often result in a compromise among competing influences. Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; Univ So Maine, Dept Sci Biol, Portland, ME 04103 USA Ghalambor, CK (reprint author), Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA. cameron1@lamar.colostate.edu reznick, david/0000-0002-1144-0568 Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; ARENDT JD, 2003, IN PRESS FUNCT ECOL; ARNOLD SJ, 1983, AM ZOOL, V23, P347; BAUWENS D, 1981, J ANIM ECOL, V50, P733, DOI 10.2307/4133; Beamish F. W. H., 1978, FISH PHYSIOL, VVII, P101, DOI DOI 10.1016/S1546-5098(08)60164-8; BENNETT AF, 1984, J COMP PHYSIOL, V154, P113, DOI 10.1007/BF00684134; Billerbeck JM, 2001, EVOLUTION, V55, P1863; BOAG PT, 1981, SCIENCE, V214, P82, DOI 10.1126/science.214.4516.82; CAIN AJ, 1954, GENETICS, V39, P89; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONOVER DO, 1990, T AM FISH SOC, V119, P416, DOI 10.1577/1548-8659(1990)119<0416:TRBCFG>2.3.CO;2; CONOVER DO, 1992, J FISH BIOL, V41, P161, DOI 10.1111/j.1095-8649.1992.tb03876.x; DAWSON WR, 1977, EVOLUTION, V31, P891, DOI 10.1111/j.1558-5646.1977.tb01083.x; Domenici P, 1997, J EXP BIOL, V200, P1165; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; FEDER ME, 1983, PHYSIOL ZOOL, V56, P522, DOI 10.1086/physzool.56.4.30155875; Garenc C, 1998, CAN J ZOOL, V76, P680, DOI 10.1139/cjz-76-4-680; Garland Theodore Jr., 1994, P240; Gibb AC, 2002, INTEGR COMP BIOL, V42, P199, DOI 10.1093/icb/42.2.199; GIBBS HL, 1987, NATURE, V327, P511, DOI 10.1038/327511a0; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; Gregory TR, 1999, CAN J FISH AQUAT SCI, V56, P479, DOI 10.1139/cjfas-56-3-479; HUEY RB, 1981, ECOLOGY, V62, P991, DOI 10.2307/1936998; Irschick DJ, 2001, ANNU REV ECOL SYST, V32, P367, DOI 10.1146/annurev.ecolsys.32.081501.114048; James RS, 1998, J FISH BIOL, V53, P485, DOI 10.1006/jfbi.1998.0722; JAYNE BC, 1990, EVOLUTION, V44, P1204, DOI 10.1111/j.1558-5646.1990.tb05226.x; JAYNE BC, 1993, J COMP PHYSIOL A, V173, P495; KETTLEWELL H. B. D., 1955, HEREDITY, V9, P323, DOI 10.1038/hdy.1955.36; Kolok AS, 1995, CAN J ZOOL, V73, P2165, DOI 10.1139/z95-254; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; Lowe-McConnell RH, 1987, ECOLOGICAL STUDIES T; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; Maynard-Smith J, 1952, EVOLUTION, V6, P127; MAYNARDSMITH J, 1985, Q REV BIOL, V60, P265, DOI DOI 10.1086/414425); MCNEILLY T, 1968, HEREDITY, V23, P99, DOI 10.1038/hdy.1968.8; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1111/j.0014-3820.2002.tb01388.x; Plaut I, 2002, FUNCT ECOL, V16, P290, DOI 10.1046/j.1365-2435.2002.00638.x; Podos J, 1997, EVOLUTION, V51, P537, DOI 10.1111/j.1558-5646.1997.tb02441.x; Podos J, 2001, NATURE, V409, P185, DOI 10.1038/35051570; PRESENT TMC, 1992, FUNCT ECOL, V6, P23, DOI 10.2307/2389767; PRICE TD, 1984, EVOLUTION, V38, P483, DOI 10.1111/j.1558-5646.1984.tb00314.x; PRICE TD, 1984, NATURE, V309, P787, DOI 10.1038/309787a0; REEVE HK, 1993, Q REV BIOL, V68, P1, DOI 10.1086/417909; Reidy SP, 2000, J EXP BIOL, V203, P347; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick David, 1996, P243; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Roff Derek A., 1992; Rose M. R., 1996, ADAPTATION; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEIGEL RA, 1987, OECOLOGIA, V73, P481, DOI 10.1007/BF00379404; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SINERVO B, 1991, J EXP BIOL, V155, P323; SKULASON S, 1995, TRENDS ECOL EVOL, V10, P366, DOI 10.1016/S0169-5347(00)89135-1; SMITH JM, 1989, PHILOS T ROY SOC B, V325, P241, DOI 10.1098/rstb.1989.0086; Stearns SC., 1992, EVOLUTION LIFE HIST; TAYLOR EB, 1985, T AM FISH SOC, V114, P546, DOI 10.1577/1548-8659(1985)114<546:BSASPO>2.0.CO;2; Van Damme R, 2002, NATURE, V415, P755; Wakeling JM, 1999, J EXP BIOL, V202, P521; Walker JA, 1997, BIOL J LINN SOC, V61, P3, DOI 10.1006/bijl.1996.9999; Walker JA, 2002, INTEGR COMP BIOL, V42, P232, DOI 10.1093/icb/42.2.232; Watkins TB, 1996, PHYSIOL ZOOL, V69, P154, DOI 10.1086/physzool.69.1.30164205; WEBB PW, 1978, J EXP BIOL, V74, P211; WEBB PW, 1984, AM ZOOL, V24, P107; WEBB PW, 1982, AM ZOOL, V22, P329; WEIHS D, 1973, Biorheology, V10, P343; Weihs D, 2002, INTEGR COMP BIOL, V42, P127, DOI 10.1093/icb/42.1.127 75 111 111 1 30 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. JUN 2003 43 3 431 438 10.1093/icb/43.3.431 8 Zoology Zoology 765GH WOS:000188258400008 21680451 2019-02-26 J Lee, CE; Remfert, JL; Gelembiuk, GW Lee, CE; Remfert, JL; Gelembiuk, GW Evolution of physiological tolerance and performance during freshwater invasions INTEGRATIVE AND COMPARATIVE BIOLOGY English Article; Proceedings Paper Annual Meeting of the Society-for-Integrative-and-Comparative-Biology JAN 04-08, 2003 TORONTO, CANADA Soc Integrative Comparative Bio COPEPOD EURYTEMORA-AFFINIS; SHADE-AVOIDANCE RESPONSES; AMERICAN GREAT-LAKES; DROSOPHILA-MELANOGASTER; PHENOTYPIC PLASTICITY; ENVIRONMENT INTERACTION; SALINITY TOLERANCE; DEVELOPMENT TIME; SPECIES COMPLEX; GENE-EXPRESSION Invasive species that penetrate habitat boundaries are likely to experience strong selection and rapid evolution. This study documents evolutionary shifts in tolerance and performance following the invasion of fresh water by the predominantly estuarine and salt marsh copepod Eurytemora affinis. Common-garden experiments were performed on freshwater-invading (Lake Michigan) and ancestral saline (St. Lawrence marsh) populations to measure shifts in adult survival (at 0, 5, and 25 PSU), and survival during development and development time (both using full-sib clutches split across 0, 5, 15, and 25 PSU). Results showed clear evidence of heritable shifts in tolerance and performance associated with freshwater invasions. The freshwater population exhibited a gain in low-salinity tolerance and a reduction in high-salinity tolerance relative to the saline population, suggesting tradeoffs. These tradeoffs were supported by negative genetic correlations between survival at fresh (0 PSU) versus higher salinities. Mortality in response to salinity occurred primarily before metamorphosis, suggesting that selection in response to salinity had acted primarily on the early life-history stages. The freshwater population exhibited curious patterns of life-history evolution across salinities, relative to the saline population, of retarded development to metamorphosis but accelerated development from metamorphosis to adulthood. This pattern might reflect tradeoffs between development rate and survival in fresh water at the early life-history stages, but some other selective force acting on later life-history stages. Significant effects of clutch (genotype) and clutch-by-salinity interaction (G X E) on survival and development time in both populations indicated ample genetic variation as substrate for natural selection. Variation for high-salinity tolerance was present in the freshwater population despite negative genetic correlations between high- and low-salinity tolerance. Results implicate the importance of natural selection and document the evolution of reaction norms during freshwater invasions. Univ Wisconsin, Dept Zool, Madison, WI 53706 USA Lee, CE (reprint author), Univ Wisconsin, Dept Zool, 430 Lincoln Dr, Madison, WI 53706 USA. carollee@wisc.edu Agrawal AA, 2001, SCIENCE, V294, P321, DOI 10.1126/science.1060701; ANDERSON DV, 1959, 1 DEP LANDS FOR DIV; BAKER H. G., 1965, The genetics of colonizing species: Proc. 1st Internat, Union biol Sci., Asilomar, California., P147; Baker H. G., 1965, GENETICS COLONIZING; BAN S, 1989, Bulletin of the Faculty of Fisheries Hokkaido University, V40, P147; BAN SH, 1994, J PLANKTON RES, V16, P721, DOI 10.1093/plankt/16.6.721; Barrera R, 1996, J NAT HIST, V30, P447, DOI 10.1080/00222939600770231; Bastlova D, 2002, FLORA, V197, P332, DOI 10.1078/0367-2530-00049; Carroll SP, 2001, GENETICA, V112, P257, DOI 10.1023/A:1013354830907; Chippindale AK, 1998, EVOLUTION, V52, P1342, DOI 10.1111/j.1558-5646.1998.tb02016.x; CRAINICEANU C, 2003, UNPUB J AM STAT ASS; Davis MB, 2001, SCIENCE, V292, P673, DOI 10.1126/science.292.5517.673; de Beaufort L.F, 1954, VERANDERINGEN FLORA; Dermott R, 1998, J GREAT LAKES RES, V24, P442, DOI 10.1016/S0380-1330(98)70834-2; EBERT D, 1995, J ANIM ECOL, V64, P361, DOI 10.2307/5897; ENGEL RONALD A., 1962, OHIO JOUR SCI, V62, P252; FABER DJ, 1966, LIMNOL OCEANOGR, V11, P301, DOI 10.4319/lo.1966.11.2.0301; Falconer D.S., 1996, INTRO QUANTITATIVE G; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; GARLAND T, 1994, ANNU REV PHYSIOL, V56, P579, DOI 10.1146/annurev.ph.56.030194.003051; Goldstein H., 2002, Understanding Statistics, V1, P223, DOI 10.1207/S15328031US0104_02; GROMKO MH, 1995, EVOLUTION, V49, P685, DOI 10.1111/j.1558-5646.1995.tb02305.x; Hakam N, 2000, CAN J BOT, V78, P969, DOI 10.1139/cjb-78-7-969; Harshman LG, 1999, J EVOLUTION BIOL, V12, P370, DOI 10.1046/j.1420-9101.1999.00024.x; Hart RC, 1998, HYDROBIOLOGIA, V380, P77, DOI 10.1023/A:1003486520147; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; HUEY RB, 1993, AM NAT, V142, pS21, DOI 10.1086/285521; Hutchinson G. E., 1957, TREATISE LIMNOLOGY; Ishikawa Akira, 1999, Plankton Biology and Ecology, V46, P113; JAZDZEWSKI K, 1980, CRUSTACEANA S, V6, P84; KAMPS DM, 1978, HYDROBIOLOGIA, V61, P75, DOI 10.1007/BF00019026; Khlebovich VV, 2000, HYDROBIOLOGIA, V417, P109, DOI 10.1023/A:1003863623267; Kingsolver JG, 2001, GENETICA, V112, P87, DOI 10.1023/A:1013323318612; Lee CE, 2000, EVOLUTION, V54, P2014, DOI 10.1111/j.0014-3820.2000.tb01245.x; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Lee CE, 2003, PHYSIOL BIOCHEM ZOOL, V76, P296, DOI 10.1086/375433; Lee CE, 2002, HYDROBIOLOGIA, V480, P111, DOI 10.1023/A:1021293203512; Lee CE, 2002, PHYSIOL BIOCHEM ZOOL, V75, P335, DOI 10.1086/343138; Lee CE, 1999, EVOLUTION, V53, P1423, DOI 10.1111/j.1558-5646.1999.tb05407.x; Lee CE, 1999, TRENDS ECOL EVOL, V14, P284, DOI 10.1016/S0169-5347(99)01596-7; MILLER RC, 1958, J MAR RES, V17, P375; Orsi JJ, 2001, IEP NEWSLETTER, V14, P12; Peterson WT, 2001, HYDROBIOLOGIA, V453, P91, DOI 10.1023/A:1013111832700; Pimentel D, 2000, BIOSCIENCE, V50, P53, DOI 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2; Reid D, 2002, CAN J FISH AQUAT SCI, V59, P1144, DOI 10.1139/F02-099; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Ricciardi A, 2000, TRENDS ECOL EVOL, V15, P62, DOI 10.1016/S0169-5347(99)01745-0; Rifkin SA, 2003, NAT GENET, V33, P138, DOI 10.1038/ng1086; *SAS I INC, 1999, SAS ONL VERS 8 0; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schmalhausen I.I., 1949, FACTORS OF EVOLUTION; Sexton JP, 2002, ECOL APPL, V12, P1652, DOI 10.1890/1051-0761(2002)012[1652:PAGDMA]2.0.CO;2; Smith DG, 2002, J FRESHWATER ECOL, V17, P423, DOI 10.1080/02705060.2002.9663916; Stirnadel HA, 1997, J ANIM ECOL, V66, P212, DOI 10.2307/6023; TAYLOR PM, 1986, J COMP PHYSIOL B, V156, P323, DOI 10.1007/BF01101094; Townsend JP, 2003, MOL BIOL EVOL, V20, P955, DOI 10.1093/molbev/msg106; Vainola R, 2001, SARSIA, V86, P401; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Via Sara, 1994, P35; VIJVERBERG J, 1980, FRESHWATER BIOL, V10, P317, DOI 10.1111/j.1365-2427.1980.tb01206.x; Weber E, 1998, AM J BOT, V85, P1110, DOI 10.2307/2446344; Weinig C, 2000, AM J BOT, V87, P1660, DOI 10.2307/2656743; Weinig C, 2000, EVOLUTION, V54, P441; Weinig C, 2001, EVOLUTION, V55, P930, DOI 10.1554/0014-3820(2001)055[0930:PPEILC]2.0.CO;2; Wolff Wim J., 2000, Aquatic Ecology, V34, P319, DOI 10.1023/A:1009908010959 67 109 114 1 42 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 1540-7063 INTEGR COMP BIOL Integr. Comp. Biol. JUN 2003 43 3 439 449 10.1093/icb/43.3.439 11 Zoology Zoology 765GH WOS:000188258400009 21680452 Bronze 2019-02-26 J Metcalfe, NB; Valdimarsson, SK; Morgan, IJ Metcalfe, NB; Valdimarsson, SK; Morgan, IJ The relative roles of domestication, rearing environment, prior residence and body size in deciding territorial contests between hatchery and wild juvenile salmon JOURNAL OF APPLIED ECOLOGY English Article aquaculture; Atlantic salmon; captive breeding; enhancement; fish; reintroduction; territory TROUT ONCORHYNCHUS-MYKISS; LIFE-HISTORY STRATEGIES; ATLANTIC SALMON; BROWN TROUT; COHO SALMON; COMPETITIVE ABILITY; SOCIAL-DOMINANCE; RAINBOW-TROUT; BEHAVIOR; GROWTH 1. Interactions between captive-reared and wild salmonids are frequent because hatcheries annually rear millions of fish for release in conservation programmes while many thousands of domesticated fish escape from fish farms. However, the outcome of competition between captive-reared and wild fish is not clear: wild fish may be smaller and less aggressive than hatchery fish, but they have more local experience and a prior residence advantage. Moreover, it is important to know whether any competitive differences are genetic (due to the process of domestication) or due to the rearing environment. 2. We therefore examined the factors influencing competition for feeding territories in juvenile Atlantic salmon. We studied the effect of domestication by using three independent stocks of both domesticated and wild-origin fish, all of which were reared in a common hatchery environment. We also used fish from the same wild stocks that had been living in the wild. Territorial contests were staged in stream tank compartments between pairs of fish differing in origin or rearing environment; the relative importance of body size and prior residence was also assessed. 3. All three stocks of domesticated fish were generally dominant over wild-origin fish when both had been raised in a common hatchery environment. If the wild-origin fish were given a 2-day period of prior residence on the territory this asymmetry in dominance was reversed. However, domesticated fish did not gain any additional advantage from being prior residents. The relative body size of the two contestants had a negligible effect on contest outcomes. 4. Truly wild fish (i.e. those of wild origin that had also grown up in the wild) were generally dominant over domesticated or wild-origin fish that had been hatchery-reared. Differences in body size between contestants had no effect on the outcome. 5. Synthesis and applications . These results show that, while juvenile farmed Atlantic salmon are inherently more aggressive than wild-origin fish, the hatchery environment reduces their ability to compete for territories with wild resident fish. Rearing salmon in conventional hatcheries for later release into the wild where natural populations already exist may not be a prudent conservation measure; it is preferable to plant eggs or first-feeding fry rather than attempt to 'help' the fish by rearing them through the early life stages. Univ Glasgow, Inst Biomed & Life Sci, Div Environm & Evolutionary Biol, Fish Biol Grp, Glasgow G12 8QQ, Lanark, Scotland Metcalfe, NB (reprint author), Univ Glasgow, Inst Biomed & Life Sci, Div Environm & Evolutionary Biol, Fish Biol Grp, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. Metcalfe, Neil/C-5997-2009 Metcalfe, Neil/0000-0002-1970-9349 BAUGH JR, 1994, BEHAVIOUR, V131, P207, DOI 10.1163/156853994X00442; Berejikian BA, 2001, J FISH BIOL, V59, P1600, DOI 10.1006/jfbi.2001.1789; Berejikian BA, 1999, T AM FISH SOC, V128, P832, DOI 10.1577/1548-8659(1999)128<0832:CDBNEO>2.0.CO;2; Berejikian BA, 2000, CAN J FISH AQUAT SCI, V57, P628, DOI 10.1139/f99-288; Berejikian BA, 1996, CAN J FISH AQUAT SCI, V53, P2004, DOI 10.1139/cjfas-53-9-2004; Bohlin T, 2002, J ANIM ECOL, V71, P683, DOI 10.1046/j.1365-2656.2002.00631.x; Brown C, 2001, J FISH BIOL, V59, P471, DOI 10.1006/jfbi.2001.1689; CHANDLER GL, 1988, T AM FISH SOC, V117, P432, DOI 10.1577/1548-8659(1988)117<0432:AGAIOJ>2.3.CO;2; Cutts CJ, 1999, OIKOS, V86, P479, DOI 10.2307/3546652; Deverill JI, 1999, J FISH BIOL, V55, P868, DOI 10.1111/j.1095-8649.1999.tb00723.x; DICKSON TA, 1982, CAN J FISH AQUAT SCI, V39, P1453, DOI 10.1139/f82-196; EBENHARD T, 1995, TRENDS ECOL EVOL, V10, P438, DOI 10.1016/S0169-5347(00)89176-4; Einum S, 1997, J FISH BIOL, V50, P634, DOI 10.1006/jfbi.1996.0330; Einum Sigurd, 2001, Nordic Journal of Freshwater Research, V75, P56; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; Fleming IA, 1997, BEHAV ECOL, V8, P470, DOI 10.1093/beheco/8.5.470; Fleming IA, 2000, P ROY SOC B-BIOL SCI, V267, P1517, DOI 10.1098/rspb.2000.1173; GRAFEN A, 1987, ANIM BEHAV, V35, P462, DOI 10.1016/S0003-3472(87)80271-3; GRANT JWA, 1990, CAN J FISH AQUAT SCI, V47, P1724, DOI 10.1139/f90-197; HUNTINGFORD FA, 1990, J FISH BIOL, V36, P877, DOI 10.1111/j.1095-8649.1990.tb05635.x; Huntingford FA, 1987, ANIMAL CONFLICT; Johnsson JI, 2000, BEHAV ECOL SOCIOBIOL, V48, P373, DOI 10.1007/s002650000244; Johnsson JI, 1999, J FISH BIOL, V54, P469, DOI 10.1006/jfbi.1998.0881; Johnsson JI, 1996, HORM BEHAV, V30, P13, DOI 10.1006/hbeh.1996.0003; Johnsson JI, 2002, BEHAV ECOL SOCIOBIOL, V51, P282, DOI 10.1007/S00265-001-0430-6; Jonsson B, 1997, ICES J MAR SCI, V54, P1031, DOI 10.1016/S1054-3139(97)80007-0; Levin PS, 2001, P ROY SOC B-BIOL SCI, V268, P1153, DOI 10.1098/rspb.2001.1634; McCarthy ID, 2001, J FISH BIOL, V59, P1002, DOI 10.1111/j.1095-8649.2001.tb00167.x; MESA MG, 1991, T AM FISH SOC, V120, P723, DOI 10.1577/1548-8659(1991)120<0723:VIFAAP>2.3.CO;2; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; NICKELSON TE, 1986, CAN J FISH AQUAT SCI, V43, P2443, DOI 10.1139/f86-303; O'Connor KI, 1999, ANIM BEHAV, V58, P1269, DOI 10.1006/anbe.1999.1260; Olla BL, 1998, B MAR SCI, V62, P531; Olsson M, 2000, BEHAV ECOL, V11, P587, DOI 10.1093/beheco/11.6.587; Ostermann SD, 2001, CONSERV BIOL, V15, P749, DOI 10.1046/j.1523-1739.2001.015003749.x; Perrett DI, 2002, P ROY SOC B-BIOL SCI, V269, P873, DOI 10.1098/rspb.2002.1971; Reinhardt UG, 2001, ECOL RES, V16, P327, DOI 10.1046/j.1440-1703.2001.00400.x; Rhodes JS, 1998, J FISH BIOL, V53, P1220; Rhodes Justin S., 1999, North American Journal of Fisheries Management, V19, P670, DOI 10.1577/1548-8675(1999)019<0670:CPOGSH>2.0.CO;2; RUZZANTE DE, 1994, AQUACULTURE, V120, P1, DOI 10.1016/0044-8486(94)90217-8; Sarrazin F, 1996, TRENDS ECOL EVOL, V11, P474, DOI 10.1016/0169-5347(96)20092-8; Skaala O, 1996, CAN J FISH AQUAT SCI, V53, P2027; TAYLOR EB, 1991, AQUACULTURE, V98, P186; Tobias J, 1997, ANIM BEHAV, V54, P9, DOI 10.1006/anbe.1996.0383; Waples R. S., 2003, ECOLOGICAL GENETIC I; Wolf CM, 1996, CONSERV BIOL, V10, P1142, DOI 10.1046/j.1523-1739.1996.10041142.x; Wurbel H, 2001, TRENDS NEUROSCI, V24, P207, DOI 10.1016/S0166-2236(00)01718-5; Youngson AF, 1998, CAN J FISH AQUAT SCI, V55, P153, DOI 10.1139/cjfas-55-S1-153 49 101 102 0 35 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 0021-8901 J APPL ECOL J. Appl. Ecol. JUN 2003 40 3 535 544 10.1046/j.1365-2664.2003.00815.x 10 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 685VB WOS:000183283400010 Bronze 2019-02-26 J Sozou, PD; Seymour, RM Sozou, PD; Seymour, RM Augmented discounting: interaction between ageing and time-preference behaviour PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article discounting; time preference; reproduction; ageing NATURAL-SELECTION; EVOLUTION; SENESCENCE; REPRODUCTION; MORTALITY Discounting occurs when an immediate benefit is systematically valued more highly than a delayed benefit of the same magnitude. It is manifested in physiological and behavioural strategies of organisms. This study brings together life-history theory and time-preference theory within a single modelling framework. We consider an animal encountering reproductive opportunities as a random process. Under an external hazard, optimal life-history strategy typically prioritizes immediate reproduction at the cost of declining fertility and increasing mortality with age. Given such ageing, an immediate reproductive reward should be preferred to a delayed reward because of both the risk of death and declining fertility. By this analysis, ageing is both a consequence of discounting by the body and a cause of behavioural discounting. A series of models is developed, making different assumptions about external hazards and biological ageing. With realistic ageing assumptions (increasing mortality and an accelerating rate of fertility decline) the time-preference rate increases in old age. Under an uncertain external hazard rate, young adults should also have relatively high time-preference rates because their (Bayesian) estimate of the external hazard is high. Middle-aged animals may therefore be the most long term in their outlook. Univ London London Sch Econ & Polit Sci, Dept Operat Res, London WC2A 2AE, England; UCL, Dept Math, London WC1E 6BT, England Sozou, PD (reprint author), Univ London London Sch Econ & Polit Sci, Dept Operat Res, Houghton St, London WC2A 2AE, England. p.sozou@lse.ac.uk; rms@math.ucl.ac.uk Azfar O, 1999, J ECON BEHAV ORGAN, V38, P245, DOI 10.1016/S0167-2681(99)00009-8; DASGUPTA P, 2002, UNCERTAINTY WAITING; Finch C. E., 1990, LONGEVITY SENESCENCE; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HOUSTON AI, 1986, OIKOS, V47, P267, DOI 10.2307/3565436; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; Kacelnik A, 1997, Ciba Found Symp, V208, P51; Kacelnik A, 2003, TIME DECISION EC PSY, P115; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kodric-Brown A, 2001, AM NAT, V157, P316, DOI 10.1086/319191; Kowald A, 1996, MUTAT RES-DNAGING G, V316, P209, DOI 10.1016/S0921-8734(96)90005-3; LOGAN FA, 1965, J COMP PHYSIOL PSYCH, V59, P1, DOI 10.1037/h0021633; Mazur J. E., 1987, QUANTITATIVE ANAL BE, P55; Moore PJ, 2001, P NATL ACAD SCI USA, V98, P9171, DOI 10.1073/pnas.161154598; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; ROGERS AR, 1994, AM ECON REV, V84, P460; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Sozou PD, 1998, P ROY SOC B-BIOL SCI, V265, P2015, DOI 10.1098/rspb.1998.0534; Trostel PA, 2001, ECON INQ, V39, P379, DOI 10.1093/ei/39.3.379; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x 22 51 53 1 9 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAY 22 2003 270 1519 1047 1053 10.1098/rspb.2003.2344 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 680GZ WOS:000182969100007 12803894 Green Published, Bronze 2019-02-26 J Hawkes, K Hawkes, K Grandmothers and the evolution of human longevity AMERICAN JOURNAL OF HUMAN BIOLOGY English Article; Proceedings Paper Annual Meeting of the Human-Biology-Association APR, 2002 BUFFALO, NY Human Biol Assoc LIFE-HISTORY PERSPECTIVE; DENTAL DEVELOPMENT; NATURAL-SELECTION; EARLY HOMINIDS; BODY-SIZE; WILD CHIMPANZEES; HOMO-ERECTUS; GENUS HOMO; POSTREPRODUCTIVE LIFE; REPRODUCTIVE SUCCESS Great apes, our closest living relatives, live longer and mature later than most other mammals and modern humans are even later-maturing and potentially longer-lived. Evolutionary life-history theory seeks to explain cross-species differences in these variables and the covariation between them. That provides the foundation for a hypothesis that a novel role for grandmothers underlies the shift from an ape-like ancestral pattern to one more like our own in the first widely successful members of genus Homo. This hypothesis links four distinctive features of human life histories: 1) our potential longevity, 2) our late maturity, 3) our midlife menopause, and 4) our early weaning with next offspring produced before the previous infant can feed itself. I discuss the problem, then, using modern humans and chimpanzees to represent, respectively, genus Homo and australopithecines, I focus on two corollaries of this grandmother hypothesis: 1) that ancestral age-specific fertility declines persisted in our genus, while 2) senescence in other aspects of physiological performance slowed down. The data are scanty but they illustrate similarities in age-specific fertility decline and differences in somatic durability that are consistent with the hypothesis that increased longevity in our genus is a legacy of the "reproductive" role of ancestral grandmothers. (C) 2003 Wiley-Liss, Inc. Univ Utah, Dept Anthropol, Salt Lake City, UT 84112 USA Hawkes, K (reprint author), Univ Utah, Dept Anthropol, 270 E 1400 S Stewart 102, Salt Lake City, UT 84112 USA. hawkes@anthro.utah.edu Henrich, Joseph/A-2403-2009 Aiello LC, 2002, ANNU REV ANTHROPOL, V31, P323, DOI 10.1146/annurev.anthro.31.040402.085403; AIELLO LC, 1995, CURR ANTHROPOL, V36, P199, DOI 10.1086/204350; Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; AMES BN, 1981, P NATL ACAD SCI-BIOL, V78, P6858, DOI 10.1073/pnas.78.11.6858; Anton SC, 2001, AM J PHYS ANTHROPOL, P32; Austad SN, 1997, BETWEEN ZEUS AND THE SALMON, P161; BAILEY WG, 1987, HUMAN LONGEVITY ANTI; BARJA G, 1994, FREE RADICAL RES, V21, P317, DOI 10.3109/10715769409056584; Beckman KB, 1998, PHYSIOL REV, V78, P547; Binford L. R., 1981, BONES ANCIENT MEN MO; Bird R, 1999, EVOL ANTHROPOL, V8, P65, DOI 10.1002/(SICI)1520-6505(1999)8:2<65::AID-EVAN5>3.3.CO;2-V; BLOCK E, 1953, ACTA ANAT, V17, P201; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; BLUMENSCHINE RJ, 1987, CURR ANTHROPOL, V28, P383, DOI 10.1086/203544; Blurton Jones N., 1996, CULTURAL DIVERSITY 2, P159; Blurton Jones N.H., 1989, COMP SOCIOECOLOGY MA, P365; BOCQUETAPPEL JP, 1982, J HUM EVOL, V11, P321, DOI 10.1016/S0047-2484(82)80023-7; BOESCH C, 1989, AM J PHYS ANTHROPOL, V78, P547, DOI 10.1002/ajpa.1330780410; Bogin B, 1999, PATTERNS HUMAN GROWT; Bogin B, 2001, GROWTH HUMANITY; Bonner JT, 1965, SIZE CYCLE ESSAY STR; BROMAGE TG, 1985, NATURE, V317, P525, DOI 10.1038/317525a0; BROMAGE TG, 1987, J HUM EVOL, V16, P257, DOI 10.1016/0047-2484(87)90002-9; CAREY JR, 2001, ENGLISH SELECTION, V13, P9; CARO TM, 1995, INT J PRIMATOL, V16, P205, DOI 10.1007/BF02735478; CARTMILL M, 1993, VIEW DEATH MORNING H; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; Charnov EL, 2001, EVOL ECOL RES, V3, P521; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Clegg M, 1999, AM J PHYS ANTHROPOL, V110, P81, DOI 10.1002/(SICI)1096-8644(199909)110:1<81::AID-AJPA7>3.3.CO;2-K; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Collard M, 1999, HUMAN EVOLUT SER, P316; Dart R., 1953, INT ANTHR LINGUISTIC, V1, P201; Dart RA, 1949, AM J PHYS ANTHROP-NE, V7, P1, DOI 10.1002/ajpa.1330070103; De Waal F., 2001, TREE ORIGIN PRIMATE; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; deCastro JMB, 1997, J HUM EVOL, V33, P333, DOI 10.1006/jhev.1997.0110; Dominguez-Rodrigo M, 2002, J WORLD PREHIST, V16, P1, DOI 10.1023/A:1014507129795; Dunson DB, 2002, HUM REPROD, V17, P1399, DOI 10.1093/humrep/17.5.1399; EISENBERG JF, 1981, MAMMALIAN RAD AT; Enard W, 2002, NATURE, V418, P869, DOI 10.1038/nature01025; ERWIN JM, 2002, AGING NONHUMAN PRIMA, V31, P1; FINCH C. E, 2000, CHANCE DEV AGING; Finch C. E., 1990, LONGEVITY SENESCENCE; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; Finch CE, 1997, BETWEEN ZEUS AND THE SALMON, P245; Finch CE, 1999, NEUROBIOL AGING, V20, P407, DOI 10.1016/S0197-4580(99)00053-6; Finch CE, 1997, SCIENCE, V278, P407, DOI 10.1126/science.278.5337.407; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; FRETTS RC, 1995, NEW ENGL J MED, V333, P953, DOI 10.1056/NEJM199510123331501; Gabunia L, 2000, SCIENCE, V288, P1019, DOI 10.1126/science.288.5468.1019; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; Gagneux P, 2001, MOL PHYLOGENET EVOL, V18, P2, DOI 10.1006/mpev.2000.0799; GAVRILOV LA, 1991, BIOL LIFESPAN QUANTI; GEARING M, 1994, P NATL ACAD SCI USA, V91, P9382, DOI 10.1073/pnas.91.20.9382; George JC, 1999, CAN J ZOOL, V77, P571, DOI 10.1139/cjz-77-4-571; Goodall J., 1986, CHIMPANZEES GOMBE; Gosden R, 1996, CHEATING TIME SCI SE; Gosden R.G., 1985, BIOL MENOPAUSE CAUSE; GOSDEN RG, 1987, J ZOOL, V211, P169, DOI 10.1111/j.1469-7998.1987.tb07460.x; GOULD KG, 1981, MATURITAS, V3, P157, DOI 10.1016/0378-5122(81)90007-4; Gould S. J, 1977, ONTOGENY PHYLOGENY; GOWATY PA, 1996, PARTNERSHIPS BIRDS S, P21; Graham CE, 1986, COMP PRIMATE BIOL, V3, P93; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; HAILESELASSIE Y, 2001, NATURE, V412, P176; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; HART RW, 1974, P NATL ACAD SCI USA, V71, P2169, DOI 10.1073/pnas.71.6.2169; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; HARVEY PH, 1989, COMP SOCIOECOLOGY, P305; HARVEY PH, 1999, ADV ECOLOGICAL THEOR, P232; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 2002, EVOL ANTHROPOL, V11, P58, DOI 10.1002/evan.20005; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2001, CURR ANTHROPOL, V42, P681, DOI 10.1086/322559; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; Hawkes Kristen, 2003, P204; Herskind AM, 1996, HUM GENET, V97, P319, DOI 10.1007/BF02185763; Hill K, 1991, Hum Nat, V2, P313, DOI 10.1007/BF02692196; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; HILL K, 1982, J HUM EVOL, V11, P521, DOI 10.1016/S0047-2484(82)80107-3; Hill K, 1999, HUM NATURE-INT BIOS, V10, P199, DOI 10.1007/s12110-999-1015-8; Hill K., 1996, ACHE LIFE HIST ECOLO; HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408; Holliday R, 1995, UNDERSTANDING AGEING; HOWELL N, 1982, AM J PHYS ANTHROPOL, V59, P263, DOI 10.1002/ajpa.1330590305; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; Hrdy SB, 2001, NAT HIST, V110, P50; HRDY SB, WOMAN NEVER EVOLVED; Hulbert AJ, 2000, ANNU REV PHYSIOL, V62, P207, DOI 10.1146/annurev.physiol.62.1.207; HURTADO AM, 1992, FATHER CHILD RELATIO; ISAAC G, 1978, SCI AM, V238, P90, DOI 10.1038/scientificamerican0478-90; Isaac GL, 1984, ADV WORLD ARCHAEOLOG, P1; Jamison CS, 2002, AM J PHYS ANTHROPOL, V119, P67, DOI 10.1002/ajpa.10070; JOHANSON DC, 1979, SCIENCE, V203, P321, DOI 10.1126/science.104384; Jones NGB, 2002, AM J HUM BIOL, V14, P184, DOI 10.1002/ajhb.10038; JONES NGB, 1992, AM J PHYS ANTHROPOL, V89, P159, DOI 10.1002/ajpa.1330890204; JONES NGB, 2000, ADAPTATION HUMAN BEH, P61; Judge DS, 2000, J GERONTOL A-BIOL, V55, pB201, DOI 10.1093/gerona/55.4.B201; Kapahi P, 1999, FREE RADICAL BIO MED, V26, P495, DOI 10.1016/S0891-5849(98)00323-2; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H, 1997, BETWEEN ZEUS AND THE SALMON, P175; KEY CA, 1994, INT J OSTEOARCHAEOL, V4, P193, DOI DOI 10.1002/0A.1390040304; Keyfitz N., 1990, WORLD POPULATION GRO; Kirkwood T.B.L., 1981, P165; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, P ROY SOC LOND B BIO, V205, P532; Klein R., 1999, HUMAN CAREER HUMAN B; Klein RG, 2000, EVOL ANTHROPOL, V9, P17, DOI 10.1002/(SICI)1520-6505(2000)9:1<17::AID-EVAN3>3.0.CO;2-A; Kozlowski J, 1997, AM NAT, V149, P352; KU HH, 1993, FREE RADICAL BIO MED, V15, P621, DOI 10.1016/0891-5849(93)90165-Q; Lancaster Jane B., 1983, HUMANS ADAPT BIOCULT, P33; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; Larick R, 2001, P NATL ACAD SCI USA, V98, P4866, DOI 10.1073/pnas.081077298; LEE RB, 1968, HUNTERS DO LIVING MA, P30; LEE RD, 1997, ZEUS SALMON BIODEMOG, P212; Lee-Thorp J, 2000, J HUM EVOL, V39, P565, DOI 10.1006/jhev.2000.0436; Lee-Thorp Julia, 2002, P123; LEIDY LE, 1994, ANNU REV ANTHROPOL, V23, P231, DOI 10.1146/annurev.an.23.100194.001311; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; Lieberman DE, 2002, EVOL ANTHROPOL, V11, P246, DOI 10.1002/evan.10037; Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126; McArthur R, 1967, THEORY ISLAND BIOGEO; MCHENRY HM, 1992, AM J PHYS ANTHROPOL, V87, P407, DOI 10.1002/ajpa.1330870404; MCHENRY HM, 1994, J HUM EVOL, V27, P77, DOI 10.1006/jhev.1994.1036; Mesnick S., 1997, FEMINISM EVOLUTIONAR, P207; Milton K, 1999, EVOL ANTHROPOL, V8, P11, DOI 10.1002/(SICI)1520-6505(1999)8:1<11::AID-EVAN6>3.3.CO;2-D; Mitani JC, 2002, EVOL ANTHROPOL, V11, P9, DOI 10.1002/evan.10008; MIZROCH SA, 1981, REP INT WHAL COMM, V312, P425; Morris JC, 1996, NEUROLOGY, V46, P707, DOI 10.1212/WNL.46.3.707; Moss CJ, 2001, J ZOOL, V255, P145, DOI 10.1017/S0952836901001212; O'Connell James, 2002, P49; O'Connell JF, 2002, J HUM EVOL, V43, P831, DOI 10.1006/jhev.2002.0604; O'Connell JF, 1999, J HUM EVOL, V36, P461, DOI 10.1006/jhev.1998.0285; Oeppen J, 2002, SCIENCE, V296, P1029, DOI 10.1126/science.1069675; Olshansky SJ, 1998, AM SCI, V86, P52, DOI 10.1511/1998.17.914; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PAINE RR, 1997, 24 S ILL U CTR ARCH; Palombit RA, 1999, EVOL ANTHROPOL, V7, P117, DOI 10.1002/(SICI)1520-6505(1999)7:4<117::AID-EVAN2>3.0.CO;2-O; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; Pavelka MSM, 1999, AM J PHYS ANTHROPOL, V109, P455, DOI 10.1002/(SICI)1096-8644(199908)109:4<455::AID-AJPA3>3.0.CO;2-Z; PAVELKA MSM, 1991, YEARB PHYS ANTHROPOL, V34, P13; Peccei JS, 2001, EVOL ANTHROPOL, V10, P43, DOI 10.1002/evan.1013; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PRESTON SH, 1972, CAUSES DEATH LIFE TA; PROMISLOW DEL, 1989, OXFORD SURVEYS EVOLU, V6, P13; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; RICHARDSON SJ, 1987, J CLIN ENDOCR METAB, V65, P1231, DOI 10.1210/jcem-65-6-1231; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; RIGHTMIRE CP, 1990, EVOLUTION HOMO ERECU; ROGERS AR, 1993, EVOL ECOL, V7, P406, DOI 10.1007/BF01237872; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Ruff CB, 1997, NATURE, V387, P173, DOI 10.1038/387173a0; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SCHRIRE V, 1984, PRESENT HUNTER GATHE; Sear R, 2000, P ROY SOC B-BIOL SCI, V267, P1641, DOI 10.1098/rspb.2000.1190; Senut B, 2001, CR ACAD SCI II A, V332, P137, DOI 10.1016/S1251-8050(01)01529-4; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; Shanley DP, 2001, BIOESSAYS, V23, P282, DOI 10.1002/1521-1878(200103)23:3<282::AID-BIES1038>3.3.CO;2-0; SHIPMAN P, 1989, J HUM EVOL, V18, P373, DOI 10.1016/0047-2484(89)90037-7; SHIPMAN P, 1986, AM ANTHROPOL, V88, P27, DOI 10.1525/aa.1986.88.1.02a00020; Smith B. Holly, 1993, P195; SMITH BH, 1991, AM J PHYS ANTHROPOL, V86, P157, DOI 10.1002/ajpa.1330860206; SMITH BH, 1987, AM J PHYS ANTHROPOL, V72, P255; SMITH BH, 1995, ANNU REV ANTHROPOL, V24, P257, DOI 10.1146/annurev.an.24.100195.001353; SMITH BH, 1994, AM J HUM BIOL, V6, P61, DOI 10.1002/ajhb.1310060110; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; SMITH BH, 1986, NATURE, V323, P327, DOI 10.1038/323327a0; Smith DW, 1993, HUMAN LONGEVITY; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Smuts B.B., 1987, P385; Smuts B. B., 1985, SEX FRIENDSHIP BABOO; Smuts B. B, 1992, FATHER CHILD RELATIO, P1; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; Stanford CB, 1996, AM ANTHROPOL, V98, P96, DOI 10.1525/aa.1996.98.1.02a00090; Stanford CB, 2001, MEAT EATING HUMAN EV; Stanford CB, 1999, HUNTING APES MEAT EA; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stearns SC., 1992, EVOLUTION LIFE HIST; Stiner MC, 2002, J ARCHAEOL RES, V10, P1, DOI 10.1023/A:1014588307174; SUGIYAMA Y, 1994, AM J PRIMATOL, V32, P311, DOI 10.1002/ajp.1350320408; Sukumar R, 1997, ZOO BIOL, V16, P263, DOI 10.1002/(SICI)1098-2361(1997)16:3<263::AID-ZOO6>3.0.CO;2-8; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; SWISHER CC, 1994, SCIENCE, V263, P1118, DOI 10.1126/science.8108729; Tardieu C, 1998, AM J PHYS ANTHROPOL, V107, P163; TICE RR, 1985, HDB BIOL AGING, P173; TOLMASOFF JM, 1980, P NATL ACAD SCI-BIOL, V77, P2777, DOI 10.1073/pnas.77.5.2777; Tooby J., 1987, P183; TRELOAR AE, 1981, MATURITAS, V3, P249, DOI 10.1016/0378-5122(81)90032-3; TRINKAUS E, 1986, ANNU REV ANTHROPOL, V15, P193, DOI 10.1146/annurev.an.15.100186.001205; TRINKAUS E, 1995, J ARCHAEOL SCI, V22, P121, DOI 10.1016/S0305-4403(95)80170-7; Trivers R. L, 1972, SEXUAL SELECTION DES, P139; Tuljapurkar S, 2000, NATURE, V405, P789, DOI 10.1038/35015561; van Schaik Carel, 1996, Evolutionary Anthropology, V5, P152, DOI 10.1002/(SICI)1520-6505(1996)5:5<152::AID-EVAN3>3.3.CO;2-9; van Schaik CP, 2000, INFANTICIDE MALES IT; Varki A, 2000, GENOME RES, V10, P1065, DOI 10.1101/gr.10.8.1065; Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855; Voland E, 2002, BEHAV ECOL SOCIOBIOL, V52, P435, DOI 10.1007/s00265-002-0539-2; Vom Saal Frederick S., 1994, P1213; VONSCHAIK CP, 1996, P BR ACAD, V88, P9; Walker LC, 1997, BRAIN RES REV, V25, P70, DOI 10.1016/S0165-0173(97)00017-9; WALKER PL, 1988, AM J PHYS ANTHROPOL, V76, P183, DOI 10.1002/ajpa.1330760206; Washburn S, 1968, MAN HUNTER, P293; Washburn S. L., 1961, SOCIAL LIFE EARLY MA, P91; WASHBURN SL, 1960, SCI AM, V203, P63; Washburn SL, 1958, BEHAV EVOLUTION, P421; WEISS KM, 1973, SOC AM ARCHAEOLOGY M, V27, P1; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; WESTERN D, 1979, AFR J ECOL, V17, P185, DOI 10.1111/j.1365-2028.1979.tb00256.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; Wolf ER, 1982, EUROPE PEOPLE HIST; Wood B, 1999, SCIENCE, V284, P65, DOI 10.1126/science.284.5411.65; WOOD B, 1992, NATURE, V355, P783, DOI 10.1038/355783a0; Wood J. W., 1994, DYNAMICS HUMAN REPRO; WOODBURN J, 1968, MAN HUNTER, P49; Wrangham RW, 1999, CURR ANTHROPOL, V40, P567, DOI 10.1086/300083; Yu BP, 1996, FREE RADICAL BIO MED, V21, P651, DOI 10.1016/0891-5849(96)00162-1; Zhu RX, 2001, NATURE, V413, P413, DOI 10.1038/35096551 232 234 241 4 91 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. MAY-JUN 2003 15 3 380 400 10.1002/ajhb.10156 21 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 669AD WOS:000182329000009 12704714 2019-02-26 J Tuttle, EM Tuttle, EM Alternative reproductive strategies in the white-throated sparrow: behavioral and genetic evidence BEHAVIORAL ECOLOGY English Article alternative reproductive strategy; extrapair copulations; conspecific brood parasitism; polymorphism; sparrows; Zonotrichia albicollis EVOLUTIONARILY STABLE STRATEGIES; EXTRA-PAIR COPULATIONS; ZONOTRICHIA-ALBICOLLIS; PARENTAL CARE; XIPHOPHORUS-NIGRENSIS; MATING-BEHAVIOR; PATERNAL CARE; HUMAN DNA; POLYMORPHISM; TACTICS Organisms exhibiting genetic polymorphism often also exhibit true alternative life-history strategies in which behavioral tactics are genetically fixed. Such systems are ideal for the study of the evolution of life histories because the consequences of selective episodes can be more easily identified. Here I report an interesting and classic example of a species exhibiting true alternative strategies. Due to a chromosomal inversion, male and female white-throated sparrows (Zonotrichia albicollis) occur as two distinct morphs, tan or white. Tan and white morphs mate disassortatively, and this mating pattern maintains the polymorphism in relatively equal proportions within the population. In comparison with tan males, white males are more aggressive, frequently intrude into neighboring territories, spend less time guarding their mates, occasionally attempt polygyny, and provide less parental care. White females are also more aggressive and solicit copulation from their mates twice as often as tan females. Multilocus DNA fingerprinting revealed that 31.8% of nestlings and 56.3% of broods from white male-tan female pairs were the result of extrapair fertilizations, whereas only 4.4% of nestlings and 6.3% of broods from tan male-white female pairs contained extrapair offspring. However, 4.4% of the nestlings (12.5% of broods) from tan male-white female pairs were attributable to conspecific brood parasitism, and brood parasitism was not a factor for white male-tan female pairs. For three excluded extrapair offspring, actual paternity was assigned to territorial white males, suggesting that, although white males are not preferred by females in previous mate choice studies, they do attempt to increase their reproductive success by securing additional matings via extrapair copulations. However, by doing so, white males also lose paternity at home. Behavioral and genetic evidence suggest that the two morphs use alternative strategies and that reproductive trade-offs may serve to maintain a competitive equilibrium between the morphs. Indiana State Univ, Dept Life Sci, Terre Haute, IN 47809 USA Tuttle, EM (reprint author), Indiana State Univ, Dept Life Sci, Terre Haute, IN 47809 USA. Tuttle, Elaina/A-1485-2016 Tuttle, Elaina/0000-0002-2465-918X ALI S, 1986, HUM GENET, V74, P239; ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; ANDREW RJ, 1961, IBIS A, V103, P315; AUSTAD SN, 1984, AM ZOOL, V24, P309; BASS AH, 1993, REV FISH BIOL FISHER, V3, P181, DOI 10.1007/BF00045231; BIRKHEAD T, 1987, TRENDS ECOL EVOL, V2, P268, DOI 10.1016/0169-5347(87)90033-4; Birkhead T.R, 1992, SPERM COMPETITION BI; BIRKHEAD TR, 1982, ANIM BEHAV, V30, P277, DOI 10.1016/S0003-3472(82)80264-9; BIRKHEAD TR, 1990, BEHAV ECOL SOCIOBIOL, V27, P315, DOI 10.1007/BF00164002; BJORKLUND M, 1983, BEHAV ECOL SOCIOBIOL, V13, P271, DOI 10.1007/BF00299674; BURKE T, 1989, NATURE, V338, P249, DOI 10.1038/338249a0; Cade W., 1979, P343; COX CR, 1977, AM NAT, V111, P317, DOI 10.1086/283163; Davies N.B., 1982, P363; DAWKINS R, 1980, NATURE NURTURE, P331; DOMINEY WJ, 1984, AM ZOOL, V24, P385; Dunbar R.I.M., 1982, Perspectives in Ethology, V5, P385; EBERHARD WG, 1982, AM NAT, V119, P420, DOI 10.1086/283920; EMLEN ST, 1986, ETHOLOGY, V71, P2; ESHEL I, 1982, THEOR POPUL BIOL, V22, P204, DOI 10.1016/0040-5809(82)90042-9; FALLS JB, 1988, CAN J ZOOL, V66, P206, DOI 10.1139/z88-029; FALLS JB, 1994, BIRDS N AM, V128; FICKEN RW, 1978, Z TIERPSYCHOL, V46, P43; GEORGES M, 1987, NUCLEIC ACIDS RES, V15, P7193, DOI 10.1093/nar/15.17.7193; GIBBS HL, 1990, SCIENCE, V250, P1394, DOI 10.1126/science.250.4986.1394; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; HAILMAN JP, 1975, BIRD BANDING, V46, P236, DOI 10.2307/4512141; HOYSAK DJ, 1991, CONDOR, V93, P746, DOI 10.2307/1368207; JEFFREYS AJ, 1985, NATURE, V316, P76, DOI 10.1038/316076a0; JEFFREYS AJ, 1985, NATURE, V314, P67, DOI 10.1038/314067a0; KNAPTON RW, 1983, CAN J ZOOL, V61, P1288, DOI 10.1139/z83-173; KOPACHENA JG, 1993, WILSON BULL, V105, P48; LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; LONGMIRE JL, 1992, AUK, V109, P522; LOWTHER JK, 1961, CAN J ZOOLOG, V39, P281, DOI 10.1139/z61-031; LOWTHER JK, 1968, B US NATL MUSEUM, V334, P1364; LYNCH M, 1990, MOL BIOL EVOL, V7, P478; MAYNARDSMITH J, 1977, ANIM BEHAV, V25, P1, DOI DOI 10.1016/0003-3472(77)90062-8); MOLLER AP, 1993, BEHAV ECOL SOCIOBIOL, V33, P261, DOI 10.1007/BF02027123; MOLLER AP, 1987, BEHAV ECOL SOCIOBIOL, V21, P119, DOI 10.1007/BF02395439; PIPER WH, 1989, J FIELD ORNITHOL, V60, P73; ROSKAFT E, 1983, ORNIS SCAND, V14, P175, DOI 10.2307/3676150; RUBENSTEIN DI, 1980, LIMITS ACTION ALLOCA, P1; RYAN MJ, 1992, AM NAT, V139, P21, DOI 10.1086/285311; RYSKOV AP, 1988, FEBS LETT, V233, P388, DOI 10.1016/0014-5793(88)80467-8; SHIN HS, 1985, NATURE, V317, P445, DOI 10.1038/317445a0; SHUSTER SM, 1991, NATURE, V350, P608, DOI 10.1038/350608a0; Smith J.M., 1982, EVOLUTION THEORY GAM; SMITH JM, 1991, PHILOS T ROY SOC B, V332, P103, DOI 10.1098/rstb.1991.0037; SOUTHERN EM, 1975, J MOL BIOL, V98, P503, DOI 10.1016/S0022-2836(75)80083-0; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; TEATHER KL, 1988, AUK, V105, P196; THOMPSON CW, 1992, HORM BEHAV, V26, P568, DOI 10.1016/0018-506X(92)90023-O; THOMPSON CW, 1993, BEHAV ECOL SOCIOBIOL, V33, P137, DOI 10.1007/BF00216593; THORNEYCROFT HB, 1975, EVOLUTION, V29, P611, DOI 10.1111/j.1558-5646.1975.tb00855.x; THORNEYCROFT HB, 1966, SCIENCE, V154, P1571, DOI 10.1126/science.154.3756.1571; Trivers R. L, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TUTTLE EM, 1993, THESIS STATE U NEW Y; van Rhijn J.G., 1973, Behaviour, V47, P153, DOI 10.1163/156853973X00076; VASSART G, 1987, SCIENCE, V235, P683, DOI 10.1126/science.2880398; WATT DJ, 1984, AUK, V101, P110; WATT DJ, 1986, J FIELD ORNITHOL, V57, P105; Westneat D.F., 1990, Current Ornithology, V7, P331; WESTNEAT DF, 1987, ANIM BEHAV, V35, P865, DOI 10.1016/S0003-3472(87)80122-7; WESTNEAT DF, 1988, NUCLEIC ACIDS RES, V16, P4161, DOI 10.1093/nar/16.9.4161; WESTNEAT DF, 1990, BEHAV ECOL SOCIOBIOL, V27, P67, DOI 10.1007/BF00183315; WETTON JH, 1987, NATURE, V327, P147, DOI 10.1038/327147a0; WHILLANS KV, 1990, ANIM BEHAV, V39, P869, DOI 10.1016/S0003-3472(05)80951-0; WHITTINGHAM LA, 1992, AM NAT, V139, P1115, DOI 10.1086/285376; WOLF L, 1988, ANIM BEHAV, V36, P1601, DOI 10.1016/S0003-3472(88)80102-7; XIA XH, 1992, AM NAT, V139, P1126, DOI 10.1086/285377; ZIMMERER EJ, 1989, EVOLUTION, V43, P1298, DOI 10.1111/j.1558-5646.1989.tb02576.x 74 130 130 1 48 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. MAY 2003 14 3 425 432 10.1093/beheco/14.3.425 8 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 680CC WOS:000182957900018 Bronze 2019-02-26 J Shefferson, RP; Proper, J; Beissinger, SR; Simms, EL Shefferson, RP; Proper, J; Beissinger, SR; Simms, EL Life history trade-offs in a rare orchid: The costs of flowering, dormancy, and sprouting ECOLOGY English Article adult plant dormancy; bud dormancy; cost of reproduction; cost of sprouting; Cypripedium calceolus; demography; lady's slipper orchids; life history trade-offs; matrix modeling; multistrata mark-recapture; survivorship; trade-offs OPHRYS-SPHEGODES MILL; MARK-RECAPTURE MODELS; EARLY SPIDER ORCHID; CAPTURE-RECAPTURE; POPULATION BIOLOGY; FRUIT PRODUCTION; PLANTS; REPRODUCTION; SURVIVAL; EVOLUTION We tested for life history trade-offs among dormancy, sprouting, and flowering in a seven-year study of a threatened, perennial plant, the small yellow lady's slipper orchid (Cypripedium calceolus ssp. parviflorum (Salisb.) Fernald). The aboveground states of 629 genets were monitored over seven years in a wet meadow in northeastern Illinois, USA. With mark-recapture statistics, survival, resighting, and stage transitions were calculated among three stage classes of individuals: dormant, vegetative, and flowering. The best-fit and most parsimonious models suggested that (1) survival was constant among years, but varied by stage; (2) dormant individuals suffered significantly higher mortality and were more likely to become dormant in future years than sprouting or flowering individuals;, (3) flowering individuals had significantly higher survival and were more likely to flower in the future than sprouting and dormant individuals; and (4) sprouting individuals had a significantly higher stage transition to dormancy from the vegetative state than to any other state. Thus, our results identified costs of dormancy and sprouting to survival and future reproduction, but no costs of reproduction either to survival or future flowering effort. Dormancy seems unlikely to be adaptive except perhaps as a bet-hedging strategy under catastrophic conditions. Applying mark-recapture models to test predictions from life history theory provided a robust means to explore hypothetical trade-offs that may not have been observed in a conventional analysis and allowed dormancy to be estimated robustly without biasing survival estimation. Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA; Lake Cty Forest Preserve Dist, Lake Villa, IL 60046 USA; Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA Shefferson, RP (reprint author), Univ Calif Berkeley, Dept Integrat Biol, 3060 Valley Life Sci Bldg 3140, Berkeley, CA 94720 USA. dormancy@socrates.berkeley.edu Beissinger, Steven/F-3809-2012 ACKERMAN JD, 1990, ECOLOGY, V71, P263, DOI 10.2307/1940265; Alexander HM, 1997, ECOLOGY, V78, P1230, DOI 10.2307/2265872; BIERE A, 1995, J ECOL, V83, P629, DOI 10.2307/2261631; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Buckland ST, 1997, BIOMETRICS, V53, P603, DOI 10.2307/2533961; Burnham KP, 1998, MODEL SELECTION INFE; CALLAGHAN TV, 1992, OIKOS, V63, P341, DOI 10.2307/3544959; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Case Jr F. W., 1987, ORCHIDS W GREAT LAKE; CURTIS JOHN T., 1954, BULL TORREY BOT CLUB, V81, P340, DOI 10.2307/2997149; Curtis JT, 1943, AM J BOT, V30, P199, DOI 10.2307/2437240; Curtis JT, 1959, VEGETATION WISCONSIN; DAHMS HU, 1995, HYDROBIOLOGIA, V306, P199, DOI 10.1007/BF00017691; DEKROON H, 1992, OIKOS, V63, P410, DOI 10.2307/3544967; Dixon K.W., 1990, ORCHID BIOL REV PERS, P37; Fisher R.A., 1930, GENETICAL THEORY NAT; FULLER ALBERT M., 1933, BULL PUBLIC MUS CITY MILWAUKEE, V14, P1; Gill D. E., 1989, SPECIATION ITS CONSE, P458; Harper J. L., 1974, Annual Review of Ecology and Systematics, V5, P419, DOI 10.1146/annurev.es.05.110174.002223; HINES JE, 1994, MS SURVIV USERS MANU; HINES JE, 1989, US FISH WILDLIFE SER, V24, P1; HUTCHINGS MJ, 1987, J ECOL, V75, P711, DOI 10.2307/2260201; HUTCHINGS MJ, 1987, J ECOL, V75, P729, DOI 10.2307/2260202; KULL T, 1991, POPULATION ECOLOGY OF TERRESTRIAL ORCHIDS, P69; Kull T., 1995, ABSTR BOT, V19, P95; KULL T, 1987, PLANT COVER ESTONIAN, P77; LEAKE JR, 1994, NEW PHYTOL, V127, P171, DOI 10.1111/j.1469-8137.1994.tb04272.x; LESICA P, 1994, NAT AREA J, V14, P209; LEVIN SA, 1991, THEORY POPUL BIOL, V39, P63; McPeek MA, 1998, ERGEB LIMNOL, V52, P33; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; NUZZO V, 1990, GAVIN BOG PRAIRIE NA; OTIS DL, 1978, WILDLIFE MONOGR, P1; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; PITELKA LF, 1985, POPULATION BIOL EVOL, P399; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; PRIMACK RB, 1988, B ECOL SOC AM, V69, P266; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Shefferson RP, 2001, ECOLOGY, V82, P145, DOI 10.2307/2680092; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; Stearns SC., 1992, EVOLUTION LIFE HIST; SUTHERLAND WJ, 1988, OIKOS, V52, P239, DOI 10.2307/3565196; Svedarsky W, 1996, RESTORATION MANAGEME, V14, P179; Swink F, 1994, PLANTS CHICAGO REGIO; TAFT JB, 1990, RHODORA, V92, P142; TAMM CO, 1972, OIKOS, V23, P23, DOI 10.2307/3543923; Taylor J., 1997, INTRO ERROR ANAL STU; TUOMI J, 1983, AM ZOOL, V23, P25; WELLS TCE, 1967, J ECOL, V55, P83, DOI 10.2307/2257718; White G. C., 2002, INTEGRATING PEOPLE W, P368; White GC, 1999, BIRD STUDY, V46, P120; WIENER P, 1994, J THEOR BIOL, V166, P75, DOI 10.1006/jtbi.1994.1006; Willems JH, 2000, PLANT BIOLOGY, V2, P344, DOI 10.1055/s-2000-3707 58 58 58 0 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology MAY 2003 84 5 1199 1206 10.1890/0012-9658(2003)084[1199:LHTIAR]2.0.CO;2 8 Ecology Environmental Sciences & Ecology 700PN WOS:000184120500013 2019-02-26 J Jeffery, CH; Emlet, RB Jeffery, CH; Emlet, RB Macroevolutionary consequences of developmental mode in temnopleurid echinoids from the tertiary of southern Australia EVOLUTION English Review geographic range; larval development; macroevolution; nonplanktotrophy; phylogeny; planktotrophy; stratigraphic range ANCESTRAL CHARACTER STATES; LIFE-HISTORY EVOLUTION; COOL-WATER CARBONATE; URCHIN HELIOCIDARIS-ERYTHROGRAMMA; MAXIMUM-LIKELIHOOD APPROACH; LARVAL DEVELOPMENT; MARINE-INVERTEBRATES; SEA-URCHINS; SPECIES LONGEVITY; FOSSIL RECORD Taxonomic revision and cladistic analysis of a morphological dataset for Australian Tertiary temnopleurids resolve the phylogeny of the group and allow the testing of a series of hypotheses about the evolution of larval development and consequences of changes in development. Australian Tertiary temnopleurids encompass all three major developmental types found in marine invertebrates (planktotrophy, lecithotrophy, and brooding). Planktotrophy is plesiomorphic for this clade, and nonplanktotrophic larval development evolved independently at least three times during the Tertiary. The change to a nonplanktotrophic mode of larval development is unidirectional with no evidence of reversal. In addition, there is no evidence of an ordered transformation series from planktotrophy through planktonic lecithotrophy to brooding. In common with previous studies of other invertebrate groups, analysis of the raw data suggests that nonplanktotrophic taxa within this clade have significantly shorter species longevities, more restricted geographic ranges and higher speciation rates than taxa with planktotrophic development. However, analysis using phylogenetically independent contrasts is unable to confirm that the stratigraphic and geographic patterns are unbiased by the phylogenetic relationships of the included taxa. Univ Oregon, Inst Marine Biol, Charleston, OR 97420 USA Jeffery, CH (reprint author), Jane Herdman Labs, Dept Earth Sci, 4 Brownlow St, Liverpool L69 3GP, Merseyside, England. chj@liv.ac.uk; remlet@oregon.uoregon.edu AMEMIYA S, 1992, BIOL BULL, V182, P15, DOI 10.2307/1542177; Arndt A, 1996, MOL PHYLOGENET EVOL, V6, P425, DOI 10.1006/mpev.1996.0091; BENTON MJ, 1994, GEOLOGY, V22, P111, DOI 10.1130/0091-7613(1994)022<0111:TTQOTF>2.3.CO;2; Benton MJ, 1999, SYST BIOL, V48, P581, DOI 10.1080/106351599260157; Benton MJ, 2000, NATURE, V403, P534, DOI 10.1038/35000558; BONNER JT, 1982, EVOLUTION DEV REP DA; CLARKE A, 1992, INVERTEBR REPROD DEV, V22, P175, DOI 10.1080/07924259.1992.9672270; Collin R, 2001, MOL ECOL, V10, P2249, DOI 10.1046/j.1365-294X.2001.01372.x; Cunningham CW, 1998, TRENDS ECOL EVOL, V13, P361, DOI 10.1016/S0169-5347(98)01382-2; Cunningham CW, 1999, SYST BIOL, V48, P665, DOI 10.1080/106351599260238; Duda TF, 1999, P NATL ACAD SCI USA, V96, P10272, DOI 10.1073/pnas.96.18.10272; Edwards A. W. F., 1972, LIKELIHOOD; Emlet R.B., 1987, Echinoderm Studies, V2, P55; Emlet R.B., 1990, Advances in Invertebrate Reproduction, V5, P329; EMLET RB, 1995, EVOLUTION, V49, P476, DOI 10.1111/j.1558-5646.1995.tb02280.x; EMLET RB, 1986, J EXP MAR BIOL ECOL, V95, P183, DOI 10.1016/0022-0981(86)90202-9; Emlet RB, 1997, EVOLUTION, V51, P141, DOI 10.1111/j.1558-5646.1997.tb02395.x; EMLET RB, 1985, SCIENCE, V230, P937, DOI 10.1126/science.230.4728.937; EMLET RB, 1995, DEV BIOL, V167, P405, DOI 10.1006/dbio.1995.1037; EMLET RB, 1989, PALEOBIOLOGY, V15, P223; EMLET RB, 1994, AM ZOOL, V34, P570; EMLET RB, 1988, ECHINODERM PHYLOGENY, P229; Feary DA, 1998, AAPG BULL, V82, P792; FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x; Fischer A. G., 1963, AM J SCI, V261, P282; FISCHER DC, 1993, EVOLUTION, V28, P327; Foote M, 1997, PALEOBIOLOGY, V23, P278; FOSTER RJ, 1974, NATURE, V249, P751, DOI 10.1038/249751a0; FRUMHOFF PC, 1994, EVOLUTION, V48, P172, DOI 10.1111/j.1558-5646.1994.tb01303.x; Gallagher SJ, 1999, J MICROPALAEONTOL, V18, P143, DOI 10.1144/jm.18.2.143; Garstang W, 1951, LARVAL FORMS OTHER Z; GILI C, 1994, LETHAIA, V27, P291, DOI 10.1111/j.1502-3931.1994.tb01577.x; HADFIELD KA, 1995, J MOL EVOL, V40, P413, DOI 10.1007/BF00164028; Hadfield MG, 1996, OCEANOL ACTA, V19, P323; HAECKEL EHP, 1866, GEN MORPH ORGANISMEN; HANSEN TA, 1983, SCIENCE, V220, P501, DOI 10.1126/science.220.4596.501; HANSEN TA, 1982, PALEOBIOLOGY, V8, P367; HANSEN TA, 1978, SCIENCE, V199, P885, DOI 10.1126/science.199.4331.885; HANSEN TA, 1980, PALEOBIOLOGY, V6, P193; Hart M, 2000, SEMIN CELL DEV BIOL, V11, P411, DOI 10.1006/scdb.2000.0194; Hart MW, 1997, EVOLUTION, V51, P1848, DOI 10.1111/j.1558-5646.1997.tb05108.x; Hart MW, 1996, EVOLUTION, V50, P174, DOI 10.1111/j.1558-5646.1996.tb04484.x; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HEAD MJ, 1998, DAWN QUATERNARY, P199; Hitchin R, 1997, SYST BIOL, V46, P563, DOI 10.2307/2413697; HUELSENBECK JP, 1994, PALEOBIOLOGY, V20, P470; Irvine SQ, 2000, DEV BIOL, V217, P333, DOI 10.1006/dbio.1999.9541; JABLONSKI D, 1986, B MAR SCI, V39, P565; JABLONSKI D, 1987, SCIENCE, V238, P360, DOI 10.1126/science.238.4825.360; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; Jablonski D., 1982, P257; JACKSON JBC, 1974, AM NAT, V108, P541, DOI 10.1086/282933; Jaeckle William B., 1995, P49; Jagersten G., 1972, EVOLUTION METAZOAN L; James NP, 2000, SEDIMENTOLOGY, V47, P761, DOI 10.1046/j.1365-3091.2000.00315.x; Jeffery CH, 2003, ALCHERINGA, V27, P117, DOI 10.1080/03115510308619552; Jeffery CH, 1997, GEOLOGY, V25, P991, DOI 10.1130/0091-7613(1997)025<0991:DOENCS>2.3.CO;2; KENNETT JP, 1980, PALAEOGEOGR PALAEOCL, V31, P123, DOI 10.1016/0031-0182(80)90017-6; Kier P. M., 1969, P215; KIER PORTER M., 1967, J PALEONTOL, V41, P988; KOHN AJ, 1994, LIFE HIST BIOGEOGRAP; Kohn JR, 1996, EVOLUTION, V50, P1454, DOI 10.1111/j.1558-5646.1996.tb03919.x; Lecuyer C, 1996, PALAEOGEOGR PALAEOCL, V126, P61, DOI 10.1016/S0031-0182(96)00070-3; Levin Lisa A., 1995, P1; Lewis D.N., 1986, Bulletin of the British Museum (Natural History) Geology, V40, P59; Li Q, 1996, AUST J EARTH SCI, V43, P437, DOI 10.1080/08120099608728266; Li Q., 1999, Australian Journal of Earth Sciences, V46, P261, DOI 10.1046/j.1440-0952.1999.00696.x; Li Q, 2000, AUST J EARTH SCI, V47, P955, DOI 10.1046/j.1440-0952.2000.00824.x; LIEBERMAN BS, 1993, PALEOBIOLOGY, V19, P205; Lukasik JJ, 1998, AUST J EARTH SCI, V45, P889, DOI 10.1080/08120099808728443; Lukasik JJ, 2000, SEDIMENTOLOGY, V47, P851, DOI 10.1046/j.1365-3091.2000.00328.x; MADDISON DR, 2001, MACCLADE 4 ANAL PHYL; Maddison WP, 1995, SYST BIOL, V44, P474, DOI 10.2307/2413655; MCEDWARD LR, 1993, BIOL BULL, V184, P255, DOI 10.2307/1542444; McEdward LR, 1997, BIOL J LINN SOC, V60, P381; McHugh D, 1998, TRENDS ECOL EVOL, V13, P182, DOI 10.1016/S0169-5347(97)01285-8; MCMILLAN WO, 1992, EVOLUTION, V46, P1299, DOI 10.1111/j.1558-5646.1992.tb01125.x; MCNAMARA KJ, 1994, LETHAIA, V27, P257, DOI 10.1111/j.1502-3931.1994.tb01419.x; MILEIKOVSKY SA, 1971, MAR BIOL, V10, P193, DOI 10.1007/BF00352809; Mooers AO, 1999, SYST BIOL, V48, P623, DOI 10.1080/106351599260193; Mortensen T, 1921, STUDIES DEV LARVAL F; MORTENSEN T, 1951, MONOGRAPH ECHINOIDEA, V1; MORTENSEN T, 1943, MONOGRAPH ECHINOID 2, V2; NORELL MA, 1992, SCIENCE, V255, P1690, DOI 10.1126/science.255.5052.1690; OFOIGHIL D, 1995, EVOLUTION, V49, P140, DOI 10.1111/j.1558-5646.1995.tb05966.x; OKAZAKI K, 1981, BIOL BULL, V161, P402, DOI 10.2307/1540945; OLSON RR, 1993, BIOL BULL, V185, P77, DOI 10.2307/1542131; Omland KE, 1997, EVOLUTION, V51, P1636, DOI 10.1111/j.1558-5646.1997.tb01486.x; Omland KE, 1999, SYST BIOL, V48, P604, DOI 10.1080/106351599260175; Pagel M, 1999, SYST BIOL, V48, P612, DOI 10.1080/106351599260184; PAGEL M, 1994, P ROY SOC B-BIOL SCI, V255, P37, DOI 10.1098/rspb.1994.0006; PEARSE JS, 1991, AM ZOOL, V31, P65; Pearse JS, 1994, REPROD LARVAL BIOL R, P27; Philip G. M, 1971, Palaeontology, V14, P666; PHILIP G M, 1971, Proceedings of the Royal Society of Victoria, V84, P227; PHILIP G M, 1969, Proceedings of the Royal Society of Victoria, V82, P233; PHILIP G. M., 1966, PROC LINNEAN SOC NSW, V91, P114; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; RAFF EC, 1987, DEV EVOLUTIONARY PRO; RAUP DM, 1978, PALEOBIOLOGY, V4, P1; Ree RH, 1998, SYST BIOL, V47, P582, DOI 10.1080/106351598260590; Ree RH, 1999, SYST BIOL, V48, P633, DOI 10.1080/106351599260201; ROMAN J, 1983, Annales de Paleontologie, V69, P13; Rowe F.W.E., 1982, Echinoderms, P219; SANDERSON MJ, 1993, EVOLUTION, V47, P236, DOI 10.1111/j.1558-5646.1993.tb01213.x; Scheltema R. S., 1977, CONCEPTS METHODS BIO, P73; SCHELTEMA RS, 1989, OLSEN INT S, P183; SCHELTEMA RS, 1978, CONCEPTS METHODS BIO, P303; Schluter D, 1997, EVOLUTION, V51, P1699, DOI 10.1111/j.1558-5646.1997.tb05095.x; Schultz TR, 1996, EVOLUTION, V50, P504, DOI 10.1111/j.1558-5646.1996.tb03863.x; SHUTO T, 1974, LETHAIA, V7, P239, DOI 10.1111/j.1502-3931.1974.tb00899.x; Siddall ME, 1997, SYST BIOL, V46, P569, DOI 10.2307/2413698; Siddall ME, 1998, CLADISTICS, V14, P201, DOI 10.1006/clad.1998.0059; Siddall ME, 1996, SYST BIOL, V45, P111, DOI 10.2307/2413516; Smith A. B., 1996, Palaeontographical Society Monographs (London), V150, P268; Smith AB, 1997, ANNU REV ECOL SYST, V28, P219, DOI 10.1146/annurev.ecolsys.28.1.219; SMITH AB, 1988, MOL BIOL EVOL, V5, P345; SMITH AB, 1996, PALAEONTOG SOC MONOG, V150, P82; Strathmann R., 1974, Thalassia Jugosl, V10, P321; STRATHMANN RR, 1978, EVOLUTION, V32, P894, DOI 10.1111/j.1558-5646.1978.tb04642.x; STRATHMANN RR, 1993, ANNU REV ECOL SYST, V24, P89, DOI 10.1146/annurev.es.24.110193.000513; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Swalla BJ, 1996, SCIENCE, V274, P1205, DOI 10.1126/science.274.5290.1205; Swalla BJ, 1999, DEVELOPMENT, V126, P1643; SWOFFORD DL, 2000, PAUPASTERISK PHYLOGE; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; THRESHER RE, 1989, COPEIA, P420; Wills MA, 1999, SYST BIOL, V48, P559, DOI 10.1080/106351599260148; WRAY GA, 1994, DEVELOPMENT, P97; Wray GA, 1996, SYST BIOL, V45, P308, DOI 10.2307/2413566; WRAY GA, 1990, DEV BIOL, V141, P41, DOI 10.1016/0012-1606(90)90100-W; Wray Gregory A., 1995, P413 132 54 56 0 14 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAY 2003 57 5 1031 1048 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 689NY WOS:000183500900009 12836821 2019-02-26 J Czesak, ME; Fox, CW Czesak, ME; Fox, CW Evolutionary ecology of egg size and number in a seed beetle: Genetic trade-off differs between environments EVOLUTION English Article artificial selection; fecundity; genetic trade-off; offspring size; reproductive effort; Stator limbatus LIFE-HISTORY TRAITS; DROSOPHILA-MELANOGASTER; VARIABLE ENVIRONMENTS; REPRODUCTIVE EFFORT; OFFSPRING SIZE; CLUTCH SIZE; THREESPINE STICKLEBACK; QUANTITATIVE GENETICS; STATOR LIMBATUS; CONSEQUENCES In many organisms, large offspring have improved fitness over small offspring, and thus their size is under strong selection. However, due to a trade-off between offspring size and number, females producing larger offspring necessarily must produce fewer unless the total amount of reproductive effort is unlimited. Because differential gene expression among environments may affect genetic covariances among traits, it is important to consider environmental effects on the genetic relationships among traits. We compared the genetic relationships among egg size, lifetime fecundity, and female adult body mass (a trait linked to reproductive effort) in the seed beetle, Stator limbatus, between two environments (host-plant species Acacia greggii and Cercidium floridum). Genetic correlations among these traits were estimated through half-sib analysis, followed with artificial selection on egg size to observe the correlated responses of lifetime fecundity and female body mass. We found that the magnitude of the genetic trade-off between egg size and lifetime fecundity differed between environments-a strong trade-off was estimated when females laid eggs on C. floridum seeds, yet this trade-off was weak when females laid eggs on A. greggii seeds. Also differing between environments was the genetic correlation between egg size and female body mass-these traits were positively genetically correlated for egg size on A. greggii seeds, yet uncorrelated on C. floridum seeds. On A. greggii seeds, the evolution of egg size and traits linked to reproductive effort (such as female body mass) are not independent from each other as commonly assumed in life-history theory. Univ Kentucky, Dept Entomol, Lexington, KY 40546 USA Czesak, ME (reprint author), Vassar Coll, Dept Biol, Poughkeepsie, NY 12604 USA. maczesak@vassar.edu Fox, Charles/I-5274-2012 Fox, Charles/0000-0002-7545-7967 Azevedo RBR, 1997, AM NAT, V150, P250, DOI 10.1086/286065; Begin M, 2001, J EVOLUTION BIOL, V14, P1, DOI 10.1046/j.1420-9101.2001.00258.x; Caley MJ, 2001, EVOLUTION, V55, P1245; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; CARRIERE Y, 1995, OECOLOGIA, V102, P389, DOI 10.1007/BF00329806; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1985, ENVIRON ENTOMOL, V14, P383, DOI 10.1093/ee/14.4.383; DELAGUERIE P, 1991, EVOL ECOL, V5, P361, DOI 10.1007/BF02214153; EBERT D, 1993, ARCH HYDROBIOL, P453; Falconer D.S., 1996, INTRO QUANTITATIVE G; Fox CW, 2000, ECOLOGY, V81, P3029, DOI 10.1890/0012-9658(2000)081[3029:NSOSBE]2.0.CO;2; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fox CW, 1997, CAN J ZOOL, V75, P1465, DOI 10.1139/z97-769; Fox CW, 1999, EVOLUTION, V53, P552, DOI 10.1111/j.1558-5646.1999.tb03790.x; Fox CW, 1996, OECOLOGIA, V107, P541, DOI 10.1007/BF00333946; Fox CW, 1997, AM NAT, V149, P149, DOI 10.1086/285983; Fox CW, 2001, ECOLOGY, V82, P2790, DOI 10.1890/0012-9658(2001)082[2790:COPRFH]2.0.CO;2; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gu HN, 2000, AUSTRAL ECOL, V25, P394, DOI 10.1046/j.1442-9993.2000.01051.x; Guntrip J, 1997, HEREDITY, V78, P158; HEDRICK PW, 1976, ANNU REV ECOL SYST, V7, P1, DOI 10.1146/annurev.es.07.110176.000245; HOLLOWAY GJ, 1990, HEREDITY, V64, P323, DOI 10.1038/hdy.1990.40; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Ilmonen P, 2000, P ROY SOC B-BIOL SCI, V267, P665, DOI 10.1098/rspb.2000.1053; JOHNSON C D, 1976, U S Department of Agriculture Technical Bulletin, V1537, P1; Johnson C.D., 1989, Opera Lilloana, V37, P1; Lazarevic J, 1998, FUNCT ECOL, V12, P141, DOI 10.1046/j.1365-2435.1998.00166.x; Leon JA, 2000, J THEOR BIOL, V205, P563, DOI 10.1006/jtbi.2000.2086; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LOFSVOLD D, 1986, EVOLUTION, V40, P559, DOI 10.1111/j.1558-5646.1986.tb00507.x; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; NILSSON JA, 1993, SOUTHWEST NAT, V38, P385, DOI 10.2307/3671622; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Roff D. A, 1997, EVOLUTIONARY QUANTIT; ROFF DA, 1994, HEREDITY, V73, P544, DOI 10.1038/hdy.1994.153; Roff Derek A., 1992; *SAS I, 1985, SAS US GUID STAT VER; Savalli UM, 2002, ANN ENTOMOL SOC AM, V95, P724, DOI 10.1603/0013-8746(2002)095[0724:PMIESP]2.0.CO;2; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHEINER SM, 1989, EVOL ECOL, V3, P51, DOI 10.1007/BF02147931; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; Shaw FH, 1995, EVOLUTION, V49, P1260, DOI 10.1111/j.1558-5646.1995.tb04452.x; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SNYDER RJ, 1991, COPEIA, P526; Sokal R. R, 1995, BIOMETRY; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; TURELLI M, 1988, EVOLUTION, V42, P1342, DOI 10.1111/j.1558-5646.1988.tb04193.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vaughton G, 1998, J ECOL, V86, P563, DOI 10.1046/j.1365-2745.1998.00279.x; VIA S, 1984, EVOLUTION, V38, P896, DOI 10.1111/j.1558-5646.1984.tb00360.x; Welham CVJ, 1998, CAN J BOT, V76, P166, DOI 10.1139/b97-176; Windig JJ, 1997, J EVOLUTION BIOL, V10, P853, DOI 10.1007/s000360050058; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 60 96 97 5 46 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAY 2003 57 5 1121 1132 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 689NY WOS:000183500900016 12836828 2019-02-26 J Hauber, ME Hauber, ME Interspecific brood parasitism and the evolution of host clutch sizes EVOLUTIONARY ECOLOGY RESEARCH English Article co-evolution; conspecific brood parasitism; cowbirds; optimal clutch sizes BROWN-HEADED COWBIRDS; NEST PREDATION; LIFE-HISTORY; SAYORNIS-PHOEBE; REED WARBLERS; PARENTAL CARE; MODEL SYSTEM; EGG-REMOVAL; BIRDS; CUCKOOS Life-history theory predicts that, over evolutionary time. increased juvenile mortality should decrease parental investment in the number of offspring produced at each breeding attempt. Because interspecific brood parasitism in birds typically reduces the survival of host eggs, nestlings and fledglings, but not that of adult hosts, a specific prediction of the theory is that co-evolution with interspecific brood parasites should lead to smaller avian clutch sizes. Furthermore, the severity of juvenile mortality caused by parasitism in the hosts, due to the parasites' activities and the hosts' rejection behaviours, should correlate negatively with clutch size. In a comparative analysis, both of these predictions were supported among hosts of obligate brood parasitic brown-headed cowbirds (Molothrus ater). Reduced clutch sizes appeared to be part of a trade-off strategy as parasitism was also associated with more annual breeding attempts. These findings suggest that, on an evolutionary time-scale, hosts' prolonged interactions with interspecific brood parasites lead to reduced clutch sizes at the taxon level and, qualitatively, these changes in life-history traits are similar to those associated with other types of parasitism and diseases whose main effects also lead to reduced juvenile survival. Univ Calif Berkeley, Museum Vertebrate Zool, Dept Integrat Biol, Berkeley, CA 94720 USA Hauber, ME (reprint author), Univ Calif Berkeley, Museum Vertebrate Zool, Dept Integrat Biol, Berkeley, CA 94720 USA. hauberm@socrates.berkeley.edu Arcese P, 1996, P NATL ACAD SCI USA, V93, P4608, DOI 10.1073/pnas.93.10.4608; BAICICH PJ, 1997, GUIDE NESTS EGGS NES; Both C, 1998, P ROY SOC B-BIOL SCI, V265, P2303, DOI 10.1098/rspb.1998.0575; Brooke MD, 1998, P ROY SOC B-BIOL SCI, V265, P1277, DOI 10.1098/rspb.1998.0430; Davies NB, 1996, P ROY SOC B-BIOL SCI, V263, P925, DOI 10.1098/rspb.1996.0137; Davies NB, 1999, OSTRICH, V70, P71, DOI 10.1080/00306525.1999.9639751; Davies NB, 2000, CUCKOOS COWBIRDS OTH; Dearborn DC, 1999, AUK, V116, P448, DOI 10.2307/4089378; Forbes LS, 1996, J THEOR BIOL, V180, P247; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Hauber Mark E., 2004, Etologia, V10, P1; Hauber ME, 2000, J FIELD ORNITHOL, V71, P389, DOI 10.1648/0273-8570-71.3.389; Hauber ME, 2003, BEHAV ECOL, V14, P227, DOI 10.1093/beheco/14.2.227; Hauber ME, 2002, BEHAV ECOL SOCIOBIOL, V51, P503, DOI 10.1007/s00265-001-0450-2; Hauber ME, 2001, CAN J ZOOL, V79, P1518, DOI 10.1139/cjz-79-8-1518; Hosoi SA, 2000, ANIM BEHAV, V59, P823, DOI 10.1006/anbe.1999.1370; Kattan GH, 1996, J FIELD ORNITHOL, V67, P434; Kilpatrick AM, 2002, CAN J ZOOL, V80, P145, DOI 10.1139/Z01-217; Klicka J, 2000, AUK, V117, P321, DOI 10.1642/0004-8038(2000)117[0321:NWNPOR]2.0.CO;2; Lack D, 1954, NATURAL REGULATION A; LERKELUND HE, 1993, ORNIS SCAND, V24, P95, DOI 10.2307/3676358; Lorenzana JC, 1999, STUD AVIAN BIOL, P241; Lovette IJ, 1999, P ROY SOC B-BIOL SCI, V266, P1629, DOI 10.1098/rspb.1999.0825; Lowther Peter E., 1993, Birds of North America, V47, P1; Lyon BE, 1998, NATURE, V392, P380, DOI 10.1038/32878; Martin TE, 2001, P NATL ACAD SCI USA, V98, P2071, DOI 10.1073/pnas.98.4.2071; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McMaster DG, 1997, AUK, V114, P212, DOI 10.2307/4089162; Morrill R, 1999, POLIT GEOGR, V18, P1, DOI 10.1016/S0962-6298(98)00062-6; Ortega CP, 1998, COWBIRDS OTHER BROOD; Payne RB, 1998, BEHAV ECOL, V9, P64, DOI 10.1093/beheco/9.1.64; POWER HW, 1989, CONDOR, V91, P753, DOI 10.2307/1368058; REEVE HK, 1989, AM NAT, V133, P407, DOI 10.1086/284926; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; ROSKAFT E, 1990, EVOL ECOL, V4, P35, DOI 10.1007/BF02270713; Roskaft E, 2002, BEHAV ECOL, V13, P163, DOI 10.1093/beheco/13.2.163; ROTHSTEIN SI, 1990, ANNU REV ECOL SYST, V21, P481, DOI 10.1146/annurev.es.21.110190.002405; ROTHSTEIN SI, 1990, TRENDS ECOL EVOL, V5, P101, DOI 10.1016/0169-5347(90)90161-6; Rothstein SI, 2002, BEHAV ECOL, V13, P1, DOI 10.1093/beheco/13.1.1; Rothstein SI, 1998, PARASITIC BIRDS THEI; Ruxton GD, 2002, P ROY SOC B-BIOL SCI, V269, P1989, DOI 10.1098/rspb.2002.2125; Sedgwick JA, 1999, STUD AVIAN BIOL, P167; SKUTCH AF, 1975, PARENT BIRDS THEIR Y; SMITH JNM, 1981, CONDOR, V83, P152, DOI 10.2307/1367420; Smith JNM, 2000, ECOLOGY MANAGEMENT C; Soler JJ, 2000, OECOLOGIA, V125, P309, DOI 10.1007/s004420000487; Soler JJ, 2001, ECOLOGY, V82, P1621, DOI 10.2307/2679805; Stokke BG, 2002, EVOLUTION, V56, P199; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Tewksbury JJ, 2002, P ROY SOC B-BIOL SCI, V269, P423, DOI 10.1098/rspb.2001.1894; WILEY JW, 1991, BIOL CONSERV, V55, P119, DOI 10.1016/0006-3207(91)90052-B 52 36 37 5 118 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. MAY 2003 5 4 559 570 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 685BT WOS:000183241500007 2019-02-26 J Czarnoleski, M; Kozlowski, J; Stanczykowska, A; Lewandowski, K Czarnoleski, M; Kozlowski, J; Stanczykowska, A; Lewandowski, K Optimal resource allocation explains growth curve diversity in zebra mussels EVOLUTIONARY ECOLOGY RESEARCH English Article Bertalanffy's growth curves; Beverton and Holt's pattern; bioenergetic model; bivalves; body size; Dreissena polymorpha; fouling; growth; life-history evolution; mortality LIFE-HISTORY VARIATION; DREISSENA-POLYMORPHA PALLAS; NORTH-AMERICA; PHYSIOLOGICAL ENERGETICS; INDETERMINATE GROWTH; POPULATION-DYNAMICS; REPRODUCTIVE EFFORT; ENERGY ALLOCATION; REACTION NORMS; EVOLUTION We analysed data on zebra mussels (Dreissena polymorpha) from 19 European populations characterized by diverse production and mortality conditions revealing remark-able spatial differences in the shape of Bertalanffy's growth curves. An optimization approach to life-history evolution predicts that differences in the pattern of growth reflect shifts in resource allocation maximizing lifetime fitness under different production and mortality rates. We examine the relationships of Dreissena growth curves to the production and mortality rates in the populations, and then compare them with the life-history patterns predicted by a model of optimal resource allocation to growth and reproduction. In accord with the model, Bertalanffy's growth rate parameter (k) increased and the asymptotic size (L-max) decreased with rising mussel mortality rate. Contrary to expectations, the parameter k rose and the asymptote L-max dropped with the increase in the production rate. The predictive power of the model increased after including consequences of fouling of older mussels by younger conspecifics. We assumed that overgrowth, intensifying with better food conditions in a habitat, alters the size specificity of biomass production and accelerates age-dependent mortality. The assumption is supported by the positive relation of mortality to the production rate index in the empirical data. The results indicate that zebra mussels optimally allocate resources under different mortality and production rates modified by overgrowth. We argue that the noticeable life-history polymorphism in this invasive species may be adaptive. Jagiellonian Univ, Inst Environm Sci, PL-30387 Krakow, Poland; Univ Podlasie, Inst Biol, PL-08110 Siedlce, Poland Czarnoleski, M (reprint author), Jagiellonian Univ, Inst Environm Sci, Gronostajowa 3, PL-30387 Krakow, Poland. czarn@eko.uj.edu.pl Kozlowski, Jan/K-5549-2012 Kozlowski, Jan/0000-0002-7084-2030 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ATKINSON D, 1995, J THERM BIOL, V20, P61, DOI 10.1016/0306-4565(94)00028-H; BERTALANFFY LV, 1957, QUART REV BIOL, V32, P217, DOI DOI 10.1086/401873; Beverton R. J. H., 1963, Rapport Conseil Exploration Mer, V154, P44; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; BIJ DE VAATE A, 1991, OECOLOGIA, V86, P40, DOI 10.1007/BF00317387; Charnov Eric L., 1993, P1; Chase ME, 1999, J GREAT LAKES RES, V25, P107, DOI 10.1016/S0380-1330(99)70720-3; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; Dittman DE, 1998, MAR BIOL, V132, P461, DOI 10.1007/s002270050412; Dupont-Nivet M, 1997, GENET SEL EVOL, V29, P571, DOI 10.1051/gse:19970503; ERNSTING G, 1995, OIKOS, V72, P444, DOI 10.2307/3546131; Guinez R, 1999, AM NAT, V154, P341, DOI 10.1086/303234; Heino M, 1999, J EVOLUTION BIOL, V12, P423; HUGHES RN, 1988, AM NAT, V132, P484, DOI 10.1086/284866; Jantz B, 1998, OECOLOGIA, V114, P213, DOI 10.1007/s004420050439; Johnson PD, 1998, FRESHWATER BIOL, V40, P317, DOI 10.1046/j.1365-2427.1998.00356.x; JOKELA J, 1995, OECOLOGIA, V104, P122, DOI 10.1007/BF00365570; JORGENSEN CB, 1990, BIVALVE FILTER FEEDI; Karatayev AY, 1997, J SHELLFISH RES, V16, P187; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; Kozlowski J, 1999, OIKOS, V86, P185, DOI 10.2307/3546437; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kozlowski J, 1999, EVOL ECOL RES, V1, P423; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KRYGER J, 1988, OECOLOGIA, V77, P34, DOI 10.1007/BF00380921; LAM PKS, 1989, J ANIM ECOL, V58, P589, DOI 10.2307/4850; LEWANDOWSKI K, 1982, EKOL POL-POL J ECOL, V30, P223; Lewandowski Krzysztof, 1997, Polskie Archiwum Hydrobiologii, V44, P431; MACDONALD BA, 1987, CAN J FISH AQUAT SCI, V44, P152, DOI 10.1139/f87-020; McMahon RF, 1996, AM ZOOL, V36, P339; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; Molloy Daniel P., 1997, Reviews in Fisheries Science, V5, P27; Morris TJ, 1999, FRESHWATER BIOL, V42, P59, DOI 10.1046/j.1365-2427.1999.00468.x; MORTON B S, 1969, Proceedings of the Malacological Society of London, V38, P471; Nalepa T. F., 1993, ZEBRA MUSSELS BIOL I; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; Nichols SJ, 1996, AM ZOOL, V36, P311; OKAMURA B, 1986, OECOLOGIA, V69, P341, DOI 10.1007/BF00377054; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Pontryagin L. S., 1962, MATH THEORY OPTIMAL; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RIBI G, 1986, OECOLOGIA, V71, P18, DOI 10.1007/BF00377314; Riisgard HU, 2001, OPHELIA, V54, P193, DOI 10.1080/00785236.2001.10409465; Roff Derek A., 1992; Schloesser DW, 1996, AM ZOOL, V36, P300; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; SPRUNG M, 1995, HYDROBIOLOGIA, V304, P117, DOI 10.1007/BF02579417; SPRUNG M, 1995, HYDROBIOLOGIA, V304, P133, DOI 10.1007/BF02579418; STANCZYKOWSKA A, 1977, Polskie Archiwum Hydrobiologii, V24, P461; Stanczykowska A., 1984, Limnologica, V15, P535; Stanczykowska A., 1995, EKOLOGIA POLSKA, V43, P267; STANCZYKOWSKA A, 1976, ROCZ NAUK ROL, P109; STANCZYKOWSKA ANNA, 1964, EKOL POLSKA SER A, V12, P653; Stearns SC., 1992, EVOLUTION LIFE HIST; Strayer DL, 1996, CAN J FISH AQUAT SCI, V53, P1143, DOI 10.1139/cjfas-53-5-1143; Wahl M, 1997, MAR ECOL PROG SER, V151, P291, DOI 10.3354/meps151291; WALZ N, 1978, Archiv fuer Hydrobiologie Supplement, V55, P83; WALZ N, 1978, Archiv fuer Hydrobiologie Supplement, V55, P106; WALZ N, 1978, Archiv fuer Hydrobiologie Supplement, V55, P142; Weinberg JR, 1996, MAR BIOL, V126, P663, DOI 10.1007/BF00351333; WIKTOR J, 1969, STUDIA MAT A; Wilson JG, 1997, OCEANOL ACTA, V20, P267; Wlastov B. V., 1959, Zoologicheskii Zhurnal, V38, P991 69 23 24 0 18 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. MAY 2003 5 4 571 587 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 685BT WOS:000183241500008 2019-02-26 J Bond, WJ; Midgley, JJ Bond, WJ; Midgley, JJ The evolutionary ecology of sprouting in woody plants INTERNATIONAL JOURNAL OF PLANT SCIENCES English Article life history evolution; sprouting; fire ecology; disturbance; plant functional trait CAPE FLORISTIC REGION; FIRE RESPONSE; LIFE-HISTORY; MEDITERRANEAN ECOSYSTEMS; CARBOHYDRATE RESERVES; ALLOCATION PATTERNS; WESTERN-AUSTRALIA; CHAPARRAL SHRUBS; SEED PRODUCTION; STARCH STORAGE Woody plants may be killed by severe disturbance or resprout from vegetative tissue. Sprouters can persist at a site through several generations of nonsprouters. Differences in sprouting behavior are therefore important for understanding vegetation dynamics, extinction risks, and woody plant management. Although sprouting appears not to be uniquely correlated with many other intrinsic attributes, such as specific leaf area or breeding systems, a clear correlate is reduced seedling aboveground growth rates from sprouters allocating more to belowground structures. Consequently, sprouters tend to have low seedling recruitment rates, and saplings take longer to reach maturity. Sprouters also tend to have lower seed output than nonsprouters, but comparative studies have seldom taken other trait differences such as plant size into account. Added to these trade-offs between persistence and recruitment, sprouters are often multistemmed and shorter than related nonsprouters and may be outcompeted by them when disturbances are rare. Since sprouters tend to have long generation times, damped demographic trends, and gene flow across generations, it has been suggested that their speciation rates would be low. The available data, primarily from fire-prone Gondwanan shrublands in South Africa, show no strong differences in speciation rates of related sprouters versus seeders. This indicates that ecological factors are important determinants of the evolution of fire life histories. Analysis of disturbance regimes indicates a fundamental ecological correlate: sprouters are favored where disturbance regimes are frequent and severe in comparison to regrowth rates. To bridge the gap between ecology and evolution, data are needed on the genetical differences between related species with contrasting sprouter life histories. Univ Cape Town, Dept Bot, ZA-7701 Rondebosch, South Africa Bond, WJ (reprint author), Univ Cape Town, Dept Bot, ZA-7701 Rondebosch, South Africa. Bell DT, 2001, BOT REV, V67, P417, DOI 10.1007/BF02857891; Bell DT, 1984, KWONGAN PLANT LIFE S, P178; Bell TL, 1996, ANN BOT-LONDON, V77, P357, DOI 10.1006/anbo.1996.0043; Bell TL, 1999, NEW PHYTOL, V144, P143, DOI 10.1046/j.1469-8137.1999.00489.x; Bellingham PJ, 2000, OIKOS, V89, P409, DOI 10.1034/j.1600-0706.2000.890224.x; BELLINGHAM PJ, 1994, J ECOL, V82, P747, DOI 10.2307/2261440; Bond WJ, 2001, TRENDS ECOL EVOL, V16, P45, DOI 10.1016/S0169-5347(00)02033-4; BOND WJ, 1988, OECOLOGIA, V77, P515, DOI 10.1007/BF00377267; Bond WJ, 1996, FIRE PLANTS; Burrows GE, 2002, NEW PHYTOL, V153, P111, DOI 10.1046/j.0028-646X.2001.00299.x; Canadell J, 1998, FUNCT ECOL, V12, P31, DOI 10.1046/j.1365-2435.1998.00154.x; Canham CD, 1999, OECOLOGIA, V121, P1, DOI 10.1007/s004420050900; CARPENTER FL, 1979, AM NAT, V113, P871, DOI 10.1086/283442; CHIDUMAYO EN, 1992, VEGETATIO, V103, P51; CLARK JS, 1991, ECOLOGY, V72, P1102, DOI 10.2307/1940609; Clarke PJ, 2002, AUST J BOT, V50, P53, DOI 10.1071/BT01055; Clarke PJ, 2002, OECOLOGIA, V132, P582, DOI 10.1007/s00442-002-0962-0; Cowling RM, 1998, AUST J BOT, V46, P335, DOI 10.1071/BT97040; COWLING RM, 1987, S AFR J SCI, V83, P106; Cruz A, 2001, ACTA OECOL, V22, P121, DOI 10.1016/S1146-609X(01)01107-9; Del Tredici P, 2001, BOT REV, V67, P121, DOI 10.1007/BF02858075; ENRIGHT NJ, 1992, ACTA OECOL, V13, P727; Feild TS, 2003, INT J PLANT SCI, V164, pS129, DOI 10.1086/374193; FULTON RE, 1979, OECOLOGIA, V38, P147, DOI 10.1007/BF00346560; George A. S., 1981, NUYTSIA, V3, P239; Gibson N., 1995, ECOLOGY SO CONIFERS, P223; Grime J. P, 1979, PLANT STRATEGIES VEG; Grime JP, 1997, OIKOS, V79, P259, DOI 10.2307/3546011; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; HANSEN A, 1991, ANN BOT-LONDON, V67, P497, DOI 10.1093/oxfordjournals.aob.a088190; Hardig TM, 2000, AM J BOT, V87, P108, DOI 10.2307/2656689; Higgins SI, 2000, TRENDS ECOL EVOL, V15, P516, DOI 10.1016/S0169-5347(00)01993-5; Hodgkinson KC, 1998, OECOLOGIA, V115, P64, DOI 10.1007/s004420050492; Hoffmann WA, 1998, J APPL ECOL, V35, P422, DOI 10.1046/j.1365-2664.1998.00321.x; Itoh A, 2002, FOREST ECOL MANAG, V168, P275, DOI 10.1016/S0378-1127(01)00742-3; Iwasa Y, 1997, EVOL ECOL, V11, P41, DOI 10.1023/A:1018483429029; JACOBSSON A, 2000, OIKOS, V88, P494; JAMES S, 1984, BOT REV, V50, P225, DOI 10.1007/BF02862633; KEELEY JE, 1977, AM MIDL NAT, V98, P1, DOI 10.2307/2424710; KEELEY JE, 1978, AM MIDL NAT, V99, P142, DOI 10.2307/2424939; KEELEY JE, 1977, ECOLOGY, V58, P820, DOI 10.2307/1936217; KEELEY JE, 1977, P S ENV CONS FIR FUE, P391; Keeley JE, 1998, J VEG SCI, V10, P69; Keeley JE, 1986, RESILIENCE MEDITERRA, P95; Keeley Jon E., 1998, P219; Kobe RK, 1997, OIKOS, V80, P226, DOI 10.2307/3546590; Kruger LM, 1997, FUNCT ECOL, V11, P101, DOI 10.1046/j.1365-2435.1997.00064.x; Lamont B.B., 1985, P AUSTR ECOLOGICAL S, V14, P213; Lamont BB, 1998, AUST J BOT, V46, P377, DOI 10.1071/BT97008; LAMONT BB, 2003, IN PRESS EVOL ECOL; Langley JA, 2002, OECOLOGIA, V131, P542, DOI 10.1007/s00442-002-0932-6; Le Maitre D. C., 1992, FIRE S AFRICAN MOUNT, P123; LeMaitre DC, 1992, ECOLOGY FYNBOS NUTR, P135; Lloret F, 1999, AM J BOT, V86, P1655, DOI 10.2307/2656663; Magallon S, 2001, EVOLUTION, V55, P1762, DOI 10.1111/j.0014-3820.2001.tb00826.x; Mast AR, 1998, AUST SYST BOT, V11, P321, DOI 10.1071/SB97026; Mast AR, 2002, AM J BOT, V89, P1311, DOI 10.3732/ajb.89.8.1311; McPherson K, 1998, OECOLOGIA, V117, P460, DOI 10.1007/s004420050681; Meentemeyer RK, 2002, J VEG SCI, V13, P67, DOI 10.1658/1100-9233(2002)013[0067:DOPLHT]2.0.CO;2; MESLEARD F, 1989, OECOLOGIA, V80, P127, DOI 10.1007/BF00789941; Midgley J. J., 1995, ECOLOGY SO CONIFERS, P64; Midgley JJ, 1996, ECOGRAPHY, V19, P92, DOI 10.1111/j.1600-0587.1996.tb00159.x; Ojeda F, 1998, BIOL J LINN SOC, V63, P331, DOI 10.1111/j.1095-8312.1998.tb01521.x; PATE JS, 1990, ANN BOT-LONDON, V65, P585, DOI 10.1093/oxfordjournals.aob.a087976; Rackham O., 1986, HIST COUNTRYSIDE; REBELO AS, 1996, PROTEAS FIELD GUIDE; REEVES G, 2001, THESIS IMPERIAL COLL; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; Richardson JE, 2000, AM J BOT, V87, P1309, DOI 10.2307/2656724; RUTHERFORD M C, 1981, Bothalia, V13, P531; Sakai A, 1998, ANN BOT-LONDON, V82, P213, DOI 10.1006/anbo.1998.0672; Sakai A, 1997, ANN BOT-LONDON, V79, P625, DOI 10.1006/anbo.1996.0389; SCHUTTE AL, 1995, PLANT SYST EVOL, V195, P243, DOI 10.1007/BF00989299; SCHWILK DW, 2002, THESIS STANFORD U; STRANG RM, 1974, J APPL ECOL, V11, P249, DOI 10.2307/2402019; Thiele K, 1996, AUST SYST BOT, V9, P661, DOI 10.1071/SB9960661; THOMAS CM, 1989, OECOLOGIA, V80, P309, DOI 10.1007/BF00379032; TIFFNEY BH, 1985, POPULATION BIOL EVOL, P35; Trollope W. S. W., 1984, ECOLOGICAL EFFECTS F, P199; Verdaguer D, 2002, AM J BOT, V89, P1189, DOI 10.3732/ajb.89.8.1189; Verdu M, 2000, J VEG SCI, V11, P265, DOI 10.2307/3236806; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; WELLS PV, 1969, EVOLUTION, V23, P264, DOI 10.1111/j.1558-5646.1969.tb03510.x; Westoby M, 1996, PHILOS T R SOC B, V351, P1309, DOI 10.1098/rstb.1996.0114; Westoby M, 1998, PLANT SOIL, V199, P213, DOI 10.1023/A:1004327224729; Whelan R.J., 1995, ECOLOGY FIRE; Whitehouse C. M, 2003, THESIS U CAPE TOWN; WIENS D, 1987, OECOLOGIA, V71, P501, DOI 10.1007/BF00379288; Wildy DT, 2002, ANN BOT-LONDON, V90, P185, DOI 10.1093/aob/mcf166; Williams RJ, 1999, AUST J ECOL, V24, P50, DOI 10.1046/j.1442-9993.1999.00946.x; Wisheu IC, 2000, EVOL ECOL RES, V2, P935 91 162 169 3 78 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1058-5893 INT J PLANT SCI Int. J. Plant Sci. MAY 2003 164 3 S S103 S114 10.1086/374191 12 Plant Sciences Plant Sciences 698UW WOS:000184018500008 2019-02-26 J Robertson, DN; Butler, MJ Robertson, DN; Butler, MJ Growth and size at maturity in the spotted spiny lobster, Panulirus guttatus JOURNAL OF CRUSTACEAN BIOLOGY English Article LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; ORNATE ROCK LOBSTERS; SEXUAL MATURITY; ARGUS LATREILLE; JASUS-EDWARDSII; CYGNUS GEORGE; FLORIDA BAY; RED-SEA; PALINURIDAE The spotted spiny lobster, Panulirus guttatus, is a reclusive, reef-dwelling species and appears to be restricted to coral reef habitat for its entire benthic existence. Little is known about its population dynamics, and much of the data that are available is derived primarily from trap-caught individuals and may therefore be biased. We avoided this problem by diving at night on patch reefs in the Florida Keys (U.S.A.) to collect lobsters when they are most accessible and used mark-recapture methods to estimate their growth and size at maturity. Molt increment for lobsters greater than 50 mm CL was estimated to be 1.5 mm for females and 1.6 mm for males, while molt interval was 50.6 weeks for females and 50.0 weeks for males. Growth rate was calculated to be 0.02-0.37 mm CL/week depending on size and sex. On average, males grew faster than females, but the rate of growth decreased with increased size for both sexes. Female size at maturity was estimated at 32 mm CL, based on both the minimum size of egg-bearing females and the size at which 50% of the females produced eggs. We estimated size at maturity for males to be 36-37 mm CL, using the onset of allometric growth of the second walking leg as an indicator of male maturity. Panuhrus guttatus is a diminutive species, and its size at maturity is small compared to other species of spiny lobster, although its growth rate is comparable to other species. These unusual life history characteristics may reflect selection for traits advantageous to life in small, architecturally complex habitat patches. No Kentucky Univ, Dept Biol Sci, CINSAM, Highland Hts, KY 41099 USA; Old Dominion Univ, Dept Biol Sci, Norfolk, VA 23529 USA Robertson, DN (reprint author), No Kentucky Univ, Dept Biol Sci, CINSAM, Highland Hts, KY 41099 USA. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ANNALA JH, 1988, NEW ZEAL J MAR FRESH, V22, P29, DOI 10.1080/00288330.1988.9516275; Atkinson D, 1996, OIKOS, V77, P359, DOI 10.2307/3546078; BERRY PF, 1980, MAR ECOL PROG SER, V2, P337, DOI 10.3354/meps002337; Briones-Fourzan P, 1999, J CRUSTACEAN BIOL, V19, P171, DOI 10.2307/1549558; CAILLOUET CW, 1971, B MAR SCI, V21, P944; CHITTLEB.RG, 1970, AUST J MAR FRESH RES, V21, P131; CHITTLEBOROUGH RG, 1976, AUST J MAR FRESH RES, V27, P279, DOI 10.1071/MF9760279; CHITTLEBOROUGH RG, 1975, AUST J MAR FRESH RES, V26, P177, DOI 10.1071/MF9750177; Chitty N, 1973, THESIS U MIAMI MIAMI; Chubb C.F., 1991, Revista de Investigaciones Marinas, V12, P223; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; DAVIS GE, 1975, T AM FISH SOC, V104, P675, DOI 10.1577/1548-8659(1975)104<675:MSOMSL>2.0.CO;2; Dennis DM, 1997, MAR FRESHWATER RES, V48, P663, DOI 10.1071/MF97184; EVANS CR, 1994, J SHELLFISH RES, V13, P393; Evans CR, 1995, J SHELLFISH RES, V14, P371; FARRUGIO H, 1976, Science et Peche, V254, P1; FIELD JM, 1994, CRUSTACEANA, V67, P26, DOI 10.1163/156854094X00279; FORCUCCI D, 1994, B MAR SCI, V54, P805; George R.W., 1979, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V175, P182; GOTTHARD K, 1994, OECOLOGIA, V99, P218; GREGORY D R JR, 1981, Northeast Gulf Science, V4, P109; GROENEVELD JC, 1994, S AFR J MARINE SCI, V14, P219; HERRNKIND WF, 1986, MAR ECOL PROG SER, V34, P23, DOI 10.3354/meps034023; HUNT JH, 1986, CAN J FISH AQUAT SCI, V43, P2243, DOI 10.1139/f86-275; JAYAKODY DS, 1989, MAR ECOL PROG SER, V57, P83, DOI 10.3354/meps057083; JERNAKOFF P, 1994, AUST J MAR FRESH RES, V45, P69; JUNIO MAR, 1987, B MAR SCI, V41, P242; Kagwade P.V., 1988, Journal of the Marine Biological Association of India, V30, P37; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LEMMENS JWTJ, 1994, MAR BIOL, V118, P383, DOI 10.1007/BF00350295; LEMMENS JWTJ, 1994, J EXP MAR BIOL ECOL, V180, P221, DOI 10.1016/0022-0981(94)90068-X; Luckhurst Briane E., 2001, Proceedings of the Gulf and Caribbean Fisheries Institute, V52, P222; MACDIARMID AB, 2000, SPINY LOBSTERS FISHE, P485; MACFARLANE JW, 1986, AUST J MAR FRESH RES, V37, P55; MCCOLLUM MD, 1981, THESIS SAN DIEGO STA; NAIR R V, 1981, Indian Journal of Fisheries, V28, P25; Nakamura K., 2000, SPINY LOBSTERS FISHE, P474; NORMAN CP, 1994, CRUSTACEANA, V66, P366, DOI 10.1163/156854094X00099; PLAUT I, 1993, AUST J MAR FRESH RES, V44, P527; PLAUT I, 1991, MAR BIOL, V111, P467, DOI 10.1007/BF01319420; POLLOCK DE, 1986, CAN J FISH AQUAT SCI, V43, P2107, DOI 10.1139/f86-259; POLOVINA JJ, 1989, CAN J FISH AQUAT SCI, V46, P660, DOI 10.1139/f89-084; Punt AE, 1997, MAR FRESHWATER RES, V48, P981, DOI 10.1071/MF97017; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Robertson DN, 2000, MAR FRESHW BEHAV PHY, V33, P161, DOI 10.1080/10236240009387088; Sharp WC, 1997, MAR FRESHWATER RES, V48, P687, DOI 10.1071/MF97125; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; SKEWES TD, 1994, B MAR SCI, V54, P38; SUTCLIFFE WH, 1953, ECOLOGY, V34, P794; Thomas CW, 2000, AQUACULTURE, V185, P73, DOI 10.1016/S0044-8486(99)00341-5; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 60 22 23 1 7 CRUSTACEAN SOC SAN ANTONIO 840 EAST MULBERRY, SAN ANTONIO, TX 78212 USA 0278-0372 J CRUSTACEAN BIOL J. Crustac. Biol. MAY 2003 23 2 265 272 10.1651/0278-0372(2003)023[0265:GASAMI]2.0.CO;2 8 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology 679PQ WOS:000182931500003 2019-02-26 J Beladjal, L; Peiren, N; Vandekerckhove, TTM; Mertens, J Beladjal, L; Peiren, N; Vandekerckhove, TTM; Mertens, J Different life histories of the co-occurring fairy shrimps Branchipus schaefferi and Streptocephalus torvicornis (Anostraca) JOURNAL OF CRUSTACEAN BIOLOGY English Article BRANCHIOPODS ANOSTRACA; CRUSTACEA; NOTOSTRACA; PONDS Branchipus schaefteri and Streptocephalus torvicornis commonly co-occur in ephemeral ponds throughout the Mediterranean Region. We compared survivorship, growth, and reproduction. Our results show statistically significant differences in all three parameters under laboratory conditions at 25degreesC, reflecting different life history strategies between these species. Branchipus schaefferi grows quickly to 18 mm body length, producing roughly 1700 cysts during an average lifespan of 24 days, while S. torvicornis lives an average of 120 days (length 24 mm), laying 2400 cysts. This suggests that S. torvicornis is better adapted to deep longer-lived pools, whereas B. schaefferi may survive in small, more ephemeral pools as formed from spring melt water and autumn rains. While the lifespan is equal for both sexes in B. schaefferi, the males of S. torvicornis live 2.8 times longer than females (325 days versus 114) compelled into a long postreproductive period by lack of females in their environment. State Univ Ghent, Lab Anim Ecol, B-9000 Ghent, Belgium; State Univ Ghent, Microbiol Lab, B-9000 Ghent, Belgium Beladjal, L (reprint author), State Univ Ghent, Lab Anim Ecol, KL Ledeganckstr 35, B-9000 Ghent, Belgium. ALONSO M, 1980, ESTUDIO SISTEMATICO; Begon M, 1996, ECOLOGY INDIVIDUALS; BELADJAL L, 1995, HYDROBIOLOGIA, V298, P183, DOI 10.1007/BF00033814; Beladjal L, 1999, INT REV HYDROBIOL, V84, P17; Brown D, 1993, MODELS BIOL MATH STA; DABORN GR, 1977, CAN J ZOOL, V55, P161, DOI 10.1139/z77-020; DIMENTMAN C, 1981, ISRAEL J ZOOL, V30, P1; Hathaway SA, 1996, J CRUSTACEAN BIOL, V16, P669, DOI 10.2307/1549187; HILDREW AG, 1985, J ANIM ECOL, V54, P99, DOI 10.2307/4623; HOSSLER J, 1995, HYDROBIOLOGIA, V298, P105, DOI 10.1007/BF00033805; Hossler J., 1989, Veroeffentlichungen fuer Naturschutz und Landschaftspflege in Baden-Wuerttemberg, V64-65, P281; KREBS CJ, 1972, ECOLOGY EXPT ANAL DI; Maeda-Martinez AM, 1997, HYDROBIOLOGIA, V359, P45, DOI 10.1023/A:1003102601542; MATHIAS P, 1937, ACTUAL SCI AND, V447, P1107; MOORE WALTER G., 1957, TRANS AMER MICROSC SOC, V76, P159, DOI 10.2307/3223627; MOORE WG, 1959, ECOLOGY, V40, P398, DOI 10.2307/1929756; MOORE WG, 1955, ECOLOGY, V36, P176, DOI 10.2307/1933223; MURA G, 1991, HYDROBIOLOGIA, V212, P45, DOI 10.1007/BF00025986; Mura G, 1996, HYDROBIOLOGIA, V325, P239, DOI 10.1007/BF00014990; MURA G, 1992, HYDROBIOLOGIA, V241, P185, DOI 10.1007/BF00028641; PEARL R, 1928, ECOLOGY EXPT ANAL DI; Petrov B, 1997, HYDROBIOLOGIA, V359, P23, DOI 10.1023/A:1003186014746; RICHARDS FJ, 1959, J EXP BOT, V10, P290, DOI 10.1093/jxb/10.2.290; SLUZHEVSKAYA E B, 1975, Hydrobiological Journal, V11, P82; Sluzhevskaya-Drobysheva E. B., 1982, HYDROBIOL J, V18, P95; Sokal R. R, 1995, BIOMETRY; *STATS INC, 1998, STATS STAT WIND; THIERY A, 1986, Bulletin de la Societe d'Histoire Naturelle de Toulouse, V122, P145; THIERY A, 1991, HYDROBIOLOGIA, V212, P117, DOI 10.1007/BF00025994; THIERY A, 1987, THESIS AIX MARSEILLE; Thiery Alain, 1996, Fauna of Saudi Arabia, V15, P37; von Bertalanffy L., 1938, HUM BIOL, V10, P181, DOI DOI 10.2307/41447359; Zarattini P, 2001, ITAL J ZOOL, V68, P79, DOI 10.1080/11250000109356387 33 33 36 1 3 CRUSTACEAN SOC SAN ANTONIO 840 EAST MULBERRY, SAN ANTONIO, TX 78212 USA 0278-0372 J CRUSTACEAN BIOL J. Crustac. Biol. MAY 2003 23 2 300 307 10.1651/0278-0372(2003)023[0300:DLHOTC]2.0.CO;2 8 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology 679PQ WOS:000182931500007 2019-02-26 J Van Kleunen, M; Fischer, M Van Kleunen, M; Fischer, M Effects of four generations of density-dependent selection on life history traits and their plasticity in a clonally propagated plant JOURNAL OF EVOLUTIONARY BIOLOGY English Article adaptation; clonal growth; genetic variation; guerrilla; phalanx; phenotypic plasticity; Ranunculus reptans; reproductive allocation; selection SHADE-AVOIDANCE RESPONSES; RANUNCULUS REPTANS; PHENOTYPIC PLASTICITY; GRASSLAND PERENNIALS; ADAPTIVE PLASTICITY; GENETIC-VARIATION; COMPETITION; GROWTH; POPULATIONS; PHYTOCHROME Life history evolution of many clonal plants takes place with long periods of exclusively clonal reproduction and under largely varying ramet densities resulting from clonal reproduction. We asked whether life history traits of the clonal herb Ranunculus reptans respond to density-dependent selection, and whether plasticity in these traits is adaptive. After four generations of exclusively clonal propagation of 16 low and 16 high ramet-density lines, we studied life history traits and their plasticities at two test ramet-densities. Plastic responses to higher test-density consisted of a shift from sexual to vegetative reproduction, and reduced flower production, plant size, branching frequency, and lengths of leaves and internodes. Plants of high-density lines tended to have longer leaves, and under high test-density branched less frequently than those of low-density lines. Directions of these selection responses indicate that the observed plastic branching response is adaptive, whereas the plastic leaf length response is not. The reverse branching frequency pattern at low test-density, where plants of high-density lines branched more frequently than those of low-density lines, indicates evolution of plasticity in branching. Moreover, when grown under less stressful low test-density, plants of high-density lines tended to grow larger than the ones of low-density lines. We conclude that ramet density affects clonal life-history evolution and that under exclusively clonal propagation clonal life-history traits and their plasticities evolve differently at different ramet densities. Univ Zurich, Inst Umweltwissensch, CH-8057 Zurich, Switzerland Van Kleunen, M (reprint author), Univ British Columbia, Dept Forest Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. vkleunen@uwinst.unizh.ch van Kleunen, Mark/B-3769-2009; Fischer, Markus/C-6411-2008 Fischer, Markus/0000-0002-5589-5900 Abrahamson W. G., 1980, DEMOGRAPHY EVOLUTION, P89; ABRAHAMSON WG, 1975, ECOLOGY, V56, P721, DOI 10.2307/1935508; Bell A. D., 1984, PERSPECTIVES PLANT P, P48; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Donohue K, 2001, EVOLUTION, V55, P692, DOI 10.1554/0014-3820(2001)055[0692:ADIPIN]2.0.CO;2; DOUST LL, 1981, J ECOL, V69, P743, DOI 10.2307/2259633; Eckert CG, 2001, EVOL ECOL, V15, P501, DOI 10.1023/A:1016005519651; Falconer D.S., 1996, INTRO QUANTITATIVE G; FALCONER DS, 1990, GENET RES, V56, P57, DOI 10.1017/S0016672300028883; Fischer M, 2000, AM J BOT, V87, P1128, DOI 10.2307/2656649; Fischer M, 2001, EVOL ECOL, V15, P565, DOI 10.1023/A:1016013721469; Fischer M, 2000, ECOL LETT, V3, P530, DOI 10.1046/j.1461-0248.2000.00188.x; Gardner SN, 1999, ECOLOGY, V80, P1202, DOI 10.1890/0012-9658(1999)080[1202:MIISCO]2.0.CO;2; GREENHOUSE SW, 1959, PSYCHOMETRIKA, V24, P95, DOI 10.1007/BF02289823; HAMILTON NRS, 1987, PROC R SOC SER B-BIO, V232, P35, DOI 10.1098/rspb.1987.0060; Harper J, 1981, THEORETICAL ECOLOGY, P53; HESS HE, 1980, FLORA SCHWEIZ, V2; Huber H, 1998, OIKOS, V81, P576, DOI 10.2307/3546778; Humphrey LD, 1998, J ECOL, V86, P854, DOI 10.1046/j.1365-2745.1998.8650854.x; Klimes L, 1997, ECOLOGY AND EVOLUTION OF CLONAL PLANTS, P1; Leeflang L, 1998, OECOLOGIA, V117, P235, DOI 10.1007/s004420050653; LEROI AM, 1994, EVOLUTION, V48, P1222, DOI 10.1111/j.1558-5646.1994.tb05307.x; LIVELY CM, 1999, ECOLOGY EVOLUTION IN, P215; LOEHLE C, 1987, OIKOS, V49, P199, DOI 10.2307/3566027; MAC ARTHUR ROBERT H., 1967; Mauchly JW, 1940, ANN MATH STAT, V11, P204, DOI 10.1214/aoms/1177731915; Mueller LD, 1997, ANNU REV ECOL SYST, V28, P269, DOI 10.1146/annurev.ecolsys.28.1.269; OGDEN J, 1974, J ECOL, V62, P291, DOI 10.2307/2258894; Pan JJ, 2001, EVOL ECOL, V15, P583, DOI 10.1023/A:1016065705539; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Prati D, 2000, OIKOS, V90, P442, DOI 10.1034/j.1600-0706.2000.900303.x; Salisbury E. J., 1942, STUDIES QUANTITATIVE; Scheiner SM, 1999, EVOLUTION, V53, P1704, DOI 10.1111/j.1558-5646.1999.tb04555.x; SCHMID B, 1985, J ECOL, V73, P819, DOI 10.2307/2260149; SCHMID B, 1985, J ECOL, V73, P793, DOI 10.2307/2260147; Schmitt J, 1999, AM NAT, V154, pS43, DOI 10.1086/303282; SCHMITT J, 1993, TRENDS ECOL EVOL, V8, P47, DOI 10.1016/0169-5347(93)90157-K; Schmitt J, 1995, AM NAT, V146, P937, DOI 10.1086/285832; SOLBRIG OT, 1977, J ECOL, V65, P427, DOI 10.2307/2259492; Sugiyama S, 1997, OECOLOGIA, V112, P35, DOI 10.1007/s004420050280; SULTAN SE, 1992, EVOL TREND PLANT, V6, P61; Van Buskirk J, 1998, BIOL J LINN SOC, V65, P301, DOI 10.1006/bijl.1998.0249; Van Kleunen M, 2000, J EVOLUTION BIOL, V13, P237; Van Kleunen M, 2001, ECOLOGY, V82, P3309, DOI 10.2307/2680154; van Kleunen M, 2002, EVOLUTION, V56, P2168, DOI 10.1554/0014-3820(2002)056[2168:ELHESO]2.0.CO;2; van Kleunen M, 2000, EVOLUTION, V54, P1947, DOI 10.1554/0014-3820(2000)054[1947:COPIFC]2.0.CO;2; van Kleunen M, 2001, OIKOS, V94, P515, DOI 10.1034/j.1600-0706.2001.940313.x; VANTIENDEREN PH, 1992, OIKOS, V64, P560, DOI 10.2307/3545176; Weiner J., 1988, Plant reproductive ecology: patterns and strategies, P228; Weinig C, 2000, EVOLUTION, V54, P124, DOI 10.1111/j.0014-3820.2000.tb00013.x; Williams GC, 1975, SEX EVOLUTION; Winkler E, 1999, OIKOS, V85, P217, DOI 10.2307/3546488; Winkler E., 1995, ABSTR BOT, V19, P17 53 21 21 1 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2003 16 3 474 484 10.1046/j.1420-9101.2003.00532.