PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Nicholas, AC; Stratton, GE; Reed, DH Nicholas, Amy C.; Stratton, Gail E.; Reed, David H. Reproductive allocation in female wolf and nursery-web spiders JOURNAL OF ARACHNOLOGY English Article Fitness; life history evolution; offspring size; relative reproductive effort; trade-off TRADE-OFF; OFFSPRING SIZE; EVOLUTIONARY ECOLOGY; FUTURE REPRODUCTION; NUMBER STRATEGIES; CLUTCH SIZE; SEED BEETLE; EGG SIZE; FECUNDITY; POPULATION We collected data on maternal mass, clutch mass (reproductive effort), number of offspring, and mean offspring mass from 28 species of Lycosidae (wolf spiders) and five species of Pisauridae (nursery-web spiders) found in Mississippi, USA. Our primary goal was to test for a trade-off between offspring number and offspring size (mass) among wolf and nursery-web spiders, which are sister families. The regression of reproductive effort on maternal mass was highly significant and explained 94% of the variation in reproductive effort among species and 96% of the variation among genera. The slope of the regression line between maternal mass and total offspring mass was not significantly different from one, suggesting that spiders used a constant proportion of their total energy budget for reproduction regardless of size. Partial correlation and principal components analyses demonstrated a clear trade-off between offspring size and number. Species with large offspring (relative to adult size) produced fewer offspring than expected. Lycosids produced small numbers of large offspring relative to pisaurids, and smaller species of both families are more constrained in the evolution of the offspring size:number continuum than larger ones. [Nicholas, Amy C.; Stratton, Gail E.; Reed, David H.] Univ Mississippi, Dept Biol, University, MS 38677 USA Reed, DH (reprint author), Univ Louisville, Dept Biol, Louisville, KY 40292 USA. dhreed01@louisville.edu ALLAN JD, 1984, EVOLUTION, V38, P280, DOI 10.1111/j.1558-5646.1984.tb00287.x; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; BREWER JS, 1994, AM J BOT, V81, P805, DOI 10.2307/2445761; Brown CA, 2003, EVOLUTION, V57, P2184, DOI 10.1111/j.0014-3820.2003.tb00397.x; CODDINGTON JA, 2005, SPIDERS N AM IDENTIF, P18; Czesak ME, 2003, EVOLUTION, V57, P1121; Desouhant E, 2005, ANIM BEHAV, V70, P145, DOI 10.1016/j.anbehav.2004.10.015; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Fischer K, 2006, J EVOLUTION BIOL, V19, P380, DOI 10.1111/j.1420-9101.2005.01046.x; Foelix R. F, 1996, BIOL SPIDERS; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fox CW, 1997, AM NAT, V149, P149, DOI 10.1086/285983; Gomez JM, 2004, EVOLUTION, V58, P71, DOI 10.1111/j.0014-3820.2004.tb01574.x; Higgins L, 2002, OIKOS, V99, P377, DOI 10.1034/j.1600-0706.2002.990220.x; Higgins L, 2000, OECOLOGIA, V122, P51, DOI 10.1007/PL00008835; HIGGINS LE, 1992, J ARACHNOL, V20, P94; Kim JY, 2001, OECOLOGIA, V126, P451, DOI 10.1007/s004420000540; Kreiter NA, 2001, OECOLOGIA, V127, P417, DOI 10.1007/s004420000607; Leishman MR, 2001, OIKOS, V93, P294, DOI 10.1034/j.1600-0706.2001.930212.x; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Mappes T, 2004, EVOLUTION, V58, P645, DOI 10.1111/j.0014-3820.2004.tb01686.x; MARSHALL SD, 1994, FUNCT ECOL, V8, P118, DOI 10.2307/2390120; Olsson M, 2002, FUNCT ECOL, V16, P135, DOI 10.1046/j.0269-8463.2001.00600.x; Reed DH, 2007, ANIM CONSERV, V10, P275, DOI 10.1111/j.1469-1795.2007.00120.x; Reed DH, 2008, ECOL ENTOMOL, V33, P488, DOI 10.1111/j.1365-2311.2008.00994.x; Reed DH, 2007, CONSERV GENET, V8, P1061, DOI 10.1007/s10592-006-9260-4; ROFF DA, 2002, LIFE HIST EVOLUTION; Ruber L, 2004, EVOLUTION, V58, P799; SIMPSON MR, 1995, ECOLOGY, V76, P795, DOI 10.2307/1939345; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; SNYDER RJ, 1991, COPEIA, P526; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; Stuefer JF, 2002, J EVOLUTION BIOL, V15, P880, DOI 10.1046/j.1420-9101.2002.00435.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Waelti MO, 2007, OECOLOGIA, V152, P415, DOI 10.1007/s00442-007-0671-9; Walker SE, 2003, EVOL ECOL RES, V5, P19 39 5 5 0 15 AMER ARACHNOLOGICAL SOC COLLEGE PARK UNIV MARYLAND, DEPT ENTOMOLOGY, 4112 PLANT SCIENCES BLDG, COLLEGE PARK, MD 20742-4454 USA 0161-8202 J ARACHNOL J. Arachnol. 2011 39 1 22 29 10.1636/Hi09-17.1 8 Entomology Entomology 797FP WOS:000293110200002 2019-02-21 J Nicholas, AC; Stratton, GE; Reed, DH Nicholas, Amy C.; Stratton, Gail E.; Reed, David H. Determinants of differential reproductive allocation in wolf and nursery-web spiders JOURNAL OF ARACHNOLOGY English Article Fecundity; interspecific competition; life-history evolution; Lycosoidea; Pisauridae; predatory dominance; trade-offs PARDOSA-PSEUDOANNULATA ARANEAE; TRADE-OFF; FUTURE REPRODUCTION; CLUTCH SIZE; EGG-SIZE; PREY; LYCOSIDAE; CONSEQUENCES; CANNIBALISM; PREDATION We used data from 33 species of cursorial spiders in northern Mississippi (USA) to investigate the relative contributions of ecology and phylogeny to the reproductive trade-off between number and size of offspring. Sixty percent of the variation among genera for female reproductive allocation was due to differences between the family Pisauridae and the family Lycosidae. Temporal variation in reproductive allocation during the reproductive season was not observed for the majority of species examined. We found significantly different patterns of reproductive allocation among species within genera, suggesting that each species has responded to distinct selection pressures. Preliminarily, this extensive variation appears to be due mostly to interspecific competition and predation risk from other spiders. However, the patterns of reproductive allocation of species within a single guild (i.e., a group of species potentially competing for the same resources) for the two families are very different. Larger species of wolf spiders (family Lycosidae) within a given guild produce smaller numbers of larger offspring relative to the size of the mother, and smaller species produce the reverse. However, in nursery-web spiders (family Pisauridae) the larger species within a guild produce larger numbers of smaller offspring than expected. The current study provides an example of the flexibility of life history evolution despite phylogenetic constraints. It also demonstrates the potential for varying life history strategies to mediate competition, allowing similar species to coexist. [Nicholas, Amy C.; Stratton, Gail E.; Reed, David H.] Univ Mississippi, Dept Biol, University, MS 38677 USA Reed, DH (reprint author), Univ Louisville, Dept Biol, Louisville, KY 40292 USA. dhreed01@louisville.edu University of Mississippi The University of Mississippi provided partial funding for this research. We thank Pat Miller for help with spider identification. Allison Derrick, Christian Felton, and Winter Williams helped collect spiders. We thank Wei Liao for making Figure 1. Azevedo RBR, 1997, AM NAT, V150, P250, DOI 10.1086/286065; Balfour RA, 2003, ECOL ENTOMOL, V28, P25, DOI 10.1046/j.1365-2311.2002.00486.x; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; CODDINGTON JA, 2005, SPIDERS N AM IDENTIF, P18; CONNELL JH, 1980, OIKOS, V35, P131, DOI 10.2307/3544421; Desdevises Y, 2003, EVOLUTION, V57, P2647; Desouhant E, 2005, ANIM BEHAV, V70, P145, DOI 10.1016/j.anbehav.2004.10.015; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fox CW, 1997, CAN J ZOOL, V75, P1465, DOI 10.1139/z97-769; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; HALLANDER H, 1970, OIKOS, V21, P337, DOI 10.2307/3543691; HARDIN G, 1960, SCIENCE, V131, P1292, DOI 10.1126/science.131.3409.1292; HUTCHINSON GE, 1961, AM NAT, V95, P137, DOI 10.1086/282171; Iida H, 2007, PHYSIOL ENTOMOL, V32, P81, DOI 10.1111/j.1365-3032.2006.00545.x; Iida H, 2005, APPL ENTOMOL ZOOL, V40, P47, DOI 10.1303/aez.2005.47; Kreiter NA, 2001, OECOLOGIA, V127, P417, DOI 10.1007/s004420000607; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; MARSHALL SD, 1994, FUNCT ECOL, V8, P118, DOI 10.2307/2390120; MARTYNIUK J, 1985, J ARACHNOL, V13, P321; Nicholas AC, 2011, J ARACHNOL, V39, P22, DOI 10.1636/Hi09-17.1; Okuyama T, 2007, APPL ENTOMOL ZOOL, V42, P663, DOI 10.1303/aez.2007.663; Reed DH, 2007, ANIM CONSERV, V10, P275, DOI 10.1111/j.1469-1795.2007.00120.x; Reed DH, 2008, ECOL ENTOMOL, V33, P488, DOI 10.1111/j.1365-2311.2008.00994.x; Reed DH, 2007, CONSERV GENET, V8, P1061, DOI 10.1007/s10592-006-9260-4; ROFF DA, 2002, LIFE HIST EVOLUTION; Rypstra AL, 2005, J ARACHNOL, V33, P390, DOI 10.1636/CT05-10.1; SIMPSON MR, 1995, ECOLOGY, V76, P795, DOI 10.2307/1939345; SPILLER DA, 1984, OECOLOGIA, V64, P322, DOI 10.1007/BF00379129; Stearns S, 1992, EVOLUTION LIFE HIST; Waelti MO, 2007, OECOLOGIA, V152, P415, DOI 10.1007/s00442-007-0671-9; Walker SE, 2003, EVOL ECOL RES, V5, P19; YEARGAN KV, 1975, ENVIRON ENTOMOL, V4, P137, DOI 10.1093/ee/4.1.137; ZIMMERMANN M, 1989, OECOLOGIA, V80, P187, DOI 10.1007/BF00380149 34 1 1 0 9 AMER ARACHNOLOGICAL SOC COLLEGE PARK UNIV MARYLAND, DEPT ENTOMOLOGY, 4112 PLANT SCIENCES BLDG, COLLEGE PARK, MD 20742-4454 USA 0161-8202 J ARACHNOL J. Arachnol. 2011 39 1 139 146 10.1636/Hi10-62.1 8 Entomology Entomology 797FP WOS:000293110200015 2019-02-21 J Kennedy, AJ; Steinhart, GB; Greil, RW Kennedy, Anthony J.; Steinhart, Geoffrey B.; Greil, Roger W. A tool to identify pink salmon (Oncorhynchus gorbuscha) x Chinook salmon (O. tshawytscha) hybrids in the St. Marys River, Michigan-Ontario JOURNAL OF GREAT LAKES RESEARCH English Article St. Marys River; Pink salmon; Chinook salmon; Hybrid; Population attributes LAURENTIAN GREAT-LAKES; ASYMMETRIC HYBRIDIZATION; NATURAL HYBRIDIZATION; TROUT; INHERITANCE; TRIBUTARIES; SUPERIOR; DYNAMICS The first putative hybrid between pink salmon (Oncorhynchus gorbuscha) and Chinook salmon (O. tshawytscha) in the Laurentian Great Lakes was reported in 1992. Since that time, many St. Marys River anglers have reported catching hybrid 'pinook' salmon, but their true identity was often undetermined. Although Great Lakes populations of pink and Chinook salmon exhibit similar life history strategies to their Pacific coast counterparts, temporal and spatial overlap of spawning activities in the St. Marys River has made hybridization between these species common. We examined meristic and morphometric data from pink, Chinook and hybrid salmon captured in the St. Marys River during spawning migrations from 1999 to 2002. In addition, we determined spawning migration timing, size structure, age-at-maturity, and sex ratios for pink salmon, Chinook salmon and their hybrids. Spawning migrations of hybrid salmon were composed primarily (93%) of male fish. Peak migration for hybrids (20-30 September) was intermediate to peak migrations for the parent species (pink salmon: 10-19 September, Chinook salmon: 01-10 October). Hybrid salmon were intermediate for most meristic and morphometric characters examined. Using meristic and morphometric data, multivariate models were built and tested to determine the utility of using these data to aid in the identification of hybrids and the parent species. The result was an easy-to-use identification tool that requires counts of only four characters (lateral line scales, gill rakers, branchiostegal rays, and mandibular teeth) to identify pink salmon, Chinook salmon, and their hybrids. (C) 2010 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved. [Kennedy, Anthony J.; Steinhart, Geoffrey B.; Greil, Roger W.] Lake Super State Univ, Aquat Res Lab, Sault Sainte Marie, MI 49783 USA Kennedy, AJ (reprint author), Minnesota Dept Nat Resources, Bemidji Area Fisheries Off, 2114 Bemidji Ave, Bemidji, MN 56601 USA. Tony.Kennedy@state.mn.us; gsteinhart@lssu.edu; rgreil@lssu.edu Greil, Richard/C-7673-2017 Greil, Richard/0000-0002-4462-3694 Lake Superior State University Aquatic Research Laboratory; Michigan Fly Fishing Club We thank T. Sutton for assisting with the development of our study design. B. Johnston, J. Kala, D. Kramer, E. Carr, P. Failor, K. Kruckeburg, J. Johnson and E. Crissman provided assistance in field collections and laboratory analyses. B. Herwig assisted with statistical analyses. Constructive comments on an earlier draft by D. Daugherty improved this manuscript. Funding for this study was provided by the Lake Superior State University Aquatic Research Laboratory and the Michigan Fly Fishing Club. ANAS RE, 1959, J FISH RES BOARD CAN, V16, P91, DOI 10.1139/f59-010; BAGDOVITZ MS, 1986, J GREAT LAKES RES, V12, P272; BENCE JR, 2008, GREAT LAKE FISH COMM, V801; Breiman L., 1984, CLASSIFICATION REGRE; Burnham K. P, 2002, MODEL SELECTION MULT; Carl L.M., 1982, North American Journal of Fisheries Management, V2, P375, DOI 10.1577/1548-8659(1982)2<375:NROCSA>2.0.CO;2; CHILTON DE, 1986, CAN J FISH AQUAT SCI, V43, P1588, DOI 10.1139/f86-197; COLLINS JJ, 1975, J FISH RES BOARD CAN, V32, P402, DOI 10.1139/f75-047; Eddy S., 1978, KNOW FRESHWATER FISH; Haldane JBS, 1922, J GENET, V12, P101, DOI 10.1007/BF02983075; HANKIN DG, 1993, CAN J FISH AQUAT SCI, V50, P347, DOI 10.1139/f93-040; HUBBS CL, 1955, SYST ZOOL, V4, P1, DOI 10.2307/2411933; JANSSON H, 1991, J FISH BIOL, V39, P343, DOI 10.1111/j.1095-8649.1991.tb05096.x; JOHNSON JE, 2007, FISHERIES RES REPORT, V2086; Kanda N, 2002, T AM FISH SOC, V131, P772, DOI 10.1577/1548-8659(2002)131<0772:EOIHBB>2.0.CO;2; Kennedy AJ, 2005, J GREAT LAKES RES, V31, P11, DOI 10.1016/S0380-1330(05)70234-3; Kirkpatrick NS, 2007, J GREAT LAKES RES, V33, P358, DOI 10.3394/0380-1330(2007)33[358:AHOPOG]2.0.CO;2; KWAIN WH, 1982, CAN J FISH AQUAT SCI, V39, P1353, DOI 10.1139/f82-182; Nicolette J.P., 1984, North American Journal of Fisheries Management, V4, P130, DOI 10.1577/1548-8659(1984)4<130:AYPSIA>2.0.CO;2; NOLTIE DB, 1990, CAN J ZOOL, V68, P684, DOI 10.1139/z90-100; NUNAN P J, 1967, Ontario Fish and Wildlife Review, V6, P9; Olden JD, 2002, FRESHWATER BIOL, V47, P1976, DOI 10.1046/j.1365-2427.2002.00945.x; PARSONS JW, 1973, HIST SALMON GREAT LA, V68; Peck James W., 1999, North American Journal of Fisheries Management, V19, P155, DOI 10.1577/1548-8675(1999)019<0155:COHRFT>2.0.CO;2; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; Rosenfield JA, 1998, COPEIA, P706; Rosenfield JA, 2000, T AM FISH SOC, V129, P670, DOI 10.1577/1548-8659(2000)129<0670:AHAIBP>2.3.CO;2; SCHUMACHER RE, 1960, T AM FISH SOC, V94, P214; Scott WB, 1973, J FISH RES BOARD CAN, V184; SIMON RC, 1968, T AM FISH SOC, V97, P109, DOI 10.1577/1548-8659(1968)97[109:HIOSIV]2.0.CO;2; STEWART DJ, 1981, T AM FISH SOC, V110, P751, DOI 10.1577/1548-8659(1981)110<751:FFATSP>2.0.CO;2; TODY WH, 1966, COHO SALMON GREAT LA, V1; TURNER CE, 1968, J FISH RES BOARD CAN, V25, P1993, DOI 10.1139/f68-176; WAGNER WC, 1980, T AM FISH SOC, V109, P458, DOI 10.1577/1548-8659(1980)109<458:TPSILS>2.0.CO;2; WAGNER WC, 1982, T AM FISH SOC, V111, P523, DOI 10.1577/1548-8659(1982)111<523:DAAOPS>2.0.CO;2; Williams I, 2007, T AM FISH SOC, V136, P926, DOI 10.1577/T06-214.1; Zar J. H., 1999, BIOSTATISTICAL ANAL 37 1 1 2 19 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0380-1330 J GREAT LAKES RES J. Gt. Lakes Res. 2011 37 2 SI 35 42 10.1016/j.jglr.2010.04.007 8 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 778OC WOS:000291713000006 2019-02-21 J Myking, T; Bohler, F; Austrheim, G; Solberg, EJ Myking, Tor; Bohler, Fredrik; Austrheim, Gunnar; Solberg, Erling J. Life history strategies of aspen (Populus tremula L.) and browsing effects: a literature review FORESTRY English Review MOOSE ALCES-ALCES; EUROPEAN ASPEN; BOREAL FORESTS; NATIONAL-PARK; MOISTURE CONDITIONS; GENETIC-VARIATION; EASTERN FINLAND; TREMBLING ASPEN; NORWAY SPRUCE; MIXED STANDS Aspen (Populus tremula L.) is associated with high biodiversity and provides high-quality forage for wild browsing herbivores in boreal and temperate ecosystems. The long-term persistence of aspen in many regions in Scandinavia has been questioned due to the historically high browsing levels. We here review the basic ecology, genetics and life histories of aspen in a browsing context. Browsers can suppress the regeneration of aspen and the relatively short lifespan of the trees result in frequent regeneration cycles and concurrent exposure to browsers. In the long term, browsing may reduce recruitment and delay maturation, increase mortality and ultimately cause a decline of aspen. Norwegian forest inventory data indicate a reduced recruitment rate of young aspen (diameter at breast height; 60-79 mm) during the last 25 years, but it is unclear whether this is all due to browsing. Regeneration may also be hampered by lack of disturbance. Recent genetic studies have shown that aspen may have substantial regeneration by seeds, which allows for effective migration. The main conclusion of this review is that although browsing may affect demography and local abundance of aspen, it is very unlikely to lead to the eradication of the species in Fennoscandia. [Myking, Tor] Norwegian Forest & Landscape Inst, NO-5244 Fana, Norway; [Bohler, Fredrik] Norwegian Forest & Landscape Inst, NO-1431 As, Norway; [Austrheim, Gunnar] Norwegian Univ Sci & Technol, Museum Nat Hist & Archaeol, NO-7491 Trondheim, Norway; [Solberg, Erling J.] Norwegian Inst Nat Res, NO-7485 Trondheim, Norway Myking, T (reprint author), Norwegian Forest & Landscape Inst, Fanaflaten 4, NO-5244 Fana, Norway. tor.myking@skogoglandskap.no Norwegian Committee on Forest Genetic Resources; Norwegian Forest and Landscape Institute; Research Council of Norway [184036] Norwegian Committee on Forest Genetic Resources, the Norwegian Forest and Landscape Institute, and the Research Council of Norway (Miljo 2015, 184036). Abaturov Boris D., 2002, Alces Supplement, V2, P1; ANDREN H, 1993, J APPL ECOL, V30, P133, DOI 10.2307/2404277; Austrheim G., 2008, RAPPORT ZOOLOGISK SE; Bailey JK, 2007, BIOL INVASIONS, V9, P715, DOI 10.1007/s10530-006-9071-z; Baker WL, 1997, ECOGRAPHY, V20, P155, DOI 10.1111/j.1600-0587.1997.tb00358.x; Barring U, 1988, SCAND J FOREST RES, V3, P229, DOI 10.1080/02827588809382511; BERGSTROM, 1987, SWEDISH WILDLIFE R S, V1, P213; Beschta RL, 2009, BIOL CONSERV, V142, P2401, DOI 10.1016/j.biocon.2009.06.015; BIRKS HH, 1970, J ECOL, V58, P827, DOI 10.2307/2258536; Bokalo M, 2007, FOREST ECOL MANAG, V242, P175, DOI 10.1016/j.foreco.2007.01.038; Borset O., 1960, Scottish Forestry, V14, P68; Borset O., 1954, Meddelelser fra det Norske Skogsforsoksvesen, V13(1), P1; BORSET O, 1985, SKOGSKJOTSEL, V1; BORSET O, 1956, TIDSKR F SKOGBR, V4, P219; Borset O, 1985, BJORK OSP VEILEDNING; Cooke JEK, 2007, CAN J BOT, V85, P1103, DOI 10.1139/B07-125; Danell K, 2003, FOREST ECOL MANAG, V181, P67, DOI 10.1016/S0378-1127(03)00116-6; De Chantal M, 2005, SCAND J FOREST RES, V20, P33, DOI 10.1080/14004080510040968; de Chantal M, 2007, FOREST ECOL MANAG, V250, P3, DOI 10.1016/j.foreco.2007.03.035; de Chantall M, 2009, ANN BOT FENN, V46, P280, DOI 10.5735/085.046.0404; den Herder M, 2009, CAN J FOREST RES, V39, P712, DOI 10.1139/X08-208; Edenius L, 2007, BIOL CONSERV, V135, P293, DOI 10.1016/j.biocon.2006.10.052; Ennos RA, 1998, FORESTRY, V71, P1; Ericsson G, 2001, ECOSCIENCE, V8, P344, DOI 10.1080/11956860.2001.11682662; Esseen Per-Anders, 1997, Ecological Bulletins, V46, P16; FJELLSTAD W, 2005, 1205 NIJOS NORW I LA; FJELLSTAD W, 2007, 3Q JORDBRUKETS KULTU; Fracheboud Y, 2009, PLANT PHYSIOL, V149, P1982, DOI 10.1104/pp.108.133249; Frivold LH, 1994, TRAER KULTURLANDSKAP; Frivold LH, 1998, JORDBRUKETS KULTURLA, P87; Fussi B, 2010, TREE GENET GENOMES, V6, P439, DOI 10.1007/s11295-009-0262-5; FYSTRO I, 1962, SKOGBRUKSBOKA, V2, P299; Gjerde I, 2005, BIODIVERS CONSERV, V14, P377, DOI 10.1007/s10531-004-6065-y; Glynn C, 2003, OIKOS, V101, P385, DOI 10.1034/j.1600-0706.2003.12145.x; GRAMUGLIO GAETANO, 1962, GIORN BOT ITAL, V69, P78; Habjoerg A., 1978, Meldinger fra Norges Landbrukshoegskole, V57, P1; Hall D, 2007, EVOLUTION, V61, P2849, DOI 10.1111/j.1558-5646.2007.00230.x; Halofsky JS, 2008, FOREST ECOL MANAG, V256, P1004, DOI 10.1016/j.foreco.2008.06.002; Hamrick James L., 1996, P203; Hester AJ, 2000, FORESTRY, V73, P381, DOI 10.1093/forestry/73.4.381; Hester AJ, 2006, PLANT ECOL, V183, P277, DOI 10.1007/s11258-005-9039-6; Hulten E, 1986, ATLAS N EUROPEAN VAS; HUNTLEY B, 1983, ATLAS PRESENT POLLEN; Hwang SY, 1997, OECOLOGIA, V111, P99, DOI 10.1007/s004420050213; JOBLING J, 1990, FORESTRY COMMISSION, V92; JOHANSSON T, 2005, ALDER ASPEN BIRCH GR; Johansson Tord, 1996, Silva Fennica, V30, P437; JOHNSSON H., 1942, Svensk Botanisk Tidskrift, V36, P177; Kabzems R, 2004, CAN J FOREST RES, V34, P384, DOI 10.1139/X03-254; Kay CE, 1997, J FOREST, V95, P4; KONIG A. O, 2005, CONSERVATION MANAGEM, P275; Kouki Jari, 2004, Journal for Nature Conservation (Jena), V12, P41, DOI 10.1016/j.jnc.2003.08.002; KUCERA B, 1999, NATURENS VAKRESTE RS; Kuijper DPJ, 2009, FOREST ECOL MANAG, V258, P1528, DOI 10.1016/j.foreco.2009.07.010; KUUSINEN M, 1994, ANN BOT FENN, V31, P159; LANGHAMMER A, 1990, RAPPORT NORSK I SKOG, V1, P1; Langhammer Aa., 1982, TIDSKRIFT SKOGBRUK, V90, P102; Larsson J. Y., 2007, STAT FOREST CONDITIO; Latva-Karjanmaa T, 2003, CAN J FOREST RES, V33, P2081, DOI 10.1139/X03-129; Latva-Karjanmaa T, 2007, CAN J FOREST RES, V37, P1070, DOI 10.1139/X06-289; Latva-Karjanmaa T, 2006, NEW FOREST, V31, P545, DOI 10.1007/s11056-005-2742-2; Lavsund Sten, 2003, Alces, V39, P109; Lexer C, 2005, MOL ECOL, V14, P1045, DOI 10.1111/j.1365-294X.2005.02469.x; Lid J., 2005, NORSK FLORA; Lieffers VJ, 2002, FOREST CHRON, V78, P137, DOI 10.5558/tfc78137-1; Linder P, 1997, FOREST ECOL MANAG, V98, P17, DOI 10.1016/S0378-1127(97)00076-5; Lopez-de-Heredia U, 2004, SILVAE GENET, V53, P227, DOI 10.1515/sg-2004-0041; Maliouchenko O, 2007, J BIOGEOGR, V34, P1601, DOI 10.1111/j.13653-2699.2007.01729.x; Mansson J, 2007, SCAND J FOREST RES, V22, P407, DOI 10.1080/02827580701515023; Mock KE, 2008, MOL ECOL, V17, P4827, DOI 10.1111/j.1365-294X.2008.03963.x; MOEN A, 1998, JORDBRUKETS KULTURLA, P18; Namroud MC, 2005, MOL ECOL, V14, P2969, DOI 10.1111/j.1365-294X.2005.02653.x; Naslund B-A, 1986, SIMULATION DAMAGE MO; OPPDAHL H, 1992, MEDD SKOGFORSK, V44, P1; Osier TL, 2006, OECOLOGIA, V148, P293, DOI 10.1007/s00442-006-0373-8; Ostlund L, 1997, CAN J FOREST RES, V27, P1198, DOI 10.1139/cjfr-27-8-1198; OYEN BH, 1998, OPPDRAGSRAPPORT NORS, V8, P1; Persson IL, 2000, ANN ZOOL FENN, V37, P251; Pinno BD, 2009, FOREST ECOL MANAG, V257, P782, DOI 10.1016/j.foreco.2008.09.058; Pothier D, 2004, CAN J FOREST RES, V34, P1251, DOI 10.1139/X04-017; POWELL GR, 1957, THESIS EDINGBURGH U; Ripple WJ, 2007, BIOL CONSERV, V138, P514, DOI 10.1016/j.biocon.2007.05.006; ROLSTAD JE, 2002, NATURSKOG NORGE DEFI; RUEL JC, 1995, FOREST CHRON, V71, P434, DOI 10.5558/tfc71434-4; Rytter L, 2005, FORESTRY, V78, P285, DOI 10.1093/forestry/cpi026; Schlyter P, 2006, CLIM RES, V31, P75, DOI 10.3354/cr031075; Shipley LA, 1998, CAN J ZOOL, V76, P1722, DOI 10.1139/cjz-76-9-1722; SIITONEN J, 1994, SCAND J FOREST RES, V9, P185, DOI 10.1080/02827589409382830; SOLBERG EJ, 2010, 584 NINA; Stevens MT, 2007, EVOL ECOL, V21, P829, DOI 10.1007/s10682-006-9154-4; Stevens MT, 2005, OECOLOGIA, V145, P298, DOI 10.1007/s00442-005-0128-y; Suvanto LI, 2005, MOL ECOL, V14, P2851, DOI 10.1111/j.1365-294X.2005.02634.x; Sylven N, 1940, SVENSK PAPPERSTIDNIN, V43, P332; Tatarinov F, 2005, ANN FOREST SCI, V62, P807, DOI 10.1051/forest:2005086; Thompson K., 1997, SOIL SEED BANKS N W; Van Bogaert R, 2009, PLANT ECOL DIVERS, V2, P221, DOI 10.1080/17550870903487456; Vehmas M, 2009, FORESTRY, V82, P135, DOI 10.1093/forestry/cpn044; Venalainen A, 2004, AGR FOREST METEOROL, V123, P149, DOI 10.1016/j.agrformet.2003.12.005; White CA, 1998, WILDLIFE SOC B, V26, P449; WOOLEY BC, 2008, RANGELANDS, V30, P17; WORRELL R, 1995, FORESTRY, V68, P231, DOI 10.1093/forestry/68.3.231; WORRELL R, 1995, FORESTRY, V68, P93, DOI 10.1093/forestry/68.2.93; Worrell R, 1999, FORESTRY, V72, P27, DOI 10.1093/forestry/72.1.27; YOUNG A, 2000, FOREST CONSERVATION; ZACKRISSON O, 1992, CAN J FOREST RES, V22, P1310, DOI 10.1139/x92-174; ZACKRISSON O, 1977, OIKOS, V29, P22, DOI 10.2307/3543289; Zakrisson C, 2007, SCAND J FOREST RES, V22, P324, DOI 10.1080/02827580701442186 107 42 44 4 62 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0015-752X 1464-3626 FORESTRY Forestry JAN 2011 84 1 61 71 10.1093/forestry/cpq044 11 Forestry Forestry 720AI WOS:000287252200007 Bronze 2019-02-21 J Luttikhuizen, PC; Honkoop, PJC; Drent, J Luttikhuizen, P. C.; Honkoop, P. J. C.; Drent, J. Intraspecific egg size variation and sperm limitation in the broadcast spawning bivalve Macoma balthica JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Stock-recruitment relationships; Life history theory; Sperm limitation; Sperm competition; Egg size MARINE BENTHIC INVERTEBRATES; FERTILIZATION SUCCESS; REPRODUCTIVE STRATEGIES; PHENOTYPIC PLASTICITY; FREE-SPAWNERS; SEA-URCHIN; WADDEN SEA; POPULATION; TEMPERATURE; LARVAL Broadcast spawners are exceptionally suited and simple models for studying parental investment in offspring, because direct post-spawning investment is nonexistent. However, a comprehensive understanding of the large variation that exists in their egg sizes is still lacking. One of the main hypotheses states that variation in fertilization conditions underlies some of the egg size variation, as larger eggs are larger targets for sperm. Here, we test the hypothesis that egg size may be locally tuned to expected ambient sperm concentrations during fertilization. In accordance with the hypothesis, we find that in the bivalve Macoma balthica (L) adult density as a proxy for sperm concentration correlates strongly (correlation coefficient -0.87) with egg size in the field. Optimisation modeling confirms the negative relationship between optimal egg size and sperm concentration for M. balthica and this is independent of the fertilization model used. Discrepancies between models and observations remaining include larger egg sizes overall and a concave predicted relationship that is not obvious in the data. The results suggest that in M. balthica sperm limitation may play a role in fertilization success and in shaping egg size variation, and that locations with high population densities may make disproportionately large contributions to the next generation. (C) 2010 Elsevier B.V. All rights reserved. [Luttikhuizen, P. C.; Honkoop, P. J. C.; Drent, J.] Royal Netherlands Inst Sea Res, Dept Marine Ecol, NL-1790 AB Den Burg, Netherlands Luttikhuizen, PC (reprint author), Royal Netherlands Inst Sea Res, Dept Marine Ecol, POB 59, NL-1790 AB Den Burg, Netherlands. pieternella.luttikhuizen@nioz.nl Luttikhuizen, Pieternella/D-9078-2012 NWO: PIONIER; NWO: NOP; NWO: MEERVOUD We thank J. van der Meer, S. Saraiva and T. Piersma for discussions, J. Beukema and R. Dekker for generously providing density data from their long-term monitoring data base, and four anonymous referees for their helpful comments. This work was partly supported by three NWO grants: a PIONIER grant to T. Piersma, an NOP grant top and PH and a MEERVOUD grant to PL. [RH] Bernardo J, 1996, AM ZOOL, V36, P216; Bertram DF, 1998, ECOLOGY, V79, P315, DOI 10.1890/0012-9658(1998)079[0315:EOMALN]2.0.CO;2; Beukema JJ, 2002, J SEA RES, V48, P111, DOI 10.1016/S1385-1101(02)00162-4; Bocher P, 2007, MAR BIOL, V151, P577, DOI 10.1007/s00227-006-0500-4; Bode M, 2007, EVOLUTION, V61, P2693, DOI 10.1111/j.1558-5646.2007.00232.x; Bos OG, 2007, MAR ECOL PROG SER, V330, P155, DOI 10.3354/meps330155; CADDY JF, 1967, CAN J ZOOLOG, V45, P955, DOI 10.1139/z67-105; Claereboudt C, 1999, ECOL MODEL, V121, P221; Crean AJ, 2008, P NATL ACAD SCI USA, V105, P13508, DOI 10.1073/pnas.0806590105; Dowling NA, 2004, CAN J FISH AQUAT SCI, V61, P247, DOI 10.1139/F03-165; Drent J, 2004, FUNCT ECOL, V18, P349, DOI 10.1111/j.0269-8463.2004.00839.x; Drent J, 2002, J EXP MAR BIOL ECOL, V275, P117, DOI 10.1016/S0022-0981(02)00141-7; Eckert GL, 2003, ECOLOGY, V84, P372, DOI 10.1890/0012-9658(2003)084[0372:EOTPPO]2.0.CO;2; George SB, 1999, J EXP MAR BIOL ECOL, V237, P203, DOI 10.1016/S0022-0981(98)00205-6; HARVEY M, 1989, J EXP MAR BIOL ECOL, V129, P199, DOI 10.1016/0022-0981(89)90103-2; Honkoop PJC, 1997, MAR ECOL PROG SER, V149, P155, DOI 10.3354/meps149155; Honkoop PJC, 1998, J EXP MAR BIOL ECOL, V220, P227, DOI 10.1016/S0022-0981(97)00107-X; Honkoop PJC, 1999, MAR ECOL PROG SER, V180, P297, DOI 10.3354/meps180297; Honkoop PJC, 1998, MAR ECOL PROG SER, V164, P229, DOI 10.3354/meps164229; Jantzen TM, 2001, MAR BIOL, V138, P1153; KENNEDY VS, 1989, VELIGER, V32, P29; LESSIOS HA, 1987, J EXP MAR BIOL ECOL, V114, P217; Levitan Don R., 1995, P123; Levitan DR, 2006, INTEGR COMP BIOL, V46, P298, DOI 10.1093/icb/icj025; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; Levitan DR, 1998, SPERM COMPETITION SE, P175; Lundquist CJ, 2004, ECOL APPL, V14, P929, DOI 10.1890/02-5325; Luttikhuizen PC, 2002, GENOME, V45, P59, DOI 10.1139/g01-128; Luttikhuizen PC, 2003, J EVOLUTION BIOL, V16, P260, DOI 10.1046/j.1420-9101.2003.00510.x; Luttikhuizen PC, 2003, MOL ECOL, V12, P2215, DOI 10.1046/j.1365-294X.2003.01872.x; Luttikhuizen PC, 2004, J THEOR BIOL, V231, P333, DOI 10.1016/j.jtbi.2004.06.028; Marelli DC, 1999, J SHELLFISH RES, V18, P393; Marshall DJ, 2000, MAR ECOL PROG SER, V195, P305, DOI 10.3354/meps195305; MARSHALL DJ, 2008, ADV MAR BIOL, P1; Marshall DJ, 2008, AM NAT, V171, P214, DOI 10.1086/524954; McEdward LR, 2001, BIOL BULL, V200, P33, DOI 10.2307/1543083; Miles CM, 2007, MAR ECOL PROG SER, V340, P155, DOI 10.3354/meps340155; MYERS RA, 1995, SCIENCE, V269, P1106, DOI 10.1126/science.269.5227.1106; Pfister CA, 1996, ECOL APPL, V6, P298, DOI 10.2307/2269573; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Phillips NE, 2007, BIOL BULL-US, V212, P12, DOI 10.2307/25066576; Podolsky RD, 2004, AM NAT, V163, P735, DOI 10.1086/382791; Podolsky RD, 2002, J EXP BIOL, V205, P1657; RAMIREZLLODRA ER, 2002, ADV MAR BIOL, V43, P88, DOI DOI 10.1016/S0065-2881(02)43004-0; ROFF DA, 2002, LIFE HIST EVOLUTION; Sinclair M., 1987, MARINE POPULATIONS E; Sinclair M, 1988, AQUAT LIVING RESOUR, V1, P71, DOI 10.1051/alr:1988009; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; Styan CA, 1998, AM NAT, V152, P290, DOI 10.1086/286168; Trivers RL, 1972, SEXUAL SELECTION DES; Van der Meer J, 2001, J ANIM ECOL, V70, P159, DOI 10.1046/j.1365-2656.2001.00469.x; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; VOGEL H, 1982, MATH BIOSCI, V58, P189, DOI 10.1016/0025-5564(82)90073-6; Wahle RA, 1999, MAR BIOL, V134, P127, DOI 10.1007/s002270050531; Yund PO, 2000, TRENDS ECOL EVOL, V15, P10, DOI 10.1016/S0169-5347(99)01744-9 58 12 12 1 34 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. JAN 1 2011 396 2 156 161 10.1016/j.jembe.2010.10.017 6 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 710XN WOS:000286550400011 Bronze 2019-02-21 S Wilder, SM Casas, J Wilder, Shawn M. Spider Nutrition: An Integrative Perspective ADVANCES IN INSECT PHYSIOLOGY, VOL 40: SPIDER PHYSIOLOGY AND BEHAVIOUR - PHYSIOLOGY Advances in Insect Physiology English Review; Book Chapter ORB-WEAVING SPIDER; NEPHILA-CLAVIPES ARANEAE; SEXUAL SIZE DIMORPHISM; AMINO-ACID-COMPOSITION; BODY CONDITION INDEXES; MEDIATED INDIRECT INTERACTIONS; ECOSYSTEM NUTRIENT DYNAMICS; LIMITATION PROMOTE OMNIVORY; WEB-BUILDING SPIDERS; MIXED-SPECIES DIETS Spiders represent a diverse, widespread and abundant group of carnivores. Studying the nutritional ecology of spiders is critical because it can aid in understanding the evolution of prey capture and life history strategies, factors regulating the abundance and diversity of spiders in particular habitats and the role of spiders in arthropod community dynamics including biological control of crop pests. The feeding habits of spiders have long attracted the attention of biologists, in part, because many build webs and are relatively easy to observe. While these studies have provided a wealth of information on the abundance and types of prey captured, they have yielded relatively little information on the types and quantities of nutrients ingested by spiders in nature. Relatively little is also known about the nutritional requirements of spiders, although recent studies using more controlled manipulations of prey nutrient content are beginning to provide a clearer understanding of the types and quantities of nutrients needed by spiders to maximize performance. There is a tremendous opportunity to rapidly advance our understanding of spider nutrition, given a strong foundation in the natural history, behaviour, physiology and ecology of spiders and recent advances in analytical techniques and frameworks for studying nutrition. Studies focusing on the connections between spider nutritional physiology and how this is affected by and affects prey communities may produce particularly exciting results. Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia Wilder, SM (reprint author), Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia. Agusti N, 2003, MOL ECOL, V12, P3467, DOI 10.1046/j.1365-294X.2003.02014.x; ANDERSEN SO, 1979, ANNU REV ENTOMOL, V24, P29, DOI 10.1146/annurev.en.24.010179.000333; ANDERSEN SO, 1995, INSECT BIOCHEM MOLEC, V25, P153, DOI 10.1016/0965-1748(94)00052-J; ANDERSEN SO, 1970, COMP BIOCHEM PHYSIOL, V35, P705, DOI 10.1016/0010-406X(70)90988-6; ANDERSON CM, 1980, PHYSIOL ENTOMOL, V5, P101, DOI 10.1111/j.1365-3032.1980.tb00216.x; ANDERSON JF, 1975, Z MORPHOL TIERE, V81, P257, DOI 10.1007/BF00298488; ANDERSON JF, 1982, PHYSIOL ZOOL, V55, P72, DOI 10.1086/physzool.55.1.30158445; ANDERSON JF, 1970, COMP BIOCHEM PHYSIOL, V33, P51, DOI 10.1016/0010-406X(70)90483-4; ANDERSON JF, 1974, ECOLOGY, V55, P576, DOI 10.2307/1935148; Banjo AD, 2006, AFR J BIOTECHNOL, V5, P298; BARTH FG, 1985, NEUROBIOLOGY ARACHNI; Beckerman AP, 2010, FUNCT ECOL, V24, P1, DOI 10.1111/j.1365-2435.2009.01673.x; Behmer ST, 2009, ANNU REV ENTOMOL, V54, P165, DOI 10.1146/annurev.ento.54.110807.090537; Bernard J. B., 1997, FEEDING CAPTIVE INSE; Bilde T, 1998, OECOLOGIA, V115, P54, DOI 10.1007/s004420050490; Bilde T, 2000, EKOL BRATISLAVA, V19, P9; Blackledge TA, 2009, P NATL ACAD SCI USA, V106, P5229, DOI 10.1073/pnas.0901377106; Blamires SJ, 2011, AUSTRAL ECOL, V36, P389, DOI 10.1111/j.1442-9993.2010.02161.x; Blamires SJ, 2009, ECOL ENTOMOL, V34, P545, DOI 10.1111/j.1365-2311.2009.01095.x; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; BREED ALAN L., 1964, BEHAVIOUR, V23, P43, DOI 10.1163/156853964X00085; Brooks RC, 2010, OBES REV, V11, P887, DOI 10.1111/j.1467-789X.2010.00733.x; BUDDINGTON RK, 1991, AM J PHYSIOL, V261, pR793; CARREL JE, 1976, SCIENCE, V193, P148, DOI 10.1126/science.935864; Chen XQ, 2010, B INSECTOL, V63, P203; CHERRETT JM, 1964, J ANIM ECOL, V33, P27, DOI 10.2307/2347; Coddington J. A., 2005, SPIDERS N AM IDENTIF, P18; COHEN AC, 1995, ANNU REV ENTOMOL, V40, P85, DOI 10.1146/annurev.en.40.010195.000505; Craig CL, 1999, INT J BIOL MACROMOL, V24, P109, DOI 10.1016/S0141-8130(99)00006-9; Craig CL, 2000, MOL BIOL EVOL, V17, P1904, DOI 10.1093/oxfordjournals.molbev.a026292; Denne K., 1982, American Arachnology, P14; Denno RF, 2003, ECOLOGY, V84, P2522, DOI 10.1890/02-0370; Draper HH, 2000, NUTR RES, V20, P113, DOI 10.1016/S0271-5317(99)00143-8; EBERHARD WG, 1988, J ARACHNOL, V16, P295; EDGAR WD, 1969, J ZOOL, V159, P405, DOI 10.1111/j.1469-7998.1969.tb03897.x; EDGAR WD, 1971, OECOLOGIA, V7, P136, DOI 10.1007/BF00346356; Eisert R, 2011, J COMP PHYSIOL B, V181, P1, DOI 10.1007/s00360-010-0528-0; Elgar M., 1992, CANNIBALISM ECOLOGY; Elser JJ, 2006, FUNCT ECOL, V20, P846, DOI 10.1111/j.1365-2435.2006.01165.x; Elser JJ, 2000, ECOL LETT, V3, P540, DOI 10.1046/j.1461-0248.2000.00185.x; Fagan WF, 2004, ECOL LETT, V7, P876, DOI 10.1111/j.1461-0248.2004.00641.x; Fagan WF, 2002, AM NAT, V160, P784, DOI 10.1086/343879; Finke MD, 2003, ZOO BIOL, V22, P147, DOI 10.1002/zoo.10082; Fisker EN, 2004, PHYSIOL ENTOMOL, V29, P129, DOI 10.1111/j.1365-3032.2004.00376.x; Foelix R. F, 1996, BIOL SPIDERS; FORD MJ, 1977, OECOLOGIA, V28, P341, DOI 10.1007/BF00345989; FORD MJ, 1977, OECOLOGIA, V28, P333, DOI 10.1007/BF00345988; FRITZ RS, 1985, OECOLOGIA, V65, P194, DOI 10.1007/BF00379217; Fromhage L, 2005, EVOLUTION, V59, P1400; Fu CJ, 2009, CHEM COMMUN, P6515, DOI 10.1039/b911049f; FURRER S, 1995, PHYSIOL ENTOMOL, V20, P18, DOI 10.1111/j.1365-3032.1995.tb00796.x; GOSLINE JM, 1986, ENDEAVOUR, V10, P37, DOI 10.1016/0160-9327(86)90049-9; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; GREENSTONE MH, 1977, J APPL ECOL, V14, P457, DOI 10.2307/2402558; GREENSTONE MH, 1980, ECOLOGY, V61, P1255, DOI 10.2307/1936843; Greenstone MH, 2003, J ARACHNOL, V31, P131, DOI 10.1636/0161-8202(2003)031[0131:SPSIOG]2.0.CO;2; GREENSTONE MH, 1979, NATURE, V282, P501, DOI 10.1038/282501a0; HAIRSTON NG, 1960, AM NAT, V94, P421, DOI 10.1086/282146; HARDMAN JM, 1974, J ANIM ECOL, V43, P155, DOI 10.2307/3164; Harwood JD, 2007, BIOL CONTROL, V41, P397, DOI 10.1016/j.biocontrol.2007.02.008; Harwood JD, 2004, MOL ECOL, V13, P3549, DOI 10.1111/j.1365-294X.2004.02331.x; Hawlena D, 2010, P NATL ACAD SCI USA, V107, P15503, DOI 10.1073/pnas.1009300107; HEAD G, 1995, EVOLUTION, V49, P776, DOI 10.1111/j.1558-5646.1995.tb02313.x; Heiling AM, 2000, EKOL BRATISLAVA, V19, P97; Henschel JR, 2001, OIKOS, V93, P429, DOI 10.1034/j.1600-0706.2001.930308.x; Herberstein ME, 2000, BIOL REV, V75, P649; Hewson-Hughes AK, 2011, J EXP BIOL, V214, P1039, DOI 10.1242/jeb.049429; Higgins L, 1999, PHYSIOL ENTOMOL, V24, P263, DOI 10.1046/j.1365-3032.1999.00135.x; Higgins LE, 2001, J ARACHNOL, V29, P82, DOI 10.1636/0161-8202(2001)029[0082:VITCCO]2.0.CO;2; Hlivko JT, 2003, ANN ENTOMOL SOC AM, V96, P914, DOI 10.1603/0013-8746(2003)096[0914:SRHNEO]2.0.CO;2; Hoenig M, 2000, VET IMMUNOL IMMUNOP, V77, P93, DOI 10.1016/S0165-2427(00)00229-4; Hormiga G, 2000, SYST BIOL, V49, P435, DOI 10.1080/10635159950127330; Horowitz H., 2002, OFFICIAL METHODS ANA; HURD LE, 1990, ECOLOGY, V71, P2107, DOI 10.2307/1938624; Ito Y., 1964, Researches on Population Ecology Kyoto, V6, P13; Jackson RR, 2005, P NATL ACAD SCI USA, V102, P15155, DOI 10.1073/pnas.0507398102; JACKSON RR, 1992, BIOSCIENCE, V42, P590, DOI 10.2307/1311924; Jackson RR, 2001, J ZOOL, V255, P25, DOI 10.1017/S095283690100108X; Jakob EM, 1996, OIKOS, V77, P61, DOI 10.2307/3545585; Jensen K, 2011, ANIM BEHAV, V81, P993, DOI 10.1016/j.anbehav.2011.01.035; Jensen K, 2011, OECOLOGIA, V165, P577, DOI 10.1007/s00442-010-1811-1; Jensen K, 2010, J INSECT PHYSIOL, V56, P1095, DOI 10.1016/j.jinsphys.2010.03.001; Jespersen LB, 2003, FUNCT ECOL, V17, P737, DOI 10.1111/j.1365-2435.2003.00788.x; Kato C, 2003, OIKOS, V103, P113, DOI 10.1034/j.1600-0706.2003.12477.x; KESSLER A, 1971, OECOLOGIA, V8, P93, DOI 10.1007/BF00345629; KIRITANI K, 1972, Researches on Population Ecology (Tokyo), V13, P187, DOI 10.1007/BF02521977; Kotiaho JS, 1999, OIKOS, V87, P399, DOI 10.2307/3546755; Kotiaho JS, 1998, P ROY SOC B-BIOL SCI, V265, P2203, DOI 10.1098/rspb.1998.0560; Kreiter NA, 2001, OECOLOGIA, V127, P417, DOI 10.1007/s004420000607; Krivan V, 2004, OIKOS, V107, P239, DOI 10.1111/j.0030-1299.2004.12695.x; Lang A, 1997, EUR J ENTOMOL, V94, P453; Lease HM, 2011, PHYSIOL ENTOMOL, V36, P29, DOI 10.1111/j.1365-3032.2010.00767.x; Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105; Li DQ, 1997, CAN J ZOOL, V75, P1652, DOI 10.1139/z97-792; Li DQ, 1996, J INSECT BEHAV, V9, P613, DOI 10.1007/BF02213884; LINZEN B, 1975, J COMP PHYSIOL, V96, P101, DOI 10.1007/BF00706589; LOMBARDI SJ, 1990, J ARACHNOL, V18, P297; Lomborg JP, 2009, BEHAV ECOL, V20, P700, DOI 10.1093/beheco/arp044; LOWRIE DC, 1987, J ARACHNOL, V15, P303; Lubin Y, 1996, OECOLOGIA, V105, P64, DOI 10.1007/BF00328792; LUCAS F, 1958, ADV PROTEIN CHEM, V13, P107, DOI 10.1016/S0065-3233(08)60599-9; MACDONALD ML, 1984, ANNU REV NUTR, V4, P521, DOI 10.1146/annurev.nu.04.070184.002513; Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059; Marcussen BM, 1999, ENTOMOL EXP APPL, V92, P29; Markow TA, 1999, FUNCT ECOL, V13, P78, DOI 10.1046/j.1365-2435.1999.00285.x; Matsumura M, 2004, ECOLOGY, V85, P2601, DOI 10.1890/03-0629; Mayntz D, 2005, SCIENCE, V307, P111, DOI 10.1126/science.1105493; Mayntz D, 2006, J ANIM ECOL, V75, P288, DOI 10.1111/j.1365-2656.2006.01046.x; Mayntz D, 2003, OIKOS, V101, P631, DOI 10.1034/j.1600-0706.2003.12408.x; Mayntz D, 2001, OECOLOGIA, V127, P207, DOI 10.1007/s004420000591; Mayntz D., 2000, EKOLOGIA, V3, P153; Mayntz D, 2009, ANIM BEHAV, V77, P349, DOI 10.1016/j.anbehav.2008.09.036; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Meehan CJ, 2009, CURR BIOL, V19, pR892, DOI 10.1016/j.cub.2009.08.049; Miller JA, 2007, EVOLUTION, V61, P1301, DOI 10.1111/j.1558-5646.2007.00115.x; MIYASHITA K, 1968, Applied Entomology and Zoology, V3, P81; MIYASHITA K, 1969, Applied Entomology and Zoology, V4, P105; MIYASHITA T, 1992, RES POPUL ECOL, V34, P15, DOI 10.1007/BF02513519; Moran MD, 1998, OECOLOGIA, V113, P126, DOI 10.1007/s004420050360; MORSE DH, 1981, AM MIDL NAT, V105, P358, DOI 10.2307/2424754; Moya-Larano J, 2003, OIKOS, V101, P539, DOI 10.1034/j.1600-0706.2003.12316.x; Moya-Larano J., 2007, Web Ecology, V7, P106; Moya-Larano J, 2008, J ANIM ECOL, V77, P1099, DOI 10.1111/j.1365-2656.2008.01433.x; Nelson XJ, 2006, P ROY SOC B-BIOL SCI, V273, P367, DOI 10.1098/rspb.2005.3340; NENTWIG W, 1982, OECOLOGIA, V53, P412, DOI 10.1007/BF00389023; NENTWIG W, 1983, OECOLOGIA, V56, P132, DOI 10.1007/BF00378229; NENTWIG W, 1985, OECOLOGIA, V66, P580, DOI 10.1007/BF00379353; NENTWIG W, 1986, OECOLOGIA, V69, P571, DOI 10.1007/BF00410365; Nentwig W., 1987, ECOPHYSIOLOGY SPIDER; Nielsen S. A., 2000, EUR ARACHNOL, V19, P65; NYFFELER M, 1990, J APPL ENTOMOL, V110, P73, DOI 10.1111/j.1439-0418.1990.tb00097.x; NYFFELER M, 1988, J APPL ENTOMOL, V106, P123, DOI 10.1111/j.1439-0418.1988.tb00575.x; Nyffeler M, 1999, J ARACHNOL, V27, P317; Oelbermann K, 2002, BASIC APPL ECOL, V3, P285, DOI 10.1078/1439-1791-00094; Oelbermann K, 2002, OECOLOGIA, V130, P337, DOI 10.1007/s004420100813; OLIVE CW, 1982, ECOLOGY, V63, P912, DOI 10.2307/1937231; Opell BD, 1998, FUNCT ECOL, V12, P613, DOI 10.1046/j.1365-2435.1998.00222.x; Opell BD, 1997, BIOL J LINN SOC, V62, P443, DOI 10.1006/bijl.1997.0160; Oxford GS, 1998, ANNU REV ENTOMOL, V43, P619, DOI 10.1146/annurev.ento.43.1.619; PARRY DA, 1959, J EXP BIOL, V36, P423; PEAKALL DB, 1966, COMP BIOCHEM PHYSIOL, V19, P253, DOI 10.1016/0010-406X(66)90563-9; PEAKALL DB, 1976, COMP BIOCHEM PHYS A, V54, P187, DOI 10.1016/S0300-9629(76)80094-1; PEAKALL DB, 1971, J EXP ZOOL, V176, P257, DOI 10.1002/jez.1401760302; Pedersen LF, 2002, ENTOMOL EXP APPL, V103, P197, DOI 10.1023/A:1021154106914; Pekar S, 2010, ANIM BEHAV, V79, P1301, DOI 10.1016/j.anbehav.2010.03.002; Pekar S, 2009, PHYSIOL ENTOMOL, V34, P195, DOI 10.1111/j.1365-3032.2009.00672.x; Philip BN, 2010, CAN J ZOOL, V88, P90, DOI 10.1139/Z09-122; POLIS GA, 1992, TRENDS ECOL EVOL, V7, P151, DOI 10.1016/0169-5347(92)90208-S; POLIS GA, 1989, ANNU REV ECOL SYST, V20, P297, DOI 10.1146/annurev.es.20.110189.001501; POLLARD SD, 1995, ANIM BEHAV, V49, P1443, DOI 10.1016/0003-3472(95)90065-9; Pollierer MM, 2010, SOIL BIOL BIOCHEM, V42, P919, DOI 10.1016/j.soilbio.2010.02.008; Porter D, 2009, ADV MATER, V21, P487, DOI 10.1002/adma.200801332; PRESTWICH KN, 1983, PHYSIOL ZOOL, V56, P112, DOI 10.1086/physzool.56.1.30159972; PRESTWICH KN, 1988, J COMP PHYSIOL B, V158, P437, DOI 10.1007/BF00691141; PRESTWICH KN, 1983, PHYSIOL ZOOL, V56, P122, DOI 10.1086/physzool.56.1.30159973; PRESTWICH KN, 1977, COMP BIOCHEM PHYS A, V57, P321, DOI 10.1016/0300-9629(77)90199-2; PRESTWICH KN, 1982, COMP BIOCHEM PHYS B, V72, P295, DOI 10.1016/0305-0491(82)90049-9; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; Ramos-Elorduy Julieta, 1997, Journal of Food Composition and Analysis, V10, P142, DOI 10.1006/jfca.1997.0530; Raubenheimer D, 1997, NUTR RES REV, V10, P151, DOI 10.1079/NRR19970009; Raubenheimer D, 2007, ECOLOGY, V88, P2598, DOI 10.1890/07-0012.1; Raubenheimer D, 2009, FUNCT ECOL, V23, P4, DOI 10.1111/j.1365-2435.2009.01522.x; Rickers S, 2006, FUNCT ECOL, V20, P124, DOI 10.1111/j.1365-2435.2006.01077.x; Riechert S.E., 1987, P645; RIECHERT SE, 1984, ANNU REV ENTOMOL, V29, P299, DOI 10.1146/annurev.en.29.010184.001503; RIECHERT SE, 1991, EVOL ECOL, V5, P327, DOI 10.1007/BF02214236; RIECHERT SE, 1988, AM ZOOL, V28, P877; RIECHERT SE, 1990, ECOLOGY, V71, P1441, DOI 10.2307/1938281; RIECHERT SE, 1974, BIOSCIENCE, V24, P352, DOI 10.2307/1296741; ROBINSON M H, 1970, Zoological Journal of the Linnean Society, V49, P345, DOI 10.1111/j.1096-3642.1970.tb00746.x; Rodriguez J. G., 1987, NUTRITIONAL ECOLOGY; RUBENSTEIN DI, 1987, BEHAV ECOL SOCIOBIOL, V20, P229, DOI 10.1007/BF00292175; RYPSTRA AL, 1991, OECOLOGIA, V86, P25, DOI 10.1007/BF00317384; RYPSTRA AL, 1985, J ARACHNOL, V13, P71; Salomon M, 2008, BEHAV ECOL, V19, P605, DOI 10.1093/beheco/arn008; Schmitz OJ, 2000, AM NAT, V155, P141, DOI 10.1086/303311; Schmitz OJ, 2004, ECOL LETT, V7, P153, DOI 10.1111/j.1461-0248.2003.00560.x; Schmitz OJ, 2003, ECOL LETT, V6, P156, DOI 10.1046/j.1461-0248.2003.00412.x; Schmitz OJ, 1998, AM NAT, V151, P327, DOI 10.1086/286122; Schmitz OJ, 2010, ECOL LETT, V13, P1199, DOI 10.1111/j.1461-0248.2010.01511.x; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; Settle WH, 1996, ECOLOGY, V77, P1975, DOI 10.2307/2265694; SHERMAN PM, 1994, ANIM BEHAV, V48, P19, DOI 10.1006/anbe.1994.1208; Shreve SM, 2007, CRYOLETTERS, V28, P33; Sigsgaard L, 2001, BIOCONTROL SCI TECHN, V11, P233, DOI 10.1080/09583150120035657; Silva KL, 2002, J CHEM ECOL, V28, P657, DOI 10.1023/A:1015214422971; Simpson SJ, 2006, P NATL ACAD SCI USA, V103, P4152, DOI 10.1073/pnas.0508915103; Simpson SJ, 2005, OBES REV, V6, P133, DOI 10.1111/j.1467-789X.2005.00178.x; SIMPSON SJ, 1995, J INSECT PHYSIOL, V41, P545, DOI 10.1016/0022-1910(95)00006-G; Simpson SJ, 2004, ANIM BEHAV, V68, P1299, DOI 10.1016/j.anbehav.2004.03.003; SIMPSON SJ, 1993, PHILOS T ROY SOC B, V342, P381, DOI 10.1098/rstb.1993.0166; Simpson SJ, 1999, P NUTR SOC, V58, P779, DOI 10.1017/S0029665199001068; Simpson SJ, 2009, AGING-US, V1, P875, DOI 10.18632/aging.100098; Simpson SJ, 2010, TRENDS ECOL EVOL, V25, P53, DOI 10.1016/j.tree.2009.06.012; Slansky F. Jr, 1985, P87; SMITH RB, 1984, SCIENCE, V226, P1330, DOI 10.1126/science.226.4680.1330; Snyder WE, 2001, ECOLOGY, V82, P1571, DOI 10.1890/0012-9658(2001)082[1571:CTCGBA]2.0.CO;2; South SH, 2011, EVOLUTION, V65, P1594, DOI 10.1111/j.1558-5646.2011.01233.x; SPILLER DA, 1984, ECOLOGY, V65, P909, DOI 10.2307/1938064; STANLEYSAMUELSON DW, 1988, ARCH INSECT BIOCHEM, V9, P1, DOI 10.1002/arch.940090102; Stephens D. W, 1986, FORAGING THEORY; Sterner R. W., 2002, ECOLOGICAL STOICHIOM; Stevenson RD, 2006, INTEGR COMP BIOL, V46, P1169, DOI 10.1093/icb/icl052; Stoltz JA, 2010, FUNCT ECOL, V24, P1270, DOI 10.1111/j.1365-2435.2010.01729.x; Strohmeyer HH, 1998, ECOL ENTOMOL, V23, P68, DOI 10.1046/j.1365-2311.1998.00101.x; TANAKA K, 1989, OECOLOGIA, V81, P459, DOI 10.1007/BF00378952; TANAKA K, 1982, RES POPUL ECOL, V24, P360, DOI 10.1007/BF02515582; Taylor RM, 2008, ENVIRON ENTOMOL, V37, P996, DOI 10.1603/0046-225X(2008)37[996:NFBWSO]2.0.CO;2; Taylor RM, 2009, ENVIRON ENTOMOL, V38, P1379, DOI 10.1603/022.038.0505; Taylor RM, 2009, J ARACHNOL, V37, P232, DOI 10.1636/Sh07-69.1; TELFER WH, 1991, ANNU REV ENTOMOL, V36, P205, DOI 10.1146/annurev.en.36.010191.001225; TILLINGHAST EK, 1984, J ARACHNOL, V12, P69; TOFT S, 1995, J APPL ECOL, V32, P552, DOI 10.2307/2404652; Toft S, 1999, OECOLOGIA, V119, P191, DOI 10.1007/s004420050776; Toft S, 1999, J ARACHNOL, V27, P301; Toft S., 1997, P 16 EUR C AR SIEDL, P301; Toft S, 2010, PHYSIOL ENTOMOL, V35, P317, DOI 10.1111/j.1365-3032.2010.00746.x; Towley M. A., 1991, J EXP ZOOL, V259, P154; Townley MA, 2006, J EXP BIOL, V209, P1463, DOI 10.1242/jeb.02147; Tso IM, 1998, ANIM BEHAV, V56, P219, DOI 10.1006/anbe.1998.0770; Ubick D., 2005, SPIDERS N AM IDENTIF; Uetz GW, 2002, J ARACHNOL, V30, P461, DOI 10.1636/0161-8202(2002)030[0461:IOFROB]2.0.CO;2; UETZ GW, 1992, J ARACHNOL, V20, P207; UETZ GW, 1992, TRENDS ECOL EVOL, V7, P155, DOI 10.1016/0169-5347(92)90209-T; Uhl G, 2004, EVOL ECOL RES, V6, P523; VANHOOK RI, 1971, ECOL MONOGR, V41, P1; VASCONCELLOSNETO J, 1984, ECOL ENTOMOL, V9, P337, DOI 10.1111/j.1365-2311.1984.tb00857.x; Venner S, 2005, P ROY SOC B-BIOL SCI, V272, P1587, DOI 10.1098/rspb.2005.3114; VOGELEI A, 1989, OECOLOGIA, V80, P513, DOI 10.1007/BF00380075; VOLLRATH F, 1990, NATURE, V345, P526, DOI 10.1038/345526a0; Vollrath F, 2007, ANNU REV ECOL EVOL S, V38, P819, DOI 10.1146/annurev.ecolsys.37.091305.110221; Waldbauer G. P., 1968, P229, DOI 10.1016/S0065-2806(08)60230-1; Walker SE, 1999, J ARACHNOL, V27, P689; WATSON PJ, 1994, ANIM BEHAV, V48, P615, DOI 10.1006/anbe.1994.1281; WHITE TCR, 1978, OECOLOGIA, V33, P71, DOI 10.1007/BF00376997; Wilder SM, 2008, ANIM BEHAV, V76, P439, DOI 10.1016/j.anbehav.2008.01.023; Wilder SM, 2008, ANIM BEHAV, V76, P447, DOI 10.1016/j.anbehav.2007.12.023; Wilder SM, 2010, ECOLOGY, V91, P3114, DOI 10.1890/09-2080.1; Wilder SM, 2010, OIKOS, V119, P350, DOI 10.1111/j.1600-0706.2009.17819.x; Wilder SM, 2010, OECOLOGIA, V162, P617, DOI 10.1007/s00442-009-1518-3; WILSON RS, 1973, Z MORPHOL TIERE, V74, P221, DOI 10.1007/BF00375785; Wise D. H, 1993, SPIDERS ECOLOGICAL W; WISE DH, 1979, OECOLOGIA, V41, P289, DOI 10.1007/BF00377433; Wise DH, 2006, ANNU REV ENTOMOL, V51, P441, DOI 10.1146/annurev.ento.51.110104.150947; WISE DH, 1975, ECOLOGY, V56, P637, DOI 10.2307/1935497; WISE DH, 1983, OECOLOGIA, V58, P1, DOI 10.1007/BF00384535; WITT PN, 1963, ARCH ENVIRON HEALTH, V7, P4, DOI 10.1080/00039896.1963.10663490; XU M, 1990, P NATL ACAD SCI USA, V87, P7120, DOI 10.1073/pnas.87.18.7120; Zoran DL, 2002, J AM VET MED ASSOC, V221, P1559, DOI 10.2460/javma.2002.221.1559 251 52 53 4 78 ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD LONDON 24-28 OVAL ROAD, LONDON NW1 7DX, ENGLAND 0065-2806 978-0-12-387668-3 ADV INSECT PHYSIOL Adv. Insect Physiol. 2011 40 87 136 10.1016/B978-0-12-387668-3.00002-7 50 Entomology Entomology BYM03 WOS:000299298700002 2019-02-21 J Brunel-Pons, O; Alem, S; Greenfield, MD Brunel-Pons, Odette; Alem, Sylvain; Greenfield, Michael D. The complex auditory scene at leks: balancing antipredator behaviour and competitive signalling in an acoustic moth ANIMAL BEHAVIOUR English Article Achroia grisella; acoustic insect; Lepidoptera; life history theory; pyralid moth; sexual selection; trade-off; ultrasound signal LESSER WAX MOTH; PREDATION RISK; SEXUAL SELECTION; MATING-BEHAVIOR; PAIR FORMATION; RECEIVER BIAS; FEMALE CHOICE; BAT AVOIDANCE; ADVERTISEMENT; EVOLUTION Although sexual activity in many animal species is reduced when predation pressure intensifies, such reduction may be attenuated in accordance with age, demography or sexual competition. For example, males in lekking aggregations might forgo evasive behaviour and continue their signalling activity when exposed to predation for various reasons: the pressure to engage in signal competition with neighbours outweighs the risk of a predator attack, the per capita risk of attack is lower on larger leks, signals from neighbours within the lek mask predator cues, or limitations on general attention prevent a lekking male from simultaneously signalling and monitoring predators. We addressed the problem of balancing antipredator behaviour and signal competition in an acoustic pyralid moth, Achroia grisella, in which males gather in leks and broadcast an ultrasonic mating call. There is evidence that A. grisella can be menaced by substrate-gleaning bats and that singing males generally become silent upon perceiving bat echolocation signals or pulsed ultrasound bearing the characteristics of these signals. In this study, the incidence and duration of these silence responses were greatly reduced in lekking males compared with solitary individuals. Moreover, a moderate reduction in silence responses persisted when we broadcast, to individual males, song from a lek followed by bat echolocation stimuli. Thus, while signal masking may play a role in attenuating antipredator behaviour in lekking males, other factors, including signal competition and dilution of predation pressure, are probable influences as well. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Brunel-Pons, Odette; Alem, Sylvain; Greenfield, Michael D.] Univ Tours, CNRS UMR 6035, Inst Rech Biol Insecte, F-37200 Tours, France Greenfield, MD (reprint author), Univ Tours, CNRS UMR 6035, Inst Rech Biol Insecte, F-37200 Tours, France. michael.greenfield@univ-tours.fr Greenfield, Michael/0000-0003-1935-3423 Agence Nationale de la Recherche de France [ANR-07-BLAN-0113-01]; Centre National de la Recherche Scientifique (CNRS); Universite Francois Rabelais de Tours; Consejo Nacional de Ciencia y Tecnologia de Mexico (CONACYT) [beca 197659] We thank Guy Bourdais, Bruno Brizard and Fabrice Vannier (I.R.B.I., Tours, France) for technical assistance in the laboratory, Jean-Pierre Chartier for helping us to collect our population of A. grisella, and the Agence Nationale de la Recherche de France (contrat ANR-07-BLAN-0113-01), the Centre National de la Recherche Scientifique (CNRS), the Universite Francois Rabelais de Tours and the Consejo Nacional de Ciencia y Tecnologia de Mexico (CONACYT; beca 197659 to OB) for their financial support. We also thank Marlene Goubault, Denis Limousin and two anonymous referees for valuable criticisms of the manuscript. ALEM S, 2010, BEHAV Ecology, V21, pE625; Arlettaz R, 2001, NATURE, V414, P742, DOI 10.1038/414742a; Bee MA, 1996, BEHAVIOUR, V133, P283, DOI 10.1163/156853996X00152; Bee MA, 2008, J COMP PSYCHOL, V122, P235, DOI 10.1037/0735-7036.122.3.235; Bradbury JW, 1998, PRINCIPLES ANIMAL CO; Brandt LSE, 2005, ETHOLOGY, V111, P609, DOI 10.1111/j.1439-0310.2005.01085.x; Brandt LSE, 2004, J EVOLUTION BIOL, V17, P821, DOI 10.1111/j.1420-9101.2004.00716.x; Brinklov S, 2009, J EXP BIOL, V212, P11, DOI 10.1242/jeb.023226; BURK T, 1982, FLA ENTOMOL, V65, P90, DOI 10.2307/3494148; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; DANCHIN E, 2005, ECOLOGIE COMPORTEMEM, P235; Dill LM, 1999, BEHAV ECOL, V10, P452, DOI 10.1093/beheco/10.4.452; Dukas R, 2004, BRAIN BEHAV EVOLUT, V63, P197, DOI 10.1159/000076781; Dukas R., 2009, COGNITIVE ECOLOGY; Farris HE, 1998, PHYSIOL ENTOMOL, V23, P322, DOI 10.1046/j.1365-3032.1998.234093.x; Faure PA, 2000, J COMP PHYSIOL A, V186, P129, DOI 10.1007/s003590050013; Fuller R, 1996, BEHAV ECOL, V7, P69, DOI 10.1093/beheco/7.1.69; Gerhardt HC, 2000, BEHAV ECOL SOCIOBIOL, V48, P243, DOI 10.1007/s002650000226; Greenfield M.D., 1990, P71; Greenfield MD, 2005, ADV STUD BEHAV, V35, P1, DOI 10.1016/S0065-3454(05)35001-7; Greenfield MD, 2003, ETHOLOGY, V109, P427, DOI 10.1046/j.1439-0310.2003.00886.x; GREENFIELD MD, 1983, BEHAVIOUR, V84, P287, DOI 10.1163/156853983X00534; Greenfield MD, 2000, ETHOL ECOL EVOL, V12, P259; Greenfield MD, 2009, ETHOLOGY, V115, P1137, DOI 10.1111/j.1439-0310.2009.01700.x; Greig EI, 2004, BEHAVIOUR, V141, P799, DOI 10.1163/1568539042265626; GWYNNE DT, 1989, TRENDS ECOL EVOL, V4, P54, DOI 10.1016/0169-5347(89)90144-4; HAMILTON WD, 1971, J THEOR BIOL, V31, P295, DOI 10.1016/0022-5193(71)90189-5; HEDRICK AV, 1993, ANIM BEHAV, V46, P193, DOI 10.1006/anbe.1993.1176; Hoglund J, 1995, LEKS; HOY RR, 1989, ANNU REV NEUROSCI, V12, P355, DOI 10.1146/annurev.ne.12.030189.002035; Jang YW, 1996, ANIM BEHAV, V51, P1095, DOI 10.1006/anbe.1996.0111; Jia FY, 2001, J INSECT BEHAV, V14, P19, DOI 10.1023/A:1007893411662; Jones G, 2002, BEHAV ECOL, V13, P375, DOI 10.1093/beheco/13.3.375; KARBAN R, 1982, ECOLOGY, V63, P321, DOI 10.2307/1938949; Koga T, 1998, P ROY SOC B-BIOL SCI, V265, P1385, DOI 10.1098/rspb.1998.0446; Kunike G., 1930, Zeitschrift fuer Angewandte Entomologie, V16, P304; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lafaille M, 2010, BEHAV ECOL SOCIOBIOL, V64, P1485, DOI 10.1007/s00265-010-0963-7; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Miller LA, 2001, BIOSCIENCE, V51, P570, DOI 10.1641/0006-3568(2001)051[0570:HSIDAA]2.0.CO;2; Neuweiler G., 2000, BIOL BATS; Rodriguez RL, 2004, PHYSIOL ENTOMOL, V29, P159, DOI 10.1111/j.1365-3032.2004.00380.x; SIH A, 1990, AM NAT, V135, P284, DOI 10.1086/285044; SPANGLER HG, 1984, PHYSIOL ENTOMOL, V9, P87, DOI 10.1111/j.1365-3032.1984.tb00684.x; TURCHIN P, 1989, ECOLOGY, V70, P1008, DOI 10.2307/1941369; Walker T.J., 1983, P45; WATERS DA, 1995, J EXP BIOL, V198, P475; West-Eberhard M.J., 1984, P283; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412 50 14 14 1 31 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. JAN 2011 81 1 231 239 10.1016/j.anbehav.2010.10.010 9 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 695ZY WOS:000285412900030 2019-02-21 S Lankau, RA Futuyma, DJ; Shaffer, HB; Simberloff, D Lankau, Richard A. Rapid Evolutionary Change and the Coexistence of Species ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 42 Annual Review of Ecology Evolution and Systematics English Review; Book Chapter natural selection; genetic variation; stabilizing force; equalizing force INTERSPECIFIC COMPETITIVE ABILITY; LEGUMINOSARUM BIOVAR TRIFOLII; LIFE-HISTORY EVOLUTION; PLANT-SOIL FEEDBACKS; CHARACTER DISPLACEMENT; NEIGHBOR RELATIONSHIPS; ARABIDOPSIS-THALIANA; PERMANENT PASTURE; LOCAL ADAPTATION; RANGE EXPANSION Understanding the forces that allow multiple species to coexist remains a central focus of community ecology. Building evidence that evolutionary changes frequently occur on timescales relevant for ecological dynamics suggests that a complete understanding of the maintenance of diversity is likely to require incorporation of evolutionary dynamics. Coexistence mechanisms can be classified into two groups on the basis of whether they reduce inherent differences in species performance (equalizing effects) or buffer against extinction by providing advantages to rare species (stabilizing effects). Theoretical and empirical evidence suggests that rapid evolution can increase equalizing and/or stabilizing effects in several ways. Directional evolutionary changes can result in new ecological conditions that are more equal or stable than the initial state. Additionally, coevolution between competitors or consumers can lead to cyclic dynamics that provide novel evolutionary equalizing or stabilizing effects. Univ Georgia, Dept Plant Biol, Athens, GA 30606 USA Lankau, RA (reprint author), Univ Georgia, Dept Plant Biol, Athens, GA 30606 USA. ralankau@uga.edu Lankau, Richard/B-9760-2008 Lankau, Richard/0000-0001-9995-328X AARSSEN LW, 1989, OIKOS, V56, P386, DOI 10.2307/3565625; AARSSEN LW, 1985, J ECOL, V73, P605, DOI 10.2307/2260497; ABRAMS P, 1987, THEOR POPUL BIOL, V32, P262, DOI 10.1016/0040-5809(87)90050-5; Adler PB, 2007, ECOL LETT, V10, P95, DOI 10.1111/j.1461-0248.2006.00996.x; Amos W, 2001, HEREDITY, V87, P257, DOI 10.1046/j.1365-2540.2001.00940.x; ARTHUR W, 1982, ADV ECOL RES, V12, P127, DOI 10.1016/S0065-2504(08)60078-1; AYALA FJ, 1969, GENETICS, V61, P737; AYALA FJ, 1966, AM NAT, V100, P81, DOI 10.1086/282402; Bailey JK, 2009, NEW PHYTOL, V184, P746, DOI 10.1111/j.1469-8137.2009.03081.x; Baquero F, 1997, TRENDS ECOL EVOL, V12, P482, DOI 10.1016/S0169-5347(97)01223-8; Bell G, 2001, SCIENCE, V293, P2413, DOI 10.1126/science.293.5539.2413; Bever JD, 2003, NEW PHYTOL, V157, P465, DOI 10.1046/j.1469-8137.2003.00714.x; Booth RE, 2003, J ECOL, V91, P721, DOI 10.1046/j.1365-2745.2003.00804.x; Burdon JJ, 1995, J ECOL, V83, P979, DOI 10.2307/2261179; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; Cassel-Lundhagen A, 2011, J EVOLUTION BIOL, V24, P381, DOI 10.1111/j.1420-9101.2010.02174.x; CHANWAY CP, 1989, J ECOL, V77, P1150, DOI 10.2307/2260829; CHEPLICK GP, 1993, ECOLOGY, V74, P2161, DOI 10.2307/1940860; Chesson P, 1997, AM NAT, V150, P519, DOI 10.1086/286080; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; CHESSON PL, 1990, PHILOS T ROY SOC B, V330, P165, DOI 10.1098/rstb.1990.0190; Clark JS, 2007, ECOL LETT, V10, P647, DOI 10.1111/j.1461-0248.2007.01041.x; Clark JS, 2004, ECOL MONOGR, V74, P415, DOI 10.1890/02-4093; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Dayan T, 2005, ECOL LETT, V8, P875, DOI 10.1111/j.1461-0248.2005.00791.x; DENHOLM I, 1992, ANNU REV ENTOMOL, V37, P91, DOI 10.1146/annurev.en.37.010192.000515; Dlugosch KM, 2008, ECOL LETT, V11, P701, DOI 10.1111/j.1461-0248.2008.01181.x; Donohue K, 2005, EVOLUTION, V59, P758; Donohue K, 2005, EVOLUTION, V59, P740; Donohue K, 2003, AM NAT, V162, P77, DOI 10.1086/375299; Duckworth RA, 2008, AM NAT, V172, pS4, DOI 10.1086/588289; Duckworth RA, 2007, P NATL ACAD SCI USA, V104, P15017, DOI 10.1073/pnas.0706174104; Duckworth RA, 2006, BEHAV ECOL, V17, P1011, DOI 10.1093/beheco/arl035; Ericson L, 1999, J ECOL, V87, P649, DOI 10.1046/j.1365-2745.1999.00384.x; Fox JW, 2008, AM NAT, V172, P667, DOI 10.1086/591689; Freckleton RP, 2006, P R SOC B, V273, P2909, DOI 10.1098/rspb.2006.3660; Fridley JD, 2007, J ECOL, V95, P908, DOI 10.1111/j.1365-2745.2007.01256.x; Fussmann GF, 2007, FUNCT ECOL, V21, P465, DOI 10.1111/j.1365-2435.2007.01275.x; Geburek T, 2008, CONSERV BIOL, V22, P267, DOI 10.1111/j.1523-1739.2008.00900.x; Grant PR, 2006, SCIENCE, V313, P224, DOI 10.1126/science.1128374; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Haloin JR, 2008, ANN NY ACAD SCI, V1133, P87, DOI 10.1196/annals.1438.003; He WM, 2010, BIOL INVASIONS, V12, P3591, DOI 10.1007/s10530-010-9753-4; Hendry AP, 2009, P R SOC B, V276, P753, DOI 10.1098/rspb.2008.1321; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Hixon MA, 2002, ECOLOGY, V83, P1490, DOI 10.1890/0012-9658(2002)083[1490:PRHCAC]2.0.CO;2; Hubbell SP, 2006, ECOLOGY, V87, P1387, DOI 10.1890/0012-9658(2006)87[1387:NTATEO]2.0.CO;2; Hubbell Stephen P., 2001, V32, pi; Hughes AR, 2008, ECOL LETT, V11, P609, DOI 10.1111/j.1461-0248.2008.01179.x; HUTCHINSON GE, 1959, AM NAT, V93, P145, DOI 10.1086/282070; Johnson MTJ, 2007, TRENDS ECOL EVOL, V22, P250, DOI 10.1016/j.tree.2007.01.014; Joshi J, 2005, ECOL LETT, V8, P704, DOI 10.1111/j.1461-0248.2005.00769.x; Kardol P, 2007, ECOL MONOGR, V77, P147, DOI 10.1890/06-0502; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Keddy P, 2000, J ECOL, V88, P413, DOI 10.1046/j.1365-2745.2000.00456.x; KEDDY PA, 1989, OIKOS, V54, P234, DOI 10.2307/3565272; Kerr B, 2002, NATURE, V418, P171, DOI 10.1038/nature00823; Kinnison MT, 2007, FUNCT ECOL, V21, P444, DOI 10.1111/j.1365-2435.2007.01278.x; Kliebenstein DJ, 2004, PLANT CELL ENVIRON, V27, P675, DOI 10.1111/j.1365-3040.2004.01180.x; Klironomos JN, 2002, NATURE, V417, P67, DOI 10.1038/417067a; Koricheva J, 2002, ECOLOGY, V83, P176, DOI 10.1890/0012-9658(2002)083[0176:MAOSOV]2.0.CO;2; Kraaijeveld AR, 2001, P ROY SOC B-BIOL SCI, V268, P259, DOI 10.1098/rspb.2000.1354; Kulmatiski A, 2008, ECOL LETT, V11, P980, DOI 10.1111/j.1461-0248.2008.01209.x; Laird RA, 2006, AM NAT, V168, P182, DOI 10.1086/506259; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lankau R, 2008, ECOLOGY, V89, P1181, DOI 10.1890/07-1541.1; Lankau RA, 2008, AM NAT, V171, P150, DOI 10.1086/524959; Lankau RA, 2007, SCIENCE, V317, P1561, DOI 10.1126/science.1147455; Lankau RA, 2011, OECOLOGIA, V165, P453, DOI 10.1007/s00442-010-1736-8; Lankau RA, 2011, J ECOL, V99, P176, DOI 10.1111/j.1365-2745.2010.01736.x; Lankau RA, 2009, P NATL ACAD SCI USA, V106, P15362, DOI 10.1073/pnas.0905446106; Lankau RA, 2009, AM NAT, V174, pE40, DOI 10.1086/600083; LEDIG FT, 1992, OIKOS, V63, P87, DOI 10.2307/3545518; LEON JA, 1974, AM NAT, V108, P739, DOI 10.1086/282952; LEVIN BR, 1971, EVOLUTION, V25, P249, DOI 10.1111/j.1558-5646.1971.tb01878.x; Levine JM, 2009, NATURE, V461, P254, DOI 10.1038/nature08251; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; Meyer JR, 2006, P NATL ACAD SCI USA, V103, P10690, DOI 10.1073/pnas.0600434103; Muller C, 2005, EVOL ECOL, V19, P533, DOI 10.1007/s10682-005-1022-0; Olendorf R, 2006, NATURE, V441, P633, DOI 10.1038/nature04646; Ouborg NJ, 2006, J ECOL, V94, P1233, DOI 10.1111/j.1365-2745.2006.01167.x; PEASE CM, 1984, EVOLUTION, V38, P1099, DOI 10.1111/j.1558-5646.1984.tb00379.x; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Pfennig DW, 2000, EVOLUTION, V54, P1738; PIMENTEL DAVID, 1965, AMER NATUR, V99, P97, DOI 10.1086/282355; Pimm SL, 2000, NATURE, V403, P843, DOI 10.1038/35002708; Powles SB, 2010, ANNU REV PLANT BIOL, V61, P317, DOI 10.1146/annurev-arplant-042809-112119; Raybould AF, 2001, HEREDITY, V87, P383, DOI 10.1046/j.1365-2540.2001.00954.x; Rice AM, 2008, J EVOLUTION BIOL, V21, P696, DOI 10.1111/j.1420-9101.2008.01518.x; Rodenhouse NL, 1997, ECOLOGY, V78, P2025, DOI 10.1890/0012-9658(1997)078[2025:SDROPS]2.0.CO;2; Rodgers VL, 2008, BIOSCIENCE, V58, P426, DOI 10.1641/B580510; ROOT RB, 1973, ECOL MONOGR, V43, P95, DOI 10.2307/1942161; Savolainen O, 2007, ANNU REV ECOL EVOL S, V38, P595, DOI 10.1146/annurev.ecolsys.38.091206.095646; Seitz RD, 2001, ECOLOGY, V82, P2435, DOI 10.2307/2679927; SHAW RG, 1995, GENETICS, V139, P397; SHAW RG, 1993, EVOLUTION, V47, P801, DOI 10.1111/j.1558-5646.1993.tb01235.x; Siemann E, 2001, ECOL LETT, V4, P514, DOI 10.1046/j.1461-0248.2001.00274.x; Simberloff D, 2000, ECOLOGY, V81, P2086, DOI 10.2307/177098; Stanton ML, 2004, AM NAT, V164, P736, DOI 10.1086/425331; Strauss SY, 2008, ECOL LETT, V11, P199, DOI 10.1111/j.1461-0248.2007.01128.x; Strauss SY, 2006, ECOL LETT, V9, P354, DOI 10.1111/j.1461-0248.2005.00874.x; TABASHNIK BE, 1994, ANNU REV ENTOMOL, V39, P47, DOI 10.1146/annurev.en.39.010194.000403; TAYLOR DR, 1990, AM NAT, V136, P305, DOI 10.1086/285100; THOMPSON JD, 1990, CAN J BOT, V68, P296, DOI 10.1139/b90-040; Tilman D., 1982, RESOURCE COMPETITION; TURKINGTON R, 1989, J ECOL, V77, P717, DOI 10.2307/2260981; TURKINGTON R, 1979, J ECOL, V67, P245, DOI 10.2307/2259348; Urban MC, 2006, ECOLOGY, V87, P1616, DOI 10.1890/0012-9658(2006)87[1616:EMTAEP]2.0.CO;2; van den Bosch F, 2008, ANNU REV PHYTOPATHOL, V46, P123, DOI 10.1146/annurev.phyto.011108.135838; van Kleunen M, 2003, ECOLOGY, V84, P2816, DOI 10.1890/02-0494; Vellend M, 2008, P ROY SOC B-BIOL SCI, V275, P1857, DOI 10.1098/rspb.2008.0402; Vijendravarma RK, 2009, EVOLUTION, V63, P104, DOI 10.1111/j.1558-5646.2008.00516.x; Volterra V, 1926, NATURE, V118, P558, DOI 10.1038/118558a0; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Whitlock R, 2007, J ECOL, V95, P895, DOI 10.1111/j.1365-2745.2007.01275.x; Whitney KD, 2008, DIVERS DISTRIB, V14, P569, DOI 10.1111/j.1472-4642.2008.00473.x; Willis AJ, 2000, ECOL LETT, V3, P275, DOI 10.1046/j.1461-0248.2000.00149.x; Wilson KA, 2007, PLOS BIOL, V5, P1850, DOI 10.1371/journal.pbio.0050223; Yoshida T, 2004, P ROY SOC B-BIOL SCI, V271, P1947, DOI 10.1098/rspb.2004.2818; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767; Zangerl AR, 2005, P NATL ACAD SCI USA, V102, P15529, DOI 10.1073/pnas.0507805102 122 39 42 9 122 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA 1543-592X 978-0-8243-1442-2 ANNU REV ECOL EVOL S Annu. Rev. Ecol. Evol. Syst. 2011 42 335 354 10.1146/annurev-ecolsys-102710-145100 20 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology BYN42 WOS:000299438300016 2019-02-21 S Allen, CE; Zwaan, BJ; Brakefield, PM Berenbaum, MR; Carde, RT; Robinson, GE Allen, Cerisse E.; Zwaan, Bas J.; Brakefield, Paul M. Evolution of Sexual Dimorphism in the Lepidoptera ANNUAL REVIEW OF ENTOMOLOGY, VOL 56 Annual Review of Entomology English Review; Book Chapter sexual selection; natural selection; fecundity selection; life-history evolution; secondary sexual traits BUTTERFLY BICYCLUS-ANYNANA; WESTERN WHITE BUTTERFLIES; WING PATTERN EVOLUTION; LIFE-HISTORY TRAITS; FEMALE MATE CHOICE; SIZE DIMORPHISM; PAPILIO-POLYXENES; NEOTROPICAL BUTTERFLIES; HELICONIUS BUTTERFLIES; PHENOTYPIC PLASTICITY Among the animals, the Lepidoptera (moths and butterflies) are second only to beetles in number of described species and are known for their striking intra- and interspecific diversity. Within species, sexual dimorphism is a source of variation in life history (e.g., sexual size dimorphism and protandry), morphology (e.g., wing shape and color pattern), and behavior (e.g., chemical and visual signaling). Sexual selection and mating systems have been considered the primary forces driving the evolution of sexual dimorphism in the Lepidoptera, and alternative hypotheses have been neglected. Here, we examine opportunities for sexual selection, natural selection, and the interplay between the two forces in the evolution of sexual differences in the moths and butterflies. Our primary goal is to identify mechanisms that either facilitate or constrain the evolution of sexual dimorphism, rather than to resolve any perceived controversy between hypotheses that may not be mutually exclusive. [Allen, Cerisse E.] Univ Montana, Div Biol Sci, Missoula, MT 59812 USA; [Allen, Cerisse E.; Zwaan, Bas J.; Brakefield, Paul M.] Leiden Univ, Inst Biol, NL-2300 RA Leiden, Netherlands Allen, CE (reprint author), Univ Montana, Div Biol Sci, Missoula, MT 59812 USA. cerisse.allen@mso.umt.edu; b.j.zwaan@biology.leidenuniv.nl; p.m.brakefield@biology.leidenuniv.nl Zwaan, Bas/D-8721-2015 Zwaan, Bas/0000-0002-8221-4998 ALLEN JA, 1988, PHILOS T ROY SOC B, V319, P485, DOI 10.1098/rstb.1988.0061; Almbro M, 2009, BEHAV ECOL SOCIOBIOL, V63, P413, DOI 10.1007/s00265-008-0675-4; Altermatt F, 2009, ENTOMOL EXP APPL, V130, P259, DOI 10.1111/j.1570-7458.2008.00817.x; Andersson M., 1984, SEXUAL SELECTION; Arnqvist G, 1998, NATURE, V393, P784, DOI 10.1038/31689; Arnqvist G, 2005, SEXUAL CONFLICT; Beccaloni G, 2003, GLOBAL LEPIDOPTERA N; Beldade P, 2008, HEREDITY, V100, P150, DOI 10.1038/sj.hdy.6800934; Beltran M, 2007, BIOL J LINN SOC, V92, P221, DOI 10.1111/j.1095-8312.2007.00830.x; Bengtsson BO, 2007, BIOL J LINN SOC, V90, P117, DOI 10.1111/j.1095-8312.2007.00715.x; Berger D, 2008, FUNCT ECOL, V22, P523, DOI 10.1111/j.1365-2435.2008.01392.x; Berger D, 2006, EVOL ECOL, V20, P575, DOI 10.1007/s10682-006-9118-8; Berglund A, 1996, BIOL J LINN SOC, V58, P385, DOI 10.1111/j.1095-8312.1996.tb01442.x; Bezzerides AL, 2008, J INSECT BEHAV, V21, P213, DOI 10.1007/s10905-008-9121-8; Bissoondath CJ, 1996, BEHAV ECOL SOCIOBIOL, V39, P285, DOI 10.1007/s002650050291; Blanckenhorn WU, 2007, AM NAT, V169, P245, DOI 10.1086/510597; Boggs CL, 2005, OECOLOGIA, V144, P353, DOI 10.1007/s00442-005-0076-6; Bolnick DI, 2003, EVOLUTION, V57, P2433, DOI 10.1554/02-595; Bonduriansky R, 2001, BIOL REV, V76, P305, DOI 10.1017/S1464793101005693; BOPPRE M, 1984, S ROYAL ENTOMOLOGICA, V11, P259; Cardoso MZ, 2009, ENTOMOL EXP APPL, V131, P109, DOI 10.1111/j.1570-7458.2009.00837.x; CASEY TM, 1983, PHYSIOL ZOOL, V56, P160, DOI 10.1086/physzool.56.2.30156049; CHAI P, 1990, AM NAT, V135, P748, DOI 10.1086/285072; Chapman T, 2006, CURR BIOL, V16, pR744, DOI 10.1016/j.cub.2006.08.020; Charlat S, 2007, CURR BIOL, V17, P273, DOI 10.1016/j.cub.2006.11.068; Chenoweth SF, 2008, AM NAT, V171, P22, DOI 10.1086/523946; Clark R, 2009, MOL ECOL, V18, P3872, DOI 10.1111/j.1365-294X.2009.04259.x; CLARKE CA, 1962, EVOLUTION, V16, P214, DOI 10.2307/2406198; CODELLA SG, 1989, EVOLUTION, V43, P410, DOI 10.1111/j.1558-5646.1989.tb04236.x; Condamin M., 1973, MONOGRAPHIE GENRE BI; Cook PA, 1996, P ROY SOC B-BIOL SCI, V263, P1047, DOI 10.1098/rspb.1996.0154; Costanzo K, 2007, P ROY SOC B-BIOL SCI, V274, P845, DOI 10.1098/rspb.2006.3729; Croft DP, 2006, AM NAT, V167, P867, DOI 10.1086/504853; Crowley PH, 2000, ECOLOGY, V81, P2592, DOI 10.1890/0012-9658(2000)081[2592:SDWFDD]2.0.CO;2; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; Ellers J, 2003, EVOLUTION, V57, P1100; Esperk T, 2007, ECOL ENTOMOL, V32, P243, DOI 10.1111/j.1365-2311.2007.00872.x; Esperk T, 2006, EUR J ENTOMOL, V103, P575, DOI 10.14411/eje.2006.078; Estrada C, 2010, P ROY SOC B-BIOL SCI, V277, P407, DOI 10.1098/rspb.2009.1476; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; Ferkau C, 2006, ETHOLOGY, V112, P1117, DOI 10.1111/j.1439-0310.2006.01266.x; Fischer K, 2001, ENTOMOL EXP APPL, V100, P325, DOI 10.1023/A:1019297222922; Fischer K, 2007, HEREDITY, V98, P157, DOI 10.1038/sj.hdy.6800919; Fischer K, 2001, J EVOLUTION BIOL, V14, P210, DOI 10.1046/j.1420-9101.2001.00280.x; Fischer K, 2000, OIKOS, V90, P372, DOI 10.1034/j.1600-0706.2000.900218.x; Friberg M, 2008, BEHAV ECOL SOCIOBIOL, V62, P873, DOI 10.1007/s00265-007-0511-2; Gage MJG, 2002, P ROY SOC B-BIOL SCI, V269, P2309, DOI 10.1098/rspb.2002.2154; Gavrilets S, 2001, P ROY SOC B-BIOL SCI, V268, P531, DOI 10.1098/rspb.2000.1382; Gotthard K, 2008, BIOSCIENCE, V58, P222, DOI 10.1641/B580308; Groot AT, 2006, P NATL ACAD SCI USA, V103, P5858, DOI 10.1073/pnas.0508609103; HEDRICK AV, 1989, TRENDS ECOL EVOL, V4, P136, DOI 10.1016/0169-5347(89)90212-7; HERRELL J, 1995, HEREDITY, V75, P106, DOI 10.1038/hdy.1995.110; Ide JY, 2006, ECOL RES, V21, P453, DOI 10.1007/s11284-005-0140-z; Jia FY, 1997, P ROY SOC B-BIOL SCI, V264, P1057, DOI 10.1098/rspb.1997.0146; Joron M, 2005, J EVOLUTION BIOL, V18, P547, DOI 10.1111/j.1420-9101.2005.00880.x; Joron M., 2003, ENCY INSECTS, P714; Karlsson B, 1998, ECOLOGY, V79, P2931, DOI 10.2307/176527; Kemp DJ, 2008, EVOLUTION, V62, P2346, DOI 10.1111/j.1558-5646.2008.00461.x; Kemp DJ, 2007, P R SOC B, V274, P1043, DOI 10.1098/rspb.2006.0043; Kemp DJ, 2007, EVOLUTION, V61, P168, DOI 10.1111/j.1558-5646.2007.00014.x; KEMP DJ, 2007, BEHAV ECOL, V19, P1; KINGSOLVER JG, 1995, EVOLUTION, V49, P942, DOI 10.1111/j.1558-5646.1995.tb02329.x; Kingsolver JG, 1999, EVOLUTION, V53, P1479, DOI [10.1111/j.1558-5646.1999.tb05412.x, 10.2307/2640894]; KINGSOLVER JG, 1995, EVOLUTION, V49, P932, DOI 10.1111/j.1558-5646.1995.tb02328.x; Kingsolver JG, 2003, INTEGR COMP BIOL, V43, P470, DOI 10.1093/icb/43.3.470; KOTTLER MJ, 1980, P AM PHILOS SOC, V124, P203; Kronforst MR, 2006, P NATL ACAD SCI USA, V103, P6575, DOI 10.1073/pnas.0509685103; Kunte K, 2008, P ROY SOC B-BIOL SCI, V275, P1617, DOI 10.1098/rspb.2008.0171; Kunte K, 2009, ANIM BEHAV, V78, P1029, DOI 10.1016/j.anbehav.2009.08.013; Kunte K, 2009, EVOLUTION, V63, P2707, DOI 10.1111/j.1558-5646.2009.00752.x; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; Larsdotter-Mellstrom H, 2009, BEHAV ECOL, V20, P1147, DOI 10.1093/beheco/arp109; Lederhouse RC, 1996, EVOLUTION, V50, P717, DOI 10.1111/j.1558-5646.1996.tb03881.x; Leimar O, 2005, AM NAT, V165, P669, DOI 10.1086/429566; Lienard MA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-270; LOFSTEDT C, 1993, PHILOS T ROY SOC B, V340, P167, DOI 10.1098/rstb.1993.0055; Lyytinen A, 2004, BEHAV ECOL, V15, P982, DOI 10.1093/beheco/arh102; Mallet J, 1999, ANNU REV ECOL SYST, V30, P201, DOI 10.1146/annurev.ecolsys.30.1.201; MARDEN JH, 1991, AM NAT, V138, P15, DOI 10.1086/285202; McNamara KB, 2009, ANIM BEHAV, V77, P931, DOI 10.1016/j.anbehav.2009.01.007; Mendoza-Cuenca L, 2005, J TROP ECOL, V21, P407, DOI 10.1017/S0266467405002385; Merckx T, 2006, FUNCT ECOL, V20, P436, DOI 10.1111/j.1365-2435.2006.01124.x; MILLER JR, 2007, CONT RIV GEOM APPR, pR13; Molleman F, 2005, BIOL J LINN SOC, V86, P345, DOI 10.1111/j.1095-8312.2005.00539.x; Morton ES, 2009, AM MIDL NAT, V162, P7, DOI 10.1674/0003-0031-162.1.7; Mutanen M, 2006, BIOL J LINN SOC, V87, P297, DOI 10.1111/j.1095-8312.2006.00578.x; Nieberding CM, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002751; Nielsen MG, 2000, FUNCT ECOL, V14, P718, DOI 10.1046/j.1365-2435.2000.00472.x; NIITEPOLD K, 2009, FLIGHT METABOLIC RAT; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; Ohsaki N, 2005, J ANIM ECOL, V74, P728, DOI 10.1111/j.1365-2656.2005.00972.x; OHSAKI N, 1995, NATURE, V378, P173, DOI 10.1038/378173a0; Oliver JC, 2009, P ROY SOC B-BIOL SCI, V276, P2369, DOI 10.1098/rspb.2009.0182; Papke RS, 2007, ANIM BEHAV, V73, P47, DOI 10.1016/j.anbehav.2006.07.004; Penz CM, 2002, AM MUS NOVIT, P1, DOI 10.1206/0003-0082(2002)374<0001:PAOMBN>2.0.CO;2; Percy-Cunningham J.E., 1987, P27; Pijpe J, 2008, AM NAT, V171, P81, DOI 10.1086/524200; Pijpe J, 2007, EVOL ECOL, V21, P589, DOI 10.1007/s10682-006-9137-5; PIVNICK KA, 1992, PHYSIOL ENTOMOL, V17, P260, DOI 10.1111/j.1365-3032.1992.tb01020.x; PLISKE TE, 1975, ANN ENTOMOL SOC AM, V68, P143, DOI 10.1093/aesa/68.1.143; Pomiankowski A, 2004, GENETICS, V166, P1761, DOI 10.1534/genetics.166.4.1761; Quental TB, 2007, AM NAT, V169, P830, DOI 10.1086/516654; Ranz JM, 2006, TRENDS ECOL EVOL, V21, P29, DOI 10.1016/j.tree.2005.09.002; Reeve JP, 1999, HEREDITY, V83, P697, DOI 10.1046/j.1365-2540.1999.00616.x; Rhainds M, 2009, ANNU REV ENTOMOL, V54, P209, DOI 10.1146/annurev.ento.54.110807.090448; Rodriguez-Loeches L, 2009, NATURWISSENSCHAFTEN, V96, P531, DOI 10.1007/s00114-008-0497-2; Roelofs WL, 2003, P NATL ACAD SCI USA, V100, P14599, DOI 10.1073/pnas.1233767100; ROELOFS WL, 1995, P NATL ACAD SCI USA, V92, P44, DOI 10.1073/pnas.92.1.44; Rutowski R. L., 1997, MATING SYSTEMS INSEC, P257; Rutowski RL, 2000, J ZOOL, V252, P187, DOI 10.1017/S0952836900009924; Sanderford Mark V., 2009, P193; SHINE R, 1989, Q REV BIOL, V64, P419, DOI 10.1086/416458; Shuster S. M, 2003, MG BEH ECOL; Simmons L.W, 2001, MG BEH ECOL; Skals N, 2005, J EXP BIOL, V208, P595, DOI 10.1242/jeb.01400; SLATKIN M, 1984, EVOLUTION, V38, P622, DOI 10.1111/j.1558-5646.1984.tb00327.x; Solensky MJ, 2009, ANIM BEHAV, V77, P465, DOI 10.1016/j.anbehav.2008.10.026; SPERLING FAH, 1994, CAN ENTOMOL, V126, P807, DOI 10.4039/Ent126807-3; SRYGLEY RB, 1990, AM NAT, V135, P766, DOI 10.1086/285073; SRYGLEY RB, 1990, OECOLOGIA, V84, P491, DOI 10.1007/BF00328165; Srygley RB, 2001, BEHAV ECOL, V12, P607, DOI 10.1093/beheco/12.5.607; Stearns S, 1992, EVOLUTION LIFE HIST; Stillwell RC, 2010, ANNU REV ENTOMOL, V55, P227, DOI 10.1146/annurev-ento-112408-085500; Stoehr AM, 2010, EVOL ECOL, V24, P287, DOI 10.1007/s10682-009-9306-4; Strobbe F, 2009, J EVOLUTION BIOL, V22, P1172, DOI 10.1111/j.1420-9101.2009.01733.x; Svensson GP, 2007, J INSECT SCI, V7, DOI 10.1673/031.007.5901; Svensson GP, 2004, OIKOS, V104, P91, DOI 10.1111/j.0030-1299.2004.12517.x; Svensson MGE, 1998, J INSECT BEHAV, V11, P343, DOI 10.1023/A:1020998513316; Symonds MRE, 2008, TRENDS ECOL EVOL, V23, P220, DOI 10.1016/j.tree.2007.11.009; Tammaru T, 2010, EVOL ECOL, V24, P161, DOI 10.1007/s10682-009-9297-1; Temeles EJ, 2000, SCIENCE, V289, P441, DOI 10.1126/science.289.5478.441; Thomas ML, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-162; Torres-Vila LM, 2005, BEHAV ECOL, V16, P114, DOI 10.1093/beheco/arh138; TRAUT W, 2008, SEX DEV, V1, P332; Turlure C, 2009, BEHAV ECOL SOCIOBIOL, V63, P1581, DOI 10.1007/s00265-009-0753-2; Van Dyck H, 2002, J EVOLUTION BIOL, V15, P216, DOI 10.1046/j.1420-9101.2002.00384.x; Van Dyck H, 1998, ECOL ENTOMOL, V23, P465, DOI 10.1046/j.1365-2311.1998.00151.x; VANEWRIGHT RI, 1975, J ZOOL, V177, P329; WALDBAUER GP, 1975, EVOLUTION, V29, P650, DOI 10.1111/j.1558-5646.1975.tb00859.x; Wedell N, 2005, J EXP BIOL, V208, P3433, DOI 10.1242/jeb.01774; Weller SJ, 1999, BIOL J LINN SOC, V68, P557, DOI 10.1006/bijl.1999.0363; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; Wiklund C, 2001, P ROY SOC B-BIOL SCI, V268, P1661, DOI 10.1098/rspb.2001.1719; Wiklund Christer, 2003, P67; Wyatt T.D., 2003, PHEROMONES ANIMAL BE; Zijlstra WG, 2002, EVOL ECOL RES, V4, P1229; Zwaan BJ, 2008, J GENET, V87, P395, DOI 10.1007/s12041-008-0062-y 148 56 58 6 93 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA 0066-4170 978-0-8243-0156-9 ANNU REV ENTOMOL Annu. Rev. Entomol. 2011 56 445 464 10.1146/annurev-ento-120709-144828 20 Entomology Entomology BTF65 WOS:000286841900023 20822452 2019-02-21 J Wang, SX; Spor, A; Nidelet, T; Montalent, P; Dillmann, C; de Vienne, D; Sicard, D Wang, Shaoxiao; Spor, Ayme; Nidelet, Thibault; Montalent, Pierre; Dillmann, Christine; de Vienne, Dominique; Sicard, Delphine Switch between Life History Strategies Due to Changes in Glycolytic Enzyme Gene Dosage in Saccharomyces cerevisiae APPLIED AND ENVIRONMENTAL MICROBIOLOGY English Article METABOLIC-CONTROL ANALYSIS; DROSOPHILA-MELANOGASTER; ARABIDOPSIS-THALIANA; TRADE-OFFS; ENVIRONMENTAL VARIATION; GLUCOSE-METABOLISM; INDUCED MUTATIONS; YEAST HEXOKINASE; EVOLUTION; TRAITS Adaptation is the process whereby a population or species becomes better fitted to its habitat through modifications of various life history traits which can be positively or negatively correlated. The molecular factors underlying these covariations remain to be elucidated. Using Saccharomyces cerevisiae as a model system, we have investigated the effects on life history traits of varying the dosage of genes involved in the transformation of resources into energy. Changing gene dosage for each of three glycolytic enzyme genes (hexokinase 2, phosphoglucose isomerase, and fructose-1,6-bisphosphate aldolase) resulted in variation in enzyme activities, glucose consumption rate, and life history traits (growth rate, carrying capacity, and cell size). However, the range of effects depended on which enzyme was expressed differently. Most interestingly, these changes revealed a genetic trade-off between carrying capacity and cell size, supporting the discovery of two extreme life history strategies already described in yeast populations: the "ants," which have lower glycolytic gene dosage, take up glucose slowly, and have a small cell size but reach a high carrying capacity, and the "grasshoppers," which have higher glycolytic gene dosage, consume glucose more rapidly, and allocate it to a larger cell size but reach a lower carrying capacity. These results demonstrate antagonist pleiotropy for glycolytic genes and show that altered dosage of a single gene drives a switch between two life history strategies in yeast. [Spor, Ayme; Dillmann, Christine; de Vienne, Dominique; Sicard, Delphine] Univ Paris Sud, UMR 0320, UMR Genet Vegetale 8120, F-91190 Gif Sur Yvette, France; [Wang, Shaoxiao] CNRS, UMR 0320, UMR Genet Vegetale 8120, F-91190 Gif Sur Yvette, France; [Nidelet, Thibault; Montalent, Pierre] INRA, UMR 0320, UMR Genet Vegetale 8120, F-91190 Gif Sur Yvette, France Sicard, D (reprint author), Univ Paris Sud, UMR 0320, UMR Genet Vegetale 8120, F-91190 Gif Sur Yvette, France. sicard@moulon.inra.fr wang, shaoxiao/N-7126-2013; Spor, Ayme/A-6271-2012 wang, shaoxiao/0000-0002-0195-6210; Spor, Ayme/0000-0002-4707-9559 French Agence Nationale de la Recherche [NT05-4_45721]; CNRS This work was supported by the French Agence Nationale de la Recherche (ANR Project ADAPTALEVURE number NT05-4_45721). The postdoctoral fellowships of Shaoxiao Wang and Thibault Nidelet were supported by CNRS. Ahuatzi D, 2004, J BIOL CHEM, V279, P14440, DOI 10.1074/jbc.M313431200; Bakker BM, 1999, P NATL ACAD SCI USA, V96, P10098, DOI 10.1073/pnas.96.18.10098; BEATTY CH, 1975, BIOL REPROD, V12, P408, DOI 10.1095/biolreprod12.3.408; BENEVOLENSKY SV, 1994, J BIOL CHEM, V269, P4878; Bianconi ML, 2003, J BIOL CHEM, V278, P18709, DOI 10.1074/jbc.M211103200; Bochdanovits Z, 2004, P ROY SOC B-BIOL SCI, V271, pS75, DOI 10.1098/rsbl.2003.0091; Brachmann CB, 1998, YEAST, V14, P115; BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999; Camara MD, 2000, EVOL ECOL RES, V2, P1009; Camara MD, 1999, EVOLUTION, V53, P1692, DOI 10.1111/j.1558-5646.1999.tb04554.x; CLARK AG, 1987, GENETICS, V115, P143; CLIFTON D, 1993, J BACTERIOL, V175, P3289, DOI 10.1128/jb.175.11.3289-3294.1993; Conant GC, 2007, MOL SYST BIOL, V3, DOI 10.1038/msb4100170; Cronwright GR, 2002, APPL ENVIRON MICROB, V68, P4448, DOI 10.1128/AEM.68.9.4448-4456.2002; DAVIES SEC, 1992, BIOCHEMISTRY-US, V31, P4729, DOI 10.1021/bi00134a028; del Monte-Luna P, 2004, GLOBAL ECOL BIOGEOGR, V13, P485, DOI 10.1111/j.1466-822X.2004.00131.x; Diderich JA, 2001, APPL ENVIRON MICROB, V67, P1587, DOI 10.1128/AEM.67.4.1587-1593.2001; Drnevich JM, 2004, P ROY SOC B-BIOL SCI, V271, P2267, DOI 10.1098/rspb.2004.2880; Dunham MJ, 2002, P NATL ACAD SCI USA, V99, P16144, DOI 10.1073/pnas.242624799; Emmerling M, 1999, METAB ENG, V1, P117, DOI 10.1006/mben.1998.0109; ENTIAN KD, 1980, MOL GEN GENET, V178, P633, DOI 10.1007/BF00337871; Fernandez J, 1996, GENETICS, V143, P829; Fievet JB, 2006, BIOCHEM J, V396, P317, DOI 10.1042/BJ20051520; Flowers JM, 2007, MOL BIOL EVOL, V24, P1347, DOI 10.1093/molbev/msm057; Gardner KM, 2007, MOL ECOL, V16, P4195, DOI 10.1111/j.1365-294X.2007.03499.x; Gari E, 1997, YEAST, V13, P837, DOI 10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T; Gietz RD, 2002, METHOD ENZYMOL, V350, P87; Gutteling EW, 2007, HEREDITY, V98, P206, DOI 10.1038/sj.hdy.6800929; HEINRICH R, 1973, ACTA BIOL MED GER, V31, P479; Kacmar J, 2006, J BIOTECHNOL, V126, P163, DOI 10.1016/j.jbiotec.2006.04.015; Kacser H, 1973, Symp Soc Exp Biol, V27, P65; Koebmann B, 2005, FEBS J, V272, P2292, DOI 10.1111/j.1742-4658.2005.04656.x; LAUERER M, 1993, PLANTA, V190, P332; LENSKI RE, 2004, PLANT BREED REV, V24, P225, DOI DOI 10.1002/97804706502889.CH8; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; MAITRA PK, 1971, J BIOL CHEM, V246, P475; McKay JK, 2003, MOL ECOL, V12, P1137, DOI 10.1046/j.1365-294X.2003.01833.x; Millar JBA, 2002, GENOME BIOL, V3; Moreno F, 2005, BIOCHEM SOC T, V33, P265, DOI 10.1042/BST0330265; Moreno F, 2002, FEMS MICROBIOL REV, V26, P83, DOI 10.1111/j.1574-6976.2002.tb00600.x; Mount R C, 1996, Methods Mol Biol, V53, P139; Nogami S, 2007, PLOS GENET, V3, P305, DOI 10.1371/journal.pgen.0030031; Ohya Y, 2005, P NATL ACAD SCI USA, V102, P19015, DOI 10.1073/pnas.0509436102; Phillips PC, 2008, NAT REV GENET, V9, P855, DOI 10.1038/nrg2452; Pierce VA, 1997, SCIENCE, V276, P256, DOI 10.1126/science.276.5310.256; Piskur J, 2006, TRENDS GENET, V22, P183, DOI 10.1016/j.tig.2006.02.002; Porro D, 2003, FEMS MICROBIOL LETT, V229, P165, DOI 10.1016/S0378-1097(03)00815-2; Porro D, 2009, CYTOM PART A, V75A, P114, DOI 10.1002/cyto.a.20689; Raamsdonk LM, 2001, YEAST, V18, P1023, DOI 10.1002/yea.746; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff DA, 2002, EVOLUTION, V56, P84; ROFF DA, 2002, LIFE HIST EVOLUTION; Rose M. D, 1990, METHODS YEAST GENETI; SALTER M, 1986, BIOCHEM J, V234, P635, DOI 10.1042/bj2340635; SCHAAFF I, 1989, YEAST, V5, P285, DOI 10.1002/yea.320050408; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Spor A, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-296; Spor A, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001579; St-Cyr J, 2008, MOL ECOL, V17, P1850, DOI 10.1111/j.1365-294X.2008.03696.x; Stearns S C, 1982, Science, V218, P463, DOI 10.1126/science.218.4571.463; Stearns SC, 2003, AM NAT, V161, P171, DOI 10.1086/367983; Teusink B, 2000, EUR J BIOCHEM, V267, P5313, DOI 10.1046/j.1432-1327.2000.01527.x; Thomas S, 1997, BIOCHEM J, V322, P119, DOI 10.1042/bj3220119; Thomson JM, 2005, NAT GENET, V37, P630, DOI 10.1038/ng1553; TYSON CB, 1979, J BACTERIOL, V138, P92; WALSH RB, 1983, J BACTERIOL, V154, P1002; YOSHIMARU H, 1985, JPN J GENET, V60, P307, DOI 10.1266/jjg.60.307 67 7 7 0 10 AMER SOC MICROBIOLOGY WASHINGTON 1752 N ST NW, WASHINGTON, DC 20036-2904 USA 0099-2240 APPL ENVIRON MICROB Appl. Environ. Microbiol. JAN 2011 77 2 452 459 10.1128/AEM.00808-10 8 Biotechnology & Applied Microbiology; Microbiology Biotechnology & Applied Microbiology; Microbiology 705PB WOS:000286147300008 21075872 Green Published, Bronze 2019-02-21 J Svensson, PA; Wong, BBM Svensson, P. A.; Wong, B. B. M. Carotenoid-based signals in behavioural ecology: a review BEHAVIOUR English Review signal honesty; sparing hypothesis; protection hypothesis; trade-off; handicap; homeostasis GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; KESTRELS FALCO-TINNUNCULUS; TROUT ONCORHYNCHUS-MYKISS; FEMALE NUPTIAL COLORATION; HIHI NOTIOMYSTIS-CINCTA; BARN SWALLOW NESTLINGS; SALVELINUS-ALPINUS L.; NEW-WORLD ORIOLES; TITS PARUS-MAJOR Carotenoids are among the most prevalent pigments used in animal signals and are also important for a range of physiological functions. These concomitant roles have made carotenoid-based signals a popular topic in behavioural ecology while also causing confusion and controversy. After a thorough background, we review the many pitfalls, caveats and seemingly contradictory conclusions that can result from not fully appreciating the complex nature of carotenoid function. Current controversies may be resolved through a more careful regard of this complexity, and of the immense taxonomic variability of carotenoid metabolism. Studies investigating the physiological trade-offs between ornamental and physiological uses of carotenoids have yielded inconsistent results. However, in many studies, homeostatic regulation of immune and antioxidant systems may have obscured the effects of carotenoid supplementation. We highlight how carefully designed experiments can overcome such complications. There is also a need to investigate factors other than physiological trade-offs (such as predation risk and social interactions) as these, too, may shape the expression of carotenoid-based signals. Moreover, the processes limiting signal expression individuals are likely different from those operating over evolutionary time-scales. Future research should give greater attention to carotenoid pigmentation outside the area of sexual selection, and to taxa other than fishes and birds. [Svensson, P. A.; Wong, B. B. M.] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia Svensson, PA (reprint author), Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia. andreas.svensson@monash.edu Svensson, P Andreas/D-2517-2015; Svensson, P/D-3987-2011 Svensson, P Andreas/0000-0002-1426-0036; Australian Research Council We thank R. Rosenthal for advice on meta analyses, G. Lozano for a discussion on bandwagons, H. Parn for talks about trade-offs and U. Candolin and N. Metcalfe for raising the issue of whether behaviourists focus too much on carotenoids. We are grateful to S. Pryke, D. Dowling and two anonymous referees for comments on the manuscript. Funding was provided by the Australian Research Council. Aguilera E, 2007, NATURWISSENSCHAFTEN, V94, P895, DOI 10.1007/s00114-007-0268-5; Ahmadi MR, 2006, J APPL ICHTHYOL, V22, P388, DOI 10.1111/j.1439-0426.2006.00440.x; Alonso-Alvarez C, 2008, J EVOLUTION BIOL, V21, P1789, DOI 10.1111/j.1420-9101.2008.01591.x; Alonso-Alvarez C, 2004, AM NAT, V164, P651, DOI 10.1086/424971; Amar EC, 2001, AQUAC RES, V32, P162, DOI 10.1046/j.1355-557x.2001.00051.x; Amundsen T, 2001, P NATL ACAD SCI USA, V98, P13155, DOI 10.1073/pnas.211439298; Armstrong TN, 2000, PIGM CELL RES, V13, P116, DOI 10.1034/j.1600-0749.2000.130210.x; Badyaev AV, 2001, AM NAT, V158, P221, DOI 10.1086/321325; Baeta R, 2008, P R SOC B, V275, P427, DOI 10.1098/rspb.2007.1383; Baird TA, 2004, HERPETOLOGICA, V60, P337, DOI 10.1655/03-17; BEECHING SC, 1995, J FISH BIOL, V47, P50, DOI 10.1111/j.1095-8649.1995.tb01872.x; BENDICH A, 1989, FASEB J, V3, P1927; BENDICH A, 1989, J NUTR, V119, P112; Berglund A, 1996, BIOL J LINN SOC, V58, P385, DOI 10.1111/j.1095-8312.1996.tb01442.x; Berthouly A, 2007, FUNCT ECOL, V21, P335, DOI 10.1111/j.1365-2435.2006.01236.x; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Bertrand S, 2006, J EXP BIOL, V209, P4414, DOI 10.1242/jeb.02540; Bezzerides AL, 2007, BEHAV ECOL SOCIOBIOL, V61, P1401, DOI 10.1007/s00265-007-0371-9; Biard C, 2006, J EXP BIOL, V209, P1004, DOI 10.1242/jeb.02089; Bjerkeng B, 1999, FISH PHYSIOL BIOCHEM, V21, P353, DOI 10.1023/A:1007802803008; BJERKENG B, 1992, AQUACULTURE, V108, P333, DOI 10.1016/0044-8486(92)90117-4; BJORNLAND T, 1997, PHYTOPLANKTON PIGMEN, P578; Blas J, 2006, P NATL ACAD SCI USA, V103, P18633, DOI 10.1073/pnas.0609189103; Blount JD, 2003, SCIENCE, V300, P125, DOI 10.1126/science.1082142; Blount JD, 2002, FUNCT ECOL, V16, P445, DOI 10.1046/j.1365-2435.2002.00648.x; Blount JD, 2000, TRENDS ECOL EVOL, V15, P131, DOI 10.1016/S0169-5347(00)01857-7; Blount JD, 2004, ARCH BIOCHEM BIOPHYS, V430, P10, DOI 10.1016/j.abb.2004.03.039; Blount Jonathan D., 2008, V4, P213, DOI 10.1007/978-3-7643-7499-0_11; Bowmaker JK, 1995, PROG RETIN EYE RES, V15, P1; Britton G, 1995, FASEB J, V9, P1551; Britton G., 2004, CAROTENOIDS HDB; Britton George, 2008, V4, P189, DOI 10.1007/978-3-7643-7499-0_10; BRUSH AH, 1990, FASEB J, V4, P2969; BURTON GW, 1989, J NUTR, V119, P109; BURTON GW, 1984, SCIENCE, V224, P569, DOI 10.1126/science.6710156; BYRON ER, 1982, ECOLOGY, V63, P1871, DOI 10.2307/1940127; Candolin U, 2000, ANIM BEHAV, V60, P417, DOI 10.1006/anbe.2000.1481; Candolin U, 2003, BIOL REV, V78, P575, DOI 10.1017/S1464793103006158; Candolin U, 2000, P ROY SOC B-BIOL SCI, V267, P2425, DOI 10.1098/rspb.2000.1301; CASAGRANDE S, 2010, J COMP PH A IN PRESS, DOI DOI 10.1007/S00359-010-0579-4); Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Chew BP, 2004, J NUTR, V134, p257S; CHEW BP, 1993, J DAIRY SCI, V76, P2804, DOI 10.3168/jds.S0022-0302(93)77619-5; Chien YH, 2005, J EXP MAR BIOL ECOL, V318, P201, DOI 10.1016/j.jembe.2004.12.016; CHRISTIANSEN R, 1995, J FISH DIS, V18, P317, DOI 10.1111/j.1365-2761.1995.tb00308.x; Cianci M, 2002, P NATL ACAD SCI USA, V99, P9795, DOI 10.1073/pnas.152088999; Clotfelter ED, 2007, BEHAV ECOL, V18, P1139, DOI 10.1093/beheco/arm090; COGDELL RJ, 1985, PURE APPL CHEM, V57, P723, DOI 10.1351/pac198557050723; Collins SA, 1996, ANIM BEHAV, V52, P105, DOI 10.1006/anbe.1996.0156; Conolly RB, 2004, TOXICOL SCI, V77, P151, DOI 10.1093/toxsci/kfh007; Costantini D, 2008, FUNCT ECOL, V22, P367, DOI 10.1111/j.1365-2435.2007.01366.x; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2008, J COMP PHYSIOL B, V178, P829, DOI 10.1007/s00360-008-0270-z; Costantini D, 2007, J COMP PHYSIOL B, V177, P723, DOI 10.1007/s00360-007-0169-0; Costantini D, 2006, COMP BIOCHEM PHYS A, V145, P137, DOI 10.1016/j.cbpa.2006.06.002; Craig JK, 2001, EVOLUTION, V55, P380, DOI 10.1111/j.0014-3820.2001.tb01301.x; CRAIK JCA, 1985, AQUACULTURE, V47, P61, DOI 10.1016/0044-8486(85)90008-0; Cucco M, 2007, COMP BIOCHEM PHYS A, V147, P1038, DOI 10.1016/j.cbpa.2007.03.014; Dauwe T, 2008, NATURWISSENSCHAFTEN, V95, P969, DOI 10.1007/s00114-008-0400-1; Dijkstra PD, 2007, BEHAV ECOL SOCIOBIOL, V61, P599, DOI 10.1007/s00265-006-0289-7; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; EBERHARDT MK, 2000, REACTIVE OXYGEN META, P591; Edge R, 1997, J PHOTOCH PHOTOBIO B, V41, P189, DOI 10.1016/S1011-1344(97)00092-4; Elmer KR, 2009, EVOLUTION, V63, P2750, DOI 10.1111/j.1558-5646.2009.00736.x; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Evans MR, 1996, BEHAV ECOL, V7, P1, DOI 10.1093/beheco/7.1.1; Ewen JG, 2006, COMP BIOCHEM PHYS A, V143, P149, DOI 10.1016/j.cbpa.2005.11.006; Ewen JG, 2008, OECOLOGIA, V157, P361, DOI 10.1007/s00442-008-1073-3; Faivre B, 2003, SCIENCE, V300, P103, DOI 10.1126/science.1081802; Feltl L, 2005, CURR ANAL CHEM, V1, P93; Fenoglio S, 2002, BIRD STUDY, V49, P89, DOI 10.1080/00063650209461249; Fenoglio S, 2002, ETHOL ECOL EVOL, V14, P149; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fitze PS, 2006, J EVOLUTION BIOL, V19, P618, DOI 10.1111/j.1420-9101.2005.01008.x; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Foote CJ, 2004, ANIM BEHAV, V67, P69, DOI 10.1016/j.anbehav.2003.02.004; Forstmeier W, 2007, MOL ECOL, V16, P4039, DOI 10.1111/j.1365-294X.2007.03444.x; George SB, 2001, AQUACULTURE, V199, P353, DOI 10.1016/S0044-8486(01)00578-6; Getty T, 2006, TRENDS ECOL EVOL, V21, P83, DOI 10.1016/j.tree.2005.10.016; Getty T, 1998, ANIM BEHAV, V56, P253, DOI 10.1006/anbe.1998.0748; Getty T, 2002, AM NAT, V159, P363, DOI 10.1086/338992; Getty T, 1998, ANIM BEHAV, V56, P127, DOI 10.1006/anbe.1998.0744; GLOVER M, 1952, BIOCHEM J, V50, P425, DOI 10.1042/bj0500425; Godin JGJ, 2003, BEHAV ECOL, V14, P194, DOI 10.1093/beheco/14.2.194; Goodwin T. W., 1984, BIOCH CAROTENOIDS, V2; Gotmark F, 1997, ANIM BEHAV, V53, P83, DOI 10.1006/anbe.1996.0280; Gotmark F, 1997, P ROY SOC B-BIOL SCI, V264, P959, DOI 10.1098/rspb.1997.0132; GRAFEN A, 1990, J THEOR BIOL, V144, P473, DOI 10.1016/S0022-5193(05)80087-6; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Grafen A., 1984, BEHAV ECOLOGY EVOLUT, P62; Grether GF, 2005, EVOLUTION, V59, P175; Grether GF, 2004, P ROY SOC B-BIOL SCI, V271, P45, DOI 10.1098/rspb.2003.2526; Grether GF, 2004, BIOL REV, V79, P583, DOI 10.1017/S1464793103006390; Grether GF, 2001, P ROY SOC B-BIOL SCI, V268, P1245, DOI 10.1098/rspb.2001.1624; Griffith SC, 2006, ANIM BEHAV, V71, P749, DOI 10.1016/j.anbehav.2005.07.016; Griggio M, 2007, BEHAV ECOL SOCIOBIOL, V61, P423, DOI 10.1007/s00265-006-0270-5; GUILFORD T, 1991, ANIM BEHAV, V42, P1, DOI 10.1016/S0003-3472(05)80600-1; Hager SB, 2001, J HERPETOL, V35, P624, DOI 10.2307/1565901; Halliwell B, 2007, FREE RADICALS BIOL M; Hamilton WD, 2001, P ROY SOC B-BIOL SCI, V268, P1489, DOI 10.1098/rspb.2001.1672; Handelman G.J., 1996, HDB ANTIOXIDANTS, P259; Handelman GJ, 2001, NUTRITION, V17, P818, DOI 10.1016/S0899-9007(01)00640-2; Harper DGC, 2006, J THEOR BIOL, V239, P203, DOI 10.1016/j.jtbi.2005.08.034; Hartley RC, 2004, TRENDS ECOL EVOL, V19, P353, DOI 10.1016/j.tree.2004.04.002; HASSON O, 1990, EVOL ECOL, V4, P277, DOI 10.1007/BF02270927; Hasson Oren, 2000, P445; Hatlen B, 1998, AQUAC RES, V29, P191; Healey M, 2009, AUSTRAL ECOL, V34, P636, DOI 10.1111/j.1442-9993.2009.01968.x; Helfenstein F, 2008, BEHAV ECOL, V19, P108, DOI 10.1093/beheco/arm103; Hill GE, 1999, AM NAT, V154, P589, DOI 10.1086/303264; HILL GE, 1991, NATURE, V350, P337, DOI 10.1038/350337a0; HILL GE, 1999, P 22 INT ORN C DURB, P1654; HILL GE, 2006, BIRD COLORATION, V1, P178; Hofmann CM, 2007, J AVIAN BIOL, V38, P172; Hofmann CM, 2006, EVOLUTION, V60, P1680, DOI 10.1111/j.0014-3820.2006.tb00512.x; Horak P, 2003, BIOESSAYS, V25, P746, DOI 10.1002/bies.10325; Horak P, 2007, AM NAT, V170, P625, DOI 10.1086/521232; Horak P, 2006, J EXP BIOL, V209, P4329, DOI 10.1242/jeb.02502; Horak P, 2010, J EXP BIOL, V213, P2225, DOI 10.1242/jeb.042085; HORAK R, 2004, J AVIAN BIOL, V35, P63; Houde A., 1997, SEX COLOR MATE CHOIC; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; Huggins KA, 2010, NATURWISSENSCHAFTEN, V97, P637, DOI 10.1007/s00114-010-0679-6; Hurst JS, 2005, EXP EYE RES, V81, P239, DOI 10.1016/j.exer.2005.04.002; Isaksson C, 2007, FUNCT ECOL, V21, P1123, DOI 10.1111/j.1365-2435.2007.01317.x; Jayasooriya AP, 2002, SCIENCE, V296, P847; Johnstone RA, 1996, PHILOS T R SOC B, V351, P329, DOI 10.1098/rstb.1996.0026; Kalariya NM, 2008, EXP EYE RES, V86, P70, DOI 10.1016/j.exer.2007.09.010; Karadas F, 2005, COMP BIOCHEM PHYS B, V141, P244, DOI 10.1016/j.cbpc.2005.04.001; Karu U, 2008, ECOL RES, V23, P931, DOI 10.1007/s11284-007-0457-x; Kiere LM, 2009, J AVIAN BIOL, V40, P605, DOI 10.1111/j.1600-048X.2009.04718.x; Kodric-Brown A, 1998, AM ZOOL, V38, P70; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Kolm N, 2004, BEHAV ECOL SOCIOBIOL, V56, P59, DOI 10.1007/s00265-003-0754-5; Kotiaho JS, 2001, BIOL REV, V76, P365, DOI 10.1017/S1464793101005711; Koutsos EA, 2003, COMP BIOCHEM PHYS A, V135, P635, DOI 10.1016/S1095-6433(03)00158-2; KRINSKY NI, 1974, SCIENCE, V186, P363, DOI 10.1126/science.186.4161.363; KRINSKY NI, 1993, ANNU REV NUTR, V13, P561, DOI 10.1146/annurev.nutr.13.1.561; KRINSKY NI, 1989, FREE RADICAL BIO MED, V7, P617, DOI 10.1016/0891-5849(89)90143-3; Kurtz J, 2007, AM NAT, V170, P509, DOI 10.1086/521316; Kwiatkowski MA, 2002, EVOLUTION, V56, P2039; Lehtonen TK, 2010, BIOL LETTERS, V6, P21, DOI 10.1098/rsbl.2009.0558; Linan-Cabello MA, 2002, AQUACULT NUTR, V8, P299, DOI 10.1046/j.1365-2095.2002.00221.x; Lindstedt C, 2009, EVOLUTION, V63, P469, DOI 10.1111/j.1558-5646.2008.00561.x; Loiseau C, 2008, HORM BEHAV, V53, P266, DOI 10.1016/j.yhbeh.2007.10.006; LOZANO GA, 1994, OIKOS, V70, P309, DOI 10.2307/3545643; Lozano GA, 2001, AM NAT, V158, P200, DOI 10.1086/321313; Lubzens E, 2003, MOL ASPECTS MED, V24, P441, DOI 10.1016/S0098-2997(03)00040-2; Macedonia JM, 2000, J HERPETOL, V34, P99, DOI 10.2307/1565245; MADEN M, 1993, ACTA BIOTHEOR, V41, P425, DOI 10.1007/BF00709375; Martin HD, 1999, J PRAK CHEM-CHEM ZTG, V341, P302, DOI 10.1002/(SICI)1521-3897(199904)341:3<302::AID-PRAC302>3.0.CO;2-6; Matson KD, 2006, P ROY SOC B-BIOL SCI, V273, P815, DOI 10.1098/rspb.2005.3376; Maynard Smith John, 2003, ANIMAL SIGNALS; McGraw KJ, 2007, BIOLOGY LETT, V3, P375, DOI 10.1098/rsbl.2007.0190; McGraw KJ, 2006, ETHOLOGY, V112, P1209, DOI 10.1111/j.1439-0310.2006.01280.x; McGraw KJ, 2006, AUK, V123, P1161, DOI 10.1642/0004-8038(2006)123[1161:CIAICI]2.0.CO;2; McGraw KJ, 2006, ETHOL ECOL EVOL, V18, P247, DOI 10.1080/08927014.2006.9522712; McGraw KJ, 2006, PHYSIOL BEHAV, V88, P347, DOI 10.1016/j.physbeh.2006.04.003; McGraw KJ, 2006, BEHAV ECOL SOCIOBIOL, V60, P117, DOI 10.1007/s00265-005-0135-3; McGraw KJ, 2005, ANIM BEHAV, V69, P757, DOI 10.1016/j.anbehav.2004.06.022; McGraw KJ, 2003, AM NAT, V162, P704, DOI 10.1086/378904; MCGRAW KJ, 2006, BIRD COLORATION, V1, P178; Mckinnon JS, 2000, BEHAVIOUR, V137, P947, DOI 10.1163/156853900502556; MIKI W, 1991, PURE APPL CHEM, V63, P141, DOI 10.1351/pac199163010141; MILINSKI M, 1990, NATURE, V344, P330, DOI 10.1038/344330a0; Miller NJ, 1996, FEBS LETT, V384, P240, DOI 10.1016/0014-5793(96)00323-7; Moller AP, 2000, AVIAN POULT BIOL REV, V11, P137; MOLLER AP, 1993, BEHAV ECOL SOCIOBIOL, V32, P167; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; MOORE T, 1930, BIOCHEM J, V24, P696; MORALES J, 2008, BEHAV ECOL, V20, P117; Morton RA, 1939, BIOCHEM J, V33, P318, DOI 10.1042/bj0330318; Mougeot F, 2007, FUNCT ECOL, V21, P886, DOI 10.1111/j.1365-2435.2007.01302.x; Nordeide JT, 2008, ECOL FRESHW FISH, V17, P328, DOI 10.1111/j.1600-0633.2007.00286.x; Nys Y, 2000, ARCH GEFLUGELKD, V64, P45; Oakes KD, 2003, AQUAT TOXICOL, V63, P447, DOI 10.1016/S0166-445X(02)00204-7; OKIMASU E, 1992, NIPPON SUISAN GAKK, V58, P1487; Olson VA, 1998, TRENDS ECOL EVOL, V13, P510, DOI 10.1016/S0169-5347(98)01484-0; Olson VA, 2005, J EVOLUTION BIOL, V18, P1534, DOI 10.1111/j.1420-9101.2005.00940.x; Olsson M, 2007, MOL ECOL, V16, P5307, DOI 10.1111/j.1365-294X.2007.03578.x; Osterlie M, 1999, J NUTR, V129, P391; OSTERLIE M, 2000, THESIS NTNU TRONDHEI; Palmer LS, 1919, J BIOL CHEM, V39, P331; Palozza P, 1998, NUTR REV, V56, P257; Parker RS, 1996, FASEB J, V10, P542; Perez C, 2008, BEHAV ECOL, V19, P967, DOI 10.1093/beheco/arn053; Perez-Rodriguez L, 2008, J EXP BIOL, V211, P2155, DOI 10.1242/jeb.017178; Perez-Rodriguez L, 2009, BIOESSAYS, V31, P1116, DOI 10.1002/bies.200900070; Peters A, 2007, BIOESSAYS, V29, P427, DOI 10.1002/bies.20563; Pike TW, 2007, BEHAV ECOL, V18, P1100, DOI 10.1093/beheco/arm084; Pike TW, 2007, BIOLOGY LETT, V3, P353, DOI 10.1098/rsbl.2007.0072; Pike TW, 2007, P ROY SOC B-BIOL SCI, V274, P1591, DOI 10.1098/rspb.2007.0317; Pryke SR, 2001, EVOLUTION, V55, P1452; Pryke SR, 2002, BEHAV ECOL, V13, P622, DOI 10.1093/beheco/13.5.622; Rahman ML, 2010, ZOOL SCI, V27, P514, DOI 10.2108/zsj.27.514; RAJASINGH H, 2006, BMC BIOL, V4, P15; Rajasingh H, 2007, CAN J FISH AQUAT SCI, V64, P1614, DOI 10.1139/F07-119; Rao AV, 2007, PHARMACOL RES, V55, P207, DOI 10.1016/j.phrs.2007.01.012; RIECHERT SE, 1978, BEHAV ECOL SOCIOBIOL, V3, P135, DOI 10.1007/BF00294986; ROHWER S, 1975, EVOLUTION, V29, P593, DOI 10.1111/j.1558-5646.1975.tb00853.x; Ronnestad I, 1998, COMP BIOCHEM PHYS A, V119, P787, DOI 10.1016/S1095-6433(98)01017-4; ROWLAND WJ, 1991, ANIM BEHAV, V42, P243, DOI 10.1016/S0003-3472(05)80555-X; RUTKOWSKA J, 2007, BEHAV ECOL S, V19, pS7; Saino N, 2000, P ROY SOC B-BIOL SCI, V267, P57, DOI 10.1098/rspb.2000.0966; Saino N, 2003, P ROY SOC B-BIOL SCI, V270, P2485, DOI 10.1098/rspb.2003.2534; Sandre SL, 2007, ENTOMOL EXP APPL, V124, P269, DOI 10.1111/j.1570-7458.2007.00579.x; Schwedhelm E, 2003, CLIN PHARMACOKINET, V42, P437, DOI 10.2165/00003088-200342050-00003; Senar J.C., 2006, BIRD COLORATION, P87; SHAPIRO SS, 1984, J NUTR, V114, P1924; Shimidzu N, 1996, FISHERIES SCI, V62, P134, DOI 10.2331/fishsci.62.134; SIEFERMANNHARMS D, 1985, BIOCHIM BIOPHYS ACTA, V811, P325, DOI 10.1016/0304-4173(85)90006-0; Siems W, 2005, J NUTR BIOCHEM, V16, P385, DOI 10.1016/j.jnutbio.2005.01.009; SIES H, 1991, OXIDATIVE STRESS OXI, pR15; Skold HN, 2008, HORM BEHAV, V54, P549, DOI 10.1016/j.yhbeh.2008.05.018; Smith HG, 2007, J EVOLUTION BIOL, V20, P310, DOI 10.1111/j.1420-9101.2006.01203.x; Smith JM, 1995, J THEOR BIOL, V177, P305; Steffen JE, 2007, COMP BIOCHEM PHYS B, V146, P42, DOI 10.1016/j.cbpb.2006.08.017; STEVEN DM, 1949, J EXP BIOL, V26, P295; Storebakken T, 1996, AQUACULTURE, V146, P147, DOI 10.1016/S0044-8486(96)01363-4; Sumner FB, 1933, J EXP ZOOL, V66, P263, DOI 10.1002/jez.1400660204; Surai P. F., 2001, Journal of Poultry Science, V38, P117; Surai PF, 1999, BIOL TRACE ELEM RES, V68, P63, DOI 10.1007/BF02784397; Surai PF, 1998, J NUTR BIOCHEM, V9, P645, DOI 10.1016/S0955-2863(98)00068-0; Surai PF, 2001, COMP BIOCHEM PHYS B, V128, P743, DOI 10.1016/S1096-4959(00)00369-9; Surai PF, 2002, NATURAL ANTIOXIDANTS; Svensson PA, 2006, FUNCT ECOL, V20, P689, DOI 10.1111/j.1365-2435.2006.01151.x; Svensson PA, 2009, J FISH BIOL, V75, P2777, DOI 10.1111/j.1095-8649.2009.02478.x; Taylor EB, 1996, EVOLUTION, V50, P401, DOI 10.1111/j.1558-5646.1996.tb04502.x; Thorogood R, 2008, FUNCT ECOL, V22, P1044, DOI 10.1111/j.1365-2435.2008.01455.x; TINBERGEN N, 1950, BEHAVIOUR, V3, P1, DOI 10.1163/156853951X00197; Toral GM, 2008, COMP BIOCHEM PHYS B, V150, P147, DOI 10.1016/j.cbpb.2008.02.006; Torrissen OJ, 1995, J APPL ICHTHYOL, V11, P225, DOI 10.1111/j.1439-0426.1995.tb00022.x; Tschirren B, 2005, OECOLOGIA, V143, P477, DOI 10.1007/s00442-004-1812-z; Tsushima M, 1997, INVERTEBR REPROD DEV, V32, P149, DOI 10.1080/07924259.1997.9672616; Vanhoutteghem A, 2004, DIFFERENTIATION, V72, P123, DOI 10.1111/j.1432-0436.2004.07204002.x; Vinkler M, 2010, NATURWISSENSCHAFTEN, V97, P19, DOI 10.1007/s00114-009-0595-9; Von Frisch K., 1967, DANCE LANGUAGE ORIEN; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; Wathne E, 1998, AQUACULTURE, V159, P217, DOI 10.1016/S0044-8486(97)00218-4; Watkins GG, 1997, ANIM BEHAV, V53, P843, DOI 10.1006/anbe.1996.0350; Weiss SL, 2002, ETHOLOGY, V108, P793, DOI 10.1046/j.1439-0310.2002.00819.x; WICKSTEN MK, 1989, B MAR SCI, V45, P519; Winston GW, 2004, COMP BIOCHEM PHYS C, V139, P281, DOI 10.1016/j.cca.2004.12.006; Yeh SL, 2006, CHEM-BIOL INTERACT, V163, P199, DOI 10.1016/j.cbi.2006.08.002; Young AJ, 2001, ARCH BIOCHEM BIOPHYS, V385, P20, DOI 10.1006/abbi.2000.2149; ZAGALSKY PF, 1970, COMP BIOCHEM PHYSIOL, V34, P579, DOI 10.1016/0010-406X(70)90287-2; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; Zebisch K, 2004, VET RADIOL ULTRASOUN, V45, P241, DOI 10.1111/j.1740-8261.2004.04043.x; ZHANG LX, 1992, CANCER RES, V52, P5707; Zhao W, 1998, BBA-GEN SUBJECTS, V1381, P77, DOI 10.1016/S0304-4165(98)00013-0 252 137 137 13 159 BRILL ACADEMIC PUBLISHERS LEIDEN PLANTIJNSTRAAT 2, P O BOX 9000, 2300 PA LEIDEN, NETHERLANDS 0005-7959 BEHAVIOUR Behaviour 2011 148 2 131 189 10.1163/000579510X548673 59 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 731KN WOS:000288105500001 2019-02-21 J Johnston, JC Johnston, Jason C. Effects of stage in incubation, time in season, and proportion of original clutch remaining on nest desertion by house sparrows, Passer domesticus BEHAVIOUR English Article nest desertion; parental investment; clutch manipulation; reproductive value; Passer domesticus CUCULUS-CANORUS EGGS; PARENTAL INVESTMENT; FUTURE REPRODUCTION; COWBIRD PARASITISM; CONCORDE FALLACY; DABBLING DUCKS; DEFENSE; BROOD; SURVIVAL; YOUNG Life history theory predicts that individuals should maximize their fitness by balancing current investment in offspring versus future prospects for reproduction. Faced with reduction of their current clutch, birds should desert if the prospective opportunity would increase inclusive fitness more than continued investment in the reduced clutch. I studied nest desertion in response to clutch reduction by house sparrows (Passer domesticus) to determine if continuing investment in a reduced clutch differs based on proportion of original clutch remaining, stage in incubation, and ordinal date. Nests were reduced to two eggs early or late in incubation over two complete breeding seasons. Of 150 nests manipulated, 36 were deserted. Nests were more likely to be deserted when reduction occurred earlier in incubation, earlier in the season, and with a smaller proportion of original clutch remaining. This suggests that both time and brood size are used to assess the tradeoffs between current and future investment. However, near the end of the breeding season, the proportion of original clutch remaining and stage in incubation were less important, and low desertion was likely associated with a lack of re-nesting opportunities in the current season. Therefore, whether to desert or continue investing in a reduced clutch is a function of offspring reproductive value (RV) when there is opportunity for re-nesting in the same season. However, near the end of the season the decision is based on the residual reproductive value (RRV) of parents. [Johnston, Jason C.] Univ Delaware, Dept Entomol & Wildlife Ecol, Newark, DE 95716 USA Johnston, JC (reprint author), Univ Delaware, Dept Entomol & Wildlife Ecol, Newark, DE 19716 USA. jason.johnston@umpi.edu Ackerman JT, 2003, ANIM BEHAV, V66, P871, DOI 10.1006/anbe.2003.2283; Ackerman JT, 2003, BEHAV ECOL SOCIOBIOL, V54, P264, DOI 10.1007/s00265-003-0628-x; ARMSTRONG T, 1988, ANIM BEHAV, V36, P941, DOI 10.1016/S0003-3472(88)80180-5; Bourgeon S, 2006, POLAR BIOL, V29, P358, DOI 10.1007/s00300-005-0064-7; Brown WP, 2002, ECOLOGY, V83, P958, DOI 10.1890/0012-9658(2002)083[0958:TPOFAS]2.0.CO;2; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; COLEMAN RM, 1991, TRENDS ECOL EVOL, V6, P404, DOI 10.1016/0169-5347(91)90163-R; DAWKINS R, 1976, NATURE, V262, P131, DOI 10.1038/262131a0; Fernandez GJ, 2000, IBIS, V142, P29, DOI 10.1111/j.1474-919X.2000.tb07680.x; Fisher RA, 1930, GENETICAL THEORY NAT; GOTZMAN J, 1967, ACTA ORNITHOL, V30, P83; GRAHAM DS, 1988, CONDOR, V90, P558; Hardy ICW, 1998, ANIM BEHAV, V56, P787, DOI 10.1006/anbe.1998.0833; HILL DP, 1994, ANIM BEHAV, V48, P1063, DOI 10.1006/anbe.1994.1340; Lowther Peter E., 1992, Birds of North America, V12, P1; MOCK DW, 1986, EVOLUTION, V40, P459, DOI 10.1111/j.1558-5646.1986.tb00499.x; MOKSNES A, 1993, BEHAV ECOL, V4, P120, DOI 10.1093/beheco/4.2.120; Moskat C, 1999, J AVIAN BIOL, V30, P175, DOI 10.2307/3677127; ONNEBRINK H, 1991, BEHAV ECOL SOCIOBIOL, V29, P61, DOI 10.1007/BF00164296; PETIT LJ, 1991, ANIM BEHAV, V41, P425, DOI 10.1016/S0003-3472(05)80843-7; REDONDO T, 1989, BEHAV ECOL SOCIOBIOL, V25, P369, DOI 10.1007/BF00302995; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; RYTKONEN S, 1995, ANIM BEHAV, V49, P1017, DOI 10.1006/anbe.1995.0131; SEALY SG, 1992, CONDOR, V94, P40, DOI 10.2307/1368794; Stearns S, 1992, EVOLUTION LIFE HIST; Szekely Tamas, 1996, Current Ornithology, V13, P271; TENCATE C, 1992, AUK, V109, P594; Verboven N, 2002, ANIM BEHAV, V63, P951, DOI 10.1006/anbe.2001.1971; WESTNEAT DF, 1989, AUK, V106, P747; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams Geroge C, 1966, ADAPTATION NATURAL S; WINGFIELD JC, 1979, GEN COMP ENDOCR, V38, P322, DOI 10.1016/0016-6480(79)90066-2; Winkler DW, 1991, BEHAV ECOL, V2, P133, DOI 10.1093/beheco/2.2.133; ZWICKEL FC, 1978, CONDOR, V80, P109, DOI 10.2307/1367803 35 1 1 0 16 BRILL ACADEMIC PUBLISHERS LEIDEN PLANTIJNSTRAAT 2, P O BOX 9000, 2300 PA LEIDEN, NETHERLANDS 0005-7959 BEHAVIOUR Behaviour 2011 148 9-10 1121 1135 10.1163/000579511X596589 15 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 842OY WOS:000296610000007 2019-02-21 J Kaczmarczyk, AN; Kopp, A Kaczmarczyk, Angela N.; Kopp, Artyom Germline stem cell maintenance as a proximate mechanism of life-history trade-offs? BIOESSAYS English Article fecundity; germline stem cells; life-history evolution; reproductive trade-offs QUANTITATIVE TRAIT LOCI; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; NATURAL-SELECTION; JUVENILE-HORMONE; SELF-RENEWAL; NICHE CELLS; OVARY; REPRODUCTION; SPAN We suggest that the commonly observed trade-offs between early-and late-life reproduction may be mediated by genetic variation in germline stem cell maintenance. Stem cell biology provides a natural framework and experimental methods for understanding the mechanistic basis of life-history evolution. At the same time, natural variation in life-history strategies can serve as a powerful tool for identifying the genes and molecular pathways involved in the maintenance of stem cells in aging adults. We illustrate the connections between life-history and stem cells with examples drawn primarily from Drosophila melanogaster and Caenorhabditis elegans, and suggest a number of testable hypotheses and avenues for future investigation that can be addressed with existing models and tools. [Kaczmarczyk, Angela N.; Kopp, Artyom] Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA; [Kopp, Artyom] Univ Calif Davis, Ctr Populat Biol, Davis, CA 95616 USA Kaczmarczyk, AN (reprint author), Univ Calif Berkeley, Dept Mol & Cellular Biol, Div Genet Genom & Dev, Berkeley, CA 94720 USA. ankaczmarczyk@berkeley.edu Abitua, Angela/0000-0002-8059-4050 NSF [DEB - 0548991]; Research Experiences for Undergraduates award; UC This work was supported by the NSF grant DEB - 0548991 and a Research Experiences for Undergraduates award to AK and by the UC-Davis President's Undergraduate Fellowship to ANK. Ables ET, 2009, DROS RES C, V50, P142; Arantes-Oliveira N, 2002, SCIENCE, V295, P502, DOI 10.1126/science.1065768; Bogard N, 2007, DEVELOPMENT, V134, P3413, DOI 10.1242/dev.008466; Boyle M, 2007, CELL STEM CELL, V1, P470, DOI 10.1016/j.stem.2007.08.002; Carlson KA, 1999, J GERONTOL A-BIOL, V54, pB432, DOI 10.1093/gerona/54.10.B432; Carmell MA, 2007, DEV CELL, V12, P503, DOI 10.1016/j.devcel.2007.03.001; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Cox DN, 1998, GENE DEV, V12, P3715, DOI 10.1101/gad.12.23.3715; DAVID J, 1974, Archives de Zoologie Experimentale et Generale, V115, P263; Draper BW, 2007, DEV BIOL, V305, P589, DOI 10.1016/j.ydbio.2007.03.007; Drummond-Barbosa D, 2008, GENETICS, V180, P1787, DOI 10.1534/genetics.108.098244; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Flatt T, 2008, P NATL ACAD SCI USA, V105, P6368, DOI 10.1073/pnas.0709128105; Flatt T, 2007, EVOLUTION, V61, P1980, DOI 10.1111/j.1558-5646.2007.00151.x; Gilboa L, 2003, DEVELOPMENT, V130, P6625, DOI 10.1242/dev.00853; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; Hatfield SD, 2005, NATURE, V435, P974, DOI 10.1038/nature03816; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; Houwing S, 2007, CELL, V129, P69, DOI 10.1016/j.cell.2007.03.026; Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694; Hsu HJ, 2009, P NATL ACAD SCI USA, V106, P1117, DOI 10.1073/pnas.0809144106; Hsu HJ, 2008, DEV BIOL, V313, P700, DOI 10.1016/j.ydbio.2007.11.006; Hughes SE, 2007, PLOS GENET, V3, P254, DOI 10.1371/journal.pgen.0030025; Jin ZG, 2008, CELL STEM CELL, V2, P39, DOI 10.1016/j.stem.2007.10.021; Jones DL, 2007, STEM CELL REV, V3, P192, DOI 10.1007/s12015-007-0009-3; Kai T, 2004, NATURE, V428, P564, DOI 10.1038/nature02436; Khazaeli AA, 2005, GENETICS, V169, P231, DOI 10.1534/genetics.104.030403; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Leroi AM, 2001, TRENDS ECOL EVOL, V16, P24, DOI 10.1016/S0169-5347(00)02032-2; Li LH, 2005, ANNU REV CELL DEV BI, V21, P605, DOI 10.1146/annurev.cellbio.21.012704.131525; LUCKINBILL LS, 1985, HEREDITY, V55, P9, DOI 10.1038/hdy.1985.66; Luckinbill LS, 2002, GENETICA, V114, P147, DOI 10.1023/A:1015139514332; MARGOLIS J, 1995, DEVELOPMENT, V121, P3797; MCKEARIN D, 1995, DEVELOPMENT, V121, P2937; Nakamura S, 2010, SCIENCE, V328, P1561, DOI 10.1126/science.1185473; Narbonne P, 2006, CELL DIV, V1, DOI 10.1186/1747-1028-1-29; Nussey DH, 2008, P ROY SOC B-BIOL SCI, V275, P745, DOI 10.1098/rspb.2007.0986; Pan L, 2007, CELL STEM CELL, V1, P458, DOI 10.1016/j.stem.2007.09.010; Partridge L, 1999, P ROY SOC B-BIOL SCI, V266, P255, DOI 10.1098/rspb.1999.0630; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Schmidt PS, 2008, EVOLUTION, V62, P1204, DOI 10.1111/j.1558-5646.2008.00351.x; Sgro CM, 1999, SCIENCE, V286, P2521, DOI 10.1126/science.286.5449.2521; Shcherbata HR, 2007, CELL STEM CELL, V1, P698, DOI 10.1016/j.stem.2007.11.007; Shook DR, 1996, GENETICS, V142, P801; SNYDER RJ, 1990, OECOLOGIA, V84, P386, DOI 10.1007/BF00329764; Song XQ, 2004, DEVELOPMENT, V131, P1353, DOI 10.1242/dev.01026; Song XQ, 2002, SCIENCE, V296, P1855, DOI 10.1126/science.1069871; Stearns S, 1992, EVOLUTION LIFE HIST; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Tatar M, 1996, GENETICS, V143, P849; Tatar M, 2010, DROS RES C, V51, P115; Tatar M, 2010, ANN NY ACAD SCI, V1204, P149, DOI 10.1111/j.1749-6632.2010.05522.x; TEMPLETON AR, 1989, GENOME, V31, P296, DOI 10.1139/g89-047; Templeton AR, 1978, SCREW WORM PROBLEM, P83; Tu MP, 2002, AGING CELL, V1, P158, DOI 10.1046/j.1474-9728.2002.00016.x; Ward EJ, 2006, CURR BIOL, V16, P2352, DOI 10.1016/j.cub.2006.10.022; WIESCHAUS E, 1979, DEV BIOL, V68, P29, DOI 10.1016/0012-1606(79)90241-0; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wolfner M.F., 2007, P183; Xie T, 2000, SCIENCE, V290, P328, DOI 10.1126/science.290.5490.328; Xie T, 1998, CELL, V94, P251, DOI 10.1016/S0092-8674(00)81424-5; Yang LL, 2007, DEVELOPMENT, V134, P4265, DOI 10.1242/dev.009159; Yoshizaki G, 2010, DEVELOPMENT, V137, P1227, DOI 10.1242/dev.044982; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhao R, 2008, AGING CELL, V7, P344, DOI 10.1111/j.1474-9726.2008.00379.x; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x 69 9 9 0 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0265-9247 1521-1878 BIOESSAYS Bioessays JAN 2011 33 1 5 12 10.1002/bies.201000085 8 Biochemistry & Molecular Biology; Biology Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics 700FR WOS:000285723900002 21120852 2019-02-21 J Mazzotti, FJ; Cherkiss, MS; Hart, KM; Snow, RW; Rochford, MR; Dorcas, ME; Reed, RN Mazzotti, Frank J.; Cherkiss, Michael S.; Hart, Kristen M.; Snow, Ray W.; Rochford, Michael R.; Dorcas, Michael E.; Reed, Robert N. Cold-induced mortality of invasive Burmese pythons in south Florida BIOLOGICAL INVASIONS English Article Python molurus; Florida Everglades; Cold temperatures; Invasive species; Mortality; Thermoregulation LIFE-HISTORY THEORY; UNITED-STATES; POPULATIONS A recent record cold spell in southern Florida (2-11 January 2010) provided an opportunity to evaluate responses of an established population of Burmese pythons (Python molurus bivittatus) to a prolonged period of unusually cold weather. We observed behavior, characterized thermal biology, determined fate of radio-telemetered (n = 10) and non-telemetered (n = 104) Burmese pythons, and analyzed habitat and environmental conditions experienced by pythons during and after a historic cold spell. Telemetered pythons had been implanted with radio-transmitters and temperature-recording data loggers prior to the cold snap. Only one of 10 telemetered pythons survived the cold snap, whereas 59 of 99 (60%) non-telemetered pythons for which we determined fate survived. Body temperatures of eight dead telemetered pythons fluctuated regularly prior to 9 January 2010, then declined substantially during the cold period (9-11 January) and exhibited no further evidence of active thermoregulation indicating they were likely dead. Unusually cold temperatures in January 2010 were clearly associated with mortality of Burmese pythons in the Everglades. Some radio-telemetered pythons appeared to exhibit maladaptive behavior during the cold spell, including attempting to bask instead of retreating to sheltered refugia. We discuss implications of our findings for persistence and spread of introduced Burmese pythons in the United States and for maximizing their rate of removal. [Mazzotti, Frank J.; Cherkiss, Michael S.; Rochford, Michael R.] Univ Florida, Ft Lauderdale Res & Educ Ctr, Davie, FL 33314 USA; [Hart, Kristen M.] US Geol Survey, SE Ecol Sci Ctr, Davie, FL 33314 USA; [Snow, Ray W.] Natl Pk Serv, Homestead, FL 33034 USA; [Dorcas, Michael E.] Davidson Coll, Dept Biol, Davidson, NC 28035 USA; [Reed, Robert N.] US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80526 USA Mazzotti, FJ (reprint author), Univ Florida, Ft Lauderdale Res & Educ Ctr, 3205 Coll Ave, Davie, FL 33314 USA. fjma@ufl.edu US Geological Survey; US National Park Service Critical Ecosystems Studies Initiative; South Florida Water Management District This research was supported by the US Geological Survey Priority Ecosystems Science program, the US National Park Service Critical Ecosystems Studies Initiative, and the South Florida Water Management District. We thank T. Kiechkefer and T. Hill for tracking and collecting pythons, J. Vinci for making figures, S. Williams for formatting the manuscript, and R. Harvey for editing the manuscript. Everglades National Park agents, park staff, park partners, and visitors assisted by reporting observations and helping to recover pythons. We are especially indebted to B. Hill of the South Florida Water Management District for his reports. This manuscript was greatly improved by comments from H. Waddle, P. Schofield and both anonymous reviewers. Permits and approvals required for this research were obtained from the US National Park Service and the Animal Research Committee at the University of Florida. References to non-USGS products and services are provided for information only and do not constitute endorsement or warranty, expressed or implied, by the US Government, as to their suitability, content, usefulness, functioning, completeness, or accuracy. Alexander Graham J., 2007, P50; Aubret F, 2009, J EXP BIOL, V213, P242, DOI [10.1242/jeb.035931, DOI 10.1242/JEB.035931]; Avery ML, 2010, BIOL INVASIONS, V12, P3649, DOI 10.1007/s10530-010-9761-4; Beaumont LJ, 2009, DIVERS DISTRIB, V15, P409, DOI 10.1111/j.1472-4642.2008.00547.x; BHUPATHY S, 1989, Journal of the Bombay Natural History Society, V86, P381; BRANDT LA, 1990, COPEIA, P867, DOI 10.2307/1446456; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; Chiaraviglio M, 2003, AMPHIBIA-REPTILIA, V24, P65, DOI 10.1163/156853803763806957; Christy MT, 2010, J APPL ECOL, V47, P106, DOI 10.1111/j.1365-2664.2009.01753.x; DUNCAN RP, 2009, P ROY SOC LOND B BIO, V267, P1449; Fantz A., 2010, PYTHONS CITRUS IGUAN; Fitzpatrick MC, 2007, GLOBAL ECOL BIOGEOGR, V16, P24, DOI 10.1111/j.1466-822x.2006.00258.x; Franke J., 2001, REPTILES PETS EXAMIN; Groombridge B., 1991, SECR CONV INT TRAD E; Hardy David L. Sr, 2000, Sonoran Herpetologist, V13, P110; Hardy Sr D.L., 1999, SONORAN HERPETOL, V12, P25; Hayes KR, 2008, BIOL INVASIONS, V10, P483, DOI 10.1007/s10530-007-9146-5; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; HOOVER C, 1998, US ROLE INT LIVE REP; Kingsbury Bruce A., 2009, P201; Kraus F., 2009, ALIEN REPTILES AMPHI; LANG JW, 1987, WILDLIFE MANAGEMENT, P301; LOFTUS WF, 2001, P 1 ANN M US GEOL SU; Meshaka W. E., 2004, EXOTIC AMPHIBIANS RE; NOAA [National Oceanic and Atmospheric Administration], 2010, HIST COLD WEEK S FLO; Peterson Charles R., 1993, P241; Phillips SJ, 2009, ECOL APPL, V19, P181, DOI 10.1890/07-2153.1; Pimentel D, 2005, ECOL ECON, V52, P273, DOI 10.1016/j.ecolecon.2004.10.002; Pyron RA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002931; QUINLAN P, 2010, COLD SNAP KILLS INJU; Randin CF, 2006, J BIOGEOGR, V33, P1689, DOI 10.1111/j.1365-2699.2006.01466.x; REED RN, 2009, US GEOL SURV OPEN FI, V1202, P1; REINERT HK, 1982, COPEIA, P702, DOI 10.2307/1444674; Rodda GH, 2009, BIOL INVASIONS, V11, P241, DOI 10.1007/s10530-008-9228-z; Schleich H. H., 2002, AMPHIBIANS REPTILES; Shine R, 1996, PHYSIOL ZOOL, V69, P252, DOI 10.1086/physzool.69.2.30164182; Snow Ray W., 2007, P416; Snow Ray W., 2007, Herpetological Bulletin, V101, P5; Stanford James W., 2007, P175; Storey M, 1936, ECOLOGY, V17, P640, DOI 10.2307/1932762; STOREY M, 1937, ECOLOGY, V19, P10; van Wilgen NJ, 2009, ENVIRON MANAGE, V44, P590, DOI 10.1007/s00267-009-9311-y; Waller Tomas, 2007, P340; WATERS S, 2010, GAMEFISH SEASON CLOS; Whitaker R., 2004, SNAKES INDIA FIELD G; Wilcove DS, 1998, BIOSCIENCE, V48, P607, DOI 10.2307/1313420; Zhao E., 1993, HERPETOLOGY CHINA 47 28 28 1 124 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1387-3547 BIOL INVASIONS Biol. Invasions JAN 2011 13 1 143 151 10.1007/s10530-010-9797-5 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 695GT WOS:000285359300017 Other Gold 2019-02-21 J Chen, W; Lu, X Chen, Wei; Lu, Xin Age and body size of Rana amurensis from northeastern China CURRENT ZOOLOGY English Article Age structure; Body size; life history; Rana amurensis OPTIMAL RESOURCE-ALLOCATION; LIFE-HISTORY TRAITS; DIFFERENT ELEVATIONS; SEXUAL DIMORPHISM; FROG; GROWTH; POPULATIONS; AMPHIBIANS; CHENSINENSIS; ECTOTHERMS Age and body size are two important demographic traits that determine the life history strategies of populations and species. We measured these two parameters of Rana amurensis, at a 900 m and a 500 m altitude site in northeastern China. At the two sites, age at first reproduction was 2 years for males and 3 years for females. The maximum age of males and females at the high-altitude site was 6 and 7 years, and 5 and 7 years at the low-altitude population, respectively. Females were significantly larger than males in both populations, due to greater age in both the high-and low-altitude sites. Body size of either males or females did not differ significantly between populations; only males showed increased body size at the high-altitude site when age effect was statistically controlled for. The increased cline of male body size may be attributable to delayed maturation of the sex due to a shorter growing season at high altitudes [Current Zoology 57 (6): 781-784, 2011]. [Chen, Wei; Lu, Xin] Wuhan Univ, Coll Life Sci, Dept Zool, Wuhan 430072, Peoples R China Lu, X (reprint author), Wuhan Univ, Coll Life Sci, Dept Zool, Wuhan 430072, Peoples R China. luxinwh@163.com National Science Foundation of China [30425036] We thank Xiuping Bao and Lixia Zhang for their assistance in preparing tissue sections. Financial support was provided by the National Science Foundation of China (grant 30425036). CASTANET J, 1990, ANN SCI NAT ZOOL, V11, P191; Chen W, 2011, HERPETOL J, V21, P149; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; Eaton B, 2005, CAN J ZOOL, V83, P1421, DOI 10.1139/Z05-138; Fei L, 2010, COLORED ATLAS CHINES; Guarino Fabio Maria, 1995, Amphibia-Reptilia, V16, P297, DOI 10.1163/156853895X00109; GUARINO FM, 2008, ITALIAN J ZOOLOGY, V73, P237; HOWARD RD, 1981, ECOLOGY, V62, P303, DOI 10.2307/1936704; Khonsue W, 2001, ZOOL SCI, V18, P597, DOI 10.2108/zsj.18.597; Khonsue W, 2000, ZOOL SCI, V17, P253, DOI 10.2108/zsj.17.253; Kozlowski J, 2004, INTEGR COMP BIOL, V44, P480, DOI 10.1093/icb/44.6.480; KUZMIN S. L., 1999, AMPHIBIANS FORMER SO; Lai YC, 2005, ZOOL SCI, V22, P653, DOI 10.2108/zsj.22.653; LECLAIR RJ, 1990, ANN SCI NAT ZOOL, V11, P205; Liao WB, 2011, ITAL J ZOOL, V78, P215, DOI 10.1080/11250001003639590; Liao WB, 2010, ZOOL ANZ, V248, P255, DOI 10.1016/j.jcz.2009.10.002; Lu X, 2004, HERPETOL J, V14, P9; Lu X, 2006, CAN J ZOOL, V84, P1789, DOI 10.1139/Z06-180; Ma XY, 2009, AMPHIBIA-REPTILIA, V30, P351, DOI 10.1163/156853809788795155; Miaud C, 1999, J ZOOL, V249, P61, DOI 10.1111/j.1469-7998.1999.tb01060.x; Miaud C, 2007, HERPETOL J, V17, P167; Monnet JM, 2002, P ROY SOC B-BIOL SCI, V269, P2301, DOI 10.1098/rspb.2002.2170; Morrison C, 2004, HERPETOLOGICA, V60, P34, DOI 10.1655/02-68; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Morrison C, 2002, P FROGS COMM S ENV A, P52; Ryser Jan, 1996, Amphibia-Reptilia, V17, P183, DOI 10.1163/156853896X00379; SHINE R, 1979, COPEIA, P297, DOI 10.2307/1443418; SHIROSE LJ, 1993, CAN J ZOOL, V71, P2363, DOI 10.1139/z93-332; Sinsch U, 2007, CAN J ZOOL, V85, P665, DOI 10.1139/Z07-046; SOLOMONOVA TN, 2011, CONT PROBLEMS ECOLOG, V4, P93; Walters RJ, 2006, AM NAT, V167, P510, DOI 10.1086/501029 31 5 8 0 6 CURRENT ZOOLOGY BEIJING CHINESE ACAD SCIENCES, INST ZOOLOGY, BEICHEN XILU, CHAOYANG DISTRICT, BEIJING, 100101, PEOPLES R CHINA 1674-5507 CURR ZOOL Curr. Zool. 2011 57 6 781 784 10.1093/czoolo/57.6.781 4 Zoology Zoology 865EN WOS:000298293800014 DOAJ Gold 2019-02-21 J Oufiero, CE; Walsh, MR; Reznick, DN; Garland, T Oufiero, Christopher E.; Walsh, Matthew R.; Reznick, David N.; Garland, Theodore, Jr. Swimming performance trade-offs across a gradient in community composition in Trinidadian killifish (Rivulus hartii) ECOLOGY English Article critical swimming speed; predators; sprint speed; swimming performance; trade-offs LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; LOCOMOTOR PERFORMANCE; NATURAL-POPULATION; LACERTID LIZARDS; GAMBUSIA-AFFINIS; GARTER SNAKES; PREDATION; CAPACITY; GROWTH The impacts of predation and competition on life history, behavioral, and morphological traits are well established for many organisms, but effects on locomotor performance have received relatively little attention. We examined variation in sprint speed and critical swimming speed (U-crit, a measure of stamina) in the Trinidadian killifish (Rivulus hartii) across a gradient of ecological communities. R. hartii are located in (1) "high-predation'' sites with large, piscine piscivores, (2) "Rivulus-guppy'' sites with guppies, and (3) "Rivulus-only'' sites with only R. hartii. R. hartii suffer higher mortality in high-predation sites. In Rivulus-guppy sites, population densities are reduced and growth rates increased compared with Rivulus-only sites, which likely represent indirect effects of guppy predation on young R. hartii. We show a significant negative relationship, suggesting a trade-off, between sprint speed and endurance; Rivulus from high-predation sites were faster sprinters but had reduced critical swimming speeds. This trade-off was also apparent in correlations of the nine population means. At the individual level, the correlation was weaker and only significantly negative when all nine populations (three from each site) were pooled and values were not corrected for body size. Sex had a significant effect on Ucrit, with females having a lower Ucrit, but sexes did not differ in sprint speed. Fish from high-predation sites also exhibited increased tail lengths and fineness ratios compared to sites without large predators. The two low-predation sites showed no statistical differences in locomotor performance or morphology. [Oufiero, Christopher E.; Walsh, Matthew R.; Reznick, David N.; Garland, Theodore, Jr.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Oufiero, CE (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. coufi001@student.ucr.edu reznick, david/0000-0002-1144-0568 National Science Foundation [DDIG IOS-0709788, DEB-0808039, DEB-0416085, EF0623632] We thank Matthew Schrader for help with fish collection, Tuan Do with data collection, and Matt McHenry and Adam P. Summers for use of the flow tunnel. This work was supported by NSF DDIG IOS-0709788 to T. Garland and C. E. Oufiero, DEB-0808039 to D. N. Reznick and M. R. Walsh, and National Science Foundation Grants DEB-0416085 and EF0623632 to D. N. Reznick. ARNOLD SJ, 1983, AM ZOOL, V23, P347; Beamish F. W. H., 1978, FISH PHYSIOL, P101, DOI [DOI 10.1016/S1546-5098(08)60164-8, 10.1016/S1546-5098(08)60164-8]; BENNETT AF, 1989, AM J PHYSIOL, V256, pR1200; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Blake RW, 2004, J FISH BIOL, V65, P1193, DOI 10.1111/j.1095-8949.2004.00568.x; BRETT JR, 1967, J FISH RES BOARD CAN, V24, P1731, DOI 10.1139/f67-142; Chappell M, 2004, PHYSIOL BIOCHEM ZOOL, V77, P27, DOI 10.1086/378920; Claireaux G, 2007, PHYSIOL BIOCHEM ZOOL, V80, P186, DOI 10.1086/511143; Clobert J, 2000, FUNCT ECOL, V14, P675, DOI 10.1046/j.1365-2435.2000.00477.x; Davison W, 1997, COMP BIOCHEM PHYS A, V117, P67, DOI 10.1016/S0300-9629(96)00284-8; DJAWDAN M, 1988, J MAMMAL, V69, P765, DOI 10.2307/1381631; Dlugosz EM, 2009, J EXP BIOL, V212, P2612, DOI 10.1242/jeb.029058; DODSON S, 1989, BIOSCIENCE, V39, P447, DOI 10.2307/1311136; Feder ME, 2010, ANNU REV PHYSIOL, V72, P167, DOI 10.1146/annurev-physiol-021909-135804; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; Garenc C, 1998, CAN J ZOOL, V76, P680, DOI 10.1139/cjz-76-4-680; Garland T, 1999, ANIM BEHAV, V58, P77, DOI 10.1006/anbe.1999.1132; GARLAND T, 1983, COPEIA, P1092, DOI 10.2307/1445117; GARLAND T, 1991, ANNU REV ECOL SYST, V22, P193, DOI 10.1146/annurev.es.22.110191.001205; Garland Theodore Jr., 1994, P240; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Girard I, 2002, BEHAV PROCESS, V57, P37, DOI 10.1016/S0376-6357(01)00206-6; Guderley H, 2005, PHYSIOL BIOCHEM ZOOL, V78, P173, DOI 10.1086/425204; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Havel J.E., 1987, P263; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Houde A., 1997, SEX COLOR MATE CHOIC; HUEY RB, 1984, ANIM BEHAV, V32, P41, DOI 10.1016/S0003-3472(84)80322-X; Irschick DJ, 2001, ANNU REV ECOL SYST, V32, P367, DOI 10.1146/annurev.ecolsys.32.081501.114048; IRSCHICK DJ, 2008, EVOLUTIONARY ECOLOGY, V10, P1; JAYNE BC, 1990, EVOLUTION, V44, P1204, DOI 10.1111/j.1558-5646.1990.tb05226.x; Jurgens K, 2002, ANTON LEEUW INT J G, V81, P413, DOI 10.1023/A:1020505204959; Kolok AS, 1999, CAN J FISH AQUAT SCI, V56, P700, DOI 10.1139/cjfas-56-4-700; Kolok AS, 1995, CAN J ZOOL, V73, P2165, DOI 10.1139/z95-254; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; LANGERHANS RB, 2006, PREDATION ORGANISMS, P177; Langerhans RB, 2009, FISH LOCOMOTION ETHO, P200; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Martinez M, 2003, J EXP BIOL, V206, P503, DOI 10.1242/jeb.00098; Nelson JA, 2002, COMP BIOCHEM PHYS A, V133, P289, DOI 10.1016/S1095-6433(02)00161-7; Newman JA, 1997, ECOLOGY, V78, P1312; NICOLETTO PF, 1995, ANIM BEHAV, V49, P377, DOI 10.1006/anbe.1995.0050; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; Oufiero CE, 2007, FUNCT ECOL, V21, P676, DOI 10.1111/j.1365-2435.2007.01259.x; Oufiero CE, 2009, FUNCT ECOL, V23, P969, DOI 10.1111/j.1365-2435.2009.01571.x; Plaut I, 2002, FUNCT ECOL, V16, P290, DOI 10.1046/j.1365-2435.2002.00638.x; Reidy SP, 2000, J EXP BIOL, V203, P347; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Rodd FH, 1997, ECOLOGY, V78, P405; Royle NJ, 2006, FUNCT ECOL, V20, P662, DOI 10.1111/j.1365-2435.2006.01147.x; Ruxton GD, 2010, METHODS ECOL EVOL, V1, P114, DOI 10.1111/j.2041-210X.2010.00014.x; *SAS I, 2008, SAS VERS 9 2; Vanhooydonck B, 2001, EVOLUTION, V55, P1040, DOI 10.1554/0014-3820(2001)055[1040:SASTOI]2.0.CO;2; Walker JA, 2005, FUNCT ECOL, V19, P808, DOI 10.1111/j.1365-2435.2005.01033.x; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WALSH MR, 2009, THESIS U CALIFORNIA; Webb PW, 1975, B FISH RES BOARD CAN, V190, P1 63 33 35 0 34 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology JAN 2011 92 1 170 179 10.1890/09-1912.1 10 Ecology Environmental Sciences & Ecology 750MS WOS:000289552200019 21560687 2019-02-21 J Crone, EE; Menges, ES; Ellis, MM; Bell, T; Bierzychudek, P; Ehrlen, J; Kaye, TN; Knight, TM; Lesica, P; Morris, WF; Oostermeijer, G; Quintana-Ascencio, PF; Stanley, A; Ticktin, T; Valverde, T; Williams, JL Crone, Elizabeth E.; Menges, Eric S.; Ellis, Martha M.; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Morris, William F.; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Stanley, Amanda; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L. How do plant ecologists use matrix population models? ECOLOGY LETTERS English Article Conservation; ecological forecasting; extinction risk; harvest; matrix projection models; plant population dynamics; population growth rate; population viability analysis; risk assessment; sensitivity analysis LIFE-HISTORY EVOLUTION; VIABILITY ANALYSIS; EXTINCTION RISK; CONSERVATION; BIOLOGY; PROBABILITY; MEANINGFUL; DEMOGRAPHY P>Matrix projection models are among the most widely used tools in plant ecology. However, the way in which plant ecologists use and interpret these models differs from the way in which they are presented in the broader academic literature. In contrast to calls from earlier reviews, most studies of plant populations are based on < 5 matrices and present simple metrics such as deterministic population growth rates. However, plant ecologists also cautioned against literal interpretation of model predictions. Although academic studies have emphasized testing quantitative model predictions, such forecasts are not the way in which plant ecologists find matrix models to be most useful. Improving forecasting ability would necessitate increased model complexity and longer studies. Therefore, in addition to longer term studies with better links to environmental drivers, priorities for research include critically evaluating relative/comparative uses of matrix models and asking how we can use many short-term studies to understand long-term population dynamics. [Crone, Elizabeth E.; Ellis, Martha M.] Univ Montana, Coll Forestry & Conservat, Wildlife Biol Program, Missoula, MT 59812 USA; [Menges, Eric S.] Archbold Biol Stn, Lake Placid, FL 33862 USA; [Bell, Timothy] Chicago State Univ, Dept Biol Sci, Chicago, IL 60628 USA; [Bierzychudek, Paulette] Lewis & Clark Coll, Dept Biol, Portland, OR 97219 USA; [Ehrlen, Johan] Stockholm Univ, Dept Bot, SE-10691 Stockholm, Sweden; [Kaye, Thomas N.; Stanley, Amanda] Inst Appl Ecol, Corvallis, OR 97339 USA; [Knight, Tiffany M.] Washington Univ, Dept Biol, St Louis, MO 63130 USA; [Lesica, Peter] Univ Montana, Div Biol Sci, Missoula, MT 59812 USA; [Morris, William F.] Duke Univ, Dept Biol, Durham, NC 27708 USA; [Oostermeijer, Gerard] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, NL-1090 GB Amsterdam, Netherlands; [Quintana-Ascencio, Pedro F.] Univ Cent Florida, Dept Biol, Orlando, FL 32816 USA; [Ticktin, Tamara] Univ Hawaii Manoa, Dept Bot, Honolulu, HI 96822 USA; [Valverde, Teresa] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Mexico City 04510, DF, Mexico; [Williams, Jennifer L.] Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA Crone, EE (reprint author), Univ Montana, Coll Forestry & Conservat, Wildlife Biol Program, Missoula, MT 59812 USA. ecrone@fas.harvard.edu kaye, thomas/D-7859-2012; Ehrlen, Johan/H-6286-2013; Williams, Jennifer/H-1717-2011; Oostermeijer, Johannes/N-8909-2013 Williams, Jennifer/0000-0002-4497-4961; Ehrlen, Johan/0000-0001-8539-8967 NSF [EF-0553768]; University of California, Santa Barbara; State of California This work was conducted as a part of the 'Testing Matrix Models' Working Group supported by the National Center for Ecological Analysis and Synthesis, a centre funded by NSF (Grant #EF-0553768), the University of California, Santa Barbara, and the State of California. We would also like to thank three anonymous referees, and, especially, numerous land managers and other conservation professionals for crucial interactions over many years that have profoundly affected how we view the utility of matrix projection models for management. Akcakaya H. Resit, 2000, Ecological Bulletins, V48, P9; Bakker VJ, 2009, FRONT ECOL ENVIRON, V7, P158, DOI 10.1890/070220; Beissinger SR, 1998, J WILDLIFE MANAGE, V62, P821, DOI 10.2307/3802534; Bierzychudek P, 1999, ECOL APPL, V9, P1278, DOI 10.2307/2641396; Brook BW, 2000, NATURE, V404, P385, DOI 10.1038/35006050; Buckley YM, 2010, ECOL LETT, V13, P1182, DOI 10.1111/j.1461-0248.2010.01506.x; Burgman M. A., 2005, RISKS DECISIONS CONS; Burns JH, 2010, J ECOL, V98, P334, DOI 10.1111/j.1365-2745.2009.01634.x; CASWELL H, 1978, ECOLOGY, V59, P53, DOI 10.2307/1936631; Caswell H., 1989, MATRIX POPULATION MO; Coulson T, 2001, TRENDS ECOL EVOL, V16, P219, DOI 10.1016/S0169-5347(01)02137-1; Crone EE, 2001, EVOLUTION, V55, P2611; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; Doak DF, 2005, ECOLOGY, V86, P1154, DOI 10.1890/04-0611; Ellner SP, 2002, CONSERV BIOL, V16, P258, DOI 10.1046/j.1523-1739.2002.00553.x; Ellner SP, 2008, ECOL LETT, V11, pE1, DOI 10.1111/j.1461-0248.2008.01211.x; Fieberg J, 2000, ECOLOGY, V81, P2040; Heppell S, 2000, ECOLOGY, V81, P605, DOI 10.1890/0012-9658(2000)081[0605:EAIPBM]2.0.CO;2; Holmes EE, 2007, ECOL LETT, V10, P1182, DOI 10.1111/j.1461-0248.2007.01105.x; JONGEJANS E, 2010, ECOL LETT, V16, P736; Kaye TN, 2003, ECOLOGY, V84, P1464, DOI 10.1890/0012-9658(2003)084[1464:TEOSTO]2.0.CO;2; Keith DA, 2008, BIOL LETTERS, V4, P560, DOI 10.1098/rsbl.2008.0049; Kendall WL, 2002, ECOLOGY, V83, P3276; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LESICA P, 1994, NAT AREA J, V14, P209; Ludwig D, 1999, ECOLOGY, V80, P298, DOI 10.1890/0012-9658(1999)080[0298:IIMTEA]2.0.CO;2; McCarthy MA, 2004, ACTA OECOL, V26, P67, DOI 10.1016/j.actao.2004.01.008; McCarthy MA, 2001, ANIM CONSERV, V4, P351, DOI 10.1017/S136794300100141X; Menges E.S., 2000, ECOLOGICAL B, V48, P73; Menges ES, 2000, TRENDS ECOL EVOL, V15, P51, DOI 10.1016/S0169-5347(99)01763-2; Morris WF, 2002, ECOL APPL, V12, P708, DOI 10.1890/1051-0761(2002)012[0708:PVAIES]2.0.CO;2; Morris WF, 2002, QUANTITATIVE CONSERV; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; R Development Core Team, 2009, R LANG ENV STAT COMP; Reed JM, 2002, CONSERV BIOL, V16, P7, DOI 10.1046/j.1523-1739.2002.99419.x; Salguero-Gomez R, 2010, J ECOL, V98, P250, DOI 10.1111/j.1365-2745.2009.01635.x; SCHEMSKE DW, 1994, ECOLOGY, V75, P584, DOI 10.2307/1941718; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Simberloff D, 2003, CONSERV BIOL, V17, P83, DOI 10.1046/j.1523-1739.2003.02028.x; Venables WN, 2002, MODERN APPL STAT WIT 40 118 121 3 157 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1461-023X ECOL LETT Ecol. Lett. JAN 2011 14 1 1 8 10.1111/j.1461-0248.2010.01540.x 8 Ecology Environmental Sciences & Ecology 694MO WOS:000285302500001 21070554 Bronze 2019-02-21 J Milenkaya, O; Legge, S; Walters, JR Milenkaya, Olga; Legge, Sarah; Walters, Jeffrey R. Breeding biology and life-history traits of an Australasian tropical granivore, the Crimson Finch (Neochmia phaeton) EMU English Article SOCIALLY MONOGAMOUS PASSERINES; AVIAN CLUTCH SIZE; SURVIVAL RATES; NEST PREDATION; AUSTRALIAN PASSERINES; LATITUDINAL GRADIENTS; INDIRECT SELECTION; PARENTAL CARE; BIRDS; EVOLUTION The evolutionary basis of the latitudinal gradient in clutch-size is a major, unresolved question in life-history theory, the resolution of which is hampered by the lack of proportionate study of southern passerines. Here, we present detailed data on breeding biology and life history for an Australasian tropical granivore, the Crimson Finch (Neochmia phaeton), emphasising aspects of their life history that are atypical of southern passerines. We collected data over three breeding seasons at Mornington Wildlife Sanctuary in north-western Australia. Apparent annual survival of adults was high, at 70-96%. Crimson Finches were multi-brooded and laid 5.08 +/- 0.07 eggs per clutch. The rate of nest predation was high, with 59.7% of clutches lost to predation. Thus, Crimson Finch life history contradicts the leading explanation of the clutch-size gradient - that higher rates of nest predation and higher adult survival in southern species select for smaller clutch-sizes. Our findings are more consistent with other explanations of the clutch-size gradient, specifically those involving post-fledging parental care, diet, seasonality and phylogeny. Exploring life histories that differ from the norm may be particularly helpful in understanding latitudinal differences in these strategies. [Milenkaya, Olga; Walters, Jeffrey R.] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA; [Legge, Sarah] Australian Wildlife Conservancy, Mornington Wildlife Sanctuary, Derby, WA 6728, Australia; [Legge, Sarah] Charles Darwin Univ, Sch Environm Res, Darwin, NT 0909, Australia Milenkaya, O (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA. olm@vt.edu Australian Wildlife Conservancy We are especially grateful to our field assistants Roy Churchwell and Evan Rehm for helping to collect these data. We thank the personnel at Mornington Wildlife Sanctuary and members of the Avian Ecology Laboratory at Virginia Tech. Michelle Hall, Stephen Murphy, Benjamin Phillips, Graeme Armstrong and two anonymous reviewers provided comments on earlier drafts of the manuscript. This study was funded by supporters of the Australian Wildlife Conservancy and based out of the WildlifeLink Centre for Research and Conservation at Mornington Wildlife Sanctuary. Anders AD, 2005, CONSERV BIOL, V19, P66, DOI 10.1111/j.1523-1739.2005.00543.x; Arnaiz-Villena Antonio, 2009, Open Ornithology Journal, V2, P29; Arnqvist G, 2005, AM NAT, V165, pS26, DOI 10.1086/429350; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Auer SK, 2007, J AVIAN BIOL, V38, P278, DOI 10.1111/j.2007.0908-8857.04092.x; BIRKHEAD TR, 1992, BIOL J LINN SOC, V45, P363, DOI 10.1111/j.1095-8312.1992.tb00649.x; BRISKIE JV, 1993, AUK, V110, P875, DOI 10.2307/4088641; Carvalho CBV, 2006, CONDOR, V108, P579, DOI 10.1650/0010-5422(2006)108[579:BSOASM]2.0.CO;2; CHOUDHURY S, 1995, ANIM BEHAV, V50, P413, DOI 10.1006/anbe.1995.0256; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Flores S, 2005, INTERCIENCIA, V30, P39; Garamszegi LZ, 2005, HORM BEHAV, V47, P389, DOI 10.1016/j.yhbeh.2004.11.008; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gill F. B, 2003, ORNITHOLOGY; Griebeler EM, 2010, J EVOLUTION BIOL, V23, P888, DOI 10.1111/j.1420-9101.2010.01958.x; Griebeler EM, 2004, EVOL ECOL RES, V6, P679; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; Griffith SC, 2007, AM NAT, V169, P274, DOI 10.1086/510601; Higgins PJ, 2006, HDB AUSTR NZ ANTARCT, V7; Immelmann K., 1982, AUSTR FINCHES BUSH A; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; Johnstone R. E., 1981, BIOL SURVEY MITCHELL, P171; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; KEMPENAERS B, 1993, ORNIS SCAND, V24, P84, DOI 10.2307/3676415; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D, 1949, IBIS, V91, P455, DOI DOI 10.1111/J.1474-919X.1949.TB02294.X; MACARTHUR RH, 1964, AM NAT, V98, P387, DOI 10.1086/282334; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; Mcgregor R, 2007, IBIS, V149, P615, DOI 10.1111/j.1474-919X.2007.00670.x; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; OWENS IPF, 1995, P ROY SOC B-BIOL SCI, V261, P227, DOI 10.1098/rspb.1995.0141; Payne R. B, 2005, NESTLING MOUTH MARKI; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Pyle P, 1997, IDENTIFICATION GUI 1; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Roff Derek A., 1992; ROWLEY I, 1991, BIRD POPULATION STUD, P22; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Sankamethawee W, 2009, CONDOR, V111, P675, DOI 10.1525/cond.2009.090006; Shephard M., 1989, AVICULTURE AUSTR KEE; SKUTCH AF, 1985, NEOTROPICAL ORNITHOL, V36, P575; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; Stearns S, 1992, EVOLUTION LIFE HIST; Storr G.M., 1977, SPECIAL PUBLICATION, V7; Stutchbury BJM, 1998, BEHAV ECOL SOCIOBIOL, V43, P221, DOI 10.1007/s002650050485; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; Todd Michael K., 2002, Australian Bird Watcher, V19, P161; Todd MK, 2003, EMU, V103, P141, DOI 10.1071/MU02015; Vriends M. M., 2002, HANCOCK HOUSE ENCY E; Webb E. H, 1902, EMU, V2, P29; White GC, 1999, BIRD STUDY, V46, P120; Williams PR, 2005, AUSTRAL ECOL, V30, P79, DOI 10.1111/j.1442-9993.2004.01426.x; WYNDHAM E, 1986, AM NAT, V128, P155, DOI 10.1086/284551; YOMTOV Y, 1992, IBIS, V134, P374, DOI 10.1111/j.1474-919X.1992.tb08017.x; YOMTOV Y, 1987, AUST WILDLIFE RES, V14, P319, DOI 10.1071/WR9870319 61 12 13 0 15 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 0158-4197 1448-5540 EMU Emu 2011 111 4 312 320 10.1071/MU10088 9 Ornithology Zoology 854UC WOS:000297519000005 2019-02-21 J Kramer, VJ; Etterson, MA; Hecker, M; Murphy, CA; Roesijadi, G; Spade, DJ; Spromberg, JA; Wang, M; Ankley, GT Kramer, Vincent J.; Etterson, Matthew A.; Hecker, Markus; Murphy, Cheryl A.; Roesijadi, Guritno; Spade, Daniel J.; Spromberg, Julann A.; Wang, Magnus; Ankley, Gerald T. ADVERSE OUTCOME PATHWAYS AND ECOLOGICAL RISK ASSESSMENT BRIDGING TO POPULATION-LEVEL EFFECTS ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY English Article; Proceedings Paper SETAC Pellston Workshop APR 18-23, 2009 Forest Grove, OR SETAC Risk assessment; Chemical toxicity; Adverse outcome pathway; Population model; Pellston workshop CYCLODIENE INSECTICIDE RESISTANCE; CROAKER MICROPOGONIAS-UNDULATUS; ARYL-HYDROCARBON RECEPTOR; LIFE-HISTORY STRATEGIES; INDIVIDUAL-BASED MODEL; FRESH-WATER GASTROPOD; ENDOCRINE DISRUPTION; FISH POPULATIONS; 2 STRAINS; ECOSYSTEMS Maintaining the viability of populations of plants and animals is a key focus for environmental regulation Population level responses integrate the cumulative effects of chemical stressors on individuals as those individuals interact with and are affected by their conspecifics, competitors predators, prey habitat and other biotic and abiotic factors Models of population level effects of contaminants can integrate information from lower levels of biological organization and feed that information into higher level community and ecosystem models As individual level endpoints are used to predict population responses this requires that biological responses at lower levels of organization be translated Into a form that is usable by the population modeler In the current study we describe how mechanistic data as captured in adverse outcome pathways (AOPs) can be translated Into modeling focused on population level risk assessments First we describe the regulatory context surrounding population modeling, risk assessment and the emerging role of AOPs Then we present a succinct overview of different approaches to population modeling and discuss the types of data needed for these models We describe how different key biological processes measured at the level of the individual serve as the linkage or bridge between AOPs and predictions of population status including consideration of community level interactions and genetic adaptation Several case examples illustrate the potential for use of AOPs in population modeling and predictive ecotoxicology Finally we make recommendations for focusing toxicity studies to produce the quantitative data needed to define AOPs and to facilitate their incorporation into population modeling Environ Toxicol Chem 2011 30 64-76 (C) 2010 SETAC [Kramer, Vincent J.] Dow AgroSci, Indianapolis, IN 46268 USA; [Etterson, Matthew A.; Ankley, Gerald T.] US EPA, Duluth, MN USA; [Hecker, Markus] ENTRIX, Saskatoon, SK, Canada; [Murphy, Cheryl A.] Michigan State Univ, E Lansing, MI 48824 USA; [Roesijadi, Guritno] Pacific NW Natl Lab, Sequim, WA USA; [Spade, Daniel J.] Univ Florida, Gainesville, FL USA; [Spromberg, Julann A.] Natl Ocean & Atmospher Adm Fisheries, Seattle, WA USA; [Wang, Magnus] RIFCON, Heidelberg, Germany Kramer, VJ (reprint author), Dow AgroSci, Indianapolis, IN 46268 USA. Alvarez MD, 2006, AQUAT TOXICOL, V80, P329, DOI 10.1016/j.aquatox.2006.09.010; Andrewartha H. G., 1954, DISTRIBUTION ABUNDAN; Ankley GT, 2010, ENVIRON TOXICOL CHEM, V29, P730, DOI 10.1002/etc.34; Ankley GT, 2009, AQUAT TOXICOL, V92, P168, DOI 10.1016/j.aquatox.2009.01.013; Antonovics J., 1971, Advances in Ecological Research, V7, P1, DOI 10.1016/S0065-2504(08)60202-0; Baldwin DH, 2009, ECOL APPL, V19, P2004, DOI 10.1890/08-1891.1; Barnthouse L. W., 2007, POPULATION LEVEL ECO; BART J, 1995, ECOL APPL, V5, P411, DOI 10.2307/1942032; Bennett RS, 2007, INTEGR ENVIRON ASSES, V3, P498, DOI 10.1897/IEAM_2007-029.1; Bennett RS, 2006, HUM ECOL RISK ASSESS, V12, P762, DOI 10.1080/10807030500531489; BONNER JC, 1988, ARCH TOXICOL, V62, P311, DOI 10.1007/BF00332493; Bradbury SP, 2004, ENVIRON SCI TECHNOL, V38, p463A, DOI 10.1021/es040675s; Bradbury SP, 2003, ENVIRON TOXICOL CHEM, V22, P1789, DOI 10.1897/01-234; Brausch JM, 2009, ECOTOXICOLOGY, V18, P600, DOI 10.1007/s10646-009-0318-1; Bus JS, 2007, GENOMIC APPROACHES FOR CROSS-SPECIES EXTRAPOLATION IN TOXICOLOGY, P151; Castro LFC, 2007, AQUAT TOXICOL, V85, P57, DOI 10.1016/j.aquatox.2007.07.016; Caswell H., 2001, MATRIX POPULATION MO; Caswell H., 2000, DEMOGRAPHY ECOTOXICO, P43; CHURCHFIELD S, 1995, ACTA THERIOL, V40, P53, DOI 10.4098/AT.arch.95-7; CLARK I, 2003, ECOLOGY, V84, P1370; Clark J. S., 2007, MODELS ECOLOGICAL DA; Cook PM, 2003, ENVIRON SCI TECHNOL, V37, P3864, DOI 10.1021/es034045m; COWARDIN LM, 1979, J WILDLIFE MANAGE, V43, P18, DOI 10.2307/3800632; Daborn PJ, 2002, SCIENCE, V297, P2253, DOI 10.1126/science.1074170; DeAngelis DL, 2005, ANNU REV ECOL EVOL S, V36, P147, DOI 10.1146/annurev.ecolsys.36.102003.152644; Ellis JB, 2000, CHEMOSPHERE, V41, P85, DOI 10.1016/S0045-6535(99)00393-8; Etterson MA, 2007, AUK, V124, P432, DOI 10.1642/0004-8038(2007)124[432:PRADCO]2.0.CO;2; Fleeger JW, 2003, SCI TOTAL ENVIRON, V317, P207, DOI 10.1016/S0048-9697(03)00141-4; Gibbs P, 1987, OCEANS, V87, P1482, DOI [10.1109/OCEANS.1987.1160635, DOI 10.1109/OCEANS.1987.1160635]; GRIMM V, 2009, ECOLOGICAL MODELS RE, P77; HAHN ME, 1998, REV TOXICOL, V2, P395; Iguchi T, 2006, ENVIRON HEALTH PERSP, V114, P101, DOI 10.1289/ehp.8061; Jacob A, 2009, ANIM BEHAV, V77, P823, DOI 10.1016/j.anbehav.2008.12.006; Jager T, 2006, ECOTOXICOLOGY, V15, P305, DOI 10.1007/s10646-006-0060-x; Johnson KR, 2008, ENVIRON TOXICOL CHEM, V27, P397, DOI 10.1897/07-185R1.1; Karchner SI, 2006, P NATL ACAD SCI USA, V103, P6252, DOI 10.1073/pnas.0509950103; KHAN HM, 1982, ARCH ENVIRON CON TOX, V11, P627, DOI 10.1007/BF01056372; KREWSKI D, 2007, TOXICITY TESTING 21; Leeuwen C. J., 2007, RISK ASSESSMENT CHEM; LINCER JL, 1975, J APPL ECOL, V12, P781, DOI 10.2307/2402090; Lynch M, 2003, SCIENCE, V302, P1401, DOI 10.1126/science.1089370; MACIOROWSKI H, 1980, STP, V715, P36; MACNAIR MR, 1991, GENETICA, V84, P213, DOI 10.1007/BF00127250; Macneale KH, 2010, FRONT ECOL ENVIRON, V8, P475, DOI 10.1890/090142; MARONI G, 1987, GENETICS, V117, P739; MESA MG, 1994, J FISH BIOL, V45, P81, DOI 10.1111/j.1095-8649.1994.tb01085.x; Meyer JN, 2003, ECOL APPL, V13, P490, DOI 10.1890/1051-0761(2003)013[0490:HAAFCI]2.0.CO;2; Miller DH, 2007, ENVIRON TOXICOL CHEM, V26, P521, DOI 10.1897/06-318R.1; Morand S, 2000, P ROY SOC B-BIOL SCI, V267, P1999, DOI 10.1098/rspb.2000.1241; MOUCHES C, 1986, SCIENCE, V233, P778, DOI 10.1126/science.3755546; Munns Wayne R. Jr., 2008, P179; Murphy CA, 2005, REPROD TOXICOL, V19, P395, DOI 10.1016/j.reprotox.2004.09.006; Murphy CA, 2008, AQUAT TOXICOL, V86, P470, DOI 10.1016/j.aquatox.2007.12.009; Murphy CA, 2009, ENVIRON TOXICOL CHEM, V28, P1288, DOI 10.1897/08-304.1; MUTERO A, 1994, P NATL ACAD SCI USA, V91, P5922, DOI 10.1073/pnas.91.13.5922; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; Oehlmann J, 1996, FRESEN J ANAL CHEM, V354, P540; Oehlmann J, 2007, ECOTOXICOLOGY, V16, P29, DOI 10.1007/s10646-006-0109-x; Pastorok RA, 2003, HUM ECOL RISK ASSESS, V9, P939, DOI 10.1080/713610017; Pastorok RA, 2002, ECOLOGICAL MODELING; Pease CM, 1995, AUK, V112, P343, DOI 10.2307/4088722; Perkins EJ, 2011, ENVIRON TOXICOL CHEM, V30, P22, DOI 10.1002/etc.374; Railsback SF, 2002, ECOLOGY, V83, P1817, DOI 10.1890/0012-9658(2002)083[1817:AOHSRU]2.0.CO;2; REITER L, 2005, 600R04050 EPA; Relyea RA, 2003, ECOL APPL, V13, P1515, DOI 10.1890/02-5298; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; ROSE KA, 2009, J EXP MAR BIOL ECOL, V381, pS1883; ROUSH RT, 1987, ANNU REV ENTOMOL, V32, P361, DOI 10.1146/annurev.ento.32.1.361; Salice CJ, 2009, ARCH ENVIRON CON TOX, V56, P785, DOI 10.1007/s00244-008-9203-9; Salice CJ, 2002, ENVIRON TOXICOL CHEM, V21, P1398, DOI 10.1897/1551-5028(2002)021<1398:RTCAPI>2.0.CO;2; Sandahl JF, 2005, ENVIRON TOXICOL CHEM, V24, P136, DOI 10.1897/04-195R.1; Spromberg JA, 2005, ENVIRON TOXICOL CHEM, V24, P1532, DOI 10.1897/04-160.1; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; Stark JD, 2007, J ECON ENTOMOL, V100, P1027, DOI 10.1603/0022-0493(2007)100[1027:IERMOP]2.0.CO;2; Strong D. R., 1986, COMMUNITY ECOLOGY, P257; SUTER GW, 2000, ECOLOGICAL RISK ASSE; Thorbek P., 2009, ECOLOGICAL MODELS RE; TURCHIN P, 1995, POPULATION DYNAMICS; US Environmental Protection Agency, 1993, 600R93055 EPA; US EPA, 1998, EPA630R95002F; US Fish and Wildlife Service National Marine Fisheries Service [FWS & NMFS], 1994, FED REGISTER, V59, P34272; Villeneuve DL, 2011, ENVIRON TOXICOL CHEM, V30, P1, DOI 10.1002/etc.396; Wang M, 2007, ECOL MODEL, V205, P397, DOI 10.1016/j.ecolmodel.2007.03.003; Wang M, 2010, ENVIRON TOXICOL CHEM, V29, P1292, DOI 10.1002/etc.151; Watanabe KH, 2011, ENVIRON TOXICOL CHEM, V30, P9, DOI 10.1002/etc.373; Whitham TG, 2008, SCIENCE, V320, P492, DOI 10.1126/science.1153918; Whitham TG, 2006, NAT REV GENET, V7, P510, DOI 10.1038/nrg1877; Wiegand T, 2004, BIODIVERS CONSERV, V13, P53, DOI 10.1023/B:BIOC.0000004313.86836.ab; Wirgin I, 2004, MUTAT RES-FUND MOL M, V552, P73, DOI 10.1016/j.mrfmmm.2004.06.005; Xie LT, 2004, ENVIRON TOXICOL CHEM, V23, P1499, DOI 10.1897/03-96; YARBROUGH JD, 1986, EXPERIENTIA, V42, P851, DOI 10.1007/BF01941551; Zabel RW, 2004, ECOLOGY, V85, P795, DOI 10.1890/02-0719; Zhang XW, 2008, ENVIRON SCI TECHNOL, V42, P6762, DOI 10.1021/es800591t; Zheng WB, 1997, J EXP BIOL, V200, P2833; Zhu J, 2008, NAT GENET, V40, P854, DOI 10.1038/ng.167; 1999, FED REG, V64, P60727 96 99 107 5 104 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0730-7268 ENVIRON TOXICOL CHEM Environ. Toxicol. Chem. JAN 2011 30 1 64 76 10.1002/etc.375 13 Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology 701JM WOS:000285814200006 20963853 2019-02-21 J Arendt, JD Arendt, Jeffrey D. SIZE-FECUNDITY RELATIONSHIPS, GROWTH TRAJECTORIES, AND THE TEMPERATURE-SIZE RULE FOR ECTOTHERMS EVOLUTION English Article Adaptation; allometry; fecundity; life-history evolution; models/simulations; phenotypic plasticity BODY-SIZE; REACTION NORMS; DROSOPHILA-MELANOGASTER; PHENOTYPIC PLASTICITY; ATLANTIC SALMON; EVOLUTION; DAPHNIA; NUMBER; PREY; COMPETITION Many ectotherms show crossing growth trajectories as a plastic response to rearing temperature. As a result, individuals growing up in cool conditions grow slower, mature later, but are larger at maturation than those growing up in warm conditions. To date, no entirely satisfactory explanation has been found for why this pattern, often called the temperature-size rule, should exist. Previous theoretical models have assumed that size-specific mortality rates were most likely to drive the pattern. Here, I extend one theoretical model to show that variation in size-fecundity relationships may also be important. Plasticity in the size-fecundity relationship has rarely been considered, but a number of studies show that fecundity increases more quickly with size in cold environments than it does in warm environments. The greater increase in fecundity offsets costs of delayed maturation in cold environments, favoring a larger size at maturation. This can explain many cases of crossing growth trajectories, not just in relation to temperature. Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Arendt, JD (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. Jarendt@ucr.edu AARSSEN LW, 1992, OIKOS, V65, P225, DOI 10.2307/3545013; Angilletta MJ, 2003, AM NAT, V162, P332; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Angilletta MJ, 2004, AM NAT, V164, pE168, DOI 10.1086/425222; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; Arendt J, 2007, BIOL REV, V82, P241, DOI 10.1111/j.1469-185X.2007.00013.x; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Atkinson D., 1996, Society for Experimental Biology Seminar Series, V59, P183; Azevedo RBR, 1996, EVOLUTION, V50, P2338, DOI 10.1111/j.1558-5646.1996.tb03621.x; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Brown GP, 2007, OECOLOGIA, V154, P361, DOI 10.1007/s00442-007-0842-8; CLAUSS MJ, 1994, J ECOL, V82, P447, DOI 10.2307/2261254; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Craig JK, 2006, ECOLOGY, V87, P2366, DOI 10.1890/0012-9658(2006)87[2366:PGASPI]2.0.CO;2; Fischer K, 2000, OIKOS, V90, P372, DOI 10.1034/j.1600-0706.2000.900218.x; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; FRANCE RL, 1992, CRUSTACEANA, V62, P240, DOI 10.1163/156854092X00145; French AR, 2005, BIOTROPICA, V37, P96, DOI 10.1111/j.1744-7429.2005.04051.x; GLIWICZ ZM, 1992, OECOLOGIA, V91, P463, DOI 10.1007/BF00650317; KAPLAN RH, 1987, OECOLOGIA, V71, P273, DOI 10.1007/BF00377295; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; Kingsolver JG, 2007, J EVOLUTION BIOL, V20, P892, DOI 10.1111/j.1420-9101.2007.01318.x; Kingsolver JG, 2004, EVOLUTION, V58, P1608; Magnhagen C, 2001, FUNCT ECOL, V15, P754, DOI 10.1046/j.0269-8463.2001.00576.x; McCabe J, 1997, EVOLUTION, V51, P1164, DOI 10.1111/j.1558-5646.1997.tb03964.x; McGurk MD, 2000, CAN J ZOOL, V78, P1791, DOI 10.1139/cjz-78-10-1791; METCALFE NB, 1988, J ANIM ECOL, V57, P463, DOI 10.2307/4918; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; Oddie KR, 2000, J ANIM ECOL, V69, P903, DOI 10.1046/j.1365-2656.2000.00438.x; OKLAND F, 1993, J FISH BIOL, V42, P541, DOI 10.1111/j.1095-8649.1993.tb00358.x; PINHORN A T, 1984, Journal of Northwest Atlantic Fishery Science, V5, P161; RANTA E, 1993, ANN ZOOL FENN, V30, P299; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Scheiner SM, 1998, GENET RES, V72, P25, DOI 10.1017/S0016672398003322; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Sugiyama S, 1998, FUNCT ECOL, V12, P280, DOI 10.1046/j.1365-2435.1998.00187.x; TANNER JM, 1976, ANN HUM BIOL, V3, P109, DOI 10.1080/03014467600001231; TILLEY SG, 1968, EVOLUTION, V22, P806, DOI 10.1111/j.1558-5646.1968.tb03479.x; Weetman D, 2004, J PLANKTON RES, V26, P107, DOI 10.1093/plankt/fbh013; Wiegmann DD, 1997, ECOLOGY, V78, P111; Wootton R.J., 1979, Symposia of the Zoological Society of London, P133 46 40 42 0 49 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JAN 2011 65 1 43 51 10.1111/j.1558-5646.2010.01112.x 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 701PG WOS:000285832600005 20812979 Bronze 2019-02-21 J Swain, DP Swain, Douglas P. Life-history evolution and elevated natural mortality in a population of Atlantic cod (Gadus morhua) EVOLUTIONARY APPLICATIONS English Article age and size at maturity; Atlantic cod; fisheries-induced evolution; life history; natural mortality; probabilistic maturation reaction norm; stock collapse; stock recovery GUPPIES POECILIA-RETICULATA; FISHERIES-INDUCED EVOLUTION; SIZE-SELECTIVE MORTALITY; MATURATION REACTION NORMS; EXPLOITED FISH STOCKS; NORTHEAST ARCTIC COD; ST-LAWRENCE; NORTHWEST ATLANTIC; SOUTHERN GULF; SEXUAL MATURITY Fisheries-induced evolution has been hypothesized to delay the recovery of collapsed fish stocks through effects on their productivity. The cod stock in the southern Gulf of St. Lawrence (SGSL) collapsed in the early 1990s and has shown no recovery since then, due mainly to high natural mortality of adult cod. Age and size at maturation of SGSL cod decreased sharply over time in cohorts produced in the 1950s and 1960s, likely reflecting an evolutionary response to intensified fishing, and have remained low since then, despite severe reductions in fishing mortality over the past 15 years. A predicted consequence of early maturation is increased natural mortality due to higher costs to reproduction. Early maturation may be a cause of increases in natural mortality of SGSL cod in the 1970s but does not appear to be related to the much larger increases since then. Instead, the current high natural mortality of SGSL cod appears to be primarily a cause, rather than a consequence, of the continued early maturation in this population, now replacing fishing mortality as the agent of selection favouring early maturity. This striking example of the failure to reverse fisheries-induced evolution by relaxing fishing pressure emphasizes the need for management strategies that minimize the chances of harvest-induced genetic change. Fisheries & Oceans Canada, Gulf Fisheries Ctr, Moncton, NB E1C 9B6, Canada Swain, DP (reprint author), Fisheries & Oceans Canada, Gulf Fisheries Ctr, POB 5030, Moncton, NB E1C 9B6, Canada. doug.swain@dfo-mpo.gc.ca Barot S, 2004, EVOL ECOL RES, V6, P659; Beacham T.D., 1983, CANADIAN TECHNICAL R; BEACHAM TD, 1987, ENVIRON BIOL FISH, V19, P149, DOI 10.1007/BF00001885; BEACHAM TD, 1983, FISH B-NOAA, V81, P303; Benoit HP, 2008, CAN J FISH AQUAT SCI, V65, P2088, DOI 10.1139/F08-112; BEVERTON RJH, 1994, ICES MAR SC, V198, P482; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Burnham K. P, 2002, MODEL SELECTION MULT; Chouinard GA, 2005, CAN J FISH AQUAT SCI, V62, P1991, DOI 10.1139/f05-107; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; de Roos AM, 2006, P ROY SOC B-BIOL SCI, V273, P1873, DOI 10.1098/rspb.2006.3518; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; GALBRAITH PS, 2008, 2008001 DFO CAN SCI; Gascoigne JC, 2004, J APPL ECOL, V41, P801, DOI 10.1111/j.0021-8901.2004.00944.x; GAVARIS S, 1988, 8829 CAN ATL FISH ST; Gilbert D, 1997, CAN J FISH AQUAT SCI, V54, P57, DOI 10.1139/cjfas-54-S1-57; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; HALLIDAY RG, 1987, ENVIRON BIOL FISH, V19, P139, DOI 10.1007/BF00001884; HANDFORD P, 1977, J FISH RES BOARD CAN, V34, P954, DOI 10.1139/f77-148; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; HURLBUT T, 1990, CANADIAN MANUSCRIPT, V2082, P143; HUTCHINGS JA, 1994, OIKOS, V70, P12, DOI 10.2307/3545693; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; Hutchings JA, 2004, BIOSCIENCE, V54, P297, DOI 10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; JEAN Y, 1963, ABUNDANCE COD EGGS L; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; LETT P. F., 1980, CAN TECH REP FISH AQ, V988, P51; MAGUIRE JJ, 1983, 8351 CAN ATL FISH SC; Marshall CT, 2007, MAR ECOL PROG SER, V335, P301, DOI 10.3354/meps335301; McIntyre TM, 2003, CAN J FISH AQUAT SCI, V60, P1111, DOI 10.1139/F03-090; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Nussle S, 2009, EVOL APPL, V2, P200, DOI 10.1111/j.1752-4571.2008.00054.x; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Perez-Rodriguez A, 2009, EVOL APPL, V2, P291, DOI 10.1111/j.1752-4571.2009.00084.x; POWLES PM, 1958, J FISH RES BOARD CAN, V15, P1383, DOI 10.1139/f58-076; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; ROFF DA, 2002, LIFE HIST EVOLUTION; ROWELL CA, 1993, EXPLOITATION EVOLVIN, P44; Schwalme K, 1999, ICES J MAR SCI, V56, P303, DOI 10.1006/jmsc.1999.0458; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Shelton PA, 2006, CAN J FISH AQUAT SCI, V63, P235, DOI 10.1139/F05-253; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P372, DOI [10.1139/f02-014, 10.1139/F02-014]; Sinclair AF, 2001, ICES J MAR SCI, V58, P1, DOI 10.1006/jmsc.1999.0490; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P361, DOI 10.1139/F02-015; Stokes K, 2000, MAR ECOL PROG SER, V208, P307; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Swain DP, 2008, CAN J FISH AQUAT SCI, V65, P2315, DOI 10.1139/F08-175; Swain DP, 2000, CAN J FISH AQUAT SCI, V57, P1321, DOI 10.1139/cjfas-57-7-1321; Swain DP, 2003, FISH RES, V59, P327, DOI 10.1016/S0165-7836(02)00027-9; Swain DP, 2009, 2009037 DFO CAN SCI; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x 68 56 58 7 56 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1752-4571 EVOL APPL Evol. Appl. JAN 2011 4 1 18 29 10.1111/j.1752-4571.2010.00128.x 12 Evolutionary Biology Evolutionary Biology 690LS WOS:000285006900002 25567950 DOAJ Gold, Green Published 2019-02-21 J Dunkel, CS; Mathes, E Dunkel, Curtis S.; Mathes, Eugene The Effect of Individual Differences and Manipulated Life Expectancies on the Willingness to Engage in Sexual Coercion EVOLUTIONARY PSYCHOLOGY English Article sexual coercion; life history theory; life expectancy HISTORY STRATEGY; EVOLUTIONARY; PERSPECTIVE; RAPE; MORTALITY The role of the individual difference variables of mate value, short-term and long-term mating preferences, and life history strategy along with the manipulated variable of life expectancy were used to predict differences in the willingness to engage in sexually coercive behaviors. Short-term preferences and long-term preferences were correlated with the willingness to engage in sexual coercion at all life expectancies. Life history strategy was correlated with the willingness to engage in sexual coercion at only the shortest and longest life expectancies. Most importantly short-term and long-term mating preferences interacted with life expectancy to predict the willingness to engage in sexually coercive behaviors. Short life expectancies increased willingness in individuals with high short-term and low long-term preferences. The results are discussed in terms of the varying theories of sexual coercion with emphasis put on a life history approach. [Dunkel, Curtis S.; Mathes, Eugene] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. c-dunkel@wiu.edu BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen D. L., 2008, J EVOLUTIONARY PSYCH, V6, P25, DOI DOI 10.1556/1EP; Dunkel C., 2010, J SOCIAL EVOLUTIONAR, V4, P51, DOI DOI 10.1037/H0099301; Dunkel CS, 2010, EVOL PSYCHOL-US, V8, P492; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Figueredo A. J, 2007, ARIZONA LIFE HIST BA; Figueredo AJ, 2000, BEHAV SCI LAW, V18, P309, DOI 10.1002/1099-0798(200003/06)18:2/3<309::AID-BSL394>3.0.CO;2-5; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fisher M., 2008, J SOCIAL EVOLUTIONAR, V2, P156, DOI DOI 10.1037/H0099347; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gottschall J, 2004, J SEX RES, V41, P129, DOI 10.1080/00224490409552221; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hunter John A, 2003, Sex Abuse, V15, P27, DOI 10.1023/A:1020663723593; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; McKibbin WF, 2008, REV GEN PSYCHOL, V12, P86, DOI 10.1037/1089-2680.12.1.86; PALMER CT, 1991, J SEX RES, V28, P365, DOI 10.1080/00224499109551614; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; SISCO MM, 2008, J SEX AGGRESS, V14, P253, DOI DOI 10.1080/13552600802401283; Struckman-Johnson C, 2002, J SEX RES, V39, P217, DOI 10.1080/00224490209552144; Testa M, 2007, J CONSULT CLIN PSYCH, V75, P52, DOI 10.1037/0022-006X.75.1.52; Thomas MSC, 2009, J SPEECH LANG HEAR R, V52, P336, DOI 10.1044/1092-4388(2009/07-0144); Thornhill R, 2000, NATURAL HIST RAPE BI; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 31 8 8 2 4 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2011 9 4 588 599 12 Psychology, Experimental Psychology 882FI WOS:000299547500009 22947996 DOAJ Gold 2019-02-21 J Maguire, AJ; Menges, ES Maguire, Andrea J.; Menges, Eric S. POST-FIRE GROWTH STRATEGIES OF RESPROUTING FLORIDA SCRUB VEGETATION FIRE ECOLOGY English Article ericaceous shrubs; fire; Florida scrub; life history strategies; oaks; palmettos; resprouter Although resprouting is recognized as a key post-disturbance response for plants, few studies have closely examined post-fire growth responses of resprouting species. Following a prescribed burn in Florida scrub, we compared intraspecific and interspecific growth patterns of 16 resprouting shrub species. We then examined how resprouting growth is related to species life history strategies to understand how the resprouting response could contribute to niche differentiation and species coexistence. We defined growth by calculating relative growth rates based on height, crown area, and crown volume of resprouts. In addition, we measured the number, diameter, and height of all resprouting stems. The number and diameter of all stems present before fire were also estimated. The number of resprouting stems after the fire was higher than the number of stems present before the fire for all species. As expected, species varied significantly in their post-fire growth rates, especially between those with differing recovery modes. Resprouting shrubs that are also post-fire seeders had the lowest growth rates compared to those that resprout and grow clonally, those that only resprout, and palmettos. We also found differences in post-fire growth among species with different growth forms, with palmettos having the fastest growth, followed by shrubs, and then by sub-shrubs. Within species, tradeoffs were found between height and the density of new stems, but not between height and diameter of resprouting stems. Overall, Florida scrub species exhibit a continuum of post-fire growth rates, suggesting the coexistence of a number of successful strategies for post-fire resprouting rather than a single optimal recovery strategy. [Maguire, Andrea J.; Menges, Eric S.] Archbold Biol Stn, Venus, FL 33960 USA; [Maguire, Andrea J.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48823 USA Maguire, AJ (reprint author), Archbold Biol Stn, 123 Main Dr, Venus, FL 33960 USA. maguire8@msu.edu National Science Foundation [DEB0812717] We appreciate funding from the National Science Foundation (DEB0812717). We would like to thank C. Weekley, A. Stathos, T. Miller, S. Haller, and S. Smith for assistance in the field and with data analyses. ABRAHAMSON W G, 1984, Florida Scientist, V47, P209; Abrahamson Warren G., 2002, Florida Scientist, V65, P281; Abrahamson Warren G., 2006, Florida Scientist, V69, P69; Abrahamson WG, 2009, CASTANEA, V74, P123, DOI 10.2179/08-033.1; ABRAHAMSON WG, 1984, AM J BOT, V71, P9, DOI 10.2307/2443618; Abrahamson WG, 1996, NAT AREA J, V16, P171; ABRAHAMSON WG, 1984, AM J BOT, V71, P35, DOI 10.2307/2443621; Bellingham PJ, 2000, OIKOS, V89, P409, DOI 10.1034/j.1600-0706.2000.890224.x; Bond WJ, 2001, TRENDS ECOL EVOL, V16, P45, DOI 10.1016/S0169-5347(00)02033-4; Bond WJ, 2003, INT J PLANT SCI, V164, pS103, DOI 10.1086/374191; BOWEN BJ, 1993, ANN BOT-LONDON, V72, P7, DOI 10.1006/anbo.1993.1075; CHAPIN FS, 1990, ANNU REV ECOL SYST, V21, P423, DOI 10.1146/annurev.ecolsys.21.1.423; Clarke PJ, 2010, NEW PHYTOL, V188, P651, DOI 10.1111/j.1469-8137.2010.03508.x; Clarke PJ, 2005, J ECOL, V93, P544, DOI 10.1111/j.1365-2745.2005.00971.x; Cruz A, 2002, J VEG SCI, V13, P641, DOI 10.1658/1100-9233(2002)013[0641:RITMSE]2.0.CO;2; Del Tredici P, 2001, BOT REV, V67, P121, DOI 10.1007/BF02858075; Drewa PB, 2002, ECOLOGY, V83, P755; Duncan BW, 2004, LANDSCAPE ECOL, V19, P153, DOI 10.1023/B:LAND.0000021714.97148.ac; Falster DS, 2005, OIKOS, V111, P57, DOI 10.1111/j.0030-1299.2005.13383.x; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; GUERIN DN, 1993, B TORREY BOT CLUB, V120, P107, DOI 10.2307/2996939; Gurvich DE, 2005, AUSTRAL ECOL, V30, P789, DOI 10.1111/j.1442-9993.2005.01522.x; Hodgkinson KC, 1998, OECOLOGIA, V115, P64, DOI 10.1007/s004420050492; Johnson AF, 2002, AM MIDL NAT, V147, P237, DOI 10.1674/0003-0031(2002)147[0237:STITRS]2.0.CO;2; JOHNSON AF, 1986, AM MIDL NAT, V116, P423, DOI 10.2307/2425751; Keeley J.E., 1986, RESILIENCE MEDITERRA, P92; Knox KJE, 2005, FUNCT ECOL, V19, P690, DOI 10.1111/j.1365-2435.2005.01006.x; Konstantinidis P, 2005, FOREST ECOL MANAG, V208, P15, DOI 10.1016/j.foreco.2004.09.021; LLORET F, 1993, J VEG SCI, V4, P367, DOI 10.2307/3235595; Lloret F, 2004, GLOBAL CHANGE BIOL, V10, P2092, DOI 10.1111/j.1365-2486.2004.00870.x; Lloret F, 1999, AM J BOT, V86, P1655, DOI 10.2307/2656663; MALANSON GP, 1988, J ECOL, V76, P351, DOI 10.2307/2260598; Matlack GR, 1997, OIKOS, V80, P509, DOI 10.2307/3546624; Menges ES, 2007, AUST J BOT, V55, P261, DOI 10.1071/BT06020; Menges ES, 1998, ECOL APPL, V8, P935, DOI 10.1890/1051-0761(1998)008[0935:IEOFAM]2.0.CO;2; Menges ES, 1995, B TORREY BOT CLUB, V122, P282, DOI 10.2307/2996320; MENGES ES, 1993, J VEG SCI, V4, P375, DOI 10.2307/3235596; Myers R.L., 1990, P150; Olano JM, 2006, NEW PHYTOL, V170, P99, DOI 10.1111/j.1469-8137.2005.01634.x; Paula S, 2008, J ECOL, V96, P543, DOI 10.1111/j.1365-2745.2008.01359.x; Pausas JG, 2004, ECOLOGY, V85, P1085, DOI 10.1890/02-4094; Pausas JG, 2005, OIKOS, V109, P196, DOI 10.1111/j.0030-1299.2005.13596.x; Quevedo L, 2007, ANN FOREST SCI, V64, P883, DOI 10.1051/forest:2007070; Robbins L. E., 1992, MISCELLANEOUS PUBLIC, V8; Saha S, 2010, FIRE ECOL, V6, P13, DOI 10.4996/fireecology.0602013; SCHAFER J. L, 2010, THESIS U FLORIDA GAI; Schmalzer Paul A., 1992, Castanea, V57, P158; Slapcinsky JL, 2010, NAT AREA J, V30, P4, DOI 10.3375/043.030.0102; Takahashi MK, 2011, MOL ECOL, V20, P3730, DOI 10.1111/j.1365-294X.2011.05212.x; Vesk PA, 2004, J ECOL, V92, P310, DOI 10.1111/j.0022-0477.2004.00871.x; Vivian LM, 2010, AUSTRAL ECOL, V35, P264, DOI 10.1111/j.1442-9993.2009.02032.x; Weekley Carl W., 2008, Florida Scientist, V71, P45; Weekley CW, 2003, J TORREY BOT SOC, V130, P265, DOI 10.2307/3557545; Weekley CW, 2006, ARCHBOLD BIOL STATIO 54 15 17 0 20 ASSOC FIRE ECOLOGY EUGENE PO BOX 50412, EUGENE, OR 97405 USA 1933-9747 FIRE ECOL Fire Ecol. 2011 7 3 12 25 10.4996/fireecology.0703012 14 Ecology; Forestry Environmental Sciences & Ecology; Forestry V28VI WOS:000208707900004 2019-02-21 J Hossack, BR; Pilliod, DS Hossack, Blake R.; Pilliod, David S. AMPHIBIAN RESPONSES TO WILDFIRE IN THE WESTERN UNITED STATES: EMERGING PATTERNS FROM SHORT-TERM STUDIES FIRE ECOLOGY English Article amphibian; conservation; decline; fire effects; forest management; fragmentation; life history strategies; population; wildfire The increased frequency and severity of large wildfires in the western United States is an important ecological and management issue with direct relevance to amphibian conservation. Although the knowledge of fire effects on amphibians in the region is still limited relative to most other vertebrate species, we reviewed the current literature to determine if there are evident patterns that might be informative for conservation or management strategies. Of the seven studies that compared pre- and post-wildfire data on a variety of metrics, ranging from amphibian occupancy to body condition, two reported positive responses and five detected negative responses by at least one species. Another seven studies used a retrospective approach to compare effects of wildfire on populations: two studies reported positive effects, three reported negative effects from wildfire, and two reported no effects. All four studies that included plethodontid salamanders reported negative effects on populations or individuals; these effects were greater in forests where fire had been suppressed and in areas that burned with high severity. Species that breed in streams are also vulnerable to post-wildfire changes in habitat, especially in the Southwest. Wildfire is also important for maintaining suitable habitat for diverse amphibian communities, although those results may not be evident immediately after an area burns. We expect that wildfire will extirpate few healthy amphibian populations, but it is still unclear how populations will respond to wildfire in the context of land management (including pre-and post-fire timber harvest) and fragmentation. Wildfire may also increase the risk of decline or extirpation for small, isolated, or stressed (e.g., from drought or disease) populations. Improved understanding of how these effects vary according to changes in fire frequency and severity are critical to form more effective conservation strategies for amphibians in the western United States. [Hossack, Blake R.] US Geol Survey, No Rocky Mt Sci Ctr, Aldo Leopold Wilderness Res Inst, Missoula, MT 59801 USA; [Hossack, Blake R.] Univ Montana, Wildlife Biol Program, Missoula, MT 59812 USA; [Pilliod, David S.] US Geol Survey, Forest & Rangeland Ecosyst Sci Ctr, Snake River Field Stn, Boise, ID 83706 USA Hossack, BR (reprint author), US Geol Survey, No Rocky Mt Sci Ctr, Aldo Leopold Wilderness Res Inst, 790 E Beckwith Ave, Missoula, MT 59801 USA. blake_hossack@usgs.gov Pilliod, David/0000-0003-4207-3518 USGS Amphibian Research and Monitoring Initiative Comments by B. Rieman, S. Corn, M. Sredl, W. Lowe, two anonymous reviewers, and the editor improved the manuscript. J. Welty helped with figure 1. This work was supported by the USGS Amphibian Research and Monitoring Initiative. Agee JK, 1993, FIRE ECOLOGY PACIFIC; Arkle RS, 2010, FOREST ECOL MANAG, V259, P893, DOI 10.1016/j.foreco.2009.11.029; Backlin A.R., 2004, SURVEY RESULTS SO CA; Bagne K. E., 2009, RMRSRN41 USDA FOR SE; Batzer DP, 2000, HYDROBIOLOGIA, V441, P123, DOI 10.1023/A:1017558523802; Biek R, 2002, CONSERV BIOL, V16, P728, DOI 10.1046/j.1523-1739.2002.00433.x; Bradford DF, 2005, AMPHIBIAN DECLINES: THE CONSERVATION STATUS OF UNITED STATES SPECIES, P915; Brooks ML, 2004, BIOSCIENCE, V54, P677, DOI 10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2; Bull EL, 2006, HERPETOL CONSERV BIO, V1, P27; Charette T, 2003, CAN J FISH AQUAT SCI, V60, P584, DOI 10.1139/F03-049; Chelgren ND, 2011, ECOLOGY, V92, P408, DOI 10.1890/10-0322.1; CLARKSON RW, 1989, SOUTHWEST NAT, V34, P531, DOI 10.2307/3671513; Corn Paul Stephen, 2003, P24; Crisafulli CM, 2005, ECOLOGICAL RESPONSES TO THE 1980 ERUPTION OF MOUNT ST. HELENS, P183, DOI 10.1007/0-387-28150-9_13; Cummer MR, 2007, SOUTHWEST NAT, V52, P26, DOI 10.1894/0038-4909(2007)52[26:TCSOTE]2.0.CO;2; Dahl T. E., 1990, WETLANDS LOSSES US 1; DeBano L., 1998, FIRES EFFECTS ECOSYS; Duellman W. E., 1986, BIOL AMPHIBIANS; Dunham JB, 2007, ECOSYSTEMS, V10, P335, DOI 10.1007/s10021-007-9029-8; Dunham JB, 2003, FOREST ECOL MANAG, V178, P183, DOI 10.1016/S0378-1127(03)00061-6; Fahrig L, 2007, FUNCT ECOL, V21, P1003, DOI 10.1111/j.1365-2435.2007.01326.x; FELLERS GM, 1993, BIOL CONSERV, V65, P177, DOI 10.1016/0006-3207(93)90447-9; Ferguson HM, 2000, CAN J ZOOL, V78, P1238, DOI 10.1139/cjz-78-7-1238; Findlay CS, 2000, CONSERV BIOL, V14, P86, DOI 10.1046/j.1523-1739.2000.99086.x; Funk WC, 2005, BIOL LETT-UK, V1, P13, DOI 10.1098/rsbl.2004.0270; Gamradt SC, 1997, OECOLOGIA, V110, P546, DOI 10.1007/s004420050193; Gibbs JP, 1998, BIOL CONSERV, V86, P77, DOI 10.1016/S0006-3207(97)00173-0; Gresswell RE, 1999, T AM FISH SOC, V128, P193, DOI 10.1577/1548-8659(1999)128<0193:FAAEIF>2.0.CO;2; Guscio CG, 2008, HERPETOL CONSERV BIO, V3, P55; Halverson MA, 2003, OECOLOGIA, V134, P360, DOI 10.1007/s00442-002-1136-9; Hossack BR, 2007, ECOL APPL, V17, P1403, DOI 10.1890/06-2037.1; Hossack BR, 2006, CAN J ZOOL, V84, P1482, DOI 10.1139/Z06-143; Hossack BR, 2008, HERPETOL CONSERV BIO, V3, P46; Hossack BR, 2009, FOREST ECOL MANAG, V258, P1414, DOI 10.1016/j.foreco.2009.06.043; Karraker NE, 2006, BIOL CONSERV, V131, P132, DOI 10.1016/j.biocon.2006.02.013; Keeley JE, 2009, INT J WILDLAND FIRE, V18, P116, DOI 10.1071/WF07049; Key C. H., 2004, FIREMON FIRE EFFECTS, pLA1; Lindenmayer DB, 2006, CONSERV BIOL, V20, P949, DOI 10.1111/j.1523-1739.2006.00497.x; Major D., 2005, THESIS UTAH STATE U; Marsh DM, 2001, CONSERV BIOL, V15, P40, DOI 10.1046/j.1523-1739.2001.00129.x; Marsh DM, 2004, ECOL APPL, V14, P1882, DOI 10.1890/03-5179; Means DB, 2006, SPRINGER SER ENV MAN, P157; Mendelsohn M.B., 2005, POSTCEDAR FIRE ARROY; Metzger JP, 2009, BIOL CONSERV, V142, P1166, DOI 10.1016/j.biocon.2009.01.033; Miller MP, 2006, J HERED, V97, P561, DOI 10.1093/jhered/esl038; Morgan P, 2008, ECOLOGY, V89, P717, DOI 10.1890/06-2049.1; Mullen LB, 2010, MOL ECOL, V19, P898, DOI 10.1111/j.1365-294X.2010.04541.x; Murphy MA, 2010, ECOLOGY, V91, P252, DOI 10.1890/08-0879.1; Neckel-Oliveira S, 2006, BIOL CONSERV, V128, P308, DOI 10.1016/j.biocon.2005.09.037; Nijhuis MJ, 1998, J HERPETOL, V32, P301, DOI 10.2307/1565317; Noble P.G., 1931, COPEIA, V1931, P97, DOI [10.2307/1437329, DOI 10.2307/1437329]; Noel S, 2007, CONSERV GENET, V8, P599, DOI 10.1007/s10592-006-9202-1; Olden J. D., 2005, Animal Biodiversity and Conservation, V28, P75; Palik B, 2001, WETLANDS, V21, P532, DOI 10.1672/0277-5212(2001)021[0532:SPCAAC]2.0.CO;2; Parker JTC, 2006, 20065235 US GEOL SUR; Petranka JW, 2004, ECOL APPL, V14, P1065, DOI 10.1890/02-5394; Piha H, 2007, GLOBAL CHANGE BIOL, V13, P300, DOI 10.1111/j.1365-2486.2006.01276.x; Pilliod DS, 2003, FOREST ECOL MANAG, V178, P163, DOI 10.1016/S0378-1127(03)00060-4; Riley SPD, 2005, CONSERV BIOL, V19, P1894, DOI 10.1111/j.1523-1739.2005-00295.x; Rochester CJ, 2010, J HERPETOL, V44, P333, DOI 10.1670/08-143.1; Russell KR, 1999, WILDLIFE SOC B, V27, P374; Scrimgeour C.G., 2001, FRESHWATER BIOL, V46, P367, DOI [10.1046/j.1365-2427.2001.00682.x, DOI 10.1046/J.1365-2427.2001.00682.X]; Semlitsch RD, 2009, BIOSCIENCE, V59, P853, DOI 10.1525/bio.2009.59.10.7; Spear SF, 2008, MOL ECOL, V17, P4642, DOI 10.1111/j.1365-294X.2008.03952.x; Sredl M.S., 2000, 166 AR GAM FISH DEP; Steele CA, 2009, MOL ECOL, V18, P1629, DOI 10.1111/j.1365-294X.2009.04135.x; Stone KR, 2010, ENVIRON MANAGE, V46, P91, DOI 10.1007/s00267-010-9501-7; Stuart SN, 2004, SCIENCE, V306, P1783, DOI 10.1126/science.1103538; Swanson ME, 2011, FRONT ECOL ENVIRON, V9, P117, DOI 10.1890/090157; Trenham PC, 2005, ECOL APPL, V15, P1158, DOI 10.1890/04-1150; US Geological Survey National Amphibian Atlas, 2008, US GEOL SURV NAT AMP; Van Buskirk J, 2005, ECOLOGY, V86, P1936, DOI 10.1890/04-1237; Vredenburg VT, 2007, J ZOOL, V271, P361, DOI 10.1111/j.1469-7998.2006.00258.x; Wallace JE, 2010, J WILDLIFE MANAGE, V74, P808, DOI 10.2193/2009-207; Warren D.D., 2008, J WILDLIFE MANAGE, V72, P738, DOI [10.2193/2007-160, DOI 10.2193/2007-160]; Werner EE, 1999, COPEIA, P1, DOI 10.2307/1447379; Westerling AL, 2006, SCIENCE, V313, P940, DOI 10.1126/science.1128834 77 9 9 0 27 ASSOC FIRE ECOLOGY EUGENE PO BOX 50412, EUGENE, OR 97405 USA 1933-9747 FIRE ECOL Fire Ecol. 2011 7 2 129 144 10.4996/fireecology.0702129 16 Ecology; Forestry Environmental Sciences & Ecology; Forestry V28VH WOS:000208707800010 2019-02-21 J Sugiyama, MS Sugiyama, Michelle Scalise The forager oral tradition and the evolution of prolonged juvenility FRONTIERS IN PSYCHOLOGY English Review embodied capital; foraging niche; information exchange; mental time travel; oral tradition; prolonged juvenility; social learning; storytelling The foraging niche is characterized by the exploitation of nutrient-rich resources using complex extraction techniques that take a long time to acquire. This costly period of development is supported by intensive parental investment. Although human life history theory tends to characterize this investment in terms of food and care, ethnographic research on foraging skill transmission suggests that the flow of resources from old-to-young also includes knowledge. Given the adaptive value of information, parents may have been under selection pressure to invest knowledge - e.g., warnings, advice - in children: proactive provisioning of reliable information would have increased offspring survival rates and, hence, parental fitness. One way that foragers acquire subsistence knowledge is through symbolic communication, including narrative. Tellingly, oral traditions are characterized by an old-to-young transmission pattern, which suggests that, in forager groups, storytelling might be an important means by which adults transfer knowledge to juveniles. In particular, by providing juveniles with vicarious experience, storytelling may expand episodic memory, which is believed to be integral to the generation of possible future scenarios (i.e., planning). In support of this hypothesis, this essay reviews evidence that: mastery of foraging knowledge and skill sets takes a long time to acquire; foraging knowledge is transmitted from parent to child; the human mind contains adaptations specific to social learning; full assembly of learning mechanisms is not complete in early childhood; and forager oral traditions contain a wide range of information integral to occupation of the foraging niche. It concludes with suggestions for tests of the proposed hypothesis. Univ Oregon, Dept Anthropol, Eugene, OR 97403 USA Sugiyama, MS (reprint author), Univ Oregon, Dept Anthropol, Condon Hall, Eugene, OR 97403 USA. mscalise@uoregon.edu Anderson J., 1972, ETHOLOGICAL STUDIES, P199; ANOOSHIAN LJ, 1981, CHILD DEV, V52, P341; BALDWIN DA, 1993, J CHILD LANG, V20, P395; Baldwin DA, 1996, CHILD DEV, V67, P3135, DOI 10.2307/1131771; Baron-Cohen S, 2005, ORIGINS SOCIAL MIND, P468; Baron-Cohen S., 1995, MINDBLINDNESS; Barrett H. Clark, 2005, ORIGINS SOCIAL MIND, P438; BERKES F, 1994, ARCTIC, V47, P350; Berndt Ronald M., 1964, WORLD 1 AUSTR INTRO; BIESELE M, 1978, SOC SCI INFORM, V17, P921, DOI 10.1177/053901847801700607; Biesele M., 1993, WOMEN MEAT; Biesele M., 1976, KALAHARI HUNTER GATH, P302; Biocca E., 1970, YANOAMA NARRATIVE WH; Bird Douglas W, 2005, HUNTER GATHERER CHIL, P129; Bird RB, 2002, HUM NATURE-INT BIOS, V13, P239, DOI 10.1007/s12110-002-1009-2; BLADES M, 1992, J ENVIRON PSYCHOL, V12, P175, DOI 10.1016/S0272-4944(05)80069-6; Blurton Jones N, 1989, COMP SOCIOECOLOGY BE, P367; Blurton Jones N. G., 1994, KEY ISSUES HUNTER GA, P189; Blythe J., 1985, 21 TASO MCMAST U; Boas Franz, 1898, TRADITIONS THOMPSON, VI, P1; Bock J, 2004, HUM NATURE-INT BIOS, V15, P63, DOI 10.1007/s12110-004-1004-x; Bock J, 2002, HUM NATURE-INT BIOS, V13, P161, DOI 10.1007/s12110-002-1007-4; Bock J, 2002, HUM NATURE-INT BIOS, V13, P153, DOI 10.1007/s12110-002-1006-5; Bock J., 2005, HUNTER GATHERER CHIL, P109; Bock J., 2001, INT ENCY SOCIAL BEHA, V8, P5561; BOEHM C, 1993, CURR ANTHROPOL, V34, P227, DOI 10.1086/204166; Boehm C., 1999, HIERARCHY FOREST; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 1999, PATTERNS HUMAN GROWT; Bott E, 1971, FAMILY SOCIAL NETWOR; Boulton Michael J., 1992, P429; BOYER P., 2001, RELIG EXPLAINED; Brody H., 2002, MAPS DREAMS; Bruner J.S., 1976, PLAY ITS ROLE DEV EV; Buckley C, 2002, WORLD ARCHAEOL, V34, P26, DOI 10.1080/00438240220134241; BUTTERWORTH G, 1980, INT J BEHAV DEV, V3, P253, DOI 10.1177/016502548000300303; Byrne R. W., 1995, THINKING APE; Byrne RW, 1988, MACHIAVELLIAN INTELL; Capp Bernard, 2003, GOSSIPS MEET WOMEN F; Carey S, 2009, ORIGIN CONCEPTS; Carpenter M, 1998, INFANT BEHAV DEV, V21, P315, DOI 10.1016/S0163-6383(98)90009-1; Carpenter M, 1998, MONOGR SOC RES CHILD, V63; Chagnon N. A., 1997, YANOMAMO; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Chase R. A., 1992, CHILD ENV, V9, P3; Chesterfield R., 1977, ED TRADITIONAL FOOD, V53; Cosmides L., 2000, METAREPRESENTATIONS, P53; Csibra G, 2003, COGNITIVE SCI, V27, P111; Csibra G, 1999, COGNITION, V72, P237, DOI 10.1016/S0010-0277(99)00039-6; d'Errico F, 2005, J HUM EVOL, V48, P3, DOI 10.1016/j.jhevol.2004.09.002; de Laguna F, 1995, TALES DENA; DeMarrais K. B., 1994, CHILDRENS PLAY DIVER, P179; Downs J. F., 1966, 2 WORLDS WASHO; DRAPER P, 1988, ETHNOLOGY, V27, P339, DOI 10.2307/3773398; Draper P., 1976, KALAHARI HUNTER GATH, P199; Dunbar R, 1996, GROOMING GOSSIP EVOL; Dunbar R.I.M, 2007, GUTS BRAINS, P91; DUNBAR RIM, 1992, J HUM EVOL, V22, P469, DOI 10.1016/0047-2484(92)90081-J; Emler N., 2001, NEW HDB LANGUAGE SOC, P317; Erdoes Richard, 1998, AM INDIAN TRICKSTER; FALK D, 1984, NAT HIST, V93, P36; Fiddick L, 2000, COGNITION, V77, P1, DOI 10.1016/S0010-0277(00)00085-8; Fischer J., 1981, HDB CROSS CULTURAL D, P739; Fitch WT, 2004, VIENNA SER THEOR BIO, P275; FLANNERY R, 1962, ANTHROPOS, V57, P475; Flinn MV, 2005, EVOL HUM BEHAV, V26, P10, DOI 10.1016/j.evolhumbehav.2004.08.005; Garvey C., 1990, CHILDRENS PLAY; Gergely G, 2002, NATURE, V415, P755; GERGELY G, 1995, COGNITION, V56, P165, DOI 10.1016/0010-0277(95)00661-H; Gibson K.R., 1999, MAMMALIAN SOCIAL LEA, P351; Gibson K. R., 1999, MAMMALIAN SOCIAL LEA, V73, P57; Goncu A, 2007, PLAY DEV EVOLUTIONAR; Goodale JC, 1971, TIWI WIVES STUDY WOM; GOODWIN G, 1939, MEMOIRS AM FOLKLORE, V33; Gould R., 1980, LIVING ARCHAEOLOGY; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; Gusinde M., 1975, FOLK LIT SELKNAM IND; Hames R., 1988, HUMAN REPROD BEHAV, P237; Hames R., 1990, RISK UNCERTAINTY TRI, P89; Hamlin JK, 2007, NATURE, V450, P557, DOI 10.1038/nature06288; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; Heerwagen JH, 2002, CHILDREN AND NATURE, P29; Heffley S., 1981, HUNTER GATHERER FORA, P126; Henshilwood CS, 2002, SCIENCE, V295, P1278, DOI 10.1126/science.1067575; HEWLETT BS, 1986, AM ANTHROPOL, V88, P922; HEWLETT BS, 1991, INTIMATE FATHERS; Hill K., 1992, HUMAN NATURE, V3, P185; Hill K., 1983, ADAPTIVE RESPONSES N, P139; Hill K., 1996, ACHE LIFE HIST ECOLO; Holloway RL, 1996, HDB HUMAN SYMBOLIC E, P74; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; HRDY SB, 2005, HUNTER GATHERER CHIL, P65, DOI DOI 10.1177/1754073911430141; Jacobs E., 1959, NEHALEM TILLAMOOK TA; Jones NB, 2002, HUM NATURE-INT BIOS, V13, P199, DOI 10.1007/s12110-002-1008-3; JONES NB, 1976, KALAHARI HUNTER GATH, P325; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H., 1992, EVOLUTIONARY ECOLOGY, P167; Kaplan H., 2007, GUTS BRAINS INTEGRAT, P47; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2003, RES PERSPECT LONGEV, P69; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Kelly RL, 1995, FORAGING SPECTRUM; Konner M, 2005, HUNTER GATHERER CHIL, P19; Konner Melvin J., 2010, EVOLUTION CHILDHOOD; KONNER MJ, 1976, KALAHARI HUNTER GATH, P218; Kramer K, 2005, MAYA CHILDREN HELPER; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Kramer KL, 2002, HUM NATURE-INT BIOS, V13, P299, DOI 10.1007/s12110-002-1011-8; Kroeber A., 1980, KAROK MYTHS; Lancaster Jane B., 1983, HUMANS ADAPT BIOCULT, P33; Laughlin WS, 1968, MAN HUNTER, P304; Leacock Eleanor, 1954, MONTAGNAIS HUNTING T; Lee R. B., 1979, KUNG SAN MEN WOMEN W; LEE RB, 1984, DOBE KUNG; Leonard W. R., 2007, GUTS BRAINS INTEGRAT, P29; LESLIE AM, 1987, PSYCHOL REV, V94, P412, DOI 10.1037/0033-295X.94.4.412; Leslie AM., 1994, MAPPING MIND DOMAIN, P119, DOI DOI 10.1017/CBO9780511752902.006; LEWIS D, 1978, AM PHILOS QUART, V15, P37; LIEBENBERG L, 1990, ART TRACKING; Locke JL, 2006, BEHAV BRAIN SCI, V29, P259, DOI 10.1017/S0140525X0600906X; Long John S., 1978, ONTARIO HIST, V70, P75; Lowie R., 1918, ANTHR PAPERS AM MU 1, VXXV; MacDonald DH, 1999, CURR ANTHROPOL, V40, P501, DOI 10.1086/200047; MacDonald K., 2007, GUTS BRAINS INTEGRAT, P107; MacDonald K, 2007, HUM NATURE-INT BIOS, V18, P386, DOI 10.1007/s12110-007-9019-8; Marlowe Frank W, 2010, HADZA HUNTER GATHERE; Marlowe FW, 2005, EVOL ANTHROPOL, V14, P54, DOI 10.1002/evan.20046; Marshall L., 1976, KALAHARI HUNTER GATH, P349; Mason M., 2005, ISLANDERS REMEMBERED; McBrearty S, 2000, J HUM EVOL, V39, P453, DOI 10.1006/jhev.2000.0435; McDonald M., 1997, VOICES BAY TRADITION; MCILWRAITH TF, 1948, BELLA COOLA INDIANS, V2; MELTZOFF AN, 1995, DEV PSYCHOL, V31, P838, DOI 10.1037/0012-1649.31.5.838; Menzel C. R., 1997, MACHIAVELLIAN INTELL, P207; MITHEN SJ, 1990, THOUGHTFUL FORAGERS; Napanangka Y., 1995, FOOTPRINTS OUR LAND, P143; Nelson R.K., 1969, HUNTERS NO ICE; Nsamenang A. Bame, 1992, HUMAN DEV CULTURAL C; O'Connell F., 1999, J HUM EVOL, V36, P461; Ohmagari K, 1997, HUM ECOL, V25, P197, DOI 10.1023/A:1021922105740; OHTSUKA R, 1989, AM J PHYS ANTHROPOL, V80, P31, DOI 10.1002/ajpa.1330800105; ONeill DK, 1996, CHILD DEV, V67, P659, DOI 10.2307/1131839; Onishi KH, 2005, SCIENCE, V308, P255, DOI 10.1126/science.1107621; Onishi KH, 2007, ACTA PSYCHOL, V124, P106, DOI 10.1016/j.actpsy.2006.09.009; Opler M, 1938, MYTHS TALES JICARILL; Opler Morris Edward, 1940, MYTHS LEGENDS LIPAN; Parsons E. C., 1929, KIOWA TALES; Pellegrini AD, 2004, HUM NATURE-INT BIOS, V15, P23, DOI 10.1007/s12110-004-1002-z; Pellegrini AD, 2011, OXFORD HDB DEV PLAY; Pinker S., 1994, LANGUAGE INSTINCT; RADIN P, 1956, TRICKSTER; Ramsey Jarold, 1977, COYOTE WAS GOING THE; Rasmussen Knud, 1931, NETSILIK ESKIMOS SOC, V8; Reader SM, 2002, P NATL ACAD SCI USA, V99, P4436, DOI 10.1073/pnas.062041299; Ridington Robin, 1988, TRAIL HEAVEN KNOWLED; Robinson RS, 2008, POP STUD-J DEMOG, V62, P25, DOI 10.1080/00324720701788590; Rogers J., 1960, CONTRIBUTIONS ANTHR, V60, P14; Rogoff B., 2003, CULTURAL NATURE HUMA; Russon AE, 1997, MACHIAVELLIAN INTELL, P174; SCAIFE M, 1975, NATURE, V253, P265, DOI 10.1038/253265a0; Scalise Sugiyama M., 2005, LIT ANIMAL EVOLUTION, P177; Scalise Sugiyama Michelle, 2004, INTERDISCIPLINARY LI, V5.2, P108; Scalise Sugiyama Michelle, 2006, ANTHR SOCIAL HIST HE, P319; Scalise Sugiyama Michelle, 2008, OMETECA, V12, P24; Schacter DL, 2007, NAT REV NEUROSCI, V8, P657, DOI 10.1038/nrn2213; SCHOLNICK EK, 1990, DEV PSYCHOL, V26, P188; Senungetuk V, 1987, PLACE WINTER P TIULA; Shennan SJ, 1999, MAMMALIAN SOCIAL LEA, P367; Silverman I, 2005, HDB EVOLUTIONARY PSY, P177; Sobel E, 2000, J ANTHROPOL ARCHAEOL, V19, P276, DOI 10.1006/jaar.2000.0365; SPELKE ES, 1992, PSYCHOL REV, V99, P605, DOI 10.1037/0033-295X.99.4.605; SPERBER D, 1985, MAN, V20, P73, DOI 10.2307/2802222; Stammbach E., 1988, MACHIAVELLIAN INTELL, P309; STEEN FF, 2001, J COGNITION CULTURE, V1, P289, DOI DOI 10.1163/156853701753678305; STEPHAN H, 1981, FOLIA PRIMATOL, V35, P1, DOI 10.1159/000155963; Sterelny K, 2011, PHILOS T R SOC B, V366, P809, DOI 10.1098/rstb.2010.0301; Steward Julian, 1938, BASIN PLATEAU ABORIG; STREET B. V., 1972, ZANDE THEMES ESSASYS, P82; Sugiyama L., CREATING CO IN PRESS; Sugiyama Lawrence, 2009, STUD LIT IMAGIN, V42, P1; Sugiyama Lawrence, 2008, 20 ANN M HUM BEH EV; SUGIYAMA LS, 2000, HUMAN BEHAV ADAPTATI, P371; Sugiyama MS, 2009, J CONSCIOUSNESS STUD, V16, P94; Sugiyama MS, 2001, PHILOS LITERATURE, V25, P233, DOI 10.1353/phl.2001.0035; Sugiyama MS, 1996, HUM NATURE-INT BIOS, V7, P403, DOI 10.1007/BF02732901; Sugiyama MS, 2001, EVOL HUM BEHAV, V22, P221; Sutton-Smith B, 1986, NARRATIVE PSYCHOL ST, P67; Tomasello M, 2005, BEHAV BRAIN SCI, V28, P675, DOI 10.1017/S0140525X05000129; Tomasello M., 1999, CULTURAL ORIGINS HUM; Tonkinson Robert, 1978, MARDUDJARA ABORIGINE; Tooby J, 2001, SUB-STANCE, P6; Tooby J., 1992, ADAPTED MIND EVOLUTI, V163, P163; Tucker Bram, 2005, HUNTER GATHERER CHIL, P147; WALKER AS, 1982, J EXP CHILD PSYCHOL, V33, P514, DOI 10.1016/0022-0965(82)90063-7; Walker R, 2002, J HUM EVOL, V42, P639, DOI 10.1006/jhev.2001.0541; WELLMAN HM, 1992, ANNU REV PSYCHOL, V43, P337, DOI 10.1146/annurev.ps.43.020192.002005; Whiten A, 1997, MACHIAVELLIAN INTELL; Wiessner P., 1982, POLITICS HIST BAND S, P61; WILBERT J, 1990, FOLK LIT YANOMAMI IN; Woodward AL, 1998, COGNITION, V69, P1, DOI 10.1016/S0010-0277(98)00058-4; Yost J., 1983, ADAPTIVE RESPONSES N, P189; Yunupingu D., 1979, LAND RAINBOW SNAKE A 207 7 7 0 9 FRONTIERS RESEARCH FOUNDATION LAUSANNE PO BOX 110, LAUSANNE, 1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. 