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 668XV WOS:000182322200011 14635847 2019-02-26 J Barnosky, AD; Hadly, EA; Bell, CJ Barnosky, AD; Hadly, EA; Bell, CJ Mammalian response to global warming on varied temporal scales JOURNAL OF MAMMALOGY English Article climate change; global warming; Holocene; mammals; Miocene; Pleistocene NORTHERN ROCKY-MOUNTAINS; HOLOCENE CLIMATIC-CHANGE; LAST GLACIAL PERIOD; PORCUPINE CAVE; OXYGEN-ISOTOPE; POCKET GOPHERS; EVOLUTION; PLEISTOCENE; RECORD; ICE Paleontological information was used to evaluate and compare how Rocky Mountain mammalian communities changed during past global warming events characterized by different durations (350, similar to10,000-20,000, and 4 million years) and different per-100-year warming rates (1.0degreesC, 0.1degreesC, 0.06-0.08degreesC, 0.0002-0.0003degreesC per 100 years). Our goals were to determine whether biotic changes observed today are characteristic of or accelerated relative to what took place during past global warming events and to clarify the possible trajectory of mammalian faunal change that climate change may initiate. This determination is complicated because actual warming rates scale inversely with the time during which temperature is measured, and species with different life-history strategies respond (or do not) in different ways. Nevertheless, examination of past global warming episodes suggested that approximately concurrent with warming, a predictable sequence of biotic events occurs at the regional scale of the central and northern United States Rocky Mountains. First, phenotypic and density changes in populations are detectable within 100 years. Extinction of some species, noticeable changes in taxonomic composition of communities, and possibly reduction in species richness follow as warming extends to a few thousand years. Faunal turnover nears 100% and species diversity may increase when warm temperatures last hundreds of thousands to millions of years, because speciation takes place and faunal changes initiated by a variety of shorter-term processes accumulate. Climate-induced faunal changes reported for the current global warming episode probably do not yet exceed the normal background rate, but continued warming during the next few decades, especially combined with the many other pressures of humans on natural ecosystems, has a high probability of producing effects that have not been experienced often, if ever, in mammalian history. Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA; Univ Calif Berkeley, Museum Paleontol, Berkeley, CA 94720 USA; Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA; Univ Texas, Dept Geol Sci, Austin, TX 78712 USA Barnosky, AD (reprint author), Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. Alroy J, 2001, SCIENCE, V292, P1893, DOI 10.1126/science.1059342; Avise JC, 1998, P ROY SOC B-BIOL SCI, V265, P1707, DOI 10.1098/rspb.1998.0492; Barnosky A.D., 1989, P235; Barnosky AD, 2002, EVOL ECOL RES, V4, P811; BARNOSKY AD, 1989, GEOL SOC AM BULL, V101, P1448, DOI 10.1130/0016-7606(1989)101<1448:MMBEAT>2.3.CO;2; Barnosky AD, 2001, J VERTEBR PALEONTOL, V21, P172, DOI 10.1671/0272-4634(2001)021[0172:DTEOTR]2.0.CO;2; BARNOSKY AD, 1998, Q PALEOZOOLOGY NO HE, V28, P173; BARNOSKY AD, IN PRESS BIODIVERSIT; Barnosky Anthony D., 1996, P16; Beck MW, 1996, PALEOBIOLOGY, V22, P91; Bell CJ, 2000, ANN CARNEGIE MUS, V69, P93; Bennett KD, 2000, SCIENCE, V290, P325, DOI 10.1126/science.290.5490.325; Bennett KD, 1997, EVOLUTION ECOLOGY PA; Blunier T, 2001, SCIENCE, V291, P109, DOI 10.1126/science.291.5501.109; Bradley RD, 2001, J MAMMAL, V82, P960, DOI 10.1644/1545-1542(2001)082<0960:ATOTGS>2.0.CO;2; BRADLEY RS, 1999, PALEOCLIMATOLOGY REC, V64, P1; Broecker WS, 2001, SCIENCE, V291, P1497, DOI 10.1126/science.291.5508.1497; Brown JH, 1997, P NATL ACAD SCI USA, V94, P9729, DOI 10.1073/pnas.94.18.9729; BROWN WM, 1982, J MOL EVOL, V18, P225, DOI 10.1007/BF01734101; BUCHARDT B, 1978, NATURE, V275, P121, DOI 10.1038/275121a0; BURBANK DW, 1990, GEOL SOC AM BULL, V102, P1093, DOI 10.1130/0016-7606(1990)102<1093:TMOBMI>2.3.CO;2; Campbell ID, 1998, GEOLOGY, V26, P471, DOI 10.1130/0091-7613(1998)026<0471:LHYCPA>2.3.CO;2; Clark PU, 1999, SCIENCE, V286, P1104, DOI 10.1126/science.286.5442.1104; Consuegra S, 2002, MOL ECOL, V11, P2037, DOI 10.1046/j.1365-294X.2002.01592.x; DANSGAARD W, 1993, NATURE, V364, P218, DOI 10.1038/364218a0; Delworth TL, 2000, SCIENCE, V287, P2246, DOI 10.1126/science.287.5461.2246; Etterson JR, 2001, SCIENCE, V294, P151, DOI 10.1126/science.1063656; *FAUNMAP WORK GROU, 1994, ILLINOIS STATE MUSEU, V25, P1; FIELDS RW, 1985, CENOZOIC PALEOGEOGRA, V3, P9; Flower BP, 1999, NATURE, V399, P313, DOI 10.1038/20568; GINGERICH PD, 1993, MORPHOLOGICAL CHANGE IN QUATERNARY MAMMALS OF NORTH AMERICA, P84, DOI 10.1017/CBO9780511565052.006; Gingerich PD, 2001, GENETICA, V112, P127, DOI 10.1023/A:1013311015886; Graham R.W., 1984, P223; Graham R.W., 1992, P76; Graham RW, 1996, SCIENCE, V272, P1601; GRAHAM RW, 1990, TRENDS ECOL EVOL, V5, P289, DOI 10.1016/0169-5347(90)90083-P; Hadly EA, 1997, BIOL J LINN SOC, V60, P277; Hadly EA, 1999, PALAEOGEOGR PALAEOCL, V149, P389, DOI 10.1016/S0031-0182(98)00214-4; Hadly EA, 1998, P NATL ACAD SCI USA, V95, P6893, DOI 10.1073/pnas.95.12.6893; Hadly EA, 2001, EVOL ECOL RES, V3, P477; Hadly EA, 1996, QUATERNARY RES, V46, P298, DOI 10.1006/qres.1996.0068; Hadly Elizabeth A., 2001, Journal of Vertebrate Paleontology, V21, p58A; HARTE J, 1995, SCIENCE, V267, P876, DOI 10.1126/science.267.5199.876; Houghton J. T., 1990, CLIMATE CHANGE IPCC; Houghton J. T, 2001, CLIMATE CHANGE 2001; HUGHES MK, 1994, CLIMATIC CHANGE, V26, P109, DOI 10.1007/BF01092410; IMBRIE J, 1993, GLOBAL CHANGES PERSP, P263; Jackson ST, 2000, PALEOBIOLOGY, V26, P194, DOI 10.1666/0094-8373(2000)26[194:ROPPAC]2.0.CO;2; JANIS CM, 1993, ANNU REV ECOL SYST, V24, P467, DOI 10.1146/annurev.es.24.110193.002343; Johnsen SJ, 2001, J QUATERNARY SCI, V16, P299, DOI 10.1002/jqs.622; Jouzel J, 1999, SCIENCE, V286, P910, DOI 10.1126/science.286.5441.910; Katz ME, 1999, SCIENCE, V286, P1531, DOI 10.1126/science.286.5444.1531; Kerr J, 1998, ENVIRON MONIT ASSESS, V49, P263, DOI 10.1023/A:1005846910199; King J.E., 1984, P315; Lang C, 1999, SCIENCE, V286, P934, DOI 10.1126/science.286.5441.934; Lister AM, 2001, SCIENCE, V294, P1094, DOI 10.1126/science.1056370; MARTIN PS, 1984, Q EXTINCTIONS PREHIS; Martin R.A., 1993, MORPHOLOGICAL CHANGE; McCarty JP, 2001, CONSERV BIOL, V15, P320, DOI 10.1046/j.1523-1739.2001.015002320.x; MCDONALD KA, 1992, CONSERV BIOL, V6, P409, DOI 10.1046/j.1523-1739.1992.06030409.x; Miller KG, 1987, PALEOCEANOGRAPHY, V2, P1, DOI 10.1029/PA002i001p00001; National Assessment Synthesis Team (US), 2001, CLIM CHANG IMP US PO; Orr MR, 1998, TRENDS ECOL EVOL, V13, P502, DOI 10.1016/S0169-5347(98)01511-0; Raymo ME, 1997, PALEOCEANOGRAPHY, V12, P577, DOI 10.1029/97PA01169; Reilly J, 2001, SCIENCE, V293, P430; Rodbell DT, 2000, SCIENCE, V290, P285, DOI 10.1126/science.290.5490.285; SCHNEIDER SH, 1998, STATUS TRENDS NATION, P89; SCHOELL M, 1994, SCIENCE, V263, P1122, DOI 10.1126/science.263.5150.1122; SETHER BE, 2000, SCIENCE, V287, P854; Severinghaus JP, 1999, SCIENCE, V286, P930, DOI 10.1126/science.286.5441.930; Steele Teresa E., 2002, Journal of Vertebrate Paleontology, V22, p111A; Stenni B, 2001, SCIENCE, V293, P2074, DOI 10.1126/science.1059702; THOMPSON GR, 1982, GEOLOGY, V10, P413, DOI 10.1130/0091-7613(1982)10<413:LEFTCV>2.0.CO;2; Walker D.N., 1987, ILLINOIS STATE MUSEU, P334; Wigley TML, 2001, SCIENCE, V293, P451, DOI 10.1126/science.1061604; WOLFE JA, 1994, PALAEOGEOGR PALAEOCL, V108, P195, DOI 10.1016/0031-0182(94)90233-X; WOOD DL, 1994, QUATERNARY RES, V41, P366, DOI 10.1006/qres.1994.1041; Woodburne M.O., 1995, SOC EC PALEONTOLOGIS, V54, P335; WOODRUFF F, 1981, SCIENCE, V212, P665, DOI 10.1126/science.212.4495.665; Wright JD, 1992, PALEOCEANOGRAPHY, V7, P357, DOI 10.1029/92PA00760; Wuethrich B, 2000, SCIENCE, V287, P793, DOI 10.1126/science.287.5454.793; Zachos J, 2001, SCIENCE, V292, P686, DOI 10.1126/science.1059412; Zachos JC, 2001, SCIENCE, V292, P274, DOI 10.1126/science.1058288; Zubakov V., 1990, GLOBAL PALAEOCLIMATE 84 91 98 1 29 ALLIANCE COMMUNICATIONS GROUP DIVISION ALLEN PRESS LAWRENCE 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA 0022-2372 J MAMMAL J. Mammal. MAY 2003 84 2 354 368 10.1644/1545-1542(2003)084<0354:MRTGWO>2.0.CO;2 15 Zoology Zoology 685VN WOS:000183284500002 Bronze 2019-02-26 J Bossart, JL Bossart, JL Covariance of preference and performance on normal and novel hosts in a locally monophagous and locally polyphagous butterfly population OECOLOGIA English Article co-inheritance; optimal oviposition; host choice; tiger swallowtail; life-history strategies OVIPOSITION PREFERENCE; LARVAL PERFORMANCE; OFFSPRING PERFORMANCE; PHYTOPHAGOUS INSECTS; EGG LOAD; ECOLOGICAL SPECIALIZATION; CALLOSOBRUCHUS-MACULATUS; SWALLOWTAIL BUTTERFLIES; PHENOTYPIC PLASTICITY; EVOLUTIONARY ECOLOGY Covariance between preference and performance was quantified for Papilio glaucus strains derived from a locally monophagous Florida population and a locally polyphagous Ohio population. I used two-choice assays to assess relative host preferences of mothers for plant species that represent reciprocal normal and novel hosts for each population (i.e., Liriodendron tulipifera and Magnolia vrginiana) and a split-brood design to quantify relative performance of their progeny on each host. Covariance between preference and proxies of performance was detected independently within each population, which is a level of genetic structure at which such covariance has rarely been documented. These results support the hypothesis that preference-performance covariance can exist in populations that have no obvious internal host-associated structure. In the Ohio strain, all proxies of performance (larval duration, pupal mass, relative growth rate, and survival) were significantly correlated with relative preference for the normal host, L. tulipifera. In the Florida strain, however, only pupal mass was correlated with maternal preference, and this correlation was not in the direction expected. Progeny that attained the heaviest mass were derived from mothers that preferred L. tulipifera, the locally rare host. The nature of the preference-performance links was not in the manner predicted by conventional optimal oviposition theory, whereby host-associated tradeoffs have been considered an implicit element. Relative performance was congruent across hosts, regardless of whether mothers preferred L. tulipifera, M. virginiana, or neither host. After considering possible genetic and nongenetic explanations that could account for preference-performance covariance in P. glaucus, I conclude that this covariance has a genetic basis. Likely, multiple genetic control mechanisms (e.g., pleiotropy and co-adaptation) integrate at the level of different trait combinations and/or a particular trait combination to generate observed patterns. Coll New Jersey, Dept Biol, Ewing, NJ 08628 USA; Michigan State Univ, Dept Entomol, E Lansing, MI 48823 USA Bossart, JL (reprint author), Coll New Jersey, Dept Biol, POB 7718, Ewing, NJ 08628 USA. ANDREWARTHA HG, 1954, DISTRIBUTION AMBUNDA; Ballabeni P, 2001, FUNCT ECOL, V15, P318, DOI 10.1046/j.1365-2435.2001.00529.x; BARBOSA P, 1986, J APPL ENTOMOL, V3, P215; BERENBAUM M, 1981, Journal of the Lepidopterists' Society, V35, P75; BERENBAUM MR, 1991, ARCH INSECT BIOCHEM, V17, P213, DOI 10.1002/arch.940170405; Bernays EA, 1996, ENTOMOL EXP APPL, V80, P125, DOI 10.1111/j.1570-7458.1996.tb00902.x; Bernays EA, 1999, ANN ENTOMOL SOC AM, V92, P944, DOI 10.1093/aesa/92.6.944; Bossart Janice L., 1995, P183; Bossart JL, 1995, EVOLUTION, V49, P1163, DOI 10.1111/j.1558-5646.1995.tb04443.x; Bossart JL, 1999, ENVIRON ENTOMOL, V28, P628, DOI 10.1093/ee/28.4.628; BOSSART JL, 1998, BIOL J LINN SOC, V165, P279; BROWNE LB, 1993, ANNU REV ENTOMOL, V35, P447; BUSH GL, 1994, TRENDS ECOL EVOL, V9, P285, DOI 10.1016/0169-5347(94)90031-0; BUSH GL, 1975, ANNU REV ECOL SYST, V6, P339, DOI 10.1146/annurev.es.06.110175.002011; Cheverud James M., 1994, P67; CHEW FS, 1984, BIOL BUTTERFLIES, P66; Courtney S.P., 1990, P161; COURTNEY SP, 1989, OIKOS, V55, P55, DOI 10.2307/3565872; CRAIG TP, 1989, ECOLOGY, V70, P1691, DOI 10.2307/1938103; Craig TP, 1999, OIKOS, V86, P119, DOI 10.2307/3546576; Cronin JT, 1999, OECOLOGIA, V121, P392, DOI 10.1007/s004420050944; Denno RF, 1983, VARIABLE PLANTS HERB; Feeny P., 1983, P27; Feeny P., 1991, P315; FEENY P, 1992, HERBIVORES THEIR INT, V2; FOX CW, 1993, EVOLUTION, V47, P166, DOI 10.1111/j.1558-5646.1993.tb01207.x; FOX CW, 1993, OIKOS, V67, P577, DOI 10.2307/3545371; FUTUYMA DJ, 1985, ANNU REV ENTOMOL, V30, P217, DOI 10.1146/annurev.en.30.010185.001245; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; GOLMULKIEWICZ R, 1992, EVOLUTION, V46, P390; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; Harbison JL, 2001, ENVIRON ENTOMOL, V30, P129, DOI 10.1603/0046-225X-30.1.129; HAUKIOJA E, 1985, ECOLOGY, V66, P1303, DOI 10.2307/1939183; Hawthorne DJ, 2001, NATURE, V412, P904, DOI 10.1038/35091062; Hercus MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2105, DOI 10.1098/rspb.2000.1256; Jaenike J., 1992, P245; JAENIKE J, 1978, THEOR POPUL BIOL, V14, P350, DOI 10.1016/0040-5809(78)90012-6; JAENIKE J, 1990, ANNU REV ECOL SYST, V21, P243, DOI 10.1146/annurev.es.21.110190.001331; JAENIKE J, 1991, AM NAT, V137, P567; Jann P, 1999, FUNCT ECOL, V13, P51, DOI 10.1046/j.1365-2435.1999.00269.x; KARBAN R, 1987, OIKOS, V48, P243, DOI 10.2307/3565508; LARSSON S, 1995, OIKOS, V72, P155, DOI 10.2307/3546051; LEDERHOUSE RC, 1992, OIKOS, V63, P244, DOI 10.2307/3545384; Li S. Y., 1993, Journal of the Entomological Society of British Columbia, V90, P61; Lynch M., 1998, GENETICS ANAL QUANTI; MANGEL M, 1989, J EVOLUTION BIOL, V2, P157, DOI 10.1046/j.1420-9101.1989.2030157.x; Mayhew PJ, 2001, TRENDS ECOL EVOL, V16, P165, DOI 10.1016/S0169-5347(00)02099-1; Mayhew PJ, 1997, OIKOS, V79, P417, DOI 10.2307/3546884; Miller J.R., 1984, P127; MINKENBERG OPJM, 1992, OIKOS, V65, P134, DOI 10.2307/3544896; MITTER C, 1991, TRENDS ECOL EVOL, V6, P290, DOI 10.1016/0169-5347(91)90007-K; Mohaghegh J, 1998, ANN ENTOMOL SOC AM, V91, P315, DOI 10.1093/aesa/91.3.315; MORETEAU B, 1994, BEHAV GENET, V24, P433, DOI 10.1007/BF01076179; NG D, 1988, NATURE, V334, P611, DOI 10.1038/334611a0; NITAO JK, 1991, ECOLOGY, V72, P1428, DOI 10.2307/1941115; Nylin S, 1996, ENTOMOL EXP APPL, V80, P141, DOI 10.1111/j.1570-7458.1996.tb00904.x; ODENDAAL FJ, 1990, J INSECT BEHAV, V3, P183, DOI 10.1007/BF01417911; PROKOPY RJ, 1994, PHYSIOL ENTOMOL, V19, P124, DOI 10.1111/j.1365-3032.1994.tb01085.x; RABINOWITZ D, 1981, BIOL ASPECTS RARE PL, P205; RAUSHER MD, 1985, J INSECT PHYSIOL, V31, P873, DOI 10.1016/0022-1910(85)90105-2; Resetarits WJ, 1996, AM ZOOL, V36, P205; Sadeghi H, 1999, OECOLOGIA, V118, P405, DOI 10.1007/s004420050742; Sas Institute, 1990, SAS STAT US GUID VER; Scheirs J, 2000, P ROY SOC B-BIOL SCI, V267, P2065, DOI 10.1098/rspb.2000.1250; SCRIASTAVA M, 1995, J APPL ENTOMOL, V119, P73; SCRIBER JM, 1986, OECOLOGIA, V71, P94, DOI 10.1007/BF00377326; SINGER MC, 1988, EVOLUTION, V42, P977, DOI 10.1111/j.1558-5646.1988.tb02516.x; Thompson JN, 1996, TRENDS ECOL EVOL, V11, P300, DOI 10.1016/0169-5347(96)20048-5; THOMPSON JN, 1990, NATURE, V344, P148, DOI 10.1038/344148a0; THOMPSON JN, 1991, ANNU REV ENTOMOL, V36, P65, DOI 10.1146/annurev.en.36.010191.000433; THOMPSON JN, 1988, ENTOMOL EXP APPL, V47, P3, DOI 10.1111/j.1570-7458.1988.tb02275.x; VALLADARES G, 1991, J ANIM ECOL, V60, P227, DOI 10.2307/5456; vanTienderen PH, 1997, EVOLUTION, V51, P1372, DOI 10.1111/j.1558-5646.1997.tb01460.x; VIA S, 1986, EVOLUTION, V40, P778, DOI 10.1111/j.1558-5646.1986.tb00537.x; VIA S, 1993, AM NAT, V142, P352, DOI 10.1086/285542; Warren MS, 2001, NATURE, V414, P65, DOI 10.1038/35102054; WASSERMAN SS, 1981, EVOLUTION, V35, P605, DOI 10.1111/j.1558-5646.1981.tb04923.x; Wolf JB, 1998, EVOLUTION, V52, P299, DOI 10.1111/j.1558-5646.1998.tb01632.x 78 30 32 0 8 SPRINGER-VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 USA 0029-8549 OECOLOGIA Oecologia MAY 2003 135 3 477 486 10.1007/s00442-003-1211-x 10 Ecology Environmental Sciences & Ecology 684GX WOS:000183198000020 12721839 2019-02-26 J Uller, T; Olsson, M Uller, T; Olsson, M Life in the land of the midnight sun: are northern lizards adapted to longer days? OIKOS English Article FROG RANA-SYLVATICA; LACERTA-VIVIPARA; GROWTH-RATE; THERMAL PHYSIOLOGY; COUNTERGRADIENT VARIATION; PHENOTYPIC PLASTICITY; ALTITUDINAL VARIATION; BODY TEMPERATURES; GENETIC-BASIS; EVOLUTION The relative importance of genetic and environmental factors for explaining differences in trait distributions between populations is one of the major issues in evolutionary biology. In ectotherms, temperature can have a major impact on morphology, physiology, and life history strategies, and has often been inferred to explain differences between populations. In species with active thermoregulation, however, the ambient temperature may not be as important as the opportunity for thermoregulation. We studied growth in juvenile common lizards (Lacerta vivipara) originating from two environments differing in such thermal opportunity (i.e. day length). The populations differed significantly in their norms of reaction, with lizards experiencing long days in the wild showing a steeper increase in growth rate with increasing thermal opportunity. The environment with longer days also has a lower mean temperature in the wild, and in accordance with evolutionary predictions, lizards from this population had higher endurance at low temperatures. Both populations showed genetic variation in degree of phenotypic plasticity in growth rate as evident from the extensive crossing in norms of reaction. Univ Gothenburg, Dept Zool, SE-40530 Gothenburg, Sweden Uller, T (reprint author), Univ Gothenburg, Dept Zool, Medicinaregatan 18, SE-40530 Gothenburg, Sweden. Olsson, Mats/0000-0002-4130-1323 ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; Angilletta MJ, 2002, J THERM BIOL, V27, P249, DOI 10.1016/S0306-4565(01)00094-8; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; AVERY RA, 1970, COMP BIOCHEM PHYSIOL, V37, P119, DOI 10.1016/0010-406X(70)90965-5; AVERY RA, 1984, S ZOOL SOC LOND, V52, P407; BAUWENS D, 1981, COPEIA, P741; BAUWENS D, 1986, BIOL POPULATIONS, P531; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BERVEN KA, 1982, OECOLOGIA, V52, P360, DOI 10.1007/BF00367960; Bronikowski AM, 2000, EVOLUTION, V54, P1760; Castilla Aurora M., 1999, Natura Croatica, V8, P253; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Dunham A.E., 1988, Biology of Reptilia, V16, P441; Gvozdik L, 2001, J HERPETOL, V35, P486, DOI 10.2307/1565967; HUEY RB, 1989, TRENDS ECOL EVOL, V4, P131, DOI 10.1016/0169-5347(89)90211-5; Jonsson B, 2001, FUNCT ECOL, V15, P701, DOI 10.1046/j.0269-8463.2001.00572.x; Lorenzon P, 1999, OECOLOGIA, V118, P423, DOI 10.1007/s004420050744; Lorenzon P, 2001, EVOLUTION, V55, P392; Mayr E., 1963, ANIMAL SPECIES EVOLU; NIEWIAROWSKI PH, 1993, ECOLOGY, V74, P1992, DOI 10.2307/1940842; Olsson M, 2002, FUNCT ECOL, V16, P135, DOI 10.1046/j.0269-8463.2001.00600.x; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; SINERVO B, 1994, ECOLOGY, V75, P776, DOI 10.2307/1941734; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; Sorci G, 1996, J ANIM ECOL, V65, P781, DOI 10.2307/5676; Sorci G, 1999, EVOL ECOL RES, V1, P303; Stahlberg F, 2001, J EVOLUTION BIOL, V14, P755, DOI 10.1046/j.1420-9101.2001.00333.x; TSUJI JS, 1988, PHYSIOL ZOOL, V61, P230, DOI 10.1086/physzool.61.3.30161236; TSUJI JS, 1988, PHYSIOL ZOOL, V61, P241, DOI 10.1086/physzool.61.3.30161237; VANDAMME R, 1986, J THERM BIOL, V11, P219, DOI 10.1016/0306-4565(86)90006-9; VANDAMME R, 1990, OIKOS, V57, P61 32 16 17 0 8 BLACKWELL MUNKSGAARD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos MAY 2003 101 2 317 322 10.1034/j.1600-0706.2003.12374.x 6 Ecology Environmental Sciences & Ecology 677HJ WOS:000182800600010 2019-02-26 J Taborsky, B; Dieckmann, U; Heino, M Taborsky, B; Dieckmann, U; Heino, M Unexpected discontinuities in life-history evolution under size-dependent mortality PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life-history model; size-dependent mortality; growth; time allocation; state-dependent decisions; bifurcation OPTIMAL RESOURCE-ALLOCATION; OPTIMAL SOMATIC GROWTH; INDETERMINATE GROWTH; CONSTANT ENVIRONMENT; REPRODUCTION; FISH; STRATEGIES; MATURITY; LAKE; AGE In many organisms survival depends on body size. We investigate the implications of size-selective mortality on life-history evolution by introducing and analysing a new and particularly flexible life-history model with the following key features: the lengths of growth and reproductive periods in successive reproductive cycles can vary evolutionarily, the model does not constrain evolution to patterns of either determinate or indeterminate growth, and lifetime number and sizes of broods are the outcomes of evolutionarily optimal life-history decisions. We find that small changes in environmental conditions can lead to abrupt transitions in optimal life histories when size-dependent mortality is sufficiently strong. Such discontinuous switching results from antagonistic selection pressures and occurs between strategies of early maturation with short reproductive periods and late maturation with long reproductive cycles. When mortality is size-selective and the size-independent component is not too high, selection favours prolonged juvenile growth, thereby allowing individuals to reach a mortality refuge at large body size before the onset of reproduction. When either component of mortality is then increased, the mortality refuge first becomes unattractive and eventually closes up altogether, resulting in short juvenile growth and frequent reproduction. Our results suggest a new mechanism for the evolution of life-history dimorphisms. Univ Bern, Dept Behav Ecol, CH-3032 Hinterkappelen, Switzerland; Int Inst Appl Syst Anal, Adapat Dynam Network, A-2361 Laxenburg, Austria; Konrad Lorenz Inst Vergleichende Verhaltensforsch, A-1160 Vienna, Austria; Inst Marine Res, N-5817 Bergen, Norway Taborsky, B (reprint author), Univ Bern, Dept Behav Ecol, Wohlenstr 50A, CH-3032 Hinterkappelen, Switzerland. barbara.taborsky@esh.unibe.ch Heino, Mikko/C-7241-2009; Dieckmann, Ulf/E-1424-2011 Heino, Mikko/0000-0003-2928-3940; Dieckmann, Ulf/0000-0001-7089-0393; Taborsky, Barbara/0000-0003-1690-8155 ABRAHAM L, 1992, DYNAMICS GEOMETRY BE; Alcobendas M, 2000, HERPETOLOGICA, V56, P14; BOTSFORD LW, 1994, ECOL APPL, V4, P42, DOI 10.2307/1942113; Cichon M, 1999, ACTA OECOL, V20, P25, DOI 10.1016/S1146-609X(99)80012-5; Clark C.W, 2000, OXFORD SERIES ECOLOG; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; HANSON JM, 1988, CAN J ZOOL, V66, P247, DOI 10.1139/z88-035; Heino M, 1996, FUNCT ECOL, V10, P245, DOI 10.2307/2389849; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Houston A. I., 1999, MODELS ADAPTIVE BEHA; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; JORGENSEN T, 1992, ICES J MAR SCI, V49, P263, DOI 10.1093/icesjms/49.3.263; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nakaoka M, 1998, EVOL ECOL, V12, P347, DOI 10.1023/A:1006556301655; Orzack SH, 2001, ECOLOGY, V82, P2659, DOI 10.2307/2679944; Parker HH, 2001, J ANIM ECOL, V70, P260, DOI 10.1046/j.1365-2656.2001.00488.x; PERRIN N, 1993, EVOL ECOL, V7, P576, DOI 10.1007/BF01237822; Press W. H, 1992, NUMERICAL RECIPES C; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Roff Derek A., 1992; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Sogard SM, 1997, B MAR SCI, V60, P1129; TAYLOR EB, 1993, EVOLUTION, V47, P813, DOI 10.1111/j.1558-5646.1993.tb01236.x; Trudel M, 2001, CAN J FISH AQUAT SCI, V58, P394, DOI 10.1139/cjfas-58-2-394; van Dooren TJM, 2001, P ROY SOC B-BIOL SCI, V268, P279, DOI 10.1098/rspb.2000.1362; VANCE RR, 1992, J THEOR BIOL, V157, P31, DOI 10.1016/S0022-5193(05)80755-6; VANCE RR, 1992, J THEOR BIOL, V157, P51, DOI 10.1016/S0022-5193(05)80756-8 32 41 41 2 12 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. APR 7 2003 270 1516 713 721 10.1098/rspb.2002.2255 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 667TP WOS:000182249200008 12713745 Green Published 2019-02-26 J Lloyd, JD; Martin, TE Lloyd, JD; Martin, TE Sibling competition and the evolution of prenatal development rates PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article sibling competition; developmental rate; incubation period; extra-pair paternity; life-history evolution LIFE-HISTORY EVOLUTION; DNA-DNA HYBRIDIZATION; AVIAN GROWTH-RATES; HATCHING ASYNCHRONY; PHYLOGENETIC-RELATIONSHIPS; ALTRICIAL BIRDS; NEST PREDATION; PARENTAL CARE; INCUBATION; PATERNITY Sibling competition has been proposed as an important evolutionary pressure driving interspecific variation in developmental rates. We tested this hypothesis using rates of extra-pair paternity and brood parasitism, as well as the degree of hatching asynchrony, as indices of sibling competition in a comparative analysis of 70 species of bird. We found mixed support for the influence of sibling competition on prenatal development. Brood parasitism was negatively correlated with the length of incubation, and hatching asynchrony was positively correlated with the length of incubation, but both correlations disappeared when phylogeny was controlled for. Extra-pair paternity, however, was negatively correlated with incubation length even when phylogeny was controlled for. The latter could represent support for the influence of sibling competition on prenatal development or indirect effects of correlated selection on both traits by adult mortality. The existence of these correlations demonstrates that life-history strategies include linkages among a larger suite of traits than previously recognized. Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA; Univ Montana, US Geol Survey, Biol Resources Div, Missoula, MT 59812 USA Lloyd, JD (reprint author), Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA. jlloyd@selway.umt.edu Martin, Thomas/F-6016-2011 Martin, Thomas/0000-0002-4028-4867; Lloyd, John/0000-0002-9143-3789 BOERSMA PD, 1982, AM NAT, V120, P733, DOI 10.1086/284027; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; BRISKIE JV, 1994, P ROY SOC B-BIOL SCI, V258, P73, DOI 10.1098/rspb.1994.0144; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CLARK AB, 1981, Q REV BIOL, V56, P253, DOI 10.1086/412316; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Davies NB, 2000, CUCKOOS COWBIRDS OTH; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Friedmann H, 1977, Smithsonian Contr. Zool., VNo. 235, P1; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Lack D, 1968, ECOLOGICAL ADAPTATIO; MARTIN TE, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P455; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MOCK DW, 1990, AM SCI, V78, P438; Moller AP, 2000, BEHAV ECOL, V11, P472, DOI 10.1093/beheco/11.5.472; Ohta Noriko, 2000, Japanese Journal of Ornithology, V48, P205, DOI 10.3838/jjo.48.205; Patten MA, 1998, AUK, V115, P412, DOI 10.2307/4089200; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; RAHN H, 1974, CONDOR, V76, P147, DOI 10.2307/1366724; Remes V, 2002, EVOLUTION, V56, P2505; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs R.E., 1983, P1; Ricklefs R. E., 1998, AVIAN GROWTH DEV EVO, P31; RICKLEFS RE, 1984, AM NAT, V123, P710, DOI 10.1086/284232; RICKLEFS RE, 1987, J EXP ZOOL, P309; RICKLEFS RE, 1982, AUK, V99, P141, DOI 10.2307/4086030; RICKLEFS RE, 1968, IBIS, V110, P419, DOI 10.1111/j.1474-919X.1968.tb00058.x; RICKLEFS RE, 1998, AVIAN GROWTH DEV EVO, P266; Ricklefs RE, 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI DOI 10.5479/SI.00810282.9; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Royle NJ, 1999, P ROY SOC B-BIOL SCI, V266, P923, DOI 10.1098/rspb.1999.0725; Schwagmeyer PL, 1999, AUK, V116, P487, DOI 10.2307/4089381; SHELDON FH, 1992, AUK, V109, P173, DOI 10.2307/4088277; SHELDON FH, 1993, AUK, V110, P798, DOI 10.2307/4088635; Sibley C.G., 1990, PHYLOGENY CLASSIFICA; SIEGEL PB, 1968, POULTRY SCI, V47, P105, DOI 10.3382/ps.0470105; Stoleson Scott H., 1995, Current Ornithology, V12, P191; WERSCHKUL DF, 1979, IBIS, V121, P97, DOI 10.1111/j.1474-919X.1979.tb05022.x; Westneat DF, 2000, J AVIAN BIOL, V31, P1, DOI 10.1034/j.1600-048X.2000.310101.x; WESTNEAT DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P35, DOI 10.1007/BF00324433; Williams GC, 1966, ADAPTATION NATURAL S; Wink Michael, 1999, Acta Ornithologica (Warsaw), V34, P91; WORTH C. BROOKE, 1940, AUK, V57, P44 51 19 20 0 14 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. APR 7 2003 270 1516 735 740 10.1098/rspb.2002.2289 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 667TP WOS:000182249200011 12713748 Green Published 2019-02-26 J Virgl, JA; Mahoney, SP; Mawhinney, K Virgl, JA; Mahoney, SP; Mawhinney, K Phenotypic variation in skull size and shape between Newfoundland and mainland populations of North American Black Bears, Ursus americanus CANADIAN FIELD-NATURALIST English Article Black Bear; Ursus americanus; heritability; ontogeny; multivariate analysis; Newfoundland LIFE-HISTORY EVOLUTION; SEXUAL-DIMORPHISM; GEOGRAPHIC-VARIATION; CRANIOMETRIC VARIATION; CRANIAL FORM; LUTRA-LUTRA; BROWN BEARS; MELES-MELES; PREY SIZE; BODY-SIZE It is well recognized that differences in environmental selection pressures among populations can generate phenotypic divergence in a suite of morphological characteristics and associated life history traits. Previous analysis of mitochondrial DNA and body size have suggested that Black Bears (Ursus americanus) inhabiting the island of Newfoundland represent a different subspecies or ecotype from mainland populations. Assuming that body size covaries positively with skull size, we predicted that skull size would be greater for bears on the island than the mainland, and the distribution of size-related shape components in multivariate space should show a distinct separation between Newfoundland and mainland populations. Measurements of 1080 specimens from Newfoundland, Alberta, New York, and Quebec did not provide unequivocal support for our prediction that skull size in Newfoundland bears would be larger than bears from the mainland populations. After removing ontogenetic effects of skull size, between-population variation in skull shape was greater in females than males, and the analysis significantly separated Newfoundland bears from mainland populations. Explanations for this pattern are numerous, but currently remain hypothetical. Limited covariation between skull size and body size suggests that genetic traits regulating the size of Black Bear skulls are more heritable (i.e., less influenced by environmental selection pressures) than characteristics affecting body size. We hypothesize that if gape size does not limit prey size in solitary terrestrial carnivores, large degrees of among-population variation in body size should be coupled with little covariation in skull size. In general, sexual dimorphism in skull size and shape was marginal for the phenotypic characters measured in our study. We believe that sexual dimorphism in skull size in Black Bears is primarily driven by intrasexual selection in males for increased gape size display, while similarity in skull shape between sexes is associated with the constraints of a temporally-selective, but similar diet. Ecol Dev & Stat Anal, Saskatoon, SK S7H 4W2, Canada; Dept Tourism Culture & Recreat, Div Sci, St John, NF A1B 4J6, Canada; Environm Canada, Canadian Wildlife Serv, Mt Pearl, NF A1N 4T3, Canada Virgl, JA (reprint author), Ecol Dev & Stat Anal, 222 Haight Pl, Saskatoon, SK S7H 4W2, Canada. Abrams PA, 1996, ECOLOGY, V77, P1321, DOI 10.2307/2265529; Aragon S, 1998, J MAMMAL, V79, P131, DOI 10.2307/1382847; Armbruster WS, 1996, J EVOLUTION BIOL, V9, P261, DOI 10.1046/j.1420-9101.1996.9030261.x; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Bunnell F.L., 1981, P75; CAMERON AUSTIN W., 1956, JOUR MAMM, V37, P538, DOI 10.2307/1376650; CASE TJ, 1978, ECOLOGY, V59, P1, DOI 10.2307/1936628; Chestin IE, 1998, J MAMMAL, V79, P118, DOI 10.2307/1382846; DEMARCO VG, 1985, COPEIA, P1077; Ewer RF, 1973, CARNIVORES; FELSENSTEIN J, 1988, ANNU REV ECOL SYST, V19, P445, DOI 10.1146/annurev.es.19.110188.002305; Ferguson SH, 2000, ECOGRAPHY, V23, P193, DOI 10.1034/j.1600-0587.2000.230205.x; Gittleman JL, 1997, J ZOOL, V242, P97, DOI 10.1111/j.1469-7998.1997.tb02932.x; HAIRSTON NG, 1993, AM NAT, V142, P379, DOI 10.1086/285546; Harvey P.H., 1982, P343; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Losos JB, 1996, ECOLOGY, V77, P1344, DOI 10.2307/2265532; LYNCH JM, 1995, BIOL J LINN SOC, V55, P293, DOI 10.1006/bijl.1995.0043; Lynch JM, 1997, J ZOOL, V242, P31, DOI 10.1111/j.1469-7998.1997.tb02927.x; Lynch JM, 1996, J ZOOL, V238, P81, DOI 10.1111/j.1469-7998.1996.tb05380.x; Mahoney SP, 2001, CAN J ZOOL, V79, P1650, DOI 10.1139/cjz-79-9-1650; MAHONEY SP, 1986, OSPREY, V16, P10; Mikulova P, 2001, CAN J ZOOL, V79, P794, DOI 10.1139/cjz-79-5-794; Paetkau D, 1996, CAN J ZOOL, V74, P192, DOI 10.1139/z96-023; Quin DG, 1996, AUST J ZOOL, V44, P19, DOI 10.1071/ZO9960019; RALLS K, 1985, BIOL J LINN SOC, V25, P119, DOI 10.1111/j.1095-8312.1985.tb00389.x; RALLS K, 1977, AM NAT, V111, P917, DOI 10.1086/283223; RAUSCH RL, 1963, CAN J ZOOLOG, V41, P33, DOI 10.1139/z63-005; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; SCHOENER TW, 1969, AM NAT, V103, P277, DOI 10.1086/282602; SCHWAB M, 1991, ADV NEUROBLASTOMA RE, V3, P1; Sharples CM, 1996, ZOOL J LINN SOC-LOND, V117, P141, DOI 10.1111/j.1096-3642.1996.tb02153.x; Shine R, 1996, OECOLOGIA, V107, P484, DOI 10.1007/BF00333939; Slatkin M, 1996, AM NAT, V147, P493, DOI 10.1086/285862; THORPE RS, 1988, J ZOOL, V216, P37, DOI 10.1111/j.1469-7998.1988.tb02412.x; VEZINA AF, 1985, OECOLOGIA, V67, P555, DOI 10.1007/BF00790027; WIIG O, 1986, ACTA THERIOL, V31, P147; WIIG O, 1986, ZOOL J LINN SOC-LOND, V87, P163, DOI 10.1111/j.1096-3642.1986.tb01335.x; WIIG O, 1989, ZOOL J LINN SOC-LOND, V95, P177, DOI 10.1111/j.1096-3642.1998.tb01990.x; WIIG O, 1992, THESIS U BERGEN; WILLEY CH, 1974, J WILDLIFE MANAGE, V38, P97, DOI 10.2307/3800203; Zaret T. M., 1980, PREDATION FRESHWATER 42 2 3 1 19 OTTAWA FIELD-NATURALISTS CLUB OTTAWA PO BOX 35069, WESTGATE PO, OTTAWA, ONTARIO K1Z 1A2, CANADA 0008-3550 CAN FIELD NAT Can. Field-Nat. APR-JUN 2003 117 2 236 244 10.22621/cfn.v117i2.702 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 809LJ WOS:000220637900011 Bronze 2019-02-26 J Giron, D; Casas, J Giron, D; Casas, J Mothers reduce egg provisioning with age ECOLOGY LETTERS English Article egg composition; egg size; life history strategies; nutrient allocation; offspring fitness; parasitoid NUTRITIONAL RESOURCES; SIZE; ALLOCATION; INVESTMENT; SURVIVAL; NUMBER; QUALITY; FITNESS; ECOLOGY; MODELS Precise and comprehensive data on resource allocation into individual eggs are rare and this empirical void in the literature of life history strategies contrasts with the large number of theoretical studies. We show a marked decrease in reproductive investment in eggs with mother's age for egg size, sugar, protein, lipid and energy contents of eggs for a parasitic wasp. Egg size is a good predictor of offspring fitness, measured as survival of starving neonate larvae, but does not reveal possible biochemical changes. Lipids stabilize quickly at a minimal threshold while proteins and sugars decrease smoothly down to about 30% of the amount invested in the first egg. Because proteins have the highest correlation with egg size, we predict that they should be better predictors of larval fitness than lipids and sugars. Assessing the adaptive value of the observed patterns will require a multidimensional approach to egg provisioning. Univ Tours, Fac Sci, CNRS, UMR 6035,Inst Rech Biol Insecte, F-37200 Tours, France Giron, D (reprint author), Univ Tours, Fac Sci, CNRS, UMR 6035,Inst Rech Biol Insecte, F-37200 Tours, France. Casas, Jerome/D-9620-2011; Giron, David/B-9108-2013 Casas, Jerome/0000-0003-1666-295X; Giron, David/0000-0001-8356-0983 AVELAR T, 1993, J INSECT PHYSIOL, V39, P283, DOI 10.1016/0022-1910(93)90058-Y; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Bernardo J, 1996, AM ZOOL, V36, P216; Chapman RF, 1998, INSECTS STRUCTURE FU; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK T, 1993, BEHAV ECOLOGY EVOLUT, P234; Diss AL, 1996, OECOLOGIA, V106, P470, DOI 10.1007/BF00329704; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Giron D, 2002, FUNCT ECOL, V16, P750, DOI 10.1046/j.1365-2435.2002.00679.x; GIRON D, IN PRESS J INSECT PH; Godfray H. C. J., 1994, PARASITOIDS BEHAV EV; GUISANDE C, 1995, LIMNOL OCEANOGR, V40, P476, DOI 10.4319/lo.1995.40.3.0476; HOCHBERG ME, 2000, PARASITOID POPULATIO; Jann P, 1999, FUNCT ECOL, V13, P51, DOI 10.1046/j.1365-2435.1999.00269.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LaMontagne JM, 2001, ECOL LETT, V4, P64, DOI 10.1046/j.1461-0248.2001.00197.x; McGinley MA, 1988, EVOL ECOL, V2, P77, DOI 10.1007/BF02071590; McIntyre GS, 2000, CAN J ZOOL, V78, P1544, DOI 10.1139/cjz-78-9-1544; O'Brien DM, 2002, P NATL ACAD SCI USA, V99, P4413, DOI 10.1073/pnas.072346699; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Rivero A, 1999, RES POPUL ECOL, V41, P39, DOI 10.1007/PL00011981; Rivero A, 2001, P ROY SOC B-BIOL SCI, V268, P1231, DOI 10.1098/rspb.2001.1645; Roff DA., 2002, LIFE HIST EVOLUTION; Royle NJ, 1999, FUNCT ECOL, V13, P298, DOI 10.1046/j.1365-2435.1999.00306.x; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns SC., 1992, EVOLUTION LIFE HIST; Tatar Marc, 2001, P128; VANHANDEL E, 1993, J INSECT PHYSIOL, V39, P831, DOI 10.1016/0022-1910(93)90115-8; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 31 104 106 3 26 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 1461-023X ECOL LETT Ecol. Lett. APR 2003 6 4 273 277 10.1046/j.1461-0248.2003.00429.x 5 Ecology Environmental Sciences & Ecology 656VZ WOS:000181632600001 2019-02-26 J McDowall, RM McDowall, RM Variation in vertebral number in galaxiid fishes (Teleostei : Galaxiidae): A legacy of life history, latitude and length ENVIRONMENTAL BIOLOGY OF FISHES English Article meristic variation; diadromy; temperature; size FRESH-WATER FISH; NEW-ZEALAND; GASTEROSTEUS-ACULEATUS; SELECTIVE PREDATION; SPECIES TELEOSTEI; ALLOZYME GENETICS; TAIERI RIVER; PISCES; MITOCHONDRIAL; BIOGEOGRAPHY Mean vertebral counts among species of Galaxiidae vary curvilinearly with fish size - large species have more vertebrae (pleomerism). The relationship with size breaks down among adults of diadromous species. There is mostly no relationship between vertebral count and body shape, although an inverse relationship between count and body depth in a series of divergent small galaxiids may reflect a shift in swimming mode. Diadromous populations have more vertebrae than non-diadromous ( landlocked) conspecifics ( around the same number as related non-diadromous species). Diadromous species have more vertebrae than related non-diadromous species and exhibit rising vertebral number with increasing latitude ( Jordan's rule applies). Regressions of vertebral number against latitude differ among conspecific populations from different regions, perhaps reflecting different relationships between latitude and local climate. Differences in counts between diadromous and non-diadromous species are not simply a direct influence of environment on ontogeny, as embryonic development of species/populations undertaking the two distinct life history strategies occurs in similar, freshwater habitats; differences seem likely to be evolved, and to reflect an advantage of higher vertebral counts in marine environments, where diadromous species live as juveniles. This conclusion is supported by correlation between vertebral counts and size of juveniles of diadromous species at return from the sea, suggesting selection for vertebral number during marine life. Overall, vertebral count is thus influenced by a complex amalgam of fish size, life history, and environment. The explanation for pleomerism may well be related to the scaling relationship between length and cross-sectional area ( area rises by the square of length increase) leading to increasing stiffness with growth - compensated for in larger species by having more vertebrae. This could also be driven by scaling in the surface area of the articular facets of the vertebrae themselves. Natl Inst Water & Atmospher Res, Christchurch, New Zealand McDowall, RM (reprint author), Natl Inst Water & Atmospher Res, POB 8602, Christchurch, New Zealand. Allibone RM, 1996, BIOL J LINN SOC, V57, P107, DOI 10.1006/bijl.1996.0009; Armstrong RH, 1980, CHARRS SALMONID FISH, P99; Balon E. K., 1980, CHARRS SALMONID FISH, P295; BARLOW GW, 1961, SYST ZOOL, V10, P105, DOI 10.2307/2411595; BEHNKE RJ, 1992, AM FISHERIES SOC MON, V6, P1; BENZIE V, 1968, New Zealand Journal of Marine and Freshwater Research, V2, P628; Billerbeck JN, 1997, CAN J FISH AQUAT SCI, V54, P1796, DOI 10.1139/cjfas-54-8-1796; Blaxter J. H. S., 1969, P177; CADWALLADER PL, 1976, J FISH BIOL, V8, P157, DOI 10.1111/j.1095-8649.1976.tb03929.x; COPEMAN D G, 1978, Environmental Biology of Fishes, V3, P253, DOI 10.1007/BF00001450; FAHY WE, 1978, J CONSEIL, V38, P252; FAHY WE, 1977, J CONSEIL, V37, P151; FOWLER JA, 1970, Q REV BIOL, V45, P148, DOI 10.1086/406492; FULTON W, 1978, AUST J MAR FRESH RES, V29, P109; Fulton W, 1986, FISHES SAHUL, V4, P150; GOSLINE WA, 1971, FUNCTIONAL MORPHOLOG; Hubbs CL, 1926, AM NAT, V60, P57, DOI 10.1086/280071; Hubbs CL, 1922, AM NAT, V56, P360, DOI 10.1086/279875; JOHNSON CR, 1983, J FISH BIOL, V23, P49, DOI 10.1111/j.1095-8649.1983.tb02881.x; JOHNSON CR, 1981, BIOCHEM SYST ECOL, V9, P221, DOI 10.1016/0305-1978(81)90046-6; JOHNSON CR, 1981, GENETICA, V56, P17, DOI 10.1007/BF00126925; Johnson G. David, 1996, P251; JORDAN DS, 1892, P US NATL MUS, V14, P107; LINDSEY C. C., 1954, CANADIAN JOUR ZOOL, V32, P87, DOI 10.1139/z54-011; Lindsey C.C., 1988, P197; LINDSEY CC, 1981, CAN J FISH AQUAT SCI, V38, P334, DOI 10.1139/f81-044; LINDSEY CC, 1971, J FISH RES BOARD CAN, V28, P1235, DOI 10.1139/f71-189; LINDSEY CC, 1975, J FISH RES BOARD CAN, V32, P2453, DOI 10.1139/f75-283; LINDSEY CC, 1961, P 9 PAC SCI C BANGK, P54; Maitland P. S., 1992, FRESHWATER FISHES BR; MCALLISTER D. E., 1963, NAT MUS CAN BULL, V191, P1; MCDOWALL R M, 1973, Annals of the Cape Provincial Museums Natural History, V9, P91; McDOWALL R. M., 1968, BREVIORA, V286, P1; McDowall R.M., 1972, Journal of the Royal Soc N Z, V2, P325; McDowall R.M., 1981, Records of the Australian Museum, V33, P443; McDowall R. M., 1968, Fisheries Research Bulletin New Zealand, VNo. 2, P1; MCDOWALL R M, 1972, Journal of the Royal Society of New Zealand, V2, P501; MCDOWALL R M, 1970, Bulletin of the Museum of Comparative Zoology, V139, P341; McDowall R. M., 1996, FRESHWATER FISHES SE, P52; McDowall R. M., 1980, NZ MINISTRY AGR FISH, V20, P1; McDowall R. M, 1990, NZ FRESHWATER FISHES; MCDOWALL RM, 1969, COPEIA, P796; MCDOWALL RM, 1971, ZOOL J LINN SOC-LOND, V50, P33, DOI 10.1111/j.1096-3642.1971.tb00751.x; MCDOWALL RM, 1994, B MAR SCI, V54, P385; MCDOWALL RM, 1993, ENVIRON BIOL FISH, V37, P329, DOI 10.1007/BF00005199; MCDOWALL RM, 1979, J ROY SOC NEW ZEAL, V9, P85, DOI 10.1080/03036758.1979.10418158; McDowall RM, 1999, J ROY SOC NEW ZEAL, V29, P77, DOI 10.1080/03014223.1999.9517584; McDowall RM, 1997, J ROY SOC NEW ZEAL, V27, P199, DOI 10.1080/03014223.1997.9517533; McDowall RM, 1996, J ROY SOC NEW ZEAL, V26, P401, DOI 10.1080/03014223.1996.9517518; McDowall RM, 1998, ITAL J ZOOL, V65, P73; McDowall RM, 1988, DIADROMY FISHES MIGR; Nelson J, 1994, FISHES WORLD; Nikol'skiy G., 1969, PROBL ICHTHYOL, V9, P4; OVENDEN JR, 1993, HEREDITY, V70, P223, DOI 10.1038/hdy.1993.33; OVENDEN JR, 1990, GENETICS, V124, P701; Pavlov DA, 1998, J ICHTHYOLOGY, V38, P251; POLLARD DA, 1971, AUST J MAR FRESH RES, V22, P91; Savvaitova K. A., 1980, CHARRS SALMONID FISH, P281; SCHMIDT J, 1921, COMPT REND TRAV LAB, V14, P19; SCOTT WB, 1973, FISH RES BD CAN B, V184, P1; SPOUGE JL, 1979, J FISH RES BOARD CAN, V36, P255, DOI 10.1139/f79-041; SVARDSON G, 1998, NORD J FRESHWAT RES, V78, P3; SWAIN DP, 1986, CAN J ZOOL, V64, P1444, DOI 10.1139/z86-216; SWAIN DP, 1984, CAN J FISH AQUAT SCI, V41, P1231, DOI 10.1139/f84-146; SWAIN DP, 1992, EVOLUTION, V46, P987, DOI 10.1111/j.1558-5646.1992.tb00614.x; SWAIN DP, 1992, EVOLUTION, V46, P998, DOI 10.1111/j.1558-5646.1992.tb00615.x; TANING AV, 1952, BIOL REV, V27, P169, DOI 10.1111/j.1469-185X.1952.tb01392.x; TANING AV, 1946, NATURE, V157, P594, DOI 10.1038/157594a0; Tatarko K.I., 1968, PROBLEMS ICHTHYOLOGY, V27, P425; Waters JM, 1997, AUST J ZOOL, V45, P39, DOI 10.1071/ZO96049; Waters JM, 1999, MOL PHYLOGENET EVOL, V11, P1, DOI 10.1006/mpev.1998.0554; Waters JM, 2001, EVOLUTION, V55, P587, DOI 10.1554/0014-3820(2001)055[0587:CALOTM]2.0.CO;2; Williams W.D., 1967, AUSTR INLAND WATERS, P18; WILSON CJN, 1985, PHILOS T R SOC A, V314, P199, DOI 10.1098/rsta.1985.0019 74 43 46 1 21 KLUWER ACADEMIC PUBL DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0378-1909 ENVIRON BIOL FISH Environ. Biol. Fishes APR 2003 66 4 361 381 10.1023/A:1023902922843 21 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 682UL WOS:000183110700007 2019-02-26 J Litvin, SY; Weinstein, MP Litvin, SY; Weinstein, MP Life history strategies of Estuarine Nekton: The role of marsh macrophytes, benthic microalgae, and phytoplankton in the trophic spectrum ESTUARIES English Article RIVER-DOMINATED ESTUARY; ORGANIC-MATTER FLOW; SALT-MARSH; STABLE ISOTOPES; FOOD-WEBS; SPATIAL VARIABILITY; APALACHICOLA BAY; DELAWARE ESTUARY; CARBON; MARINE The stable isotope signatures of marine transient and resident nekton were used to investigate trophic linkages between primary producers, marsh macrophytes, phytoplankton, benthic microalgae, and consumers within the Delaware Bay. A whole estuary approach was used to compare the flux of nutrients from primary producers to juvenile weakfish (Cynoscion regalis), bay anchovy (Anchoa mitchilli), and white perch (Morone americana) in open waters of the lower and upper Bay and adjacent salt marshes dominated by either Spartina alterniflora or Phragmites australis. Our results suggest that trophic linkages vary significantly along the salinity gradient, reflecting the transition from Spartina to Phragmites-dominated marshes, and secondarily, in a marsh to open water (offshore) direction at a given salinity. Superimposed on this pattern was a gradient in the proximate use of organic matter that depended on life history traits of each species ranging from pelagic to benthic in the order bay anchovy > weakfish > white perch. Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA; New Jersey Marine Sci Consortium, Sandy Hook Field Stn, Ft Hancock, NJ 07732 USA Weinstein, MP (reprint author), Rutgers State Univ, Inst Marine & Coastal Sci, 71 Dudley Rd, New Brunswick, NJ 08901 USA. Beck MW, 2001, BIOSCIENCE, V51, P633, DOI 10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2; BOESCH DF, 1984, ESTUARIES, V7, P460, DOI 10.2307/1351627; BURNETT WC, 1980, ESTUAR COAST MAR SCI, V11, P605, DOI 10.1016/S0302-3524(80)80013-2; Chanton J, 2002, LIMNOL OCEANOGR, V47, P683, DOI 10.4319/lo.2002.47.3.0683; Chanton JP, 1999, ESTUARIES, V22, P575, DOI 10.2307/1353045; Childers DL, 2000, CONCEPTS AND CONTROVERSIES IN TIDAL MARSH ECOLOGY, P391; CIFUENTES LA, 1988, LIMNOL OCEANOGR, V33, P1102, DOI 10.4319/lo.1988.33.5.1102; Cloern JE, 2002, LIMNOL OCEANOGR, V47, P713, DOI 10.4319/lo.2002.47.3.0713; Currin CA, 2003, ESTUARIES, V26, P495, DOI 10.1007/BF02823726; Deegan LA, 1997, MAR ECOL PROG SER, V147, P31, DOI 10.3354/meps147031; Deegan LA, 2000, CONCEPTS AND CONTROVERSIES IN TIDAL MARSH ECOLOGY, P333; DEEGAN LA, 1983, RELATIONSHIPS PRIMAR; DELGIORGIO PA, LIMNOLOGY OCEANOGRAP; Eldridge PM, 2000, CONCEPTS AND CONTROVERSIES IN TIDAL MARSH ECOLOGY, P495; FOGEL ML, 1992, MAR ECOL PROG SER, V82, P291, DOI 10.3354/meps082291; FRY B, 1984, CONTRIB MAR SCI, V27, P13; Fry B, 2002, ESTUARIES, V25, P264, DOI 10.1007/BF02691313; GEARING JN, 1984, GEOCHIM COSMOCHIM AC, V48, P1089, DOI 10.1016/0016-7037(84)90199-6; Grecay PA, 1996, T AM FISH SOC, V125, P803, DOI 10.1577/1548-8659(1996)125<0803:SPICAF>2.3.CO;2; HAINES EB, 1979, ECOLOGICAL PROCESSES, P35; Holmes RM, 2000, ECOLOGY, V81, P416; Kneib Ronald T., 1997, Oceanography and Marine Biology an Annual Review, V35, P163; Levins R., 1968, MONOGRAPHS POPULATIO; LOTRICH VA, 1975, ECOLOGY, V56, P191, DOI 10.2307/1935311; MCLAIN DH, 1976, COMPUT J, V19, P178, DOI 10.1093/comjnl/19.2.178; NEMERSON DM, 2001, THESIS RUTGERS U NEW; Nixon S. W., 1980, ESTUARINE WETLAND PR, P437; Odum E.P., 1968, P 2 SEA GRANT C; Odum EP, 2000, CONCEPTS AND CONTROVERSIES IN TIDAL MARSH ECOLOGY, P3; Odum W. E, 1979, ECOLOGICAL PROCESSES, P69; PENNOCK JR, 1986, MAR ECOL PROG SER, V34, P143, DOI 10.3354/meps034143; PETERSON BJ, 1985, SCIENCE, V227, P1361, DOI 10.1126/science.227.4692.1361; PETERSON BJ, 1986, ECOLOGY, V67, P865, DOI 10.2307/1939809; PETERSON BJ, 1987, LIMNOL OCEANOGR, V32, P1195, DOI 10.4319/lo.1987.32.6.1195; Polis GA, 1996, AM NAT, V147, P813, DOI 10.1086/285880; Post DM, 2002, ECOLOGY, V83, P703, DOI 10.2307/3071875; SMITH SM, 1984, FISH B-NOAA, V82, P455; SPIKER EC, 1979, SAN FRANCISCO BAY UR, P143; *SPSS, 1998, SPSS VERS 8 0 WIND S; SULLIVAN MJ, 1990, MAR ECOL PROG SER, V62, P149, DOI 10.3354/meps062149; TEAL JM, 1962, ECOLOGY, V43, P614, DOI 10.2307/1933451; TEO SLH, 1999, THESIS RUTGERS U NEW; WAINRIGHT SA, 2000, MARINE ECOLOGY PROGR, V200, P7; Waldron S, 2001, ESTUAR COAST SHELF S, V52, P111, DOI 10.1006/ecss.2000.0731; Weinstein MP, 2000, T AM FISH SOC, V129, P797, DOI 10.1577/1548-8659(2000)129<0797:TROTSM>2.3.CO;2 45 27 30 2 9 ESTUARINE RES FEDERATION LAWRENCE PO BOX 368, LAWRENCE, KS 66044 USA 0160-8347 ESTUARIES Estuaries APR 2003 26 2B 552 562 10.1007/BF02823730 11 Environmental Sciences; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 699JF WOS:000184052700016 2019-02-26 J Morris, JA; Rulifson, RA; Toburen, LH Morris, JA; Rulifson, RA; Toburen, LH Life history strategies of striped bass, Morone saxatilis, populations inferred from otolith microchemistry FISHERIES RESEARCH English Article otolith; Morone saxatilis; PIXE; trace elements; population discrimination MITOCHONDRIAL-DNA STABILITY; STRONTIUM-CALCIUM RATIOS; STOCK IDENTIFICATION; HUDSON RIVER; ATLANTIC CANADA; FISH OTOLITHS; ELEMENTAL COMPOSITION; SALVELINUS-ALPINUS; CHESAPEAKE-BAY; ROANOKE RIVER Otolith microchemistry was used to investigate genetic, demographic and life history characteristics of striped bass, Morone saxatilis. Striped bass were collected from three river systems along the eastern seaboard: the Neuse River and Roanoke River, North Carolina, USA and the Stewiacke River, Nova Scotia, Canada. The elemental ratios Mn:Ca, Fe:Ca, Br:Ca, Zn:Ca, Cu:Ca and Sr:Ca were measured in otolith nuclei using broad-beam particle induced X-ray emission (PIXE) spectroscopy. Elemental ratios were not significantly different between several Roanoke River genotypes. Two dorsal coloration patterns found in Stewiacke River striped bass indicate the presence of ocean-going (green) and resident (black) contingents, but results of trace elemental analysis showed no differences in elemental signatures of otolith nuclei suggesting that the contingents originate from the same population. Observed Sr:Ca ratios were not stable between Roanoke River year classes; decreased levels of strontium found in 1 year class corresponded with a flooding event. Discriminant analysis using these six elemental ratios correctly identified approximately 88% of the Neuse River, 79% of Stewiacke River, and 47% of the Roanoke River striped bass to the river system from which they were caught during spawning activity. Misclassified individuals might be a result of environmental variability from subhabitats or represent wandering individuals from other populations. The Neuse River population, which is considered to be an endemic riverine population, had no obvious outliers. Results of this study show the increased power of information gathering provided by otolith microchemistry when used in concert with phenotypic and genotypic classification techniques. (C) 2002 Elsevier Science B.V. All rights reserved. E Carolina Univ, Dept Biol, Greenville, NC 27858 USA; E Carolina Univ, Dept Phys, Greenville, NC 27858 USA Morris, JA (reprint author), NOAA, Natl Ocean Serv, Beaufort, NC 28516 USA. ARAI N, 1993, INT J PIXE, V3, P275; Bath GE, 2000, GEOCHIM COSMOCHIM AC, V64, P1705, DOI 10.1016/S0016-7037(99)00419-6; Begg GA, 1999, FISH RES, V43, P1, DOI 10.1016/S0165-7836(99)00062-4; Campana SE, 1999, MAR ECOL PROG SER, V188, P263, DOI 10.3354/meps188263; Campbell JL, 1999, NUCL INSTRUM METH B, V150, P260, DOI 10.1016/S0168-583X(98)01067-2; Carmichael JT, 1998, T AM FISH SOC, V127, P286, DOI 10.1577/1548-8659(1998)127<0286:SMOTSB>2.0.CO;2; CHAPOTON ROBERT B., 1961, TRANS AMER FISH SOC, V90, P13, DOI 10.1577/1548-8659(1961)90[13:ACMOLS]2.0.CO;2; COUTANT CC, 1987, ENV SCI DIVISION PUB, V2972; Elfman M, 2000, NUCL INSTRUM METH B, V161, P877, DOI 10.1016/S0168-583X(99)00923-4; Epperly S. P., 1986, NMFSSEFC175 NOAA; GALLAHAR NK, 1992, J FISH BIOL, V41, P749, DOI 10.1111/j.1095-8649.1992.tb02704.x; Gemperline PJ, 2002, CHEMOMETR INTELL LAB, V60, P135, DOI 10.1016/S0169-7439(01)00191-5; HALDEN NM, 1995, ENVIRON BIOL FISH, V43, P333, DOI 10.1007/BF00001166; Halden NM, 2000, FISH RES, V46, P289, DOI 10.1016/S0165-7836(00)00154-5; HOFF GR, 1993, COMP BIOCHEM PHYS A, V106, P209, DOI 10.1016/0300-9629(93)90502-U; HOFF GR, 1995, B MAR SCI, V56, P578; IHSSEN PE, 1981, CAN J FISH AQUAT SCI, V38, P1838, DOI 10.1139/f81-230; KAKUTA I, 1999, INT J PIXE, V9, P11; KALISH JM, 1989, J EXP MAR BIOL ECOL, V132, P131; Laughlin TF, 1996, T AM FISH SOC, V125, P49, DOI 10.1577/1548-8659(1996)125<0049:HDMRHG>2.3.CO;2; MAXWELL JA, 1995, NUCL INSTRUM METH B, V95, P407, DOI 10.1016/0168-583X(94)00540-0; May PG, 2001, THESIS E CAROLINA U; Milton DA, 1997, MAR ECOL PROG SER, V153, P283, DOI 10.3354/meps153283; Paramore L. M., 1998, THESIS E CAROLINA U; Paramore LM, 2001, T AM FISH SOC, V130, P663, DOI 10.1577/1548-8659(2001)130<0663:DCAAIO>2.0.CO;2; RADTKE RL, 1989, J FISH BIOL, V35, P485, DOI 10.1111/j.1095-8649.1989.tb03000.x; RADTKE RL, 1989, COMP BIOCHEM PHYS A, V92, P189, DOI 10.1016/0300-9629(89)90151-5; RADTKE RL, 1984, POLAR BIOL, V3, P203, DOI 10.1007/BF00292624; Rooker JR, 2001, MAR BIOL, V139, P35; RULIFSON RA, 1995, T AM FISH SOC, V124, P477, DOI 10.1577/1548-8659(1995)124<0477:LHAPCO>2.3.CO;2; Rulifson RA, 1999, T AM FISH SOC, V128, P613, DOI 10.1577/1548-8659(1999)128<0613:SBSIAT>2.0.CO;2; RULIFSON RA, 1987, 8702 ICMR N CAR DEP; *SAS I INC, 1996, SAS STAT US GUID VER, V2; SEAL HL, 1964, MULTIVARIATE STAT AN; Secor D.H., 1992, OTOLITH MICROSTRUCTU, P19; Secor DH, 1999, FISH RES, V43, P13, DOI 10.1016/S0165-7836(99)00064-8; SECOR DH, 1995, J EXP MAR BIOL ECOL, V192, P15, DOI 10.1016/0022-0981(95)00054-U; Secor DH, 1996, ESTUARIES, V19, P778, DOI 10.2307/1352297; Secor DH, 2001, MAR ECOL PROG SER, V211, P245, DOI 10.3354/meps211245; Secor DH, 2000, FISH RES, V46, P359, DOI 10.1016/S0165-7836(00)00159-4; SIDELL BD, 1980, T AM FISH SOC, V109, P99, DOI 10.1577/1548-8659(1980)109<99:AGHOSS>2.0.CO;2; Sie SH, 1992, INT J PIXE, V2, P357; STELLWAG EJ, 1994, T AM FISH SOC, V123, P321, DOI 10.1577/1548-8659(1994)123<0321:MDDORR>2.3.CO;2; STELLWAG EJ, 1995, T AM FISH SOC, V124, P956, DOI 10.1577/1548-8659-124.6.956; TAYLOR SD, 1992, AFS26 N CAR DEP ENV; Thorrold SR, 2001, SCIENCE, V291, P297, DOI 10.1126/science.291.5502.297; Thresher RE, 1999, FISH RES, V43, P165, DOI 10.1016/S0165-7836(99)00072-7; TOWNSEND DW, 1992, J EXP MAR BIOL ECOL, V160, P131, DOI 10.1016/0022-0981(92)90115-Q; TOWNSEND DW, 1995, MAR ECOL PROG SER, V119, P37, DOI 10.3354/meps119037; TZENG WN, 1994, J FISH BIOL, V45, P1055, DOI 10.1111/j.1095-8649.1994.tb01072.x; WALDMAN JR, 1995, T AM FISH SOC, V124, P954, DOI 10.1577/1548-8659-124.6.954; Waldman JR, 1996, ESTUARIES, V19, P759, DOI 10.2307/1352295; WILKINSON L, 1999, SYSTAT 9 STAT 1; Zlokovitz ER, 1999, CAN J FISH AQUAT SCI, V56, P86, DOI 10.1139/cjfas-56-10-1865 54 28 31 1 22 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 FISH RES Fish Res. APR 2003 62 1 53 63 PII S0165-7836(02)00246-1 10.1016/S0165-7836(02)00246-1 11 Fisheries Fisheries 652LV WOS:000181381400005 2019-02-26 J Li, D; Zhao, Z; Roberts, H; Schneider, MV; Theopold, U; Schmidt, O Li, D; Zhao, Z; Roberts, H; Schneider, MV; Theopold, U; Schmidt, O Genetic analysis of two distinct reproductive strategies in sexual and asexual field populations of an endoparasitic wasp, Venturia canescens HEREDITY English Article reproductive success; egg load; virus-like particle protein; ovary; Venturia canescens; sexual and asexual reproduction PAY-OFF; SUPERPARASITISM; PARASITOIDS; HYMENOPTERA; PHENOTYPE Asexual (thelytokous) females of the parasitoid Venturia canescens, which develop inside another insect, exhibit evolutionarily stable mixtures of life-history strategies, allowing two genetically distinct wasp lines to coexist sympatrically on the same host resources. Since the two asexual lines differ in a virus-like particle protein-coding gene (VLP1), the question is whether the VLP1 gene is genetically associated with the phenotype. The recent isolation of facultative sexual (arrhenotokous) and asexual V. canescens strains from the same location in Southern France has enabled an investigation of the genetic basis for the observed phenotypic differences, by comparing the two asexual lines with the corresponding homozygous VLP1 genotypes in arrhenotokous strains. This analysis showed similar patterns of morphological and functional differences exist in the ovaries of the two asexual VLP1 lines and in the two homozygous VLP1 genotypes from the field, suggesting that the VLP1 gene alteration either causes the ovarian phenotype or is genetically closely linked to the putative gene. However, the VLP1-gene may not be the only gene contributing to the phenotypic effects observed in the asexual lines. Although the two VLP1-alleles segregate with the relative differences in the ovary distribution of eggs, the absolute egg numbers differ in the corresponding asexual and sexual genotypes. This suggests that an additional unlinked gene may be involved in the transfer of eggs from the ovarioles into the oviduct. Univ Adelaide, Dept Appl & Mol Ecol, Glen Osmond, SA 5064, Australia; Leiden Univ, Inst Evolutionary & Ecol Sci, Anim Ecol Sect, NL-2300 RA Leiden, Netherlands; Stockholm Univ, Dept Mol Biol & Funct Genom, S-10691 Stockholm, Sweden Schmidt, O (reprint author), Univ Adelaide, Dept Appl & Mol Ecol, Glen Osmond, SA 5064, Australia. Schneider, Maria Victoria/E-6317-2010; Theopold, Ulrich/P-7205-2015 Theopold, Ulrich/0000-0002-1009-8254 Agoze M. E., 1994, Bulletin of Entomological Research, V84, P213; Beck M, 2001, J INSECT PHYSIOL, V47, P1189, DOI 10.1016/S0022-1910(01)00102-0; Beck M, 1999, INSECT BIOCHEM MOLEC, V29, P453, DOI 10.1016/S0965-1748(99)00022-3; Beukeboom LW, 2001, NETH J ZOOL, V51, P1, DOI 10.1163/156854201750210805; FISHER RC, 1961, J EXP BIOL, V38, P605; FISHER RC, 1963, J EXP BIOL, V40, P531; Hellers M, 1996, INSECT MOL BIOL, V5, P239, DOI 10.1111/j.1365-2583.1996.tb00098.x; Hubbard SF, 1999, ANIM BEHAV, V57, P1193, DOI 10.1006/anbe.1999.1085; Malmberg Tycho, 2000, Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (N.E.V.), V11, P89; Marris GC, 1996, BEHAV ECOL SOCIOBIOL, V39, P61, DOI 10.1007/s002650050267; Salt G, 1934, P R SOC LOND B-CONTA, V114, P455, DOI 10.1098/rspb.1934.0019; SALT GEORGE, 1961, SYMPOSIA SOC EXPTL BIOL, V15, P96; Schmidt O, 2001, BIOESSAYS, V23, P344, DOI 10.1002/bies.1049; Schneider MV, 2002, J EVOLUTION BIOL, V15, P191, DOI 10.1046/j.1420-9101.2002.00394.x; Sirot E, 1996, ECOL ENTOMOL, V21, P305, DOI 10.1111/j.1365-2311.1996.tb01250.x; STOUTHAMER R, 1992, ENVIRON ENTOMOL, V21, P427, DOI 10.1093/ee/21.3.427; TRUDEAU D, 1989, ENTOMOL EXP APPL, V50, P3, DOI 10.1111/j.1570-7458.1989.tb02306.x; VANALPHEN JJM, 1990, ANNU REV ENTOMOL, V35, P59, DOI 10.1146/annurev.en.35.010190.000423; VISSER ME, 1992, ECOL ENTOMOL, V17, P76, DOI 10.1111/j.1365-2311.1992.tb01042.x 19 13 14 0 17 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X HEREDITY Heredity APR 2003 90 4 291 297 10.1038/sj.hdy.6800241 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 669QB WOS:000182361000003 12692581 Bronze 2019-02-26 J Brown, AR; Riddle, AM; Cunningham, NL; Kedwards, TJ; Shillabeer, N; Hutchinson, TH Brown, AR; Riddle, AM; Cunningham, NL; Kedwards, TJ; Shillabeer, N; Hutchinson, TH Predicting the effects of endocrine disrupting chemicals on fish populations HUMAN AND ECOLOGICAL RISK ASSESSMENT English Article life-cycle; life-history; life-table; brook trout; fathead minnow; endocrine disrupting chemical; methoxychlor; nonylphenol; population modeling TROUT ONCORHYNCHUS-MYKISS; JUVENILE RAINBOW-TROUT; MINNOW PIMEPHALES-PROMELAS; LIFE-HISTORY STRATEGIES; FATHEAD MINNOW; JORDANELLA-FLORIDAE; TOXIC CONTAMINANTS; FOOD AVAILABILITY; METHOXYCHLOR; GROWTH This study evaluates the applicability and sensitivity of fish population dynamics modeling in assessing the potential effects of individual chemicals on population sustainability and recovery. Fish reproductive health is all increasingly important issue for ecological risk assessment following international concern over endocrine disruption. Life-history data from natural brook trout and fathead minnow populations were combined with effects data from laboratory-based studies, mainly concerning species other than brook trout and fathead minnows, to assess the likely impact of nonylphenol (NP) and methoxychlor (MXC) on brook trout (Salvelinus fontinalis) and fathead minnow (Pimephales promelas) population size. A delay differential equation (DDE) model with a 1-day timestep was used to predict the population dynamics of the brook trout and fathead minnows. The model predicts that NP, could enhance populations by tip to 17% at a concentration of 30 mug l(-1) based oil the results of reduction in survival and increased fecundity from life-cycle toxicity tests, however attempting to allow for growth reduction and its effect on fecundity results in a prediction of a 28% reduction in population numbers. For fathead minnows the DDE model predicts that the same concentration of NP could cause a population reduction of 21%. The differences in these predictions are related to these two species having different life history strategies, which are considered in the parameterization of the model. Post-application concentrations of MXC may peak around 300 mug l(-1) and then decline rapidly with time. Predictions show that such applications could cause a reduction of up to 30% in brook trout populations if the application occurs at the peak of the spawning season on successive years but that the effect would be less than 1% if the spawning season is avoided. Effects on the fathead minnow population size are predicted to be smaller (<4%) even if application occurs during the spawning period. Risk based statistics generated by the population dynamics models, Such as interval decline risk or quasiextinction risk and predicted time to recovery complement traditional effects parameters such as LC50 and LOEC and may ultimately prove to be more useful in risk assessment. AstraZeneca UK Ltd, Brixham Environm Lab, Brixham TQ5 8BA, Devon, England; Syngenta Crop Protect AG, Jealotts Hill Res Stn, Bracknell RG42 6ET, Berks, England Brown, AR (reprint author), AstraZeneca UK Ltd, Brixham Environm Lab, Freshwater Quarry, Brixham TQ5 8BA, Devon, England. Hutchinson, Tom/0000-0001-8823-5442 Ankley GT, 2001, ENVIRON TOXICOL CHEM, V20, P1276, DOI 10.1897/1551-5028(2001)020<1276:DAEOAS>2.0.CO;2; Ashfield LA, 1998, ENVIRON TOXICOL CHEM, V17, P679; Barnthouse Lawrence W., 1993, P247; BARNTHOUSE LW, 1990, ENVIRON TOXICOL CHEM, V9, P297, DOI 10.1897/1552-8618(1990)9[297:ROTCTE]2.0.CO;2; BARNTHOUSE LW, 1987, ENVIRON TOXICOL CHEM, V6, P811, DOI 10.1897/1552-8618(1987)6[811:EROFPT]2.0.CO;2; BARNTHOUSE LW, 1996, MODELLING ECOLOGICAL; BEVERTON R. J. H., 1957, MIN AGRIC FISH AND FOOD [GT BRIT] FISH INVEST SER II, V19, P5; CALOW P, 1990, BRIT ECOLOGICAL SOC, P1; CAMPBELL PJ, 1999, SETAC EUR OECD EC WO; Campbell PM, 1998, ENVIRON TOXICOL CHEM, V17, P127, DOI 10.1897/1551-5028(1998)017<0127:WAEDRF>2.3.CO;2; CARLSON KD, 1967, ADV HIGH TEMP CHEM, V1, P43, DOI DOI 10.1016/S0065-2741(13)70022-8; CRAIG JF, 1979, J ANIM ECOL, V48, P315, DOI 10.2307/4116; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; DOBIE J, 1956, FISH WILDLIFE SERVIC, V35, P1; ELLIOTT JM, 1984, J ANIM ECOL, V53, P327, DOI 10.2307/4360; EMLEN JM, 1989, ECOL MODEL, V44, P253, DOI 10.1016/0304-3800(89)90033-1; *ENV DAT SERV, 1999, 291 ENDS; Ferson S., 1990, RAMAS AGE USER MANUA; FERSON S, 1987, RAMAS USER FRIENDLY; GALE WF, 1982, T AM FISH SOC, V111, P35, DOI 10.1577/1548-8659(1982)111<35:FASFOT>2.0.CO;2; Gray MA, 1997, ENVIRON TOXICOL CHEM, V16, P1082, DOI 10.1897/1551-5028(1997)016<1082:IOTOIJ>2.3.CO;2; Harries JE, 2000, ENVIRON SCI TECHNOL, V34, P3003, DOI 10.1021/es991292a; HELFMAN GS, 1997, DIVERSITY FISHES, P348; HEMING TA, 1988, B ENVIRON CONTAM TOX, V40, P764, DOI 10.1007/BF01697528; HOLDWAY DA, 1986, WATER RES, V20, P893, DOI 10.1016/0043-1354(86)90178-8; HOLDWAY DA, 1987, CAN J FISH AQUAT SCI, V44, P227, DOI 10.1139/f87-032; HOLDWAY DA, 1985, AQUAT TOXICOL, V6, P243, DOI 10.1016/0166-445X(85)90022-0; Huet MC, 2000, ECOTOXICOLOGY, V9, P77, DOI 10.1023/A:1008992932155; HUNTER JR, 1981, MARINE FISH LARVAE M, P73; HUTCHINSON TH, 1999, BLS2724B BRIXH ENV L; ISAAK D, 1961, THESIS U MINNESOTA M; Jaworska JS, 1997, ECOL MODEL, V99, P113, DOI 10.1016/S0304-3800(96)01943-6; Jobling S, 1996, ENVIRON TOXICOL CHEM, V15, P194, DOI 10.1897/1551-5028(1996)015<0194:IOTGIR>2.3.CO;2; Jobling S, 1998, ENVIRON SCI TECHNOL, V32, P2498, DOI 10.1021/es9710870; Krisfalusi M, 1998, B ENVIRON CONTAM TOX, V60, P659, DOI 10.1007/s001289900677; Krisfalusi M, 1998, B ENVIRON CONTAM TOX, V61, P519, DOI 10.1007/s001289900793; Lange R, 2001, ENVIRON TOXICOL CHEM, V20, P1216, DOI 10.1897/1551-5028(2001)020<1216:EOTSEE>2.0.CO;2; LIEBER K, 1999, ENVIRON TOXICOL CHEM, V18, P394; Markus H., 1934, COPEIA, V3, P116; Maund SJ, 1997, PESTIC SCI, V49, P185, DOI 10.1002/(SICI)1096-9063(199702)49:2<185::AID-PS493>3.0.CO;2-M; MCFADDEN JT, 1967, J FISH RES BOARD CAN, V24, P1425, DOI 10.1139/f67-121; McTavish K, 1998, ENVIRON TOXICOL CHEM, V17, P58, DOI 10.1897/1551-5028(1998)017<0058:AMFFET>2.3.CO;2; MILESRICHARDSON SR, 1999, ENVIRON RES, V80, P122; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; Ricker W. E., 1975, B FISH RES BOARD CAN, V191; ROSE KA, 1993, AM FISH S S, V14, P125; SCHAAF WE, 1987, ESTUARIES, V10, P267, DOI 10.2307/1351854; SCHAAF WE, 1993, ESTUARIES, V16, P697, DOI 10.2307/1352428; SHAFFER ML, 1981, BIOSCIENCE, V31, P131, DOI 10.2307/1308256; SPENCER M, 1997, RAMAS ECOTOXICOLOGY, V2, P1; Thorpe KL, 2001, ENVIRON SCI TECHNOL, V35, P2476, DOI 10.1021/es001767u; TULJAPURKAR S, 1997, STRUCTURED POPULATIO, P89; Tyler CR, 1998, PURE APPL CHEM, V70, P1795, DOI 10.1351/pac199870091795; *USEPA, 1997, EPA630R96012 RISK AS; *USEPA, 1986, 540986137 EPA OFF PE; [USEPA] US Environmental Protection Agency, 1998, EPA630R95002FA; Van Winkle W, 1998, ECOL MODEL, V110, P175, DOI 10.1016/S0304-3800(98)00065-9; WALLER WT, 1971, J FISH RES BOARD CAN, V28, P1107, DOI 10.1139/f71-164; Warner RR, 1997, BIOSCIENCE, V47, P561, DOI 10.2307/1313162; WHITEHOUSE P, 1998, P42 UK EA R D WRC; Wood S.N., 1999, Aspects of Applied Biology, V53, P41 61 24 28 1 24 CRC PRESS LLC BOCA RATON 2000 CORPORATE BLVD NW, JOURNALS CUSTOMER SERVICE, BOCA RATON, FL 33431 USA 1080-7039 HUM ECOL RISK ASSESS Hum. Ecol. Risk Assess. APR 2003 9 3 761 788 10.1080/713609966 28 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 675HW WOS:000182688900009 2019-02-26 J Kupriyanova, EK Kupriyanova, EK Live history evolution in Serpulimorph polychaetes: a phylogenetic analysis HYDROBIOLOGIA English Article Polychaeta; Serpulidae; Spirorbidae; phylogenetic analysis; life history evolution; planktotrophy; lecithotrophy MARINE-INVERTEBRATES; LARVAE; SERPULIDAE; TROCHOPHORE; HYPOTHESES; BANDS; OCEAN; SIZE The widely accepted hypothesis of plesiomorphy of planktotrophic, and apomorphy of lecithotrophic, larval development in marine invertebrates has been recently challenged as a result of phylogenetic analyses of various taxa. Here the evolution of planktotrophy and lecithotrophy in Serpulimorph polychaetes ( families Serpulidae and Spirorbidae) was studied using a hypothesis of phylogenetic relationships in this group. A phylogenetic ( parsimony) analysis of 36 characters ( 34 morphological, 2 developmental) was performed for 12 selected serpulid and 6 spirorbid species with known reproductive/developmental strategies. Four species of Sabellidae were used in the outgroup. The analysis yielded 4 equally parsimonious trees of 78 steps, with a consistency index (CI) of 0.654 ( CI excluding uninformative characters is 0.625). Under the assumption of unweighted parsimony analysis, planktotrophic larvae are apomorphic and non-feeding brooded embryos are plesiomorphic in serpulimorph polychaetes. The estimated polarity of life history transitions may be strengthened by further studies demonstrating an absence of a unidirectional bias in planktotrophy-lecithotrophy transition in polychaetes. Flinders Univ S Australia, Sch Biol Sci, Adelaide, SA 5001, Australia Kupriyanova, EK (reprint author), Flinders Univ S Australia, Sch Biol Sci, GPO Box 2100, Adelaide, SA 5001, Australia. BAILEY J H, 1969, Zoological Journal of the Linnean Society, V48, P387, DOI 10.1111/j.1096-3642.1969.tb00719.x; Bhaud M, 1996, OCEANOL ACTA, V19, P335; EMLET RB, 1995, DEV BIOL, V167, P405, DOI 10.1006/dbio.1995.1037; FITZHUGH K, 1989, B AM MUS NAT HIST, V192, P1; Hart MW, 1997, EVOLUTION, V51, P1848, DOI 10.1111/j.1558-5646.1997.tb05108.x; HART MW, 1995, AM NAT, V146, P415, DOI 10.1086/285807; HASZPRUNAR G, 1995, ACTA ZOOL-STOCKHOLM, V76, P141, DOI 10.1111/j.1463-6395.1995.tb00988.x; Havenhand Jon N., 1995, P79; Jagersten G., 1972, EVOLUTION METAZOAN L; Kupriyanova EK, 1999, OPHELIA, V50, P21, DOI 10.1080/00785326.1999.10409386; Kupriyanova EK, 1997, SARSIA, V82, P203, DOI 10.1080/00364827.1997.10413651; Kupriyanova EK, 2001, OCEANOGR MAR BIOL, V39, P1; LACALLI TC, 1976, CAN J ZOOL, V55, P303; McEdward LR, 1997, BIOL J LINN SOC, V60, P381; McHugh D, 1998, TRENDS ECOL EVOL, V13, P182, DOI 10.1016/S0169-5347(97)01285-8; MCHUGH D, 1994, ZOOL J LINN SOC-LOND, V111, P405; Nishi Eijiroh, 1993, Proceedings of the Japanese Society of Systematic Zoology, V49, P6; Pillai T. G., 1970, CEYLON J SCI BIOL SC, V8, P100; PONDER WF, 1997, ZOOLOGICAL J LINNEAN, V199, P83; REID DG, 1989, PHIL T R SOC LOND B, V234, P1; ROUSE G, 1994, ZOOL SCR, V23, P271, DOI 10.1111/j.1463-6409.1994.tb00390.x; Rouse GW, 2000, ZOOL SCR, V29, P213, DOI 10.1046/j.1463-6409.2000.00040.x; Rouse GW, 2000, EVOL DEV, V2, P222, DOI 10.1046/j.1525-142x.2000.00063.x; Rouse GW, 1999, BIOL J LINN SOC, V66, P411, DOI 10.1006/bijl.1998.0278; Rouse GW, 2000, B MAR SCI, V67, P391; SALVINIPLAWEN LV, 1985, MOLLUSCA, V10, P59; SMITH A, 1997, ANNU REV ECOL SYST, V2, P19; SMITH RS, 1991, OPHELIA S, V5, P249; STRATHMANN RR, 1972, BIOL BULL-US, V142, P505, DOI 10.2307/1540326; STRATHMANN RR, 1978, EVOLUTION, V32, P894, DOI 10.1111/j.1558-5646.1978.tb04642.x; STRATHMANN RR, 1994, AM ZOOL, V34, P502; STRATHMANN RR, 1993, ANNU REV ECOL SYST, V24, P89, DOI 10.1146/annurev.es.24.110193.000513; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; SWOFFORD D, 1999, PAUP PHYLOGENETIC AN; ten Hove H.A., 1984, P181; THORP CH, 1975, J EXP MAR BIOL ECOL, V20, P215, DOI 10.1016/0022-0981(75)90084-2; UCHIDA H, 1978, B MARINE PARK RES ST, V2, P2; WRAY GA, 1994, DEVELOPMENT, P97; Wray GA, 1996, SYST BIOL, V45, P308, DOI 10.2307/2413566; Wray Gregory A., 1995, P413 40 23 27 0 8 KLUWER ACADEMIC PUBL DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia APR 2003 496 1-3 105 114 10.1023/A:1026128411461 10 Marine & Freshwater Biology Marine & Freshwater Biology 732AU WOS:000185919300011 2019-02-26 J Macdonald, TA Macdonald, TA Phylogenetic relations among spirorbid subgenera and the evolution of opercular brooding HYDROBIOLOGIA English Article morphological data; lecithotrophy; embryo incubation; life history evolution; novelty RED-SEA; INCLUDING DESCRIPTIONS; POLYCHAETA SEDENTARIA; SERPULIDAE-POLYCHAETA; HAWAIIAN-ISLANDS; CORAL REEFS; GENUS; TAXONOMY; ECOLOGY; PACIFIC Spirorbid polychaetes are a common and often conspicuous element of marine, hard-bottom environments worldwide. Because they exhibit a surprising variety of brooding modes, they offer an opportunity to study the evolution of alternative life-history strategies. A preliminary investigation of their phylogenetic relationships was conducted on morphological data amalgamated from published species descriptions and light microscopy. Cladistic analysis was parsimony-based and was done at the subgenus level. All 27 spirorbid genera and subgenera are represented, along with 7 serpulid outgroups. The phylogenetic hypotheses were used to explore the origin of opercular brood chambers in the Pileolariinae and the Januinae. Both weighted and unweighted analyses strongly supported the monophyly of the Spirorbidae, and yielded three and a single most parsimonious tree respectively. All spirorbid subfamilies were monophyletic except two: the Pileolariinae, from which the Januinae seem to have arisen, and the Romanchellinae, which were polyphyletic in the unweighted analysis and paraphyletic with Paralaeospira in the weighted analysis. However, support for the hypothesized relationships among spirorbid subfamilies was generally weak. A weakly supported clade of opercular brooders occupied the most derived position on the tree, and the strongly supported monophyletic Januinae comprise a derived clade within the Pileolariinae. This analysis suggests that the evolutionary novelty of opercular brooding arose only once, and the simple cylindrical januin brood chamber is a simplification of the more complex pileolariin form. Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada; Bamfield Marine Sci Ctr, Bamfield, BC V0R 1B0, Canada Macdonald, TA (reprint author), Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. ALOGAILY SM, 1987, J NAT HIST, V21, P597, DOI 10.1080/00222938700770361; BAILEY J H, 1969, Zoological Journal of the Linnean Society, V48, P363, DOI 10.1111/j.1096-3642.1969.tb00718.x; BAILEY JH, 1968, J ZOOL, V155, P161; BAILEYBROCK JH, 1977, J ZOOL, V181, P315; BAILEYBROCK JH, 1972, PAC SCI, V26, P405; BAILEYBROCK JH, 1991, B MAR SCI, V48, P198; BAILEYBROCK JH, 1985, PAC SCI, V39, P195; BANSE K, 1981, CAN B FISH AQUAT SCI, V209, P1; BREMER K, 1994, CLADISTICS, V10, P295, DOI 10.1006/clad.1994.1019; BUSH KJ, 1904, HARRIMAN ALASKA EXPE, V12, P169; CAULLERY M, 1975, B SCI FR BELG, V30, P185; Day J.A., 1967, BRIT MUSEUM NATURAL, V656, P459, DOI DOI 10.1017/S0025315400019299; DeSILVA P. H. D. H., 1965, PROC ZOOL SOC LONDON, V144, P537; DEW BARBARA, 1959, REC AUSTRALIAN MUS, V25, P19; ERIKSSON T, 1998, AUTODECAY VER 4 0 PR; FARRIS JS, 1994, CLADISTICS, V10, P315, DOI 10.1111/j.1096-0031.1996.tb00196.x; FARRIS JS, 1989, CLADISTICS, V5, P417, DOI 10.1111/j.1096-0031.1989.tb00573.x; FITZHUGH K, 1989, B AM MUS NAT HIST, V192, P1; GEE J. M., 1964, PROC ZOOL SOC LONDON, V143, P405; GEE JM, 1962, J MAR BIOL ASSOC UK, V42, P641, DOI 10.1017/S0025315400054321; HARRIS T, 1968, J MAR BIOL ASSOC UK, V48, P593, DOI 10.1017/S0025315400019172; Harris T., 1969, Discovery Reports, V35, P135; HARRIS T, 1968, PUBB STA ZOOL NAPOLI, V36, P188; HARRIS T, 1964, ANN MAG NAT HIST, V13, P347; Hartman O., 1966, Antarctic Research Series, V7, P1; Knight-Jones P., 1973, Bulletin Br Mus nat Hist (Zool), V24, P231; Knight-Jones Phyllis, 1995, Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, V92, P89; KNIGHTJONES EW, 1972, MAR BIOL, V12, P289, DOI 10.1007/BF00366328; KNIGHTJONES EW, 1971, ZOOL J LINN SOC-LOND, V52, P9; KNIGHTJONES P, 1975, ZOOL J LINN SOC-LOND, V56, P91, DOI 10.1111/j.1096-3642.1975.tb00812.x; KNIGHTJONES P, 1977, J MAR BIOL ASSOC UK, V57, P453, DOI 10.1017/S002531540002186X; KNIGHTJONES P, 1981, ZOOL SCR, V10, P183, DOI 10.1111/j.1463-6409.1981.tb00495.x; KNIGHTJONES P, 1974, MAR BIOL, V25, P253, DOI 10.1007/BF00394971; KNIGHTJONES P, 1984, ZOOL J LINN SOC-LOND, V80, P121, DOI 10.1111/j.1096-3642.1984.tb01968.x; KNIGHTJONES P, 1994, OPHELIA, V40, P75, DOI 10.1080/00785326.1994.10430577; KNIGHTJONES P, 1979, J ZOOL, V189, P419; KNIGHTJONES P, 1984, ZOOL J LINN SOC-LOND, V80, P109, DOI 10.1111/j.1096-3642.1984.tb01967.x; KNIGHTJONES P, 1978, ZOOL J LINN SOC-LOND, V64, P201, DOI 10.1111/j.1096-3642.1978.tb01070.x; KNIGHTJONES P, 1972, J ZOOL, V166, P1; KNIGHTJONES P, 1979, ZOOL SCR, V8, P119, DOI 10.1111/j.1463-6409.1979.tb00624.x; Kupriyanova EK, 2001, OCEANOGR MAR BIOL, V39, P1; KUPRIYANOVA EK, 1993, OPHELIA, V38, P47, DOI 10.1080/00785326.1993.10429923; MADDISON WP, 2000, MACCLADE VERSION 4 0; Mayr E, 1960, EVOLUTION LIFE, P349; NISHI E, 1994, ZOOL SCI, V11, P589; Okuda S., 1934, Journal of the Faculty of Science Hokkaido Zoology, V3, P233; Pillai T. G., 1960, Ceylon Journal of Science Biol Sci, V3, P1; Pillai T. G., 1970, CEYLON J SCI BIOL SC, V8, P100; PILLAI TG, 1965, CEYLON J SCI BIOL SC, V5, P161; PIXELL HLM, 1912, P ZOOL SOC LOND, V65, P784; RHAVKSY AV, 1997, OPHELIA, V46, P233; RHAVKSY AV, 1992, OPHELIA, V36, P167; RHAVKSY AV, 1993, OPHELIA, V38, P89; Rovereto G., 1904, PALAEONTOGRAPHIA ITA, V10, P1; RZHAVSKY AV, 1988, ZOOL ZH, V67, P865; Strathmann M.F., 1987, P138; SWOFFORD DL, 2002, PAUP PHYLOGENETIC AN; ten Hove H.A., 1984, P181; ten Hove H.A., 1984, P143; THORP CH, 1975, J EXP MAR BIOL ECOL, V20, P215, DOI 10.1016/0022-0981(75)90084-2; UCHIDA H, 1971, J FS HOKKAIDO U 6, V18, P193; VINE PJ, 1972, PAC SCI, V26, P150; VINE PJ, 1972, ZOOL J LINN SOC-LOND, V51, P177, DOI 10.1111/j.1096-3642.1972.tb00780.x; VINE PJ, 1972, PAC SCI, V26, P140; VINE PJ, 1984, ZOOL J LINN SOC-LOND, V80, P135, DOI 10.1111/j.1096-3642.1984.tb01969.x; VINE PJ, MEM NZ OCEANOGR I, V68, P1; Zibrowius H., 1972, Bulletin Mus Natn Hist Nat Paris (Zool), VNo. 33, P423; Zibrowius H., 1983, Tethys, V11, P21; ZIBROWIUS H, 1969, SMITHSONIAN CONTR ZO, V112, P1 69 8 9 0 3 KLUWER ACADEMIC PUBL DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia APR 2003 496 1-3 125 143 10.1023/A:1026132512370 19 Marine & Freshwater Biology Marine & Freshwater Biology 732AU WOS:000185919300013 2019-02-26 J Prasad, NG; Joshi, A Prasad, NG; Joshi, A What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us? JOURNAL OF GENETICS English Review laboratory selection; experimental evolution; lifespan; development time; competitive ability; genetic architecture DEPENDENT NATURAL-SELECTION; QUANTITATIVE TRAIT LOCI; LONG-LIVED STRAIN; BACTROCERA-CUCURBITAE DIPTERA; BY-ENVIRONMENT INTERACTION; DIFFERENT LIGHT REGIMES; SEXUAL SIZE DIMORPHISM; MALE MATING SUCCESS; BODY-SIZE; CORRELATED RESPONSES A series of laboratory selection experiments on Drosophila melanogaster over the past two decades has provided insights into the specifics of life-history tradeoffs in the species and greatly refined our understanding of how ecology and genetics interact in life-history evolution. Much of what has been learnt from these studies about the subtlety of the microevolutionary process also has significant implications for experimental design and inference in organismal biology beyond life-history evolution, as well as for studies of evolution in the wild. Here we review work on the ecology and evolution of life-histories in laboratory populations of D. melanogaster, emphasizing how environmental effects on life-history-related traits can influence evolutionary change. We discuss life-history tradeoffs many unexpected-revealed by selection experiments, and also highlight recent work that underscores the importance to life-history evolution of cross-generation and cross-life-stage effects and interactions, sexual antagonism and sexual dimorphism, population dynamics, and the possible role of biological clocks in timing life-history events. Finally, we discuss some of the limitations of typical selection experiments, and how these limitations might be transcended in the future by a combination of more elaborate and realistic selection experiments, developmental evolutionary biology, and the emerging discipline of phenomics. Jawaharlal Nehru Ctr Adv Sci Res, Evolutionary Biol Lab, Evolutionary & Organismal Biol Unit, Bangalore 560064, Karnataka, India Joshi, A (reprint author), Jawaharlal Nehru Ctr Adv Sci Res, Evolutionary Biol Lab, Evolutionary & Organismal Biol Unit, POB 6436, Bangalore 560064, Karnataka, India. ajoshi@jncasr.ac.in Marion-Poll, Frederic/D-8882-2011 Marion-Poll, Frederic/0000-0001-6824-0180; Prasad, N G/0000-0002-0410-5518 Ackermann M, 2001, J EVOLUTION BIOL, V14, P199, DOI 10.1046/j.1420-9101.2001.00281.x; AIKEN RB, 1979, OECOLOGIA, V43, P63, DOI 10.1007/BF00346673; ALLEMAND R, 1976, J INSECT PHYSIOL, V22, P1031, DOI 10.1016/0022-1910(76)90088-3; Anderson AR, 2003, HEREDITY, V90, P195, DOI 10.1038/sj.hdy.6800220; Arking R, 2000, EXP GERONTOL, V35, P167, DOI 10.1016/S0531-5565(99)00094-7; ARKING R, 1993, GENETICA, V91, P127, DOI 10.1007/BF01435993; Arthur W, 2002, NATURE, V415, P757; ATKINSON WD, 1979, J ANIM ECOL, V48, P91, DOI 10.2307/4102; Azevedo RBR, 1996, EVOLUTION, V50, P2338, DOI 10.1111/j.1558-5646.1996.tb03621.x; Bakker K., 1961, Archives Neerlandaises de Zoologie Leiden, V14, P200; BAKKER K., 1959, Entomologia Experimentalis et Applicata, V2, P171; Bakker K., 1969, Netherlands J Zool, V19, P541; Bakker K., 1963, Entomologia Experimentalis et Applicata, V6, P37; Bangham J, 2002, ANIM BEHAV, V64, P915, DOI 10.1006/anbe.2002.1976; Beaver LM, 2002, P NATL ACAD SCI USA, V99, P2134, DOI 10.1073/pnas.032426699; BERREUR P, 1979, J EXP BIOL, V210, P333; BHARATHI NS, 2003, IN PRESS J GENET, V82; Borash DJ, 2000, J INSECT PHYSIOL, V46, P763, DOI 10.1016/S0022-1910(99)00165-1; Borash DJ, 2000, J EVOLUTION BIOL, V13, P181, DOI 10.1046/j.1420-9101.2000.00167.x; Borash DJ, 2001, J INSECT PHYSIOL, V47, P1349, DOI 10.1016/S0022-1910(01)00108-1; Borash DJ, 2001, HEREDITY, V86, P658, DOI 10.1046/j.1365-2540.2001.00858.x; Borash DJ, 1998, AM NAT, V151, P148, DOI 10.1086/286108; BUCK S, 1993, HEREDITY, V71, P23, DOI 10.1038/hdy.1993.103; BUCK S, 2000, J GERONTOL, V55, pB262; CAVICCHI S, 1995, EVOLUTION, V49, P676, DOI 10.1111/j.1558-5646.1995.tb02304.x; Chapman T, 2001, HEREDITY, V87, P511, DOI 10.1046/j.1365-2540.2001.00961.x; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B, 1994, EVOLUTION AGE STRUCT; CHIANG HC, 1950, ECOL MONOGR, V20, P175, DOI 10.2307/1948580; Chippindale AK, 2001, P NATL ACAD SCI USA, V98, P1671, DOI 10.1073/pnas.041378098; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Chippindale AK, 1998, EVOLUTION, V52, P1342, DOI 10.1111/j.1558-5646.1998.tb02016.x; Chippindale AK, 1997, EVOLUTION, V51, P1536, DOI 10.1111/j.1558-5646.1997.tb01477.x; CHIPPINDALE AK, 1994, EVOLUTION, V48, P1880, DOI 10.1111/j.1558-5646.1994.tb02221.x; Chippindale AK, 1996, EVOLUTION, V50, P753, DOI 10.1111/j.1558-5646.1996.tb03885.x; Chippindale AK, 1997, J EVOLUTION BIOL, V10, P269, DOI 10.1007/s000360050023; Civetta A, 1999, CURR BIOL, V9, P841, DOI 10.1016/S0960-9822(99)80370-4; Clark AG, 1999, SCIENCE, V283, P217, DOI 10.1126/science.283.5399.217; CLARKE JM, 1961, GENET RES, V2, P70, DOI 10.1017/S0016672300000550; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; Crill WD, 1996, EVOLUTION, V50, P1205, DOI 10.1111/j.1558-5646.1996.tb02361.x; Da Silva LB, 2001, J GENET, V80, P77; David J. R., 1983, GENET BIOL DROSOPHIL, V3b, P105; DAVID JR, 1982, GENET RES, V40, P295, DOI 10.1017/S0016672300019169; Davidowitz G, 2003, EVOL DEV, V5, P188, DOI 10.1046/j.1525-142X.2003.03026.x; de Jong G, 2002, EVOL ECOL RES, V4, P1; De Moed GH, 1998, NETH J ZOOL, V48, P169; De Moed GH, 1999, J EVOLUTION BIOL, V12, P852, DOI 10.1046/j.1420-9101.1999.00103.x; DeckertCruz DJ, 1997, EVOLUTION, V51, P865, DOI 10.1111/j.1558-5646.1997.tb03668.x; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DELAGUERIE P, 1991, EVOL ECOL, V5, P361, DOI 10.1007/BF02214153; Dercole F, 2002, EVOLUTION, V56, P1081; Djawdan M, 1998, PHYSIOL ZOOL, V71, P584, DOI 10.1086/515963; Djawdan M, 1997, ECOLOGY, V78, P828; Djawdan M, 1996, PHYSIOL ZOOL, V69, P1176, DOI 10.1086/physzool.69.5.30164252; DUDAS SP, 1995, J GERONTOL A-BIOL, V50, pB117, DOI 10.1093/gerona/50A.3.B117; Fellowes MDE, 1999, EVOLUTION, V53, P966, DOI 10.1111/j.1558-5646.1999.tb05391.x; Foley PA, 2001, EVOLUTION, V55, P2493; Force AG, 1995, DEV GENET, V17, P340, DOI 10.1002/dvg.1020170407; French V, 1998, J INSECT PHYSIOL, V44, P1081, DOI 10.1016/S0022-1910(98)00061-4; Fry JD, 2001, J EVOLUTION BIOL, V14, P296, DOI 10.1046/j.1420-9101.2001.00271.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gasser M, 2000, EVOLUTION, V54, P1260; Gibbs AG, 1997, J EXP BIOL, V200, P1821; Gibbs AG, 1999, J EXP BIOL, V202, P2709; GIBSON JR, 2002, P R SOC LONDON B, V269, P599; Gilchrist AS, 1999, GENETICS, V153, P1775; Gilchrist GW, 2001, EVOLUTION, V55, P209; GRAVES JL, 1993, GENETICA, V91, P99, DOI 10.1007/BF01435991; GRAVES JL, 1992, PHYSIOL ZOOL, V65, P268, DOI 10.1086/physzool.65.2.30158253; Harshman LG, 2000, TRENDS ECOL EVOL, V15, P32, DOI 10.1016/S0169-5347(99)01756-5; Harshman LG, 1999, J EVOLUTION BIOL, V12, P370, DOI 10.1046/j.1420-9101.1999.00024.x; Hercus MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2105, DOI 10.1098/rspb.2000.1256; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; Hoang A, 2002, J EVOLUTION BIOL, V15, P537, DOI 10.1046/j.1420-9101.2002.00426.x; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; HOFFMANN AA, 1991, EVOLUTION, V45, P1000, DOI 10.1111/j.1558-5646.1991.tb04366.x; Hoffmann AA, 2003, J THERM BIOL, V28, P175, DOI 10.1016/S0306-4565(02)00057-8; HOFFMANN AA, 1993, J EVOLUTION BIOL, V6, P643, DOI 10.1046/j.1420-9101.1993.6050643.x; Hoffmann AA, 1999, HEREDITY, V83, P637, DOI 10.1046/j.1365-2540.1999.00649.x; Hoffmann AA, 2001, EVOLUTION, V55, P436; Hoffmann AA, 2001, EVOLUTION, V55, P1621; HOFFMANN AA, 1989, BIOL J LINN SOC, V37, P117, DOI 10.1111/j.1095-8312.1989.tb02098.x; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Houle D, 2003, AM NAT, V161, P50, DOI 10.1086/345480; Houle D., 2001, CHARACTER CONCEPT EV; HUEY RB, 1991, EVOLUTION, V45, P751, DOI 10.1111/j.1558-5646.1991.tb04343.x; HUTCHINSON EW, 1991, GENETICS, V127, P729; HUTCHINSON EW, 1991, GENETICS, V127, P719; IglesiasBarreira V, 1996, ENDOCRINOLOGY, V137, P3797, DOI 10.1210/en.137.9.3797; Imasheva AG, 1999, HEREDITY, V82, P187, DOI 10.1038/sj.hdy.6884660; JAMES AC, 1995, GENETICS, V140, P659; JAMES AC, 1995, J EVOLUTION BIOL, V8, P315, DOI 10.1046/j.1420-9101.1995.8030315.x; James AC, 1998, AM NAT, V151, P530, DOI 10.1086/286138; JENKINS NL, 1994, GENETICS, V137, P783; Jin W, 2001, NAT GENET, V29, P389, DOI 10.1038/ng766; Joshi A, 1996, EXP GERONTOL, V31, P533, DOI 10.1016/0531-5565(96)00003-4; JOSHI A, 1993, EVOLUTION, V47, P176, DOI 10.1111/j.1558-5646.1993.tb01208.x; Joshi A, 1996, HEREDITY, V77, P33, DOI 10.1038/sj.hdy.6880170; Joshi A, 1996, EVOL ECOL, V10, P463, DOI 10.1007/BF01237879; JOSHI A, 1988, EVOLUTION, V42, P1090, DOI 10.1111/j.1558-5646.1988.tb02527.x; Joshi A, 1998, J BIOSCIENCE, V23, P279, DOI 10.1007/BF02720030; Joshi A, 1999, GENET RES, V73, P239, DOI 10.1017/S0016672399003730; JOSHI A, 1995, EVOLUTION, V49, P616, DOI 10.1111/j.1558-5646.1995.tb02298.x; Joshi A, 1998, EVOL ECOL, V12, P363, DOI 10.1023/A:1006508418493; Joshi A, 1996, EVOLUTION, V50, P188, DOI 10.1111/j.1558-5646.1996.tb04485.x; Joshi A, 2001, J GENET, V80, P63, DOI 10.1007/BF02728332; JOSHI A, 1995, EVOL ECOL, V9, P82, DOI 10.1007/BF01237699; Joshi A, 1997, CURR SCI INDIA, V72, P255; Joshi A, 1997, CURR SCI INDIA, V72, P555; JOSHI A, 2003, IN PRESS J GENET, V82; Kindlmann P, 2001, J EVOLUTION BIOL, V14, P835, DOI 10.1046/j.1420-9101.2001.00323.x; Kraaijeveld AR, 2001, P ROY SOC B-BIOL SCI, V268, P259, DOI 10.1098/rspb.2000.1354; Krijger CL, 2001, OIKOS, V92, P325, DOI 10.1034/j.1600-0706.2001.920215.x; KYRIACOU CP, 1990, HEREDITY, V64, P395, DOI 10.1038/hdy.1990.50; LEARY RF, 1989, TRENDS ECOL EVOL, V4, P214, DOI 10.1016/0169-5347(89)90077-3; Leips J, 2000, GENETICS, V155, P1773; LEROI AM, 1994, AM NAT, V143, P381, DOI 10.1086/285609; LEROI AM, 1994, EVOLUTION, V48, P1258, DOI 10.1111/j.1558-5646.1994.tb05310.x; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LEROI AM, 1994, AM NAT, V144, P661, DOI 10.1086/285699; LEWONTIN RC, 2000, EVOL GENET, P5; Linnen C, 2001, EVOL ECOL RES, V3, P877; LINTS FA, 1978, GENETICS AGEING; LINTS FA, 1988, DROSOPHILA MODEL ORG, P99; Loeschcke V, 1996, EVOLUTION, V50, P2354, DOI 10.1111/j.1558-5646.1996.tb03623.x; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; LUCKINBILL LS, 1985, HEREDITY, V55, P9, DOI 10.1038/hdy.1985.66; LUCKINBILL LS, 1986, HEREDITY, V56, P329, DOI 10.1038/hdy.1986.54; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MARKOW TA, 1995, ANNU REV ENTOMOL, V40, P105; Matos M, 2000, TRENDS ECOL EVOL, V15, P206, DOI 10.1016/S0169-5347(00)01844-9; Matos M, 2001, AM NAT, V158, P655, DOI 10.1086/323591; Matos M, 2000, J EVOLUTION BIOL, V13, P9, DOI 10.1046/j.1420-9101.2000.00116.x; McCabe C, 1998, CHRONOBIOL INT, V15, P119, DOI 10.3109/07420529808998677; McCabe J, 1997, EVOLUTION, V51, P1164, DOI 10.1111/j.1558-5646.1997.tb03964.x; McDonald MJ, 2001, CELL, V107, P567, DOI 10.1016/S0092-8674(01)00545-1; MCKENZIE JA, 1972, OECOLOGIA, V10, P373, DOI 10.1007/BF00345738; Medawar P. B., 1952, UNSOLVED PROBLEM BIO; Miyatake T, 1997, BEHAV GENET, V27, P489, DOI 10.1023/A:1025682618895; Miyatake T, 2002, HEREDITY, V88, P302, DOI [10.1038/sj.hdy.6800044, 10.1038/sj/hdy/6800044]; Moreteau B, 2003, J ZOOL SYST EVOL RES, V41, P64, DOI 10.1046/j.1439-0469.2003.00195.x; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Mueller L. D., 2000, STABILITY MODEL POPU; Mueller LD, 1997, ANNU REV ECOL SYST, V28, P269, DOI 10.1146/annurev.ecolsys.28.1.269; MUELLER LD, 1988, P NATL ACAD SCI USA, V85, P4383, DOI 10.1073/pnas.85.12.4383; MUELLER LD, 1988, AM NAT, V132, P786, DOI 10.1086/284890; MUELLER LD, 1994, ECOLOGY, V75, P430, DOI 10.2307/1939546; Mueller LD, 2000, ECOLOGY, V81, P1273, DOI 10.1890/0012-9658(2000)081[1273:DPSE]2.0.CO;2; MUELLER LD, 1990, EVOL ECOL, V4, P290, DOI 10.1007/BF02270928; MUELLER LD, 1991, AM NAT, V137, P457, DOI 10.1086/285177; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1985, EVOL BIOL, V19, P37; Mueller LD, 1996, P NATL ACAD SCI USA, V93, P15249, DOI 10.1073/pnas.93.26.15249; MUELLER LD, 1986, EVOLUTION, V40, P1354, DOI 10.1111/j.1558-5646.1986.tb05761.x; MUELLER LD, 1993, FUNCT ECOL, V7, P469, DOI 10.2307/2390034; Myers EM, 2003, CURR BIOL, V13, P526, DOI 10.1016/S0960-9822(03)00167-2; NEAT F, 1995, P ROY SOC B-BIOL SCI, V260, P73, DOI 10.1098/rspb.1995.0061; Novoseltsev VN, 2002, EVOLUTION, V56, P1136; NUNNEY L, 1990, ECOLOGY, V71, P1904, DOI 10.2307/1937598; NUNNEY L, 1983, AM NAT, V121, P67, DOI 10.1086/284040; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Nusbaum TJ, 1996, EXP GERONTOL, V31, P507, DOI 10.1016/0531-5565(96)00002-2; Nuzhdin SV, 1997, P NATL ACAD SCI USA, V94, P9734, DOI 10.1073/pnas.94.18.9734; Oklejewicz M, 2001, THESIS U GRONINGEN G; Palmer A. Richard, 2003, P279; Paranjpe DA, 2003, CHRONOBIOL INT, V20, P977, DOI 10.1081/CBI-120025247; Partridge L, 1999, P ROY SOC B-BIOL SCI, V266, P255, DOI 10.1098/rspb.1999.0630; PARTRIDGE L, 1986, J INSECT PHYSIOL, V32, P925, DOI 10.1016/0022-1910(86)90140-X; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1987, ANIM BEHAV, V35, P468, DOI 10.1016/S0003-3472(87)80272-5; PARTRIDGE L, 1987, ANIM BEHAV, V35, P555, DOI 10.1016/S0003-3472(87)80281-6; PARTRIDGE L, 1993, GENETICA, V91, P89, DOI 10.1007/BF01435990; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1990, J INSECT PHYSIOL, V36, P419, DOI 10.1016/0022-1910(90)90059-O; PARTRIDGE L, 1985, J INSECT PHYSIOL, V31, P393, DOI 10.1016/0022-1910(85)90084-8; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1994, J EVOLUTION BIOL, V7, P645, DOI 10.1046/j.1420-9101.1994.7060645.x; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PARTRIDGE L, 1994, EVOLUTION, V48, P1269, DOI 10.1111/j.1558-5646.1994.tb05311.x; PARTRIDGE L, 1995, EVOLUTION, V49, P538, DOI 10.1111/j.1558-5646.1995.tb02285.x; Partridge L, 1999, GENET RES, V74, P43, DOI 10.1017/S0016672399003778; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; Perez A, 2002, J EVOLUTION BIOL, V15, P524, DOI 10.1046/j.1420-9101.2002.00427.x; Phelan JP, 2003, EVOLUTION, V57, P527; PITTENDRIGH CS, 1970, P NATL ACAD SCI USA, V65, P500, DOI 10.1073/pnas.65.3.500; PITTENDRIGH CS, 1960, COLD SPRING HARB SYM, V25, P159, DOI 10.1101/SQB.1960.025.01.015; PITTENDRIGH CS, 1993, ANNU REV PHYSIOL, V55, P16; Pletcher SD, 2002, CURR BIOL, V12, P712, DOI 10.1016/S0960-9822(02)00808-4; Prasad NG, 2003, EVOL ECOL RES, V5, P903; Prasad NG, 2000, GENET RES, V76, P249, DOI 10.1017/S0016672300004754; Prasad NG, 2001, EVOLUTION, V55, P1363; PRASAD NG, 2003, BIOL LETT, pS1, DOI DOI 10.1098/RSBL.2003.0020; Price CSC, 1999, NATURE, V400, P449; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; PROUT T, 1989, GENETICS, V123, P803; Qiu J, 1996, J BIOL RHYTHM, V11, P75, DOI 10.1177/074873049601100108; Ravelli ACJ, 1998, LANCET, V351, P173, DOI 10.1016/S0140-6736(97)07244-9; Reeve JP, 1999, HEREDITY, V83, P697, DOI 10.1046/j.1365-2540.1999.00616.x; Reeve JP, 1996, EVOLUTION, V50, P1927, DOI 10.1111/j.1558-5646.1996.tb03580.x; Reeve MW, 2000, J EVOLUTION BIOL, V13, P836, DOI 10.1046/j.1420-9101.2000.00216.