2011 2 133 10.3389/fpsyg.2011.00133 19 Psychology, Multidisciplinary Psychology V31DG WOS:000208863700144 21897825 DOAJ Gold, Green Published 2019-02-21 S Bentz, B; Campbell, E; Gibson, K; Kegley, S; Logan, J; Six, D Keane, RE; Tomback, DF; Murray, MP; Smith, CM Bentz, Barbara; Campbell, Elizabeth; Gibson, Ken; Kegley, Sandra; Logan, Jesse; Six, Diana Mountain Pine Beetle in High-Elevation Five-Needle White Pine Ecosystems FUTURE OF HIGH-ELEVATION, FIVE-NEEDLE WHITE PINES IN WESTERN NORTH AMERICA: PROCEEDINGS OF THE HIGH FIVE SYMPOSIUM, 2010 USDA Forest Service Rocky Mountain Research Station Proceedings English Proceedings Paper High 5 Symposium on the Future of High-Elevation, 5-Needle White Pines in Western North America JUN 28-30, 2010 Missoula, MT Crater Lake Inst, Crater Lake Natl Hist Assoc, Greater Yellowstone Pk Inventory & Monitor Network, Natl Pk Serv, Nat Resources Defense Council, Pk Canada, Rocky Mt Cooperat Ecosystem Studies Unit, Sierra Nevada Inventory & Monitor Network, Nat Conservancy, Upper Columbia Basin Inventory & Monitor Network, Univ Montana Coll Forestry & Conservat, US Forest Serv, No Region, US Forest Serv, Rocky Mt Res Stn DENDROCTONUS-PONDEROSAE; BARK BEETLES; BRITISH-COLUMBIA; NORTH-AMERICA; COLEOPTERA; SCOLYTIDAE; FUNGI; DYNAMICS; FORESTS; CANADA Across western North America mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae), populations are growing at exponential rates in pine ecosystems that span a wide range of elevations. As temperature increased over the past several decades, the flexible, thermally-regulated life-history strategies of mountain pine beetle have allowed for increased population success in numerous habitats. Of particular concern are the high-elevation five-needle white pines that are currently being infested. In a recent study of high-elevation whitebark pine. forests, mountain pine beetles from multiple generations were found killing pines within a single summer. These generations included parent beetles that overwintered and emerged to attack new host trees, adult beetles that developed in a single year (univoltine), and adult beetles that required two years for life-cycle completion (semivoltine). The occurrence of univoltine brood emerging from host trees at elevations above 2600 m is potentially due to warming temperatures in recent years. To test if warming temperatures are a contributing factor, mountain pine beetle thermal suitability was simulated using historical temperatures estimated for a single high-elevation whitebark pine site in Wyoming. Although there was substantial variability among years, model predictions for this high-elevation site suggest that thermal conditions in the late 20th and early 21st century have been increasingly conducive to mountain pine beetle univoltine lifecycles, and well within the species cold tolerance limits. Predictions also suggest that in the late 1920s and early 1930s conditions were thermally suitable for mountain pine beetle univoltine lifecycle timing, although extreme cold temperatures in the early 1930s may have resulted in high mountain pine beetle larval mortality. We briefly discuss the implications of these results to past trends in high-elevation white pine mortality. The role of temperature in mountain pine beetle population success, genetic variability among populations, fungal associates, and management implications for high elevation white pine forests are also discussed. [Bentz, Barbara] US Forest Serv, USDA, Rocky Mt Res Stn, Logan, UT 84321 USA; [Campbell, Elizabeth] Nat Resources Canada, Canadian Forest Serv, Victoria, BC, Canada; [Gibson, Ken] US Forest Serv, USDA, Forest Hlth Protect, Missoula, MT USA; [Kegley, Sandra] US Forest Serv, USDA, Forest Hlth Protect, Coeur Dalene, ID USA; [Logan, Jesse] US Forest Serv, USDA, Rocky Mt Res Stn, Emigrant, MT USA; [Six, Diana] Univ Montana, Dept Ecosyst & Conservat Sci, Missoula, MT 59812 USA Bentz, B (reprint author), US Forest Serv, USDA, Rocky Mt Res Stn, Logan, UT 84321 USA. Adams AS, 2007, ENVIRON ENTOMOL, V36, P64, DOI 10.1603/0046-225X(2007)36[64:TVIMAP]2.0.CO;2; AMMAN G D, 1973, Environmental Entomology, V2, P541; Amman G.D., 1983, INT145 USDA FOR SERV; Arno S. F., 1986, WEST J APPL FOR, V9, P92; Baker B. H., 1971, INT151 USDA FOR SERV; Bentz B., 2007, P C WHIT PIN PAC COA; Bentz B., 2011, DENDROCTONU IN PRESS; Bentz BJ, 2010, BIOSCIENCE, V60, P602, DOI 10.1525/bio.2010.60.8.6; Bentz BJ, 1999, ENVIRON ENTOMOL, V28, P577, DOI 10.1093/ee/28.4.577; BENTZ BJ, 1991, CAN ENTOMOL, V123, P1083, DOI 10.4039/Ent1231083-5; Bentz BJ, 2006, CAN J FOREST RES, V36, P351, DOI 10.1139/X05-241; Bentz BJ, 2006, ANN ENTOMOL SOC AM, V99, P189, DOI 10.1603/0013-8746(2006)099[0189:ECOFAW]2.0.CO;2; Bentz BJ, 2001, CAN ENTOMOL, V133, P375, DOI 10.4039/Ent133375-3; Bleiker KP, 2007, ENVIRON ENTOMOL, V36, P1384, DOI 10.1603/0046-225X(2007)36[1384:DBOFAT]2.0.CO;2; Brunelle A, 2008, FOREST ECOL MANAG, V255, P836, DOI 10.1016/j.foreco.2007.10.008; Campbell E., 2007, NUTCRACKER NOTES, V12, P13; DE LEON D., 1934, Journal of Forestry, V32, P430; Gilbert E, 2004, B MATH BIOL, V66, P1821, DOI 10.1016/j.blum.2004.04.003; Hastings FL, 2001, ENVIRON ENTOMOL, V30, P803, DOI 10.1603/0046-225X-30.5.803; Hicke JA, 2006, J GEOPHYS RES-BIOGEO, V111, DOI 10.1029/2005JG000101; Jackson S., 2008, PROJECT REPORT; Kegley S, 2009, 0903 USDA FOR SERV; Kipfmueller K. F., 2002, RMRS99611RJVA; Klepzig KD, 2004, SYMBIOSIS, V37, P189; Lee S, 2006, FUNGAL DIVERS, V22, P91; Logan JA, 1999, ENVIRON ENTOMOL, V28, P924, DOI 10.1093/ee/28.6.924; LOGAN JA, 1986, CAN ENTOMOL, V118, P361, DOI 10.4039/Ent118361-4; Macfarlane W. W., 2010, USING LANDSCAPE ASSE; Perkins DL, 1996, CAN J FOREST RES, V26, P2123, DOI 10.1139/x26-241; Raffa KF, 2008, BIOSCIENCE, V58, P501, DOI 10.1641/B580607; Rice AV, 2008, FOREST PATHOL, V38, P113, DOI 10.1111/j.1439-0329.2007.00525.x; Safranyik L., 2006, The mountain pine beetle: a synthesis of biology, management and impacts on lodgepole pine, P3; Safranyik L, 2010, CAN ENTOMOL, V142, P415, DOI 10.4039/n08-CPA01; Safranyik L., 1998, Journal of the Entomological Society of British Columbia, V95, P81; Six DL, 2007, MICROB ECOL, V54, P112, DOI 10.1007/s00248-006-9178-x; Stahl K, 2006, CLIM RES, V32, P13, DOI 10.3354/cr032013; Waring KM, 2005, WEST J APPL FOR, V20, P110; Wong C. M, TRIPLE WHAMMY UNPUB 38 6 6 0 0 US DEPT AGR, FOREST SERV ROCKY MT FOREST & RANGE EXPTL STN FT COLLINS FT COLLINS, CO 80526 USA 1945-0672 US FOR SERV RMRS-P USDA For. Ser. Rocky Mt. Res. Stat. Proc. 2011 63 78 84 7 Forestry Forestry BG8OL WOS:000392553300015 2019-02-21 J Bruce, RC Bruce, Richard C. COMMUNITY ASSEMBLY IN THE SALAMANDER GENUS DESMOGNATHUS HERPETOLOGICAL MONOGRAPHS English Article Body size; Interspecific competition; Intraguild predation; Life history; Niche assembly; Salamander BLACK-BELLIED SALAMANDER; LIFE-HISTORY EVOLUTION; NORTH-AMERICAN SALAMANDERS; ADULT BODY-SIZE; PLETHODONTID SALAMANDERS; INTRAGUILD PREDATION; DUSKY SALAMANDERS; LEUROGNATHUS-MARMORATUS; FUSCUS AMPHIBIA; BEHAVIORAL INTERACTIONS In this paper, 1 present a model of community assembly in the salamander genus Desmognathus based on a survey of assemblage composition throughout the range of the genus. The 21 species of Desmognathus can be sorted into three life-history categories, namely, stream, streamside, and forest, based on duration of the larval phase and a suite of other life-history and morphological traits that are correlated with habitat use of the several life-history stages. in most assemblages having all three life-history categories, stream species are larger than streamside species, and the latter species are larger than forest species. An evaluation of the literature on interspecific competition and predation (i.e., intraguild predation) in Desmognathus indicates that these processes are important in structuring assemblages of these salamanders. Thus, niche assembly, as opposed to dispersal assembly (i.e., neutral model), seems to be a valid model of community assembly in Desmognathus. Only streamside species occur throughout the range of the genus, and these forms alone are found around the periphery of the range. One to three streamside species form the base of extant assemblages of Desmognathus, with stream and forest species contributing to the. more diverse assemblages of the southern Appalachian region. The maximum numbers are two or three streamside species, two or three stream species, and two forest species, although assemblages of more than six species are undocumented. I suggest that the rapid evolutionary diversification in body size and life history in Desmognathus that has generated the complex assemblages of this genus in the Appalachians has been facilitated by a high level of life-history symmetry in these salamanders. [Bruce, Richard C.] Western Carolina Univ, Dept Biol, Cullowhee, NC 28723 USA Bruce, RC (reprint author), 200 Breeze Way, Aurora, NC 27806 USA. cbruce1563@aol.com Highlands Biological Station; Western Carolina University I thank Highlands Biological Station and Western Carolina University for support of my research on Desmognathus over many years. S. Tilley, C. Camp, and S. Trauth answered various questions based on their expertise on Desmognathus. K. Dodd graciously provided access to his database on Desmognathus in Great Smoky Mountains National Park. J. Bruce assisted with the graphics. Highlands Biological Station issued animal care and use permits. I thank Coweeta LTER and Coweeta Hydrologic Laboratory for permission to conduct fieldwork in the Coweeta Creek watershed. Collecting permits were provided by the North Carolina Wildlife Resources Commission. Preserved specimens have been deposited in the herpetological collection of the North Carolina State Museum of Natural Sciences. Abrams PA, 2010, J THEOR BIOL, V264, P1033, DOI 10.1016/j.jtbi.2010.02.045; Adams DC, 2007, ECOLOGY, V88, P1292, DOI 10.1890/06-0697; Anderson JA, 2003, HERPETOL MONOGR, V17, P75, DOI 10.1655/0733-1347(2003)017[0075:SOTDOC]2.0.CO;2; BEACHY CK, 1993, BRIMLEYANA, P71; Beamer DA, 2008, MOL PHYLOGENET EVOL, V47, P143, DOI 10.1016/j.ympev.2008.01.015; Beeravolu CR, 2009, ECOL MODEL, V220, P2603, DOI 10.1016/j.ecolmodel.2009.06.041; Berger Joel, 2010, P241; Bernardo J, 2003, J ZOOL, V259, P411, DOI 10.1017/S0952836903003406; Bishop S. C., 1941, Bulletin of the New York State Museum, VNo. 324, P1; BISHOP S. C., 1923, COPEIA, V118, P64; Brown JH, 2000, AM NAT, V156, P314, DOI 10.1086/303385; Brown JH, 2002, AM NAT, V160, P815, DOI 10.1086/343882; BRUCE R C, 1991, Herpetological Review, V22, P44; Bruce RC, 1996, COPEIA, P783, DOI 10.2307/1447639; BRUCE RC, 1993, COPEIA, P313; BRUCE RC, 1985, COPEIA, P847; BRUCE RC, 1988, HERPETOLOGICA, V44, P218; Bruce RC, 2005, HERPETOL MONOGR, V19, P180, DOI 10.1655/0733-1347(2005)019[0180:TOCLCA]2.0.CO;2; BRUCE RC, 1977, J HERPETOL, V11, P246, DOI 10.2307/1563160; Bruce RC, 2002, HERPETOLOGICA, V58, P181, DOI 10.1655/0018-0831(2002)058[0181:SAOVIA]2.0.CO;2; BRUCE RC, 1990, J HERPETOL, V24, P126, DOI 10.2307/1564219; Bruce RC, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P243; Bruce RC, 2007, EVOL ECOL, V21, P703, DOI 10.1007/s10682-006-9140-x; Bruce RC, 2010, HERPETOLOGICA, V66, P393, DOI 10.1655/HERPETOLOGICA-D-10-00013.1; Bruce RC, 2008, HERPETOL MONOGR, V22, P31, DOI 10.1655/07-015.1; Bruce RC, 2009, COPEIA, P714, DOI 10.1643/CH-08-234; BURTON T M, 1976, Journal of Herpetology, V10, P187, DOI 10.2307/1562980; Camp CD, 2006, SOUTHEAST NAT, V5, P669, DOI 10.1656/1528-7092(2006)5[669:RLHODF]2.0.CO;2; Camp CD, 1997, J HERPETOL, V31, P613, DOI 10.2307/1565625; Camp CD, 2000, CAN J ZOOL, V78, P1712, DOI 10.1139/cjz-78-10-1712; Camp CD, 2002, HERPETOLOGICA, V58, P471, DOI 10.1655/0018-0831(2002)058[0471:ANSOBS]2.0.CO;2; CARR DE, 1985, J HERPETOL, V19, P507, DOI 10.2307/1564204; Castanet J, 1996, HERPETOLOGICA, V52, P160; Charnov Eric L., 1993, P1; Chippindale PT, 2004, EVOLUTION, V58, P2809; Crespi EJ, 2003, MOL ECOL, V12, P969, DOI 10.1046/j.1365-294X.2003.01797.x; Crespi EJ, 2010, HERPETOLOGICA, V66, P283, DOI 10.1655/HERPETOLOGICA-D-09-00002.1; DANSTEDT RT, 1975, ECOLOGY, V56, P1054, DOI 10.2307/1936146; Daugherty MP, 2007, OIKOS, V116, P662, DOI 10.1111/j.2007.0036-1299.15378.x; DAVIC RD, 1991, J HERPETOL, V25, P108, DOI 10.2307/1564806; DAVIC RD, 1983, COPEIA, P1101, DOI 10.2307/1445120; Deban SM, 2002, ZOOL J LINN SOC-LOND, V134, P375, DOI 10.1046/j.1096-3642.2002.00004.x; Diamond J.M., 1975, P342; Dodd C. Kenneth Jr, 1998, Florida Scientist, V61, P38; DUNDEE HA, 1989, AMPHIBIANS REPTILES; DUNN ER, 1926, SALAMANDERS FAMILY P; Fauth JE, 1996, AM NAT, V147, P282, DOI 10.1086/285850; Fauth John E., 1998, P394; FORMANOWICZ DR, 1993, HERPETOLOGICA, V49, P265; Fox BJ, 1987, EVOL ECOL, V1, P201, DOI 10.1007/BF02067551; Gotelli NJ, 2002, ECOLOGY, V83, P2091, DOI 10.2307/3072040; Grant EHC, 2005, AM MIDL NAT, V153, P348, DOI 10.1674/0003-0031(2005)153[0348:SSSRAA]2.0.CO;2; Grant P. R., 2008, WHY SPECIES MULTIPLY; Grant PR, 2006, SCIENCE, V313, P224, DOI 10.1126/science.1128374; Gravel D, 2006, ECOL LETT, V9, P399, DOI 10.1111/j.1461-0248.2006.00884.x; Grover MC, 2000, COPEIA, P156, DOI 10.1643/0045-8511(2000)2000[0156:DOSDAM]2.0.CO;2; Hairston N. G, 1987, COMMUNITY ECOLOGY SA; Hairston Nelson G. Sr., 1996, P161, DOI 10.1016/B978-012178075-3/50008-8; HAIRSTON NG, 1949, ECOL MONOGR, V19, P49, DOI 10.2307/1943584; HAIRSTON NG, 1986, AM NAT, V127, P266, DOI 10.1086/284485; Hall RJ, 2011, ECOLOGY, V92, P352, DOI 10.1890/09-2314.1; HARRISON JR, 1967, AM MIDL NAT, V77, P356, DOI 10.2307/2423347; Hining KJ, 2005, SOUTHEAST NAT, V4, P679, DOI 10.1656/1528-7092(2005)004[0679:PSALHA]2.0.CO;2; HOLOMUZKI JR, 1980, HERPETOLOGICA, V36, P109; Holt RD, 1997, AM NAT, V149, P745, DOI 10.1086/286018; Holt RD, 2007, ECOLOGY, V88, P2706, DOI 10.1890/06-1525.1; Holt Robert D., 2010, P301; HOM CL, 1988, AM NAT, V131, P71, DOI 10.1086/284774; Hubbell Stephen P., 2001, V32, pi; HUHEEY JE, 1973, ECOL MONOGR, V43, P59, DOI 10.2307/1942159; Johnson BR, 2005, CAN J FISH AQUAT SCI, V62, P301, DOI 10.1139/F04-197; Jones MT, 2006, MOL PHYLOGENET EVOL, V38, P280, DOI 10.1016/j.ympev.2005.05.007; JONES RL, 1986, HERPETOLOGICA, V42, P323; JONES RL, 1981, BRIMLEYANA, V7, P95; JUTERBOCK JE, 1984, J HERPETOL, V18, P240, DOI 10.2307/1564077; JUTERBOCK JE, 1978, J HERPETOL, V12, P217, DOI 10.2307/1563410; KARLIN AA, 1984, COPEIA, P343, DOI 10.2307/1445190; KEEN WH, 1984, ANIM BEHAV, V32, P58, DOI 10.1016/S0003-3472(84)80324-3; KEEN WH, 1985, OECOLOGIA, V66, P437, DOI 10.1007/BF00378312; KEEN WH, 1982, ECOLOGY, V63, P94, DOI 10.2307/1937035; KLEEBERGER SR, 1984, ECOLOGY, V65, P1846, DOI 10.2307/1937782; Kondoh M, 2008, P NATL ACAD SCI USA, V105, P16631, DOI 10.1073/pnas.0805870105; Kozak KH, 2006, EVOLUTION, V60, P2604, DOI 10.1111/j.0014-3820.2006.tb01893.x; Kozak KH, 2009, EVOLUTION, V63, P1769, DOI 10.1111/j.1558-5646.2009.00680.x; Kozak KH, 2005, EVOLUTION, V59, P2000; KRZYSIK A J, 1979, Annals of Carnegie Museum, V48, P111; KRZYSIK AJ, 1979, ECOL MONOGR, V49, P173, DOI 10.2307/1942512; MAC ARTHUR ROBERT H., 1967; Macey JR, 2005, CLADISTICS, V21, P194, DOI 10.1111/j.1096-0031.2005.00054.x; MARTOF BERNARDS, 1962, AMER MIDLAND NAT, V67, P1, DOI 10.2307/2422814; MARTOF BS, 1957, ECOLOGY, V38, P494, DOI 10.2307/1929894; McCoy MW, 2009, OIKOS, V118, P87, DOI 10.1111/j.1600-0706.2008.16878.x; MEANS D B, 1974, Bulletin of the Florida State Museum Biological Sciences, V18, P1; MEANS D B, 1970, Herpetologica, V26, P396; MEANS D. B., 1999, DESMOGNATHUS AURICUL, P6811; MEANS DB, 1989, HERPETOLOGICA, V45, P37; Means DB, 1975, J BIOGEOGR, V2, P253; MOUNT R. H., 1975, REPTILES AMPHIBIANS; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Mylius SD, 2001, AM NAT, V158, P259, DOI 10.1086/321321; ORGAN JA, 1961, ECOL MONOGR, V31, P189, DOI 10.2307/1950754; ORGAN JAMES A., 1961, AMER MIDLAND NAT, V66, P384, DOI 10.2307/2423037; Petranka JW, 2005, FOREST ECOL MANAG, V210, P443, DOI 10.1016/j.foreco.2005.02.040; PFINGSTEN RA, 1989, OHIO BIOL SURVEY B, V7; Rissler LJ, 2004, AM NAT, V164, P201, DOI 10.1086/422200; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROFF DA, 2002, LIFE HIST EVOLUTION; Rosenheim JA, 2007, ECOLOGY, V88, P2679, DOI 10.1890/07-0790.1; ROUDEBUSH RE, 1987, ECOLOGY, V68, P1453, DOI 10.2307/1939228; RUBENSTEIN N M, 1969, Journal of Herpetology, V3, P33, DOI 10.2307/1563222; SALTHE SN, 1969, AM MIDL NAT, V81, P467, DOI 10.2307/2423983; Scheffer M, 2006, P NATL ACAD SCI USA, V103, P6230, DOI 10.1073/pnas.0508024103; Schluter D, 1998, ENDLESS FORMS, P114; Schreiber S, 2008, ECOL LETT, V11, P576, DOI 10.1111/j.1461-0248.2008.01171.x; SCHWENK K, 1993, BIOL J LINN SOC, V49, P141, DOI 10.1111/j.1095-8312.1993.tb00895.x; SOUTHERLAND MT, 1986, COPEIA, P235, DOI 10.2307/1444918; SOUTHERLAND MT, 1986, ECOLOGY, V67, P175, DOI 10.2307/1938516; SOUTHERLAND MT, 1986, COPEIA, P731, DOI 10.2307/1444957; SOUTHERLAND MT, 1986, ECOLOGY, V67, P721, DOI 10.2307/1937695; SWEET SS, 1980, AM ZOOL, V20, P643; SWEET SS, 1973, THESIS U CALIFORNIA; Takimoto G, 2007, THEOR POPUL BIOL, V72, P264, DOI 10.1016/j.tpb.2007.04.005; TILLEY SG, 1973, AM MIDL NAT, V89, P394, DOI 10.2307/2424043; TILLEY SG, 1980, COPEIA, P806, DOI 10.2307/1444460; TILLEY SG, 1993, HERPETOLOGICA, V49, P154; TILLEY SG, 1968, EVOLUTION, V22, P806, DOI 10.1111/j.1558-5646.1968.tb03479.x; Tilley Stephen G., 1996, Herpetological Monographs, V10, P1, DOI 10.2307/1466979; Tilman D, 2004, P NATL ACAD SCI USA, V101, P10854, DOI 10.1073/pnas.0403458101; Titus TA, 1996, SYST BIOL, V45, P451, DOI 10.2307/2413525; Trauth S.E., 1990, Arkansas Academy of Science Proceedings, V44, P107; Urbani P, 2010, ECOL MODEL, V221, P2628, DOI 10.1016/j.ecolmodel.2010.08.009; Verdy A, 2010, J THEOR BIOL, V262, P116, DOI 10.1016/j.jtbi.2009.09.011; VOSS SR, 1995, J HERPETOL, V29, P493, DOI 10.2307/1565011; WAKE D. B., 1966, MEMOIRS SO CALIFORNI, V4, P1; Wake DB, 2011, SCIENCE, V331, P1032, DOI 10.1126/science.1188545; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB; Wilder IW, 1913, BIOL BULL-US, V24, P251, DOI 10.2307/1536169; Wooten JA, 2010, CONSERV GENET, V11, P835, DOI 10.1007/s10592-009-9916-y 138 11 11 0 15 ALLEN PRESS INC LAWRENCE 810 E 10TH ST, LAWRENCE, KS 66044 USA 0733-1347 1938-5137 HERPETOL MONOGR Herpetol. Monogr. 2011 25 1 24 24 Zoology Zoology 883UE WOS:000299659600001 2019-02-21 J Varricchio, DJ Varricchio, David J. A distinct dinosaur life history? HISTORICAL BIOLOGY English Article; Proceedings Paper 4th International Symposium on Dinosaur Eggs, Babies AUG, 2009 Bozeman, MT dinosaurs; life history; sociality; parental care; oviparity; taphonomy 2 MEDICINE FORMATION; LONG-BONE HISTOLOGY; REPUBLIC-OF-CHINA; PARENTAL-CARE; GROWTH-RATES; THEROPOD DINOSAUR; TROODON-FORMOSUS; SAUROPOD DINOSAURS; UNDERSTANDING ENDOTHERMY; ORNITHISCHIAN DINOSAUR Five factors, mobile terrestrial lifestyle, oviparity, parental care, multi-year maturation and juvenile sociality, contribute to a distinct life history for Mesozoic dinosaurs in comparison to extant archosaurs and mammals. Upright, para-sagittal gait reflects several synapomorphies of Dinosauria, and wide histological sampling suggests that multi-year maturation typified dinosaurs across a range of body sizes. Fossil support for juvenile sociality exceeds that for either oviparity or parental care. Implications of these factors include temporal segregation of adults for an extended, perhaps months-long reproductive cycle; spatial separation of adults and perhaps hatchlings to suitable nesting sites; increased likelihood for territoriality; reduced potential for long migrations; intraspecific niche segregation by age; population and community structure and macroevolutionary patterns. Fossil evidence for oviparity, parental care and juvenile sociality consists of combinations of adults, juveniles, embryos, eggs or traces and emphasises the importance of bonebeds and taphonomy in understanding dinosaur life-history strategies. Oviparity and parental care, predicted for dinosaurs by their extant phylogenetic bracket, have the least fossil support and cautions against overextending parsimonious interpretations to extinct taxa with the risk of obscuring novel or intermediate behaviours. Given the great diversity of Mesozoic dinosaurs, the proposed life history is hypothesised to represent only a general tendency. Montana State Univ, Dept Earth Sci, Bozeman, MT 59717 USA Varricchio, DJ (reprint author), Montana State Univ, Dept Earth Sci, Bozeman, MT 59717 USA. djv@montana.edu ALEXANDER RM, 1985, ZOOL J LINN SOC-LOND, V83, P1, DOI 10.1111/j.1096-3642.1985.tb00871.x; Alexander RM, 2002, INTEGR COMP BIOL, V42, P1060, DOI 10.1093/icb/42.5.1060; Alexander RM, 1998, J AVIAN BIOL, V29, P387, DOI 10.2307/3677157; Angilletta MJ, 2003, AM NAT, V162, P821; Bakker R. T, 1986, DINOSAUR HERESIES; Bakker Robert T., 1997, P51; Bakker RT, 2004, LIFE O PAST, P301; BAKKER RT, 1974, NATURE, V248, P168, DOI 10.1038/248168a0; Balanoff AM, 2008, NATURWISSENSCHAFTEN, V95, P493, DOI 10.1007/s00114-008-0347-2; BEHRENSMEYER AK, 1979, PALEOBIOLOGY, V5, P12; Bell PR, 2008, ALCHERINGA, V32, P271, DOI 10.1080/03115510802096101; Berger J, 2001, P ROY SOC B-BIOL SCI, V268, P131, DOI 10.1098/rspb.2000.1341; BOARMAN WI, 1999, BIRDS N AM ONLINE, pCH476; BONAPARTE J F, 1979, Ameghiniana, V16, P173; BRANDT LA, 1991, J HERPETOL, V25, P419, DOI 10.2307/1564763; Britt Brooks B., 1994, P256; Buffetaut E, 2005, NATURWISSENSCHAFTEN, V92, P477, DOI 10.1007/s00114-005-0022-9; Bybee PJ, 2006, J MORPHOL, V267, P347, DOI 10.1002/jmor.10406; CARPENTER K., 1999, EGGS NESTS DINOSAUR; Carpenter Kenneth, 1994, P265; Carrano MT, 1998, PALEOBIOLOGY, V24, P450; Carrano MT, 1999, J ZOOL, V247, P29, DOI 10.1111/j.1469-7998.1999.tb00190.x; Carrano MT, 2000, PALEOBIOLOGY, V26, P489, DOI 10.1666/0094-8373(2000)026<0489:HATEOD>2.0.CO;2; CARRIERE Y, 1995, OECOLOGIA, V102, P389, DOI 10.1007/BF00329806; CASE TJ, 1978, PALEOBIOLOGY, V4, P320; CASTANET J, 1993, BONE GROWTH, P245; Chen PJ, 1998, NATURE, V391, P147, DOI 10.1038/34356; CHENG YN, 2008, ACTA GEOL SIN-ENGL, V86, P1089; Chiappe L. M., 2007, GLORIFIED DINOSAURS; Chiappe LM, 1998, NATURE, V396, P258, DOI 10.1038/24370; Chinsamy A, 1995, PALEOBIOLOGY, V21, P561; CHINSAMY A, 1995, J VERTEBR PALEONTOL, V15, P96, DOI 10.1080/02724634.1995.10011209; Chinsamy A, 1998, J VERTEBR PALEONTOL, V18, P385, DOI 10.1080/02724634.1998.10011066; CHINSAMY A, 1990, Palaeontologia Africana, V27, P77; Chinsamy A, 2009, ANAT REC, V292, P1478, DOI 10.1002/ar.20991; Chinsamy Anusuya, 1993, Modern Geology, V18, P319; Chinsamy Anusuya, 1994, Paleontological Society Special Publication, V7, P213; Clark James M., 1999, American Museum Novitates, V3265, P1; COOMBS JR W.P., 1989, GEOLOGICAL SOC AM SP, P21; COOMBS WP, 1978, Q REV BIOL, V53, P393, DOI 10.1086/410790; Cooper LN, 2008, P ROY SOC B-BIOL SCI, V275, P2609, DOI 10.1098/rspb.2008.0912; Coria Rodolfo A., 1994, Gaia, V10, P209; Currie Philip J., 2000, Gaia (Lisboa), V15, P271; CURRIE PJ, 1984, 3 S MES TERR EC, P52; Curry KA, 1999, J VERTEBR PALEONTOL, V19, P654, DOI 10.1080/02724634.1999.10011179; Davies SJJF, 2002, RATITES TINAMOUS; DAYAN T, 1989, ECOLOGY, V70, P1526, DOI 10.2307/1938210; de Ricqles A, 2001, NEW PERSPECTIVES ON THE ORIGIN AND EARLY EVOLUTION OF BIRDS, P411; de Ricqles A, 1980, COLD LOOK WARM BLOOD, P103; de Ricqles A, 2008, ANN PALEONTOL, V94, P57, DOI 10.1016/j.annpal.2008.03.002; Deeming DC, 2006, PALAEONTOLOGY, V49, P171, DOI 10.1111/j.1475-4983.2005.00536.x; DEEMING DC, 2009, 4 INT S DIN EGGS BAB; DEEMING DC, 2002, AVIAN INCUBATION BEH, P1; Del Hoyo J., 1992, HDB BIRDS WORLD; DODSON P, 1975, J ZOOL, V175, P315; Dong Zhiming, 1990, Vertebrata Palasiatica, V28, P43; Dong ZM, 1996, CAN J EARTH SCI, V33, P631, DOI 10.1139/e96-046; DUNHAM AE, 1989, PALEOBIOLOGY DINOSAU, V238, P1; Elphick C, 2001, SIBLEY GUIDE BIRD LI; Erickson GM, 2004, NATURE, V430, P772, DOI 10.1038/nature02699; Erickson GM, 2005, TRENDS ECOL EVOL, V20, P677, DOI 10.1016/j.tree.2005.08.012; Erickson GM, 2000, ZOOL J LINN SOC-LOND, V130, P551, DOI 10.1006/zjls.2000.0243; Erickson GM, 2001, NATURE, V412, P429, DOI 10.1038/35086558; ERICKSON GM, 2007, BIOL LETT, V3, P453; Erickson GM, 2006, SCIENCE, V313, P213, DOI 10.1126/science.1125721; Erickson GM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007390; Erickson GM, 2009, ANAT REC, V292, P1514, DOI 10.1002/ar.20992; Estes RD, 2006, NAT HIST, V115, P28; Farlow JO, 2000, AM ZOOL, V40, P640, DOI 10.1668/0003-1569(2000)040[0640:TL]2.0.CO;2; Farmer CG, 2000, AM NAT, V155, P326, DOI 10.1086/303323; FEDUCCIA A, 1996, ORIGIN EVOLUTION BIR; Ferguson M. W., 1985, BIOL REPTILIA, P451; FERNANDEZ V, 2009, 4 INT S DIN EGGS BAB; Fiorillo Anthony R., 2001, Historical Biology, V15, P323, DOI 10.1080/0891296021000037327; Fiorillo Anthony R., 1998, Historical Biology, V13, P1; FORSTER CA, 1990, J PALEONTOL, V64, P164, DOI 10.1017/S0022336000042402; Garrison JR, 2007, CRETACEOUS RES, V28, P461, DOI 10.1016/j.cretres.2006.07.007; GAUTHIER JA, 1986, MEM CALIF ACAD SCI, V8, P1; Gill FB, 1990, ORNITHOLOGY; GILMORE CW, 1971, 103 USGS, P1; Grellet-Tinner G, 2006, PALAEOGEOGR PALAEOCL, V232, P294, DOI 10.1016/j.palaeo.2005.10.029; Grellet-Tinner G, 2006, CAN J EARTH SCI, V43, P705, DOI 10.1139/E06-033; Grellet-Tinner Gerald, 2006, Pap. Avulsos Zool. (São Paulo), V46, P1, DOI 10.1590/S0031-10492006000100001; Griffiths Peter, 1994, Revue de Paleobiologie Volume Special, V7, P85; GRIGORESCU D, 2003, 2 INT S DIN EGGS BAB; Hone DWE, 2010, LETHAIA, V43, P232, DOI 10.1111/j.1502-3931.2009.00187.x; Horner JR, 2009, J VERTEBR PALEONTOL, V29, P734, DOI 10.1671/039.029.0312; Horner JR, 1999, J VERTEBR PALEONTOL, V19, P607, DOI 10.1080/02724634.1999.10011174; HORNER JR, 1984, SCI AM, V250, P130, DOI 10.1038/scientificamerican0484-130; Horner JR, 2004, P ROY SOC B-BIOL SCI, V271, P1875, DOI 10.1098/rspb.2004.2829; HORNER JR, 1979, NATURE, V282, P296, DOI 10.1038/282296a0; HORNER JR, 1988, NATURE, V332, P256, DOI 10.1038/332256a0; Horner JR, 1996, NATURE, V383, P103, DOI 10.1038/383103b0; Horner JR, 1997, J VERTEBR PALEONTOL, V17, P431, DOI 10.1080/02724634.1997.10010987; Horner JR, 2000, ANNU REV EARTH PL SC, V28, P19, DOI 10.1146/annurev.earth.28.1.19; Horner JR, 1999, PALEOBIOLOGY, V25, P295; HORNER JR, 2000, J VERT PALEONTOL, V20, P109; Hotton N, 1980, COLD LOOK WARM BLOOD, P311; Hutchinson JR, 2008, NATURWISSENSCHAFTEN, V96, P423, DOI DOI 10.1007/S00114-008-0488-3; Isles TE, 2009, HIST BIOL, V21, P139, DOI 10.1080/08912960903450505; Janis C. M., 1992, ANN ZOOL FENN, V28, P201; JERZYKIEWICZ T, 1993, CAN J EARTH SCI, V30, P2180, DOI 10.1139/e93-190; JOHNSON WE, 1996, CARNIVORE BEHAV ECOL, V2, P189; KAVANAU JL, 1987, LOVEBIRDS COCKATIELS; KLEIN N, 2009, PALEOBIOLOGY, V34, P247; Kobayashi Y, 2003, ACTA PALAEONTOL POL, V48, P235; Kobayashi Y, 1999, NATURE, V402, P480, DOI 10.1038/44999; Koteja P, 2000, P ROY SOC B-BIOL SCI, V267, P479, DOI 10.1098/rspb.2000.1025; Kundrat M, 2008, ACTA ZOOL-STOCKHOLM, V89, P231, DOI 10.1111/j.1463-6395.2007.00311.x; LANCE VA, 1989, AM ZOOL, V29, P999; Lang J.W., 1987, P273; LAURSEN L, 1978, LOXODONTA AFRICANA, V92, P1; Le Loeuff Jean, 2005, Historical Biology, V17, P15, DOI 10.1080/08912960500376210; LEE AH, 2007, PROGR CER S, P105; Lee AH, 2008, P NATL ACAD SCI USA, V105, P582, DOI 10.1073/pnas.0708903105; Lehman TM, 2008, PALEOBIOLOGY, V34, P264, DOI 10.1666/0094-8373(2008)034[0264:MGRFSD]2.0.CO;2; LEHMAN TM, 2006, CERATOPSIAN ORNITHOP, P259; Livezey Bradley C., 1995, P169; Lockley M.G., 1983, Mountain Geologist, V20, P5; Lockley Martin G., 1994, P347; Lockley Martin G., 1997, P554; Lockley MG, 1991, TRACKING DINOSAURS; Manning T.W., 1997, P287; MANNING TW, 2000, 1 INT S DIN EGGS BAB, P129; MARSH OC, 2003, AM J SCI 3, V26, P81; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Mateus I, 1997, CR ACAD SCI II A, V325, P71, DOI 10.1016/S1251-8050(97)83275-2; Mathews JC, 2009, J VERTEBR PALEONTOL, V29, P286, DOI 10.1080/02724634.2009.10010382; Mauser M, 1983, NEUE GEDANKEN COMPSO, P157; Meng QJ, 2004, NATURE, V431, P145, DOI 10.1038/431145a; Myers TS, 2007, PALAIOS, V22, P651, DOI 10.2110/palo.2005.p05-123r; Myers TS, 2009, PALAEOGEOGR PALAEOCL, V274, P96, DOI 10.1016/j.palaeo.2009.01.002; Naish Darren, 2000, Archaeopteryx, V18, P35; Newton I., 1989, P441; NORELL MA, 1995, NATURE, V378, P774, DOI 10.1038/378774a0; NORELL MA, 1994, SCIENCE, V266, P779, DOI 10.1126/science.266.5186.779; Nowak R.M., 1983, WALKERS MAMMALS WORL; OSTROM J H, 1978, Zitteliana, V4, P73; Owen R, 1842, REPORT BRIT ASS ADV, V11, P60; PACKARD GC, 1977, BIOL REV, V52, P71, DOI 10.1111/j.1469-185X.1977.tb01346.x; Padian K, 2004, J VERTEBR PALEONTOL, V24, P555, DOI 10.1671/0272-4634(2004)024[0555:GISDAP]2.0.CO;2; Padian K, 2001, NATURE, V412, P405, DOI 10.1038/35086500; Padian K, 2004, DINOSAURIA, 2ND EDITION, P660; Padian K, 2004, DINOSAURIA, 2ND EDITION, P210; PARRISH J M, 1987, Palaios, V2, P377, DOI 10.2307/3514763; Partridge L., 1989, P421; Paul Gregory S., 1994, P244; PAUL GS, 1988, J PALEONTOL, V62, P640; Qi Z, 2007, PALAEONTOLOGY, V50, P1023, DOI 10.1111/j.1475-4983.2007.00709.x; RAHN H, 1974, CONDOR, V76, P147, DOI 10.2307/1366724; Redelstorff R, 2009, J VERTEBR PALEONTOL, V29, P1087, DOI 10.1671/039.029.0420; Reid R.E.H., 1990, Modern Geology, V15, P19; REID REH, 1984, GEOL MAG, V121, P589, DOI 10.1017/S0016756800030739; Reisz RR, 2005, SCIENCE, V309, P761, DOI 10.1126/science.1114942; ROFF D, 2001, ENCY BIODIVERS, V3, P715; Rothschild BM, 2005, LIFE O PAST, P381; Ruben JA, 2003, PHYSIOL BIOCHEM ZOOL, V76, P141, DOI 10.1086/375425; Russell D. A., 1973, CANADIAN GEOGRAPHICA, V87, P4; Ryan MJ, 2001, PALAIOS, V16, P482, DOI 10.2307/3515564; Sander PM, 2008, PALAEONTOGR ABT A, V284, P69; Sander PM, 2006, NATURE, V441, P739, DOI 10.1038/nature04633; Sander PM, 2004, ORG DIVERS EVOL, V4, P165, DOI 10.1016/j.ode.2003.12.002; Sander PM, 2000, PALEOBIOLOGY, V26, P466, DOI 10.1666/0094-8373(2000)026<0466:LHOTTS>2.0.CO;2; Sato T, 2005, SCIENCE, V308, P375, DOI 10.1126/science.1110578; SCHERZER B, 2008, THESIS MONTANA STATE; SCHERZER B, TAPHONOMY J IN PRESS; SCHWEITZER MH, 2005, SCIENCE, V308, P146; Sereno PC, 1999, SCIENCE, V284, P2137, DOI 10.1126/science.284.5423.2137; Spotila J.R., 1991, Modern Geology, V16, P203; Stanley S.M., 1998, MACROEVOLUTION PATTE; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; SZEKELY T, 1995, P ROY SOC B-BIOL SCI, V262, P57, DOI 10.1098/rspb.1995.0176; TAYLOR D, 1991, J WILDLIFE MANAGE, P682; THORBJARNARSON JB, 1993, J HERPETOL, V27, P371, DOI 10.2307/1564822; Thulborn T., 1990, DINOSAUR TRACKS; Travouillon KJ, 2009, PALAEOGEOGR PALAEOCL, V272, P69, DOI 10.1016/j.palaeo.2008.11.009; Trutnau L., 2006, CROCODILIANS THEIR N; Tullberg BS, 2002, PHILOS T R SOC B, V357, P251, DOI 10.1098/rstb.2001.0932; Unwin David M., 2008, Zitteliana Reihe B, V28, P199; UNWIN DM, 2006, 2005 HEYUAN INT DIN, P141; Upchurch P, 2004, DINOSAURIA, 2ND EDITION, P259; Varricchio DJ, 2007, P ROY SOC B-BIOL SCI, V274, P1361, DOI 10.1098/rspb.2006.0443; Varricchio David J., 2003, Palaeovertebrata (Montpellier), V32, P149; Varricchio DJ, 2008, SCIENCE, V322, P1826, DOI 10.1126/science.1163245; Varricchio David J., 1993, Journal of Vertebrate Paleontology, V13, P99; Varricchio DJ, 1999, J VERTEBR PALEONTOL, V19, P91, DOI 10.1080/02724634.1999.10011125; Varricchio DJ, 2004, J VERTEBR PALEONTOL, V24, P931, DOI 10.1671/0272-4634(2004)024[0931:APAOPD]2.0.CO;2; Varricchio DJ, 1997, NATURE, V385, P247, DOI 10.1038/385247a0; Varricchio DJ, 2004, LIFE O PAST, P215; VARRICCHIO DJ, 1993, CAN J EARTH SCI, V30, P997, DOI 10.1139/e93-083; Varricchio DJ, 2002, J VERTEBR PALEONTOL, V22, P564, DOI 10.1671/0272-4634(2002)022[0564:EAEFTC]2.0.CO;2; Weishampel D. B., 2000, Journal of Vertebrate Paleontology, V20, p78A; Weishampel DB, 2008, J VERTEBR PALEONTOL, V28, P1110, DOI 10.1671/0272-4634-28.4.1110; Weishampel David B., 1994, P229; WESOLOWSKI T, 1994, AM NAT, V143, P39, DOI 10.1086/285595; Wesolowski T, 2004, BEHAV ECOL, V15, P520, DOI 10.1093/beheco/arh039; Wilson JA, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000322; WITMER LM, 1995, FUNCTIONAL MORPHOLOGY IN VERTEBRATE PALEONTOLOGY, P19; Woodward HN, 2009, J VERTEBR PALEONTOL, V29, P807, DOI 10.1671/039.029.0310; Zanno L, 2006, J VERTEBR PALEONTOL, V26, p143A; Zanno LE, 2009, P ROY SOC B-BIOL SCI, V276, P3505, DOI 10.1098/rspb.2009.1029; Zelenitsky DK, 2008, PALAEONTOLOGY, V51, P807, DOI 10.1111/j.1475-4983.2008.00770.x 203 19 20 2 37 TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 0891-2963 HIST BIOL Hist. Biol. 2011 23 1 91 107 PII 926637827 10.1080/08912963.2010.500379 17 Biology; Paleontology Life Sciences & Biomedicine - Other Topics; Paleontology 733OS WOS:000288272700009 2019-02-21 J Forbes, VE; Calow, P; Grimm, V; Hayashi, TI; Jager, T; Katholm, A; Palmqvist, A; Pastorok, R; Salvito, D; Sibly, R; Spromberg, J; Stark, J; Stillman, RA Forbes, Valery E.; Calow, Peter; Grimm, Volker; Hayashi, Takehiko I.; Jager, Tjalling; Katholm, Agnete; Palmqvist, Annemette; Pastorok, Rob; Salvito, Dan; Sibly, Richard; Spromberg, Julann; Stark, John; Stillman, Richard A. Adding Value to Ecological Risk Assessment with Population Modeling HUMAN AND ECOLOGICAL RISK ASSESSMENT English Article ecological risk assessment; population modeling; environmental management; extinction risk; extrapolation; socioeconomic analysis INDIVIDUAL-BASED MODEL; LIFE-HISTORY STRATEGIES; CHRONIC TOXICITY; DYNAMICS; SCENARIOS; CHEMICALS; LESSONS; FISH Current measures used to estimate the risks of toxic chemicals are not relevant to the goals of the environmental protection process, and thus ecological risk assessment (ERA) is not used as extensively as it should be as a basis for cost-effective management of environmental resources. Appropriate population models can provide a powerful basis for expressing ecological risks that better inform the environmental management process and thus that are more likely to be used by managers. Here we provide at least five reasons why population modeling should play an important role in bridging the gap between what we measure and what we want to protect. We then describe six actions needed for its implementation into management-relevant ERA. [Forbes, Valery E.; Calow, Peter; Katholm, Agnete; Palmqvist, Annemette] Roskilde Univ Ctr, Dept Environm Social & Spatial Change, DK-4000 Roskilde, Denmark; [Grimm, Volker] UFZ Helmholtz Ctr Environm Res, Dept Ecol Modelling, Leipzig, Germany; [Hayashi, Takehiko I.] Res Ctr Environm Risk, Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan; [Jager, Tjalling] Vrije Univ Amsterdam, Dept Theoret Biol, Amsterdam, Netherlands; [Pastorok, Rob] Integral Consulting Inc, Woodinville, WA USA; [Salvito, Dan] Res Inst Fragrance Mat, Woodcliff Lake, NJ USA; [Sibly, Richard] Univ Reading, Dept Biol Sci, Reading, Berks, England; [Spromberg, Julann] NOAA Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA USA; [Stark, John] Washington State Univ, Puyallup Res & Extens Ctr, Puyallup, WA 98371 USA; [Stillman, Richard A.] Bournemouth Univ, Sch Conservat Sci, Poole BH12 5BB, Dorset, England Forbes, VE (reprint author), Univ Nebraska, Sch Biol Sci, 348 Manter Hall, Lincoln, NE 68588 USA. vforbes@unl.edu Forbes, Valery/K-6763-2012; Jager, Tjalling/D-8168-2011; Stillman, Richard/B-6018-2009 Jager, Tjalling/0000-0002-4424-1442; Forbes, Valery/0000-0001-9819-9385; Palmqvist, Annemette/0000-0003-3422-0063; Sibly, Richard/0000-0001-6828-3543 Research Institute for Fragrance Materials (RIFM); ECETOC; Roskilde University Funding was provided by the Research Institute for Fragrance Materials (RIFM), ECETOC, and Roskilde University. The authors also thank the participants of the RUC09 Workshop for the stimulating discussions that led to the production of this article. Akcakaya HR, 2008, DEMOGRAPHIC TOXICITY; Alvarez OA, 2006, ENVIRON SCI TECHNOL, V40, P2478, DOI 10.1021/es052260s; An W, 2009, ENVIRON SCI TECHNOL, V43, P7895, DOI 10.1021/es900857u; Baldwin DH, 2009, ECOL APPL, V19, P2004, DOI 10.1890/08-1891.1; Barnthouse L., 2008, POPULATION LEVEL ECO; Calow P, 1997, ENVIRON TOXICOL CHEM, V16, P1983, DOI 10.1897/1551-5028(1997)016<1983:RAOTBO>2.3.CO;2; Dalkvist T, 2009, ECOTOX ENVIRON SAFE, V72, P1663, DOI 10.1016/j.ecoenv.2008.10.002; Forbes VE, 2008, ENVIRON TOXICOL CHEM, V27, P1987, DOI 10.1897/08-029.1; Forbes Valery E., 2009, Integrated Environmental Assessment and Management, V5, P167, DOI 10.1897/IEAM_2008-029.1; Forbes VE, 1999, ENVIRON TOXICOL CHEM, V18, P1544, DOI 10.1897/1551-5028(1999)018<1544:ITPCRO>2.3.CO;2; Grant A, 1998, ECOL MODEL, V105, P325, DOI 10.1016/S0304-3800(97)00176-2; Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681; Grimm V, 2005, INDIVIDUAL BASED MOD; Grimm V, 2006, ECOL MODEL, V198, P115, DOI 10.1016/j.ecolmodel.2006.04.023; Grimm V, 2009, ENVIRON SCI POLLUT R, V16, P614, DOI 10.1007/s11356-009-0228-z; Hartung T, 2009, NATURE, V460, P208, DOI 10.1038/460208a; Hayashi TI, 2009, ECOL RES, V24, P945, DOI 10.1007/s11284-008-0561-6; Huth A, 2005, FOREST ECOL MANAG, V207, P215, DOI 10.1016/j.foreco.2004.10.028; *IMV, 2007, CHALL EC AN REACH WH; Landis WG, 2009, HUM ECOL RISK ASSESS, V15, P849, DOI 10.1080/10807030903175306; MALTBY L, 2009, ECOLOGY IND POLLUTIO; Nabe-Nielsen J, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008932; OECD, 1998, OECD GUID TEST CHEM; PALMQVIST A, 2008, DEMOGRAPHIC TOXICITY; Pastorok R. A., 2001, ECOLOGICAL MODELING; Pedersen S, 2009, ECOTOX ENVIRON SAFE, V72, P1190, DOI 10.1016/j.ecoenv.2008.10.012; Peterseni JH, 2008, T AM FISH SOC, V137, P244, DOI 10.1577/T05-045.1; Railsback SF, 2002, ECOLOGY, V83, P1817, DOI 10.1890/0012-9658(2002)083[1817:AOHSRU]2.0.CO;2; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; Spromberg JA, 2005, ENVIRON TOXICOL CHEM, V24, P1532, DOI 10.1897/04-160.1; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; Stillman RA, 2008, ECOL MODEL, V216, P265, DOI 10.1016/j.ecolmodel.2008.04.014; Stillman RA, 2010, BIOL REV, V85, P413, DOI 10.1111/j.1469-185X.2009.00106.x; Thorbek P, 2010, ECOLOGICAL MODELS RE; *USEPA, 2009, RISK ASS FOR TECHN W; Van den Brink PJ, 2007, ENVIRON TOXICOL CHEM, V26, P2226, DOI 10.1897/07-022R.1; WALTERS S, 2008, DEMOGRAPHIC TOXICITY; Wang M, 2007, ECOL MODEL, V205, P397, DOI 10.1016/j.ecolmodel.2007.03.003; Wang M, 2010, ENVIRON TOXICOL CHEM, V29, P1292, DOI 10.1002/etc.151; WIEGAND J, 2003, OIKOS, V100, P209; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 41 51 51 0 41 TAYLOR & FRANCIS INC PHILADELPHIA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA 1080-7039 HUM ECOL RISK ASSESS Hum. Ecol. Risk Assess. 2011 17 2 287 299 PII 936287334 10.1080/10807039.2011.552391 13 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 750SL WOS:000289568200002 2019-02-21 J Hanson, N; Stark, JD Hanson, Niklas; Stark, John D. Extrapolation from Individual-Level Responses to Population Growth Rate Using Population Modeling HUMAN AND ECOLOGICAL RISK ASSESSMENT English Article ecological risk assessment; extrapolation; population modeling; population level; life tables ECOLOGICAL RISK-ASSESSMENT; LIFE-HISTORY STRATEGIES; POTENTIAL APPLICATION; TOXIC-CHEMICALS; PESTICIDES Ecological risk assessments of chemicals are often based on simple measurements of toxicity in individuals. However, the protection goals are often set at the population and community levels. Population models may be a useful tool to extrapolate from individual-level measurements to population-level wendpoints. In the present study, the population growth rate (lambda) was calculated for three sets of full life-cycle data (Tetranychus urticae exposed to agrimek, and Daphnia pulex exposed to spinosad and diazinon). The results were compared to lambda from population models, where survival and/or reproduction were adjusted according to 4 d of data from the same life-cycle data. This was done to determine whether truncated demographic data can give results similar to that obtained with full life-cycle data. The resulting correlations were strong when both effects on survival and reproduction were included in the model (p < .001, 0.93 < R(2) < 1.00). There were also strong correlations in several cases when only effects on survival or reproduction were considered, although the total risk to the population tended to be underestimated. The results of the present study show that population models can be useful to extrapolate truncated data on the individual level to more ecologically relevant population-level endpoints. [Hanson, Niklas; Stark, John D.] Washington State Univ, Puyallup Res & Extens Ctr, Puyallup, WA 98371 USA Hanson, N (reprint author), Washington State Univ, Puyallup Res & Extens Ctr, 2606 W Pioneer, Puyallup, WA 98371 USA. niklas.hanson@dpes.gu.se Hanson, Niklas/D-3435-2009 Swedish Research Council We thank Grace Jack for assistance in developing the data sets used in this study. Niklas Hanson's participation was financed by the Swedish Research Council. Akcakaya HR, 2008, DEMOGRAPHIC TOXICITY; Barnthouse L. W., 2007, POPULATION LEVEL ECO; Barnthouse LW, 2004, ENVIRON TOXICOL CHEM, V23, P500, DOI 10.1897/02-521; Calow P, 1997, ENVIRON TOXICOL CHEM, V16, P1983, DOI 10.1897/1551-5028(1997)016<1983:RAOTBO>2.3.CO;2; Carey J. R., 1993, APPL DEMOGRAPHY BIOL; Caswell H, 1996, ECOL MODEL, V88, P73, DOI 10.1016/0304-3800(95)00070-4; Caswell H., 2001, MATRIX POPULATION MO; Chapman PM, 1998, ENVIRON TOXICOL CHEM, V17, P99, DOI 10.1897/1551-5028(1998)017<0099:ACEOSU>2.3.CO;2; Ferson S, 1996, WATER AIR SOIL POLL, V90, P71, DOI 10.1007/BF00619269; Forbes VE, 2008, ENVIRON TOXICOL CHEM, V27, P1987, DOI 10.1897/08-029.1; Forbes Valery E, 2010, Integr Environ Assess Manag, V6, P191, DOI 10.1002/ieam.25; Forbes VE, 2001, ENVIRON TOXICOL CHEM, V20, P442, DOI 10.1897/1551-5028(2001)020<0442:ACSEMA>2.0.CO;2; Forbes VE, 1999, ENVIRON TOXICOL CHEM, V18, P1544, DOI 10.1897/1551-5028(1999)018<1544:ITPCRO>2.3.CO;2; Forbes VE, 2002, BIOSCIENCE, V52, P249, DOI 10.1641/0006-3568(2002)052[0249:EIERAB]2.0.CO;2; Forbes VE, 2002, PHILOS T ROY SOC B, V357, P1299, DOI 10.1098/rstb.2002.1129; Galic Nika, 2010, Integrated Environmental Assessment and Management, V6, P338, DOI 10.1002/ieam.68; Grimm V, 2009, ENVIRON SCI POLLUT R, V16, P614, DOI 10.1007/s11356-009-0228-z; Hanson N, 2005, ENVIRON TOXICOL CHEM, V24, P1235, DOI 10.1897/04-185R.1; Hanson N, 2011, ECOTOXICOLOGY, V20, P1268, DOI 10.1007/s10646-011-0675-4; Hayashi TI, 2009, ECOL RES, V24, P945, DOI 10.1007/s11284-008-0561-6; Hommen Udo, 2010, Integrated Environmental Assessment and Management, V6, P325, DOI 10.1002/ieam.69; Lin BL, 2005, ENVIRON SCI TECHNOL, V39, P4833, DOI 10.1021/es0489893; MOUNT DI, 1984, ENVIRON TOXICOL CHEM, V3, P425, DOI 10.1897/1552-8618(1984)3[425:ASLCCT]2.0.CO;2; Pastorok RA, 2002, ECOLOGICAL MODELING; POTTER C, 1952, ANN APPL BIOL, V39, P1, DOI 10.1111/j.1744-7348.1952.tb00993.x; Roex EWM, 2000, ENVIRON TOXICOL CHEM, V19, P685, DOI 10.1897/1551-5028(2000)019<0685:RBAATA>2.3.CO;2; Schmolke A, 2010, ENVIRON TOXICOL CHEM, V29, P1006, DOI 10.1002/etc.120; SIBLY RM, 1986, PHYSIL ECOLOGY ANIMA; Spromberg JA, 2005, ENVIRON TOXICOL CHEM, V24, P1532, DOI 10.1897/04-160.1; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621; Stark JD, 2003, ECOTOX ENVIRON SAFE, V56, P334, DOI 10.1016/S0147-6513(02)00074-X; Stark JD, 2007, BIOCONTROL, V52, P365, DOI 10.1007/s10526-006-9040-6; Suter II G. W., 1993, ECOLOGICAL RISK ASSE; USEPA, 2002, SHORT TERM METH EST 35 3 3 0 19 TAYLOR & FRANCIS INC PHILADELPHIA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA 1080-7039 HUM ECOL RISK ASSESS Hum. Ecol. Risk Assess. 2011 17 6 1332 1347 10.1080/10807039.2011.618421 16 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 874LX WOS:000298960400011 2019-02-21 J Guo, RX; Snell, TW; Yang, JX Guo, Ruixin; Snell, Terry W.; Yang, Jiaxin Ecological strategy of rotifer (Brachionus calyciflorus) exposed to predator- and competitor-conditioned media HYDROBIOLOGIA English Article Chemical communication; Life table; Population growth; Brachionus calyciflorus; Predator-competitor induce LIFE-HISTORY STRATEGIES; POPULATION-GROWTH; KERATELLA-COCHLEARIS; FOOD CONCENTRATION; TABLE DEMOGRAPHY; DAPHNIA; CLADOCERANS; INTERFERENCE; REPRODUCTION; DENSITY Chemical communication may inform about the location of prey, predators, co-specifics, and mate partners in zooplankton. In this study, we evaluated several life-history traits of the rotifer, Brachionus calyciflorus, exposed to conditioned media by a rotifer predator (Asplanchna brightwelli) and a cladocera competitor (Daphnia similis), quantifying population growth and life-table demography at two algal food levels (2.0 and 0.5 x 10(6) cells ml(-1) of Chlorella pyrenoidosa). At both food levels, B. calyciflorus grown in predator-conditioned media had lower population abundance and slower population growth rate than controls. Conversely, the competitor-conditioned media treatments produced both higher rotifer population abundance and faster population growth rate than controls. Life-history parameters varied significantly depending on the presence of predator and competitor-conditioned media. The Asplanchna-conditioned media significantly decreased gross reproductive rate (GRR): 8-9 offsprings per female; net reproductive rate (R (0)): 6-7 offsprings per female; population growth rate (r): 0.34-0.37 day(-1); and increased generation time (T): 5.5-5.6 days. On the other hand, The Daphnia-conditioned media significantly increased the GRR (13-14 offsprings per female); net reproductive rate (8-9 offsprings per female); population growth rate (0.42-0.43 day(-1)); and decreased generation time (4.9-5.0 days). However, the effects of food level on the life-history characteristic were not significant in both treatments. Maximum values of the population abundance and the population growth rate are significantly influenced by the predator densities and pre-culture time. This study suggests that rotifers use variable life-history strategies (low reproduction and high survivorship versus high reproduction and low survivorship) based on the presence of predators and competitors. [Guo, Ruixin; Yang, Jiaxin] Nanjing Normal Univ, Sch Life Sci, Jiangsu Key Lab Biodivers & Biotechnol, Nanjing 210046, Peoples R China; [Snell, Terry W.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA Yang, JX (reprint author), Nanjing Normal Univ, Sch Life Sci, Jiangsu Key Lab Biodivers & Biotechnol, Nanjing 210046, Peoples R China. yangjx@njnu.edu.cn National Natural Science Foundation of China [30371093, 30570260]; Natural Science Foundation of Jiangsu Province of China [BK2007225] We wish to thank Professor Xiaofeng Xu for his valuable suggestion on the manuscript, Dr. Hong Li for the help with software, and Dr. Feizhou Chen for providing the material, D. similis. This study was supported by the National Natural Science Foundation of China (30371093, 30570260), and the Natural Science Foundation of Jiangsu Province of China (BK2007225). Bronmark C, 2000, OIKOS, V88, P103, DOI 10.1034/j.1600-0706.2000.880112.x; BURNS CW, 1986, LIMNOL OCEANOGR, V31, P848, DOI 10.4319/lo.1986.31.4.0848; BURNS CW, 1986, LIMNOL OCEANOGR, V31, P859, DOI 10.4319/lo.1986.31.4.0859; Conde-Porcuna JM, 2000, FRESHWATER BIOL, V44, P423, DOI 10.1046/j.1365-2427.2000.00582.x; Garcia CE, 2007, CHEM ECOL, V23, P303, DOI 10.1080/02757540701525988; GILBERT JJ, 1984, LIMNOL OCEANOGR, V29, P1309, DOI 10.4319/lo.1984.29.6.1309; GILBERT JJ, 1985, ECOLOGY, V66, P1943, DOI 10.2307/2937390; GILBERT JJ, 1988, LIMNOL OCEANOGR, V33, P1286, DOI 10.4319/lo.1988.33.6.1286; GILBERT JJ, 1988, ECOLOGY, V69, P1826, DOI 10.2307/1941160; GILBERT JJ, 1966, SCIENCE, V151, P1234, DOI 10.1126/science.151.3715.1234; GILBERT JJ, 1976, P NATL ACAD SCI USA, V73, P3233, DOI 10.1073/pnas.73.9.3233; GILBERT JJ, 1985, OECOLOGIA, V66, P322, DOI 10.1007/BF00378293; Gilbert John J., 1999, P127; Lass S, 2003, HYDROBIOLOGIA, V491, P221, DOI 10.1023/A:1024487804497; MACISAAC HJ, 1989, OECOLOGIA, V81, P295, DOI 10.1007/BF00377074; Nandini S, 2002, ACTA HYDROCH HYDROB, V30, P101, DOI 10.1002/1521-401X(200211)30:2/3<101::AID-AHEH101>3.0.CO;2-V; Nogrady T., 1993, ROTIFERA; PIANKA ER, 1988, EVOLUTIONARY ECOLOGY; Sarma SSS, 2005, HYDROBIOLOGIA, V542, P315, DOI 10.1007/s10750-004-3247-2; Sarma SSS, 2002, HYDROBIOLOGIA, V481, P89, DOI 10.1023/A:1021265104165; Sarma SSS, 2002, ACTA HYDROCH HYDROB, V30, P128, DOI 10.1002/1521-401X(200211)30:2/3<128::AID-AHEH128>3.0.CO;2-W; Sarma SSS, 2001, HYDROBIOLOGIA, V446, P75, DOI 10.1023/A:1017577206815; SNELL TW, 1977, EVOLUTION, V31, P882, DOI 10.1111/j.1558-5646.1977.tb01082.x; SNELL TW, 1998, HYDROBIOLOGIA, V388, P267; STEMBERGER RS, 1985, ECOLOGY, V66, P1151, DOI 10.2307/1939167; STEMBERGER RS, 1988, LIMNOL OCEANOGR, V33, P593, DOI 10.4319/lo.1988.33.4.0593; STIBOR H, 1994, FUNCT ECOL, V8, P97, DOI 10.2307/2390117; Weber A, 1997, HYDROBIOLOGIA, V360, P89, DOI 10.1023/A:1003188331933; WEIDER LJ, 1993, OIKOS, V67, P385, DOI 10.2307/3545351; Xi YL, 2007, J FRESHWATER ECOL, V22, P421, DOI 10.1080/02705060.2007.9664172; ZHANG ZS, 1991, METHOD STUDY FRESHWA 31 14 16 0 15 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia JAN 2011 658 1 163 171 10.1007/s10750-010-0459-5 9 Marine & Freshwater Biology Marine & Freshwater Biology 685BE WOS:000284598200015 2019-02-21 J Bulit, F; Massoni, V Bulit, Florencia; Massoni, Viviana Apparent survival and return rate of breeders in the southern temperate White-rumped Swallow Tachycineta leucorrhoa IBIS English Article mark-recapture; nesting success; Tachycineta bicolor; Tachycineta leucorrhoa LIFE-HISTORY EVOLUTION; SITE FIDELITY; TREE SWALLOW; BREEDING DISPERSAL; MARKED ANIMALS; BIRDS; NEST; PHILOPATRY; BICOLOR; QUALITY Life-histories and demographic parameters of southern temperate bird species have been little studied. We estimated return rates between years and sexes, and adult apparent survival and recapture probabilities with mark-recapture data on White-rumped Swallows and found a lower return rate of unsuccessful females. There was little support for influences of sex or year on survival rates. The estimates were equivalent to the lowest value reported for a northern congener, in contrast to the prediction of geographical variation under life-history theory. [Bulit, Florencia; Massoni, Viviana] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, RA-1053 Buenos Aires, DF, Argentina Bulit, F (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Intendente Guiraldes 2160,C1428EGA Capital Fed, RA-1053 Buenos Aires, DF, Argentina. florbulit@ege.fcen.uba.ar University of Buenos Aires [UBACyT X-140, X-462]; CONICET [PIP - 5875]; CONICET, Argentina We thank R. Garcia, M. Barrionuevo and N. Zaldua for their field assistance, K. Dugger for advice with the program MARK, and the two reviewers and associate editor whose comments greatly improved the manuscript. We are indebted to G. Somoza, L. Miranda and C. Frasch, who provided logistic support at the InTeCh-CONICET. This study was made possible by University of Buenos Aires grants UBACyT X-140 and X-462, and CONICET PIP - 5875 to V. M. V. M. is a Research Fellow of CONICET, Argentina. F. B. is a doctoral candidate at the same institution. Anderson DR, 2000, J WILDLIFE MANAGE, V64, P912, DOI 10.2307/3803199; Bijleveld AI, 2009, BEHAV ECOL, V20, P736, DOI 10.1093/beheco/arp054; BOLLINGER EK, 1989, AUK, V106, P584; Bulit F, 2008, EMU, V108, P181, DOI 10.1071/MU07068; Clark RG, 1999, ECOLOGY, V80, P272, DOI 10.2307/176996; Clobert J., 2001, DISPERSAL; Cooch E, 2006, PROGRAM MARK GENTLE; COULSON JC, 1968, NATURE, V217, P478, DOI 10.1038/217478a0; Custer CM, 2007, ENVIRON TOXICOL CHEM, V26, P1056, DOI 10.1897/06-337R.1; Dugger KM, 2006, AUK, V123, P858, DOI 10.1642/0004-8038(2006)123[858:EOFBOF]2.0.CO;2; FERRETTI V, 2010, THESIS CORNELL U; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GREENWOOD PJ, 1978, NATURE, V271, P52, DOI 10.1038/271052a0; GREENWOOD PJ, 1982, ANNU REV ECOL SYST, V13, P1, DOI 10.1146/annurev.es.13.110182.000245; Haas CA, 1998, AUK, V115, P929, DOI 10.2307/4089511; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Massoni V, 2007, IBIS, V149, P10; Murphy MT, 2000, AUK, V117, P902, DOI 10.1642/0004-8038(2000)117[0902:IRBTSC]2.0.CO;2; PART T, 1994, ANIM BEHAV, V48, P401, DOI 10.1006/anbe.1994.1254; Rappole JH, 2002, ARDEA, V90, P525; Ridgely R. S., 1989, BIRDS S AM, V1; ROBERTSON RJ, 1990, CAN J ZOOL, V68, P1046, DOI 10.1139/z90-152; ROFF DA, 2002, LIFE HIST EVOLUTION; SHIELDS WM, 1984, AUK, V101, P780, DOI 10.2307/4086904; Shutler D, 2003, AUK, V120, P619, DOI 10.1642/0004-8038(2003)120[0619:CACOTS]2.0.CO;2; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; *STATS INC, 1995, STATISTICA WIND VERS; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stenhouse IJ, 2005, CONDOR, V107, P416, DOI 10.1650/7627; SWITZER PV, 1993, EVOL ECOL, V7, P533, DOI 10.1007/BF01237820; WALTERS JR, 1988, ETHOLOGY, V78, P275; White GC, 1999, BIRD STUDY, V46, P120; Winkler DW, 2004, CONDOR, V106, P768, DOI 10.1650/7634 39 6 6 0 15 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0019-1019 IBIS Ibis JAN 2011 153 1 190 194 10.1111/j.1474-919X.2010.01079.x 5 Ornithology Zoology 690MH WOS:000285008400022 2019-02-21 J Tifferet, S; Agrest, S; Shlomo, AB Tifferet, Sigal; Agrest, Sophia; Shlomo, Adi Benisti Problem gambling: an outcome of a life history strategy INTERNATIONAL GAMBLING STUDIES English Article biological; empirical; personality; problem gambling; typologies Evolution has created a spectrum of life history strategies that are linked to different personality profiles. People with low-K life history strategies display traits such as low parental investment, non-adherence to social rules, short-term planning, risk taking and impulsivity. We hypothesized that low-K strategists, who are characterized by this personality profile, would be inclined towards problem gambling. Seventy male customers of Israeli kiosks that offer lottery tickets answered questionnaires about their gambling behaviour, personality traits and demographics. As hypothesized, customers who came to buy a lottery ticket had lower K strategies than other customers. In addition, customers with a lower K strategy tended to report higher levels of problem gambling, independent of demographics. We propose that problem gambling may be a consequence of a low-K life history strategy and that by using evolutionary theory we can enhance our understanding of problem gambling, by linking it to a broader theoretical framework. [Tifferet, Sigal; Agrest, Sophia; Shlomo, Adi Benisti] Ruppin Acad Ctr, Sch Econ & Business Adm, Kfar Monash, Israel Tifferet, S (reprint author), Ruppin Acad Ctr, Sch Econ & Business Adm, Kfar Monash, Israel. tifferet@ruppin.ac.il Tifferet, Sigal/0000-0003-3042-9564 ALESSI G, 1992, AM PSYCHOL, V47, P1359, DOI 10.1037//0003-066X.47.11.1359; Bagby RM, 2007, PERS INDIV DIFFER, V43, P873, DOI 10.1016/j.paid.2007.02.011; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Blaszczynski A, 2002, ADDICTION, V97, P487, DOI 10.1046/j.1360-0443.2002.00015.x; Central Bureau of Statistics, 2010, STAT ABSTRISR 2010; Clarke D, 2004, J GAMBL STUD, V20, P319, DOI 10.1007/s10899-004-4578-7; Cyders MA, 2008, PERS INDIV DIFFER, V45, P503, DOI 10.1016/j.paid.2008.06.002; Daly M., 1988, HOMICIDE; Dannon PN, 2006, ISRAEL J PSYCHIAT, V43, P88; Field A, 2009, DISCOVERING STAT USI; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Gavriel-Fried B., 2009, INT GAMBL STUD, V9, P135, DOI DOI 10.1080/14459790902991606; Geary D. C., 2005, EVOLUTIONARY PSYCHOL, P483; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Goudriaan AE, 2004, NEUROSCI BIOBEHAV R, V28, P123, DOI 10.1016/j.neubiorev.2004.03.001; Haisley E, 2008, J RISK UNCERTAINTY, V37, P57, DOI 10.1007/s11166-008-9041-1; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Ibanez Angela, 2003, J Gambl Stud, V19, P11, DOI 10.1023/A:1021271029163; Jacobs D. F., 1986, J GAMBLING BEHAV, V2, P15, DOI DOI 10.1007/BF01019931; Johansson A, 2009, J GAMBL STUD, V25, P67, DOI 10.1007/s10899-008-9088-6; John O. P., 1999, HDB PERSONALITY THEO, V2, P102, DOI DOI 10.1525/FQ.1998.51.4.04A00260; LESIEUR HR, 1993, J GAMBL STUD, V9, P213, DOI DOI 10.1007/BF01015919; Levy M., 2010, INT GAMBL STUD, V10, P207, DOI [10.1080/14459795.2010.516761, DOI 10.1080/14459795.2010.516761]; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Potenza M N, 2001, Semin Clin Neuropsychiatry, V6, P217, DOI 10.1053/scnp.2001.22929; Raylu N, 2002, CLIN PSYCHOL REV, V22, P1009, DOI 10.1016/S0272-7358(02)00101-0; Roff Derek A., 1992; Room R, 1999, ADDICTION, V94, P1449, DOI 10.1046/j.1360-0443.1999.941014492.x; Rozin P, 1976, ADV STUD BEHAV, V6, P21, DOI DOI 10.1016/S0065-3454(08)60081-9; Rushton JP, 2008, PERS INDIV DIFFER, V45, P679, DOI 10.1016/j.paid.2008.07.015; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; RUSHTON JP, 1990, J PERS, V58, P117, DOI 10.1111/j.1467-6494.1990.tb00910.x; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Saad G, 2007, EVOLUTIONARY BASES C; SHARPE L, 1993, BRIT J PSYCHIAT, V162, P407, DOI 10.1192/bjp.162.3.407; Slutske WS, 2005, ARCH GEN PSYCHIAT, V62, P769, DOI 10.1001/archpsyc.62.7.769; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Thalheimer W., 2002, CALCULATE EFFECT SIZ; Tifferet S., 2009, BRAND LOYALTY UNPUB; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; Voon V, 2007, ARCH NEUROL-CHICAGO, V64, P212, DOI 10.1001/archneur.64.2.212; Walker M B, 1996, J Gambl Stud, V12, P233, DOI 10.1007/BF01539176; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; Wang XT, 2009, EVOL HUM BEHAV, V30, P77, DOI 10.1016/j.evolhumbehav.2008.09.006; Wilson E.O., 1975, P1 55 3 3 0 1 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1445-9795 1479-4276 INT GAMBL STUD Int. Gambl. Stud. 2011 11 2 253 262 10.1080/14459795.2011.599328 10 Substance Abuse Substance Abuse VB1MB WOS:000414257200008 2019-02-21 J Li, YM; Xu, F; Guo, ZW; Liu, XA; Jin, CN; Wang, YP; Wang, SP Li, Yiming; Xu, Feng; Guo, Zhongwei; Liu, Xuan; Jin, Changnan; Wang, Yanping; Wang, Supen Reduced predator species richness drives the body gigantism of a frog species on the Zhoushan Archipelago in China JOURNAL OF ANIMAL ECOLOGY English Article age structure; insular body size; insular population; number of predator species; sexual size dimorphism ISLAND RULE; LIFE-HISTORY; RODENT POPULATIONS; SIZE; EVOLUTION; MAMMALS; SHIFTS; ECOLOGY; DISPLACEMENT; EXPLANATION P>1. Shifts in the body size of insular vertebrates have been an interesting theme in ecological and evolutionary studies. Four primary factors, including predation pressures, resource availability, inter-species competition and immigrant selection, have been proposed to explain the trend in insular body size. Life-history theory predicts that body size, average age, the proportion of old-aged members and the density of insular populations are negatively correlated with predator species richness, and that body size and population density are positively related to resource availability. The niche expansion hypothesis argues that a positive relationship is expected to exist between insular body size and prey size, which varies in response to extinction due to small or large competitors. The immigrant hypothesis predicts that insular body size is positively correlated with distance to the mainland. 2. We tested these hypotheses by using populations of rice frogs Rana limnocharis on 20 islands in the Zhoushan Archipelago and two sites of nearby mainland China. 3. The body size (snout-vent length) of rice frogs on half of the islands was larger before and after the variable of age was controlled for; rice frog density and prey availability was higher and prey size was larger on most of the islands as compared to the two mainland sites. On the islands, the body size and other features [e.g. average age, the proportion of old-aged frogs (ages 3 and 4) and density] of the rice frogs were negatively associated with predator species richness; female body size and other features were positively associated with prey availability. The inference of multivariate linear models based on corrected Akaike Information Criterion (AIC(c)) showed that the relative importance of predator species richness on body size and each of the other features was larger than that of prey availability, prey size and distance to the mainland. In addition, the parameters for predator species richness were all negative. 4. The results provided strong support for the life-history theory of predation pressures, but weak evidence for the life-history theory of prey availability, the niche expansion or the immigrant hypothesis. The reduced predator species richness was a dominant factor contributing to the body gigantism of rice frogs on the islands. [Li, Yiming; Xu, Feng; Guo, Zhongwei; Liu, Xuan; Jin, Changnan; Wang, Yanping; Wang, Supen] Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China; [Xu, Feng; Liu, Xuan; Jin, Changnan; Wang, Yanping; Wang, Supen] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China; [Wang, Yanping] Zhejiang Univ, Coll Life Sci, Hangzhou 310003, Zhejiang, Peoples R China Li, YM (reprint author), Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, 1 Datun Beichen W Rd, Beijing 100101, Peoples R China. liym@ioz.ac.cn Xu, Feng/A-8626-2011 Xu, Feng/0000-0001-8925-977X '973' program [2007CB411600]; Chinese Academy of Sciences [kscx2-yw-z-1021] We thank the Forestry and Environmental Protection departments of Zhoushan City, the Dinghai Region, Putuo Region, Daishan County, Liuheng, Xiushan, Meishan, Xiashi, Fodu, Damao, Dayushan and Huni for kindly providing data on predator species richness. We are grateful to Brad R. Murray and two reviewers for their comments on the manuscript. This work was supported by a grant from the '973' program (code: 2007CB411600) and the Chinese Academy of Sciences (code: kscx2-yw-z-1021). The work complies with the current laws of China in which it was performed. ADLER GH, 1994, Q REV BIOL, V69, P473, DOI 10.1086/418744; ANGERBJORN A, 1986, OIKOS, V47, P47, DOI 10.2307/3565918; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; Boback SM, 2003, EVOLUTION, V57, P345; Bromham L, 2007, BIOL LETTERS, V3, P398, DOI 10.1098/rsbl.2007.0113; Burnham K. P, 2002, MODEL SELECTION MULT; CASE TJ, 1978, ECOLOGY, V59, P1, DOI 10.2307/1936628; Chen Q., 1989, ANN CURRENT HIST PLA; Clegg SM, 2002, P ROY SOC B-BIOL SCI, V269, P1359, DOI 10.1098/rspb.2002.2024; *COMM CCAE, 1989, CHENGS COUNT ANN; *COMM DCAE, 1993, DAISH COUNT ANN; DAYAN T, 1994, ECOLOGY, V75, P1063, DOI 10.2307/1939430; DENG X, 1992, NATURAL SCI J HUMAN, V15, P5; DIAMOND JM, 1970, P NATL ACAD SCI USA, V67, P529, DOI 10.1073/pnas.67.2.529; Duellman W. E., 1986, BIOL AMPHIBIANS; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; Fei L., 1999, ATLAS AMPHIBIANS CHI; FOSTER JB, 1964, NATURE, V202, P234, DOI 10.1038/202234a0; GADOW H., 1901, CAMBRIDGE NATURAL HI, V8; GRANT PR, 1968, SYST ZOOL, V17, P319, DOI 10.2307/2412010; HASEGAWA M, 1994, COPEIA, P732; HEANEY LR, 1978, EVOLUTION, V32, P29, DOI 10.1111/j.1558-5646.1978.tb01096.x; Hirai T, 1999, COPEIA, P940; Huang M. H., 1990, FAUNA ZHEJIANG AMPHI; JAEGER RG, 1994, MEASURING MONITORING, P103; Jinling Z., 1987, COMPREHENSIVE AGR PR; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Lack D. L., 1976, ISLAND BIOL ILLUSTRA; Leary CJ, 2005, ANIM BEHAV, V70, P663, DOI 10.1016/j.anbehav.2004.12.013; Li Y, 1993, GEN LAWS SPECIES DIV; Li YM, 2006, OECOLOGIA, V148, P129, DOI 10.1007/s00442-006-0355-x; Lomolino MV, 2005, J BIOGEOGR, V32, P1683, DOI 10.1111/j.1365-2699.2005.01314.x; LOMOLINO MV, 1985, AM NAT, V125, P310, DOI 10.1086/284343; MCCOY ED, 1990, OIKOS, V58, P313, DOI 10.2307/3545222; Meiri S, 2005, AM NAT, V165, P505, DOI 10.1086/428297; Meiri S, 2008, P ROY SOC B-BIOL SCI, V275, P141, DOI 10.1098/rspb.2007.1056; Meiri S, 2006, J BIOGEOGR, V33, P1571, DOI 10.1111/j.1365-2699.2006.01523.x; Michaux JR, 2002, GLOBAL ECOL BIOGEOGR, V11, P427, DOI 10.1046/j.1466-822x.2002.00301.x; Pafilis P, 2009, NATURWISSENSCHAFTEN, V96, P1107, DOI 10.1007/s00114-009-0564-3; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; Pan QH, 2007, FIELD GUIDE MAMMALS; PATTERSON BD, 1983, EVOLUTION, V37, P375, DOI 10.1111/j.1558-5646.1983.tb05546.x; Pough FH, 2007, ILAR J, V48, P203; Raia P, 2006, EVOLUTION, V60, P1731; Redmer Michael, 2002, Illinois Natural History Survey Bulletin, V36, P163; ROTHSTEIN SI, 1973, AM NAT, V107, P598, DOI 10.1086/282862; RYSER J, 1989, OECOLOGIA, V78, P264, DOI 10.1007/BF00377165; SCHOENER TW, 1970, AM NAT, V104, P155, DOI 10.1086/282647; Sinclair ARE, 2003, NATURE, V425, P288, DOI 10.1038/nature01934; SMITH FA, 1992, FUNCT ECOL, V6, P265, DOI 10.2307/2389516; Stearns S, 1992, EVOLUTION LIFE HIST; Van Valen L., 1965, AM NAT, V99, P377, DOI DOI 10.1086/282379; Venables W. N, 2008, INTRO R; WANG JT, 1980, J GEOGR, V35, P299; WANG Y, 2006, STUDY LIFE HIST SHIF; Welch JJ, 2009, P ROY SOC B-BIOL SCI, V276, P675, DOI 10.1098/rspb.2008.1180; Werner EE, 1995, J HERPETOL, V29, P600, DOI 10.2307/1564744; White TA, 2007, J BIOGEOGR, V34, P356, DOI 10.1111/j.1365-2699.2006.01599.x; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; Wu ZJ, 2006, J ANIM ECOL, V75, P1071, DOI 10.1111/j.1365-2656.2006.01126.x; Yiming L, 1998, OECOLOGIA, V113, P557, DOI 10.1007/s004420050409; YUAN C, 1985, CHINESE J ZOOLOGY, V7, P3; ZHANG J, 1966, CHINESE J ZOOLOGY, V2, P5; ZHU X, 1990, J ZHEJIANG FORESTRY, V7, P8; ZHUGE Y, 1990, FUANA ZHEJIANG AVES; Zhuge Y., 1990, FAUNA ZHEJIANG MAMMA 66 16 19 2 25 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2011 80 1 171 182 10.1111/j.1365-2656.2010.01746.x 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology 691WD WOS:000285110600017 20840555 Bronze 2019-02-21 J Allen, DE; Little, TJ Allen, D. E.; Little, T. J. Identifying energy constraints to parasite resistance JOURNAL OF EVOLUTIONARY BIOLOGY English Article costs; Daphnia; immunity; trade-offs LIFE-HISTORY; DROSOPHILA-MELANOGASTER; TRADE-OFF; ECOLOGICAL IMMUNOLOGY; PASTEURIA-RAMOSA; IMMUNE DEFENSE; DAPHNIA-MAGNA; FRESH-WATER; REPRODUCTION; PREDATOR Life-history theory suggests that energetically expensive traits may trade off against each other, resulting in costs associated with the development or maintenance of a particular phenotype. The deployment of resistance mechanisms during parasite exposure is one such trait, and thus their potential benefit in fighting off parasites may be offset by costs to other fitness-related traits. In this study, we used trade-off theory as a basis to test whether stimulating an increased development rate in juvenile Daphnia would reveal energetic constraints to its ability to resist infection upon subsequent exposure to the castrating parasite, Pasteuria ramosa. We show that the presumably energetically expensive process of increased development rate does result in more infected hosts, suggesting that parasite resistance requires the allocation of resources from a limited source, and thus has the potential to be costly. [Allen, D. E.; Little, T. J.] Univ Edinburgh, IEB, Edinburgh EH9 3JT, Midlothian, Scotland Allen, DE (reprint author), Univ Edinburgh, IEB, Kings Bldg,Mayfield Rd, Edinburgh EH9 3JT, Midlothian, Scotland. desiree.allen@ed.ac.uk Little, Tom/B-7890-2009 Little, Tom/0000-0002-8945-0416 Wellcome Trust We thank Philip Wilson for laboratory assistance. DEA and TJL are supported by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Sciences to TJL. ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; Boersma M, 1998, AM NAT, V152, P237, DOI 10.1086/286164; Doughty P, 1998, ECOLOGY, V79, P1073, DOI 10.2307/176602; Ebert D, 2004, AM NAT, V164, pS19, DOI 10.1086/424606; Ebert D, 1996, PHILOS T ROY SOC B, V351, P1689, DOI 10.1098/rstb.1996.0151; Fellowes MDE, 1998, P ROY SOC B-BIOL SCI, V265, P1553, DOI 10.1098/rspb.1998.0471; KLUTTGEN B, 1994, WATER RES, V28, P743, DOI 10.1016/0043-1354(94)90157-0; Kraaijeveld AR, 1997, NATURE, V389, P278; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; Little TJ, 2007, J ANIM ECOL, V76, P1202, DOI 10.1111/j.1365-2656.2007.01290.x; LUNING J, 1992, OECOLOGIA, V92, P383, DOI 10.1007/BF00317464; MACHACEK J, 1995, J PLANKTON RES, V17, P1513, DOI 10.1093/plankt/17.7.1513; McKean KA, 2005, EVOLUTION, V59, P1510; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Peters R. H., 1987, DAPHNIA MEM IST ITAL, V45, P1; Petrusek A, 2009, P NATL ACAD SCI USA, V106, P2248, DOI 10.1073/pnas.0808075106; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; *SAS I INC, 2000, SAS ONL DOC VERS 8; Sgro CM, 1999, SCIENCE, V286, P2521, DOI 10.1126/science.286.5449.2521; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Stearns S, 1992, EVOLUTION LIFE HIST; STIBOR H, 1994, FUNCT ECOL, V8, P97, DOI 10.2307/2390117; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; WEIDER LJ, 1993, OIKOS, V67, P385, DOI 10.2307/3545351; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 29 13 14 1 39 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2011 24 1 224 229 10.1111/j.1420-9101.2010.02152.x 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 696CC WOS:000285418500021 21210532 Bronze 2019-02-21 J Zera, AJ Zera, Anthony J. Microevolution of intermediary metabolism: evolutionary genetics meets metabolic biochemistry JOURNAL OF EXPERIMENTAL BIOLOGY English Article evolution; life history; lipid metabolism; electron transport; anthocyanin; enzyme polymorphism; metabolic control analysis; chemostat selection HISTORY TRADE-OFFS; WING-POLYMORPHIC CRICKET; ALCOHOL-DEHYDROGENASE POLYMORPHISM; DROSOPHILA-MELANOGASTER; ADAPTIVE EVOLUTION; FAT-CONTENT; ALLOPATRIC POPULATIONS; COMPARATIVE PHYSIOLOGY; CORRELATED RESPONSES; PARALLEL EVOLUTION During the past decade, microevolution of intermediary metabolism has become an important new research focus at the interface between metabolic biochemistry and evolutionary genetics. Increasing recognition of the importance of integrative studies in evolutionary analysis, the rising interest in 'evolutionary systems biology', and the development of various 'omics' technologies have all contributed significantly to this developing interface. The present review primarily focuses on five prominent areas of recent research on pathway microevolution: lipid metabolism and life-history evolution; the electron transport system, hybrid breakdown and speciation; glycolysis, alcohol metabolism and population adaptation in Drosophila; chemostat selection in microorganisms; and anthocyanin pigment biosynthesis and flower color evolution. Some of these studies have provided a new perspective on important evolutionary topics that have not been investigated extensively from a biochemical perspective (hybrid breakdown, parallel evolution). Other studies have provided new data that augment previous biochemical information, resulting in a deeper understanding of evolutionary mechanisms (allozymes and biochemical adaptation to climate, life-history evolution, flower pigments and the genetics of adaptation). Finally, other studies have provided new insights into how the function or position of an enzyme in a pathway influences its evolutionary dynamics, in addition to providing powerful experimental models for investigations of network evolution. Microevolutionary studies of metabolic pathways will undoubtedly become increasingly important in the future because of the central importance of intermediary metabolism in organismal fitness, the wealth of biochemical data being provided by various omics technologies, and the increasing influence of integrative and systems perspectives in biology. Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA Zera, AJ (reprint author), Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA. azera1@unlnotes.unl.edu National Science Foundation [IOS-0516973, IBN-0212486] This paper is based on a talk given at the 2010 Journal of Experimental Biology Symposium on 'The Biology of Energy Expenditure', held in Murren, Switzerland. I thank the organizers of the symposium for inviting me to participate. I also thank W. F. Eanes, M. D. Rausher, J. Storz and two anonymous reviewers for thoughtful comments on a previous version of the manuscript. Finally, I gratefully acknowledge the National Science Foundation for continuous support of my research during the past 20 years, most recently grants IOS-0516973 and IBN-0212486. ASANTE EA, 1991, GENET RES, V58, P123, DOI 10.1017/S0016672300029773; ASANTE EA, 1989, GENET RES, V54, P155, DOI 10.1017/S0016672300028536; Bagheri HC, 2004, GENETICS, V168, P1713, DOI 10.1534/genetics.104.028696; BALDWIN E, 1970, INTRO COMP BIOCH; Begun DJ, 1999, MOL BIOL EVOL, V16, P1816, DOI 10.1093/oxfordjournals.molbev.a026095; Burton RS, 2006, AM NAT, V168, pS14, DOI 10.1086/509046; CAVENER DR, 1981, P NATL ACAD SCI-BIOL, V78, P4444, DOI 10.1073/pnas.78.7.4444; CLARK AG, 1990, EVOLUTION, V44, P637, DOI 10.1111/j.1558-5646.1990.tb05944.x; Clegg MT, 2003, NAT REV GENET, V4, P206, DOI 10.1038/nrg1023; Coyne J. A., 2004, SPECIATION; Des Marais DL, 2010, EVOLUTION, V64, P2044, DOI 10.1111/j.1558-5646.2010.00972.x; Dobzhansky T, 1936, GENETICS, V21, P113; Dunham MJ, 2002, P NATL ACAD SCI USA, V99, P16144, DOI 10.1073/pnas.242624799; Dykhuizen DE, 2009, EXPERIMENTAL EVOLUTION: CONCEPTS, METHODS, AND APPLICATIONS OF SELECTION EXPERIMENTS, P67; DYKHUIZEN DE, 1990, TRENDS ECOL EVOL, V5, P257, DOI 10.1016/0169-5347(90)90067-N; Dykhuizen DE, 2004, GENETICS, V167, P2015, DOI 10.1534/genetics.103.025205; Eanes WF, 2006, P NATL ACAD SCI USA, V103, P19413, DOI 10.1073/pnas.0607095104; Eanes WF, 2011, J EXP BIOL, V214, P165, DOI 10.1242/jeb.046458; Eanes WF, 1999, ANNU REV ECOL SYST, V30, P301, DOI 10.1146/annurev.ecolsys.30.1.301; Ehrenreich IM, 2006, AM J BOT, V93, P953, DOI 10.3732/ajb.93.7.953; Ellison CK, 2006, EVOLUTION, V60, P1382, DOI 10.1111/j.0014-3820.2006.tb01217.x; Feder ME, 2007, J EXP BIOL, V210, P1653, DOI 10.1242/jeb.02725; Feder ME, 2005, J EVOLUTION BIOL, V18, P901, DOI 10.1111/j.1420-9101.2005.00921.x; FEDER ME, 1992, GENES ECOLOGY, P365; Fell D, 1997, UNDERSTANDING CONTRO; FELL DA, 1995, BIOCHEM J, V311, P35, DOI 10.1042/bj3110035; Ferea TL, 1999, P NATL ACAD SCI USA, V96, P9721, DOI 10.1073/pnas.96.17.9721; Flowers JM, 2007, MOL BIOL EVOL, V24, P1347, DOI 10.1093/molbev/msm057; Fraser HB, 2010, P NATL ACAD SCI USA, V107, P2977, DOI 10.1073/pnas.0912245107; FRERIKSEN A, 1994, GENETICS, V137, P1071; FRERIKSEN A, 1991, J BIOL CHEM, V266, P21399; Fry JD, 2008, EVOLUTION, V62, P66, DOI 10.1111/j.1558-5646.2007.00288.x; Fry JD, 2004, INTEGR COMP BIOL, V44, P275, DOI 10.1093/icb/44.4.275; Gershman B, 2007, PHYSIOL GENOMICS, V29, P24, DOI 10.1152/physiolgenomics.00061.2006; GRACEY A, 2003, J EXP BIOL, V209, P1584; Gracey AY, 2003, ANNU REV PHYSIOL, V65, P231, DOI 10.1146/annurev.physiol.65.092101.142716; GRANNER D, 1990, J BIOL CHEM, V265, P10173; Greenberg AJ, 2008, MOL BIOL EVOL, V25, P2537, DOI 10.1093/molbev/msn205; HALL JG, 1983, EVOL BIOL, V16, P53; Harrison JS, 2006, MOL BIOL EVOL, V23, P559, DOI 10.1093/molbev/msj058; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Harshman LG, 1998, EVOLUTION, V52, P1679, DOI 10.1111/j.1558-5646.1998.tb02247.x; HASTINGS IM, 1990, GENET RES, V55, P55, DOI 10.1017/S0016672300025192; Hochachka P. W., 2002, BIOCH ADAPTATION MEC; HOCHACHKA PW, 1973, COMP ANIMAL PHYSL, P212; Hoekstra HE, 2007, EVOLUTION, V61, P995, DOI 10.1111/j.1558-5646.2007.00105.x; Ideker T, 2001, SCIENCE, V292, P929, DOI 10.1126/science.292.5518.929; KACSER H, 1981, GENETICS, V97, P639; KACSER H, 1979, T BIOCH SOC, V7, P1149; Koehn R.K., 1983, P115; LABATE J, 1992, GENETICS, V132, P783; Larracuente AM, 2008, TRENDS GENET, V24, P114, DOI 10.1016/j.tig.2007.12.001; LAURIE CC, 1988, P NATL ACAD SCI USA, V85, P5161, DOI 10.1073/pnas.85.14.5161; Lewontin RC, 1974, GENETIC BASIS EVOLUT; Lu YQ, 2003, MOL BIOL EVOL, V20, P1844, DOI 10.1093/molbev/msg197; Matzkin LM, 2009, GENETICS, V182, P1279, DOI [10.1534/genetics.108.104927, 10.1534/genetics.109.104927]; McKenzie M, 2003, MOL BIOL EVOL, V20, P1117, DOI 10.1093/molbev/msg132; Merritt TJS, 2005, GENETICS, V171, P1707, DOI 10.1534/genetics.105.048249; MIDDLETON RJ, 1983, GENETICS, V105, P633; Mitton J., 1997, SELECTION NATURAL PO; Montooth KL, 2010, EVOLUTION, V64, P3364, DOI 10.1111/j.1558-5646.2010.01077.x; Muller HJ, 1942, BIOL S, V6, P71; Pagel M, 2008, EVOLUTIONARY GENOMICS AND PROTEOMICS, P1; PAQUIN C, 1983, NATURE, V302, P495, DOI 10.1038/302495a0; Powell FL, 2003, ANNU REV PHYSIOL, V65, P203, DOI 10.1146/annurev.physiol.65.092101.142711; Quattrocchio F, 2006, SCI FLAVONOIDS, P97, DOI DOI 10.1007/978-0-387-28822-2_; Ramsay H, 2009, MOL BIOL EVOL, V26, P1045, DOI 10.1093/molbev/msp021; Rausher MD, 2008, J MOL EVOL, V67, P137, DOI 10.1007/s00239-008-9105-5; Rausher MD, 2008, INT J PLANT SCI, V169, P7, DOI 10.1086/523358; Rausher MD, 1999, MOL BIOL EVOL, V16, P266, DOI 10.1093/oxfordjournals.molbev.a026108; Rawson PD, 2002, P NATL ACAD SCI USA, V99, P12955, DOI 10.1073/pnas.202335899; Roff Derek A., 1992; Rosenzweig F, 2009, EXPERIMENTAL EVOLUTION: CONCEPTS, METHODS, AND APPLICATIONS OF SELECTION EXPERIMENTS, P353; SAVAGEAU MA, 1989, J THEOR BIOL, V141, P93, DOI 10.1016/S0022-5193(89)80011-6; SELANDER RK, 1976, MOL EVOLUTION, P21; Shirley BW, 1996, TRENDS PLANT SCI, V1, P377, DOI 10.1016/1360-1385(96)10040-6; SOMERO GN, 1969, BIOCHEM J, V114, P237, DOI 10.1042/bj1140237; St-Cyr J, 2008, MOL ECOL, V17, P1850, DOI 10.1111/j.1365-294X.2008.03696.x; STANLEY SM, 1981, ANN ECOL SOC AUSTR, V11, P121; Stearns S, 1992, EVOLUTION LIFE HIST; Storz JF, 2010, EVOLUTION, V64, P2489, DOI 10.1111/j.1558-5646.2010.01044.x; STREISFELD MA, 2010, EVOLUTION, DOI DOI 10.1111/J.1558-5646.2010.01128.X; Streisfeld MA, 2009, NEW PHYTOL, V183, P751, DOI 10.1111/j.1469-8137.2009.02929.x; TOWNSEND CR, 1981, PHYSL ECOLOGY EVOLUT; VANDELDEN W, 1982, EVOL BIOL, V15, P187; VANSTRALLEN NM, 2006, INTRO ECOLOGICAL GEN; Verrelli BC, 2001, GENETICS, V159, P201; Verrelli BC, 2001, GENETICS, V157, P1649; WATT WB, 1991, FUNCT ECOL, V5, P145, DOI 10.2307/2389252; Watt WB, 2000, ANNU REV GENET, V34, P593, DOI 10.1146/annurev.genet.34.1.593; Willett CS, 2004, MOL BIOL EVOL, V21, P443, DOI 10.1093/molbev/msh031; Wright KM, 2010, GENETICS, V184, P483, DOI 10.1534/genetics.109.110411; Zera AJ, 2005, INTEGR COMP BIOL, V45, P511, DOI 10.1093/icb/45.3.511; Zera AJ, 2004, PHYSIOL BIOCHEM ZOOL, V77, P255, DOI 10.1086/383500; Zera AJ, 2003, EVOLUTION, V57, P586; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; ZERA AJ, 2011, MOL MECH UNDERLYING; ZERA AJ, 1985, COMPREHENSIVE INSECT, V10, P633; Zera AJ, 2006, AM NAT, V167, P889, DOI 10.1086/503578; Zera AJ, 2009, EXPERIMENTAL EVOLUTION: CONCEPTS, METHODS, AND APPLICATIONS OF SELECTION EXPERIMENTS, P217; Zhao ZW, 2002, P NATL ACAD SCI USA, V99, P16829, DOI 10.1073/pnas.262533999; Zufall RA, 2004, NATURE, V428, P847, DOI 10.1038/nature02489 102 31 32 2 31 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. JAN 2011 214 2 179 190 10.1242/jeb.046912 12 Biology Life Sciences & Biomedicine - Other Topics 697UW WOS:000285545400005 21177939 Green Published, Bronze 2019-02-21 J Stoddard, PK; Salazar, VL Stoddard, Philip K.; Salazar, Vielka L. Energetic cost of communication JOURNAL OF EXPERIMENTAL BIOLOGY English Article Brachyhypopomus; communication; electric fish; energetics; Gymnotiformes; life history; trade-off OXYGEN-CONSUMPTION; BRACHYHYPOPOMUS-PINNICAUDATUS; METABOLIC-RATE; WAVE-FORM; SIGNAL; TESTOSTERONE; CRICKET; TEMPERATURE; MODULATION; ORTHOPTERA Communication signals may be energetically expensive or inexpensive to produce, depending on the function of the signal and the competitive nature of the communication system. Males of sexually selected species may produce high-energy advertisement signals, both to enhance detectability and to signal their size and body condition. Accordingly, the proportion of the energy budget allocated to signal production ranges from almost nothing for many signals to somewhere in excess of 50% for acoustic signals in short-lived sexually selected species. Recent data from gymnotiform electric fish reveal mechanisms that regulate energy allocated to sexual advertisement signals through dynamical remodeling of the excitable membranes in the electric organ. Further, males of the short-lived sexually selected species, Brachyhypopomus gauderio, trade off among different metabolic compartments, allocating energy to signal production while reducing energy used in other metabolic functions. Female B. gauderio, by contrast, do not trade off energy between signaling and other functions. To fuel energetically expensive signal production, we expect a continuum of strategies to be adopted by animals of different life history strategies. Future studies should explore the relation between life history and energy allocation trade-offs. [Stoddard, Philip K.] Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA; [Salazar, Vielka L.] Cape Breton Univ, Dept Biol, Sydney, NS B1P 6L2, Canada Stoddard, PK (reprint author), Florida Int Univ, Dept Biol Sci, Univ Pk, Miami, FL 33199 USA. stoddard@fiu.edu NIH [MBRS GM08205]; NSF [IOS-0956603] This work was supported by NIH grant MBRS GM08205 and NSF grant IOS-0956603 to P. K. S. Thanks to Jim Heffernan, John Speakman and Peter Biro for helpful discussion. Deposited in PMC for release after 12 months. Allee SJ, 2009, HORM BEHAV, V56, P264, DOI 10.1016/j.yhbeh.2009.05.005; Andersson Staffan, 2000, P47; BRENOWITZ EA, 1989, ETHOLOGY, V83, P69; BRENOWITZ EA, 1986, BRAIN BEHAV EVOLUT, V28, P32, DOI 10.1159/000118690; Buchanan KL, 2001, P ROY SOC B-BIOL SCI, V268, P1337, DOI 10.1098/rspb.2001.1669; BUCHER TL, 1982, PHYSIOL ZOOL, V55, P10, DOI 10.1086/physzool.55.1.30158439; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; CURTIS CC, 2003, ANIM BEHAV, V206, P1353; Cutolo M, 2002, ANN NY ACAD SCI, V966, P131, DOI 10.1111/j.1749-6632.2002.tb04210.x; Deviche P, 2005, J EXP BIOL, V208, P1287, DOI 10.1242/jeb.01531; EBERHARDT LS, 1994, AUK, V111, P124, DOI 10.2307/4088511; Endler JA, 1996, AM NAT, V148, P421, DOI 10.1086/285934; Fitzpatrick S, 1998, ANN ZOOL FENN, V35, P67; Franchina CR, 2001, J COMP PHYSIOL A, V187, P45, DOI 10.1007/s003590000176; Franz M, 2003, J EXP BIOL, V206, P967, DOI 10.1242/jeb.00196; Gerhardt HC, 2005, ANIM BEHAV, V70, P39, DOI 10.1016/j.anbehav.200409.021; Giora J, 2009, ZOOTAXA, P60; GRAFE TU, 1992, PHYSIOL ZOOL, V65, P153, DOI 10.1086/physzool.65.1.30158244; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; HAYES JP, 1992, FUNCT ECOL, V6, P5, DOI 10.2307/2389765; Hoback WW, 1997, PHYSIOL ENTOMOL, V22, P286, DOI 10.1111/j.1365-3032.1997.tb01170.x; HORN AG, 1995, ANIM BEHAV, V50, P1171, DOI 10.1016/0003-3472(95)80033-6; Julian D, 2003, OECOLOGIA, V137, P502, DOI 10.1007/s00442-003-1368-3; KAVANAGH MW, 1987, J EXP BIOL, V130, P107; Kotiaho JS, 1998, P ROY SOC B-BIOL SCI, V265, P2203, DOI 10.1098/rspb.1998.0560; LEE HJ, 1993, ETHOLOGY, V95, P327; Lynn SE, 2000, ANIM BEHAV, V60, P581, DOI 10.1006/anbe.2000.1510; Markham MR, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000203; Markham MR, 2005, J NEUROSCI, V25, P8746, DOI 10.1523/JNEUROSCI.2809-05.2005; Maynard Smith J, 2003, ANIMAL SIGNALS; McGraw KJ, 2007, BEHAV ECOL, V18, P137, DOI 10.1093/beheco/ar1059; PRESTWICH KN, 1981, J COMP PHYSIOL, V143, P199; PRESTWICH KN, 1989, J EXP BIOL, V144, P53; Reinhold K, 1998, ANIM BEHAV, V55, P905, DOI 10.1006/anbe.1997.0594; Ritschard M, 2010, ANIM BEHAV, V79, P877, DOI 10.1016/j.anbehav.2009.12.038; Rutowski RL, 2010, FUNCT ECOL, V24, P767, DOI 10.1111/j.1365-2435.2010.01693.x; Salazar VL, 2008, J EXP BIOL, V211, P1012, DOI 10.1242/jeb.014795; Searcy WA, 2005, MG BEH ECOL, P1; SPEAKMAN JR, 1991, NATURE, V350, P421, DOI 10.1038/350421a0; SPEAKMAN JR, 1989, J COMP PHYSIOL A, V165, P679, DOI 10.1007/BF00610999; Speakman JR, 1997, DOUBLY LABELLED WATE; STEVENS ED, 1977, PHYSIOL ZOOL, V50, P31, DOI 10.1086/physzool.50.1.30155713; TAIGEN TL, 1985, J COMP PHYSIOL B, V155, P163, DOI 10.1007/BF00685209; Veblen T. B., 1899, THEORY LEISURE CLASS; Ward S, 2003, ANIM BEHAV, V66, P893, DOI 10.1006/anbe.2003.2250; Ward S, 2004, BEHAV ECOL, V15, P477, DOI 10.1093/beheco/arh038; WEDEKIND C, 1994, AM NAT, V143, P936, DOI 10.1086/285641; Wikelski M, 1999, J COMP PHYSIOL A, V185, P463, DOI 10.1007/s003590050407; ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; Zakon HH, 2000, SEXUAL DIFFERENTIATION OF THE BRAIN, P95; Zakon HH, 1996, DEV NEUROSCI-BASEL, V18, P115, DOI 10.1159/000111399 52 30 30 3 32 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. JAN 2011 214 2 200 205 10.1242/jeb.047910 6 Biology Life Sciences & Biomedicine - Other Topics 697UW WOS:000285545400007 21177941 Bronze, Green Published 2019-02-21 J Mondy, N; Cathalan, E; Hemmer, C; Voituron, Y Mondy, Nathalie; Cathalan, Eva; Hemmer, Claire; Voituron, Yann The energetic costs of case construction in the caddisfly Limnephilus rhombicus: Direct impacts on larvae and delayed impacts on adults JOURNAL OF INSECT PHYSIOLOGY English Article Construction behavior; Resource allocation; Proteins; Lipids; Sugars; Caddisfly DEVELOPMENTAL TRADE-OFFS; RAPID-DETERMINATION; TRICHOPTERA; ALLOCATION; METAMORPHOSIS; SILK; BEHAVIOR; GROWTH; FLIES; METABOLISM Caddisflies, whose aquatic larvae build a portable case with silk, are a suitable model organism to test the impacts of resource allocation trade-off during development and examine the evolution of life-history strategies. In the caddisfly Limnephilus rhombicus, adult feeding is minimal. Therefore, the whole resources are acquired during the larval phase and must be allocated to case construction, growth and reproduction. In this study, the larval energetic reserves of L rhombicus were manipulated by forcing larvae to rebuild their cases in the final larval stage. This allowed us to measure the physiological cost of construction. First, we recorded oxygen consumption during case reconstruction. Second, we measured the sugar, protein and lipid contents of larvae forced to rebuild their case and of larvae required only to re-enter on their case. Larvae had their sugar, protein and lipid content measured after the rebuilding event and 72 h later. The same analyses were carried out with adults immediately after emergence. We found that larvae forced to rebuild a case consumed 1.5 times more oxygen than control larvae. This energy expenditure generated a cost that was estimated to be a loss of larval protein of approximately 35%. Insects were unable to compensate for this loss of proteins during the end of the larval stage, and their metamorphosis to adults was also impacted. Therefore, we suggest that loss of larval protein is linked to silk production and may alter fitness. (C) 2010 Elsevier Ltd. All rights reserved. [Mondy, Nathalie; Cathalan, Eva; Hemmer, Claire; Voituron, Yann] Univ Lyon 1, CNRS, UMR 5023, F-69622 Villeurbanne, France Mondy, N (reprint author), Univ Lyon 1, CNRS, UMR 5023, F-69622 Villeurbanne, France. nathalie.mondy@univ-lyon1.fr Bernays E.A., 1990, INSECT PLANT INTERAC, V2; Boggs CL, 1997, ECOLOGY, V78, P181; Boyero L, 2006, BEHAV ECOL SOCIOBIOL, V59, P364, DOI 10.1007/s00265-005-0059-y; BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999; Brown CG, 2010, ANIM BEHAV, V79, P127, DOI 10.1016/j.anbehav.2009.10.010; Canavoso LE, 2001, ANNU REV NUTR, V21, P23, DOI 10.1146/annurev.nutr.21.1.23; CRAIG CL, 1990, ECOLOGY, V71, P616, DOI 10.2307/1940315; CRAIG CL, 2003, SPIDERWEBS SILK TRAC; DUDGEON D, 1987, J ZOOL, V211, P121, DOI 10.1111/j.1469-7998.1987.tb07457.x; Eisner T., 2000, NAT ACAD SCI P, V97, P2632; ENGSTER MS, 1976, CELL TISSUE RES, V169, P77; Giron D, 2002, FUNCT ECOL, V16, P750, DOI 10.1046/j.1365-2435.2002.00679.x; Hansell M., 2005, ANIMAL ARCHITECTURE; HICKIN N. E., 1967, CADDIS LARVAE; Hoffsten PO, 2004, FRESHWATER BIOL, V49, P810, DOI 10.1111/j.1365-2427.2004.01229.x; JACKLYN PM, 1992, OECOLOGIA, V91, P385, DOI 10.1007/BF00317628; Jannot JE, 2007, ECOL ENTOMOL, V32, P376, DOI 10.1111/j.1365-2311.2007.00876.