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Reznick David, 1996, P243; Rhen T, 2000, EVOLUTION, V54, P37, DOI 10.1111/j.0014-3820.2000.tb00005.x; Rice SH, 2002, P NATL ACAD SCI USA, V99, P15518, DOI 10.1073/pnas.202620999; Rice WR, 2002, GENETICA, V116, P179, DOI 10.1023/A:1021205130926; Rice WR, 2001, J EVOLUTION BIOL, V14, P685, DOI 10.1046/j.1420-9101.2001.00319.x; ROBERTSON F. W., 1957, JOUR GENETICS, V55, P410, DOI 10.1007/BF02984060; ROBERTSON FW, 1959, GENETICS, V44, P869; ROBERTSON FW, 1963, GENET RES, V4, P74, DOI 10.1017/S001667230000344X; Robertson FW, 1944, PROC R SOC SER B-BIO, V132, P258, DOI 10.1098/rspb.1944.0017; ROBERTSON FW, 1960, GENET RES, V1, P288, DOI 10.1017/S0016672300000264; ROBERTSON FW, 1957, J GENET, V55, P428, DOI DOI 10.1007/BF02984061; Robinson SJW, 2001, J EVOLUTION BIOL, V14, P14, DOI 10.1046/j.1420-9101.2001.00259.x; Roff Derek A., 1992; Roper C, 1996, J EVOLUTION BIOL, V9, P609, DOI 10.1046/j.1420-9101.1996.9050609.x; ROPER C, 1993, EVOLUTION, V47, P445, DOI 10.1111/j.1558-5646.1993.tb02105.x; Rose M.R., 1990, P29; Rose Michael R., 1996, P221; Rose MR, 1998, OIKOS, V83, P443, DOI 10.2307/3546672; ROSE MR, 1983, AM ZOOL, V23, P15; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1989, BIOESSAYS, V11, P132, DOI 10.1002/bies.950110505; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; ROSE MR, 1997, ZEUS SALMON BIODEMOG, P96; ROSE MR, 1987, GENETIC CONSTRAINTS, P99; Rossiter M, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P112; Rossiter MC, 1996, ANNU REV ECOL SYST, V27, P451, DOI 10.1146/annurev.ecolsys.27.1.451; Sakai T, 2001, P NATL ACAD SCI USA, V98, P9221, DOI 10.1073/pnas.151443298; SANG JH, 1956, J EXP BIOL, V33, P45; SANG JH, 1950, BIOL REV, V25, P188, DOI 10.1111/j.1469-185X.1950.tb00590.x; SANG JH, 1975, J HERED, V48, P265; Santos M, 1997, EVOLUTION, V51, P420, DOI 10.1111/j.1558-5646.1997.tb02429.x; Santos M, 1999, EVOLUTION, V53, P175, DOI 10.1111/j.1558-5646.1999.tb05343.x; SANTOS M, 1994, HEREDITY, V72, P515, DOI 10.1038/hdy.1994.69; SANTOS M, 1988, HEREDITY, V61, P255, DOI 10.1038/hdy.1988.113; Santos M, 1996, EVOLUTION, V50, P2530, DOI 10.1111/j.1558-5646.1996.tb03641.x; Scheiner SM, 2002, J EVOLUTION BIOL, V15, P889, DOI 10.1046/j.1420-9101.2002.00468.x; SCHLICHTING CD, 1998, PHEONOTYPIC EVOLUTIO; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; Sgro CM, 2001, AM NAT, V158, P657, DOI 10.1086/323592; Sgro CM, 2000, AM NAT, V156, P341, DOI 10.1086/303394; Sgro CM, 1999, SCIENCE, V286, P2521, DOI 10.1126/science.286.5449.2521; Shakarad M, 2001, J GENET, V80, P1, DOI 10.1007/BF02811412; Sharma V. K., 2002, P5; Sheeba V, 2001, J EXP ZOOL, V290, P541, DOI 10.1002/jez.1098; Sheeba V, 1999, BIOL RHYTHM RES, V30, P424, DOI 10.1076/brhm.30.4.424.1416; Sheeba V, 1999, NATURWISSENSCHAFTEN, V86, P448, DOI 10.1007/s001140050651; Sheeba V, 2000, J BIOL RHYTHM, V15, P380, DOI 10.1177/074873000129001477; SHEEBA V, 2002, THESIS MANIPAL ACAD; Shiotsugu J, 1997, EVOLUTION, V51, P163, DOI 10.1111/j.1558-5646.1997.tb02397.x; Simmons FH, 1997, J INSECT PHYSIOL, V43, P779, DOI 10.1016/S0022-1910(97)00037-1; Sinervo B, 2002, HEREDITY, V89, P329, DOI 10.1038/sj.hdy.6800148; Sokolowski MB, 1997, P NATL ACAD SCI USA, V94, P7373, DOI 10.1073/pnas.94.14.7373; Stearns SC., 1992, EVOLUTION LIFE HIST; Steppan SJ, 2002, TRENDS ECOL EVOL, V17, P320, DOI 10.1016/S0169-5347(02)02505-3; Sun JT, 2002, GENETICS, V161, P661; TANTAWY AO, 1970, GENETICS, V64, P79; Tatar M, 1999, AM NAT, V154, pS67, DOI 10.1086/303284; Tauber E, 2003, CURR BIOL, V13, P140, DOI 10.1016/S0960-9822(03)00004-6; Teotonio H, 2000, NATURE, V408, P463, DOI 10.1038/35044070; Teotonio H, 2002, J EVOLUTION BIOL, V15, P608, DOI 10.1046/j.1420-9101.2002.00424.x; Teotonio H, 2001, EVOLUTION, V55, P653, DOI 10.1554/0014-3820(2001)055[0653:PRE]2.0.CO;2; THOMAS RH, 1993, ECOL ENTOMOL, V18, P84, DOI 10.1111/j.1365-2311.1993.tb01084.x; Toma DP, 2002, NAT GENET, V31, P349, DOI 10.1038/ng893; Tower J, 2000, MECH AGEING DEV, V118, P1, DOI 10.1016/S0047-6374(00)00152-4; Travis J., 1989, P101; TREVITT S, 1988, J INSECT PHYSIOL, V34, P821, DOI 10.1016/0022-1910(88)90157-6; TUCIC N, 1979, EVOLUTION, V33, P350, DOI 10.1111/j.1558-5646.1979.tb04688.x; TYLER RH, 1993, GENETICA, V91, P143, DOI 10.1007/BF01435994; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; vanderHave TM, 1996, J THEOR BIOL, V183, P329, DOI 10.1006/jtbi.1996.0224; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; Vieira C, 2000, GENETICS, V154, P213; Wagner GP, 2000, J THEOR BIOL, V203, P163, DOI 10.1006/jtbi.2000.1074; WAGNER GP, 1989, GENETICS, V122, P223; WATSON MJO, 1995, AUST J ZOOL, V43, P51, DOI 10.1071/ZO9950051; White KP, 1997, SCIENCE, V276, P114, DOI 10.1126/science.276.5309.114; White KP, 1999, SCIENCE, V286, P2179, DOI 10.1126/science.286.5447.2179; WILKINSON GS, 1987, EVOLUTION, V41, P11, DOI 10.1111/j.1558-5646.1987.tb05767.x; Williams AE, 1997, J EXP BIOL, V200, P615; Williams AE, 1998, J EXP BIOL, V201, P2953; Williams AE, 1998, J EXP BIOL, V201, P2945; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.1111/j.1558-5646.1957.tb02911.x; Worley AC, 2003, AM NAT, V161, P153, DOI 10.1086/345461; Xue L, 2000, P NATL ACAD SCI USA, V97, P3272, DOI 10.1073/pnas.060018897; ZAMUDIO KR, 1995, ANIM BEHAV, V49, P671; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x; Zwaan BJ, 1999, HEREDITY, V82, P589, DOI 10.1046/j.1365-2540.1999.00544.x; ZWAAN BJ, 1991, HEREDITY, V66, P29, DOI 10.1038/hdy.1991.4; Zwaan BJ, 2000, HEREDITY, V84, P338, DOI 10.1046/j.1365-2540.2000.00677.x 302 81 83 2 47 INDIAN ACAD SCIENCES BANGALORE C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA 0022-1333 0973-7731 J GENET J. Genet. APR-AUG 2003 82 1-2 45 76 10.1007/BF02715881 32 Genetics & Heredity Genetics & Heredity 748VA WOS:000186880700009 14631102 2019-02-26 J Rogers, PJ; Geddes, M; Ward, TM Rogers, PJ; Geddes, M; Ward, TM Blue sprat Spratelloides robustus (Clupeidae : Dussumieriinae): a temperate clupeoid with a tropical life history strategy? MARINE BIOLOGY English Article SARDINE SARDINOPS-SAGAX; PAPUA-NEW-GUINEA; SPAWNING FREQUENCY; EGG-PRODUCTION; SOUTH-PACIFIC; AGE; GROWTH; FECUNDITY; AUSTRALIA; OTOLITHS This article describes the life-history strategy of the blue sprat Spratelloides robustus in South Australia and compares the demographic traits observed with those of other clupeoids. Validation studies that involved marking the sagittae of captive fish with oxy-tetracycline suggested that growth increments are deposited daily. The oldest fish examined was 82 mm caudal fork length and 241 days old, which suggests S. robustus may live for less than 1 year. Growth rates were high during larval stages (0.34 mm day(-1)) and remained high throughout juvenile (0.33 mm day(-1)) and adult stages (0.19 mm day(-1)). S. robustus reached 50% maturity at approximately 60 mm caudal fork length after approximately 135 days. Spawning occurred from October to February (spring to late summer) and larvae were found mainly in Spencer Gulf, Gulf St Vincent, and Investigator Strait. Females spawned multiple batches of demersal eggs every 1-2 days. Batch fecundities were low (mean = 756. SD = 341) and increased linearly with length and weight. The life history of S. robustus is dissimilar to other small to medium-sized temperate clupeoids, but similar to those of many small subtropical and tropical clupeoids, including other Spratelloides species. Gulf St Vincent and Spencer Gulf may be considered to be "seasonally subtropical systems" in an otherwise temperate region that support a suite of species, including S. robustus, that have life-history strategies similar to those of sub-topical and tropical taxa. S Australian Res & Dev Inst, Adelaide, SA 5022, Australia; Univ Adelaide, Dept Environm Biol, Adelaide, SA 5005, Australia Rogers, PJ (reprint author), Univ Adelaide, Dept Environm Biol, Adelaide, SA 5005, Australia. Mark, Timothy/0000-0002-9003-2772 BEAMISH RJ, 1983, T AM FISH SOC, V112, P735, DOI 10.1577/1548-8659(1983)112<735:TFRFAV>2.0.CO;2; BLACKBURN M, 1941, AUST COMM IND RES OR, V38, P55; Butler JL, 1996, CAL COOP OCEAN FISH, V37, P152; CAMPANA SE, 1985, CAN J FISH AQUAT SCI, V42, P1014, DOI 10.1139/f85-127; CLARKE TA, 1987, FISH B-NOAA, V85, P127; CONOVER DO, 1992, J FISH BIOL, V41, P161, DOI 10.1111/j.1095-8649.1992.tb03876.x; DALZELL P, 1985, J FISH BIOL, V27, P229, DOI 10.1111/j.1095-8649.1985.tb04023.x; DALZELL P, 1987, J FISH BIOL, V30, P691, DOI 10.1111/j.1095-8649.1987.tb05798.x; DEMARTINI EE, 1981, FISH B-NOAA, V79, P547; Edyvane K., 1999, SO SEAS, P40; FITZHUGH GR, 1995, FISH B-NOAA, V93, P568; Fletcher WJ, 1996, MAR FRESHWATER RES, V47, P617, DOI 10.1071/MF9960617; GAUGHAN DJ, 1996, 108 FISH DEP W AUSTR; HAYASHI A, 1989, NIPPON SUISAN GAKK, V55, P997; HOEDT FE, 1992, AUST J MAR FRESH RES, V43, P1043; Hunter J. R, 1985, EGG PRODUCTION METHO, P67; HUNTER JR, 1979, FISH B-NOAA, V77, P641; HUNTER JR, 1985, EGG PRODUCTION METHO, P79; Hutchins B, 1986, SEA FISHES SO AUSTR; Kailola P. J., 1993, AUSTR FISHERIES RESO; LEWIS AD, 1983, 6 MIN AGR FISH FISH; Lo NCH, 1996, CAL COOP OCEAN FISH, V37, P160; Macewicz BJ, 1996, CAL COOP OCEAN FISH, V37, P140; MILTON DA, 1995, ICES J MAR SCI, V52, P111, DOI 10.1016/1054-3139(95)80020-4; MILTON DA, 1991, J FISH BIOL, V39, P849, DOI 10.1111/j.1095-8649.1991.tb04414.x; MILTON DA, 1993, J FISH BIOL, V43, P89, DOI 10.1006/jfbi.1993.1112; Pierce DJ, 2001, FISH B-NOAA, V99, P202; RE P, 1984, Cybium, V8, P33; Rochet MJ, 2000, ICES J MAR SCI, V57, P228, DOI 10.1006/jmsc.2000.0641; Stearns SC., 1992, EVOLUTION LIFE HIST; VELAZQUEZ CQ, 2000, FISH RES, V48, P99; Ward TM, 2001, MAR ECOL PROG SER, V220, P241, DOI 10.3354/meps220241; WARD TM, 2001, ICES J MAR SCI, V58, P830; WHITEHEAD JP, 1988, FAO SPECIES CATALO 1, V7; WHITEHEAD JP, 1988, FAO SPECIES CATALO 2, V7; WILLIAMS VR, 1983, FISH B US, V82, P587; WRIGHT PJ, 1992, J FISH BIOL, V40, P833, DOI 10.1111/j.1095-8649.1992.tb02630.x 37 16 17 0 1 SPRINGER-VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 USA 0025-3162 MAR BIOL Mar. Biol. APR 2003 142 4 809 824 10.1007/S00227-002-0973-8 16 Marine & Freshwater Biology Marine & Freshwater Biology 681JF WOS:000183032500021 2019-02-26 J Honkoop, PJC Honkoop, PJC Physiological costs of reproduction in the Sydney rock oyster Saccostrea glomerata - How expensive is reproduction? OECOLOGIA English Article bivalves; costs of gametogenesis; costs of growth; diploids; triploids CRASSOSTREA-GIGAS THUNBERG; TRIPLOID PACIFIC OYSTERS; SCALLOP ARGOPECTEN-VENTRICOSUS; DROSOPHILA-MELANOGASTER; COMMERCIALIS IREDALE; OXYGEN-CONSUMPTION; MYTILUS-EDULIS; FASTER GROWTH; ENERGY BUDGET; MEIOSIS-II In this study, triploid Sydney rock oysters Saccostrea glomerata, which do not reproduce and have only limited gonadal development, were used to calculate the cost of producing and maintaining somatic tissues. The consumption of oxygen was measured and converted to units of energy expended. The consumption of oxygen of diploid oysters, in different stages of the reproductive cycle, was also measured. Knowing the costs of producing and maintaining somatic tissues (obtained from the triploid oysters), it was possible to calculate the energy demand of somatic and reproductive tissues of diploid oysters. The focus of this study was to test whether this method would work, to investigate if this method would give results in accordance with modem life-history theory and to test hypotheses about costs of reproduction in oysters. It was found that in diploid oysters, 27% of the consumed oxygen was needed for reproductive processes. It was also found that the costs of production and maintenance of reproductive tissues were on average 84% of those of somatic tissues. Costs for the production and maintenance of somatic tissues decreased over time. Costs for reproduction also decreased, but were dependent on the stage of gonadal development. If the relative mass of gametes in the gonads was large, the costs were relatively small; if the mass was relatively small, the costs were large. Differences between traits of males and females were never significant, suggesting that reproductive effort and costs were similar in males and females. It was estimated that if diploid oysters did not reproduce, they could gain 64% more somatic ash-free dry mass. Thus, in terms of growth, reproduction is an expensive activity. Univ Sydney, Ctr Res Ecol Impacts Coastal Cities, Marine Ecol Labs A 11, Sydney, NSW 2006, Australia Honkoop, PJC (reprint author), Royal Netherlands Inst Sea Res, Dept Marine Ecol, NL-1790 AB Den Burg, Netherlands. Abell AJ, 2000, OIKOS, V88, P630, DOI 10.1034/j.1600-0706.2000.880320.x; ADAMS SM, 1982, T AM FISH SOC, V111, P549, DOI 10.1577/1548-8659(1982)111<549:EPILBU>2.0.CO;2; AKASHIGE S, 1990, 5 INT C INV REPR, P461; ALLAN SK, 1986, J EXP MAR BIOL ECOL, V102, P197; ALLAN SK, 1990, CAN J FISH AQUAT SCI, V47, P1213; Bayne BL, 1999, BIOL BULL, V197, P377, DOI 10.2307/1542792; BAYNE BL, 1983, OECOLOGIA, V59, P18, DOI 10.1007/BF00388067; BAYNE BL, 1983, MOLLUSCA 1, V4, P407; Bricelj V.M., 1991, Developments in Aquaculture and Fisheries Science, V21, P305; BRICELJ VM, 1987, J EXP MAR BIOL ECOL, V112, P73; CALOW P, 1977, J ANIM ECOL, V46, P765, DOI 10.2307/3639; Cox ES, 1996, J EXP MAR BIOL ECOL, V197, P101, DOI 10.1016/0022-0981(95)00147-6; DIANA JS, 1983, CAN J ZOOL, V61, P1968, DOI 10.1139/z83-259; Djawdan M, 1996, PHYSIOL ZOOL, V69, P1176, DOI 10.1086/physzool.69.5.30164252; Gnaiger E, 1983, POLAROGRAPHIC OXYGEN, P337, DOI [10.1007/978-3-642-81863-9, DOI 10.1007/978-3-642-81863-9_30]; Guo XM, 1996, AQUACULTURE, V142, P149, DOI 10.1016/0044-8486(95)01243-5; GUO XM, 1994, BIOL BULL-US, V187, P309, DOI 10.2307/1542288; GUO XM, 1994, GENETICS, V138, P1199; HAWKINS AJS, 1994, J EXP MAR BIOL ECOL, V184, P21, DOI 10.1016/0022-0981(94)90164-3; HIRSHFIELD MF, 1980, ECOLOGY, V61, P282, DOI 10.2307/1935187; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HORSTMANN HJ, 1958, Z VERGL PHYSIOL, V41, P390, DOI 10.1007/BF00344262; HUNTER JR, 1981, FISH B-NOAA, V79, P215; JONSSON KI, 1994, TRENDS ECOL EVOL, V9, P304, DOI 10.1016/0169-5347(94)90042-6; Kesarcodi-Watson A, 2001, AQUACULTURE, V203, P177, DOI 10.1016/S0044-8486(01)00622-6; Kiyomoto M, 1996, ZOOL SCI, V13, P393, DOI 10.2108/zsj.13.393; Kooijman SALM, 1993, DYNAMIC ENERGY BUDGE; LAING I, 1994, J EXP MAR BIOL ECOL, V184, P159, DOI 10.1016/0022-0981(94)90002-7; Madsen T, 2000, AUSTRAL ECOL, V25, P670, DOI 10.1046/j.1442-9993.2000.01067.x; MASON KM, 1988, MAR BIOL, V98, P519, DOI 10.1007/BF00391543; Nell J.A., 1996, AQUAC RES, V27, P101; NELL JA, 1994, AQUACULTURE, V126, P243, DOI 10.1016/0044-8486(94)90040-X; Neuhaus P, 2000, BEHAV ECOL SOCIOBIOL, V48, P75, DOI 10.1007/s002650000209; PARRY GD, 1983, J THEOR BIOL, V101, P453, DOI 10.1016/0022-5193(83)90150-9; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Ruiz-Verdugo CA, 2001, AQUACULTURE, V201, P19, DOI 10.1016/S0044-8486(01)00567-1; Ruiz-Verdugo CA, 2000, AQUACULTURE, V186, P13, DOI 10.1016/S0044-8486(99)00369-5; Ruusila V, 2000, J ZOOL, V252, P79, DOI 10.1111/j.1469-7998.2000.tb00822.x; Simmons FH, 1997, J INSECT PHYSIOL, V43, P779, DOI 10.1016/S0022-1910(97)00037-1; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Stearns SC., 1992, EVOLUTION LIFE HIST; Stoeckmann AM, 1997, CAN J FISH AQUAT SCI, V54, P2743, DOI 10.1139/cjfas-54-12-2743; Thompson Raymond J., 1996, P335; THOMPSON RJ, 1984, MAR ECOL PROG SER, V16, P249, DOI 10.3354/meps016249; TINKLE DW, 1975, ECOLOGY, V56, P427, DOI 10.2307/1934973; VAHL, 1978, OPHELIA, V17, P143; Vahl O., 1985, P281; Wang ZP, 2002, AQUACULTURE, V204, P337, DOI 10.1016/S0044-8486(01)00845-6; WOOTTON RJ, 1976, J FISH BIOL, V8, P385, DOI 10.1111/j.1095-8649.1976.tb03967.x; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133 50 24 24 0 7 SPRINGER-VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 USA 0029-8549 OECOLOGIA Oecologia APR 2003 135 2 176 183 10.1007/s00442-002-1172-5 8 Ecology Environmental Sciences & Ecology 676LQ WOS:000182753900002 12698338 2019-02-26 J Leslie, PW; Little, MA Leslie, PW; Little, MA Human biology and ecology: Variation in nature and the nature of variation AMERICAN ANTHROPOLOGIST English Article; Proceedings Paper Annual Meeting of the American-Anthropological-Association 2001 WASHINGTON, D.C. Amer Anthropol Assoc biological anthropology; human ecology; adaptation; environmental physiology; reproductive ecology HUMAN OVARIAN-FUNCTION; REPRODUCTIVE ENDOCRINOLOGY; TESTOSTERONE LEVELS; WEIGHT-LOSS; WOMEN; FERTILITY; MALES; ANTHROPOLOGY; DEMOGRAPHERS; SEASONALITY Human biology seeks to understand human variation and the biological, environmental, social, and historical influences on that variation. Views of the nature of both variation and environment have changed during the past 100 years. Typological approaches to nature and human diversity shifted to an evolutionary perspective during the first half of the 20th century. In the second half, widespread human biological variation was documented and interpreted in terms of adaptation to the environment. Environmental physiology and reproductive ecology continue to document environmental influences on human biological functioning, but with (1) an expanded concept of environment that acknowledges more fully the interactions among its physical, biotic, and social aspects and (2) an expanded theoretical basis, drawing on evolutionary ecology and life history theory, acknowledging tradeoffs and changing constraints and opportunities over the lifetime. Human biology gains from greater interaction with other fields, such as political ecology, but also contributes to them. Univ N Carolina, Chapel Hill, NC 27599 USA; SUNY Binghamton, Binghamton, NY 13902 USA Leslie, PW (reprint author), Univ N Carolina, Chapel Hill, NC 27599 USA. Adolph EF, 1947, PHYSL MAN DESERT; BAILEY RC, 1992, J BIOSOC SCI, V24, P393; Baker Paul, 1976, MAN ANDES MULTIDISCI; BAKER PAUL T., 1960, HUMAN BIOL, V32, P3; BAKER PT, 1966, EUGEN QUART, V13, P81, DOI 10.1080/19485565.1966.9987651; BAKER PT, 1969, SCIENCE, V163, P1149, DOI 10.1126/science.163.3872.1149; BAKER PT, 1972, ANNU REV ANTHROPOL, V1, P151, DOI 10.1146/annurev.an.01.100172.001055; BAKER PT, 1958, AM NAT, V42, P337; BAKER PT, 1975, PHYSL ANTHR, P3; BEALL CM, 1983, SEMIN RESPIR MED, V5, P195, DOI 10.1055/s-2007-1011452; BEALL CM, 1992, ANN HUM BIOL, V19, P67, DOI 10.1080/03014469200001932; Beall CM, 2000, HUM BIOL, V72, P201; Bentley GR, 1998, EUR J CLIN NUTR, V52, P261, DOI 10.1038/sj.ejcn.1600547; BENTLEY GR, 1996, VARIABILITY HUMAN FE, P46; BENTLEY GR, 2001, REPROD ECOLOGY HUMAN, P203; BIRDSELL JB, 1953, AM NAT, V87, P171, DOI 10.1086/281776; Bogin Barry, 1997, American Journal of Physical Anthropology, V102, P17, DOI 10.1002/(SICI)1096-8644(199701)102:1<17::AID-AJPA3>3.0.CO;2-A; BONGAARTS J, 1978, POPUL DEV REV, V4, P105, DOI 10.2307/1972149; Bribiescas RG, 1996, HUM NATURE-INT BIOS, V7, P163, DOI 10.1007/BF02692109; BRIBIESCAS RG, 2001, YB PHYSICAL ANTHR, V116, P148; BROCKMAN DK, 1995, AM J PRIMATOL, V36, P313, DOI 10.1002/ajp.1350360406; CAMPBELL, 1995, 64 ANN M POP ASS AM; Campbell BC, 1995, YEARB PHYS ANTHROPOL, V38, P1; CAMPBELL BC, 2001, REPROD ECOLOGY HUMAN, P159; CAMPBELL KL, 1988, NATURAL HUMAN FERTIL, P39; CAMPBELL KL, 1994, HUMAN REPROD ECOLOGY, P312; CAMPBELL KL, 1994, HUMAN REPROD ECOLOGY, P1; CAMPBELL KL, 1994, HUMAN REPROD ECOLOGY; Coon C. S., 1950, RACES STUDY PROBLEMS; DAVIS K, 1956, ECON DEV CULT CHANGE, V4, P211, DOI 10.1086/449714; DELVOYE P, 1977, J BIOSOC SCI, V9, P447; Dill David B., 1964, HDB PHYSL 4; Dufour DL, 1997, AM J PHYS ANTHROPOL, V102, P5, DOI 10.1002/(SICI)1096-8644(199701)102:1<5::AID-AJPA2>3.0.CO;2-0; DUNBAR RIM, 1995, HUMAN REPROD DECISIO; ELLISON PT, 1988, YEARB PHYS ANTHROPOL, V31, P115; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; Ellison PT, 1996, HUM BIOL, V68, P955; ELLISON PT, 2001, REPROD ECOLOGY HUMAN; FRISCH RE, 1974, SCIENCE, V185, P949, DOI 10.1126/science.185.4155.949; FRISCH RE, 1970, SCIENCE, V169, P397, DOI 10.1126/science.169.3943.397; FRISCH RE, 1984, BIOL REV, V59, P161, DOI 10.1111/j.1469-185X.1984.tb00406.x; GAGE TB, 1985, CURR ANTHROPOL, V26, P644, DOI 10.1086/203353; GAGE TB, 1989, YEARB PHYS ANTHROPOL, V32, P185; Goodman A. H, 1998, BUILDING NEW BIOCULT; HAIG D, 1993, Q REV BIOL, V68, P335; Hanna JM, 1976, MAN ANDES MULTIDISCI, P315; HENRY L, 1961, EUGEN QUART, V8, P81, DOI 10.1080/19485565.1961.9987465; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; HOBCRAFT JN, 1994, ANN NY ACAD SCI, V709, P408, DOI 10.1111/j.1749-6632.1994.tb30426.x; JOHNSON PL, 1987, HUM BIOL, V59, P837; Keys A., 1950, BIOL HUMAN STARVATIO; KNOTT CD, 1999, THESIS HARVARD U; KONNER M, 1980, SCIENCE, V207, P788, DOI 10.1126/science.7352291; LAGER C, 1990, AM J HUM BIOL, V2, P303, DOI 10.1002/ajhb.1310020312; Leatherman TL, 1997, AM J PHYS ANTHROPOL, V102, P1; Leslie P, 2002, AM J HUM BIOL, V14, P168, DOI 10.1002/ajhb.10044; Leslie P, 1989, HUMAN POPULATION BIO, P15; Leslie PW, 1996, HUM BIOL, V68, P95; Little M. A., 1981, Mountain Research and Development, V1, P145, DOI 10.2307/3673120; Little M. A., 1978, BIOL HIGH ALTITUDE P, P251; LITTLE MA, 1977, INT J BIOMETEOROL, V21, P123, DOI 10.1007/BF01553706; Little MA, 1976, MAN ANDES MULTIDISCI, P332; LITTLE MA, 1999, TURKANA HERDES DRY S; MILAN FA, 1967, J APPL PHYSIOL, V22, P565; MOORE LG, 1990, AM J HUM BIOL, V2, P627, DOI 10.1002/ajhb.1310020606; Newburgh L.H, 1949, PHYSL HEAT REGULATIO; Newman MT, 1953, AM ANTHROPOL, V55, P311, DOI 10.1525/aa.1953.55.3.02a00020; OJIKUTU RO, 1972, HUMAN BIOLOGY ENVIRO, P132; PANTERBRICK C, 1993, HUM REPROD, V8, P684, DOI 10.1093/oxfordjournals.humrep.a138120; PEARL R, 1939, NATURAL HIST POPULAT; PIRKE KM, 1985, J CLIN ENDOCR METAB, V60, P1174, DOI 10.1210/jcem-60-6-1174; ROBERTS D. F., 1956, HUMAN BIOL, V28, P323; Roberts D. F., 1960, HUMAN GROWTH, P59; Schell LM, 1997, AM J PHYS ANTHROPOL, V102, P67; SCHELL LM, 1999, HUMAN GROWTH CONTEXT, P221; SHORT RV, 1983, ADV INT MATERNAL CHI, V3, P26; SPENCER F, 1997, HIST PHYSICAL ANTHR, P1; Spuhler James N., 1959, STUDY POPULATION, P728; Steegmann A. T., 1975, PHYSL ANTHR, P130; Strier KB, 1997, AM J PRIMATOL, V42, P299, DOI 10.1002/(SICI)1098-2345(1997)42:4<299::AID-AJP5>3.0.CO;2-S; SWEDLUND AC, 1978, ANNU REV ANTHROPOL, V7, P137, DOI 10.1146/annurev.an.07.100178.001033; SWEDLUND AC, 1975, AM ANTIQUITY 2, V40; THOMAS RB, 1989, HUMAN POPULATION BIO, P296; THOMAS RB, 1979, YEARB PHYS ANTHROPOL, V22, P1; Vitzthum VJ, 2002, HUM REPROD, V17, P1906, DOI 10.1093/humrep/17.7.1906; VITZTHUM VJ, 2001, REPROD ECOLOGY HUMAN, P179; VITZTHUM VJ, 1997, EVOLVING FEMALE LIFE, P242; WARREN KB, 1950, COLD SPRING HARB S Q, V15; WASHBURN SL, 1951, T NEW YORK ACAD SCI, V13, P298, DOI 10.1111/j.2164-0947.1951.tb01033.x; WEISS KM, 1989, J QUANT ANTHR, V1, P79; Winterhalder B, 2002, EVOL HUM BEHAV, V23, P59, DOI 10.1016/S1090-5138(01)00089-7; Wood J. W., 1994, DYNAMICS HUMAN REPRO; WOOD JW, 1994, ANN NY ACAD SCI, V709, P101, DOI 10.1111/j.1749-6632.1994.tb30391.x; WOOD JW, 1988, POP STUD-J DEMOG, V42, P85, DOI 10.1080/0032472031000143136; Worthman CM, 1997, AM J PHYS ANTHROPOL, V104, P1; WULSIN FR, 1948, 139 DEP ARM OFF QUAR 97 13 13 0 10 AMER ANTHROPOLOGICAL ASSOC ARLINGTON 4350 NORTH FAIRFAX DRIVE SUITE 640, ARLINGTON, VA 22203 USA 0002-7294 AM ANTHROPOL Am. Anthropol. MAR 2003 105 1 28 37 10.1525/aa.2003.105.1.28 10 Anthropology Anthropology 653LC WOS:000181435800003 2019-02-26 J Oli, MK; Dobson, FS Oli, MK; Dobson, FS The relative importance of life-history variables to population growth rate in mammals: Cole's prediction revisited AMERICAN NATURALIST English Article Cole's prediction; elasticity analysis; population consequences of life-history patterns; partial life cycle model; population regulation; relative importance of life-history variables TABLE RESPONSE EXPERIMENTS; PHYLOGENETIC CORRECTION; DEVELOPMENTAL TIME; DENSITY-DEPENDENCE; GROUND-SQUIRRELS; LEAST KILLIFISH; CYCLE ANALYSIS; PATTERNS; TRAITS; SIZE The relative importance of life-history variables to population growth rate (lambda) has substantial consequences for the study of life-history evolution and for the dynamics of biological populations. Using life-history data for 142 natural populations of mammals, we estimated the elasticity of lambda to changes in age at maturity (alpha), age at last reproduction (omega), juvenile survival (P-j), adult survival (P-a), and fertility (F). Elasticities were then used to quantify the relative importance of alpha, omega, P-j, P-a, and F to lambda and to test theoretical predictions regarding the relative influence on lambda of changes in life-history variables. Neither alpha nor any other single life-history variable had the largest relative influence on lambda in the majority of the populations, and this pattern did not change substantially when effects of phylogeny and body size were statistically removed. Empirical support for theoretical predictions was poor at best. However, analyses of elasticities on the basis of the magnitude (F) and onset (alpha) of reproduction revealed that alpha, followed by F, had the largest relative influence on lambda in populations characterized by early maturity and high reproductive rates, or when F/alpha > 0.60. When maturity was delayed and reproductive rates were low, or when F/alpha < 0.15, survival rates were overwhelmingly most influential, and reproductive parameters (alpha and F) had little relative influence on lambda. Population dynamic consequences of likely responses of biological populations to perturbations in life-history variables are examined, and predictions are made regarding the numerical dynamics of age-structured populations on the basis of values of the F/alpha ratio. Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA; Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA Oli, MK (reprint author), Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA. olim@wec.ufl.edu BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Boonstra R, 1998, ECOLOGY, V79, P1479; BOONSTRA R, 1994, EVOL ECOL, V8, P196, DOI 10.1007/BF01238250; BOONSTRA R, 1989, OIKOS, V54, P265, DOI 10.2307/3565284; CASWELL H, 1984, AQUACULTURE, V43, P123, DOI 10.1016/0044-8486(84)90016-4; CASWELL H, 1980, THEOR POPUL BIOL, V17, P71, DOI 10.1016/0040-5809(80)90015-5; Caswell H., 2001, MATRIX POPULATION MO; CASWELL H, 1997, STRUCTURED POPULATIO, P20; CHEVERUD JM, 1985, EVOLUTION, V39, P1335, DOI 10.1111/j.1558-5646.1985.tb05699.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Dobson FS, 2001, AM NAT, V158, P236, DOI 10.1086/321322; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; ENRIGHT NJ, 1995, OECOLOGIA, V104, P79, DOI 10.1007/BF00365565; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; Franco Miguel, 1997, P210; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; GILBERT BS, 1991, HOLARCTIC ECOL, V14, P250; GREEN R, 1975, AM NAT, V109, P1, DOI 10.1086/282969; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.2307/177367; Higgins K, 1997, AM NAT, V149, P247, DOI 10.1086/285989; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HORVITZ C, 1997, STRUCTURED POPULATIO, P247, DOI DOI 10.1007/978-1-4615-5973-3; Krebs CJ, 1996, J MAMMAL, V77, P8, DOI 10.2307/1382705; KREBS CJ, 1973, SCIENCE, V179, P35, DOI 10.1126/science.179.4068.35; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; Leips J, 1999, J ANIM ECOL, V68, P595, DOI 10.1046/j.1365-2656.1999.00311.x; Leips J, 2000, ECOL MONOGR, V70, P289, DOI 10.1890/0012-9615(2000)070[0289:GIOEPD]2.0.CO;2; Levin L, 1996, ECOL APPL, V6, P1295, DOI 10.2307/2269608; LEWONTIN RC, 1965, GENETICS COLONIZING, P79; LIDICKER WZ, 1988, J MAMMAL, V69, P225, DOI 10.2307/1381374; MAC ARTHUR ROBERT H., 1967; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; MEATS A, 1971, OECOLOGIA, V6, P223, DOI 10.1007/BF00344916; MILES DB, 1993, ANNU REV ECOL SYST, V24, P587, DOI 10.1146/annurev.es.24.110193.003103; MILES DB, 1992, AM NAT, V139, P848, DOI 10.1086/285361; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; MURDOCH WW, 1994, ECOLOGY, V75, P271, DOI 10.2307/1939533; Neubert MG, 2000, J MATH BIOL, V41, P103, DOI 10.1007/s002850070001; Oli MK, 2002, EVOL ECOL RES, V4, P563; Oli MK, 1999, OIKOS, V86, P557, DOI 10.2307/3546660; Oli MK, 1999, THEOR POPUL BIOL, V56, P293, DOI 10.1006/tpbi.1999.1427; Oli MK, 2001, ECOLOGY, V82, P1921, DOI 10.1890/0012-9658(2001)082[1921:EODROU]2.0.CO;2; Oli MK, 2001, OIKOS, V93, P376, DOI 10.1034/j.1600-0706.2001.930303.x; Oli MK, 2001, J MAMMAL, V82, P573, DOI 10.1644/1545-1542(2001)082<0573:PCISMT>2.0.CO;2; Oli MK, 2001, ECOLOGY, V82, P1180, DOI 10.1890/0012-9658(2001)082[1180:PLCAAM]2.0.CO;2; PETERS RH, 1983, ECOLOGICAL SIGNIFICA; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Price T, 1997, PHILOS T ROY SOC B, V352, P519, DOI 10.1098/rstb.1997.0036; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Roff Derek A., 1992; Rohlf FJ, 2001, EVOLUTION, V55, P2143; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Sinclair A.R.E., 1989, P197; Sinclair ARE, 1996, FRONTIERS OF POPULATION ECOLOGY, P127; SNELL TW, 1978, OECOLOGIA, V32, P119, DOI 10.1007/BF00344696; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; Stearns SC., 1992, EVOLUTION LIFE HIST; TAITT MJ, 1985, AM SOC MAMMALOGISTS, V8, P567, DOI DOI 10.1016/J.FORECO.2007.08.005; TINKLE DW, 1993, ECOLOGY, V74, P2413, DOI 10.2307/1939592; TKADLEC E, 1995, OIKOS, V73, P231, DOI 10.2307/3545913; Tuljapurkar S, 1997, STRUCTURED POPULATIO; Turchin P, 1999, OIKOS, V84, P153, DOI 10.2307/3546876; Turchin Peter, 1995, P19, DOI 10.1016/B978-012159270-7/50003-8; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; WESTERN D, 1983, OECOLOGIA, V59, P269, DOI 10.1007/BF00378847; WESTERN D, 1979, AFR J ECOL, V17, P185, DOI 10.1111/j.1365-2028.1979.tb00256.x; WESTOBY M, 1995, J ECOL, V83, P727, DOI 10.2307/2261640; WESTOBY M, 1995, J ECOL, V83, P531, DOI 10.2307/2261605; ZAMMUTO RM, 1987, ECOLOGY, V68, P1351, DOI 10.2307/1939219 77 151 156 0 47 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAR 2003 161 3 422 440 10.1086/367591 19 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 656MZ WOS:000181612700006 12699222 2019-02-26 J Godin, JGJ; McDonough, HE Godin, JGJ; McDonough, HE Predator preference for brightly colored males in the guppy: a viability cost for a sexually selected trait BEHAVIORAL ECOLOGY English Article color; fish; fitness cost; guppy; ornament; Poecilia reticulata; predation risk LIFE-HISTORY EVOLUTION; POECILIA-RETICULATA; NATURAL-SELECTION; FEMALE CHOICE; MATE-CHOICE; CAROTENOID LIMITATION; HANDICAP PRINCIPLE; PATTERNS; SIGNALS; COURTSHIP Although conspicuous visual sexual signals, such as bright colors, in males serve to attract females in numerous species, they may also attract the attention of potential predators and thus may be costly in terms of increasing individual risk of mortality to predation. Most models of the evolution of extravagant male sexual traits and female preferences for them assume that the sexually preferred male trait is costly to produce and maintain. However, there is surprisingly little empirical evidence for direct fitness costs associated with sexually selected visual traits that enhance male mating success. In the present study, we report a direct fitness cost for sexually selected, bright body-color patterns in males in the form of an associated greater risk of mortality to predation. By using the guppy (Poecilia reticulata) and the blue acara cichlid fish (Aequidens pulcher) as a model prey-predator system, we demonstrate experimentally that individual cichlids preferentially and consistently approached, attacked, and captured the more brightly colored of two size-matched male guppies presented simultaneously in staged encounters. This resulted in the brightly colored male incurring, on average, a significantly higher risk of mortality given an encounter with the predator than with the drabber male in matched pairs. Our results constitute strong behavioral evidence for a direct viability cost associated with bright coloration in male guppies, and they corroborate the generally accepted paradigm that directional predation by visual fish predators against brightly colored, adult male guppies underlies the evolution of the known divergent color patterns in natural guppy populations that experience different intensities of predation. The viability cost associated with bright conspicuous coloration in male guppies potentially reinforces for females the reliability of this sexually selected trait as an indicator trait of male quality. Mt Allison Univ, Dept Biol, Sackville, NB E4L 1G7, Canada Godin, JGJ (reprint author), Carleton Univ, Dept Biol, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada. Andersson MB, 1994, SEXUAL SELECTION; Brooks R, 2000, NATURE, V406, P67, DOI 10.1038/35017552; Brooks R, 2001, EVOLUTION, V55, P1002, DOI 10.1554/0014-3820(2001)055[1002:DAISSA]2.0.CO;2; Brooks R, 2001, EVOLUTION, V55, P1644; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1991, VISION RES, V31, P587, DOI 10.1016/0042-6989(91)90109-I; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; ENDLER JA, 1982, EVOLUTION, V36, P178, DOI 10.1111/j.1558-5646.1982.tb05022.x; ENDLER JA, 1992, AM NAT, V139, pS125, DOI 10.1086/285308; ENDLER JA, 1988, ANNU REV ECOL SYST, V19, P395, DOI 10.1146/annurev.es.19.110188.002143; GODIN JGJ, 1995, OECOLOGIA, V103, P224, DOI 10.1007/BF00329084; Godin JGJ, 1996, P NATL ACAD SCI USA, V93, P10262, DOI 10.1073/pnas.93.19.10262; Godin JGJ, 1996, ANIM BEHAV, V51, P117, DOI 10.1006/anbe.1996.0010; Gong A, 1996, ANIM BEHAV, V52, P1007, DOI 10.1006/anbe.1996.0248; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Grether GF, 2000, EVOLUTION, V54, P1712; Grether GF, 1999, P ROY SOC B-BIOL SCI, V266, P1317, DOI 10.1098/rspb.1999.0781; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; Houde A., 1997, SEX COLOR MATE CHOIC; HOUDE AE, 1993, AM NAT, V141, P796, DOI 10.1086/285506; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; HUNTINGFORD FA, 1984, ANIM BEHAV, V32, P210, DOI 10.1016/S0003-3472(84)80339-5; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; JOHNSTONE RA, 1995, BIOL REV, V70, P1, DOI 10.1111/j.1469-185X.1995.tb01439.x; KENNEDY CEJ, 1987, BEHAV ECOL SOCIOBIOL, V21, P291, DOI 10.1007/BF00299966; KODRICBROWN A, 1993, BEHAV ECOL SOCIOBIOL, V32, P415, DOI 10.1007/BF00168825; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Kotiaho JS, 2001, BIOL REV, V76, P365, DOI 10.1017/S1464793101005711; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LOZANO GA, 1994, OIKOS, V70, P309, DOI 10.2307/3545643; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; NICOLETTO PF, 1993, ANIM BEHAV, V46, P441, DOI 10.1006/anbe.1993.1213; NICOLETTO PF, 1991, BEHAV ECOL SOCIOBIOL, V28, P365, DOI 10.1007/BF00164386; Olson VA, 1998, TRENDS ECOL EVOL, V13, P510, DOI 10.1016/S0169-5347(98)01484-0; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Rosenthal GG, 2001, AM NAT, V158, P146, DOI 10.1086/321309; Ryan MJ, 1998, SCIENCE, V281, P1999, DOI 10.1126/science.281.5385.1999; Stephens DW, 1986, FORAGING THEORY; ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3; ZEH DW, 1988, AM NAT, V132, P454, DOI 10.1086/284863; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412 45 138 140 4 261 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. MAR-APR 2003 14 2 194 200 10.1093/beheco/14.2.194 7 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 657HV WOS:000181661100006 Bronze 2019-02-26 J Golding, JS; Hurter, PJH Golding, JS; Hurter, PJH A Red List account of Africa's cycads and implications of considering life-history and threats BIODIVERSITY AND CONSERVATION English Article Africa; cycads; Cycas; Encephalartos; fieldwork; Red Data Lists; Stangeria; taxonomy; threats; Zamiaceae NORTHERN PROVINCE; SOUTH-AFRICA; ZAMIACEAE; CONSERVATION; FOREST; SWAZILAND; TAXA The global and national Red List status of cycads known from mainland Africa are presented in this study. Seventy-four taxa (including five as yet undescribed taxa) occur in Angola, Benin, Central African Republic, Democratic Republic of Congo, Ghana, Kenya, Malawi, Mozambique, Nigeria, South Africa, Sudan, Swaziland, Tanzania, Uganda, Zambia and Zimbabwe. South Africa has the highest richness of cycad taxa (41). Fifty-two of the continent's cycads are confirmed country endemics, and 59% are globally threatened. One undescribed Encephalartos taxon is categorised as extinct (Malawi) and three, Encephalartos woodii Sander, E. relictus P. J. H. Hurter and another undescribed Encephalartos taxon (South Africa), are known only from material in cultivation. The nature and extent of threats to cycads appear to be different in the southern African region compared to the rest of the continent, and illegal collection is thought to be the primary factor. Taxa listed as data deficient primarily occur in war-torn and botanically under-explored areas. The results of the Red Lists are interpreted in terms of life-history strategies and threats. Continental-level conservation efforts are suggested for preserving wild stocks. Natl Bot Inst, SABONET, ZA-0001 Pretoria, South Africa; Lowveld Natl Bot Garden, ZA-1200 Nelspruit, South Africa Golding, JS (reprint author), Natl Bot Inst, SABONET, Private Bag X101, ZA-0001 Pretoria, South Africa. BELL PR, 1992, GREEN PLANTS THEIR O; Cowling R. M., 1997, P43; Donaldson J. S., 1995, CYCAD CONSERVATION S, P8; DONALDSON JS, 2002, IN PRESS CYCAD CLASS; DONALDSON JS, 2002, IN PRESS CYCADS STAT; DYER R. A., 1965, BOTHALIA, V8, P405; Gardenfors Ulf, 1999, Species, V31-32, P58; GILBERT S, 1984, CYCADS STATUS TRADE; Golding J. S., 2002, SO AFRICAN BOT DIVER, V14; GOLDING JS, 2001, TAXON, V50, P1; GOLDING JS, 2001, TAXON, V50, P12; GOODE D, 1989, CYCADS AFRICA; Hamilton A, 2000, CONSERV BIOL, V14, P1722, DOI 10.1046/j.1523-1739.2000.99452.x; Hart JA, 1996, CONSERV BIOL, V10, P316, DOI 10.1046/j.1523-1739.1996.10020316.x; Hilton-Taylor C., 1996, RED DATA LIST SO AFR; HiltonTaylor C, 1996, BOTHALIA, V26, P177; HILTONTAYLOR C, 2000, 2000 IUCN RED LIST T; Holmgren P.K., 1990, INDEX HERBARIORUM 1; HUNTLEY BJ, 1994, BOT DIVERSITY SO AFR, V1, P53; HUNTLEY BJ, 1998, 4 SABNOET; Hurter P. J. H., 1995, Phytologia, V78, P409; HURTER PJH, 1995, S AFR J BOT, V61, P226, DOI 10.1016/S0254-6299(15)30519-6; Hurter PJH, 1996, S AFR J BOT, V62, P46, DOI 10.1016/S0254-6299(15)30577-9; Hurter PJH, 2001, BOTHALIA, V31, P197; HURTER PJH, 1998, ENCEPHALARTOS, V55, P4; HUTTON J, 2001, CONV INT TRAD END SP; IUCN, 1994, IUCN RED LIST CAT; *IUCN, 2001, IUCN RED LIST CRIT R; JONES DL, 1993, CYCADS WORLD; JONES S, 1997, ENCEPHALARTOS, V50, P13; Kanyamibwa S, 1998, BIODIVERS CONSERV, V7, P1399, DOI 10.1023/A:1008880113990; LANDE R, 1988, SCIENCE, V24, P455; Lovett JC, 1996, BIODIVERSITY OF AFRICAN PLANTS, P582; Lucas G, 1978, IUCN PLANT RED DATA; MACE G, 1992, SPECIES, V19, P16; MELVILLE R, 1957, KEW B, V2, P237; Morat Philippe, 1997, Adansonia, V19, P101; Morris AV, 2000, BIODIVERS CONSERV, V9, P919, DOI 10.1023/A:1008996002822; Newman M, 1998, ARCHITECTURE, V87, P29; Oberprieler R.G., 1995, P 3 INT C CYC BIOL, P335; Oberprieler R.G., 1995, P 3 INT C CYC BIOL C, P295; Oldfield S, 1998, WORLD LIST THREATENE; OSBORNE R, 1995, BIOL CONSERV, V71, P1, DOI 10.1016/0006-3207(95)91086-D; OSBORNE R, 1988, S AFR J SCI, V84, P891; OSBORNE R, 1990, S AFR J SCI, V86, P220; OSBORNE R, 1988, ENCEPHALARTOS, V14, P8; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; POCS T, 1990, RES CONSERVATION TAN, P135; Pressey RL, 1996, FOREST ECOL MANAG, V85, P311, DOI 10.1016/S0378-1127(96)03766-8; Rourke J. P., 1999, Transactions of the Royal Society of South Africa, V54, P179; SAUNDERS DA, 1991, CONSERV BIOL, V5, P18, DOI 10.1111/j.1523-1739.1991.tb00384.x; SCHWEINFURTH G, 1771, BOT Z, V29, P334; Scott-Shaw R., 1999, RARE THREATENED PLAN; SOULE E, 1986, CONSERVATION BIOL SC; Stevenson D.W., 1995, P 3 INT C CYC BIOL C, P55; van der Bank FH, 1998, S AFR J BOT, V64, P182, DOI 10.1016/S0254-6299(15)30864-4; Vorster P, 1996, S AFR J BOT, V62, P61, DOI 10.1016/S0254-6299(15)30581-0; Vorster P, 1996, S AFR J BOT, V62, P71, DOI 10.1016/S0254-6299(15)30593-7; Vorster P, 1996, S AFR J BOT, V62, P67, DOI 10.1016/S0254-6299(15)30592-5; Vorster P, 1996, S AFR J BOT, V62, P76, DOI 10.1016/S0254-6299(15)30594-9; Vorster P, 1996, S AFR J BOT, V62, P57, DOI 10.1016/S0254-6299(15)30580-9; Vorster P., 1993, P CYCAD 90 2 INT C C, P294; VORSTER P, 1995, P 3 INT C CYC BIOL C, P379; Walter S. K, 1998, 1997 IUCN RED LIST T; *WCMC, 1998, CHECKL CITES SPEC, P277; Wilkie D, 2000, CONSERV BIOL, V14, P1614, DOI 10.1046/j.1523-1739.2000.99102.x; Zalba SM, 1999, BIODIVERS CONSERV, V8, P1585 67 14 14 0 8 KLUWER ACADEMIC PUBL DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3115 BIODIVERS CONSERV Biodivers. Conserv. MAR 2003 12 3 507 528 10.1023/A:1022472801638 22 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 646MC WOS:000181038000007 2019-02-26 J Lu, X Lu, X Postnatal growth of skull linear measurements of Cape Hare Lepus capensis in northern China: an analysis in an adaptive context BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article linear growth; adaptation BODY-SIZE; GEOGRAPHIC-VARIATION; EUROPAEUS PALLAS; BERGMANNS RULE; ONTOGENY; POPULATION; PREDATION; JUVENILE; TIMIDUS; MAMMALS 304 skulls of Cape hare (Lepus capensis) were collected from two climatically distinct localities in northern China. With eye lens weight as a continuous age variable, postnatal growth patterns of 25 cranial linear measurements in relation to sex, growth season and region were analysed to understand the morphological basis of life history adaptation. In almost all the skull measurements, no significant differences were found between either sex or growth seasons. Principal component analysis revealed that facial elements accounted for the greatest proportion of skull morphological variation. Von Bertalanffy function was applied to describe growth trajectories of the skull elements. Based on this model, the growth rates of skull elements and the age at which they reached a certain proportion (95%) of asymptotes were compared. The results showed that skull growth exhibited an allometric pattern, with neural components attaining their final size more rapidly (at about 2-3 months old in tympanic bulla and 4-6 months old in others) than did the facial, which continued to grow well into postnatal life (at 6-10 months old). The earlier establishment of neurocranial morphology was associated with a fully developed central nervous system, which may play a key role in improving the survival of animals during the early phase of life. There was a regional difference in developmental rate of the hare skull. For all the skull parameters, northern hares had a more rapid rate of cranial growth compared to the southern, i.e. skull elements of juveniles from northern population were relatively larger at comparable ages and achieved adult size 0.5-4.0 months earlier than those from the south. In adult hares, however, no significant regional differences in any of the skull parameters were present. Adaptive explanations for the regional difference in ontogenetic pattern of skull morphology include age-specific thermoregulation constraint, season-related food availability and age-dependent predation pressure. Based on the findings of this study, it is suggested that the postnatal growing period represents a crucial time of life, and that improvement of survivorship when young by growth adaptation forms an important aspect of the hare's life history strategies. (C) 2003 The Linnean Society of London. Wuhan Univ, Coll Life Sci, Dept Zool, Wuhan 430072, Peoples R China Lu, X (reprint author), Wuhan Univ, Coll Life Sci, Dept Zool, Wuhan 430072, Peoples R China. luxinwh@public.wh.hb.cn ANDERSEN J, 1972, ACTA THERIOL, V17, P97; Angermann R, 1983, ACTA ZOOL FENN, V174, P17; BAHER AJ, 1978, CAN J ZOOL, V56, P2067; BROEKHUIZEN S, 1979, Z SAUGETIERKD, V44, P162; Brunner S, 1998, AUST J ZOOL, V46, P43, DOI 10.1071/ZO97019; BURNETT CD, 1983, J MAMMAL, V64, P437, DOI 10.2307/1380356; Cabon-Raczynska K., 1964, Acta Theriologica, V9, P249; Calder W. A, 1984, SIZE FUNCTION LIFE