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; JOHANSSON A, 1992, AQUAT INSECT, V14, P73, DOI 10.1080/01650429209361467; McKie BG, 2004, ECOL ENTOMOL, V29, P457, DOI 10.1111/j.0307-6946.2004.00622.x; Mondy N., 2004, ECOLOGICAL ENTOMOLOG, V17, P793; Mosely M. E., 1939, BRIT CADDIS FLIES TR; Okano J, 2010, BEHAV ECOL, V21, P826, DOI 10.1093/beheco/arq066; Otto C, 2000, HYDROBIOLOGIA, V436, P35, DOI 10.1023/A:1026589602313; OTTO C, 1995, ANIM BEHAV, V49, P473, DOI 10.1006/anbe.1995.0061; OTTO C, 1974, J ANIM ECOL, V43, P339, DOI 10.2307/3369; Pechenik JA, 1998, BIOSCIENCE, V48, P901, DOI 10.2307/1313294; Pechenik JA, 2006, INTEGR COMP BIOL, V46, P323, DOI 10.1093/icb/icj028; PECHENIK JA, 1993, MAR BIOL, V115, P287, DOI 10.1007/BF00346346; Pechenik JA, 1996, MAR BIOL, V127, P267, DOI 10.1007/BF00942112; Rice DC, 1996, ENVIRON HEALTH PERSP, V104, P337, DOI 10.2307/3432654; Rice DC, 1996, NEUROTOXICOLOGY, V17, P583; ROFF DA, 2002, LIFE HIST EVOLUTION; ROUX C, 1979, FRESHWATER BIOL, V9, P111, DOI 10.1111/j.1365-2427.1979.tb01495.x; STATZNER B, 1989, OECOLOGIA, V78, P145, DOI 10.1007/BF00377150; Stearns S, 1992, EVOLUTION LIFE HIST; Stevens DJ, 1999, P ROY SOC B-BIOL SCI, V266, P1049, DOI 10.1098/rspb.1999.0742; Stevens DJ, 2000, P ROY SOC B-BIOL SCI, V267, P1511, DOI 10.1098/rspb.2000.1172; Sutherland TD, 2010, ANNU REV ENTOMOL, V55, P171, DOI 10.1146/annurev-ento-112408-085401; VANHANDEL E, 1985, J AM MOSQUITO CONTR, V1, P299; VANHANDEL E, 1985, J AM MOSQUITO CONTR, V1, P302; Venner S, 2003, NATURWISSENSCHAFTEN, V90, P269, DOI 10.1007/s00114-003-0420-9; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203; Wiggins G.B., 1977, LARVAE N AM CADDIFLY; WILLIAMS DD, 1987, OIKOS, V50, P42, DOI 10.2307/3565400; Wissinger SA, 2006, OECOLOGIA, V147, P667, DOI 10.1007/s00442-005-0303-1; Yonemura N, 2006, BIOMACROMOLECULES, V7, P3370, DOI 10.1021/bm060663u 47 12 12 0 33 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 J INSECT PHYSIOL J. Insect Physiol. JAN 2011 57 1 197 202 10.1016/j.jinsphys.2010.11.009 6 Entomology; Physiology; Zoology Entomology; Physiology; Zoology 714ZI WOS:000286849800024 21075110 2019-02-21 J Rideout, RM; Tomkiewicz, J Rideout, Rick M.; Tomkiewicz, Jonna Skipped Spawning in Fishes: More Common than You Might Think MARINE AND COASTAL FISHERIES English Article COD GADUS-MORHUA; SALMON SALMO-SALAR; HERRING CLUPEA-HARENGUS; PSEUDOPLEURONECTES-AMERICANUS WALBAUM; CHARR SALVELINUS-ALPINUS; ATLANTIC BLUEFIN TUNA; WINTER FLOUNDER; LIFE-HISTORIES; OOCYTE GROWTH; REPRODUCTIVE STRATEGIES The traditional view of iteroparity in fishes is one of an annual reproductive cycle that culminates each year in spawning. More recently, a more flexible view of fish reproduction has been adopted, including the potential for mature fish to skip spawning. Here, we review the abundance of recent research on skipped spawning, covering a broad range of fishes with diverse life history strategies. Evidence for skipped spawning has been collected by use of traditional histological techniques as well as modern technological advances, such as satellite tags and the ability to track fish movements based on elemental and isotope signatures. Skipped spawning is most commonly attributed to deficient diet and poor nutritional condition. Advances made in this field of study in recent years include descriptions of hormonal changes that precede and perhaps initiate skipped spawning, the development of life history models that incorporate the potential for skipped spawning, and estimates of the degree to which skipped spawning influences the reproductive potential of fish populations. In addition to summarizing this new research, we attempt to advance current knowledge by (1) providing the first review discussion of skipped spawning in males, (2) exploring skipped spawning in anadromous fishes by using the Atlantic salmon Salmo salar as an example, and (3) discussing the potential for and difficulties in identifying skipped spawning in species with indeterminate fecundity. [Rideout, Rick M.] Fisheries & Oceans Canada, NW Atlantic Fisheries Ctr, St John, NF A1C 5X1, Canada; [Tomkiewicz, Jonna] Tech Univ Denmark, Natl Inst Aquat Resources, DK-2920 Charlottenlund, Denmark Rideout, RM (reprint author), Fisheries & Oceans Canada, NW Atlantic Fisheries Ctr, POB 5667, St John, NF A1C 5X1, Canada. rick.rideout@dfo-mpo.gc.ca Fish Reproduction and Fisheries (European Cooperation in Science and Technology Action) [FA0601] Fish Reproduction and Fisheries (European Cooperation in Science and Technology Action FA0601) is acknowledged for financial support of the Fourth Workshop on Gonadal Histology of Fishes (Cadiz, Spain, 2009). An invitation to give the keynote presentation for a theme session dedicated to skipped spawning and ovarian abnormalities resulted in the current manuscript. J. Morgan, S. Lowerre-Barbieri, and two anonymous reviewers provided constructive comments on an earlier version of the manuscript. R. McBride, N. Brown-Peterson, and G. Fitzhugh helped with background information on the potential for skipped spawning in fishes with indeterminate fecundity. B. Dempson provided valuable input on the general and reproductive biology of Atlantic salmon. ALLAN IRH, 1977, J CONSEIL, V37, P293; Bardonnet A, 2000, CAN J FISH AQUAT SCI, V57, P497, DOI 10.1139/cjfas-57-2-497; Block BA, 2005, NATURE, V434, P1121, DOI 10.1038/nature03463; Brown-Peterson N. J., 2006, P GULF CARIBBEAN FIS, V60, P372; Brown-Peterson Nancy J., 2000, Proceedings of the Gulf and Caribbean Fisheries Institute, V51, P414; Bucholtz R. H., 2008, 1972008 TU DENM NAT; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; Bunnell DB, 2007, J FISH BIOL, V70, P1838, DOI 10.1111/j.1095-8649.2007.01459.x; Burton M. P., 1987, P 5 C EUR ICHTH STOC, P207; Burton MPM, 1997, CAN J FISH AQUAT SCI, V54, P122, DOI 10.1139/cjfas-54-S1-122; BURTON MP, 1984, CAN J ZOOL, V62, P2563, DOI 10.1139/z84-374; BURTON MP, 1987, J FISH BIOL, V30, P643, DOI 10.1111/j.1095-8649.1987.tb05793.x; BURTON MPM, 1991, J FISH BIOL, V39, P909, DOI 10.1111/j.1095-8649.1991.tb04422.x; Chaput G., 2006, 2006027 CSAS; Coleman FC, 1996, ENVIRON BIOL FISH, V47, P129, DOI 10.1007/BF00005035; Collins L. A., 2002, NOAA FISHERIES PANAM; Corriero A, 2003, J FISH BIOL, V63, P108, DOI 10.1046/j.1095-8649.2003.00132.x; DUTIL JD, 1986, COPEIA, P945, DOI 10.2307/1445291; Engelhard GH, 2006, OECOLOGIA, V149, P593, DOI 10.1007/s00442-006-0483-3; Engelhard GH, 2005, BIOL LETT-UK, V1, P172, DOI 10.1098/rsbl.2004.0290; Fischer B., 2009, AM NAT, V173, P108; Fitzhugh G. R., 2006, NOAA FISHERIES PANAM; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Gunnarsson A, 2006, J FISH BIOL, V68, P1158, DOI 10.1111/j.1095-8649.2006.00990.x; HOLDWAY DA, 1985, J EXP MAR BIOL ECOL, V85, P3, DOI 10.1016/0022-0981(85)90010-3; Holmgren K, 2003, J FISH BIOL, V62, P918, DOI 10.1046/j.1095-8649.2003.00086.x; Hubley PB, 2008, ICES J MAR SCI, V65, P1626, DOI 10.1093/icesjms/fsn129; HUNTER JR, 1985, FISH B-NOAA, V83, P119; HUNTER JR, 1992, FISH B-NOAA, V90, P101; Hussy K, 2009, MAR ECOL PROG SER, V378, P161, DOI 10.3354/meps07876; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Jager HI, 2008, HYDROBIOLOGIA, V602, P15, DOI 10.1007/s10750-008-9287-2; Jenkins KLM, 2009, MAR FRESHWATER RES, V60, P893, DOI 10.1071/MF08211; Johnston FD, 2009, ECOL APPL, V19, P449, DOI 10.1890/07-1507.1; Jonsson N, 1997, J ANIM ECOL, V66, P425, DOI 10.2307/5987; JONSSON N, 1991, J ANIM ECOL, V60, P937, DOI 10.2307/5423; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Kennedy J, 2008, J FISH BIOL, V72, P78, DOI 10.1111/j.1095-8649.2007.01651.x; Kennedy J, 2010, CAN J FISH AQUAT SCI, V67, P16, DOI 10.1139/F09-159; KENNEDY W. A., 1954, JOUR FISH RES BD CANADA, V11, P827; Kjesbu Olav S., 2009, P293, DOI 10.1002/9781444312133.ch8; KJESBU OS, 1991, CAN J FISH AQUAT SCI, V48, P2333, DOI 10.1139/f91-274; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Kurita Y, 2003, J SEA RES, V49, P203, DOI 10.1016/S1385-1101(03)00004-2; Loher Timothy, 2009, Journal of Northwest Atlantic Fishery Science, V41, P23; Lowerre-Barbieri SK, 2011, MAR COAST FISH, V3, P71, DOI 10.1080/19425120.2011.556932; Lowerre-Barbieri SK, 2009, MAR ECOL PROG SER, V394, P231, DOI 10.3354/meps08262; LowerreBarbieri SK, 1996, J FISH BIOL, V48, P1139, DOI 10.1111/j.1095-8649.1996.tb01811.x; Lutcavage ME, 1999, CAN J FISH AQUAT SCI, V56, P173, DOI 10.1139/cjfas-56-2-173; MADDOCK DM, 1994, CAN J ZOOL, V72, P1672, DOI 10.1139/z94-223; Milton DA, 2005, MAR ECOL PROG SER, V301, P279, DOI 10.3354/meps301279; Moore D.S., 1995, Canadian Special Publication of Fisheries and Aquatic Sciences, V123, P229; Morgan M. J., 2005, 2005085 CSAS; Mukhin VA, 2006, J EVOL BIOCHEM PHYS+, V42, P292, DOI 10.1134/S0022093006030070; Murua H., 2003, Journal of Northwest Atlantic Fishery Science, V33, P23, DOI 10.2960/J.v33.a2; Ndjaula HON, 2009, ICES J MAR SCI, V66, P623, DOI 10.1093/icesjms/fsp032; Neves A, 2009, SCI MAR, V73, P19, DOI 10.3989/scimar.2009.73s2019; Niemela E, 2006, J FISH BIOL, V68, P1222, DOI 10.1111/j.1095-8649.2006.01012.x; Pavlov Dimitri A., 2009, P48, DOI 10.1002/9781444312133.ch2; PULLIAINEN E, 1990, J FISH BIOL, V36, P251, DOI 10.1111/j.1095-8649.1990.tb05600.x; Ramsay K, 1996, J SEA RES, V36, P275, DOI 10.1016/S1385-1101(96)90796-0; Rideout RM, 2006, ICES J MAR SCI, V63, P1101, DOI 10.1016/j.icesjms.2006.04.014; Rideout RM, 2006, MAR ECOL PROG SER, V320, P267, DOI 10.3354/meps320267; Rideout RM, 2000, CAN J ZOOL, V78, P1017, DOI 10.1139/cjz-78-6-1017; Rideout RM, 2000, CAN J ZOOL, V78, P1840, DOI 10.1139/cjz-78-10-1840; Rideout RM, 2000, J FISH BIOL, V57, P1429, DOI 10.1006/jfbi.2000.1405; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; Ruehl-Fehlert C, 2005, J FISH DIS, V28, P629, DOI 10.1111/j.1365-2761.2005.00661.x; Saborido-Rey F., 1997, 9718 NW ATL FISH ORG; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; Schwindt AR, 2009, T AM FISH SOC, V138, P522, DOI 10.1577/T08-006.1; Secor DH, 2008, T AM FISH SOC, V137, P782, DOI 10.1577/T07-105.1; Secor DH, 2007, FISH B-NOAA, V105, P62; Secor David H., 2007, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V60, P1141; SHIROKOVA MY, 1969, ATLANTICESKII NAUCHN, V21, P37; Skjaeraasen JE, 2009, CAN J FISH AQUAT SCI, V66, P1582, DOI 10.1139/F09-102; Sullivan K. J., 1992, 9212 NZ FISH ASS; Tomkiewicz J, 2003, J FISH BIOL, V62, P253, DOI 10.1046/j.1095-8649.2003.00001.x; Tomkiewicz J., 2003, Journal of Northwest Atlantic Fishery Science, V33, P1, DOI 10.2960/J.v33.a1; Tomkiewicz J., 2002, DFU11602 DAN I FISH; Torres-Villeges JR, 2007, REV BIOL MAR OCEANOG, V42, P299, DOI 10.4067/S0718-19572007000300010; Tyler CR, 1996, REV FISH BIOL FISHER, V6, P287, DOI 10.1007/BF00122584; WALLACE RA, 1978, DEV BIOL, V62, P354, DOI 10.1016/0012-1606(78)90222-1; WALLACE RA, 1981, AM ZOOL, V21, P325; Williams AJ, 2006, MAR FRESHWATER RES, V57, P403, DOI 10.1071/MF05127; Witthames P. R., 2010, FISH RES, V104, P24; Wuenschel MJ, 2009, J FISH BIOL, V74, P1508, DOI 10.1111/j.1095-8649.2009.02217.x; Zupa R, 2009, J FISH BIOL, V75, P1221, DOI 10.1111/j.1095-8649.2009.02355.x 88 107 110 2 44 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 1942-5120 MAR COAST FISH Mar. Coast. Fish. 2011 3 1 176 189 10.1080/19425120.2011.556943 14 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 873IJ WOS:000298874700013 DOAJ Gold, Green Published 2019-02-21 J Kerezsy, A; Balcombe, SR; Arthington, AH; Bunn, SE Kerezsy, Adam; Balcombe, Stephen R.; Arthington, Angela H.; Bunn, Stuart E. Continuous recruitment underpins fish persistence in the arid rivers of far-western Queensland, Australia MARINE AND FRESHWATER RESEARCH English Article ephemeral rivers; fish life-history variation; flood pulse concept; Lake Eyre Basin; no-flow recruitment hypothesis ZONE FLOODPLAIN RIVER; MURRAY-DARLING BASIN; DRYLAND RIVER; ASSEMBLAGE STRUCTURE; COMMUNITY STRUCTURE; DRY-SEASON; PATTERNS; VARIABILITY; WATERHOLES; ABUNDANCE Fish living in highly variable and unpredictable environments need to possess life-history strategies that enable them to survive environmental extremes such as floods and drought. We used the length-frequency distributions of multiple fish species in multiple seasons and highly variable hydrological conditions to infer antecedent breeding behaviour in rivers of far-western Queensland, Australia. Hypotheses tested were as follows: (1) recruitment of some or all species of fish would occur within waterholes during no-flow periods; (2) there would be seasonal recruitment responses in some fish species; (3) recruitment of some species would be enhanced by channel flows and/or flooding. Hydrology and the incidence of flooding were highly variable across the study area during 2006-2008. Flood-influenced recruitment was evident for Hyrtl's tandan, Barcoo grunter and Welch's grunter. Silver tandan, golden goby, Cooper Creek catfish and Australian smelt showed evidence of seasonal recruitment unrelated to antecedent hydrology. However, most species demonstrated continual recruitment in isolated waterholes, irrespective of antecedent flow conditions and season. Continual and seasonal recruitment capabilities have obvious advantages over flood-pulse recruitment in rivers with highly unpredictable flood regimes and underpin the persistence of many fish species in arid and semiarid rivers. [Kerezsy, Adam; Balcombe, Stephen R.; Arthington, Angela H.; Bunn, Stuart E.] Griffith Univ, Australian Rivers Inst, Nathan, Qld 4111, Australia; [Kerezsy, Adam; Balcombe, Stephen R.; Arthington, Angela H.; Bunn, Stuart E.] EWater Cooperat Res Ctr, Canberra, ACT, Australia; [Kerezsy, Adam] Bush Heritage Australia, Melbourne, Vic 3000, Australia Kerezsy, A (reprint author), Griffith Univ, Australian Rivers Inst, Nathan, Qld 4111, Australia. kerezsy@hotmail.com Balcombe, Stephen/C-5237-2008; Bunn, Stuart/B-9065-2008 Bunn, Stuart/0000-0002-6540-3586; Arthington, Angela/0000-0001-5967-7954 Griffith University; eWater Cooperative Research Centre This research was funded by a Griffith University Postgraduate Research scholarship and a top-up scholarship from the eWater Cooperative Research Centre. We thank three reviewers and the Editor, Professor Andrew Boulton, for their many suggestions to improve the manuscript. We gratefully acknowledge the landowners of the Bulloo, Kyabra, Cooper, Barcoo, Thomson, Diamantina, Georgina and Mulligan catchments for access to the waterways on their properties. All sampling and euthanasia were carried out under General Fisheries Permits (Nos PRM03315D and 89212) issued by the Queensland Department of Primary Industries and under a Griffith University Ethics Agreement (AES/09/06/AEC). Permission to sample at all sites was sought and obtained from station owners and the Queensland Department of Environment and Resource Management. Allen GR, 2002, FIELD GUIDE FRESHWAT; ANDERSON JR, 1992, AUST J MAR FRESH RES, V43, P1103; Arthington AH, 2005, MAR FRESHWATER RES, V56, P25, DOI 10.1071/MF04111; Arthington AH, 2011, ECOHYDROLOGY, V4, P708, DOI 10.1002/eco.221; Bailly D, 2008, RIVER RES APPL, V24, P1218, DOI 10.1002/rra.1147; Balcombe SR, 2007, FRESHWATER BIOL, V52, P2385, DOI 10.1111/j.1365-2427.2007.01855.x; Balcombe SR, 2005, J FISH BIOL, V67, P1552, DOI 10.1111/j.1095-8649.2005.00858.x; Balcombe SR, 2006, MAR FRESHWATER RES, V57, P619, DOI 10.1071/MF06025; Balcombe SR, 2009, MAR FRESHWATER RES, V60, P146, DOI 10.1071/MF08118; Bunn SE, 2006, ECOLOGY OF DESERT RIVERS, P76; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; *BUR MET, 2010, CLIM ATL AUSTR; *BUR MET, 2010, FLOOD WARN SERV; Burford MA, 2008, MAR FRESHWATER RES, V59, P224, DOI 10.1071/MF07159; CADWALLADER P L, 1978, Proceedings of the Royal Society of Victoria, V90, P211; CADWALLADER PL, 1979, AUST J ECOL, V4, P361, DOI 10.1111/j.1442-9993.1979.tb01565.x; Caley MJ, 1996, ANNU REV ECOL SYST, V27, P477, DOI 10.1146/annurev.ecolsys.27.1.477; CAPONE TA, 1991, ECOLOGY, V72, P983, DOI 10.2307/1940598; CLARKE KR, 1993, AUST J ECOL, V18, P117, DOI 10.1111/j.1442-9993.1993.tb00438.x; CLARKE KR, 1994, CHANGES MARINE COMMU; Cushing D. H., 1975, FISHERIES RESOURCES; Folkvord A, 1997, EARLY LIFE HIST RECR, P252; GEHRKE PC, 1999, FREE FLOWING RIVER E, P77; Harris J. H., 1994, AGR SYSTEMS INFORMAT, V6, P28; Humphries P, 1999, ENVIRON BIOL FISH, V56, P129, DOI 10.1023/A:1007536009916; Humphries P, 2002, FRESHWATER BIOL, V47, P1307, DOI 10.1046/j.1365-2427.2002.00871.x; Humphries P, 2008, FRESHWATER BIOL, V53, P789, DOI 10.1111/j.1365-2427.2007.01904.x; Jobling M., 1995, ENV BIOL FISHES; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; King AJ, 2009, RIVER RES APPL, V25, P1205, DOI 10.1002/rra.1209; King AJ, 2003, CAN J FISH AQUAT SCI, V60, P773, DOI 10.1139/F03-057; Kingsford RT, 2006, ECOLOGY OF DESERT RIVERS, P154; Kingsford RT, 2006, ECOLOGY OF DESERT RIVERS, P336; Leigh C, 2008, RIVER RES APPL, V24, P1251, DOI 10.1002/rra.1125; Leigh C, 2010, MAR FRESHWATER RES, V61, P896, DOI 10.1071/MF10106; Mallen-Cooper M, 2003, RIVER RES APPL, V19, P697, DOI 10.1002/rra.714; Maltchik L, 2006, AQUAT CONSERV, V16, P665, DOI 10.1002/aqc.805; McMahon T., 2005, HYDROLOGY LAKE EYRE; MEDEIROS ESF, 1998, AN 4 S EC BRAS, V2, P329; Merrick J. R., 1984, AUSTR FRESHWATER FIS; MIDGLEY S H, 1991, Memoirs of the Queensland Museum, V30, P505; Nunn AD, 2002, ECOL FRESHW FISH, V11, P74, DOI 10.1034/j.1600-0633.2002.t01-1-00001.x; Olden JD, 2010, AM FISH S S, V73, P83; ORR TM, 1984, AUST J MAR FRESH RES, V35, P187; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Puckridge JT, 2000, REGUL RIVER, V16, P385, DOI 10.1002/1099-1646(200009/10)16:5<385::AID-RRR592>3.0.CO;2-W; Puckridge JT, 1998, MAR FRESHWATER RES, V49, P55, DOI 10.1071/MF94161; PUCKRIDGE JT, 1999, THESIS U ADELAIDE; Pusey B., 2004, FRESHWATER FISHES N; RICE JA, 1997, EARLY LIFE HIST RECR, P333; Sheldon F, 2010, MAR FRESHWATER RES, V61, P885, DOI 10.1071/MF09239; Wager R, 2000, FISHES LAKE EYRE CAT; WALKER KF, 1995, REGUL RIVER, V11, P85, DOI 10.1002/rrr.3450110108; Welcomme RL, 1985, 262 FAO; Welcomme RL, 2006, ECOL STUD-ANAL SYNTH, V190, P123; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Zeug SC, 2008, RIVER RES APPL, V24, P90, DOI 10.1002/rra.1061; Zeug SC, 2005, T AM FISH SOC, V134, P1389, DOI 10.1577/T04-148.1 58 22 22 0 19 CSIRO PUBLISHING COLLINGWOOD 150 OXFORD ST, PO BOX 1139, COLLINGWOOD, VICTORIA 3066, AUSTRALIA 1323-1650 MAR FRESHWATER RES Mar. Freshw. Res. 2011 62 10 1178 1190 10.1071/MF11021 13 Fisheries; Limnology; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography 831HN WOS:000295720400002 2019-02-21 J Burford, MO; Carr, MH; Bernardi, G Burford, Martha O.; Carr, Mark H.; Bernardi, Giacomo Age-structured genetic analysis reveals temporal and geographic variation within and between two cryptic rockfish species MARINE ECOLOGY PROGRESS SERIES English Article Cryptic species; Range expansion; Ecological genetics; Local adaptation; Sebastes spp. URCHIN STRONGYLOCENTROTUS-PURPURATUS; PELAGIC JUVENILE ROCKFISH; MULTILOCUS GENOTYPE DATA; POPULATION-STRUCTURE; LARVAL DISPERSAL; GENUS SEBASTES; MICROSATELLITE DNA; CENTRAL CALIFORNIA; NORTHEAST PACIFIC; UPWELLING REGION The spatial patterns of genetic structure among juveniles of long-lived species can reveal the extent of interannual and geographic variation in realized larval dispersal as well as the processes that determine ecologically relevant patterns of population connectivity. However, few studies examine this temporal and spatial variation over large portions of a species' geographic range or between cryptic species that overlap in their range. Despite the potential for long-distance dispersal in blue rockfish Sebastes mystinus, a previous study of adults revealed two geographically distinct, cryptic species. To determine year-to-year variation in the patterns of spatial connectivity and to elucidate the potential ecological mechanisms involved in shaping new year-classes and maintaining cryptic species, we sampled juveniles within California, USA, where both cryptic species coexist. Using microsatellite markers, we found geographic and temporal variation in the number of individuals from these distinct cryptic species within 2 new year-classes of juvenile S. mystinus. We also found differences in the geographic patterns of genetic structure of the 2 cryptic species. Whereas one species exhibited little or no spatial genetic structure across the study region, the other exhibited a complex geographic pattern of genetic structure, with little or no genetic structure among regions, but small-scale structure within a region. The results of this study demonstrate that the spatial scales and patterns of realized dispersal of pelagic larvae vary geographically, interannually, and between closely related species with similar life-history strategies. Therefore, estimates of dispersal based on larval duration and patterns of adult structure need to be interpreted cautiously. [Burford, Martha O.; Carr, Mark H.; Bernardi, Giacomo] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95060 USA Burford, MO (reprint author), Univ Cent Oklahoma, Dept Biol, 100 N Univ Dr, Edmond, OK 73034 USA. mburford@uco.edu Bizzarro, Joseph/A-2988-2012 Burford Reiskind, Martha/0000-0001-6826-9215 PADI Foundation; Myers Trust; The ASIH Raney Fund; Long Marine Lab; California Environmental Quality Initiative (CEQI); Marilyn C. Davis Grant; Packard Foundation; Gordon and Betty Moore Foundation; David and Lucile Packard Foundation We thank the following for their assistance with collections: R. Buckley, D. Bondemiller, K. Gordon, J. Headlee, D. VenTresca, P. Gundelfinger, R. Larson, T. Laidig, S. Parker, A. Chapelle, J. Barlow, M. O'Farrell, P. Tompkins, J. Fugurski, J. Grover, R. Nakamura, T. Olive, J. Hyde, M. Ramon, N. Crane, M. McCrea, J. Barr, the Oregon and Washington Department of Fish and Wildlife and the California Department of Fish and Game. We also thank M. Reiskind, R. Larson, S. Palumbi, P. Raimondi and 3 anonymous reviewers for comments that improved the manuscript. The project was generously funded by grants to M.O.B. from the PADI Foundation, Myers Trust Grant, The ASIH Raney Fund, Friends of the Long Marine Lab Fellowship, California Environmental Quality Initiative (CEQI) Graduate Fellowship, the Marilyn C. Davis Grant, and from the Packard Foundation's Partnership for the Interdisciplinary Study of Coastal Oceans (PISCO). This is contribution 407 from PISCO, funded primarily by the Gordon and Betty Moore Foundation and the David and Lucile Packard Foundation. Ammann AJ, 2004, J EXP MAR BIOL ECOL, V299, P135, DOI 10.1016/j.jembe.2003.08.014; Anderson TW, 1998, ENVIRON BIOL FISH, V51, P111, DOI 10.1023/A:1007355408723; Buonaccorsi VP, 2004, MAR BIOL, V145, P779, DOI 10.1007/s00227-004-1362-2; Buonaccorsi VP, 2002, CAN J FISH AQUAT SCI, V59, P1374, DOI 10.1139/F02-101; Burford MO, 2009, J EVOLUTION BIOL, V22, P1471, DOI 10.1111/j.1420-9101.2009.01760.x; Burford MO, 2008, MAR BIOL, V154, P701, DOI 10.1007/s00227-008-0963-6; Burford MO, 2007, MAR BIOL, V151, P451, DOI 10.1007/s00227-006-0475-1; Burford MO, 2011, MAR BIOL, V158, P1815, DOI 10.1007/s00227-011-1694-7; Caselle JE, 2010, CAL COOP OCEAN FISH, V51, P91; Cowen RK, 2007, OCEANOGRAPHY, V20, P14, DOI 10.5670/oceanog.2007.26; Cowen RK, 2009, ANNU REV MAR SCI, V1, P443, DOI 10.1146/annurev.marine.010908.163757; Edmands S, 1996, MAR BIOL, V126, P443, DOI 10.1007/BF00354626; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Falush D, 2003, GENETICS, V164, P1567; Flowers JM, 2002, EVOLUTION, V56, P1445; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; GOUDET J, 1999, PCA GEN WINDOWS; GUNDELFINGER P, 2005, THESIS SAN FRANCISCO; GUO SW, 1992, BIOMETRICS, V48, P361, DOI 10.2307/2532296; HEDGECOCK D, 1994, CAL COOP OCEAN FISH, V35, P121; Hess JE, 2011, CAN J FISH AQUAT SCI, V68, P89, DOI 10.1139/F10-131; Hyde JR, 2008, MOL ECOL, V17, P1122, DOI 10.1111/j.1365-294X.2007.03653.x; Hyde JR, 2007, MOL PHYLOGENET EVOL, V44, P790, DOI 10.1016/j.ympev.2006.12.026; LAROCHE WA, 1981, FISH B, V79, P215; LARSON RJ, 1994, CAL COOP OCEAN FISH, V35, P175; Love MS, 1998, FISH B-NOAA, V96, P492; Love MS, 2002, ROCK FISHES NE PACIF; Miller AK, 2004, MAR ECOL PROG SER, V281, P207, DOI 10.3354/meps281207; MILLER DJ, 1972, CALIFORNIA DEP FISH, V157, P1; Miller JA, 2005, CAN J FISH AQUAT SCI, V62, P2189, DOI 10.1139/F05-133; Mills KL, 2007, FISH OCEANOGR, V16, P273, DOI 10.1111/j.1365-2419.2006.00429.x; Moberg PE, 2000, MAR BIOL, V136, P773, DOI 10.1007/s002270000281; Murphree T, 2003, GEOPHYS RES LETT, V30, DOI 10.1029/2003GL017303; Nei M., 1987, MOL EVOLUTIONARY GEN; Palumbi SR, 2003, ECOL APPL, V13, pS146; Peterson WT, 2003, GEOPHYS RES LETT, V30, DOI 10.1029/2003GL017528; Pritchard JK, 2000, GENETICS, V155, P945; Raymond M, 1995, EVOLUTION, V49, P1280, DOI 10.1111/j.1558-5646.1995.tb04456.x; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; ROUGHGARDEN J, 1991, ACTA OECOL, V12, P35; Ruzzante DE, 1997, CAN J FISH AQUAT SCI, V54, P2700, DOI 10.1139/f97-170; Selkoe KA, 2008, FISH FISH, V9, P363, DOI 10.1111/j.1467-2979.2008.00300.x; Sivasundar A, 2010, MAR BIOL, V157, P1433, DOI 10.1007/s00227-010-1419-3; Sokal RR, 1995, BIOMETRY; STEPHENS JS, 1994, B MAR SCI, V55, P1224; WAPLES RS, 1987, EVOLUTION, V41, P385, DOI 10.1111/j.1558-5646.1987.tb05805.x; Wares JP, 2001, EVOLUTION, V55, P295; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Westerman ME, 2005, MOL ECOL NOTES, V5, P74, DOI 10.1111/j.1471-8286.2004.00837.x; Wing SR, 1995, MAR ECOL PROG SER, V128, P199, DOI 10.3354/meps128199; WING SR, 1995, LIMNOL OCEANOGR, V40, P316, DOI 10.4319/lo.1995.40.2.0316 52 7 7 0 13 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2011 442 201 215 10.3354/meps09329 15 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 865HG WOS:000298301200015 Bronze 2019-02-21 J Wright, PJ; Gibb, FM; Gibb, IM; Millar, CP Wright, Peter J.; Gibb, Fiona M.; Gibb, Iain M.; Millar, Colin P. Reproductive investment in the North Sea haddock: temporal and spatial variation MARINE ECOLOGY PROGRESS SERIES English Article Life-history theory; PMRN; Maturation; Fecundity; Haddock MELANOGRAMMUS-AEGLEFINUS L; COD GADUS-MORHUA; PROBABILISTIC REACTION NORMS; FISHERIES-INDUCED EVOLUTION; MATURATION REACTION NORMS; ATLANTIC SHELF SEAS; FISHING EFFORT; PLEURONECTES-PLATESSA; COMMUNITY STRUCTURE; AGE Maturation and fecundity have been examined since the 1970s in 2 putative sub-populations of North Sea haddock Melanogrammus aeglefinus. Reproductive investment within the western North Sea haddock sub-population significantly increased between the 1970s and 2000s, as was evident from both a decline in maturation probability and an increase in fecundity with size. A decline in maturation probability was also evident in males from the east North Sea, although the length at 50% probability of maturing (Lp50) at the beginning and end of the study period was much higher than in the west North Sea. The changes in reproductive traits could not be explained as a compensatory response, since the trend for increasing reproductive investment was not reversed when the North Sea stock recovered over the past decade. Indeed increased reproductive investment was accompanied by a reduction in somatic growth rate. Temperature immediately prior to secondary gametogenesis could partially explain inter-annual variation in female maturation probability and may have influenced the difference in sub-population trends. However, declines in maturation probability with cohort were still highly significant after accounting for a temperature effect, and differences in potential fecundity could not be explained by changes in somatic condition. Overall, it appears that west North Sea haddock have increased their reproductive effort, following decades of high mortality, consistent with an evolutionary response. [Wright, Peter J.; Gibb, Fiona M.; Gibb, Iain M.; Millar, Colin P.] Marine Scotland Sci, Marine Lab, Aberdeen AB11 9DB, Scotland Wright, PJ (reprint author), Marine Scotland Sci, Marine Lab, Aberdeen AB11 9DB, Scotland. p.wright@marlab.ac.uk WRIGHT, PETER/C-8536-2011 Scottish Government [MF0764]; European Commission; [SSP-2006-044276] This study has been carried out with financial support from the Scottish Government MF0764 project and the European Commission, as part of the Specific Targeted Research Project Fisheries-induced Evolution (FinE, contract no. SSP-2006-044276) under the Scientific Support to Policies cross-cutting activities of the European Community's Sixth Framework Programme. It does not necessarily reflect the views of the European Commission and does not anticipate the Commission's future policy in this area. We thank J. Hislop, D. Mennie, W. MacDonald and G. Strugnell for assistance in sample analysis; the masters and crews of FRV 'Scotia', MFVs 'Harvest Reaper', 'Seringa', 'Sunbeam' and 'Falcon' for help in sample collection and ICES for the provision of DATRAS data. Finally, M. Heino, A. Rijnsdorp and 2 anonymous reviewers provided helpful comments on an earlier version of this manuscript. Alekseyeva YEI, 1979, J ICHTHYOLOGY, V19, P56; Barot S, 2004, EVOL ECOL RES, V6, P659; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Davie A, 2007, AQUACULTURE, V270, P379, DOI 10.1016/j.aquaculture.2007.04.052; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; Dickey-Collas M, 2003, ICES MAR SCI S, V219, P271; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; ELLIOTT AJ, 1991, CONT SHELF RES, V11, P453, DOI 10.1016/0278-4343(91)90053-9; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Ferro RST, 2008, FISH RES, V94, P151, DOI 10.1016/j.fishres.2008.08.018; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Greenstreet SPR, 2009, ICES J MAR SCI, V66, P886, DOI 10.1093/icesjms/fsp068; Greenstreet SPR, 1999, FISH RES, V40, P107, DOI 10.1016/S0165-7836(98)00207-0; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Heath MR, 1998, FISH OCEANOGR, V7, P110; Hedger R, 2004, FISH RES, V70, P17, DOI 10.1016/j.fishres.2004.07.002; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2011, PRAGMATIC EVOLUTION; Hislop J. R. G., 1984, FISH REPROD STRATEGI, P311; HISLOP JRG, 1978, J FISH BIOL, V13, P85, DOI 10.1111/j.1095-8649.1978.tb03416.x; HISLOP JRG, 1981, J CONSEIL, V39, P244; HISLOP JRG, 1988, J FISH BIOL, V32, P923, DOI 10.1111/j.1095-8649.1988.tb05435.x; ICES, 2009, REP WORK GROUP ASS D; JAMIESON A, 1989, J CONSEIL, V45, P248; Jennings S, 1999, FISH RES, V40, P125, DOI 10.1016/S0165-7836(98)00208-2; JONES R, 1983, J CONSEIL, V41, P50; JONES R, 1972, J CONSEIL, V34, P174; JONES R., 1959, JOUR CONSEIL PERM INTERNATL EXPLOR MER, V25, P58; Kokita T, 2003, MAR BIOL, V143, P593, DOI 10.1007/s00227-003-1104-x; Korsbrekke Knut, 1999, Journal of Northwest Atlantic Fishery Science, V25, P37, DOI 10.2960/J.v25.a4; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; LECREN ED, 1951, J ANIM ECOL, V20, P201; Marshall CT, 1998, CAN J FISH AQUAT SCI, V55, P1766, DOI 10.1139/cjfas-55-7-1766; Marteinsdottir G, 2002, MAR ECOL PROG SER, V235, P235, DOI 10.3354/meps235235; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; Ottera H, 2006, ICES J MAR SCI, V63, P216, DOI 10.1016/j.icesjms.2005.11.004; Raitt DS, 1932, FISH SCOTLAND SCI IN, V1, P1; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; RIJNSDORP AD, 1990, NETH J SEA RES, V25, P279, DOI 10.1016/0077-7579(90)90027-E; ROBB AP, 1982, J FISH BIOL, V20, P397, DOI 10.1111/j.1095-8649.1982.tb03933.x; Rochet MJ, 2000, OIKOS, V91, P255, DOI 10.1034/j.1600-0706.2000.910206.x; Roff Derek A., 1992; Saville A., 1959, MAR RES, V3, P1; Scott B, 1999, CAN J FISH AQUAT SCI, V56, P1882, DOI 10.1139/cjfas-56-10-1882; SKOGEN M, 1998, 1898 I MAR RES; SKOGEN MD, 1995, ESTUAR COAST SHELF S, V41, P545, DOI 10.1016/0272-7714(95)90026-8; SWARTZMAN G, 1995, CAN J FISH AQUAT SCI, V52, P369, DOI 10.1139/f95-039; Thomas G, 2009, J EVOLUTION BIOL, V22, P88, DOI 10.1111/j.1420-9101.2008.01622.x; Tobin D, 2010, J FISH BIOL, V77, P1252, DOI 10.1111/j.1095-8649.2010.02739.x; Tobin D, 2011, J EXP MAR BIOL ECOL, V403, P9, DOI 10.1016/j.jembe.2011.03.018; Tormosova I. D., 1983, J ICHTHYOL, V23, P68; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Trippel EA, 1997, 2157 FISH OC CAN; TRIPPEL EA, 1997, EARLY LIFE HIST RECR, P31; van Walraven L, 2010, J SEA RES, V64, P85, DOI 10.1016/j.seares.2009.07.003; Wright PJ, 2006, J FISH BIOL, V69, P181, DOI 10.1111/j.1095-8649.2006.01262.x; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279; Wright PJ, 2010, MAR ECOL PROG SER, V400, P221, DOI 10.3354/meps08384; Wright PJ, 2009, FISH FISH, V10, P283, DOI 10.1111/j.1467-2979.2008.00322.x; Wright PJ, 2005, J ANIM ECOL, V74, P303, DOI 10.1111/j.1365-2656.2004.00924.x; Yoneda M, 2004, MAR ECOL PROG SER, V276, P237, DOI 10.3354/meps276237 63 23 23 0 11 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2011 432 149 160 10.3354/meps09168 12 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 784NE WOS:000292163200013 Bronze 2019-02-21 J Huang, SL; Chou, LS; Shih, NT; Ni, IH Huang, Shiang-Lin; Chou, Lien-Siang; Shih, Nien-Tsu; Ni, I-Hsun Implication of life history strategies for prenatal investment in cetaceans MARINE MAMMAL SCIENCE English Article life history; maternal investment; beaked whales; reproductive energetics BOTTLE-NOSED DOLPHINS; MATERNAL INVESTMENT; HYPEROODON-AMPULLATUS; RESOURCE-ALLOCATION; SOCIAL-ORGANIZATION; TURSIOPS-TRUNCATUS; BEAKED-WHALES; FOOD-INTAKE; FUR SEALS; GROWTH P>Prenatal investment directly determines the size at birth and fetus growth rate, which affects neonatal survival and growth and potentially affects maternal fitness. This study explored the associated prenatal life history traits of cetaceans. Using multivariate analysis and ANCOVA, baleen whales and toothed cetaceans had distinct energy patterns, with two exceptions including beaked whales and eusocial cetaceans. Baleen whales are characterized by fast prenatal growth, which suggests high prenatal energetics, and utilize the capital breeder tactic. Toothed cetaceans, except for beaked whales, utilize income breeder energetics, which yields relatively slow prenatal growth. However, eusocial cetaceans have especially slow prenatal growth, suggesting very low prenatal energetic effort with social compensation. Although beaked whales are behaviorally income breeders, both discriminant analysis and ANCOVA showed that they are energetically similar to baleen whales, utilizing capital energetics. ANCOVA further revealed that beaked whales have comparatively large calf size, suggesting high prenatal investment. Because all cetaceans wean their calves at comparable size, high prenatal investment may further suggest reduced cost of lactation, which may be behaviorally and energetically adaptive to their specific deep-dive-feeding niche. [Chou, Lien-Siang; Shih, Nien-Tsu; Ni, I-Hsun] Natl Taiwan Ocean Univ, Dept Environm Biol & Fisheries Sci, Chilung, Taiwan; [Huang, Shiang-Lin; Chou, Lien-Siang] Natl Taiwan Univ, Inst Ecol & Evolutionary Biol, Taipei 10764, Taiwan Ni, IH (reprint author), Natl Taiwan Ocean Univ, Dept Environm Biol & Fisheries Sci, Chilung, Taiwan. niih@mail.ntou.edu.tw Chou, Lien-Siang/0000-0003-4610-5257 National Science Council [NSC 97-2311-B-019-003]; Ministry of Education [97529002C6] The authors greatly appreciate the valuable comments from anonymous reviewers for improving the English presentation and providing valuable suggestions for the discussion. This study was supported by the National Science Council (NSC 97-2311-B-019-003) and Ministry of Education (97529002C6) to I-Hsun Ni. ABITBOL MM, 1993, AM J PHYS ANTHROPOL, V91, P367, DOI 10.1002/ajpa.1330910309; Aguilar M. S. N., 2008, J ANIM ECOL, V77, P936; ALLAINE D, 1987, OECOLOGIA, V73, P478, DOI 10.1007/BF00385268; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Boltnev AI, 2001, J ZOOL, V254, P219, DOI 10.1017/S0952836901000735; Byers JA, 1995, BEHAV ECOL, V6, P451, DOI 10.1093/beheco/6.4.451; Chambellant M, 2003, CAN J ZOOL, V81, P1222, DOI 10.1139/Z03-114; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHEAL AJ, 1991, ZOO BIOL, V10, P451, DOI 10.1002/zoo.1430100603; DOMBROWSKI MP, 1994, BIOL NEONATE, V66, P56; Domenici P, 2001, COMP BIOCHEM PHYS A, V131, P169, DOI 10.1016/S1095-6433(01)00465-2; ENGEN S, 1994, THEOR POPUL BIOL, V46, P232, DOI 10.1006/tpbi.1994.1026; Foote AD, 2008, BIOL LETTERS, V4, P189, DOI 10.1098/rsbl.2008.0006; Geffen E, 1996, AM NAT, V147, P140, DOI 10.1086/285844; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; Glazier DS, 1999, EVOL ECOL, V13, P539, DOI 10.1023/A:1006793600600; Gluckman Peter D, 2004, Semin Fetal Neonatal Med, V9, P419, DOI 10.1016/j.siny.2004.03.001; GORDON IJ, 1989, FUNCT ECOL, V3, P285, DOI 10.2307/2389367; Gowans S, 2001, ANIM BEHAV, V62, P369, DOI 10.1006/anbe.2001.1756; Gude NM, 2004, THROMB RES, V114, P397, DOI 10.1016/j.thromres.2004.06.038; HAYSSEN V, 1993, J DAIRY SCI, V76, P3213, DOI 10.3168/jds.S0022-0302(93)77659-6; Hooker SK, 1999, P ROY SOC B-BIOL SCI, V266, P671, DOI 10.1098/rspb.1999.0688; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Huang SL, 2008, RAFFLES B ZOOL, P285; Huang SL, 2009, MAR MAMMAL SCI, V25, P875, DOI 10.1111/j.1748-7692.2009.00288.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kastelein R. A., 1993, Aquatic Mammals, V19, P99; Kastelein RA, 2002, MAR ENVIRON RES, V53, P199, DOI 10.1016/S0141-1136(01)00123-4; Kasuya Toshio, 1997, Report of the International Whaling Commission, V47, P969; KOVACS KM, 1992, CAN J ZOOL, V70, P1953, DOI 10.1139/z92-265; KOVACS KM, 1986, J ANIM ECOL, V55, P1035, DOI 10.2307/4432; Leon JA, 2000, J THEOR BIOL, V205, P563, DOI 10.1006/jtbi.2000.2086; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lockyer C, 1984, REP INT WHALING COMM, P27; Lockyer C., 1987, SPECIAL PUBLICATION, P183; Lockyer C, 2007, J MAR BIOL ASSOC UK, V87, P1035, DOI 10.1017/S0025315407054720; Loison A, 2005, BEHAV ECOL, V16, P624, DOI 10.1093/beheco/ari037; Long TAF, 2005, J EVOLUTION BIOL, V18, P509, DOI 10.1111/j.1420-9101.2005.00888.x; McAuliffe K, 2005, TRENDS ECOL EVOL, V20, P650, DOI 10.1016/j.tree.2005.09.003; McMahon CR, 2003, WILDLIFE RES, V30, P35, DOI 10.1071/WR01069; Noren SR, 2004, MAR MAMMAL SCI, V20, P808, DOI 10.1111/j.1748-7692.2004.tb01194.x; Noren SR, 2002, J ZOOL, V258, P105, DOI 10.1017/S0952836902001243; Oftedal OT, 1997, J MAMMARY GLAND BIOL, V2, P205, DOI 10.1023/A:1026328203526; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; PERRIN WF, 1984, REP INT WHALING COMM, V6, P97; PONTIER D, 1993, OIKOS, V66, P424, DOI 10.2307/3544936; Read AJ, 2001, P ROY SOC B-BIOL SCI, V268, P573, DOI 10.1098/rspb.2000.1419; Schulz TM, 2004, MAR MAMMAL SCI, V20, P86, DOI 10.1111/j.1748-7692.2004.tb01142.x; Silva M, 1998, J MAMMAL, V79, P20, DOI 10.2307/1382839; Stearns S, 1992, EVOLUTION LIFE HIST; Trites AW, 1998, CAN J ZOOL, V76, P886, DOI 10.1139/cjz-76-5-886; Tyack PL, 2006, J EXP BIOL, V209, P4238, DOI 10.1242/jeb.02505; Ulijaszek SJ, 2002, AM J HUM BIOL, V14, P603, DOI 10.1002/ajhb.10088; Walker WA, 2002, MAR MAMMAL SCI, V18, P902, DOI 10.1111/j.1748-7692.2002.tb01081.x; Waltwood S. L., 2006, J ANIM ECOL, V75, P814; Watkins WA, 2002, MAR MAMMAL SCI, V18, P55, DOI 10.1111/j.1748-7692.2002.tb01018.x; Whitehead H, 1996, BEHAV ECOL SOCIOBIOL, V38, P237, DOI 10.1007/s002650050238; Wilson ME, 1999, J ANIM SCI, V77, P1654; Yampolsky LY, 1996, AM NAT, V147, P86, DOI 10.1086/285841; YASUI WY, 1986, OPHELIA, V25, P183, DOI 10.1080/00785326.1986.10429749 60 7 7 2 41 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0824-0469 1748-7692 MAR MAMMAL SCI Mar. Mamm. Sci. JAN 2011 27 1 182 194 10.1111/j.1748-7692.2010.00392.x 13 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology 700QU WOS:000285760200011 2019-02-21 J Lartillot, N; Poujol, R Lartillot, Nicolas; Poujol, Raphael A Phylogenetic Model for Investigating Correlated Evolution of Substitution Rates and Continuous Phenotypic Characters MOLECULAR BIOLOGY AND EVOLUTION English Article comparative method; independent contrasts; molecular dating; life-history evolution; Markov chain Monte Carlo; Bayesian statistics NONSYNONYMOUS NUCLEOTIDE SUBSTITUTION; SPECIES DIVERGENCE TIMES; MOLECULAR CLOCK; GENERATION-TIME; BODY-SIZE; GRAPHICAL MODELS; INDEPENDENT CONTRASTS; DECOMPOSABLE GRAPHS; FOSSIL CALIBRATIONS; BAYESIAN-ESTIMATION The comparative approach is routinely used to test for possible correlations between phenotypic or life-history traits. To correct for phylogenetic inertia, the method of independent contrasts assumes that continuous characters evolve along the phylogeny according to a multivariate Brownian process. Brownian diffusion processes have also been used to describe time variations of the parameters of the substitution process, such as the rate of substitution or the ratio of synonymous to nonsynonymous substitutions. Here, we develop a probabilistic framework for testing the coupling between continuous characters and parameters of the molecular substitution process. Rates of substitution and continuous characters are jointly modeled as a multivariate Brownian diffusion process of unknown covariance matrix. The covariance matrix, the divergence times and the phylogenetic variations of substitution rates and continuous characters are all jointly estimated in a Bayesian Monte Carlo framework, imposing on the covariance matrix a prior conjugate to the Brownian process so as to achieve a greater computational efficiency. The coupling between rates and phenotypes is assessed by measuring the posterior probability of positive or negative covariances, whereas divergence dates and phenotypic variations are marginally reconstructed in the context of the joint analysis. As an illustration, we apply the model to a set of 410 mammalian cytochrome b sequences. We observe a negative correlation between the rate of substitution and mass and longevity, which was previously observed. We also find a positive correlation between omega = dN/dS and mass and longevity, which we interpret as an indirect effect of variations of effective population size, thus in partial agreement with the nearly neutral theory. The method can easily be extended to any parameter of the substitution process and to any continuous phenotypic or environmental character. [Lartillot, Nicolas; Poujol, Raphael] Univ Montreal, Dept Biochim, Ctr Robert Cedergren, Montreal, PQ H3C 3J7, Canada Lartillot, N (reprint author), Univ Montreal, Dept Biochim, Ctr Robert Cedergren, Montreal, PQ H3C 3J7, Canada. nicolas.lartillot@umontreal.ca Natural Science and Engineering Research Council of Canada We wish to thank Benoit Nabholz, Sylvain Glemin, and Nicolas Galtier for providing the data, Nicolas Rodrigue, Fredrik Ronquist, and two anonymous reviewers for their useful comments on the manuscript. We also thank the Reseau Quebecois de Calcul de Haute Performance for computational resources. This work was funded by the Natural Science and Engineering Research Council of Canada. Blanquart S, 2006, MOL BIOL EVOL, V23, P2058, DOI 10.1093/molbev/msl091; Boussau B, 2008, NATURE, V456, P942, DOI 10.1038/nature07393; Bromham L, 1996, J MOL EVOL, V43, P610, DOI 10.1007/BF02202109; BROWN WM, 1979, P NATL ACAD SCI USA, V76, P1967, DOI 10.1073/pnas.76.4.1967; Butler MA, 2004, AM NAT, V164, P683, DOI 10.1086/426002; Calder III WA, 1984, SIZE FUNCTION LIFE H; CHAO L, 1993, EVOLUTION, V47, P688, DOI 10.1111/j.1558-5646.1993.tb02124.x; Cooper N, 2010, AM NAT, V175, P727, DOI 10.1086/652466; DAWID AP, 1993, ANN STAT, V21, P1272, DOI 10.1214/aos/1176349260; de Koning APJ, 2010, MOL BIOL EVOL, V27, P249, DOI 10.1093/molbev/msp228; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; DEMPSTER AP, 1972, BIOMETRICS, V28, P157, DOI 10.2307/2528966; Diaz-Uriarte R, 1998, SYST BIOL, V47, P654, DOI 10.1080/106351598260653; DIRAC PAM, 1982, PRINCIPLES QUANTUM M; Dobra A, 2004, J MULTIVARIATE ANAL, V90, P196, DOI 10.1016/j.jmva.2004.02.009; FELSENSTEIN J, 1981, J MOL EVOL, V17, P368, DOI 10.1007/BF01734359; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Felsenstein J, 2008, AM NAT, V171, P713, DOI 10.1086/587525; Fontanillas E, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-95; Galtier N, 1999, SCIENCE, V283, P220, DOI 10.1126/science.283.5399.220; Garland T, 2005, J EXP BIOL, V208, P3015, DOI 10.1242/jeb.01745; Gelman A., 2004, BAYESIAN DATA ANAL; Gillespie J. H., 1991, CAUSES MOL EVOLUTION; Gillooly JF, 2005, P NATL ACAD SCI USA, V102, P140, DOI 10.1073/pnas.0407735101; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Housworth EA, 2004, AM NAT, V163, P84, DOI 10.1086/380570; Huelsenbeck JP, 2004, SYST BIOL, V53, P904, DOI 10.1080/1063515049522629; Huelsenbeck JP, 2003, EVOLUTION, V57, P1237; Huelsenbeck JP, 2000, SCIENCE, V288, P2349, DOI 10.1126/science.288.5475.2349; Inoue J, 2010, SYST BIOL, V59, P74, DOI [10.1093/sysbio/syp096, 10.1093/sysbio/syp078]; JEFFREYS H., 1961, THEORY PROBABILITY; KIMURA M, 1979, P NATL ACAD SCI USA, V76, P3440, DOI 10.1073/pnas.76.7.3440; Kimura M., 1983, NEUTRAL THEORY MOL E; Kishino H, 2001, MOL BIOL EVOL, V18, P352, DOI 10.1093/oxfordjournals.molbev.a003811; Lanfear R, 2010, P NATL ACAD SCI USA, V107, P20423, DOI [10.1073/pnas.0703359104, 10.1073/pnas.1007888107]; Lartillot N, 2006, J COMPUT BIOL, V13, P1701, DOI 10.1089/cmb.2006.13.1701; Lepage T, 2007, MOL BIOL EVOL, V24, P2669, DOI 10.1093/molbev/msm193; Letac G, 2007, ANN STAT, V35, P1278, DOI 10.1214/009053606000001235; LI WH, 1987, NATURE, V326, P93, DOI 10.1038/326093a0; Li WH, 1996, MOL PHYLOGENET EVOL, V5, P182, DOI 10.1006/mpev.1996.0012; Mardia K. V., 1979, MULTIVARIATE ANAL; MARTIN AP, 1993, P NATL ACAD SCI USA, V90, P4087, DOI 10.1073/pnas.90.9.4087; Martins Emilia P., 1996, P22; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; Mateiu L, 2006, SYST BIOL, V55, P259, DOI 10.1080/10635150500541599; MUSE SV, 1994, MOL BIOL EVOL, V11, P715; Nabholz B, 2008, MOL BIOL EVOL, V25, P120, DOI 10.1093/molbev/msm248; Nielsen R, 2002, SYST BIOL, V51, P729, DOI 10.1080/10635150290102393; OHTA T, 1993, P NATL ACAD SCI USA, V90, P10676, DOI 10.1073/pnas.90.22.10676; OHTA T, 1974, NATURE, V252, P351, DOI 10.1038/252351a0; Ohta T., 1973, NATURE, V252, P315; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Popadin K, 2007, P NATL ACAD SCI USA, V104, P13390, DOI 10.1073/pnas.0701256104; Rannala B, 2007, SYST BIOL, V56, P453, DOI 10.1080/10635150701420643; Rodrigue N, 2008, BIOINFORMATICS, V24, P56, DOI 10.1093/bioinformatics/btm532; Roverato A, 2002, SCAND J STAT, V29, P391, DOI 10.1111/1467-9469.00297; Seo TK, 2004, MOL BIOL EVOL, V21, P1201, DOI 10.1093/molbev/msh088; Speakman JR, 2005, AGING CELL, V4, P167, DOI 10.1111/j.1474-9726.2005.00162.x; Thomas JA, 2006, P NATL ACAD SCI USA, V103, P7366, DOI 10.1073/pnas.0510261103; Thorne JL, 1998, MOL BIOL EVOL, V15, P1647, DOI 10.1093/oxfordjournals.molbev.a025892; Thorne JL, 2002, SYST BIOL, V51, P689, DOI 10.1080/10635150290102456; Weinreich DM, 2001, J MOL EVOL, V52, P40, DOI 10.1007/s002390010132; Welch JJ, 2008, J MOL EVOL, V67, P418, DOI 10.1007/s00239-008-9146-9; Welch JJ, 2008, J THEOR BIOL, V251, P667, DOI 10.1016/j.jtbi.2007.12.015; Welch JJ, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-53; Yang ZH, 2006, MOL BIOL EVOL, V23, P212, DOI 10.1093/molbev/msj024 66 97 97 0 27 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0737-4038 MOL BIOL EVOL Mol. Biol. Evol. JAN 2011 28 1 729 744 10.1093/molbev/msq244 16 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 696CD WOS:000285418600069 20926596 Bronze 2019-02-21 J Devos, N; Renner, MAM; Gradstein, R; Shaw, AJ; Laenen, B; Vanderpoorten, A Devos, Nicolas; Renner, Matt A. M.; Gradstein, Robbert; Shaw, A. Jonathan; Laenen, Benjamin; Vanderpoorten, Alain Evolution of sexual systems, dispersal strategies and habitat selection in the liverwort genus Radula NEW PHYTOLOGIST English Article bryophyte; comparative methods; epiphytism; life-history theory; liverwort; Radula; sexual system; trade-off ANCESTRAL CHARACTER STATES; MATING SYSTEMS; METAPOPULATION PROCESSES; DESICCATION-TOLERANCE; CORRELATED EVOLUTION; HYLOCOMIUM-SPLENDENS; EPIPHYTIC BRYOPHYTES; DISCRETE CHARACTERS; GENETIC-STRUCTURE; BREEDING SYSTEM Shifts in sexual systems are among the most common and important transitions in plants and are correlated with a suite of life-history traits. The evolution of sexual systems and their relationships to gametophyte size, sexual and asexual reproduction, and epiphytism are examined here in the liverwort genus Radula. The sequence of trait acquisition and the phylogenetic correlations between those traits was investigated using comparative methods. Shifts in sexual systems recurrently occurred from dioecy to monoecy within facultative epiphyte lineages. Production of specialized asexual gemmae was correlated to