H; Chapman J. A., 1990, RABBITS HARES PIKAS; CHEVERUD JM, 1983, EVOLUTION, V37, P895, DOI 10.1111/j.1558-5646.1983.tb05619.x; Dalquest Walter W., 1942, JOUR MAMMAL, V23, P166, DOI 10.2307/1375069; FLUX JEC, 1970, J ZOOL, V161, P75; FLUX JEC, 1971, NEW ZEAL J SCI, V14, P238; FLUX JEC, 1983, ACTA ZOOL FENN, V174, P7; FRIEND MOLTON, 1967, N Y FISH GAME J, V14, P166; GABRIEL KR, 1969, SYST ZOOL, V18, P259, DOI 10.2307/2412323; GEBHARDTHENRICH S, 1998, AVIAN GROWTH DEV, P324; Gillis EA, 1998, CAN J ZOOL, V76, P1949, DOI 10.1139/cjz-76-10-1949; HALL BK, 1990, NETH J ZOOL, V40, P352; Hallgrimsson B, 2000, BIOL J LINN SOC, V70, P571, DOI 10.1006/bijl.1999.0417; Hanken J, 1993, SKULL; HOFFMEISTER DF, 1967, AM MIDL NAT, V78, P198, DOI 10.2307/2423380; Kauhala K, 2001, WILDLIFE BIOL, V7, P295; KEITH LB, 1979, J WILDLIFE MANAGE, V43, P965, DOI 10.2307/3808282; KOLB HH, 1978, BIOL J LINN SOC, V10, P291, DOI 10.1111/j.1095-8312.1978.tb00017.x; KREBS CJ, 1995, SCIENCE, V269, P1112, DOI 10.1126/science.269.5227.1112; Lieberman DE, 2000, YEARB PHYS ANTHROPOL, V43, P117; Lu X, 2000, ACTA THERIOL, V45, P271, DOI 10.4098/AT.arch.00-28; Lu X, 2002, MAMMALIA, V66, P142; Lu X, 2001, MAMMALIA, V65, P251; Lu Xin, 1995, Acta Theriologica Sinica, V15, P122; Lu Xin, 1995, Chinese Journal of Zoology, V30, P50; Lu Xin, 1994, Acta Theriologica Sinica, V14, P176; Luo Z., 1981, Acta Theriologica Sinica, V1, P149; Mayr E., 1970, POPULATION SPECIES E; MCNAB BK, 1971, ECOLOGY, V52, P845, DOI 10.2307/1936032; Moore W.J., 1981, MAMMALIAN SKULL; MOORE WJ, 1966, J ZOOL, V149, P137; MOSS ML, 1960, AM J PHYS ANTHROPOL, V18, P281, DOI 10.1002/ajpa.1330180406; NAGORSEN DW, 1985, CAN J ZOOL, V63, P567, DOI 10.1139/z85-083; NOWOSIELSKISLEPOWRON BJA, 1984, ACTA MORPHOL NEER SC, V22, P187; Reynolds JC, 1995, WILDLIFE BIOL, V1, P145; Rohner C, 1996, OECOLOGIA, V108, P303, DOI 10.1007/BF00334655; ROSENZWEIG ML, 1968, AM MIDL NAT, V80, P299, DOI 10.2307/2423529; ROWE FP, 1985, J APPL ECOL, V22, P55, DOI 10.2307/2403326; Schmidt-Nielsen K., 1984, SCALING WHY IS ANIMA; SEARCY WA, 1980, J THEOR BIOL, V83, P579, DOI 10.1016/0022-5193(80)90190-3; Sokal R.R., 1995, BIOMETRY PRINCIPLES; STEUDEL K, 1994, CAN J ZOOL, V72, P70, DOI 10.1139/z94-010; SUCHENTRUNK F, 1991, Z SAUGETIERKD, V56, P365; VANLIMBORGH J, 1972, ACTA MORPHOL NEER SC, V10, P37; WASSERMAN D, 1979, Holarctic Ecology, V2, P115; Wigginton JD, 1999, CAN J ZOOL, V77, P802, DOI 10.1139/cjz-77-5-802; Wirsing AJ, 2002, CAN J ZOOL, V80, P169, DOI 10.1139/Z01-214; YOMTOV Y, 1986, BIOL J LINN SOC, V29, P245, DOI 10.1111/j.1095-8312.1986.tb00278.x; ZELDITCH ML, 1992, EVOLUTION, V46, P1164, DOI 10.1111/j.1558-5646.1992.tb00626.x 56 11 14 1 4 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. MAR 2003 78 3 343 353 10.1046/j.1095-8312.2003.00145.x 11 Evolutionary Biology Evolutionary Biology 659NW WOS:000181784300005 Bronze 2019-02-26 J Nielsen, MG; Popodi, E; Minsuk, S; Raff, RA Nielsen, MG; Popodi, E; Minsuk, S; Raff, RA Evolutionary convergence in Otx expression in the pentameral adult rudiment in direct-developing sea urchins DEVELOPMENT GENES AND EVOLUTION English Article Otx; runt; sea urchins; convergence; developmental constraint LIFE-HISTORY EVOLUTION; BRAIN-DEVELOPMENT; HELIOCIDARIS-ERYTHROGRAMMA; TRANSCRIPTION FACTORS; GENE-EXPRESSION; HOMEOBOX GENE; ECHINODERM EVOLUTION; MARINE-INVERTEBRATES; ORTHODENTICLE GENE; LARVAL DEVELOPMENT Convergence is a significant evolutionary phenomenon. Arrival at similar morphologies from different starting points indicates a strong role for natural selection in shaping morphological phenotypes. There is no evidence yet of convergence in the developmental mechanisms that underlie the evolution of convergent developmental phenotypes. Here we report the expression domains in sea urchins of two important developmental regulatory genes (Orthodenticle and Runt), and show evidence of molecular convergence in the evolution of direct-developing sea urchins. Indirect development is ancestral in sea urchins. Evolutionary loss of the feeding pluteus stage and precocious formation of the radially symmetric juvenile has evolved independently in numerous sea urchin lineages, thus direct development is an evolutionary convergence. Indirect-developing species do not express Otx during the fort-nation of their five primordial tube feet, the ancestral condition. However, each direct-developing urchin examined does express Otx in the tube feet. Otx expression in the radial arms of direct-developing sea urchins is thus convergent, and may indicate a specific need for Otx use in direct development, a constraint that would make direct development less able to evolve than if there were multiple molecular means for it to evolve. In contrast, Runt is expressed in tube feet in both direct- and indirect-developing species. Because echinoderms are closely related to chordates and postdate the protostome/deuterostome divergence, they must have evolved from bilaterally symmetrical ancestors. Arthropods and chordates use Otx in patterning their anterior axis, and Runt has multiple roles including embryonic patterning in arthropods, and blood and bone cell differentiation in vertebrates. Runt has apparently been co-opted in echinoderms for patterning of pentamery, and Otx in pentameral patterning among direct-developing echinoids. The surprisingly dynamic nature of Otx evolution reinvigorates debate on the role of natural selection vs shared ancestry in the evolution of novel features. Indiana Univ, Dept Biol, Bloomington, IN 47405 USA; Indiana Univ, Indiana Mol Biol Inst, Bloomington, IN 47405 USA Nielsen, MG (reprint author), Univ Dayton, 300 Coll Pk, Dayton, OH 45469 USA. mark.nielsen@notes.udayton.edu Acampora D, 1999, TRENDS NEUROSCI, V22, P116, DOI 10.1016/S0166-2236(98)01387-3; Acampora D, 1998, DEVELOPMENT, V125, P1691; Adachi Y, 2001, DEV GENES EVOL, V211, P269, DOI 10.1007/s004270100149; ANGERER LM, 1991, METHOD CELL BIOL, V35, P37; Angerer LM, 2001, DEVELOPMENT, V128, P4393; Bruce AEE, 1998, DEV BIOL, V201, P101, DOI 10.1006/dbio.1998.8968; Coffman JA, 1996, DEV BIOL, V174, P43, DOI 10.1006/dbio.1996.0050; Damen WGM, 2000, P NATL ACAD SCI USA, V97, P4515, DOI 10.1073/pnas.97.9.4515; EMLET RB, 1995, EVOLUTION, V49, P476, DOI 10.1111/j.1558-5646.1995.tb02280.x; EMLET RB, 1990, ADV INVERTEBRATE REP, V5; Ferkowicz MJ, 2001, EVOL DEV, V3, P24, DOI 10.1046/j.1525-142x.2001.00084.x; FINKELSTEIN R, 1990, GENE DEV, V4, P1516, DOI 10.1101/gad.4.9.1516; Fossett N, 2001, DIFFERENTIATION, V69, P83, DOI 10.1046/j.1432-0436.2001.690202.x; GERGEN JP, 1988, GENE DEV, V2, P1179, DOI 10.1101/gad.2.9.1179; Guillard R. R. L, 1972, CULTURE MARINE INVER, P29; Haag ES, 1998, DEV GENES EVOL, V208, P188, DOI 10.1007/s004270050173; Harada Y, 2000, MECH DEVELOP, V91, P337, DOI 10.1016/S0925-4773(99)00279-8; Hart MW, 2002, EVOL DEV, V4, P62, DOI 10.1046/j.1525-142x.2002.01052.x; HENRY JJ, 1990, DEV BIOL, V141, P55, DOI 10.1016/0012-1606(90)90101-N; Hirth F, 1999, BIOESSAYS, V21, P677, DOI 10.1002/(SICI)1521-1878(199908)21:8<677::AID-BIES7>3.3.CO;2-#; Isaacs HV, 1999, EVOL DEV, V1, P143, DOI 10.1046/j.1525-142x.1999.99020.x; Kammermeier L, 2001, BRAIN RES BULL, V55, P675, DOI 10.1016/S0361-9230(01)00559-7; Klueg KM, 1997, DEV BIOL, V182, P121, DOI 10.1006/dbio.1996.8431; Leuzinger S, 1998, DEVELOPMENT, V125, P1703; Li XT, 1997, DEV BIOL, V187, P253, DOI 10.1006/dbio.1997.8610; Li XT, 1999, DEV BIOL, V212, P425, DOI 10.1006/dbio.1999.9360; LITTLEWOOD DTJ, 1995, PHILOS T R SOC B, V347, P213, DOI 10.1098/rstb.1995.0023; Logan CY, 1999, DEVELOPMENT, V126, P345; Lowe CJ, 1997, NATURE, V389, P718; Minsuk SB, 2002, DEV BIOL, V247, P335, DOI 10.1006/dbio.2002.0704; Muller P, 1999, DEV BIOL, V216, P582, DOI 10.1006/dbio.1999.9522; Nagao T, 1998, P NATL ACAD SCI USA, V95, P3737, DOI 10.1073/pnas.95.7.3737; Nielsen MG, 2000, EVOL DEV, V2, P133, DOI 10.1046/j.1525-142x.2000.00040.x; Pancer Z, 1999, IMMUNOGENETICS, V49, P773, DOI 10.1007/s002510050551; Peterson KJ, 2000, EVOL DEV, V2, P93, DOI 10.1046/j.1525-142x.2000.00042.x; Raff RA, 2000, EVOL DEV, V2, P102, DOI 10.1046/j.1525-142x.2000.00035.x; RAFF RA, 1987, DEV BIOL, V119, P6, DOI 10.1016/0012-1606(87)90201-6; Sakamoto N, 1997, DEV BIOL, V181, P284, DOI 10.1006/dbio.1996.8455; Shoguchi E, 2000, GENESIS, V27, P58, DOI 10.1002/1526-968X(200006)27:2<58::AID-GENE20>3.0.CO;2-8; Smith A. B., 1984, ECHINOID PALAEOBIOLO; Stornaiuolo A, 1998, INT J DEV BIOL, V42, P1153; STRATHMANN RR, 1978, EVOLUTION, V32, P894, DOI 10.1111/j.1558-5646.1978.tb04642.x; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Tsai CC, 1998, DEV GENET, V23, P35, DOI 10.1002/(SICI)1520-6408(1998)23:1<35::AID-DVG4>3.0.CO;2-7; Villinski JT, 2002, EVOLUTION, V56, P1764, DOI 10.1111/j.0014-3820.2002.tb00190.x; von Ubisch L, 1913, Z WISS ZOOL ABT A, V106, P409; Wada S, 1996, MECH DEVELOP, V60, P59, DOI 10.1016/S0925-4773(96)00600-4; Westendorf JJ, 1999, J CELL BIOCHEM, P51; Wikramanayake AH, 1998, P NATL ACAD SCI USA, V95, P9343, DOI 10.1073/pnas.95.16.9343; WILLIAMS DHC, 1975, AUST J ZOOL, V23, P371, DOI 10.1071/ZO9750371; Williams NA, 1998, MOL BIOL EVOL, V15, P600, DOI 10.1093/oxfordjournals.molbev.a025961; WRAY GA, 1994, DEVELOPMENT, P97; Wray GA, 2000, SYST BIOL, V49, P28, DOI 10.1080/10635150050207375; Yuh CH, 2001, DEV BIOL, V232, P424, DOI 10.1006/dbio.2001.0207 54 18 19 0 2 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0949-944X 1432-041X DEV GENES EVOL Dev. Genes Evol. MAR 2003 213 2 73 82 10.1007/s00427-003-0299-7 10 Cell Biology; Evolutionary Biology; Developmental Biology Cell Biology; Evolutionary Biology; Developmental Biology 666YX WOS:000182205000003 12632176 2019-02-26 J Gonzalez-Gordillo, JI; Arias, AM; Rodriguez, A; Drake, P Gonzalez-Gordillo, JI; Arias, AM; Rodriguez, A; Drake, P Recruitment patterns of decapod crustacean megalopae in a shallow inlet (SW Spain) related to life history strategies ESTUARINE COASTAL AND SHELF SCIENCE English Article larvae; crustacean; decapoda; vertical migration; megalopal flux; tidal transport; Iberian Peninsula LARVAL ABUNDANCE PATTERNS; CRAB CARCINUS-MAENAS; VERTICAL MIGRATION; PANOPEUS-AFRICANUS; TIDAL ABUNDANCE; UCA-TANGERI; MIRA RIA; TRANSPORT; BRACHYURA; WATERS Decapod crustacean megalopae were sampled weekly (spring/neap tides) during late-spring/summer of 1998 by using two planktonic nets located close to the surface and the bottom, at a fixed station in the mouth of the Rio San Pedro inlet (SW Spain). Sampling was carried out during 25 h cycles to ascertain the flux of megalopae in relation to the main environmental (diel, tidal, tidal amplitude) cycles. The hypothesis that megalopae of some species may be using tidal-stream transport as a mechanism of reinvading the inlet was tested and the relationship between megalopal behaviour and life history strategy was analysed. In general, the flux of megalopae was higher during spring tides, but such differences were only statistically significant for Pisidia longicornis and Liocarcinus sp.2 due to the considerable interdate variation. With the exception of Macropodia sp., megalopae were more abundant close to the bottom. The diel/tidal flux of most abundant species suggested two different patterns of behaviour: megalopae of Liocarcinus spp., Panopeus africanus, Uca tangeri and Brachynotus sextientatus seemed to be re-invading the inlet (specially at nocturnal floods), while megalopae of Ilia nucleus, Nepinnotheres pinnotheres and Macropodia sp. may have been just looking for a suitable place for settlement. The first group corresponded to the species whose zoeal development occurs in open sea, and the second one to species that complete their life cycle within the studied system, suggesting a relationship between the duration of the larval phase and the life cycle strategy of the species. (C) 2003 Elsevier Science B.V. All rights reserved. Univ Aveiro, Dept Biol, P-3810193 Aveiro, Portugal; CSIC, Inst Ciencias Marinas Andalucia, Puerto Real 11510, Cadiz, Spain Gonzalez-Gordillo, JI (reprint author), Univ Aveiro, Dept Biol, P-3810193 Aveiro, Portugal. Drake, Pilar/L-1854-2014 Drake, Pilar/0000-0003-3221-1358; Gonzalez-Gordillo, Juan Ignacio/0000-0003-2859-3939 Abello P, 1999, ESTUAR COAST SHELF S, V49, P129, DOI 10.1006/ecss.1999.0488; ATKINS D., 1955, PROC ZOOL SOC LONDON, V124, P687; Boehlert G.W., 1988, AM FISH SOC S, V3, P51; CLARK PF, 1984, ZOOL J LINN SOC-LOND, V82, P273, DOI 10.1111/j.1096-3642.1984.tb00644.x; CRONIN TW, 1982, ESTUAR COAST SHELF S, V15, P207, DOI 10.1016/0272-7714(82)90028-2; Cuesta JA, 2000, INVERTEBR REPROD DEV, V38, P207, DOI 10.1080/07924259.2000.9652456; DITTEL AI, 1990, MAR ECOL PROG SER, V65, P25, DOI 10.3354/meps065025; Drake P., 1993, P153; Drake P, 1998, J PLANKTON RES, V20, P585, DOI 10.1093/plankt/20.3.585; Epifanio CE, 1995, B MAR SCI, V57, P713; EPIFANIO CE, 1988, AM FISH SOC S, V3, P104; FORWARD RB, 1994, J EXP MAR BIOL ECOL, V182, P183, DOI 10.1016/0022-0981(94)90050-7; GONZALEZGORDILL.JI, IN PRESS ACTA OECOLO; GORELENKOV NN, 1995, PHYS PLASMAS, V2, P1; JACOBY CA, 1982, MAR BEHAV PHYSIOL, V8, P267, DOI 10.1080/10236248209387024; Johnson DR, 1999, B MAR SCI, V65, P129; LITTLE KT, 1991, MAR ECOL PROG SER, V68, P235; MORGAN SG, 1987, OECOLOGIA, V73, P393, DOI 10.1007/BF00385256; Morgan Steven G., 1995, P279; OLMI EJ, 1994, MAR ECOL PROG SER, V113, P39, DOI 10.3354/meps113039; Pereira F, 2000, INVERTEBR REPROD DEV, V38, P183, DOI 10.1080/07924259.2000.9652455; QUEIROGA H, 1994, MAR ECOL PROG SER, V111, P63, DOI 10.3354/meps111063; Queiroga H, 1998, HYDROBIOLOGIA, V375-76, P137, DOI 10.1023/A:1017004921555; Queiroga H, 1997, MAR ECOL PROG SER, V149, P121, DOI 10.3354/meps149121; Rabalais N.N., 1985, Crustacean Issues, V2, P67; RODRIGUEZ A, 1993, J CRUSTACEAN BIOL, V13, P296, DOI 10.2307/1548976; RODRIGUEZ A, 1993, J CRUSTACEAN BIOL, V13, P309, DOI 10.2307/1548977; Rodriguez A, 1997, MAR ECOL PROG SER, V149, P133, DOI 10.3354/meps149133; SANDIFER PA, 1975, ESTUAR COAST MAR SCI, V3, P269, DOI 10.1016/0302-3524(75)90028-6; SULKIN SD, 1984, MAR ECOL PROG SER, V15, P181, DOI 10.3354/meps015181; TANKERSLEY RA, 1995, MAR BIOL, V122, P391, DOI 10.1007/BF00350871; WEHRTMANN IS, 1990, MAR ECOL PROG SER, V60, P67, DOI 10.3354/meps060067; YOUNG CM, 1987, REPRODUCTION MARINE, V9, P385; Zeng CS, 1996, MAR ECOL PROG SER, V136, P69, DOI 10.3354/meps136069 34 15 15 1 3 ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0272-7714 ESTUAR COAST SHELF S Estuar. Coast. Shelf Sci. MAR 2003 56 3-4 593 607 10.1016/S0272-7714(02)00209-3 15 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 687RL WOS:000183390400017 Green Published 2019-02-26 J Zera, AJ; Zhao, ZW Zera, AJ; Zhao, ZW Life-history evolution and the microevolution of intermediary metabolism: Activities of lipid-metabolizing enzymes in life-history morphs of a wing-dimorphic cricket EVOLUTION English Article adaptation; enzymes; intermediary metabolism; life history; trade-off; wing polymorphism JUVENILE-HORMONE ESTERASE; DROSOPHILA-MELANOGASTER; GRYLLUS-FIRMUS; POLYMORPHIC CRICKET; TRADE-OFF; STARVATION RESISTANCE; CORRELATED RESPONSES; FLIGHTLESS MORPHS; ENERGY-STORAGE; FAT-CONTENT Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100-400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based covariance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype x environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies. Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA Zera, AJ (reprint author), Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA. ASANTE EA, 1989, GENET RES, V54, P155, DOI 10.1017/S0016672300028536; BOGGS C, 1997, ECOLOGY, V74, P433; Chippindale AK, 1996, EVOLUTION, V50, P753, DOI 10.1111/j.1558-5646.1996.tb03885.x; CLARK AG, 1990, EVOLUTION, V44, P637, DOI 10.1111/j.1558-5646.1990.tb05944.x; CLARK AG, 1989, GENETICS, V123, P131; CLARK AG, 1990, GENET RES, V56, P49, DOI 10.1017/S0016672300028871; Djawdan M, 1996, PHYSIOL ZOOL, V69, P1176, DOI 10.1086/physzool.69.5.30164252; DOWNER RGH, 1985, COMPREHENSIVE INSECT, V10, P77; DYKHUIZEN DE, 1990, TRENDS ECOL EVOL, V5, P257, DOI 10.1016/0169-5347(90)90067-N; Ferea TL, 1999, P NATL ACAD SCI USA, V96, P9721, DOI 10.1073/pnas.96.17.9721; Fisher R.A., 1930, GENETICAL THEORY NAT; GEER BW, 1984, GENET RES, V43, P307, DOI 10.1017/S0016672300026094; Harshman LG, 2000, TRENDS ECOL EVOL, V15, P32, DOI 10.1016/S0169-5347(99)01756-5; Harshman LG, 1999, J EVOLUTION BIOL, V12, P370, DOI 10.1046/j.1420-9101.1999.00024.x; Harshman LG, 1998, EVOLUTION, V52, P1679, DOI 10.1111/j.1558-5646.1998.tb02247.x; HASTINGS IM, 1990, GENET RES, V55, P55, DOI 10.1017/S0016672300025192; MOLE S, 1993, OECOLOGIA, V93, P121, DOI 10.1007/BF00321201; Newsholme E. A., 1973, REGULATION METABOLIS; O'Brien DM, 2002, P NATL ACAD SCI USA, V99, P4413, DOI 10.1073/pnas.072346699; PIANKA ER, 1981, RESOURCE ACQUISITION; Powers D.A., 1987, P102; PROSSER CL, 1986, ADAPTATIONAL BIOL MO; Rose Michael R., 1996, P221; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; Somero G. N, 2002, BIOCH ADAPTATION; Stoscheck C.M., 1990, METHOD ENZYMOL, V182, P60; TOWNSEND CR, 1981, PHYSL ECOLOGY EVOLUT; VEAZEY JN, 1976, ANN ENTOMOL SOC AM, V69, P374, DOI 10.1093/aesa/69.2.374; WATT WB, 1985, AM NAT, V125, P118, DOI 10.1086/284331; Zera AJ, 1998, AM NAT, V152, P7, DOI 10.1086/286146; ZERA AJ, 1988, J INSECT PHYSIOL, V34, P489, DOI 10.1016/0022-1910(88)90190-4; Zera AJ, 1999, J INSECT PHYSIOL, V45, P275, DOI 10.1016/S0022-1910(98)00123-1; Zera AJ, 1999, EVOLUTION, V53, P837, DOI 10.1111/j.1558-5646.1999.tb05377.x; Zera AJ, 1997, PHYSIOL ZOOL, V70, P519, DOI 10.1086/515865; ZERA AJ, 1994, J INSECT PHYSIOL, V40, P1037, DOI 10.1016/0022-1910(94)90056-6; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 1996, J INSECT PHYSIOL, V42, P909, DOI 10.1016/0022-1910(96)00005-4; Zera AJ, 2001, J INSECT PHYSIOL, V47, P1147, DOI 10.1016/S0022-1910(01)00096-8; Zera AJ, 2001, PHYSIOL BIOCHEM ZOOL, V74, P293, DOI 10.1086/319664; Zera AJ, 2001, EVOLUTION, V55, P538, DOI 10.1554/0014-3820(2001)055[0538:TEGBOL]2.0.CO;2; Zera AJ, 2000, J INSECT PHYSIOL, V46, P1207, DOI 10.1016/S0022-1910(00)00041-X; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; ZERA AJ, 1985, COMPREHENSIVE INSECT, V10, P633; Zhao Z, 2001, J INSECT PHYSIOL, V47, P1337, DOI 10.1016/S0022-1910(01)00123-8; Zhao ZW, 2002, P NATL ACAD SCI USA, V99, P16829, DOI 10.1073/pnas.262533999 45 26 27 0 8 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 USA 0014-3820 EVOLUTION Evolution MAR 2003 57 3 586 596 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 666UA WOS:000182193800014 12703948 2019-02-26 J Wirsing, AJ Wirsing, AJ Predation-mediated selection on prey morphology: a test using snowshoe hares EVOLUTIONARY ECOLOGY RESEARCH English Article Lepus americanus; morphology; path analysis; selection; snowshoe hare; vulnerability to predation LIFE-HISTORY EVOLUTION; ANTIPREDATOR BEHAVIOR; FRAGMENTED HABITAT; NATURAL-SELECTION; BODY CONDITION; SIZE; POPULATIONS; VULNERABILITY; PROXIMATE; LIZARDS Predation has been implicated in the evolution of many prey characteristics. However, few studies have measured the strength and direction of predation-mediated selection on prey morphology. I tested whether predation exerted directional selective pressure on morphometric measures related to skeletal size in snowshoe hares (Lepus americanus). Hares were five-trapped at six study sites in Idaho and monitored between 1998 and 2000. Each hare was characterized using hind-foot length, snout-to-vent length and mass. All trapped individuals (n=103) were equipped with mortality-sensitive radio-collars and predation events were identified. The force of selection on morphology was measured using both multiple linear regression and path analysis. Multiple regression furnished directional selection gradients indicating that predation exerted positive directional selection on both hind-foot length and snout-to-vent length; conversely, the path-analytic model implied that predation-mediated selection acted only on size-adjusted snout-to-vent length (i.e. shape rather than size), favouring juveniles with relatively long bodies. Based on the agreement between the two analytic procedures for snout-to-vent length, I concluded that juvenile hares with small size-adjusted snout-to-vent lengths (i.e. newly weaned individuals) were disproportionately vulnerable to predation, perhaps because this measure is positively correlated with escape speed. Univ Idaho, Dept Fish & Wildlife Resources, Moscow, ID 83844 USA Wirsing, AJ (reprint author), Simon Fraser Univ, Dept Biol Sci, Behav Ecol Res Grp, Burnaby, BC V5A 1S6, Canada. Alexander R., 1992, EXPLORING BIOMECHANI; Blomberg SP, 2000, BEHAV ECOL SOCIOBIOL, V48, P484, DOI 10.1007/s002650000260; BOOKSTEIN F. L, 1985, MORPHOMETRICS EVOLUT; BOUTIN S, 1986, CAN J ZOOL, V64, P606, DOI 10.1139/z86-090; Brain C.K., 1995, South African Archaeological Bulletin, V50, P93, DOI 10.2307/3889057; Brown CR, 1998, EVOLUTION, V52, P1461, DOI 10.1111/j.1558-5646.1998.tb02027.x; *CAN COUNC AN CAR, 1984, GUID CARE US EXP AN; CRESPI BJ, 1989, EVOLUTION, V43, P18, DOI 10.1111/j.1558-5646.1989.tb04204.x; CURIO E, 1993, ADV STUD BEHAV, V22, P135, DOI 10.1016/S0065-3454(08)60407-6; FAUL F, 1992, GPOWER PRIORI POST H; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Grutter AS, 1997, J FISH BIOL, V50, P1303; Hodges Karen E., 2000, P163; Hodges Karen E., 2000, P117; Johnson JB, 1999, COPEIA, P948, DOI 10.2307/1447970; KEITH LB, 1993, CAN J ZOOL, V71, P1385, DOI 10.1139/z93-191; KEITH LB, 1968, J WILDLIFE MANAGE, V32, P801, DOI 10.2307/3799556; KEITH LB, 1984, WILDLIFE MONOGR, P1; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; MAGURRAN AE, 1990, ANIM BEHAV, V39, P834, DOI 10.1016/S0003-3472(05)80947-9; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; Mauricio R, 1997, TRENDS ECOL EVOL, V12, P433, DOI 10.1016/S0169-5347(97)01178-6; MESA MG, 1994, J FISH BIOL, V45, P81, DOI 10.1111/j.1095-8649.1994.tb01085.x; Murray DL, 2002, J ANIM ECOL, V71, P614, DOI 10.1046/j.1365-2656.2002.00632.x; Murray DL, 1997, J ANIM ECOL, V66, P250, DOI 10.2307/6026; Murray DL, 2000, CAN J ZOOL, V78, P1207, DOI 10.1139/cjz-78-7-1207; MURRAY DL, IN PRESS WILD MAMMAL, V2; MYKYTOWYCZ R., 1959, EMU, V59, P41; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Rohner C, 1996, OECOLOGIA, V108, P303, DOI 10.1007/BF00334655; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Sokal R. R, 2000, BIOMETRY; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; Van Damme R, 1998, BIOL J LINN SOC, V63, P409, DOI 10.1006/bijl.1997.0202; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wirsing AJ, 2002, CAN J ZOOL, V80, P169, DOI 10.1139/Z01-214; Wright S, 1934, ANN MATH STAT, V5, P161, DOI 10.1214/aoms/1177732676 40 5 5 2 15 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. MAR 2003 5 3 315 327 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 653NG WOS:000181442500001 2019-02-26 J Pan, XY; Wang, GX; Chen, JK; Wei, XP Pan, XY; Wang, GX; Chen, JK; Wei, XP Elevated growth redundancy and size inequality in spring wheat populations mulched with clear plastic film JOURNAL OF AGRICULTURAL SCIENCE English Article DEPENDENT REPRODUCTIVE OUTPUT; GRAIN-YIELD; PLANT-POPULATIONS; DENSITY; HIERARCHIES; COMPETITION; TEMPERATURE; VARIABILITY; ALLOCATION; PATTERN This Study was conducted to determine the effects of plastic film mulch on percentage of abortive tillers and harvest index (HI) in two spring wheat populations, and to explore its mechanism in relation to size inequality and life-history strategies theory. Field-grown spring wheat mulched with plastic film shows a remarkable increase in grain yield (an average increase of 38.5% over non-mulched control), which mainly results from the significant increase in above-ground biomass (+44.7%). At the same time, however, reproductive allocation (spike weight/above-ground biomass, -5.2%) and harvest index (-4.5%) were significantly lower (P<0.05) in mulched than unmulched populations in both of the two cultivars used. Meanwhile, the number and weight of barren shoots and the ratio of barren shoot biomass to total shoot biomass were significantly greater in mulched populations than unmulched controls both at booting, flowering and ripening stages. From tillering to ripening stages, the tendency of G (Gini coefficient) shows obvious differences between mulched populations ('Lambda' type with the peak of G at booting stages) and non-mulched controls ('V' type with the lowest G at flowering and rebounded at ripening stage). At booting and flowering, the G was significantly higher in mulched populations than unmulched controls, and it was just contrary at ripening. Reproductive allocation and HI were both negatively correlated to average G of the populations, which indicated that resource use efficiency of a crop is inversely related to plant-to-plant variability and also provided further evidence for the views that stand uniformity of field crops is an important aspect of high yield formation. From these results, it was concluded that appreciable growth redundancy occurred in spring wheat populations mulched with plastic film, which may result from the exacerbated inter-plant competition and self-thinning (evidenced by the increased degree of Gini coefficient at booting and flowering stages). Thus, spring wheat cultivation with plastic film mulching does not always mean efficiency, although there is a remarkable increase in grain yields. Zhejiang Univ, Coll Life Sci, Hangzhou 310027, Peoples R China; Fudan Univ, Inst Biodivers Sci, Minist Educ Key Lab Biodivers Sci & Ecol Engn, Shanghai 200433, Peoples R China; Lanzhou Univ, State Key Lab Arid Agroecol, Lanzhou 730000, Peoples R China Wang, GX (reprint author), Zhejiang Univ, Coll Life Sci, Hangzhou 310027, Peoples R China. BOATWRIGHT GO, 1976, AGRON J, V68, P227, DOI 10.2134/agronj1976.00021962006800020004x; DEWEY WG, 1985, CROP SCI, V25, P245, DOI 10.2135/cropsci1985.0011183X002500020011x; DIXON PM, 1987, ECOLOGY, V68, P1548, DOI 10.2307/1939238; Donald C. M., 1981, Wheat science - today and tomorrow., P223; DONALD CM, 1968, EUPHYTICA, V17, P385, DOI 10.1007/BF00056241; DU SY, 1999, CHINESE J ECOL, V18, P12; Fasoula DA, 1997, PLANT BREEDING REV, V14, P89; Gan YT, 1996, CROP SCI, V36, P628, DOI 10.2135/cropsci1996.0011183X003600030018x; GLENN FB, 1974, CAN J PLANT SCI, V54, P323, DOI 10.4141/cjps74-050; HARDIN G, 1968, SCIENCE, V162, P1243; Harper J.L., 1977, POPULATION BIOL PLAN; HAY RKM, 1995, ANN APPL BIOL, V126, P197, DOI 10.1111/j.1744-7348.1995.tb05015.x; KIRBY EJM, 1977, J AGR SCI, V88, P381, DOI 10.1017/S0021859600034870; KLINKHAMER PGL, 1992, FUNCT ECOL, V6, P308, DOI 10.2307/2389522; Li FM, 1999, FIELD CROP RES, V63, P79, DOI 10.1016/S0378-4290(99)00027-1; Li S., 1995, GANUS AGR SCI TECH, V5, P1; LIEFFERS VJ, 1989, CAN J BOT, V67, P2900, DOI 10.1139/b89-372; Maynard Smith J., 1973, Nature London, V246, P15; MORRIS EC, 1984, AUST J ECOL, V9, P51, DOI 10.1111/j.1442-9993.1984.tb01618.x; MORSE SR, 1994, ECOLOGY, V75, P966, DOI 10.2307/1939420; Pan XY, 2003, FIELD CROP RES, V80, P195, DOI 10.1016/S0378-4290(02)00175-2; PRAIRIE YT, 1989, OECOLOGIA, V81, P285, DOI 10.1007/BF00379817; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; Schwinning S, 1998, OECOLOGIA, V113, P447, DOI 10.1007/s004420050397; Smith J.M., 1982, EVOLUTION THEORY GAM; SOLBRIG O, 1985, TOPICS EVOLUTIONARY, V1, P141; THOMPSON BK, 1991, CAN J BOT, V69, P442, DOI 10.1139/b91-061; TINDALL JA, 1991, AGRON J, V83, P1028, DOI 10.2134/agronj1991.00021962008300060019x; Tollenaar M, 1999, CROP SCI, V39, P1597, DOI 10.2135/cropsci1999.3961597x; Unger P. W., 1975, CROP PHYSL, P237; Vega CRC, 2000, ANN BOT-LONDON, V85, P461, DOI 10.1006/anbo.1999.1084; WEINER J, 1985, ECOLOGY, V66, P743, DOI 10.2307/1940535; WEINER J, 1990, TRENDS ECOL EVOL, V5, P360, DOI 10.1016/0169-5347(90)90095-U; WEINER J, 1984, OECOLOGIA, V61, P334, DOI 10.1007/BF00379630; Weiner J., 1988, Plant reproductive ecology: patterns and strategies, P228; Weiner J, 2001, AM NAT, V158, P438, DOI 10.1086/321988; Zhang DY, 1999, FIELD CROP RES, V61, P179, DOI 10.1016/S0378-4290(98)00156-7 38 8 8 0 9 CAMBRIDGE UNIV PRESS NEW YORK 40 WEST 20TH ST, NEW YORK, NY 10011-4221 USA 0021-8596 J AGR SCI J. Agric. Sci. MAR 2003 140 2 193 204 10.1017/S002185960300296X 12 Agriculture, Multidisciplinary Agriculture 695GH WOS:000183822400006 2019-02-26 J Sendor, T; Simon, M Sendor, T; Simon, M Population dynamics of the pipistrelle bat: effects of sex, age and winter weather on seasonal survival JOURNAL OF ANIMAL ECOLOGY English Article capture-recapture; Chiroptera; hibernacula; life-history strategy; population dynamics GREATER HORSESHOE BATS; CAPTURE-RECAPTURE; MATING SYSTEMS; MARKED ANIMALS; RATES; HIBERNATION; MAMMALS; BIRDS; LIFE; TEMPERATURES 1. Life-history theory assumes increased mortality at certain stages such as hibernation. However, seasonal variation of survival rates of hibernating mammals has rarely been estimated. In this study, apparent survival of pipistrelle bats (Pipistrellus pipistrellus) hibernating and performing summer swarming at a large hibernaculum (Marburg Castle, Hesse, Germany), was modelled using seasonal (summer/winter) capture-recapture data for the years 1996-2000. The spring survival interval includes the period of arousal at the end of hibernation and therefore validly measures survival associated with hibernation. 2. In five summers and four winters, 15 839 bats were captured and released (13 082 individuals) and 3403 recaptures recorded. Analysis was complicated by transience and trap-dependence. Recapture rates varied seasonally and by group. The autumnal survival estimates were negatively biased due to transience effects that could not be taken into account. 3. Survival could be modelled using two age-classes, with reduced first-year juvenile survival. The age effect persisted over the first autumn and spring. There was virtually no evidence for sex-specific survival rates; male and female survival were found to be almost equal. In the best-fitting models, survival rates varied over time and differed among sexes and age-classes by a constant amount. Between years, there was only a small variation in spring survival, which could not be explained by winter severity. 4. Adult spring survival was surprisingly high, averaging 0.892 ((SE) over cap = 0.028). No evidence for increased mortality during hibernation could be found. This contradicted the expectation of reduced over-winter survival due to depleted fat reserves at the end of hibernation. Thus, hibernation does apparently not entail a survival cost for the pipistrelle bat. Rough estimates of annual adult survival averaged 0.799 ((SE) over cap = 0.051), which considerably exceeds previous estimates; annual juvenile survival was estimated at 0.527 ((SE) over cap = 0.095). Hence, previous studies have substantially underestimated pipistrelle bat survival. Possible consequences of these findings for various aspects of life histories are discussed. Univ Marburg, Dept Anim Ecol, Fac Biol, D-35032 Marburg, Germany Sendor, T (reprint author), Schaumburgstr 20 B, D-30419 Hannover, Germany. Altringham J., 1996, BATS BIOL BEHAV; Anderson DR, 1999, BIRD STUDY, V46, P14; Anderson DR, 1999, BIRD STUDY, V46, P261; ANDERSON DR, 1985, J ANIM ECOL, V54, P89, DOI 10.2307/4622; ARMITAGE KB, 1974, ECOLOGY, V55, P1233, DOI 10.2307/1935452; ARNOLD W, 1990, BEHAV ECOL SOCIOBIOL, V27, P239; Barratt EM, 1997, NATURE, V387, P138, DOI 10.1038/387138b0; BOYD IL, 1989, J APPL ECOL, V26, P101, DOI 10.2307/2403654; BURNHAM KP, 1992, WILDLIFE 2001 : POPULATIONS, P16; Burnham KP, 1998, MODEL SELECTION INFE; Burnham KP, 1987, DESIGN ANAL METHODS; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; Davis W. H., 1965, Journal of Mammalogy, V46, P296, DOI 10.2307/1377850; DAVIS WH, 1966, J MAMMAL, V47, P383, DOI 10.2307/1377679; DUMITRESCO MARGARETA, 1963, ANN SPELEOL, V18, P511; FENTON MB, 1969, CAN J ZOOLOG, V47, P597, DOI 10.1139/z69-103; Fleming T.H., 1979, P1; GAISLER J, 1987, EUROPEAN BAT RES, P117; Gauthier G, 2001, ECOLOGY, V82, P3105, DOI 10.2307/2679838; GEISER F, 1995, PHYSIOL ZOOL, V68, P935, DOI 10.1086/physzool.68.6.30163788; GERELL R, 1985, BEHAV ECOL SOCIOBIOL, V16, P177, DOI 10.1007/BF00295153; GERELL R, 1990, OECOLOGIA, V83, P401, DOI 10.1007/BF00317567; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; Guttinger R., 2001, HDB SAUGETIERE EUROP, V4, P123; HESTBECK JB, 1989, J WILDLIFE MANAGE, V53, P91, DOI 10.2307/3801312; HITCHCOCK HB, 1984, J MAMMAL, V65, P126, DOI 10.2307/1381210; Hoyle SD, 2001, AUSTRAL ECOL, V26, P80, DOI 10.1111/j.1442-9993.2001.01092.pp.x; Humphries MM, 2002, NATURE, V418, P313, DOI 10.1038/nature00828; Johnson SA, 1998, AM MIDL NAT, V139, P255, DOI 10.1674/0003-0031(1998)139[0255:OWLOIB]2.0.CO;2; JONES G, 1993, P ROY SOC B-BIOL SCI, V251, P119, DOI 10.1098/rspb.1993.0017; Jones Gareth, 1999, Bulletin of Zoological Nomenclature, V56, P182; Keen R., 1988, P157; KEEN R, 1980, J MAMMAL, V61, P1, DOI 10.2307/1379951; Lebreton JD, 1995, J APPL STAT, V22, P1009, DOI 10.1080/02664769524766; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LOERY G, 1987, ECOLOGY, V68, P1038, DOI 10.2307/1938375; Lustrat P., 1997, Myotis, V35, P109; NAGEL A, 1991, COMP BIOCHEM PHYS A, V99, P323, DOI 10.1016/0300-9629(91)90008-Z; NORTH PM, 1979, BIOMETRICS, V35, P667, DOI 10.2307/2530260; Park KJ, 2000, FUNCT ECOL, V14, P580, DOI 10.1046/j.1365-2435.2000.t01-1-00460.x; Park KJ, 1996, P ROY SOC B-BIOL SCI, V263, P1495, DOI 10.1098/rspb.1996.0218; POLLOCK KH, 1990, WILDLIFE MONOGR, P1; Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; Pradel R., 1993, P29; Prevot-Julliard AC, 1998, AUK, V115, P85; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Racey P.A., 1988, P31; RACEY PA, 1974, J ZOOL, V173, P264, DOI 10.1111/j.1469-7998.1974.tb03136.x; Ransome RD, 1995, PHILOS T ROY SOC B, V350, P153, DOI 10.1098/rstb.1995.0149; Schaub M, 2001, J ZOOL, V255, P89, DOI 10.1017/S0952836901001133; Sendor Thomas, 2000, Myotis, V38, P91; SMITH D R, 1987, Acta Ornithologica (Warsaw), V23, P69; SPEAKMAN JR, 1991, MAMMAL REV, V21, P123, DOI 10.1111/j.1365-2907.1991.tb00114.x; SPEAKMAN JR, 1989, J ANIM ECOL, V58, P797, DOI 10.2307/5125; SPEAKMAN JR, 1991, J ZOOL, V225, P327, DOI 10.1111/j.1469-7998.1991.tb03820.x; Speakman JR, 1999, P NUTR SOC, V58, P123, DOI 10.1079/PNS19990017; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stearns SC., 1992, EVOLUTION LIFE HIST; STEVENSON DE, 1981, J MAMMAL, V62, P244, DOI 10.2307/1380702; Swaddle JP, 1998, J AVIAN BIOL, V29, P172, DOI 10.2307/3677195; THOMAS DW, 1990, J MAMMAL, V71, P475, DOI 10.2307/1381967; THOMPSON MJA, 1987, J ZOOL, V211, P209, DOI 10.1111/j.1469-7998.1987.tb01529.x; Tuttle M.D., 1982, P105; Viallefont A, 1995, AUK, V112, P67, DOI 10.2307/4088767; von Helversen O., 1987, Mitteilungen des Badischen Landesvereins fuer Naturkunde und Naturschutz e.V. Freiburg im Breisgau, V14, P409; WEBB PI, 1992, J ZOOL, V228, P669, DOI 10.1111/j.1469-7998.1992.tb04465.x; Webb PI, 1996, CAN J ZOOL, V74, P761, DOI 10.1139/z96-087; White GC, 1999, BIRD STUDY, V46, P120 68 69 71 2 56 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 0021-8790 J ANIM ECOL J. Anim. Ecol. MAR 2003 72 2 308 320 10.1046/j.1365-2656.2003.00702.x 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology 662UJ WOS:000181967000011 Bronze 2019-02-26 J Simons, AM; Johnston, MO Simons, AM; Johnston, MO Suboptimal timing of reproduction in Lobelia inflata may be a conservative bet-hedging strategy JOURNAL OF EVOLUTIONARY BIOLOGY English Article adaptation; bolting; conservative bet hedging; environmental uncertainty; flowering behaviour; life-history evolution; optimality; phenotypic manipulation; phenotypic plasticity; timing of reproduction VARIABLE ENVIRONMENT; SELECTION PRESSURES; EVOLUTIONARY BETS; LIFE-HISTORIES; FIELD CRICKET; SIZE; PLASTICITY; GENETICS; TELEKII; PLANTS Age and size at reproduction are important components of fitness, and are variable both within and among angiosperm species. The fitness consequences of such life-history variation are most readily studied in organisms that reproduce only once in their lifetime. The timing of the onset of reproduction (bolting) in the monocarpic perennial, Lobelia inflata, occurs over a range of dates within a season, and may be postponed to a later year. Empirical relationships among life-history traits, derived from over 950 wild-growing and experimentally manipulated plants in the field, are used to model an optimal changing size threshold (norm of reaction) for bolting over the growing season. Comparisons are made between observed and expected norms of reaction governing bolting. An apparently suboptimal bolting schedule that precludes bolting beyond an early (conservative) date is observed, and is found to be qualitatively consistent with conservative bet hedging under unpredictable season lengths. On this basis we propose the schedule of bolting as a plausible example of a conservative bet-hedging strategy. The results underscore the critical need for long-term studies of fluctuating selection to distinguish suboptimality from bet hedging. Carleton Univ, Coll Nat Sci, Dept Biol, Ottawa, ON K1S 5B6, Canada; Dalhousie Univ, Dept Biol, Life Sci Ctr, Halifax, NS B3H 4J1, Canada Simons, AM (reprint author), Carleton Univ, Coll Nat Sci, Dept Biol, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. andrew_simons@carleton.ca Simons, Andrew/A-7751-2012 Simons, Andrew/0000-0002-0198-465X BASKIN JM, 1992, CAN J BOT, V70, P589, DOI 10.1139/b92-075; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; DEJONG TJ, 1987, VEGETATIO, V70, P149; *ENV CAN, 1997, MONTHL MET SUMM WIND; GAVRILETS S, 1993, J EVOLUTION BIOL, V6, P31, DOI 10.1046/j.1420-9101.1993.6010031.x; GERITZ SAH, 1995, AM NAT, V146, P685, DOI 10.1086/285820; GILLESPIE JH, 1974, GENETICS, V76, P601; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; KLINKHAMER PGL, 1991, OIKOS, V61, P88, DOI 10.2307/3545410; LACEY EP, 1986, TRENDS ECOL EVOL, V1, P72, DOI 10.1016/0169-5347(86)90021-2; LEWONTIN RC, 1965, GENETICS COLONIZING, P79; MCLAREN IA, 1966, ECOLOGY, V47, P852, DOI 10.2307/1934273; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Rees M, 1999, AM NAT, V154, P628, DOI 10.1086/303268; Roff Derek A., 1992; *SAS, 1989, SAS STAT US GUID VER; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Simons AM, 1999, AM NAT, V153, P683, DOI 10.1086/303206; SIMONS AM, 1994, EVOLUTION, V48, P1637, DOI 10.1111/j.1558-5646.1994.tb02201.x; Simons AM, 1996, EVOLUTION, V50, P267, DOI 10.1111/j.1558-5646.1996.tb04490.x; Simons AM, 1997, OIKOS, V80, P401, DOI 10.2307/3546608; Simons AM, 2000, HEREDITY, V85, P356, DOI 10.1046/j.1365-2540.2000.00760.x; Simons AM, 2002, J EVOLUTION BIOL, V15, P688, DOI 10.1046/j.1420-9101.2002.00437.x; SIMONS AM, 1999, THESIS DALHOUSIE U D; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; YOUNG TP, 1985, ECOLOGY, V66, P1879, DOI 10.2307/2937383; YOUNG TP, 1984, J ECOL, V72, P637, DOI 10.2307/2260073 28 43 43 2 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAR 2003 16 2 233 243 10.1046/j.1420-9101.2003.00530.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 644PC WOS:000180926300007 14635862 2019-02-26 J Kelley, J; Smith, TM Kelley, J; Smith, TM Age at first molar emergence in early Miocene Afropithecus turkanensis and life-history evolution in the Hominoidea JOURNAL OF HUMAN EVOLUTION English Article Miocene hominoid; dentition; dental eruption; enamel; microstructure; primate life history; primate evolution CROWN FORMATION TIMES; DENTAL DEVELOPMENT; HISTOLOGICAL RECONSTRUCTION; DEVELOPING DENTITION; ENAMEL THICKNESS; FOSSIL HOMINIDS; DEATH; KENYA; TEETH; MICROSTRUCTURE Among primates, age at first molar emergence is correlated with a variety of life history traits. Age at first molar emergence can therefore be used to broadly infer the life histories of fossil primate species. One method of determining age at first molar emergence is to determine the age at death of fossil individuals that were in the process of erupting their first molars. This was done for an infant partial mandible of Afropithecus turkanensis (KNM-MO 26) from the similar to 17.5 Ma site of Moruorot in Kenya. A range of estimates of age at death was calculated for this individual using the permanent lateral incisor germ preserved in its crypt, by combining the number and periodicity of lateral enamel perikymata with estimates of the duration of cuspal enamel formation and the duration of the postnatal delay in the inception of crown mineralization. Perikymata periodicity was determined using daily cross striations between adjacent Retzius lines in thin sections of two A. turkanensis molars from the nearby site of Kalodirr. Based on the position of the KNM-MO 26 M, in relation to the mandibular alveolar margin, it had not yet undergone gingival emergence. The projected time to gingival emergence was estimated based on radiographic studies of M, eruption in extant baboons and chimpanzees. The estimates of age at M, emergence in KNM-MO 26 range from 28.2 to 43.5 months, using minimum and average values from extant great apes and humans for the estimated growth parameters. Even the absolute minimum value is well outside the ranges of extant large Old World monkeys for which there are data (12.5 to <25 months), but is within the range of chimpanzees (25.7 to 48.0 months). It is inferred, therefore, that A. turkanensis had a life history profile broadly like that of Pan. This is additional evidence to that provided by Sivapithecus parvada (Function, Phylogeny, and Fossils: Miocene Hominoid Evolution and Adaptations, 1997, 173) that the prolonged life histories characteristic of extant apes were achieved early in the evolutionary history of the group. However, it is unclear at present whether life-history prolongation in apes represents the primitive catarrhine pace of life history extended through phyletic increase in body mass, or whether it is derived with respect to a primitive, size-adjusted life history that was broadly intermediate between those of extant hominoids and cercopithecoids. Life history evolution in primates as a whole may have occurred largely through a series of grade-shifts, with the establishment of fundamental life-history profiles early in the histories of major higher taxa. These may have included shifts that were largely body mass dependent, as well as those that occurred in the absence of significant changes in body mass. (C) 2003 Elsevier Science Ltd. All rights reserved. Univ Illinois, Coll Dent, Dept Oral Biol MC690, Chicago, IL 60612 USA; SUNY Stony Brook, Interdept Doctoral Program Anthropol Sci, Stony Brook, NY 11794 USA Kelley, J (reprint author), Univ Illinois, Coll Dent, Dept Oral Biol MC690, 801 S Paulina, Chicago, IL 60612 USA. jkelley@uic.edu; tasmith@notes.cc.sunysb.edu Smith, Tanya M./0000-0001-8175-8208 ANTOINE D, 1999, DENT MORPHOLOGY 1998, P48; Begun David R., 1997, P389; BEYNON AD, 1986, AM J PHYS ANTHROPOL, V70, P177, DOI 10.1002/ajpa.1330700205; BEYNON AD, 1991, AM J PHYS ANTHROPOL, V86, P189, DOI 10.1002/ajpa.1330860208; Beynon AD, 1998, J HUM EVOL, V35, P163, DOI 10.1006/jhev.1998.0230; BOSCHETTO HB, 1992, J HUM EVOL, V22, P47, DOI 10.1016/0047-2484(92)90029-9; BOWEN W H, 1970, Laboratory Animals (London), V4, P113, DOI 10.1258/002367770781036481; Boyde A., 1963, EXCERPTA MED INT C S, V80, P36; BROMAGE TG, 1985, NATURE, V317, P525, DOI 10.1038/317525a0; CACCONE A, 1989, EVOLUTION, V43, P925, DOI 10.1111/j.1558-5646.1989.tb02540.x; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; DEAN MC, 1991, AM J PHYS ANTHROPOL, V86, P215, DOI 10.1002/ajpa.1330860210; DEAN MC, 1987, J HUM EVOL, V16, P197, DOI 10.1016/0047-2484(87)90076-5; DEAN MC, 1986, AM J PHYS ANTHROPOL, V70, P301, DOI 10.1002/ajpa.1330700305; DEAN MC, 1987, J HUM EVOL, V16, P157, DOI 10.1016/0047-2484(87)90074-1; Dean MC, 2001, AM J PHYS ANTHROPOL, V116, P209, DOI 10.1002/ajpa.1116; DEAN MC, 1993, AM J PHYS ANTHROPOL, V91, P401, DOI 10.1002/ajpa.1330910402; Dean MC, 1998, J HUM EVOL, V35, P449, DOI 10.1006/jhev.1998.0208; DEAN MC, 1989, FOLIA PRIMATOL, V53, P160; Dean MC, 1993, INT J OSTEOARCHAEOL, V3, P249, DOI DOI 10.1002/OA.1390030404; Dirks W, 1998, J HUM EVOL, V35, P411, DOI 10.1006/jhev.1997.0185; FitzGerald CM, 1998, J HUM EVOL, V35, P371, DOI 10.1006/jhev.1998.0232; Godfrey Laurie R., 2002, P113; Godfrey LR, 2001, AM J PHYS ANTHROPOL, V114, P192, DOI 10.1002/1096-8644(200103)114:3<192::AID-AJPA1020>3.0.CO;2-Q; Harrison Terry, 2002, VVolume 33, P311; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; HARVEY PH, 1989, COMP SOCIOECOLOGY, P305; HURME VO, 1961, P AM PHILOS SOC, V105, P105; Iwamoto M., 1987, PRIMATE RES, V3, P18; KAHUMBU P, 1991, AM J PRIMATOL, V23, P1, DOI 10.1002/ajp.1350230102; KAPPELMAN J, IN PRESS GEOLOGY PAL; Kelley J, 2002, HUMAN EVOLUTION THROUGH DEVELOPMENTAL CHANGE, P223; KELLEY J, 1988, J HUM EVOL, V17, P305, DOI 10.1016/0047-2484(88)90073-5; KELLEY J, 1999, AM J PHYS ANTHR S, V28, P167; KELLEY J, 2001, DENT MORPHOLOGY 2001, P123; Kelley Jay, 1997, P173; Kumar S, 1998, NATURE, V392, P917; Leakey Meave, 1997, P225; LEAKEY RE, 1988, AM J PHYS ANTHROPOL, V76, P289, DOI 10.1002/ajpa.1330760303; LEE PC, 1993, THEROPITHECUS, P487, DOI 10.1017/CBO9780511565540.020; Macho GA, 2001, AM J PRIMATOL, V55, P189, DOI 10.1002/ajp.1054; Macho Gabriele A., 1995, Evolutionary Anthropology, V4, P17, DOI 10.1002/evan.1360040105; MARTIN RD, 1990, MG PRIMATOL, V14, P47; PHILLIPSCONROY JE, 1988, AM J PRIMATOL, V15, P17, DOI 10.1002/ajp.1350150104; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Reid DJ, 1998, J HUM EVOL, V35, P427, DOI 10.1006/jhev.1998.0248; Reid DJ, 1998, J HUM EVOL, V35, P463, DOI 10.1006/jhev.1998.0233; Ross C, 1998, EVOL ANTHROPOL, V6, P54, DOI 10.1002/(SICI)1520-6505(1998)6:2<54::AID-EVAN3>3.3.CO;2-D; ROZZI FVR, 2002, HUMAN EVOLUTION DEV, P319; Schwartz GT, 2002, P NATL ACAD SCI USA, V99, P6124, DOI 10.1073/pnas.092685099; Schwartz GT, 2001, INT J PRIMATOL, V22, P837, DOI 10.1023/A:1012073601808; SCHWARTZ GT, IN PRESS J HUM EVOL; Shellis RP, 1998, J HUM EVOL, V35, P387, DOI 10.1006/jhev.1998.0260; Smith B. Holly, 1994, Yearbook of Physical Anthropology, V37, P177; SMITH BH, 1991, AM J PHYS ANTHROPOL, V86, P157, DOI 10.1002/ajpa.1330860206; SMITH BH, 1995, ANNU REV ANTHROPOL, V24, P257, DOI 10.1146/annurev.an.24.100195.001353; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; Smith BH, 1992, EVOL ANTHROPOL, V1, P134, DOI DOI 10.1002/EVAN.1360010406; SMITH RJ, 1995, J HUM EVOL, V29, P155, DOI 10.1006/jhev.1995.1051; Smith RJ, 1997, J HUM EVOL, V32, P523, DOI 10.1006/jhev.1996.0122; Smith RJ, 1996, CURR ANTHROPOL, V37, P451, DOI 10.1086/204505; Smith TM, 2003, J HUM EVOL, V44, P283, DOI 10.1016/S0047-2484(03)00006-X; SMITH TM, 2001, AM J PHYS ANTHR S, V32, P140; SWINDLER DR, 1993, THEROPITHECUS, P351, DOI 10.1017/CBO9780511565540.014; SWINDLER DR, 1985, NONHUMAN PRIMATE MOD, P67; WATTS ES, 1990, MG PRIMATOL, V14, P89; WOLF K, 1984, THESIS YALE U; ZHAO L, 2000, ACTA ANTHR SINICA S, V19, P72; Zuckerman S., 1928, P ZOOL SOC LOND, P1 70 75 78 0 14 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0047-2484 J HUM EVOL J. Hum. Evol. MAR 2003 44 3 307 329 10.1016/S0047-2484(03)00005-8 23 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 658WX WOS:000181745000002 12657519 2019-02-26 J Rochette, R; Dunmall, K; Dill, LM Rochette, R; Dunmall, K; Dill, LM The effect of life-history variation on the population size structure of a rocky intertidal snail (Littorina sitkana) JOURNAL OF SEA RESEARCH English Article intertidal ecology; life-history theory; predation pressure; population demography; Littorina sitkana; Bamfield, British Columbia; Northeastern Pacific GUPPIES POECILIA-RETICULATA; 2 SYMPATRIC MORPHS; SAXATILIS OLIVI; MARINE SNAIL; GROWTH-RATE; GENE FLOW; PREDATION; SELECTION; EVOLUTION; SHORE On wave-sheltered shores of the northeastern Pacific, the population size structure of Littorina sitkana varies with intertidal height, as larger snails are mostly found only in the upper intertidal. This pattern has been attributed to high predation rates by crabs (and perhaps fish) on large snails inhabiting low-intertidal areas; i.e., large snails are presumed to be rare there simply because predators kill them. In this study we investigate the hypothesis that predation contributes to the shore-level size gradient displayed by L. sitkana by selecting for (or inducing) earlier sexual maturation and reduced somatic growth in low-shore snails relative to high-shore individuals. In the first part of our study, we carried out laboratory dissections, field experiments (mark-release-recapture and caging), and field surveys on a wave-protected shore in Bamfield Inlet, Barkley Sound (British Columbia, Canada). The principal results were: (1) adult survivorship was greater at higher, than at lower, intertidal level, (2) snails displayed a preference for their shore level of origin, (3) immature adults from the high intertidal displayed greater rates of somatic growth relative to immature adults from the low intertidal, and (4) low-shore snails matured at a smaller size than high-shore individuals. In the second part of the study, a large-scale survey showed intra-specific variation in size at sexual maturity (point 4 above) to be relatively consistent over time (winter of 1999 and 2001 for snails from our main study site) and space (13 different sites in winter 2001), although the magnitude of these differences varied greatly from shore to shore. Our results indicate that L. sitkana individuals inhabiting upper and lower parts of their intertidal range allocate resources differently to somatic and gonadal growth, an intra-specific difference that is best interpreted as a response to spatial and size-dependent variation in predation pressure. Taken together, results of this and other recent studies indicate that phenotypic responses to contrasting selection pressures operating in upper- and lower-intertidal areas contribute to the intertidal size gradient of L. sitkana. We believe that greater consideration of evolutionary processes in ecological studies will lead to a more complete understanding of the mechanisms responsible for structuring marine coastal communities. (C) 2002 Elsevier Science B.V. All rights reserved. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada; Bamfield Marine Sci Ctr, Bamfield, BC V0R 1B0, Canada; Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada; Simon Fraser Univ, Dept Biol Sci, Behav Ecol Res Grp, Burnaby, BC V5A 1S6, Canada Rochette, R (reprint author), Univ New Brunswick, Dept Biol, POB 5050, St John, NB E2L 4L5, Canada. rochette@unbsj.ca Agresti A, 1996, INTRO CATEGORICAL DA; Boulding EG, 1999, J EXP MAR BIOL ECOL, V232, P217, DOI 10.1016/S0022-0981(98)00117-8; BUCKLANDNICKS J, 1973, CAN J ZOOL, V51, P359, DOI 10.1139/z73-050; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; De Wolf H, 1998, MAR ECOL PROG SER, V163, P155, DOI 10.3354/meps163155; Erlandsson J, 1998, HYDROBIOLOGIA, V378, P59, DOI 10.1023/A:1003277202763; Glazier DS, 1999, ARCH HYDROBIOL, V146, P257; HENDRIX LJ, 1982, BIOMETRICS, V38, P641, DOI 10.2307/2530045; Hosmer DW, 2000, APPL LOGISTIC REGRES; HUGHES RN, 1982, J MOLLUS STUD, V48, P321, DOI 10.1093/oxfordjournals.mollus.a065654; Hull SL, 1998, HYDROBIOLOGIA, V378, P79, DOI 10.1023/A:1003237521419; HUXHAM M, 1993, J EXP MAR BIOL ECOL, V168, P223, DOI 10.1016/0022-0981(93)90262-M; JANSON K, 1982, MAR BIOL, V69, P73, DOI 10.1007/BF00396963; Johannesson K, 1997, BIOL J LINN SOC, V61, P267; JOHANNESSON K, 1993, EVOLUTION, V47, P1770, DOI 10.1111/j.1558-5646.1993.tb01268.x; Johannesson K, 1995, EVOLUTION, V49, P1180, DOI 10.1111/j.1558-5646.1995.tb04445.x; Kirk R. E., 1982, EXPT DESIGN PROCEDUR; LAFFERTY KD, 1993, OIKOS, V68, P3, DOI 10.2307/3545303; MCCORMACK SMD, 1982, OECOLOGIA, V54, P117; MCMAHON RF, 1990, DEV HYDROB, V56, P241, DOI 10.1007/BF00028081; McPeek MA, 1998, ECOLOGY, V79, P867, DOI 10.2307/176586; McPeek MA, 1996, ECOLOGY, V77, P1319, DOI 10.2307/2265528; McQuaid CD, 1996, OCEANOGR MAR BIOL, V34, P233; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Reid DG, 1996, SYSTEMATICS EVOLUTIO; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; ROBLES C, 1989, J NAT HIST, V23, P1041, DOI 10.1080/00222938900770951; Rochette R, 2000, J EXP MAR BIOL ECOL, V253, P165, DOI 10.1016/S0022-0981(00)00253-7; Rodd FH, 1997, ECOLOGY, V78, P405; RolanAlvarez E, 1996, OPHELIA, V45, P1; SACCHI C F, 1987, Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, V128, P209; Sparkes TC, 1996, OECOLOGIA, V106, P85, DOI 10.1007/BF00334410; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Underwood A. J., 1997, EXPT ECOLOGY THEIR L; VERMEIJ GJ, 1972, ECOLOGY, V53, P693, DOI 10.2307/1934785; VONDERBRINK RH, 1993, OECOLOGIA, V95, P70, DOI 10.1007/BF00649509; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; YAMADA SB, 1989, MAR BIOL, V103, P403, DOI 10.1007/BF00397275; Yamada SB, 1996, J EXP MAR BIOL ECOL, V204, P59, DOI 10.1016/0022-0981(96)02579-8; Yamada SB, 1998, J EXP MAR BIOL ECOL, V220, P213 44 15 15 0 27 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1385-1101 1873-1414 J SEA RES J. Sea Res. MAR 2003 49 2 119 132 10.1016/S1385-1101(02)00217-4 14 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 652YT WOS:000181409000004 2019-02-26 J Olsen, EM; Vollestad, LA Olsen, EM; Vollestad, LA Microgeographical variation in brown trout reproductive traits: possible effects of biotic interactions OIKOS English Article SALMO-TRUTTA-L; LIFE-HISTORY EVOLUTION; EGG SIZE; ATLANTIC SALMON; PACIFIC SALMON; INTERPOPULATION VARIATION; TRINIDADIAN GUPPIES; ONCORHYNCHUS-NERKA; NATURAL-SELECTION; GENETIC-STRUCTURE This study documents substantial variation in reproductive traits among populations of stream-dwelling brown trout (Salmo trutta L.) at a very small geographic scale. Within two streams, we found a parallel pattern of variation, where females living above major waterfalls produced fewer and larger eggs than conspecifics from below the waterfalls. Four additional streams were represented with either a below-waterfall site (n = 2) or all above-waterfall site (n = 2). When these streams were included in the analyses, there was no consistent difference in reproductive traits between females from above- and below-waterfall sites. There was no significant difference in total reproductive investment among sites within streams, but considerable variation among streams. Female first-year growth rates was estimated from scales, and differed significantly among populations. Within streams, females from below waterfalls experienced higher first-year growth rates as compared to females from above the waterfalls. Within seven Out of eight populations, egg size increased significantly with increasing female body length. Within three Populations, we found evidence for a trade-off between offspring size and offspring number, as a negative association between fecundity and egg size independently of adult body size. Within three populations egg size decreased significantly with increasing maternal first-year growth, independently of adult body size. We suggest that the within-stream differences in offspring size/number strategies are influenced by population density and growth effects. Earlier, we have shown that population densities are consistently lower below the waterfalls in these streams. The Alpine bullhead (Cottus poecilopus) is found only below the waterfalls and could influence brown trout demography. Univ Oslo, Dept Biol, Div Zool, NO-0316 Oslo, Norway Olsen, EM (reprint author), Univ Oslo, Dept Biol, Div Zool, POB 1050 Blindern, NO-0316 Oslo, Norway. e.m.olsen@bio.uio.no Olsen, Esben/B-1894-2012 Olsen, Esben/0000-0003-3807-7524; Vollestad, Leif Asbjorn/0000-0002-9389-7982 ANDREASSON S, 1980, DROTTNINGHOLM, V8, P1; BAGENAL TB, 1969, J FISH BIOL, V1, P349, DOI 10.1111/j.1095-8649.1969.tb03882.x; BAGENAL TB, 1969, J FISH BIOL, V1, P167, DOI 10.1111/j.1095-8649.1969.tb03850.x; BROCKSEN RW, 1968, J WILDLIFE MANAGE, V32, P51, DOI 10.2307/3798237; Carlsson J, 2000, HEREDITAS, V132, P173, DOI 10.1111/j.1601-5223.2000.00173.x; Carlsson J, 1999, J FISH BIOL, V55, P1290, DOI 10.1006/jfbi.1999.1123; CARVALHO GR, 1993, J FISH BIOL, V43, P53, DOI 10.1111/j.1095-8649.1993.tb01179.x; Diamond J., 1986, COMMUNITY ECOLOGY, P3; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Foote CJ, 1998, CAN J FISH AQUAT SCI, V55, P1524, DOI 10.1139/cjfas-55-6-1524; Gabler HM, 1999, ECOL FRESHW FISH, V8, P201, DOI 10.1111/j.1600-0633.1999.tb00071.x; GALL GAE, 1975, J ANIM SCI, V40, P19; Gaudin P, 2000, ARCH HYDROBIOL, V147, P257; GJERDE B, 1986, AQUACULTURE, V57, P37, DOI 10.1016/0044-8486(86)90179-1; GOWAN C, 1994, CAN J FISH AQUAT SCI, V51, P2626, DOI 10.1139/f94-262; HALVORSEN M, 1990, ANIM BEHAV, V39, P1089, DOI 10.1016/S0003-3472(05)80781-X; Heath DD, 1999, EVOLUTION, V53, P1605, DOI [10.1111/j.1558-5646.1999.tb05424.x, 10.2307/2640906]; Heath DD, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P178; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; HOLMEN J, 2001, THESIS U OSLO NORWAY; HUNTER JG, 1959, J FISH RES BOARD CAN, V16, P835, DOI 10.1139/f59-061; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; HUTCHINGS JA, 1997, EARLY LIFE HIST RECR, P139; Jenkins TM, 1999, ECOLOGY, V80, P941, DOI 10.2307/177029; JONSSON B, 1976, NORW J ZOOL, V24, P295; JONSSON B, 1976, NORW J ZOOL, V24, P331; Jonsson N, 1999, J FISH BIOL, V55, P767, DOI 10.1006/jfbi.1999.1035; Jonsson N, 1996, FUNCT ECOL, V10, P89, DOI 10.2307/2390266; LABEELUND JH, 1990, J FISH BIOL, V37, P755, DOI 10.1111/j.1095-8649.1990.tb02539.x; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Lobon-Cervia J, 2000, ECOL FRESHW FISH, V9, P92, DOI 10.1034/j.1600-0633.2000.90111.x; MASON JC, 1976, FISH B-NOAA, V74, P131; MCKENZIE WD, 1983, COPEIA, P770; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Morita K, 1999, CAN J FISH AQUAT SCI, V56, P1585, DOI 10.1139/cjfas-56-9-1585; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Olsen E. M, 2000, THESIS U OSLO NORWAY, V21; Olsen EM, 2001, J FISH BIOL, V59, P1579, DOI 10.1006/jfbi.2001.1810; Olsen EM, 2001, J FISH BIOL, V59, P1622, DOI 10.1006/jfbi.2001.1812; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PATTEN BG, 1975, FISH B-NOAA, V73, P931; PHILLIPS RW, 1966, T AM FISH SOC, V95, P210, DOI 10.1577/1548-8659(1966)95[210:IMOTRS]2.0.CO;2; Quinn TP, 1995, OIKOS, V74, P425, DOI 10.2307/3545987; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Robinson BW, 2000, ADAPTIVE GENETIC VARIATION IN THE WILD, P65; Roff Derek A., 1992; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Su GS, 1997, AQUACULTURE, V154, P115, DOI 10.1016/S0044-8486(97)00050-1; SVARDSON GUNNAR, 1949, REPT INST FRESHWATER RES DROTTNINGHOLM, V29, P115; Tamate T, 2000, OIKOS, V90, P209, DOI 10.1034/j.1600-0706.2000.900201.x; THORPE JE, 1984, AQUACULTURE, V43, P289, DOI 10.1016/0044-8486(84)90030-9; Tufto J, 2000, AM NAT, V156, P121, DOI 10.1086/303381; Utzinger J, 1998, J APPL ECOL, V35, P882, DOI 10.1111/j.1365-2664.1998.tb00006.x; VANDENBERGHE EP, 1989, EVOLUTION, V43, P125, DOI 10.1111/j.1558-5646.1989.tb04212.x; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559 69 37 38 1 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAR 2003 100 3 483 492 10.1034/j.1600-0706.2003.11900.x 10 Ecology Environmental Sciences & Ecology 662TD WOS:000181963700007 2019-02-26 J Lytle, DA Lytle, DA Reconstructing long-term flood regimes with rainfall data: Effects of flood timing on caddisfly populations SOUTHWESTERN NATURALIST English Article LIFE-HISTORY EVOLUTION; SONORAN DESERT STREAM; FLASH FLOODS; FREMONT COTTONWOOD; DISTURBANCE; ARIZONA; MACROINVERTEBRATES; CREEK Flash floods area defining feature of desert streams, but flow records are not always available to characterize long-term flood dynamics. In this study, rainfall data spanning 100 years were used as a proxy to quantify long-term flood regimes for southeastern Arizona (USA) streams. The frequency and seasonal timing of severe floods (>50% substrate movement) were highly variable at short temporal scales (days to several years), but clear patterns emerged in the long-term (several years to a century). To explore the ecological effects of flood timing, populations of the caddisfly Phylloicus aeneus (Calamoceratidae) were monitored in 2 streams over 3 years. The timing of individual floods relative to the long-term average strongly affected P. aeneus populations: early and timely floods had little effect on population size in the next year, but late floods significantly reduced population size in the next year. Thus, flood timing might play a role in regulating populations of desert stream organisms. Cornell Univ, Dept Entomol, Ithaca, NY 14853 USA Lytle, DA (reprint author), Oregon State Univ, Dept Entomol, 2046 Cordley Hall, Corvallis, OR 97331 USA. david.lytle@science.oregonstate.edu BOWLES DE, 1997, 8 INT S TRICH; BRUNS DA, 1980, J ARID ENVIRON, V3, P117, DOI 10.1016/S0140-1963(18)31660-4; Davidowitz G, 2002, GLOBAL ECOL BIOGEOGR, V11, P143, DOI 10.1046/j.1466-822X.2002.00271.x; Dudley RK, 1999, SOUTHWEST NAT, V44, P218; FOGEL MM, 1969, WATER RESOUR RES, V5, P1229, DOI 10.1029/WR005i006p01229; FOGEL MM, 1981, WATER DESERT ECOSYST, P219; Gordon N. B., 1992, STREAM HYDROLOGY INT; GRAY LJ, 1981, AM MIDL NAT, V106, P229, DOI 10.2307/2425159; GRAY LJ, 1981, AM MIDL NAT, V106, P249, DOI 10.2307/2425161; GRIMM NB, 1989, J N AM BENTHOL SOC, V8, P293, DOI 10.2307/1467493; JOHN KR, 1964, ECOLOGY, V45, P112, DOI 10.2307/1937112; JOHN KR, 1963, COPEIA, P286; Lytle DA, 2002, ECOLOGY, V83, P370; Lytle DA, 1999, J INSECT BEHAV, V12, P1, DOI 10.1023/A:1020940012775; Lytle DA, 2000, ARCH HYDROBIOL, V150, P85; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; MEFFE GK, 1984, ECOLOGY, V65, P1525, DOI 10.2307/1939132; Minckley W.L., 1987, P93; MOLLES MC, 1985, SOUTHWEST NAT, V30, P279, DOI 10.2307/3670741; *NAT CLIM DAT CTR, 1992, NCDC SUMM DAY; OSBORN HB, 1972, WATER RESOUR RES, V8, P259, DOI 10.1029/WR008i001p00259; OSBORN HB, 1972, T ASAE, V15, P670; Poff NL, 1996, FRESHWATER BIOL, V36, P71, DOI 10.1046/j.1365-2427.1996.00073.x; Richter BD, 1996, CONSERV BIOL, V10, P1163, DOI 10.1046/j.1523-1739.1996.10041163.x; Stromberg J, 1998, J ARID ENVIRON, V40, P133, DOI 10.1006/jare.1998.0438; Stromberg JC, 1997, GREAT BASIN NAT, V57, P198; Townsend CR, 1997, J N AM BENTHOL SOC, V16, P531, DOI 10.2307/1468142; Wiggins GB, 1996, LARVAE N AM CADDISFL 28 5 5 1 5 SOUTHWESTERN ASSOC NATURALISTS SAN MARCOS SOUTHWEST TEXAS STATE UNIV, DEPT BIOLOGY, 601 UNIVERSITY DR, SAN MARCOS, TX 78666 USA 0038-4909 1943-6262 SOUTHWEST NAT Southw. Natural. MAR 2003 48 1 36 42 10.1894/0038-4909(2003)048<0036:RLFRWR>2.0.CO;2 7 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 664CE WOS:000182043500004 2019-02-26 J Haydon, DT; Matthews, L; Timms, R; Colegrave, N Haydon, DT; Matthews, L; Timms, R; Colegrave, N Top-down or bottom-up regulation of intra-host blood-stage malaria: do malaria parasites most resemble the dynamics of prey or predator? PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article malaria; Plasmodium chabaudi; immune regulation; parasitaemia; within-host dynamics PLASMODIUM-CHABAUDI-CHABAUDI; BASIC MODELS LEAD; RED-CELL SURFACE; POPULATION-DYNAMICS; GROWTH-RATES; FALCIPARUM; INFECTION; ERYTHROCYTES; TRANSFUSION; IMMUNITY Knowledge of the factors that limit parasite numbers offers hope of improved intervention strategies as well as exposing the selective forces that have shaped parasite life-history strategies. We develop a theoretical framework with which to consider the intra-host regulation of malaria parasite density. We analyse a general model that relates timing and magnitude of peak parasite density to initial dose under three different regulatory processes. The dynamics can be regulated either by top-down processes (upgradable immune regulation), bottom-up processes (fixed immune response and red blood cell (RBC) limitation) or a mixture of the two. We define and estimate the following key parameters: (i) the rate of RBC replenishment; (ii) the rate of destruction of uninfected RBCs; and (iii) the maximum parasite growth rate. Comparing predictions of this model with experimental results for rodent malaria in laboratory mice allowed us to reject functional forms of immune upregulation and/or effects of RBC limitation that were inconsistent with the data. Bottom-up regulation alone was insufficient to account for observed patterns without invoking either localized depletion of RBC density or merozoite interference. By contrast, an immune function upregulated in proportion to either merozoite or infected RBC density was consistent with observed dynamics. An immune response directed solely at merozoites required twice the level of activation of one directed at infected RBCs. Univ Edinburgh, Inst Cell Anim & Populat Biol, Ashworth Labs, Edinburgh EH9 3JT, Midlothian, Scotland; Ctr Trop Vet Med, Roslin EH25 9RG, Midlothian, Scotland Colegrave, N (reprint author), Univ Edinburgh, Inst Cell Anim & Populat Biol, Ashworth Labs, W Mains Rd,Kings Bldg, Edinburgh EH9 3JT, Midlothian, Scotland. n.colegrave@ed.ac.uk Matthews, Louise/E-2913-2013; Colegrave, Nick/F-3916-2010 Matthews, Louise/0000-0003-4420-8367; Haydon, Daniel/0000-0002-1240-1886 ANDERSON RM, 1989, PARASITOLOGY, V99, pS59, DOI 10.1017/S0031182000083426; Austin DJ, 1998, J THEOR BIOL, V194, P313, DOI 10.1006/jtbi.1997.0438; Buckling A, 1999, EXP PARASITOL, V93, P45, DOI 10.1006/expr.1999.4429; Bull PC, 1998, NAT MED, V4, P358, DOI 10.1038/nm0398-358; CARTER R, 1975, ANN TROP MED PARASIT, V69, P187, DOI 10.1080/00034983.1975.11687000; Conway DJ, 2000, NAT MED, V6, P689, DOI 10.1038/76272; GILKS CF, 1990, PARASITE IMMUNOL, V12, P45, DOI 10.1111/j.1365-3024.1990.tb00935.x; Gravenor MB, 1998, P NATL ACAD SCI USA, V95, P7620, DOI 10.1073/pnas.95.13.7620; GRAVENOR MB, 1995, PARASITOLOGY, V110, P115, DOI 10.1017/S0031182000063861; Gravenor MB, 1998, PARASITOLOGY, V117, P409, DOI 10.1017/S0031182098003229; Gravenor MB, 1998, PARASITOLOGY, V117, P97, DOI 10.1017/S0031182098002893; HAYDON DT, 1998, J THEOR BIOL, V193, P603; HELLRIEGEL B, 1992, P ROY SOC B-BIOL SCI, V250, P249, DOI 10.1098/rspb.1992.0156; Hetzel C, 1996, PARASITOLOGY, V113, P25, DOI 10.1017/S0031182000066245; Jakeman GN, 1999, PARASITOLOGY, V119, P127, DOI 10.1017/S0031182099004564; JARRA W, 1989, PARASITOLOGY, V99, P157, DOI 10.1017/S0031182000058583; Levin BR, 2001, SCIENCE, V292, P1112, DOI 10.1126/science.1058879; Levin BR, 1996, AM NAT, V147, P881, DOI 10.1086/285884; McKenzie FE, 1997, J THEOR BIOL, V188, P127, DOI 10.1006/jtbi.1997.0478; McKenzie FE, 1998, AM J TROP MED HYG, V58, P763, DOI 10.4269/ajtmh.1998.58.763; Molineaux L, 1999, PARASSITOLOGIA, VOL 41, NOS 1-3, SEPTEMBER 1999, P221; Newbold C, 1999, INT J PARASITOL, V29, P927, DOI 10.1016/S0020-7519(99)00049-1; Nowak MA, 2000, VIRUS DYNAMICS; Ramasamy R, 2001, TRENDS PARASITOL, V17, P194, DOI 10.1016/S1471-4922(00)01946-2; RIGDON RH, 1945, AM J TROP MED, V25, P409; ROTH RL, 1979, EXP PARASITOL, V47, P169, DOI 10.1016/0014-4894(79)90070-5; Saul A, 1998, PARASITOLOGY, V117, P405, DOI 10.1017/S0031182098003230; Simpson JA, 2002, PARASITOLOGY, V124, P247, DOI 10.1017/S0031182001001202; TAYLORROBINSON AW, 1994, INFECT IMMUN, V62, P2490; Timms R, 2001, PARASITOLOGY, V123, P1, DOI 10.1017/S0031182001008083; WILKINSON RJ, 1994, Q J MED, V87, P553; YAP GS, 1994, INFECT IMMUN, V62, P3761 32 40 42 0 10 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. FEB 7 2003 270 1512 289 298 10.1098/rspb.2002.2203 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 646YK WOS:000181064200010 12614579 Green Published 2019-02-26 J Koskinen, MT; Haugen, TO; Primmer, CR Koskinen, MT; Haugen, TO; Primmer, CR Contemporary fisherian life-history evolution in small salmonid populations (vol 419, pg 826, 2002) NATURE English Correction Primmer, Craig/B-8179-2008 Primmer, Craig/0000-0002-3687-8435 Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029 1 1 1 1 13 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0028-0836 NATURE Nature FEB 6 2003 421 6923 656 656 10.1038/nature01347 1 Multidisciplinary Sciences Science & Technology - Other Topics 642KH WOS:000180803200048 Bronze 2019-02-26 J Schlosser, G Schlosser, G Mosaic evolution of neural development in anurans: acceleration of spinal cord development in the direct developing frog Eleutherodactylus coqui ANATOMY AND EMBRYOLOGY English Article PCNA; proliferation; Xenopus laevis; Discoglossus pictus; heterochrony; NeuroD LATERAL MOTOR COLUMN; RANA-PIPIENS LARVAE; DISCOGLOSSUS-PICTUS DISCOGLOSSIDAE; PERIPHERAL NERVOUS-SYSTEM; LIFE-HISTORY EVOLUTION; XENOPUS-LAEVIS DAUDIN; ROHON-BEARD CELLS; NEURONAL DIFFERENTIATION; PRIMARY NEUROGENESIS; MECHANISTIC BASIS Previous studies have shown that spinal cord development in direct developing frogs of the genus Eleutherodactylus, which have evolutionarily lost the tadpole stage, differs from that in biphasically developing anurans (with the larval and the adult stage separated by metamorphosis). The present study of spinal cord development in Eleutherodactylus coqui provides additional information about neurogenesis, neuronal differentiation and growth analyzed by immunostaining for proliferating cell nuclear antigen (PCNA), in situ hybridization for NeuroD, and morphometric measurements in various developmental stages. Furthermore, spinal cord development in the frogs Discoglossus pictus, Xenopus laevis, and Physalaemus pustulosus, which belong to different anuran families but all exhibit biphasic development, was similarly analyzed. This comparative analysis allows inference of the ancestral anuran pattern of spinal cord development and how it has been modified during the evolution of Eleutherodactylus. All biphasically developing frogs analyzed share a similar pattern of spinal cord development, suggesting that this is ancestral for anurans: after neural tube closure, levels of proliferation and neurogenesis in the spinal cord were low throughout embryogenesis until they were upregulated drastically at early larval stages followed by development of the lateral motor columns. In contrast, no such quiescent embryonic period exists in E. coqui, where rapid growth, high levels of proliferation and neurogenesis, and early formation of lateral motor columns occur shortly after neural tube closure, while other parts of the central nervous system develop more slowly. Thus, spinal cord development has been accelerated during the evolution of Eleutherodactylus relative to the development of other parts of the central nervous system, probably related to the precocious development of limbs in this lineage. Univ Bremen, Brain Res Inst, D-28334 Bremen, Germany Schlosser, G (reprint author), Univ Bremen, Brain Res Inst, FB 2,POB 33 04 40, D-28334 Bremen, Germany. gschloss@uni-bremen.de BEAUDOIN AR, 1955, ANAT REC, V121, P81, DOI 10.1002/ar.1091210107; Bellefroid EJ, 1996, CELL, V87, P1191, DOI 10.1016/S0092-8674(00)81815-2; Callery EM, 2000, DEV GENES EVOL, V210, P377, DOI 10.1007/s004270000070; Callery EM, 2001, BIOESSAYS, V23, P233, DOI 10.1002/1521-1878(200103)23:3<233::AID-BIES1033>3.0.CO;2-Q; Callery EM, 1996, J EXP ZOOL, V275, P61, DOI 10.1002/(SICI)1097-010X(19960501)275:1<61::AID-JEZ9>3.3.CO;2-2; Callery EM, 2000, P NATL ACAD SCI USA, V97, P2615, DOI 10.1073/pnas.050501097; Chen A, 1999, J COMP NEUROL, V409, P592; CHITNIS A, 1995, NATURE, V375, P761, DOI 10.1038/375761a0; Chitnis A, 1996, DEVELOPMENT, V122, P2295; CHITNIS AB, 1990, J NEUROSCI, V10, P1892; DORSKY RI, 1995, NEURON, V14, P487, DOI 10.1016/0896-6273(95)90305-4; Duellman W. E., 1986, BIOL AMPHIBIANS; DUELLMAN WE, 1992, SCI AM, V267, P80, DOI 10.1038/scientificamerican0792-80; Elinson R.P., 1990, Seminars in Developmental Biology, V1, P263; ELINSON RP, 1994, J EXP ZOOL, V270, P202, DOI 10.1002/jez.1402700209; Ensini M, 1998, DEVELOPMENT, V125, P969; Fang H, 1999, DEV BIOL, V205, P233, DOI 10.1006/dbio.1998.9078; Fang H, 1996, DEV BIOL, V179, P160, DOI 10.1006/dbio.1996.0248; Ford Linda S., 1993, Herpetological Monographs, V7, P94, DOI 10.2307/1466954; FOREHAND CJ, 1982, J COMP NEUROL, V209, P386, DOI 10.1002/cne.902090408; FRITZSCH B, 1990, J NEUROBIOL, V21, P1011, DOI 10.1002/neu.480210707; GALLIEN L, 1951, B BIOL FR BELG, V4, P373; Gosner K. L., 1960, Herpetologica, V16, P183; HAMBURGER V, 1958, AM J ANAT, V102, P365, DOI 10.1002/aja.1001020303; Hanken J, 1997, P ROY SOC B-BIOL SCI, V264, P1349, DOI 10.1098/rspb.1997.0187; Hanken J, 1997, AM ZOOL, V37, P160; HANKEN J, 1992, J MORPHOL, V211, P95, DOI 10.1002/jmor.1052110111; Hanken J, 2001, J EXP ZOOL, V291, P375, DOI 10.1002/jez.1136; HANKEN J, 1992, J EVOLUTION BIOL, V5, P549, DOI 10.1046/j.1420-9101.1992.5040549.x; Hanken James, 1999, P61, DOI 10.1016/B978-012730935-4/50004-3; HARTENSTEIN V, 1989, NEURON, V3, P399, DOI 10.1016/0896-6273(89)90200-6; HARTENSTEIN V, 1993, J COMP NEUROL, V328, P213, DOI 10.1002/cne.903280205; HUGHES A, 1957, J ANAT, V91, P323; HUGHES A, 1959, J EMBRYOL EXP MORPH, V7, P22; HUGHES A, 1962, J EMBRYOL EXP MORPH, V10, P575; HUGHES A, 1959, J EMBRYOL EXP MORPH, V7, P128; HUGHES A, 1961, J EMBRYOL EXP MORPH, V9, P269; HUGHES A, 1958, J ANAT, V92, P498; Jennings DH, 1998, GEN COMP ENDOCR, V111, P225, DOI 10.1006/gcen.1998.7111; KLYMKOWSKY MW, 1991, METHOD CELL BIOL, V36, P419; Kollros JJ, 1997, J MORPHOL, V232, P67, DOI 10.1002/(SICI)1097-4687(199704)232:1<67::AID-JMOR4>3.0.CO;2-L; KOLLROS JJ, 1968, DEVL BIOL S, V2, P274; Koyano-Nakagawa N, 1999, MOL CELL NEUROSCI, V14, P327, DOI 10.1006/mcne.1999.0783; Koyano-Nakagawa N, 2000, DEVELOPMENT, V127, P4203; LAMBORGHINI JE, 1980, J COMP NEUROL, V189, P323, DOI 10.1002/cne.901890208; LEDIZET M, 1991, METHOD ENZYMOL, V196, P264; LEE JE, 1995, SCIENCE, V268, P836, DOI 10.1126/science.7754368; LYNN WG, 1961, AM ZOOL, V1, P151; LYNN WG, 1942, CONTRIBUTIONS EMBRYO, V190, P27; Ma QF, 1996, CELL, V87, P43, DOI 10.1016/S0092-8674(00)81321-5; MENDELSON B, 1990, J COMP NEUROL, V300, P422, DOI 10.1002/cne.903000311; Nieuwkoop PD, 1967, NORMAL TABLE XENOPUS; NORDLANDER RH, 1986, J COMP NEUROL, V253, P403, DOI 10.1002/cne.902530308; NORDLANDER RH, 1984, J COMP NEUROL, V228, P117, DOI 10.1002/cne.902280111; Perron M, 1999, P NATL ACAD SCI USA, V96, P14996, DOI 10.1073/pnas.96.26.14996; POLLACK ED, 1976, AM J ANAT, V147, P183, DOI 10.1002/aja.1001470203; POLLACK ED, 1975, J EXP ZOOL, V192, P299, DOI 10.1002/jez.1401920302; POLLACK ED, 1972, J EXP ZOOL, V179, P183, DOI 10.1002/jez.1401790205; POLLACK ED, 1968, ANAT REC, V163, P111; PRESTIGE MC, 1973, BRAIN RES, V59, P400, DOI 10.1016/0006-8993(73)90280-1; PRESTIGE MC, 1967, J EMBRYOL EXP MORPH, V18, P359; Pugener LA, 1997, J MORPHOL, V233, P267, DOI 10.1002/(SICI)1097-4687(199709)233:3<267::AID-JMOR6>3.0.CO;2-0; RACE J, 1965, ANAT REC, V152, P99, DOI 10.1002/ar.1091520110; Raff R. A., 1996, SHAPE LIFE; REYNOLDS WA, 1966, GEN COMP ENDOCR, V6, P453, DOI 10.1016/S0016-6480(66)80033-3; Richardson MK, 1998, J ANAT, V192, P379, DOI 10.1046/j.1469-7580.1998.19230379.x; ROBERTS A, 1989, AM ZOOL, V29, P53; Roberts A, 2000, BRAIN RES BULL, V53, P585, DOI 10.1016/S0361-9230(00)00392-0; ROBERTS A, 1982, PHILOS T R SOC B, V296, P195, DOI 10.1098/rstb.1982.0002; SCHLOSSER G, 1995, J MORPHOL, V226, P189; Schlosser G, 1997, BRAIN BEHAV EVOLUT, V50, P61, DOI 10.1159/000113323; Schlosser G, 1999, DEV BIOL, V213, P354, DOI 10.1006/dbio.1999.9404; Schlosser G, 1997, BRAIN BEHAV EVOLUT, V50, P94, DOI 10.1159/000113325; Schlosser G, 2002, DEV DYNAM, V225, P485, DOI 10.1002/dvdy.10179; Schlosser G, 1997, NEUROSCI LETT, V224, P153, DOI 10.1016/S0304-3940(97)00174-2; Schlosser G, 2001, J EXP ZOOL, V291, P282, DOI 10.1002/jez.1104; SCHLOSSER G, MODULARITY UNDERSTAN; SCHLOSSER G, IN PRESS MODULARITY; SZARSKI H, 1957, AM NAT, V91, P283, DOI 10.1086/281990; Tanaka H, 1997, DEV NEUROSCI-BASEL, V19, P106, DOI 10.1159/000111193; TAYLOR AC, 1946, ANAT REC, V94, P7, DOI 10.1002/ar.1090940103; THORS F, 1982, ANAT EMBRYOL, V164, P443, DOI 10.1007/BF00315764; THORS F, 1982, ANAT EMBRYOL, V164, P427, DOI 10.1007/BF00315763; TOWNSEND DS, 1985, COPEIA, P423, DOI 10.2307/1444854; Tsurimoto T, 1998, BBA-GENE STRUCT EXPR, V1443, P23, DOI 10.1016/S0167-4781(98)00204-8; VANMIER P, 1985, ANAT EMBRYOL, V172, P311; Wagner GP, 1996, EVOLUTION, V50, P967, DOI 10.1111/j.1558-5646.1996.tb02339.x; WAKE MH, 1989, LIFE SCI R, V45, P235; WASSERSUG RJ, 1982, EVOL BIOL, V15, P223 89 18 20 0 5 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-2061 ANAT EMBRYOL Anat. Embryol. FEB 2003 206 3 215 227 10.1007/s00429-002-0291-4 13 Anatomy & Morphology; Developmental Biology Anatomy & Morphology; Developmental Biology 657HF WOS:000181659800008 12592573 2019-02-26 J McBride, RS; Thurman, PE McBride, RS; Thurman, PE Reproductive biology of Hemiramphus brasiliensis and H-balao (Hemiramphidae): Maturation, spawning frequency, and fecundity BIOLOGICAL BULLETIN English Article CONNECTIVITY; POPULATIONS; VIVIPARITY; FISHES Analyses of life-history data show that both the size-specific batch fecundities and the age-specific spawning frequencies differ for two halfbeak species, Hemiramphus brasiliensis, the ballyhoo, and H. balao, the balao. Halfbeak ages were determined from sectioned otoliths; histological data was used to describe oocyte development and estimate spawning frequency; and batch fecundity was measured from counts of whole oocytes in final maturation. Hemiramphus brasiliensis lived longer (4 versus 2 years) and had a higher survival rate (14.9% versus 7.5% annually) than H. balao did. Of the two species the larger and longer-lived congener, H. brasiliensis, reached sexual maturity at a larger size (fork length 198 versus 160 mm). The spawning period of age-0 females was strongly related to season, whereas spawning by older females occurred throughout the year. Reproduction by both species peaked during late spring or early summer, and all mature females were spawning daily during April (H. brasiliensis) or June (H. balao). This is the first demonstration of iteroparity for the family Hemiramphidae. H. brasiliensis had a lower batch fecundity (about 1164 versus 3743 hydrated oocytes for a 100-g female) than H. balao did. Such low batch fecundities are typical of the order Beloniformes, but quite different from those of other fishes that live in association with coral reef habitats. H. balao's higher batch fecundity is consistent with the life-history theory that predicts higher numbers of eggs for shorter-lived species; this is possible because H. balao produces smaller hydrated oocytes than H. brasiliensis (modal diameter about 1.6 versus 2.4 mm). The high spawning frequency of Hemiramphus species compensates for their low batch fecundity. The annual fecundity of both species is similar to that of other reef fish species, after adjusting for body size and spawning frequency. The lifetime fecundity of H. balao was very similar to that of H. brasiliensis, after accounting for the differences in survival for each species. This suggests a fine tuning of. different reproductive traits over the entire life cycle that results in roughly equivalent lifetime fecundity for both species. Florida Marine Res Inst, Florida Fish & Wildlife Conservat Commiss, St Petersburg, FL 33701 USA McBride, RS (reprint author), Florida Marine Res Inst, Florida Fish & Wildlife Conservat Commiss, 100 8th Ave SE, St Petersburg, FL 33701 USA. McBride, Richard/C-2818-2012 McBride, Richard/0000-0003-1120-0414 BERKELEY SA, 1978, B MAR SCI, V28, P624; Coates D., 1992, Ichthyological Exploration of Freshwaters, V3, P25; Collette B., 1984, AM SOC ICHTHYOLOGIST, V1, p[335, 1]; COLLETTE BRUCE B., 1965, ATLANTIDE REP SCI RESULTS DANISH EXP COAST TROP WEST AFR, V8, P217; Cowen RK, 2000, SCIENCE, V287, P857, DOI 10.1126/science.287.5454.857; Cuellar N, 1996, FISH B-NOAA, V94, P635; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Grier HJ, 1998, J FISH BIOL, V53, P521, DOI 10.1006/jfbi.1998.0718; Gross M.R., 1987, AM FISH SOC S, V1, P14; Hunter J. R, 1985, EGG PRODUCTION METHO, P67; HUNTER JR, 1985, EGG PRODUCTION METHO, P79; LING J. K., 1958, AUSTRALIAN JOUR MARINE AND FRESHWATER RES, V9, P60; LOWERREBARBIERI SK, 1994, FISH B-NOAA, V92, P555; McBride RS, 2002, MAR BIOL, V140, P713, DOI 10.1007/s00227-001-0759-4; MCBRIDE RS, 2003, IN PRESS FISH B US, V101; McBRIDE RS., 1996, MAR FISH REV, V58, P29; Meisner AD, 1997, J MORPHOL, V234, P295, DOI 10.1002/(SICI)1097-4687(199712)234:3<295::AID-JMOR7>3.0.CO;2-8; Murphy MD, 1997, FISH B-NOAA, V95, P863; Nybakken J. W., 1997, MARINE BIOL ECOLOGIC; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; QUINTEROHUNTER I, 1991, BIOTECH HISTOCHEM, V66, P169, DOI 10.3109/10520299109109964; RASS TS, 1972, T I OCEANOL, V93, P5; Roberts CM, 1997, SCIENCE, V278, P1454, DOI 10.1126/science.278.5342.1454; ROBSON D. S., 1961, TRANS AMER FISH SOC, V90, P181, DOI 10.1577/1548-8659(1961)90[181:CCAMR]2.0.CO;2; *SAS I INC, 1990, SAS STAT US GUID, V1; *SAS I INC, 1990, SAS STAT US GUID, V2; Silva E.I.L., 1988, Tropical Freshwater Biology, V1, P42; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Talwar P. K., 1968, Journal of the Marine Biological Association of India, V9, P61; TALWAR PK, 1962, INDIAN J FISH-SECT A, V9, P168; Thresher R. E., 1984, REPROD REEF FISHES, P343; WALLACE RA, 1978, DEV BIOL, V62, P354, DOI 10.1016/0012-1606(78)90222-1; WOOTTON RJ, 1994, J FISH BIOL, V45, P1067; WOURMS JP, 1981, AM ZOOL, V21, P473 34 36 38 1 7 MARINE BIOLOGICAL LABORATORY WOODS HOLE 7 MBL ST, WOODS HOLE, MA 02543 USA 0006-3185 BIOL BULL-US Biol. Bull. FEB 2003 204 1 57 67 10.2307/1543496 11 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology 647NJ WOS:000181099300007 12588745 2019-02-26 J Slik, JWF; Kessler, PJA; van Welzen, PC Slik, J. W. Ferry; Kessler, Paul J. A.; van Welzen, Peter C. Macaranga and Mallotus species (Euphorbiaceae) as indicators for disturbance in the mixed lowland dipterocarp forest of East Kalimantan (Indonesia) ECOLOGICAL INDICATORS English Article Indicator species; Forest structure; Forest disturbance; Tree species diversity; Life-history strategies; Macaranga; Mallotus The indicator value (IV) of Macaranga and Mallotus species (Euphorbiaceae) for different types of disturbance in lowland dipterocarp forest was assessed by counting and identifying all individuals of species of these genera taller than 30 cm in 45 (10 m x 300 m) plots at nine locations. Twelve Macaranga and nine Mallotus species were found. The main forest disturbance types (primary forest, secondary forest, selectively logged forest, forest burned once, and repeatedly burned forest used for shifting-cultivation) each had their own set of indicator species. The level of disturbance in the forest types was assessed by measuring nine forest structural parameters. The occurrence of Macaranga and Mallotus species was closely related to the level of disturbance in a forest. Most Macaranga species were characteristic of high disturbance levels, while most Mallotus species preferred intermediate to low levels of disturbance. However, both genera had species at both disturbance extremes. Using multiple regression analysis, combinations of Macaranga and Mallotus species were formed and used to predict the separate forest structural parameters and the general level of disturbance of a forest. The Macaranga and Mallotus species could be grouped into (1) primary forest 'remnant' species; (2) generalist pioneer species; and (3) high disturbance pioneer species. (C) 2002 Elsevier Science Ltd. All rights reserved. [Slik, J. W. Ferry; Kessler, Paul J. A.; van Welzen, Peter C.] Univ Leiden Branch, Natl Herbarium Nederland, NL-2300 RA Leiden, Netherlands Slik, JWF (reprint author), Univ Leiden Branch, Natl Herbarium Nederland, POB 9514, NL-2300 RA Leiden, Netherlands. slik@nhn.leidenuniv.nl Netherlands Foundation for the Advancement of Tropical Research (WOTRO), within the priority programme 'Biodiversity of Disturbed Ecosystems' We would like to thank Tinus de Kam, Adi Susilo, Mulyana Omon, and Arsad Anom from the International MOFEC Tropenbos Kalimantan Project and Boen Purnama, Director of the Forest Research Institute Samarinda for their support and the use of the facilities of the Wanariset field station in Samboja. We would also like to thank Hutomo and staff from PT-ITCI-Kenangan for their co-operation, lodging, and logistic support. Kade Sidiyasa, Ambriansyah, Zainal Arifin, Arbainsyah, Adriansyah, Priyono and Nia from the Wanariset Herbarium are acknowledged for their help with collecting, identifying and drying most of the plant material. The fieldwork would have been impossible without the help of many people from Samboja, Labanan and Kenangan that assisted us. We would especially like to mention Joni and Uli for their great assistance in the field. We thank Edo Goverse for his help in constructing the first plots and the collection of many tree species samples in Wanariset. We would like to acknowledge LIPI for granting us permission to conduct research in Kalimantan. We are grateful to Pieter Baas, Gerrit Heil, Lisette Senerpont Domis, Arjan Stroo and Rene Verburg for carefully checking the earlier manuscripts of this paper. Mark van Nieuwstadt was a good discussion partner while we were conducting our research in Indonesia. This study was supported by a grant of The Netherlands Foundation for the Advancement of Tropical Research (WOTRO), within the priority programme 'Biodiversity of Disturbed Ecosystems'. Airy Shaw H.K., 1975, KEW B ADD SER, V4, P160; Appanah S, 1992, ASIA J TROP FOR SCI, V5, P201; Bodegom S., 1999, TROPENBOS KALIMANTAN, VI; Boyle T. J. B., 1994, P IUFRO S HELD CHIAN; Dallmeier F., 1998, MAN BIOSPHERE SERIES, V20; Davies SJ, 1998, ECOLOGY, V79, P2292; Davies SJ, 1998, J ECOL, V86, P662, DOI 10.1046/j.1365-2745.1998.00299.x; DAVIES SJ, 1996, THESIS HARVARD U CAM; Davies Stuart J., 2001, Harvard Papers in Botany, V6, P371; Dennis R., 1998, INTERNAL REPORT; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; Duivenvoorden J. F., 1996, PRIORITIES BIODIVERS; Fiala B, 1999, BIOL J LINN SOC, V66, P305, DOI 10.1006/bijl.1998.0279; Hoffmann A. A., 1999, IFFM SFMP SAM IND; KARTAWINATA K, 1981, Malaysian Forester, V44, P397; KARTAWINATA K, 1981, AMBIO, V10, P115; Kartawinata K., 1984, ECOLOGY PRACTICE 1, P98; Kartawinata K., 1980, STUDIES 3 WORLD SOC, V13, P191; Kessler P. J. A., 1995, TROPENBOS DOCUMENTS, V8; Kessler P. J. A., 1994, TROPENBOS SERIES TRO, V7; Koop H, 1994, MEASURING MONITORING, P309; Lindenmayer DB, 2000, CONSERV BIOL, V14, P941, DOI 10.1046/j.1523-1739.2000.98533.x; MacKinnon K., 1996, ECOLOGY INDONESIA SE, V3; McGeoch MA, 1998, TRENDS ECOL EVOL, V13, P46, DOI 10.1016/S0169-5347(97)01279-2; Pearson D., 1995, BIODIVERSITY MEASURE, P75; PRIMACK RB, 1991, J TROP ECOL, V7, P439, DOI 10.1017/S0266467400005836; SALAFSKY N, 1994, CLIMATIC CHANGE, V27, P373, DOI 10.1007/BF01096268; Slik J. W. F., 2000, Gardens' Bulletin (Singapore), V52, P11; Slik JWF, 2001, SYST BOT, V26, P786; Slik JWF, 2002, BIODIVERS CONSERV, V11, P85, DOI 10.1023/A:1014036129075; Sokal RR, 1995, FREEMAN, V3, P1995, DOI DOI 10.1016/J.JIP.2003.08.007; Tongeren Van, 1987, DATA ANAL COMMUNITY; van Valkenburg J.L.C.H, 1997, TROPENBOS SERIES, V16; Walsh RPD, 1996, J TROP ECOL, V12, P385, DOI 10.1017/S0266467400009585; WEBSTER GL, 1994, ANN MO BOT GARD, V81, P1; Whitmore T. C., 1969, Biological Journal of the Linnean Society, V1, P223, DOI 10.1111/j.1095-8312.1969.tb01821.x; Whitmore T. C., 1975, KEW B ADDITIONAL SER, P140; Whitmore T C., 1967, MALAYAN NATURE J, V20, P89; Whitmore T. C, 1984, TROPICAL RAIN FOREST; World Bank, 1998, ENV DEP PAP WORLD BA, V65 40 40 47 0 4 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1470-160X 1872-7034 ECOL INDIC Ecol. Indic. FEB 2003 2 4 311 324 PII S1470-160X(02)00057-2 14 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology V38LU WOS:000209345700001 2019-02-26 J Gardmark, A; Dieckmann, U; Lundberg, P Gardmark, A; Dieckmann, U; Lundberg, P Life-history evolution in harvested populations: the role of natural predation EVOLUTIONARY ECOLOGY RESEARCH English Article age-at-first-reproduction; age-at-maturation; age-specific mortality; density-dependent selection; fisheries-induced adaptive response; harvesting; life-history evolution; predation NORTHEAST ARCTIC COD; GADUS-MORHUA; FISHERIES; SELECTION; AGE; MATURATION; YIELDS; MANAGEMENT; STABILITY; DYNAMICS Models and experiments of the evolution of age- and/or size-at-maturation in response to population harvesting have consistently shown that selective harvesting of older and larger individuals can cause earlier maturation. These predictions, however, are all based on single-species considerations and thus crucially neglect the selective forces caused or mediated by species interactions. Here we develop simple models of phenotypic evolution of age-at-first-reproduction in a prey population subject to different types of predation and harvesting. We show that, in the presence of natural predation, the potential evolutionary response of age-at-first-reproduction to population harvesting is ambiguous: harvesting can cause either earlier or later maturation depending on the type of predator interaction and its strength relative to the fishing pressure. The counterintuitive consequences of harvesting result from the indirect effects that harvesting of a prey population has on the selection pressure exerted by its natural predator, since this selection pressure itself typically depends on prey density. If harvest rates are high, the direct selection pressures considered in classical analyses prevail and harvesting decreases the age-at-first-reproduction, whereas at lower harvest rates the indirect, inter-specifically mediated effects of harvesting can qualitatively overturn predictions based on simpler single-species models. Lund Univ, Dept Theoret Ecol, S-22362 Lund, Sweden; Int Inst Appl Syst Anal, Adapt Dynam Network, A-2361 Laxenburg, Austria; Univ Calif Santa Barbara, Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA Gardmark, A (reprint author), Uppsala Univ, Div Populat Biol, Evolutionary Biol Ctr, Norbyvagen 22, S-75236 Uppsala, Sweden. anna.gardmark@teorekol.lu.se Lundberg, Per/A-2479-2010; Dieckmann, Ulf/E-1424-2011 Dieckmann, Ulf/0000-0001-7089-0393; Lundberg, Per/0000-0002-9609-726X Bax NJ, 1998, ICES J MAR SCI, V55, P997, DOI 10.1006/jmsc.1998.0350; Blythe S.P., 1993, Lecture Notes in Biomathematics, V99, P222; Browman HI, 2000, MAR ECOL PROG SER, V208, P299, DOI 10.3354/meps208299; Brown Joel S., 1993, Lecture Notes in Biomathematics, V99, P248; Cardinale M, 1999, FISH RES, V41, P285, DOI 10.1016/S0165-7836(99)00021-1; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Dieckmann U, 1997, TRENDS ECOL EVOL, V12, P128, DOI 10.1016/S0169-5347(97)01004-5; EDLEY MT, 1988, BIOL J LINN SOC, V34, P309, DOI 10.1111/j.1095-8312.1988.tb01966.x; ESHEL I, 1983, J THEOR BIOL, V103, P99, DOI 10.1016/0022-5193(83)90201-1; ESHEL I, 1981, THEOR POPUL BIOL, V19, P420, DOI 10.1016/0040-5809(81)90029-0; Geritz SAH, 2002, J MATH BIOL, V44, P548, DOI 10.1007/s002850100136; GRIFT R, IN PRESS MAR ECOL PR; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2002, B MAR SCI, V70, P639; Heino M, 1997, PHILOS T R SOC B, V352, P1647, DOI 10.1098/rstb.1997.0146; Heino M, 1998, TRENDS ECOL EVOL, V13, P367, DOI 10.1016/S0169-5347(98)01380-9; HOLLING C. S., 1959, CANADIAN ENT, V91, P293; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; *ICES, 2001, 246 ICES; JORGENSEN T, 1990, J CONSEIL, V46, P235; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Maynard Smith J., 1973, Nature London, V246, P15; MESZENA G, 1999, IR99045 IIASA; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; O'Brien Loretta, 1999, Journal of Northwest Atlantic Fishery Science, V25, P179, DOI 10.2960/J.v25.a17; Ratner S, 2001, ECOLOGY, V82, P3093, DOI 10.1890/0012-9658(2001)082[3093:DAERTS]2.0.CO;2; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Roff Derek A., 1992; Stokes T. K., 1993, LECT NOTES BIOMATHEM, V99 34 41 43 0 16 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. FEB 2003 5 2 239 257 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 644KG WOS:000180916000006 2019-02-26 J Kinlan, BP; Graham, MH; Sala, E; Dayton, PK Kinlan, BP; Graham, MH; Sala, E; Dayton, PK Arrested development of giant kelp (Macrocystis pyrifera, Phaeophyceae) embryonic sporophytes: A mechanism for delayed recruitment in perennial kelps? JOURNAL OF PHYCOLOGY English Article arrested development; biophysical variability; delayed recruitment; disturbance; El Nino-Southern Oscillation; embryonic sporophytes; gametophytes; life history strategies; Macrocystis pyrifera; microscopic stages; population dynamics POSTELSIA-PALMAEFORMIS; SOUTHERN-CALIFORNIA; BAJA-CALIFORNIA; GROWTH; REPRODUCTION; DISPERSAL; PATTERNS; LIGHT; COMMUNITIES; TEMPERATURE Delayed recruitment of microscopic stages in response to cyclical cues is critical to the population dynamics of many annual and seasonally reproducing perennial seaweeds. Microscopic stages may play a similar role in continuously reproducing perennials in which adult sporophytes are subject to episodic mortality, if they can respond directly to the unpredictable onset and relaxation of unfavorable conditions. We experimentally evaluated the potential for temporary reduction in limiting resources (light, nutrients) to directly delay recruitment of giant kelp (Macrocystis pyrifera (L.) C.A. Agardh) gametophytes and embryonic sporophytes. Laboratory cultures were subjected to limiting conditions of light and nutrients for 1 month and then exposed to nonlimiting conditions for 10 days. Gametophytes in all treatments failed to recruit to sporophytes after 2 weeks, suggesting they are not a source of delayed recruitment in giant kelp. Sporophytes in light-limited treatments, however, survived and grew significantly slower than non-light-limited controls. When stimulated with light, light-limited sporophytes grew from 2 to>10 times faster than unstimulated controls depending on nutrient availability. These results suggest that limiting resources can delay recruitment of embryonic giant kelp sporophytes for at least 1 month. Flexible timing of recruitment from embryonic sporophytes may enhance persistence of continuously reproducing perennial species when mac- roscopic adults are subject to episodic large-scale removals. Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA Kinlan, BP (reprint author), Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. kinlan@lifesci.ucsb.edu Kinlan, Brian/0000-0001-7736-1726 AMSLER CD, 1992, BRIT PHYCOL J, V27, P253, DOI 10.1080/00071619200650251; ANDERSON EK, 1969, P INT SEAWEED S, V6, P3; ANDERSON EK, 1966, P INT SEAWEED S, V5, P73; Baskin C. C, 1998, SEEDS ECOLOGY BIOGEO; Blanchette CA, 1996, J EXP MAR BIOL ECOL, V197, P1, DOI 10.1016/0022-0981(95)00141-7; Chesson P, 1997, AM NAT, V150, P519, DOI 10.1086/286080; CLARK RP, 1996, THESIS SAN FRANCISCO; CLAYTON MN, 1988, BOT MAR, V31, P379, DOI 10.1515/botm.1988.31.5.379; DAYTON PK, 1973, ECOLOGY, V54, P433, DOI 10.2307/1934353; DAYTON PK, 1985, ANNU REV ECOL SYST, V16, P215, DOI 10.1146/annurev.es.16.110185.001243; DAYTON PK, 1984, ECOL MONOGR, V54, P253, DOI 10.2307/1942498; DAYTON PK, 1992, ECOL MONOGR, V62, P421, DOI 10.2307/2937118; DAYTON PK, 1984, SCIENCE, V224, P283, DOI 10.1126/science.224.4646.283; Dayton PK, 1999, ECOL MONOGR, V69, P219, DOI 10.1890/0012-9615(1999)069[0219:TASSOK]2.0.CO;2; DEAN TA, 1989, ECOLOGY, V70, P483, DOI 10.2307/1937552; DEYSHER LE, 1984, J PHYCOL, V20, P520, DOI 10.1111/j.0022-3646.1984.00520.x; DEYSHER LE, 1986, J EXP MAR BIOL ECOL, V103, P41, DOI 10.1016/0022-0981(86)90131-0; DEYSHER LE, 1986, MAR BIOL, V93, P17, DOI 10.1007/BF00428650; DRING MJ, 1981, P 8 INT SEAW C MAR S, P457; Edwards MS, 2000, ECOLOGY, V81, P2404, DOI 10.2307/177463; Edwards MS, 1998, J EXP MAR BIOL ECOL, V228, P309, DOI 10.1016/S0022-0981(98)00046-X; FAIN SR, 1982, J PHYCOL, V18, P92, DOI 10.1111/j.0022-3646.1982.00092.x; Graham MH, 2002, MAR BIOL, V140, P901, DOI 10.1007/s00227-001-0761-x; Graham MH, 1999, MAR BIOL, V135, P709, DOI 10.1007/s002270050672; Graham MH, 1997, MAR ECOL PROG SER, V148, P269, DOI 10.3354/meps148269; GRAHAM MH, 2000, THESIS U CALIFORNIA; GUILLARD RR, 1962, CAN J MICROBIOL, V8, P229, DOI 10.1139/m62-029; Harper J.L., 1977, POPULATION BIOL PLAN; Hernandez-Carmona G, 2001, BOT MAR, V44, P221, DOI 10.1515/BOT.2001.029; HOFFMANN AJ, 1991, MAR ECOL PROG SER, V79, P185, DOI 10.3354/meps079185; Hunt Allen G., 2001, Complexity, V6, P16, DOI 10.1002/cplx.1025; JOSKA MAP, 1987, BRIT PHYCOL J, V22, P209, DOI 10.1080/00071618700650251; KLINGER T, 1993, TRENDS ECOL EVOL, V8, P256, DOI 10.1016/0169-5347(93)90202-Z; KOPCZAK CD, 1991, J PHYCOL, V27, P149, DOI 10.1111/j.0022-3646.1991.00149.x; KUWABARA JS, 1980, J PHYCOL, V16, P546, DOI 10.1111/j.0022-3646.1980.00546.x; Ladah LB, 1999, J PHYCOL, V35, P1106, DOI 10.1046/j.1529-8817.1999.3561106.x; LEVIN SA, 1984, THEOR POPUL BIOL, V26, P165, DOI 10.1016/0040-5809(84)90028-5; LEWIS RJ, 1994, J PHYCOL, V30, P346, DOI 10.1111/j.0022-3646.1994.00346.x; LUNING K, 1978, MAR BIOL, V45, P297, DOI 10.1007/BF00391816; LUNING K, 1980, J PHYCOL, V16, P1; LUNING K, 1972, PLANTA, V104, P252, DOI 10.1007/BF00387080; LUNING K, 1989, BOT MAR, V32, P389, DOI 10.1515/botm.1989.32.5.389; Luning K, 1980, SHORE ENV, V2, P915; Maxell BA, 1996, BOT MAR, V39, P479, DOI 10.1515/botm.1996.39.1-6.479; MCPEAK RH, 1981, P 8 INT SEAW S MAR S, P404; North Wheeler J., 1994, P447; Reed DC, 1996, ECOLOGY, V77, P300, DOI 10.2307/2265679; REED DC, 1991, J PHYCOL, V27, P361, DOI 10.1111/j.0022-3646.1991.00361.x; REED DC, 1984, ECOLOGY, V65, P937, DOI 10.2307/1938066; Reed DC, 1997, ECOLOGY, V78, P2443; REED DC, 1990, ECOLOGY, V71, P776, DOI 10.2307/1940329; Rees Mark, 1997, P214; Sala E, 2002, P NATL ACAD SCI USA, V99, P3678, DOI 10.1073/pnas.052028499; SANTELICES B, 1990, OCEANOGR MAR BIOL, V28, P177; Sauvageau C, 1913, CR HEBD ACAD SCI, V161, P796; SEYMOUR RJ, 1989, ESTUAR COAST SHELF S, V28, P277, DOI 10.1016/0272-7714(89)90018-8; Tegner M.J., 1987, Advances in Ecological Research, V17, P243, DOI 10.1016/S0065-2504(08)60247-0; TOMDIECK I, 1991, J PHYCOL, V27, P341; VENABLE DL, 1980, OECOLOGIA, V46, P272, DOI 10.1007/BF00540137; WAALAND JR, 1987, J PHYCOL, V23, P399, DOI 10.1111/j.1529-8817.1987.tb02525.x; Worm B, 1999, MAR ECOL PROG SER, V185, P309, DOI 10.3354/meps185309 61 36 38 0 24 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-3646 1529-8817 J PHYCOL J. Phycol. FEB 2003 39 1 47 57 10.1046/j.1529-8817.2003.02087.x 11 Plant Sciences; Marine & Freshwater Biology Plant Sciences; Marine & Freshwater Biology 642JT WOS:000180800900006 2019-02-26 J Doody, JS; Georges, A; Young, JE Doody, JS; Georges, A; Young, JE Twice every second year: reproduction in the pig-nosed turtle, Carettochelys insculpta, in the wet-dry tropics of Australia JOURNAL OF ZOOLOGY English Article reproductive frequency; clutch size; egg size; wet-dry tropics; biennial reproduction; Carettochelys insculpta RELATIVE CLUTCH MASS; EGG-SIZE; OFFSPRING SIZE; CHELONIA-MYDAS; LIFE-HISTORY; PHENOTYPIC PLASTICITY; SCELOPORUS-VIRGATUS; NORTHERN AUSTRALIA; SEASONAL-VARIATION; VIVIPAROUS SNAKE The reproductive biology of female pig-nosed turtles Carettochelys insculpta was studied for 4 years in the wet-dry tropics of northern Australia. Females matured at around 6 kg body mass (38.0 cm curved carapace length, 30.5 cm plastron length). Turtles produced egg sizes and clutch sizes similar to that of other turtle species similar in size. Turtles reproduced every second year, but produced two clutches within years, about 41 days apart. Thus, it appeared that females were energy limited, possibly due to the low available energy content of the dry season diet (aquatic vegetation). Life-history theory predicts that some costly behaviour associated with reproduction exists, such that by skipping years turtles could reduce that cost and put the savings into future reproduction. Previous work revealed no behaviour associated with reproduction in the population. Within years, clutch mass did not differ between early (first) and late (second) clutches. However, early clutches tended to have more eggs per clutch but smaller eggs than late clutches, a new finding for turtles that has been demonstrated in lizards and other animals. Because the study spanned both years with 'big' and 'small' wet seasons, we were able to examine how the magnitude of the wet season influenced reproductive characteristics. Following big wet seasons, turtles produced larger, heavier, and more eggs per clutch than they did after small wet seasons. Relationships among body size, egg size and clutch size were evident after two big wet seasons but not apparent after two small wet seasons. Collectively, annual variation in reproductive characteristics and current life-history theory suggest that a big wet season is a time of high energy accumulation for the turtles. Univ Canberra, Appl Ecol Res Grp, Canberra, ACT 2601, Australia; Univ Canberra, Cooperat Res Ctr Freshwater Ecol, Canberra, ACT 2601, Australia Doody, JS (reprint author), Univ Canberra, Appl Ecol Res Grp, Canberra, ACT 2601, Australia. Georges, Arthur/D-2153-2009 Georges, Arthur/0000-0003-2428-0361 Abell AJ, 1999, J HERPETOL, V33, P173, DOI 10.2307/1565712; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; Bernardo J, 1996, AM ZOOL, V36, P216; Bjorndal K.A., 1982, BIOL CONSERVATION SE, P111; BJORNDAL KA, 1985, COPEIA, P736, DOI 10.2307/1444767; Bonnet X, 2001, OIKOS, V92, P297, DOI 10.1034/j.1600-0706.2001.920212.x; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; BURKE RL, 1983, COPEIA, P854; Christian K, 1999, AUST J ECOL, V24, P171, DOI 10.1046/j.1442-9993.1999.241960.x; CHRISTIAN K, 1994, HERPETOLOGICA, V50, P274; Christian KA, 1999, AUST J ZOOL, V47, P133, DOI 10.1071/ZO98061; CHRISTIAN KA, 1995, OECOLOGIA, V103, P349, DOI 10.1007/BF00328624; Clark PJ, 2001, FUNCT ECOL, V15, P70, DOI 10.1046/j.1365-2435.2001.00494.x; CONGDON JD, 1989, HERPETOLOGICA, V45, P94; CONGDON JD, 1987, HERPETOLOGICA, V43, P39; CREE A, 1992, J ZOOL, V226, P199, DOI 10.1111/j.1469-7998.1992.tb03834.x; DEMARCO VG, 1989, OECOLOGIA, V80, P525, DOI 10.1007/BF00380077; Doody JS, 2002, COPEIA, P93; Doody JS, 2001, CAN J ZOOL, V79, P1062, DOI 10.1139/cjz-79-6-1062; DRENT RH, 1980, ARDEA, V68, P225; Dunham A. E., 1981, MISC PUBL MUS ZOOL, V158, P1; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; FERGUSON GW, 1982, HERPETOLOGICA, V38, P178; FERGUSON GW, 1990, HERPETOLOGICA, V46, P227; FITCH HS, 1981, U KANSAS MUS NAT HIS, V70, P1; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; Forsman A, 1995, COPEIA, P727, DOI 10.2307/1446770; GEORGES A, 1992, AUST J ZOOL, V40, P511, DOI 10.1071/ZO9920511; GEORGES A, 2003, CONSERVATION BIOL FR; GEORGES A, 1993, FAUNA AUSTR, V2, P153; Georges Arthur, 1993, Chelonian Conservation and Biology, V1, P3; GIBBONS JW, 1987, BIOSCIENCE, V37, P262, DOI 10.2307/1310589; Gregory P.T., 1982, Biology of Reptilia, V13, P53; Gregory PT, 1998, AM NAT, V151, P477, DOI 10.1086/286134; Griffiths AD, 1996, OECOLOGIA, V106, P39, DOI 10.1007/BF00334405; HEAPHY JL, 1990, THESIS U NEW S WALES; HENEN BJ, 1997, ECOLOGY, V78, P287; IVERSON JB, 1993, CAN J ZOOL, V71, P2448, DOI 10.1139/z93-341; IVERSON JB, 1991, HERPETOLOGICA, V47, P373; IVERSON JB, 1991, CAN J ZOOL, V69, P385, DOI 10.1139/z91-060; JAMES C, 1985, OECOLOGIA, V67, P464, DOI 10.1007/BF00790016; JAMES CD, 1994, OIKOS, V70, P49, DOI 10.2307/3545698; JOHNSON SA, 1994, J HERPETOL, V30, P407; JUDD FW, 1978, J HERPETOL, V12, P203, DOI 10.2307/1563408; KUCHLING G, 1993, J ZOOL, V229, P405, DOI 10.1111/j.1469-7998.1993.tb02645.x; KUCHLING G, 1993, J HERPETOL, V27, P470, DOI 10.2307/1564841; Kuchling G., 1999, REPROD BIOL CHELONIA; LANDA K, 1992, EVOLUTION, V46, P1553, DOI 10.1111/j.1558-5646.1992.tb01145.x; Limpus C.J., 1985, P47; LIMPUS CJ, 1988, AUST WILDLIFE RES, V15, P157; Madsen T, 1996, ECOLOGY, V77, P149, DOI 10.2307/2265663; Miller RS, 1997, COLEOPTS BULL, V51, P1; Moll E.O., 1979, P305; MORTIMER JA, 1987, COPEIA, P103, DOI 10.2307/1446043; Nieuwolt-Ducanay PM, 1997, COPEIA, P819; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; Olsson M, 1997, J EVOLUTION BIOL, V10, P369, DOI 10.1007/s000360050030; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; Rohr DH, 1997, J ANIM ECOL, V66, P567, DOI 10.2307/5950; Roosenburg WM, 1997, COPEIA, P290, DOI 10.2307/1447749; ROWE JW, 1994, OECOLOGIA, V99, P35, DOI 10.1007/BF00317081; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; SHINE R, 1995, OIKOS, V72, P343, DOI 10.2307/3546119; SHINE R, 1988, EVOLUTION, V42, P17, DOI 10.1111/j.1558-5646.1988.tb04104.x; SHINE R, 1992, EVOLUTION, V46, P828, DOI 10.1111/j.1558-5646.1992.tb02088.x; Shine R, 1997, ECOLOGY, V78, P1078, DOI 10.1890/0012-9658(1997)078[1078:PAAPRR]2.0.CO;2; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH GR, 1995, HERPETOLOGICA, V51, P342; Spencer RJ, 1998, COMP BIOCHEM PHYS A, V121, P341, DOI 10.1016/S1095-6433(98)10132-0; SWINGLAND IR, 1978, J ZOOL, V186, P285; SWINGLAND IR, 1978, J ANIM ECOL, V48, P639; TAYLOR JA, 1985, AUST J ECOL, V10, P281, DOI 10.1111/j.1442-9993.1985.tb00890.x; TRAUTH SE, 1983, AM MIDL NAT, V109, P289, DOI 10.2307/2425409; TUCKER AD, 1994, J HERPETOL, V28, P102, DOI 10.2307/1564689; TUCKER AD, 2000, CUMULUATIVE EFFECTS; Tucker JK, 2000, HERPETOLOGICA, V56, P8; TURNER FB, 1986, HERPETOLOGICA, V42, P93; TURNER FB, 1984, COPEIA, P811; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; VITT LJ, 1978, HERPETOLOGICA, V34, P241; VITT LJ, 1982, CAN J ZOOL, V60, P3113, DOI 10.1139/z82-395; WELSH M, 1999, THESIS U CANBERRA; WOLDA H, 1973, Netherlands Journal of Zoology, V23, P168; WOOD JR, 1980, AM ZOOL, V20, P499 85 23 24 2 13 CAMBRIDGE UNIV PRESS NEW YORK 40 WEST 20TH ST, NEW YORK, NY 10011-4221 USA 0952-8369 J ZOOL J. Zool. FEB 2003 259 2 179 188 10.1017/S0952836902003217 10 Zoology Zoology 673XU WOS:000182606900010 2019-02-26 J Stockwell, CA; Hendry, AP; Kinnison, MT Stockwell, CA; Hendry, AP; Kinnison, MT Contemporary evolution meets conservation biology TRENDS IN ECOLOGY & EVOLUTION English Review GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; RAPID EVOLUTION; NATURAL-POPULATIONS; FRESH-WATER; SALMON; SELECTION; RATES; WILD; DIFFERENTIATION Recent research has revealed that evolution often occurs on contemporary timescales, often within decades. Contemporary evolution is associated with the same factors that are driving the current extinction crisis: habitat loss and degradation, overharvesting and exotic species. Thus, it is relevant to many conservation situations. First, habitat fragmentation might influence the potential of a population to adapt in response environmental degradation. Second, certain harvesting Strategies can result in the evolution of life-history traits, ultimately resulting in negative impacts on harvestable yield. Third, the establishment of exotic species can be influenced by their adaptive potential and our ability to limit that potential. Furthermore, contemporary evolution is of concern for intensively managed species, because it might reduce their fitness in native habitats. Ultimately, contemporary evolution is influenced by complex interactions among population size, genetic variation, the strength of selection, and gene flow, making most management scenarios unique. In a world filled with contemporary evolution, conservation efforts that ignore its implications will be less efficient and perhaps even risk prone. N Dakota State Univ, Dept Biol Sci, Fargo, ND 58105 USA; McGill Univ, Redpath Museum, Montreal, PQ H3A 2K6, Canada; McGill Univ, Dept Biol, Montreal, PQ H3A 2K6, Canada; Univ Maine, Dept Biol Sci, Orono, ME 04469 USA Stockwell, CA (reprint author), N Dakota State Univ, Dept Biol Sci, Stevens Hall, Fargo, ND 58105 USA. Hendry, Andrew/C-5765-2008 Hendry, Andrew/0000-0002-4807-6667; Stockwell, Craig/0000-0001-7882-8674 Allendorf FW, 2001, TRENDS ECOL EVOL, V16, P613, DOI 10.1016/S0169-5347(01)02290-X; ASHLEY MV, 2003, IN PRESS BIOL CONSER; Barrett Spencer C. H., 2000, P115; Bone E, 2001, GENETICA, V112, P165, DOI 10.1023/A:1013378014069; Boulding EG, 2001, HEREDITY, V86, P313, DOI 10.1046/j.1365-2540.2001.00829.x; Bradshaw WE, 2001, P NATL ACAD SCI USA, V98, P14509, DOI 10.1073/pnas.241391498; BURGER R, 1995, EVOLUTION, V49, P151, DOI 10.1111/j.1558-5646.1995.tb05967.x; CAMPTON DE, 1995, USES EFFECTS CULTURE, P335; Carroll SP, 2001, GENETICA, V112, P257, DOI 10.1023/A:1013354830907; Conner JK, 2001, TRENDS ECOL EVOL, V16, P215, DOI 10.1016/S0169-5347(01)02138-3; Conover D, 2000, MAR ECOL-PROG SER, V208, P299; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; CROWLING RM, 2001, P NATL ACAD SCI USA, V98, P5452; Diamond J., 1989, P37; Endler JA, 1986, NATURAL SELECTION WI; FLEMING IA, 1993, ECOL APPL, V3, P230, DOI 10.2307/1941826; Ford MJ, 2002, CONSERV BIOL, V16, P815, DOI 10.1046/j.1523-1739.2002.00257.x; Frankham R, 1995, ANNU REV GENET, V29, P305, DOI 10.1146/annurev.ge.29.120195.001513; Franklin IR, 1998, ANIM CONSERV, V1, P69, DOI 10.1111/j.1469-1795.1998.tb00228.x; Fraser DJ, 2001, MOL ECOL, V10, P2741, DOI 10.1046/j.0962-1083.2001.01411.x; Garcia-Ramos G, 2002, EVOLUTION, V56, P661, DOI 10.1554/0014-3820(2002)056[0661:ESOSI]2.0.CO;2; Gingerich PD, 2001, GENETICA, V112, P127, DOI 10.1023/A:1013311015886; GOERGHIOU GP, 1991, OCCURRENCE RSISTANCE; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; Hairston NG, 1999, NATURE, V401, P446, DOI 10.1038/46731; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Hendry AP, 2000, SCIENCE, V290, P516, DOI 10.1126/science.290.5491.516; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; HENDRY AP, 2003, IN PRESS CONSERV BIO; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kinnison MT, 2001, EVOLUTION, V55, P1656; Kinnison MT, 2001, GENETICA, V112, P145, DOI 10.1023/A:1013375419520; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; LEBERG PL, 1993, CONSERV BIOL, V7, P194, DOI 10.1046/j.1523-1739.1993.07010194.x; Lee CE, 1999, EVOLUTION, V53, P1423, DOI 10.1111/j.1558-5646.1999.tb05407.x; Lynch M, 1998, ANIM CONSERV, V1, P70, DOI 10.1111/j.1469-1795.1998.tb00229.x; Lynch M, 2001, CONSERV GENET, V2, P363, DOI 10.1023/A:1012550620717; Lynch Michael, 1996, P471; MACNAIR MR, 1987, TRENDS ECOL EVOL, V2, P354, DOI 10.1016/0169-5347(87)90135-2; MALLET J, 1989, TRENDS ECOL EVOL, V4, P336, DOI 10.1016/0169-5347(89)90088-8; Margan SH, 1998, ZOO BIOL, V17, P467; McKay JK, 2002, TRENDS ECOL EVOL, V17, P285, DOI 10.1016/S0169-5347(02)02478-3; McKinney ML, 1999, TRENDS ECOL EVOL, V14, P450, DOI 10.1016/S0169-5347(99)01679-1; MEFFE GK, 1997, PRINCIPLES CONSERVAT; Merila J, 2001, J EVOLUTION BIOL, V14, P892, DOI 10.1046/j.1420-9101.2001.00348.x; MORITZ C, 1994, TRENDS ECOL EVOL, V9, P373, DOI 10.1016/0169-5347(94)90057-4; Moritz C, 2002, SYST BIOL, V51, P238, DOI 10.1080/10635150252899752; Noss RF, 2001, CONSERV BIOL, V15, P578, DOI 10.1046/j.1523-1739.2001.015003578.x; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1111/j.0014-3820.2002.tb01388.x; Palumbi S. R., 2001, EVOLUTION EXPLOSION; Quinn TP, 2001, GENETICA, V112, P493, DOI 10.1023/A:1013348024063; Reed DH, 2001, EVOLUTION, V55, P1095; Reisenbichler RR, 1999, ICES J MAR SCI, V56, P459, DOI 10.1006/jmsc.1999.0455; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rhymer JM, 1996, ANNU REV ECOL SYST, V27, P83, DOI 10.1146/annurev.ecolsys.27.1.83; Richter BD, 1997, CONSERV BIOL, V11, P1081, DOI 10.1046/j.1523-1739.1997.96236.x; Riechert SE, 2001, GENETICA, V112, P297, DOI 10.1023/A:1013356325881; Schmitz D. C., 1997, STRANGERS PARADISE I, P39; Sheets HD, 2001, GENETICA, V112, P105, DOI 10.1023/A:1013308409951; Stockwell CA, 2002, WEST N AM NATURALIST, V62, P32; Stockwell CA, 1996, CONSERV BIOL, V10, P1133, DOI 10.1046/j.1523-1739.1996.10041133.x; Stockwell CA, 1999, ANIM CONSERV, V2, P103, DOI 10.1111/j.1469-1795.1999.tb00055.x; TABASHNIK BE, 1994, ANNU REV ENTOMOL, V39, P47, DOI 10.1146/annurev.en.39.010194.000403; Ward JK, 2000, OECOLOGIA, V123, P330, DOI 10.1007/s004420051019; Weber E, 1998, AM J BOT, V85, P1110, DOI 10.2307/2446344; Wilcove DS, 1998, BIOSCIENCE, V48, P607, DOI 10.2307/1313420; WILLIAMS CK, 1989, J ANIM ECOL, V58, P495, DOI 10.2307/4844; Young A, 1996, TRENDS ECOL EVOL, V11, P413, DOI 10.1016/0169-5347(96)10045-8 70 643 666 15 406 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. FEB 2003 18 2 94 101 10.1016/S0169-5347(02)00044-7 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 651GK WOS:000181312000011 2019-02-26 J Schondube, JE; del Rio, CM Schondube, JE; del Rio, CM The flowerpiercers' hook: an experimental test of an evolutionary trade-off PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article adaptation; evolution of diet; evolutionary costs; feeding performance; morphological novelty; nectar robbing LIFE-HISTORY EVOLUTION; MOLECULAR SYSTEMATICS; MORPHOLOGY; PERFORMANCE; ADAPTATION; RADIATION; SELECTION; COMPLEX; FINCH; COST The evolution of features that enhance an organism's performance in one activity can adversely affect its performance in another. We used an experimental approach to document a trade-off associated with the evolution of the long hook at the tip of the bill of birds belonging to the genus Diglossa (flowerpiercers). In Diglossa, the more derived flower-robbing nectarivorous species have maxillae (upper jaws) that terminate in enlarged curved hooks. The ancestral frugivorous species have maxillae with relatively small hooks. We mimicked bill evolution by clipping the terminal bill hook of nectarivorous Cinnamon-bellied Flowerpiercers (Diglossa baritula) to resemble the frugivorous condition. We found that birds with experimentally shortened bills ingested fruit more efficiently, but had a reduced ability to rob flowers. Birds with intact bills, by contrast, were good flower robbers but poor frugivores. The evolution of a hooked bill endowed flowerpiercers with the ability to efficiently pierce flowers and extract nectar, but hindered their efficiency to feed on fruit. Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA; Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA Schondube, JE (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. schondub@u.arizona.edu Schondube, Jorge/C-6369-2011 ARNOLD SJ, 1983, AM ZOOL, V23, P347; BENKMAN CW, 1984, ECOLOGY, V65, P632, DOI 10.2307/1941426; BENKMAN CW, 1988, AUK, V105, P715; Benkman CW, 1996, EVOLUTION, V50, P2499, DOI 10.1111/j.1558-5646.1996.tb03635.x; BLEDSOE AH, 1988, AUK, V105, P504; BOCK WJ, 1980, AM ZOOL, V20, P217; BOCK WJ, 1965, EVOLUTION, V19, P269, DOI 10.2307/2406439; BOCK WJ, 1985, ORNITHOLOGICAL MONOG, V36, P319; Burns KJ, 1997, MOL PHYLOGENET EVOL, V8, P334, DOI 10.1006/mpev.1997.0430; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Grant BR, 1996, ECOLOGY, V77, P500, DOI 10.2307/2265625; Hackett SJ, 1995, AUK, V112, P156, DOI 10.2307/4088775; ISLER ML, 1999, TANAGERS NATURAL HIS; Koehl MAR, 1996, ANNU REV ECOL SYST, V27, P501, DOI 10.1146/annurev.ecolsys.27.1.501; LEIGH EG, 1990, TRENDS ECOL EVOL, V5, P340, DOI 10.1016/0169-5347(90)90183-E; LEMON WC, 1992, ANIM BEHAV, V44, P851, DOI 10.1016/S0003-3472(05)80581-0; LEROI AM, 1994, AM NAT, V144, P661, DOI 10.1086/285699; MACARTHUR RH, 1972, GEOGRAPHICAL ECOLOGO; MOYNIHAN M., 1963, IBIS, V105, P327, DOI 10.1111/j.1474-919X.1963.tb02511.x; MOYNIHAN M, 1979, PUBL NUTTALL ORNITHO, V18, P1; SCHLUTER D, 1995, ECOLOGY, V76, P82, DOI 10.2307/1940633; SKUTCH AF, 1954, LIFE HIST CTR AM BIR; Snow D.W., 1980, Bulletin of the British Museum (Natural History) Zoology, V38, P105; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HIST; Temeles EJ, 2000, SCIENCE, V289, P441, DOI 10.1126/science.289.5478.441; Velicer GJ, 1999, ECOLOGY, V80, P1168, DOI 10.1890/0012-9658(1999)080[1168:ETOUCO]2.0.CO;2; Vuilleumier F., 1969, American Museum Novitates, VNo. 2381, P1; ZERA AJ, 2001, REV ECOL SYST, V32, P95 29 10 12 0 9 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JAN 22 2003 270 1511 195 198 10.1098/rspb.2002.2231 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 641ML WOS:000180748500013 12590760 Green Published 2019-02-26 J Jolly, CJ; Phillips-Conroy, JE Jolly, CJ; Phillips-Conroy, JE Testicular size, developmental trajectories and male life history strategies in four baboon taxa. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Meeting Abstract NYU, Dept Anthropol, New York, NY 10003 USA; NYCEP, New York, NY USA; Washington Univ, Sch Med, Dept Anat & Neurosci, St Louis, MO 63130 USA 0 0 0 0 0 WILEY-LISS NEW YORK DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY 10158-0012 USA 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. 2003 36 124 124 1 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 657MB WOS:000181670000269 2019-02-26 J Lycett, JE; Barrett, L Lycett, JE; Barrett, L Whose life is it anyway? Maternal investment and life history strategies in baboons. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Meeting Abstract Univ Liverpool, Liverpool L69 3BX, Merseyside, England 0 0 0 0 3 WILEY-LISS NEW YORK DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY 10158-0012 USA 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. 2003 36 143 143 1 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 657MB WOS:000181670000343 2019-02-26 J Houle, D; Rowe, L Houle, D; Rowe, L Natural selection in a bottle AMERICAN NATURALIST English Article natural selection; laboratory evolution; constraint; life history; development time; age at maturity; norm of reaction GUPPIES POECILIA-RETICULATA; PLANT PHYSIOLOGICAL TRAITS; LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; BODY-SIZE; ENVIRONMENT INTERACTIONS; DIRECTIONAL SELECTION; GENETIC-POLYMORPHISM; CORRELATED RESPONSES; DIFFERING SELECTION The study of natural selection in laboratory systems undergoing experimental evolution can provide important insights into the relationship between natural selection and adaptation. We studied selection on the norm of reaction of age at first reproduction in a laboratory population of Drosophila melanogaster. This population had been selected on a discrete generation schedule in the laboratory for more than 600 generations. Using genetically marked strains, we studied development time, size, female fecundity, and viability of flies that began development at different times relative to the initiation of each bottle. Only flies that began development within 30 h of the initiation of the bottle were reliably able to eclose before the next transfer. Theory predicts that flies initiating development around this critical time should decrease size at maturity to ensure eclosion by the 14-d deadline, but late flies are not smaller. This result suggests an unknown constraint on response to selection on age at maturity in this population. Ultimately, laboratory systems provide the best opportunity for the study of natural selection, genetic variation, and evolutionary response in the same population. Univ Toronto, Dept Zool, Toronto, ON M5S 3G5, Canada Houle, D (reprint author), Florida State Univ, Dept Biol Sci, B-157, Tallahassee, FL 32306 USA. dhoule@bio.fsu.edu Houle, David/0000-0002-8095-3156 ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Ashburner M., 1989, DROSOPHILA LAB HDB; Bakker K., 1961, Archives Neerlandaises de Zoologie Leiden, V14, P200; BAKKER K., 1959, Entomologia Experimentalis et Applicata, V2, P171; Bakker K., 1969, Netherlands J Zool, V19, P541; Bakker K., 1963, Entomologia Experimentalis et Applicata, V6, P37; BENNETT AF, 1990, NATURE, V346, P79, DOI 10.1038/346079a0; Borash DJ, 1998, AM NAT, V151, P148, DOI 10.1086/286108; Campbell DR, 1996, EVOLUTION, V50, P1442, DOI 10.1111/j.1558-5646.1996.tb03918.x; CHARLESWORTH B, 1985, HEREDITY, V54, P71, DOI 10.1038/hdy.1985.10; CHIANG H. C., 1950, ECOL MONOGR, V20, P173, DOI 10.2307/1948580; CURTSINGER JW, 1994, AM NAT, V144, P210, DOI 10.1086/285671; Donohue K, 2000, EVOLUTION, V54, P1956; Dudley SA, 1996, EVOLUTION, V50, P92, DOI 10.1111/j.1558-5646.1996.tb04475.x; Dudley SA, 1996, EVOLUTION, V50, P103, DOI 10.1111/j.1558-5646.1996.tb04476.x; Endler JA, 1986, NATURAL SELECTION WI; FRANKHAM R, 1992, ZOO BIOL, V11, P333, DOI 10.1002/zoo.1430110505; Gordon C, 1941, PROC R SOC SER B-BIO, V130, P151, DOI 10.1098/rspb.1941.0010; GRANT PR, 1995, EVOLUTION, V49, P241, DOI 10.1111/j.1558-5646.1995.tb02236.x; Harshman LG, 2000, TRENDS ECOL EVOL, V15, P32, DOI 10.1016/S0169-5347(99)01756-5; HOULE D, 2000, CHARACTER CONCEPT EV, P109; Joshi A, 1996, EVOL ECOL, V10, P463, DOI 10.1007/BF01237879; Joshi A, 1998, J BIOSCIENCE, V23, P279, DOI 10.1007/BF02720030; Joshi A, 1998, EVOL ECOL, V12, P363, DOI 10.1023/A:1006508418493; KING RC, 1958, DROSOPHILA INFORMATI, V32, P131; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; KONDRASHOV AS, 1994, P ROY SOC B-BIOL SCI, V258, P221, DOI 10.1098/rspb.1994.0166; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LATTER BDH, 1995, GENETICS, V139, P255; Losos JB, 2000, EVOLUTION, V54, P301, DOI 10.1111/j.0014-3820.2000.tb00032.x; Losos JB, 1997, NATURE, V387, P70, DOI 10.1038/387070a0; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MILANI R, 1957, DROSOPHILA INFORMATI, V31, P135; MILLER RS, 1964, ECOLOGY, V45, P132, DOI 10.2307/1937114; MUELLER LD, 1991, SCIENCE, V253, P433, DOI 10.1126/science.1907401; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Partridge L, 1999, P ROY SOC B-BIOL SCI, V266, P255, DOI 10.1098/rspb.1999.0630; PARTRIDGE L, 1987, ANIM BEHAV, V35, P468, DOI 10.1016/S0003-3472(87)80272-5; PRICE TD, 1984, NATURE, V309, P787, DOI 10.1038/309787a0; Promislow DEL, 1998, GENETICA, V102-3, P299, DOI 10.1023/A:1017047212008; PROUT T, 1999, EVOL GENET, P157; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; ROBERTSON FW, 1960, GENET RES, V1, P288, DOI 10.1017/S0016672300000264; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Rose Michael R., 1996, P221; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SANG JH, 1949, PHYSIOL ZOOL, V22, P183, DOI 10.1086/physzool.22.3.30152044; SANG JH, 1949, PHYSIOL ZOOL, V22, P202, DOI 10.1086/physzool.22.3.30152045; Santos M, 1997, EVOLUTION, V51, P420, DOI 10.1111/j.1558-5646.1997.tb02429.x; Santos M, 1996, EVOLUTION, V50, P2530, DOI 10.1111/j.1558-5646.1996.tb03641.x; SCHLUTER D, 1986, EVOLUTION, V40, P221, DOI 10.1111/j.1558-5646.1986.tb00465.x; SCHLUTER D, 1986, BIOL J LINN SOC, V29, P23, DOI 10.1111/j.1095-8312.1986.tb01768.x; Sgro CM, 2000, AM NAT, V156, P341, DOI 10.1086/303394; Stern DL, 2000, EVOLUTION, V54, P1079, DOI 10.1554/0014-3820(2000)054[1079:PEDBAT]2.0.CO;2; STRATTON DA, 1994, EVOLUTION, V48, P1607, DOI 10.1111/j.1558-5646.1994.tb02199.x; TRAVISANO M, 1995, SCIENCE, V267, P87, DOI 10.1126/science.7809610; Venables W., 1994, MODERN APPL STAT S P; Wichman HA, 1999, SCIENCE, V285, P422, DOI 10.1126/science.285.5426.422; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x; ZWAAN BJ, 1991, HEREDITY, V66, P29, DOI 10.1038/hdy.1991.4 67 34 34 0 20 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JAN 2003 161 1 50 67 10.1086/345480 18 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 631VC WOS:000180186600005 12650462 2019-02-26 J Worley, AC; Houle, D; Barrett, SCH Worley, AC; Houle, D; Barrett, SCH Consequences of hierarchical allocation for the evolution of life-history traits AMERICAN NATURALIST English Article correlated response to selection; quantitative genetics; resource allocation; simulation study; trade-off EICHHORNIA-PANICULATA PONTEDERIACEAE; DROSOPHILA-MELANOGASTER; QUANTITATIVE GENETICS; FLORAL DISPLAY; FLOWER SIZE; ARABIDOPSIS-THALIANA; COMMUNITY STRUCTURE; SEX ALLOCATION; TRADE-OFFS; SELECTION Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e. g., reproduction) can cause positive genetic correlations between traits that trade off (e. g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative-genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade-offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade-offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade-offs. Thus, allocation hierarchies can profoundly affect life-history evolution by causing traits to evolve in the opposite direction to that predicted by trade-offs. Univ Toronto, Dept Bot, Toronto, ON M5S 3B2, Canada; Univ Toronto, Dept Zool, Toronto, ON M5S 3G5, Canada Worley, AC (reprint author), Univ Manitoba, Dept Bot, 505 Buller Bldg, Winnipeg, MB R3T 2N2, Canada. worleyac@ms.umanitoba.ca; dhoule@bio.fsu.edu; barrett@botany.utoronto.ca Barrett, Spencer/M-3751-2013 Houle, David/0000-0002-8095-3156 Alonso-Blanco C, 1999, P NATL ACAD SCI USA, V96, P4710, DOI 10.1073/pnas.96.8.4710; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BOHRNSTE.GW, 1969, J AM STAT ASSOC, V64, P1439, DOI 10.2307/2286081; CALVO RN, 1993, ECOLOGY, V74, P1033, DOI 10.2307/1940473; Ceplitis A, 2001, J EVOLUTION BIOL, V14, P721, DOI 10.1046/j.1420-9101.2001.00330.x; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHARLESWORTH D, 1991, PHILOS T R SOC B, V332, P91, DOI 10.1098/rstb.1991.0036; CHARLESWORTH D, 1981, BIOL J LINN SOC, V15, P57, DOI 10.1111/j.1095-8312.1981.tb00748.x; CHARNOV E L, 1982; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEJONG G, 1993, FUNCT ECOL, V7, P75, DOI 10.2307/2389869; DELAGUERIE P, 1991, EVOL ECOL, V5, P361, DOI 10.1007/BF02214153; DIGGLE PK, 1993, AM J BOT, V80, P967, DOI 10.2307/2445518; Dillmann C, 1998, GENET SEL EVOL, V30, P543; Falconer D.S., 1996, INTRO QUANTITATIVE G; Fellowes MDE, 1999, J EVOLUTION BIOL, V12, P123, DOI 10.1046/j.1420-9101.1999.00018.x; GOLDMAN DA, 1986, BOT REV, V52, P157, DOI 10.1007/BF02861000; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1992, GENETICS, V130, P195; Jones N, 1997, NEW PHYTOL, V137, P165, DOI 10.1046/j.1469-8137.1997.00826.x; Koelewijn HP, 2000, J EVOLUTION BIOL, V13, P302, DOI 10.1046/j.1420-9101.2000.00165.x; Kraaijeveld AR, 1999, AM NAT, V153, pS61, DOI 10.1086/303212; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Leishman MR, 2001, OIKOS, V93, P294, DOI 10.1034/j.1600-0706.2001.930212.x; Lloyd DG., 1984, PERSPECTIVES PLANT P, P277; Mazer SJ, 1999, EVOLUTION, V53, P717, DOI 10.1111/j.1558-5646.1999.tb05366.x; Mazer SJ, 1998, EVOL ECOL, V12, P403, DOI 10.1023/A:1006568704381; MEAGHER TR, 1994, EVOLUTION, V48, P939, DOI 10.1111/j.1558-5646.1994.tb05284.x; MITCHELLOLDS T, 1995, TRENDS ECOL EVOL, V10, P324, DOI 10.1016/S0169-5347(00)89119-3; MitchellOlds T, 1996, EVOLUTION, V50, P140, DOI 10.1111/j.1558-5646.1996.tb04480.x; Nijhout H.F., 1994, INSECT HORMONES; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; Sarkissian TS, 2001, J EVOLUTION BIOL, V14, P456, DOI 10.1046/j.1420-9101.2001.00285.x; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; SEVENSTER JG, 1993, J ANIM ECOL, V62, P720, DOI 10.2307/5392; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Siemens DH, 1998, ECOLOGY, V79, P632, DOI 10.2307/176959; SILVERTOWN J, 1987, OECOLOGIA, V72, P157, DOI 10.1007/BF00385060; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; Stearns SC., 1992, EVOLUTION LIFE HIST; Stirling G, 2001, EVOL ECOL RES, V3, P157; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Veldboom LR, 1996, CROP SCI, V36, P1310, DOI 10.2135/cropsci1996.0011183X003600050040x; Venable DL, 1996, PHILOS T ROY SOC B, V351, P1319, DOI 10.1098/rstb.1996.0115; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; VONHOF MJ, 1995, AM J BOT, V82, P230, DOI 10.2307/2445530; Worley AC, 2000, EVOLUTION, V54, P1533; Worley AC, 2001, J EVOLUTION BIOL, V14, P469, DOI 10.1046/j.1420-9101.2001.00296.x; Worley AC, 2000, INT J PLANT SCI, V161, P69, DOI 10.1086/314225; Zangerl AR, 1997, OECOLOGIA, V109, P433, DOI 10.1007/s004420050103; ZENGERL AR, 1997, AM NAT, V150, P491; ZERA AJ, 1994, RES POPUL ECOL, V36, P151, DOI 10.1007/BF02514930; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x 61 73 78 0 32 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JAN 2003 161 1 153 167 10.1086/345461 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 631VC WOS:000180186600012 12650469 2019-02-26 J Badyaev, AV; Hill, GE Badyaev, AV; Hill, GE Avian sexual dichromatism in relation to phylogeny and ecology ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS English Review plumage coloration; sexual selection; natural selection; sexual ornaments LIFE-HISTORY EVOLUTION; EXTRA-PAIR PATERNITY; PASSERINE BIRDS; PLUMAGE DICHROMATISM; MATING SYSTEM; CARDUELINE FINCHES; SPECIES DIVERGENCE; NATURAL-SELECTION; COLOR DIMORPHISM; MATE PREFERENCES The extent and diversity of sexual dichromatism in birds is thought to be due to the intensity of current sexual selection on the plumage ornamentation of males and females. This view leads to an expectation of concordance between ecological conditions and sexual dichromatism. Yet, because expression of dichromatism is the result of not only current selection, but also historical patterns of development, function, and selection, the concordance between ecology and current sexual dichromatism is not straightforward. Recent studies have revealed a number of trends in the evolution of avian sexual ornamentation that seem contrary to what is expected if current sexual selection is the primary force shaping dichromatism. For example, change in sexual dichromatism is often the result of evolutionary changes in female rather than male ornamentation. Moreover, sexual dichromatism is often an ancestral rather than a derived state; current expression of dichromatism is frequently the result of selection for lesser ornamentation in one sex and not for ornament elaboration. Loss and gain of sexual ornamentation sometimes precedes changes in preference for sexual ornamentation, and sexual ornaments can have high evolutionary lability despite their developmental and functional complexity. These findings emphasize that phylogenetic reconstructions must play a central role in attempts to understand the function and evolution of sexual dichromatism. With a historical perspective, one can test the relative importance of direct selection, indirect selection, and drift in relation to changes of sexual dichromatism. If sexual selection is invoked, the mechanisms of sexual selection can be explored by examining the concordance between the elaboration of ornamentation and the preferences for ornamentation across species and by tracing phylogenetic trajectories of sexual ornaments. Finally, placing physiological, genetic, and developmental mechanisms of sexual ornamentation into such a phylogenetic framework will enable greater inference about the past evolution and current function of sexual dichromatism in birds. Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA; Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA Badyaev, AV (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. abadyaev@email.arizona.edu Amundsen T, 2000, TRENDS ECOL EVOL, V15, P149, DOI 10.1016/S0169-5347(99)01800-5; Andersson MB, 1994, SEXUAL SELECTION; Andersson S, 1998, P ROY SOC B-BIOL SCI, V265, P445, DOI 10.1098/rspb.1998.0315; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Badyaev AV, 2000, BIOL J LINN SOC, V69, P153, DOI 10.1111/j.1095-8312.2000.tb01196.x; Badyaev AV, 1997, BEHAV ECOL, V8, P675, DOI 10.1093/beheco/8.6.675; Badyaev AV, 2002, EVOLUTION, V56, P412; Badyaev AV, 1997, OIKOS, V80, P128, DOI 10.2307/3546524; Badyaev AV, 1997, AUK, V114, P40, DOI 10.2307/4089063; Badyaev AV, 2001, AM NAT, V158, P221, DOI 10.1086/321325; Badyaev AV, 1997, OECOLOGIA, V111, P365, DOI 10.1007/s004420050247; Badyaev AV, 1998, OIKOS, V82, P319, DOI 10.2307/3546972; Badyaev AV, 2002, TRENDS ECOL EVOL, V17, P369, DOI 10.1016/S0169-5347(02)02569-7; Badyaev AV, 2002, AUK, V119, P301, DOI 10.1642/0004-8038(2002)119[0301:PSTITC]2.0.CO;2; BADYAEV AV, 2003, EVOLUTIONARY BIOL CO; BADYAEV AV, 2003, P 23 INT ORN CONG AC, P1; BAILEY SF, 1978, CONDOR, V80, P372, DOI 10.2307/1367187; BAKER RR, 1979, PHILOS T R LONDON B, V287, P65; BARRACLOUGH TG, 1995, P ROY SOC B-BIOL SCI, V259, P211, DOI 10.1098/rspb.1995.0031; BENNETT ATD, 1994, AM NAT, V144, P848, DOI 10.1086/285711; Bennett P., 2002, EVOLUTIONARY ECOLOGY; BJORKLUND M, 1991, EVOLUTION, V45, P608, DOI 10.1111/j.1558-5646.1991.tb04332.x; BJORKLUND M, 1990, J EVOLUTION BIOL, V3, P171, DOI 10.1046/j.1420-9101.1990.3030171.x; BLEIWEISS R, 1992, BIOL J LINN SOC, V45, P291, DOI 10.1111/j.1095-8312.1992.tb00646.x; Bleiweiss R, 1997, EVOL ECOL, V11, P217, DOI 10.1023/A:1018456017643; Boughman JW, 2002, TRENDS ECOL EVOL, V17, P571, DOI 10.1016/S0169-5347(02)02595-8; BRUSH AH, 1970, COMP BIOCHEM PHYSIOL, V36, P785, DOI 10.1016/0010-406X(70)90533-5; BURKE T, 1998, P 7 INT BEHAV ECOL C; Burns KJ, 1998, EVOLUTION, V52, P1219, DOI 10.1111/j.1558-5646.1998.tb01849.x; Burtt E., 1986, ORNITHOL MONOGR, V38, P1; BUTCHER GS, 1993, CURR OTNITHOL, V6, P61; COTT HB, 1947, P ZOOL SOC LOND, V116, P371, DOI 10.1111/j.1096-3642.1947.tb00131.x; CROOK JH, 1964, BEHAVIOUR S, V10; Cuervo JJ, 1999, J EVOLUTION BIOL, V12, P986, DOI 10.1046/j.1420-9101.1999.00100.x; Cuthill Innes C., 2000, P61; Darwin C, 1871, DESCENT MAN SELECTIO; Dunn PO, 2001, EVOLUTION, V55, P161; Endler JA, 1996, AM NAT, V148, P421, DOI 10.1086/285934; ENDLER JA, 1998, P 7 INT BEHAV ECOL C; ENDLER JA, 1992, AM NAT, V139, P125; Figuerola J, 2000, FUNCT ECOL, V14, P701, DOI 10.1046/j.1365-2435.2000.00474.x; Fisher R.A., 1930, GENETICAL THEORY NAT; Fitzpatrick S, 1998, AM NAT, V151, P157, DOI 10.1086/286109; FITZPATRICK S, 1994, P ROY SOC B-BIOL SCI, V257, P155, DOI 10.1098/rspb.1994.0109; GAVRIN MC, 1997, AUK, V114, P179; Gotmark F, 1997, OIKOS, V80, P540, DOI 10.2307/3546627; GOTMARK F, 1994, J AVIAN BIOL, V25, P184, DOI 10.2307/3677074; GOTMARK F, 1999, P 22 INT ORN C DURB, P1706; GRANT P. R., 1965, SYST ZOOL, V14, P47, DOI 10.2307/2411902; Grant PR, 1997, P NATL ACAD SCI USA, V94, P7768, DOI 10.1073/pnas.94.15.7768; Gray DA, 1996, AM NAT, V148, P453, DOI 10.1086/285935; Hamilton T. H., 1961, AM NAT, V45, P121; Hill GE, 1996, ETHOL ECOL EVOL, V8, P157, DOI 10.1080/08927014.1996.9522926; HILL GE, 1994, BEHAV ECOL, V5, P64, DOI 10.1093/beheco/5.1.64; HILL GE, 1994, ETHOL ECOL EVOL, V6, P351, DOI 10.1080/08927014.1994.9522986; Hill GE, 2002, P ROY SOC B-BIOL SCI, V269, P1119, DOI 10.1098/rspb.2002.1980; HOGLUND J, 1989, AM NAT, V134, P72, DOI 10.1086/284966; Holland B, 1998, EVOLUTION, V52, P1, DOI 10.1111/j.1558-5646.1998.tb05132.x; Hunt S, 1998, P ROY SOC B-BIOL SCI, V265, P451, DOI 10.1098/rspb.1998.0316; IRWIN RE, 1994, AM NAT, V144, P890, DOI 10.1086/285717; Irwin Rebecca E., 1996, P234; IWASA Y, 1994, EVOLUTION, V48, P853, DOI 10.1111/j.1558-5646.1994.tb01367.x; IWASA Y, 1995, NATURE, V377, P420, DOI 10.1038/377420a0; JOHNSON K, 1988, ANIM BEHAV, V36, P1048, DOI 10.1016/S0003-3472(88)80064-2; Johnson KP, 2000, BEHAV ECOL, V11, P515, DOI 10.1093/beheco/11.5.515; Johnson KP, 1999, BEHAV ECOL, V10, P63, DOI 10.1093/beheco/10.1.63; JOHNSON SG, 1991, EVOL ECOL, V5, P52, DOI 10.1007/BF02285245; Kear J., 1970, P357; Kimball RT, 2001, BIOL J LINN SOC, V73, P187, DOI 10.1006/bijl.2001.0536; Kimball RT, 1999, AM NAT, V154, P182, DOI 10.1086/303228; KIRKPATRICK M, 1991, NATURE, V350, P33, DOI 10.1038/350033a0; KIRKPATRICK M, 1987, ANNU REV ECOL SYST, V18, P43, DOI 10.1146/annurev.es.18.110187.000355; Kusmierski R, 1997, P ROY SOC B-BIOL SCI, V264, P307, DOI 10.1098/rspb.1997.0044; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; LEROI AM, 1994, AM NAT, V143, P381, DOI 10.1086/285609; MARCHETTI K, 1993, NATURE, V362, P149, DOI 10.1038/362149a0; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 1996, EVOLUTION, V50, P2454, DOI 10.1111/j.1558-5646.1996.tb03631.x; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; Mayr E, 1942, SYSTEMATICS ORIGIN S; MCLAIN DK, 1993, OIKOS, V68, P490, DOI 10.2307/3544917; MCLAIN DK, 1995, OIKOS, V74, P27, DOI 10.2307/3545671; McNaught MK, 2002, J EVOLUTION BIOL, V15, P505, DOI 10.1046/j.1420-9101.2002.00431.x; Moller AP, 1998, EVOLUTION, V52, P859, DOI 10.1111/j.1558-5646.1998.tb03710.x; MOLLER AP, 1986, IBIS, V128, P234, DOI 10.1111/j.1474-919X.1986.tb02671.x; MOLLER AP, 1993, AM NAT, V142, P118, DOI 10.1086/285531; MOLLER AP, 1994, EVOLUTION, V48, P1089, DOI 10.1111/j.1558-5646.1994.tb05296.x; MOREAU RE, 1960, EVOLUTION, V102, P298; Omland KE, 1997, EVOLUTION, V51, P1636, DOI 10.1111/j.1558-5646.1997.tb01486.x; Omland KE, 2000, EVOLUTION, V54, P2119; OVARNSTROM A, 2000, NATURE, V405, P344; OWENS IPF, 1995, TRENDS ECOL EVOL, V10, P44, DOI 10.1016/S0169-5347(00)88967-3; OWENS IPF, 1995, P ROY SOC B-BIOL SCI, V261, P227, DOI 10.1098/rspb.1995.0141; Owens IPF, 1998, P ROY SOC B-BIOL SCI, V265, P397, DOI 10.1098/rspb.1998.0308; OWENS IPF, 1994, P ROY SOC B-BIOL SCI, V257, P1, DOI 10.1098/rspb.1994.0086; Owens IPF, 1997, P ROY SOC B-BIOL SCI, V264, P1103, DOI 10.1098/rspb.1997.0152; OWENS IPF, 1999, P 22 INT ORN C DURB, P1141; PAYNE RB, 1984, ORNITHOL MONOGR, V33, P1, DOI DOI 10.2307/40166729; Peterson A. Townsend, 1996, Bulletin of the British Ornithologists' Club, V116, P156; Petrie M, 1998, TRENDS ECOL EVOL, V13, P52, DOI 10.1016/S0169-5347(97)01232-9; Price T, 1998, PHILOS T R SOC B, V353, P251, DOI 10.1098/rstb.1998.0207; Price T, 1996, J EVOLUTION BIOL, V9, P451, DOI 10.1046/j.1420-9101.1996.9040451.x; Price T, 1996, AUK, V113, P842, DOI 10.2307/4088862; Price T, 1996, AUK, V113, P256, DOI 10.2307/4088960; Price TD, 2002, GENETICA, V116, P311, DOI 10.1023/A:1021248913179; Prinzing A, 2002, EVOL ECOL RES, V4, P49; PROMISLOW D, 1994, EVOLUTION, V48, P2045, DOI 10.1111/j.1558-5646.1994.tb02232.x; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V250, P143, DOI 10.1098/rspb.1992.0142; PRUM R, 1999, P 22 INT ORN C DURB; Prum RO, 1997, AM NAT, V149, P668, DOI 10.1086/286014; Reinhold K, 1999, J EVOLUTION BIOL, V12, P897, DOI 10.1046/j.1420-9101.1999.00092.x; Saetre GP, 1997, NATURE, V387, P589; Savalli Udo M., 1995, Current Ornithology, V12, P141; SCHLUTER D, 1993, P ROY SOC B-BIOL SCI, V253, P117, DOI 10.1098/rspb.1993.0089; SCOTT DK, 1989, BEHAV ECOL SOCIOBIOL, V26, P261; Sheldon Frederick H., 1997, P279, DOI 10.1016/B978-012498315-1/50016-9; SHUTLER D, 1990, EVOLUTION, V44, P1967, DOI 10.1111/j.1558-5646.1990.tb04303.x; Slagsvold T, 1997, BEHAVIOUR, V134, P353, DOI 10.1163/156853997X00584; SNELLROOD EC, 2003, IN PRESS BEHAV ECOL; Soler JJ, 1998, EVOL ECOL, V12, P427, DOI 10.1023/A:1006520821219; Sorci G, 1998, J ANIM ECOL, V67, P263, DOI 10.1046/j.1365-2656.1998.00199.x; TRAIL PW, 1990, EVOLUTION, V44, P1837, DOI 10.1111/j.1558-5646.1990.tb05254.x; Verner J., 1969, Ornithological Monographs, VNo. 9, P1; Wallace AR, 1889, DARWINISM; WEBSTER MS, 1992, EVOLUTION, V46, P1627; WESTEBERHARD MJ, 1983, Q REV BIOL, V58, P155, DOI 10.1086/413215; Westneat DF, 1997, BEHAV ECOL SOCIOBIOL, V41, P205, DOI 10.1007/s002650050381; Wiens JJ, 2001, TRENDS ECOL EVOL, V16, P517, DOI 10.1016/S0169-5347(01)02217-0 129 136 140 8 87 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA 1543-592X ANNU REV ECOL EVOL S Annu. Rev. Ecol. Evol. Syst. 2003 34 27 49 10.1146/annurev.ecolsys.34.011802.132441 23 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 801NG WOS:000220102000002 2019-02-26 J Chisholm, JS Chisholm, JS Nurture is natural: Reply to Amin and Thompson and Rushton BEHAVIOR AND PHILOSOPHY English Article reproductive strategies; evolution and development; optimality assumption; Naturalistic Fallacy STRESS; CONTROVERSIES; PERSPECTIVES; DISORDERS; ATROPHY; CULTURE; WOMEN; ABUSE; BRAIN Two reviews of Death, Hope and Sex in Vol. 29 of this journal revealed some limitations in their authors' understanding of basic principles of evolutionary ecology and life history theory. Amin and Thompson's review criticized my model of the contingent development of alternative reproductive strategies as (1) being too strong, (2) being too mentalistic, (3) being too reliant on the flawed optimality assumption, (4) committing the Naturalistic Fallacy, and (5) ignoring group selection arguments. I accept only the latter criticism. Rushton's review criticizes me for not writing a book about genes, intelligence, and "race" and massively misunderstands the optimality assumption and role of individual differences in evolutionary theory. Univ Western Australia, Sch Anat & Human Biol, Crawley, WA 6009, Australia Chisholm, JS (reprint author), Univ Western Australia, Sch Anat & Human Biol, Mail Bag Delivery Point M309,35 Stirling Highway, Crawley, WA 6009, Australia. jchisholm@anhb.uwa.edu.au AMIN T, 2001, BEHAV PHILOS, V29, P73; Boehm Christopher, 2000, HIERARCHY FOREST EVO; Bowlby J, 1969, ATTACHMENT; Carter CS, 1998, PSYCHONEUROENDOCRINO, V23, P779; CHISHOLM J, 2003, MATING MENTALITY EVA; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; Gunnar MR, 1998, PREV MED, V27, P208, DOI 10.1006/pmed.1998.0276; Heim C, 2000, JAMA-J AM MED ASSOC, V284, P592, DOI 10.1001/jama.284.5.592; Heim C, 1999, BIOL PSYCHIAT, V46, P1509, DOI 10.1016/S0006-3223(99)00224-3; Hrdy Sarah Blaffer, 1999, MOTHER NATURE NATURA; Insel T. R., 2000, REV GEN PSYCHOL, V4, P176, DOI DOI 10.1037/1089-2680.4.2.176); KENDLER KS, 1995, AM J PSYCHIAT, V152, P833; Krieger N, 2003, AM J PUBLIC HEALTH, V93, P194, DOI 10.2105/AJPH.93.2.194; LEE A, 2002, BIPOLAR DISORD, V4, pL117; Parra FC, 2003, P NATL ACAD SCI USA, V100, P177, DOI 10.1073/pnas.0126614100; Plotkin H. C., 1994, DARWIN MACHINES NATU; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.3.CO;2-1; Potts R, 1996, HUMANITYS DESCENT CO; Rushton JP, 2001, BEHAV PHILOS, V29, P95; Sapolsky R. M., 1999, WELL BEING FDN HEDON, P453; Sapolsky RM, 2000, ARCH GEN PSYCHIAT, V57, P925, DOI 10.1001/archpsyc.57.10.925; Sapolsky RM, 2001, HIPPOCAMPUS, V11, P90, DOI 10.1002/hipo.1026; Sapolsky RM, 2002, BEHAV ENDOCRINOLOGY; Smith EA, 2001, TRENDS ECOL EVOL, V16, P128, DOI 10.1016/S0169-5347(00)02077-2; SOBER E, 1998, UNTO OTHERS EVOLUTIO; Tomasello M, 1999, ANNU REV ANTHROPOL, V28, P509, DOI 10.1146/annurev.anthro.28.1.509; Uvnas-Moberg K, 1998, PSYCHONEUROENDOCRINO, V23, P819, DOI 10.1016/S0306-4530(98)00056-0; WILSON DS, 1994, BEHAV BRAIN SCI, V17, P858; Wilson J. Q., 1993, MORAL SENSE; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135; Worthman CM, 1999, HORMONES HLTH BEHAV, P47 33 0 0 0 1 CAMBRIDGE CENTER BEHAVIORAL STUDIES CONCORD 336 BAKER AVE, CONCORD, MA 01742-2107 USA 1053-8348 BEHAV PHILOS Behav. Philos. 2003 31 127 137 11 Ethics; Psychology, Multidisciplinary Social Sciences - Other Topics; Psychology 816DB WOS:000221089500007 2019-02-26 B Mealey, L Rodgers, JL; Kohler, HP Mealey, L Anorexia: A "dis-ease" of low, low fertility BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY English Proceedings Paper 2nd Conference on Biodemography of Fertility AUG, 2000 ROSTOCK, GERMANY Natl Inst Hlth, Off Behav & Social Sci Res, Off Behav & Social Sci Res, Max Planck Inst Demog Res amenorrhea; anorexia; behavior genetics; eating disorders; evolutionary medicine; evolutionary psychiatry; fertility; hormones; personality; pheromones; reproductive suppression; stress LIFE-HISTORY THEORY; TO-HIP RATIO; EATING DISORDERS; SEX-DIFFERENCES; EVOLUTIONARY PERSPECTIVE; BODY-IMAGE; COMPETITION HYPOTHESIS; VOMERONASAL SYSTEM; OVARIAN-FUNCTION; RISK-FACTORS The incidence of anorexia nervosa has increased significantly in the last century, particularly in rich, "West