neither dioecy nor strict epiphytism. The significant correlations among life-history traits related to sexual systems and habitat conditions suggest the existence of evolutionary trade-offs. Obligate epiphytes do not produce gemmae more frequently than facultative epiphytes and disperse by whole gametophyte fragments, presumably to avoid the sensitive protonemal stage in a habitat prone to rapid changes in moisture availability. As dispersal ranges correlate with diaspore size, this reinforces the notion that epiphytes experience strong dispersal limitations. Our results thus provide the evolutionary complement to metapopulation, metacommunity and experimental studies demonstrating trade-offs between dispersal distance, establishment ability, and life-history strategy, which may be central to the evolution of reproductive strategies in bryophytes. [Devos, Nicolas; Laenen, Benjamin; Vanderpoorten, Alain] Univ Liege, Inst Bot, B-4000 Liege, Belgium; [Renner, Matt A. M.] Royal Bot Gardens Sydney, Natl Herbarium New S Wales, Sydney, NSW 2000, Australia; [Gradstein, Robbert] Museum Natl Hist Nat, Dept Systemat & Evolut, F-75231 Paris 05, France; [Devos, Nicolas; Shaw, A. Jonathan] Duke Univ, Dept Biol, Durham, NC 27708 USA Devos, N (reprint author), Univ Liege, Inst Bot, B-22 Sart Tilman, B-4000 Liege, Belgium. nd28@duke.edu Renner, Matt/H-6322-2011; Devos, Nicolas/E-7490-2015 Renner, Matt/0000-0003-2286-7257; Gradstein, Robbert/0000-0002-3849-6457 Belgian Funds for Scientific Research (FNRS); Fonds Leopold III; NSF [EF-0531730-002] Many thanks are due to three anonymous reviewers for their constructive comments on a previous draft of this paper. A. Schafer-Verwimp, T. Pocs, and the Helsinki (H), Liege (LG), Missouri (MO), New York (NY), Edinburgh (E), Eszterhazy Karoly College (EGR), Auckland (AK), Goetingen (GOET), and the Australian National Botanical Gardens (CBG) herbaria are gratefully acknowledged for the loan of specimens. N.D., B. L. and A. V. acknowledge financial support from the Belgian Funds for Scientific Research (FNRS) and the Fonds Leopold III. This research was also supported by NSF Grant EF-0531730-002 to A.J.S. Barker D, 2005, PLOS COMPUT BIOL, V1, P24, DOI 10.1371/journal.pcbi.0010003; Barker D, 2007, BIOINFORMATICS, V23, P14, DOI 10.1093/bioinformatics/btl558; Barkman JJ, 1958, PHYTOSOCIOLOGY ECOLO; Barrett SCH, 2002, NAT REV GENET, V3, P274, DOI 10.1038/nrg776; Bush Stephen P., 1995, Selbyana, V16, P155; Case AL, 2008, INT J PLANT SCI, V169, P141, DOI 10.1086/523368; CHARLESWORTH B, 1978, AM NAT, V112, P975, DOI 10.1086/283342; Cheptou PO, 2007, OIKOS, V116, P271, DOI 10.1111/j.2006.0030-1299.14655.x; Chiou WL, 2002, AM FERN J, V92, P65, DOI 10.1640/0002-8444(2002)092[0065:TMSOSE]2.0.CO;2; Crandall-Stotler B., 2009, Edinburgh Journal of Botany, V66, P155, DOI 10.1017/S0960428609005393; Crawford M, 2009, EVOLUTION, V63, P1129, DOI 10.1111/j.1558-5646.2009.00615.x; De Craene LPR, 2006, SYST BOT, V31, P671, DOI 10.1600/036364406779695951; de Jong Tom J., 2000, Plant Species Biology, V15, P31, DOI 10.1046/j.1442-1984.2000.00028.x; DOYLE JJ, 1987, TAXON, V36, P715, DOI 10.2307/1221122; Dubois S, 2003, NEW PHYTOL, V157, P633, DOI 10.1046/j.1469-8137.2003.00684.x; During Heinjo J., 1992, P1; DURING HJ, 2007, NOVA HEDWIGIA S, V131, P133; Eppley SM, 2007, HEREDITY, V98, P38, DOI 10.1038/sj.hdy.6800900; Forrest LL, 2006, BRYOLOGIST, V109, P303, DOI 10.1639/0007-2745(2006)109[303:UTEHOT]2.0.CO;2; Fritsch R., 1991, BRYOPHYTORUM BIBLIOT, V40, P1; *GEN COD CORP, 1998, SEQ 4 01 REF ADV US; Gradstein S. Robbert, 2001, Memoirs of the New York Botanical Garden, V86, P1; Hedderson TA, 1995, J BRYOL, V18, P639, DOI 10.1179/jbr.1995.18.4.639; Hedderson TA, 2008, J BRYOL, V30, P1, DOI 10.1179/174328208X282175; Heilbuth JC, 2001, EVOLUTION, V55, P880, DOI 10.1554/0014-3820(2001)055[0880:TCODFS]2.0.CO;2; Heinken T, 2001, J BRYOL, V23, P293, DOI 10.1179/jbr.2001.23.4.293; Heinrichs J, 2005, CRYPTOGAMIE BRYOL, V26, P131; Hooper EA, 1997, AM J BOT, V84, P1664, DOI 10.2307/2446464; Huttunen S, 2004, MONOG SYST BOTAN, V98, P328; Karlin EF, 2011, MOL ECOL, V20, P753, DOI 10.1111/j.1365-294X.2010.04982.x; KIMMERER RW, 1993, BRYOLOGIST, V96, P73, DOI 10.2307/3243322; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V11, P276; Krellwitz EC, 2001, PHYCOLOGIA, V40, P330, DOI 10.2216/i0031-8884-40-4-330.1; Leon-Vargas Y, 2006, J BIOGEOGR, V33, P901, DOI 10.1111/j.1365-2699.2006.01468.x; Lobel S, 2006, J ECOL, V94, P856, DOI 10.1111/j.1365-2745.2006.01114.x; Lobel S, 2006, ECOGRAPHY, V29, P169, DOI 10.1111/j.2006.0906-7590.04348.x; LOBEL S, 2009, METAPOPULATION METAC; Lobel S, 2010, FUNCT ECOL, V24, P887, DOI 10.1111/j.1365-2435.2010.01705.x; Lobel S, 2009, J ECOL, V97, P176, DOI 10.1111/j.1365-2745.2008.01459.x; Longton RE, 1997, ADV BRYOLOG, V6, P65; LONGTON RE, 1983, NEW MANUAL BRYOLOGY, P386; MADDISON WP, 1992, MACCLADE ANAL PHYLOG; McDaniel SF, 2010, EVOLUTION, V64, P217, DOI 10.1111/j.1558-5646.2009.00797.x; Miller JS, 2003, EVOLUTION, V57, P74; MISHLER BD, 1988, J BRYOL, V15, P327, DOI 10.1179/jbr.1988.15.2.327; MOGIE M, 1992, EVOLUTION SEXUAL REP; NADOT S, 1994, PLANT SYST EVOL, V191, P27, DOI 10.1007/BF00985340; Nylander J. A. A, 2004, MRMODELTEST V2; PACAK A, 2000, J PLANT BIOTECHNOL, V2, P101; Pagel M, 1999, SYST BIOL, V48, P612, DOI 10.1080/106351599260184; PAGEL M, 1994, P ROY SOC B-BIOL SCI, V255, P37, DOI 10.1098/rspb.1994.0006; Pagel M, 2004, SYST BIOL, V53, P673, DOI 10.1080/10635150490522232; PAGEL M, 2002, BIOL EVOLUTION STAT, P148; PARSONS G, 2007, OECOLOGIA, V152, P112; POHJAMO M, 2003, PERSPECT PLANT ECOL, V6, P159; Pohjamo M, 2006, EVOL ECOL, V20, P415, DOI 10.1007/s10682-006-0011-2; Proctor MCF, 2007, BRYOLOGIST, V110, P595, DOI 10.1639/0007-2745(2007)110[595:DIBAR]2.0.CO;2; Rambaut A, 2007, TRACER V1 4; Renner SS, 2007, EVOLUTION, V61, P2701, DOI 10.1111/j.1558-5646.2007.00221.x; RENNER SS, 1995, AM J BOT, V82, P596, DOI 10.2307/2445418; Renner SS, 2001, SYST BIOL, V50, P700, DOI 10.1080/106351501753328820; ROBERT EC, 2004, NUCLEIC ACIDS RES, V32, P1792; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Rydgren K, 2006, OECOLOGIA, V147, P445, DOI 10.1007/s00442-005-0290-2; Rydgren K, 2003, BRYOLOGIST, V106, P212, DOI 10.1639/0007-2745(2003)106[0212:SCOSRI]2.0.CO;2; SAKAI AK, 1995, ECOLOGY, V76, P2517, DOI 10.2307/2265825; Schuster R. M, 1966, HEPATICAE ANTHOCEROT, VI; Smith SD, 2010, NEW PHYTOL, V188, P354, DOI 10.1111/j.1469-8137.2010.03292.x; Snall T, 2005, ECOLOGY, V86, P106, DOI 10.1890/04-0531; Snall T, 2004, ECOGRAPHY, V27, P757, DOI 10.1111/j.0906-7590.2004.04026.x; Snall T, 2004, MOL ECOL, V13, P2109, DOI 10.1111/j.1365-294X.2004.02217.x; Soderstrom L, 1997, ADV BRYOLOG, V6, P205; SOULE M, 1971, Taxon, V20, P37, DOI 10.2307/1218532; SouzaChies TT, 1997, PLANT SYST EVOL, V204, P109, DOI 10.1007/BF00982535; Stark LR, 2009, AM J BOT, V96, P1712, DOI 10.3732/ajb.0900084; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Swofford D. L., 2002, PAUP PHYLOGENETIC AN; TABERLET P, 1991, PLANT MOL BIOL, V17, P1105, DOI 10.1007/BF00037152; Taylor PJ, 2007, AM J BOT, V94, P1853, DOI 10.3732/ajb.94.11.1853; van Dulmen A, 2001, PLANT ECOL, V153, P73, DOI 10.1023/A:1017577305193; Vanderpoorten A, 2009, INTRODUCTION TO BRYOPHYTES, P1, DOI 10.1017/CBO9780511626838; Vanderpoorten A, 2010, BIOL REV, V85, P471, DOI 10.1111/j.1469-185X.2009.00111.x; Weller SG, 1999, ANNU REV ECOL SYST, V30, P167, DOI 10.1146/annurev.ecolsys.30.1.167; Wilson WG, 2003, AM NAT, V162, P220, DOI 10.1086/376584; Yamada K., 2003, MEMOIRS NEW YORK BOT, V87, P1; Zheng M, 2009, NOVA HEDWIGIA, V88, P229, DOI 10.1127/0029-5035/2009/0088-0229 86 34 34 2 37 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X NEW PHYTOL New Phytol. 2011 192 1 225 236 10.1111/j.1469-8137.2011.03783.x 12 Plant Sciences Plant Sciences 815VZ WOS:000294559400020 21649662 2019-02-21 J Lachmuth, S; Durka, W; Schurr, FM Lachmuth, Susanne; Durka, Walter; Schurr, Frank M. Differentiation of reproductive and competitive ability in the invaded range of Senecio inaequidens: the role of genetic Allee effects, adaptive and nonadaptive evolution NEW PHYTOLOGIST English Article animal models; biological invasions; genetic Allee effects; interspecific competition; life history evolution; nonadaptive evolution; r and K selection; reproduction LOOSESTRIFE LYTHRUM-SALICARIA; INTRODUCED PLANT-POPULATIONS; NORTH-AMERICAN POPULATIONS; LIFE-HISTORY EVOLUTION; BIOLOGICAL INVASIONS; PAIRWISE RELATEDNESS; DISPERSAL EVOLUTION; QUANTITATIVE TRAIT; SPECIES INVASIONS; RAPID EVOLUTION Genetic differentiation in the competitive and reproductive ability of invading populations can result from genetic Allee effects or r/K selection at the local or range-wide scale. However, the neutral relatedness of populations may either mask or falsely suggest adaptation and genetic Allee effects. In a common-garden experiment, we investigated the competitive and reproductive ability of invasive Senecio inaequidens populations that vary in neutral genetic diversity, population age and field vegetation cover. To account for population relatedness, we analysed the experimental results with 'animal models' adopted from quantitative genetics. Consistent with adaptive r/K differentiation at local scales, we found that genotypes from low-competition environments invest more in reproduction and are more sensitive to competition. By contrast, apparent effects of large-scale r/K differentiation and apparent genetic Allee effects can largely be explained by neutral population relatedness. Invading populations should not be treated as homogeneous groups, as they may adapt quickly to small-scale environmental variation in the invaded range. Furthermore, neutral population differentiation may strongly influence invasion dynamics and should be accounted for in analyses of common-garden experiments. [Lachmuth, Susanne; Schurr, Frank M.] Univ Potsdam, D-14469 Potsdam, Germany; [Lachmuth, Susanne] Univ Halle Wittenberg, D-06099 Halle, Germany; [Durka, Walter] UFZ Helmholtz Ctr Environm Res, Dept Community Ecol BZF, D-06120 Halle, Germany; [Schurr, Frank M.] Goethe Univ Frankfurt, Inst Phys Geog, D-60438 Frankfurt, Germany Lachmuth, S (reprint author), Univ Potsdam, Maulbeerallee 2, D-14469 Potsdam, Germany. susanne.lachmuth@botanik.uni-halle.de Durka, Walter/E-4667-2010 Durka, Walter/0000-0002-6611-2246 German Environmental Foundation (DBU); Hans-Sauer-Foundation; German Academic Exchange Service (DAAD); graduate programme of the Federal State of Brandenburg; European Union [MTKDCT-2006-042261] The study was funded by the German Environmental Foundation (DBU), the Hans-Sauer-Foundation, the German Academic Exchange Service (DAAD), the graduate programme of the Federal State of Brandenburg and the European Union through Marie Curie Transfer of Knowledge Project FEMMES (MTKDCT-2006-042261). We thank S. R. Keller and two anonymous referees for very constructive comments on the manuscript, and G. Seidler for producing the map. M. Burkart, K. Klaring, R. Meiling and workers from Potsdam Botanical Garden supported us in organizational and technical matters. A. Eulenburg, I. Hoppe, M. Huth and A. Rubo assisted with experimental work. Alford RA, 2009, WILDLIFE RES, V36, P23, DOI 10.1071/WR08021; Allee W., 1931, ANIMAL AGGREGATIONS; Austerlitz F, 2000, GENETICS, V154, P1309; Bailey MF, 2006, J ECOL, V94, P98, DOI 10.1111/j.1365-2745.2005.01090.x; Bates D., 2009, PEDIGREEMM PEDIGREE; Bates D., 2011, LME4 LINEAR MIXED EF; BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; Bohmer H. J., 2001, FLOR RUNDBR, V35, P47; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Bossdorf O, 2005, OECOLOGIA, V144, P1, DOI 10.1007/s00442-005-0070-z; Burton OJ, 2008, HEREDITY, V101, P329, DOI 10.1038/hdy.2008.56; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Chun YJ, 2009, MOL ECOL, V18, P3020, DOI 10.1111/j.1365-294X.2009.04254.x; Colautti RI, 2009, EVOL APPL, V2, P187, DOI 10.1111/j.1752-4571.2008.00053.x; Crawford KM, 2010, MOL ECOL, V19, P1253, DOI 10.1111/j.1365-294X.2010.04550.x; Daehler CC, 1999, AM J BOT, V86, P131, DOI 10.2307/2656962; Dietz H, 2006, ECOLOGY, V87, P1359, DOI 10.1890/0012-9658(2006)87[1359:RTCPCD]2.0.CO;2; Dimande AFP, 2007, J S AFR VET ASSOC, V78, P121; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dlugosch KM, 2007, MOL ECOL, V16, P4269, DOI 10.1111/j.1365-294X.2007.03508.x; Dlugosch KM, 2008, ECOL LETT, V11, P701, DOI 10.1111/j.1461-0248.2008.01181.x; Edmonds CA, 2004, P NATL ACAD SCI USA, V101, P975, DOI 10.1073/pnas.0308064100; ELLSTRAND NC, 1993, ANNU REV ECOL SYST, V24, P217, DOI 10.1146/annurev.es.24.110193.001245; Ernst WHO, 1998, ACTA BOT NEERL, V47, P131; Excoffier L, 2009, ANNU REV ECOL EVOL S, V40, P481, DOI 10.1146/annurev.ecolsys.39.110707.173414; Facon B, 2011, CURR BIOL, V21, P424, DOI 10.1016/j.cub.2011.01.068; Fischer M, 2000, ECOL LETT, V3, P530, DOI 10.1046/j.1461-0248.2000.00188.x; Foll M, 2008, GENETICS, V180, P977, DOI 10.1534/genetics.108.092221; Garcia-Serrano H, 2004, CAN J BOT, V82, P1346, DOI [10.1139/B04-097, 10.1139/b04-097]; Gurevitch J, 2011, ECOL LETT, V14, P407, DOI 10.1111/j.1461-0248.2011.01594.x; Hardy OJ, 2003, MOL ECOL, V12, P1577, DOI 10.1046/j.1365-294X.2003.01835.x; Hardy OJ, 2002, MOL ECOL NOTES, V2, P618, DOI 10.1046/j.1471-8286.2002.00305.x; Hilliard O.M., 1977, COMPOSITAE NATAL; Housworth EA, 2004, AM NAT, V163, P84, DOI 10.1086/380570; Hughes AR, 2008, ECOL LETT, V11, P609, DOI 10.1111/j.1461-0248.2008.01179.x; Jeanmonod D, 2002, SAUSSURA, V32, P43; Kanarek AR, 2010, EVOL APPL, V3, P122, DOI 10.1111/j.1752-4571.2009.00112.x; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Keller SR, 2008, ECOL LETT, V11, P852, DOI 10.1111/j.1461-0248.2008.01188.x; Keller SR, 2009, NEW PHYTOL, V183, P678, DOI 10.1111/j.1469-8137.2009.02892.x; Kollmann J, 2004, DIVERS DISTRIB, V10, P377, DOI 10.1111/j.1366-9516.2004.00126.x; KUHBIER H, 1977, Abhandlungen Naturwissenschaftlichen Verein zu Bremen, V38, P383; Kuparinen A, 2007, ECOL MODEL, V202, P476, DOI 10.1016/j.ecolmodel.2006.11.015; Kuparinen A, 2010, FOREST ECOL MANAG, V259, P1003, DOI 10.1016/j.foreco.2009.12.006; Lachmuth S, 2010, MOL ECOL, V19, P3952, DOI 10.1111/j.1365-294X.2010.04797.x; Lafuma L, 2003, PLANT SYST EVOL, V243, P59, DOI 10.1007/s00606-003-0075-0; Lafuma L, 2007, OIKOS, V116, P201, DOI [10.1111/j.2006.0030-1299.15220.x, 10.1111/j.0030-1299.2007.15220.x]; LANDE R, 1988, SCIENCE, V241, P1455, DOI 10.1126/science.3420403; Leinonen T, 2008, J EVOLUTION BIOL, V21, P1, DOI 10.1111/j.1420-9101.2007.01445.x; Liebhold A, 2003, ECOL LETT, V6, P133, DOI 10.1046/j.1461-0248.2003.00405.x; Lockwood JL, 2005, TRENDS ECOL EVOL, V20, P223, DOI 10.1016/j.tree.2005.02.004; Lopez-Garcia MC, 2005, BIOL INVASIONS, V7, P181, DOI 10.1007/s10530-004-8978-5; LYNCH M, 1994, MOL ECOL, V3, P91, DOI 10.1111/j.1365-294X.1994.tb00109.x; Lynch M, 1998, GENETICS ANAL QUANTI; MAC ARTHUR ROBERT H., 1967; Maron JL, 2004, ECOL MONOGR, V74, P261, DOI 10.1890/03-4027; Meimberg H, 2010, MOL ECOL, V19, P5308, DOI 10.1111/j.1365-294X.2010.04875.x; Moloney KA, 2009, PERSPECT PLANT ECOL, V11, P311, DOI 10.1016/j.ppees.2009.05.002; Montague JL, 2008, J EVOLUTION BIOL, V21, P234, DOI 10.1111/j.1420-9101.2007.01456.x; Monty A, 2009, J EVOLUTION BIOL, V22, P917, DOI 10.1111/j.1420-9101.2009.01728.x; MONTY A, 2009, OIKOS, V119, P1563; Monty A, 2009, OECOLOGIA, V159, P305, DOI 10.1007/s00442-008-1228-2; Nathan R, 2008, TRENDS ECOL EVOL, V23, P638, DOI 10.1016/j.tree.2008.08.003; ONEIL P, 1994, AM J BOT, V81, P76, DOI 10.2307/2445565; Parker IM, 2003, CONSERV BIOL, V17, P59, DOI 10.1046/j.1523-1739.2003.02019.x; Phillips BL, 2009, BIOL LETTERS, V5, P802, DOI 10.1098/rsbl.2009.0367; Phillips BL, 2008, AM NAT, V172, pS34, DOI 10.1086/588255; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; Pinheiro J, 2011, NLME LINEAR NONLINEA; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Poll M, 2009, DIVERS DISTRIB, V15, P254, DOI 10.1111/j.1472-4642.2008.00540.x; R Development Core Team, 2011, R LANG ENV STAT COMP; Ritland K, 1996, GENET RES, V67, P175, DOI 10.1017/S0016672300033620; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Saltonstall K, 2003, ESTUARIES, V26, P444, DOI 10.1007/BF02823721; Scherber C, 2003, DIVERS DISTRIB, V9, P415, DOI 10.1046/j.1472-4642.2003.00049.x; Taylor CM, 2005, ECOL LETT, V8, P895, DOI 10.1111/j.1461-0248.2005.00787.x; Tobin PC, 2007, ECOL LETT, V10, P36, DOI 10.1111/j.1461-0248.2006.00991.x; Travis JMJ, 2002, EVOL ECOL RES, V4, P1119; Travis JMJ, 2010, DIVERS DISTRIB, V16, P690, DOI 10.1111/j.1472-4642.2010.00674.x; Van Kleunen M, 2005, AM J BOT, V92, P1124, DOI 10.3732/ajb.92.7.1124; van Kleunen M, 2005, NEW PHYTOL, V166, P49, DOI 10.1111/j.1469-8137.2004.01296.x; Vekemans X, 2002, MOL ECOL, V11, P139, DOI 10.1046/j.0962-1083.2001.01415.x; Verhoeven K., 2010, P ROYAL SOC B, V278, P2; Werner D.J., 1991, TUEXENIA, V11, P73; Whitlock MC, 2008, MOL ECOL, V17, P1885, DOI 10.1111/j.1365-294X.2008.03712.x 86 24 24 4 81 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0028-646X NEW PHYTOL New Phytol. 2011 192 2 529 541 10.1111/j.1469-8137.2011.03808.x 13 Plant Sciences Plant Sciences 825MS WOS:000295282700025 21736567 Bronze 2019-02-21 J Markesteijn, L; Poorter, L; Bongers, F; Paz, H; Sack, L Markesteijn, Lars; Poorter, Lourens; Bongers, Frans; Paz, Horacio; Sack, Lawren Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance NEW PHYTOLOGIST English Article drought tolerance; hydraulic conductivity; juvenile crown exposure; life-history strategies; midday dry season leaf water potential; shade tolerance; trade-offs; tropical dry forest WOODY-PLANTS; CAVITATION RESISTANCE; XYLEM CAVITATION; DESICCATION-TOLERANCE; LEAF TRAITS; TRADE-OFF; PHOTOSYNTHETIC TRAITS; REGENERATION NICHE; BIOMASS ALLOCATION; WATER POTENTIALS Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K-s) and leaf (K-l) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K-l with drought tolerance, we found a strong, negative correlation between K-l and species' shade tolerance. Across species, K-s and K-l were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. [Markesteijn, Lars; Poorter, Lourens; Bongers, Frans] Wageningen Univ, Ctr Ecosyst Studies, Forest Ecol & Forest Management Grp, NL-6700 AA Wageningen, Netherlands; [Markesteijn, Lars; Poorter, Lourens] IBIF, Casilla 6204, Santa Cruz Sier, Bolivia; [Poorter, Lourens] Wageningen Univ, Ctr Ecosyst Studies, Resource Ecol Grp, NL-6700 AA Wageningen, Netherlands; [Paz, Horacio] UNAM, Ctr Invest Ecosistemas, Morelia 58190, Michoacan, Mexico; [Sack, Lawren] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA Markesteijn, L (reprint author), Wageningen Univ, Ctr Ecosyst Studies, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands. markeste@uwm.edu Yang, Da/L-6267-2013; Markesteijn, Lars/S-9744-2018; Sack, Lawren/A-5492-2008 Yang, Da/0000-0001-7306-3289; Markesteijn, Lars/0000-0003-3046-3121; Sack, Lawren/0000-0002-7009-7202; Paz, Horacio/0000-0001-5221-0905; Poorter, Lourens/0000-0003-1391-4875 Wageningen Graduate School, Production Ecology and Resource Conservation (PERC) We would like to express our gratitude to all staff and students of the Bolivian Forest Research Institute (IBIF) for their support. We thank Jose Iraipi Vaca and Estrella Yanguas Fernandez for their assistance in the field, and a special word of thanks goes to Paul Rozenboom and his staff at INPA Parket Ltda. in Concepcion, Bolivia, for letting us conduct our field studies on their property. We thank Daniel Velasquez for his logistic support during our field campaigns. Thoughtful comments by Dr David Ackerly and three anonymous referees greatly improved our manuscript. This study was supported by fellowships from the Wageningen Graduate School, Production Ecology and Resource Conservation (PE&RC) to L.M. and L.P. Ackerly D, 2004, ECOL MONOGR, V74, P25, DOI 10.1890/03-4022; ALVAREZ CS, 2007, FUNCTIONAL ECOLOGY, V21, P1044; Asner GP, 2003, GLOBAL ECOL BIOGEOGR, V12, P191, DOI 10.1046/j.1466-822X.2003.00026.x; Baltzer JL, 2008, FUNCT ECOL, V22, P221, DOI 10.1111/j.1365-2435.2007.01374.x; Baltzer JL, 2005, ECOLOGY, V86, P3063, DOI 10.1890/04-0598; Baraloto C, 2010, ECOL LETT, V13, P1338, DOI 10.1111/j.1461-0248.2010.01517.x; Bhaskar R, 2006, PHYSIOL PLANTARUM, V127, P353, DOI 10.1111/j.1399-3054.2006.00718.x; Bongers F., 2004, Biodiversity of West African forests: an ecological atlas of woody plant species, P41, DOI 10.1079/9780851997346.0041; BORCHERT R, 1994, ECOLOGY, V75, P1437, DOI 10.2307/1937467; Brodribb TJ, 2000, PLANT CELL ENVIRON, V23, P1381, DOI 10.1046/j.1365-3040.2000.00647.x; Brodribb TJ, 2003, PLANT CELL ENVIRON, V26, P443, DOI 10.1046/j.1365-3040.2003.00975.x; Brodribb TJ, 2002, PLANT CELL ENVIRON, V25, P1435, DOI 10.1046/j.1365-3040.2002.00919.x; Bucci SJ, 2004, TREE PHYSIOL, V24, P891, DOI 10.1093/treephys/24.8.891; Carlquist S., 1975, ECOLOGICAL STRATEGIE; CHAPIN FS, 1993, AM NAT, V142, P78; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Chen JW, 2009, ECOL RES, V24, P65, DOI 10.1007/s11284-008-0482-4; Choat B, 2005, TREES-STRUCT FUNCT, V19, P305, DOI 10.1007/s00468-004-0392-1; Choat B, 2007, NEW PHYTOL, V175, P686, DOI 10.1111/j.1469-8137.2007.02137.x; Clark DB, 1999, ECOLOGY, V80, P2662, DOI 10.1890/0012-9658(1999)080[2662:EFATLS]2.0.CO;2; COCHRANE TT, 1973, POTENCIAL AGRICOLA U; Comita LS, 2009, ECOLOGY, V90, P2755, DOI 10.1890/08-1482.1; Comstock JP, 2000, NEW PHYTOL, V148, P195, DOI 10.1046/j.1469-8137.2000.00763.x; Coomes DA, 2000, ECOL MONOGR, V70, P171, DOI 10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2; Davis SD, 2002, AM J BOT, V89, P820, DOI 10.3732/ajb.89.5.820; DENSLOW JS, 1987, ANNU REV ECOL SYST, V18, P431, DOI 10.1146/annurev.es.18.110187.002243; Duff GA, 1997, AUST J BOT, V45, P211, DOI 10.1071/BT96018; Eamus D, 1999, TRENDS ECOL EVOL, V14, P11, DOI 10.1016/S0169-5347(98)01532-8; Eamus D, 2001, ADV ECOL RES, V32, P113, DOI 10.1016/S0065-2504(01)32012-3; Ellenberg H., 1991, SCRIPTA GEOBOTANICA, V18; Ellis AR, 2000, CAN J BOT, V78, P1336, DOI 10.1139/cjb-78-10-1336; Engelbrecht BMJ, 2007, NATURE, V447, P80, DOI 10.1038/nature05747; Engelbrecht BMJ, 2005, TREES-STRUCT FUNCT, V19, P312, DOI 10.1007/s00468-004-0393-0; Engelbrecht BMJ, 2003, OECOLOGIA, V136, P383, DOI 10.1007/s00442-003-1290-8; Engelbrecht BMJ, 2006, OECOLOGIA, V148, P258, DOI 10.1007/s00442-006-0368-5; EWERS FW, 1989, AM J BOT, V76, P645, DOI 10.1002/j.1537-2197.1989.tb11360.x; Gilbert B, 2006, ECOLOGY, V87, P1281, DOI 10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2; GOLDSTEIN G, 1989, ANN SCI FOREST, V46, pS488; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grubb Peter J., 1998, Perspectives in Plant Ecology Evolution and Systematics, V1, P3, DOI 10.1078/1433-8319-00049; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; Hacke UG, 2001, PERSPECT PLANT ECOL, V4, P97, DOI 10.1078/1433-8319-00017; Hacke UG, 2001, OECOLOGIA, V126, P457, DOI 10.1007/s004420100628; HARGRAVE KR, 1994, NEW PHYTOL, V126, P695, DOI 10.1111/j.1469-8137.1994.tb02964.x; Hernandez EI, 2010, PLANT ECOL, V207, P233, DOI 10.1007/s11258-009-9668-2; Holmgren M, 2000, OIKOS, V90, P67, DOI 10.1034/j.1600-0706.2000.900107.x; Hutchinson G. E, 1978, INTRO POPULATION ECO; ILIC J, 2000, 18 AUSTR GREENH OFF; Jacobsen AL, 2005, PLANT PHYSIOL, V139, P546, DOI 10.1104/pp.104.058404; Jacobsen AL, 2007, ECOL MONOGR, V77, P99, DOI 10.1890/05-1879; Jardim A., 2003, GUIA ARBOLES ARBUSTO; Killeen TJ, 1998, J TROP ECOL, V14, P803, DOI 10.1017/S0266467498000583; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kitajima K, 2010, NEW PHYTOL, V186, P708, DOI 10.1111/j.1469-8137.2010.03212.x; Kursar TA, 2009, FUNCT ECOL, V23, P93, DOI 10.1111/j.1365-2435.2008.01483.x; Lebrija-Trejos E., 2009, THESIS WAGENINGEN U; LOGULLO MA, 1993, PLANT CELL ENVIRON, V16, P511; Lusk CH, 2007, NEW PHYTOL, V176, P764, DOI 10.1111/j.1469-8137.2007.02264.x; Maharjan SK, 2011, BIOTROPICA, V43, P552, DOI 10.1111/j.1744-7429.2010.00747.x; Maherali H, 2004, ECOLOGY, V85, P2184, DOI 10.1890/02-0538; Markesteijn L, 2009, J ECOL, V97, P311, DOI 10.1111/j.1365-2745.2008.01466.x; Markesteijn L, 2011, PLANT CELL ENVIRON, V34, P137, DOI 10.1111/j.1365-3040.2010.02231.x; Markesteijn L, 2010, J TROP ECOL, V26, P497, DOI 10.1017/S0266467410000271; Myers BA, 1998, AUST J ECOL, V23, P329, DOI 10.1111/j.1442-9993.1998.tb00738.x; Nardini A, 2000, TREES-STRUCT FUNCT, V15, P14, DOI 10.1007/s004680000071; Navarro G., 2002, GEOGRAFIA ECOLOGICA; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; Paz H, 2003, BIOTROPICA, V35, P318, DOI 10.1111/j.1744-7429.2003.tb00586.x; Pittermann J, 2006, PLANT CELL ENVIRON, V29, P1618, DOI 10.1111/1365-3040.2006.01539.x; Pockman WT, 2000, AM J BOT, V87, P1287, DOI 10.2307/2656722; Poorter L, 2009, NEW PHYTOL, V181, P890, DOI 10.1111/j.1469-8137.2008.02715.x; Poorter L, 2008, ANN BOT-LONDON, V102, P367, DOI 10.1093/aob/mcn103; Poorter L, 2008, BIOTROPICA, V40, P321, DOI 10.1111/j.1744-7429.2007.00380.x; Poorter L, 2007, ECOLOGY, V88, P1000, DOI 10.1890/06-0984; Poorter L, 2007, AM NAT, V169, P433, DOI 10.1086/512045; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; POPMA J, 1991, J TROP ECOL, V7, P85, DOI 10.1017/S0266467400005137; Preston KA, 2006, NEW PHYTOL, V170, P807, DOI 10.1111/j.1469-8137.2006.01712.x; Quero JL, 2006, NEW PHYTOL, V170, P819, DOI 10.1111/j.1469-8137.2006.01713.x; Roderick ML, 2000, FUNCT ECOL, V14, P244, DOI 10.1046/j.1365-2435.2000.00414.x; Sack L, 2005, NEW PHYTOL, V167, P403, DOI 10.1111/j.1469-8137.2005.01432.x; Sack L, 2004, OIKOS, V107, P110, DOI 10.1111/j.0030-1299.2004.13184.x; Sack L, 2003, PLANT ECOL, V168, P139, DOI 10.1023/A:1024423820136; Sack L, 2002, OECOLOGIA, V131, P175, DOI 10.1007/s00442-002-0873-0; SALLEO S, 1989, ANN BOT-LONDON, V64, P325, DOI 10.1093/oxfordjournals.aob.a087848; Santiago LS, 2004, OECOLOGIA, V140, P543, DOI 10.1007/s00442-004-1624-1; SMITH T, 1989, VEGETATIO, V83, P49, DOI 10.1007/BF00031680; SOBRADO MA, 1993, OECOLOGIA, V96, P19, DOI 10.1007/BF00318025; Sperry JS, 2000, AGR FOREST METEOROL, V104, P13, DOI 10.1016/S0168-1923(00)00144-1; Sperry JS, 2002, PLANT CELL ENVIRON, V25, P251, DOI 10.1046/j.0016-8025.2001.00799.x; SPERRY JS, 1988, PLANT CELL ENVIRON, V11, P35, DOI 10.1111/j.1365-3040.1988.tb01774.x; Sterck FJ, 2006, AM NAT, V167, P758, DOI 10.1086/503056; Stevens P., 2010, ANGIOSPERM PHYLOGENY; SWAINE MD, 1988, VEGETATIO, V75, P81, DOI 10.1007/BF00044629; Tilman D., 1982, RESOURCE COMPETITION; Tilman D, 1988, PLANT STRATEGIES DYN; Tyree MT, 2002, J EXP BOT, V53, P2239, DOI 10.1093/jxb/erf078; TYREE MT, 1994, IAWA J, V15, P335, DOI 10.1163/22941932-90001369; TYREE MT, 1988, PLANT PHYSIOL, V88, P574, DOI 10.1104/pp.88.3.574; Tyree MT, 2003, PLANT PHYSIOL, V132, P1439, DOI 10.1104/pp.102.018937; Tyree MT, 1998, OECOLOGIA, V114, P293, DOI 10.1007/s004420050450; TYREE MT, 1991, NEW PHYTOL, V119, P345, DOI 10.1111/j.1469-8137.1991.tb00035.x; Tyree MT, 2002, XYLEM STRUCTURE ASCE; Valencia R, 2004, J ECOL, V92, P214, DOI 10.1111/j.0022-0477.2004.00876.x; van Breugel M, 2007, BIOTROPICA, V39, P610, DOI 10.1111/j.1744-7429.2007.00316.x; Walters MB, 1999, NEW PHYTOL, V143, P143, DOI 10.1046/j.1469-8137.1999.00425.x; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; WHITMORE TC, 1989, ECOLOGY, V70, P536, DOI 10.2307/1940195; Wright SJ, 2003, ECOLOGY, V84, P3174, DOI 10.1890/02-0038; Wright SJ, 2002, OECOLOGIA, V130, P1, DOI 10.1007/s004420100809; Zanne AE, 2010, AM J BOT, V97, P207, DOI 10.3732/ajb.0900178; Zimmermann M., 1983, XYLEM STRUCTURE ASCE; Zwieniecki MA, 2001, SCIENCE, V291, P1059, DOI 10.1126/science.1057175 114 103 106 9 97 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X 1469-8137 NEW PHYTOL New Phytol. 2011 191 2 480 495 10.1111/j.1469-8137.2011.03708.x 16 Plant Sciences Plant Sciences 785FC WOS:000292211800017 21477008 2019-02-21 J Bettega, C; Delgado, MD; Campioni, L; Pedrini, P; Penteriani, V Bettega, Chiara; del Mar Delgado, Maria; Campioni, Letizia; Pedrini, Paolo; Penteriani, Vincenzo The quality of chicks and breeding output do not differ between first and replacement clutches in the Eagle Owl Bubo bubo ORNIS FENNICA English Article LIFE-HISTORY EVOLUTION; NEST PREDATION; SEASONAL DECLINE; SIZE VARIATION; RENESTING ABILITY; WILLOW-PTARMIGAN; PRECOCIAL BIRDS; ARCTIC SEABIRD; EGG-PRODUCTION; TREE SWALLOWS Replacement clutches can be crucial to the breeding success of avian species, although several factors may influence their outcome and the quality of chicks. Here we compare first and replacement clutches of Eagle Owls in terms of chick quality, timing of breeding, and number of eggs and fledglings. We hypothesize that the propensity to abandon nests and start a new clutch could have evolved because females are able to produce chicks that are as good as the ones of the first clutch. We found that nestlings in replacement clutches were not significantly different from nestlings in first clutches, in terms of immune system and body condition; nor were there significant differences in clutch and brood size. Our findings may be explained by the fact that clutches were laid early in the season, perhaps by high-quality parents, and that food resources are plentiful in the study area. In order to maximize fitness, individuals have to adjust optimally the investment of resources in different life-history traits. Thus, the re-nesting behaviour of Eagle Owls may be seen as a way to solve the trade-off between one trait (survival) favoured over another (reproduction), when one of them has a disproportionate effect on fitness. [Penteriani, Vincenzo] Univ Helsinki, Finnish Museum Nat Hist, Zool Museum, FI-00014 Helsinki, Finland; [Bettega, Chiara; del Mar Delgado, Maria; Campioni, Letizia; Penteriani, Vincenzo] CSIC, Dept Conservat Biol, Estn Biol Donana, Seville 41092, Spain; [del Mar Delgado, Maria] Univ Helsinki, Metapopulat Res Grp, Dept Biosci, FI-00014 Helsinki, Finland; [Pedrini, Paolo] Trento Nat Hist Museum, I-38122 Trento, Italy Penteriani, V (reprint author), Univ Helsinki, Finnish Museum Nat Hist, Zool Museum, FI-00014 Helsinki, Finland. penteriani@ebd.csic.es CSIC, EBD Donana/C-4157-2011 CSIC, EBD Donana/0000-0003-4318-6602; Campioni, Letizia/0000-0002-6319-6931 Spanish Ministry of Science and Innovation [CGL2008-02871/BOS]; Spanish Secretaria General de Universidades; Ministry of Education Comments and suggestions by Dr. Patrik Byholm and an anonymous referee greatly improved the first draft of the manuscript. The work was funded by a research project of the Spanish Ministry of Science and Innovation (CGL2008-02871/BOS; with FEDER co-financing). V.P. was granted by the Spanish Secretaria General de Universidades, Ministry of Education (Salvador de Madariaga Program) and M.M.D by a post-doctoral fellowship of the Spanish Ministry of Science and Innovation. Amat JA, 1999, CONDOR, V101, P746, DOI 10.2307/1370061; Antczak M, 2009, ETHOL ECOL EVOL, V21, P127, DOI 10.1080/08927014.2009.9522501; Balluet Patrick, 2006, Nos Oiseaux, V53, P195; BATES D., 2009, IME4 LINEAR MIXED EF; Bauchau V, 1997, ANIM BEHAV, V54, P153, DOI 10.1006/anbe.1996.0460; Bourgeon S, 2006, POLAR BIOL, V29, P358, DOI 10.1007/s00300-005-0064-7; BRINKHOF MWG, 1993, J ANIM ECOL, V62, P577, DOI 10.2307/5206; Brown KM, 1996, AUK, V113, P23, DOI 10.2307/4088932; Cabcza Arroyo A., 2001, ARDEOLA, V48, P233; CADE T. J., 1977, WORLD C BIRDS PREY, P353; Catlin DH, 2008, AM MIDL NAT, V159, P1, DOI 10.1674/0003-0031(2008)159[1:BDANBO]2.0.CO;2; Christians JK, 2001, J ANIM ECOL, V70, P1080, DOI 10.1046/j.0021-8790.2001.00566.x; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Coulson J.C., 1985, P489; Crawley M. J., 2007, R BOOK; De Neve L, 2004, J AVIAN BIOL, V35, P237, DOI 10.1111/j.0908-8857.2004.03161.x; Delgado MD, 2010, J ANIM ECOL, V79, P620, DOI 10.1111/j.1365-2656.2009.01655.x; Delgado MD, 2009, ARDEA, V97, P7, DOI 10.5253/078.097.0102; Delgado MM, 2007, J ZOOL, V271, P3, DOI 10.1111/j.1469-7998.2006.00205.x; Delgado MD, 2004, J RAPTOR RES, V38, P375; Delibes M., 1981, P WORLD LAG C U GUEL, P614; Fentzloff C., 1975, DTSCH FALKENORDEN, V1975, P28; Fernandez GJ, 2000, IBIS, V142, P29, DOI 10.1111/j.1474-919X.2000.tb07680.x; FORSMAN ED, 1995, CONDOR, V97, P1078, DOI 10.2307/1369551; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gasparini J, 2006, FUNCT ECOL, V20, P457, DOI 10.1111/j.1365-2435.2006.01130.x; Gasparini J, 2006, P R SOC B, V273, P1551, DOI 10.1098/rspb.2005.3457; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Hansson B, 2000, OIKOS, V90, P575, DOI 10.1034/j.1600-0706.2000.900315.x; Hipfner JM, 1999, J ANIM ECOL, V68, P988, DOI 10.1046/j.1365-2656.1999.00346.x; Hipfner JM, 2004, J AVIAN BIOL, V35, P224; Hipfner JM, 2001, AUK, V118, P1076, DOI 10.1642/0004-8038(2001)118[1076:FRCORI]2.0.CO;2; Kirkwood T B, 1987, Basic Life Sci, V42, P209; Madsen T, 1999, ECOLOGY, V80, P989, DOI 10.1890/0012-9658(1999)080[0989:LHCONS]2.0.CO;2; Margalida A, 2007, J ORNITHOL, V148, P309, DOI 10.1007/s10336-007-0133-5; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martinez F, 1998, ORNIS FENNICA, V75, P145; Martinez Felix, 2002, Ardeola, V49, P297; MILONOFF M, 1991, OIKOS, V62, P189, DOI 10.2307/3545264; MILONOFF M, 1989, OIKOS, V55, P424, DOI 10.2307/3565604; Moleon M, 2009, J RAPTOR RES, V43, P164, DOI 10.3356/JRR-08-84.1; Mora O, 2010, J RAPTOR RES, V44, P62, DOI 10.3356/JRR-09-08.1; Moreno Juan, 1998, Etologia, V6, P17; Morrison M. L., 1980, J RAPTOR RES, V14, P79; MUNDY P, 1992, VULTURES AFRICA; Nager RG, 2001, J AVIAN BIOL, V32, P159, DOI 10.1034/j.1600-048X.2001.320209.x; Newton I, 1979, POPULATION ECOLOGY R; Olsson Viking, 1997, Ornis Svecica, V7, P49; PARKER H, 1981, J WILDLIFE MANAGE, V45, P858, DOI 10.2307/3808094; Penteriani V, 2005, IBIS, V147, P155, DOI 10.1111/j.1474-919x.2004.00381; Penteriani V, 2004, POPUL ECOL, V46, P185, DOI 10.1007/s10144-004-0178-8; PENTERIANI V, 1996, EAGLE OWL; Penteriani V, 2008, J AVIAN BIOL, V39, P215, DOI 10.1111/j.2008.0908-8857.04280.x; Penteriani V, 2007, ETHOLOGY, V113, P934, DOI 10.1111/j.1439-0310.2007.01414.x; R Development Core Team, 2009, R LANG ENV STAT COMP; Resetarits WJ, 1996, AM ZOOL, V36, P205; RODENHOUSE NL, 1992, ECOLOGY, V73, P357, DOI 10.2307/1938747; Rooneem TM, 1997, CONDOR, V99, P228, DOI 10.2307/1370246; SANDERCOCK BK, 1994, CAN J ZOOL, V72, P2252, DOI 10.1139/z94-301; Simmons R. E., 1984, J RAPTOR RES, V18, P103; SIMONS LS, 1990, ECOLOGY, V71, P869, DOI 10.2307/1937358; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; Sorci G, 1997, P ROY SOC B-BIOL SCI, V264, P1593, DOI 10.1098/rspb.1997.0222; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Verboven N, 2002, ANIM BEHAV, V63, P951, DOI 10.1006/anbe.2001.1971; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; VONBROMSSEN A, 1980, ORNIS SCAND, V11, P173, DOI 10.2307/3676121; Wendeln H, 2000, BEHAV ECOL SOCIOBIOL, V47, P382, DOI 10.1007/s002650050681; WHEELWRIGHT NT, 1994, J ANIM ECOL, V63, P686, DOI 10.2307/5234; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 74 0 0 1 13 BIRDLIFE FINLAND HELSINKI PO BOX 1285, HELSINKI, 00101, FINLAND 0030-5685 ORNIS FENNICA Ornis Fenn. 2011 88 4 217 225 9 Ornithology Zoology 873OP WOS:000298893000004 2019-02-21 J Skalova, H; Moravcova, L; Pysek, P Skalova, Hana; Moravcova, Lenka; Pysek, Petr Germination dynamics and seedling frost resistance of invasive and native Impatiens species reflect local climatic conditions PERSPECTIVES IN PLANT ECOLOGY EVOLUTION AND SYSTEMATICS English Article Alien species; Congeners; Plant traits; Population differentiation; Non-native plants; Temperature INTRODUCED PLANT-POPULATIONS; LIFE-HISTORY EVOLUTION; GENETIC DIFFERENTIATION; BRITISH-ISLES; PHENOTYPIC PLASTICITY; PENNISETUM-SETACEUM; COMPARATIVE ECOLOGY; ALIEN PLANTS; TRAITS; CAPENSIS Invasion of some alien plants is considered to be associated with inter-population differentiation and adaptations to local conditions. To obtain an insight into these processes it is convenient to compare invasive plants with their native congeners. The intra-specific differentiation during invasion was studied using four Impatiens (Balsaminaceae) species in Central Europe: native Impatiens noli-tangere and three aliens (highly invasive Impatiens glandulifera, less invasive Impatiens parviflora and potentially invasive Impatiens capensis). Differentiation in traits important for the establishment (germination; seedling emergence; seedling frost resistance) was measured in a laboratory and an experimental garden using seed collected from five natural populations of each species. Frost resistance oil. capensis, currently invasive in Western Europe, was within the scope of other congeners and it does not seem to be a barrier to spread of the species into Central Europe. Among-population differences were found within all species except I. capensis. In I. noli-tangere, I. glandulifera and I. parvillora the differences were related to the climatic characteristics in early spring at the source localities, which indicates that individuals may be adapted to local conditions. The differences found between the populations of I. noli-tangere, I. glandulifera and I. parviflora are likely to reflect the frost sensitivity of the species. In the highly frost-sensitive I. parviflora differentiation was found both in germination and frost resistance of individual populations. In I. glandulifera the differences among populations in frost sensitivity depended on temperature at the seed source and corresponded to the pattern of emergence of seedlings in the garden. In the native I. non-tangere, the differences among populations in the time of germination depended on temperature at the seed-source locality. Since local adaptations were indicated both in native and invasive species studied, they are unlikely to provide the invasive Impatiens species with an advantage against the native congener. at least in terms of the traits investigated. (C) 2011 Elsevier GmbH. All rights reserved. [Skalova, Hana; Moravcova, Lenka; Pysek, Petr] Acad Sci Czech Republ, Inst Bot, CZ-25243 Pruhonice, Czech Republic; [Pysek, Petr] Charles Univ Prague, Dept Ecol, CZ-12843 Prague, Czech Republic Skalova, H (reprint author), Acad Sci Czech Republ, Inst Bot, CZ-25243 Pruhonice, Czech Republic. hana.skalova@ibot.cas.cz Skalova, Hana/H-1627-2014; Moravcova, Lenka/H-1613-2014; Pysek, Petr/B-1957-2012 Skalova, Hana/0000-0002-1252-2952; Academy of Sciences of the Czech Republic [AV0Z60050516]; Ministry of Education, Youth and Sports of the Czech Republic [LC06073]; Academy of Sciences of the Czech Republic; [GACR 206/07/0668]; [206/09/0563] We thank two anonymous reviewers for their comments on the manuscript, Vendula Havlickova, Sarka Dvorackova, Michal Pysek and Zuzana Sixtova for logistic support, and Vojtech jarosik, Marek Jiruse and Zdenek Skala for valuable instruction in statistical analyses. Tony Dixon kindly improved our English. The work was supported by grants GACR 206/07/0668 and 206/09/0563, and long-term research plan no. AV0Z60050516 from the Academy of Sciences of the Czech Republic, and no. MSM0021620828 and LC06073 from the Ministry of Education, Youth and Sports of the Czech Republic. Petr Pysek acknowledges support by Praemium Academiae award from the Academy of Sciences of the Czech Republic. Adamowski W., 2008, Plant invasions: human perception, ecological impacts and management, P57; Allan E, 2009, OIKOS, V118, P1053, DOI 10.1111/j.1600-0706.2009.17135.x; BAKER H. G., 1965, The genetics of colonizing species: Proc. 1st Internat, Union biol Sci., Asilomar, California., P147; Bannister P, 2001, J BIOGEOGR, V28, P589, DOI 10.1046/j.1365-2699.2001.00573.x; BEERLING DJ, 1993, J ECOL, V81, P367, DOI 10.2307/2261507; Bossdorf O, 2005, OECOLOGIA, V144, P1, DOI 10.1007/s00442-005-0070-z; Bossdorf O, 2008, ECOL LETT, V11, P106, DOI 10.1111/j.1461-0248.2007.01130.x; Bossdorf O, 2010, EVOL ECOL, V24, P541, DOI 10.1007/s10682-010-9372-7; Bruelheide H, 2002, FLORA, V197, P475, DOI 10.1078/0367-2530-00064; Burns JH, 2004, DIVERS DISTRIB, V10, P387, DOI 10.1111/j.1366-9516.2004.00105.x; CALDWELL MM, 1981, OECOLOGIA, V50, P14, DOI 10.1007/BF00378790; Colautti RI, 2009, EVOL APPL, V2, P187, DOI 10.1111/j.1752-4571.2008.00053.x; COOMBE DE, 1956, J ECOL, V44, P701, DOI 10.2307/2256857; Crawley MJ, 1996, PHILOS T ROY SOC B, V351, P1251, DOI 10.1098/rstb.1996.0108; Dietz H, 2006, ECOLOGY, V87, P1359, DOI 10.1890/0012-9658(2006)87[1359:RTCPCD]2.0.CO;2; Dlugosch KM, 2008, ECOL LETT, V11, P701, DOI 10.1111/j.1461-0248.2008.01181.x; Donohue K, 2001, EVOLUTION, V55, P692, DOI 10.1554/0014-3820(2001)055[0692:ADIPIN]2.0.CO;2; DUDLEY SA, 1995, FUNCT ECOL, V9, P655, DOI 10.2307/2390158; Ebeling SK, 2008, ECOGRAPHY, V31, P709, DOI 10.1111/j.1600-0587.2008.05470.x; Fenner M, 2005, ECOLOGY SEEDS; Fischer M, 2004, J EVOLUTION BIOL, V17, P331, DOI 10.1046/j.1420-9101.2003.00677.x; Fowler DB, 2008, CROP SCI, V48, P1147, DOI 10.2135/cropsci2007.10.0581; Franklin J, 1995, PROG PHYS GEOG, V19, P474, DOI 10.1177/030913339501900403; Geng YP, 2006, ACTA OECOL, V30, P380, DOI 10.1016/j.actao.2006.07.002; Gerlach JD, 2003, ECOL APPL, V13, P167, DOI 10.1890/1051-0761(2003)013[0167:TLHCOI]2.0.CO;2; Gimenez-Benavides L, 2007, ANN BOT-LONDON, V99, P723, DOI 10.1093/aol/mcm007; Goergen E, 2001, INT J PLANT SCI, V162, P317, DOI 10.1086/319587; Grotkopp E, 2007, AM J BOT, V94, P526, DOI 10.3732/ajb.94.4.526; Hatcher PE, 2003, J ECOL, V91, P147, DOI 10.1046/j.1365-2745.2003.00741.x; Hejda M, 2009, J ECOL, V97, P393, DOI 10.1111/j.1365-2745.2009.01480.x; Herrera CM, 2010, NEW PHYTOL, V187, P867, DOI 10.1111/j.1469-8137.2010.03298.x; Heschel MS, 2002, INT J PLANT SCI, V163, P907, DOI 10.1086/342519; Hulme PE, 2009, SCIENCE, V324, P40, DOI 10.1126/science.1171111; KARTESZ J, 1999, SYNTHESIS N AM FLORA; Kolb A, 2003, BIOL INVASIONS, V5, P229, DOI 10.1023/A:1026185503777; Kollmann J, 2004, DIVERS DISTRIB, V10, P377, DOI 10.1111/j.1366-9516.2004.00126.x; Lambdon PW, 2008, PRESLIA, V80, P101; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Leger EA, 2007, J EVOLUTION BIOL, V20, P1090, DOI 10.1111/j.1420-9101.2006.01292.x; Leger EA, 2009, MOL ECOL, V18, P4366, DOI 10.1111/j.1365-294X.2009.04357.x; Leon RG, 2006, WEED SCI, V54, P305; Levin D.A., 2000, ORIGIN EXPANSION DEM; Li YP, 2009, WEED SCI, V57, P26, DOI 10.1614/WS-08-068.1; Linhart YB, 1996, ANNU REV ECOL SYST, V27, P237, DOI 10.1146/annurev.ecolsys.27.1.237; Luzuriaga AL, 2006, WEED RES, V46, P163, DOI 10.1111/j.1365-3180.2006.00496.x; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; Maron JL, 2004, ECOL MONOGR, V74, P261, DOI 10.1890/03-4027; *MATHS INC, 2000, S PLUS 2000 GUID STA; Montague JL, 2008, J EVOLUTION BIOL, V21, P234, DOI 10.1111/j.1420-9101.2007.01456.x; Monty A, 2009, J EVOLUTION BIOL, V22, P917, DOI 10.1111/j.1420-9101.2009.01728.x; Monty A, 2009, OECOLOGIA, V159, P305, DOI 10.1007/s00442-008-1228-2; Moravcova L, 2005, ACTA OECOL, V28, P1, DOI 10.1016/j.actao.2005.01.004; Moravcova L, 2010, PRESLIA, V82, P365; Morrison JA, 2007, J ECOL, V95, P1036, DOI 10.1111/j.1365-2745.2007.01270.x; MULLER MJ, 1982, SELECTED CLIMATIC DA, P76; OKAGAMI N, 1982, BOT MAG TOKYO, V95, P155, DOI 10.1007/BF02488582; Parker IM, 2003, CONSERV BIOL, V17, P59, DOI 10.1046/j.1523-1739.2003.02019.x; Perglova I, 2009, PRESLIA, V81, P357; PERRINS J, 1993, J BIOGEOGR, V20, P33, DOI 10.2307/2845737; PYSEK P, 1995, BIOL CONSERV, V74, P41, DOI 10.1016/0006-3207(95)00013-T; Pysek Petr, 2007, V193, P97; Pysek P, 2006, PRESLIA, V78, P437; Pysek Petr, 2002, Preslia (Prague), V74, P97; Rejmanek M, 1996, ECOLOGY, V77, P1655, DOI 10.2307/2265768; Rejmanek M., 2005, VEGETATION ECOLOGY, P332, DOI DOI 10.1002/9781118452592.CH13; RICE KJ, 1991, OECOLOGIA, V88, P91, DOI 10.1007/BF00328408; Richards CL, 2010, NEW PHYTOL, V187, P562, DOI 10.1111/j.1469-8137.2010.03369.x; Richardson DM, 2008, DIVERS DISTRIB, V14, P161, DOI 10.1111/j.1472-4642.2008.00464.x; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.es.18.110187.001233; Sakai A., 1978, New Zealand Journal of Ecology, V1, P51; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Sans FX, 2004, ACTA OECOL, V26, P167, DOI 10.1016/j.actao.2004.04.001; SCHMITT J, 1990, EVOLUTION, V44, P269, DOI 10.1111/j.1558-5646.1990.tb05197.x; Schmitt Johanna, 1996, Plant Species Biology, V11, P59, DOI 10.1111/j.1442-1984.1996.tb00109.x; SIMPSON RL, 1985, B TORREY BOT CLUB, V112, P295, DOI 10.2307/2996545; Slavik B, 1997, KVETENA CESKE REPUBL, V5, P230; SULTAN SE, 1987, EVOL BIOL, V21, P127; Tolasz R, 2007, CLIMATE ATLAS CZECHI; van Kleunen M, 2010, ECOL LETT, V13, P235, DOI 10.1111/j.1461-0248.2009.01418.x; Vila M, 2010, FRONT ECOL ENVIRON, V8, P135, DOI 10.1890/080083; WADE M, 1997, PLANT INVASIONS STUD, P223; Weber E, 1998, AM J BOT, V85, P1110, DOI 10.2307/2446344; WILLIAMS DG, 1995, ECOLOGY, V76, P1569, DOI 10.2307/1938158; Williamson M, 2005, ECOSCIENCE, V12, P424, DOI 10.2980/i1195-6860-12-3-424.1 84 33 33 1 71 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 1433-8319 PERSPECT PLANT ECOL Perspect. Plant Ecol. Evol. Syst. 2011 13 3 173 180 10.1016/j.ppees.2011.03.005 8 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 834YL WOS:000296000300002 2019-02-21 J Markesteijn, L; Poorter, L; Paz, H; Sack, L; Bongers, F Markesteijn, Lars; Poorter, Lourens; Paz, Horacio; Sack, Lawren; Bongers, Frans Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits PLANT CELL AND ENVIRONMENT English Article Bolivia; cavitation; deciduousness; functional traits; hydraulic conductivity; leaf water potential; shade-tolerance; tropical dry deciduous forest; wood density TROPICAL DRY FOREST; SOIL-NUTRIENT GRADIENTS; LIFE-HISTORY VARIATION; HYDRAULIC TRAITS; WOODY-PLANTS; SHADE-TOLERANCE; WATER-STRESS; PHOTOSYNTHETIC TRAITS; DROUGHT PERFORMANCE; CHAPARRAL SHRUBS Cavitation resistance is a critical determinant of drought tolerance in tropical tree species, but little is known of its association with life history strategies, particularly for seasonal dry forests, a system critically driven by variation in water availability. We analysed vulnerability curves for saplings of 13 tropical dry forest tree species differing in life history and leaf phenology. We examined how vulnerability to cavitation (P-50) related to dry season leaf water potentials and stem and leaf traits. P-50-values ranged from -0.8 to -6.2 MPa, with pioneers on average 38% more vulnerable to cavitation than shade-tolerants. Vulnerability to cavitation was related to structural traits conferring tissue stress vulnerability, being negatively correlated with wood density, and surprisingly maximum vessel length. Vulnerability to cavitation was negatively related to the Huber-value and leaf dry matter content, and positively with leaf size. It was not related to SLA. We found a strong trade-off between cavitation resistance and hydraulic efficiency. Most species in the field were operating at leaf water potentials well above their P-50, but pioneers and deciduous species had smaller hydraulic safety margins than shade-tolerants and evergreens. A trade-off between hydraulic safety and efficiency underlies ecological differentiation across these tropical dry forest tree species. [Markesteijn, Lars; Poorter, Lourens; Bongers, Frans] Wageningen Univ, Forest Ecol & Forest Management Grp, Ctr Ecosyst Studies, NL-6700 AA Wageningen, Netherlands; [Poorter, Lourens] Wageningen Univ, Resource Ecol Grp, Ctr Ecosyst Studies, NL-6700 AA Wageningen, Netherlands; [Markesteijn, Lars; Poorter, Lourens] IBIF, Santa Cruz, Bolivia; [Paz, Horacio] UNAM, Ctr Invest Ecosistemas, Morelia 58190, Michoacan, Mexico; [Sack, Lawren] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA Markesteijn, L (reprint author), Wageningen Univ, Forest Ecol & Forest Management Grp, Ctr Ecosyst Studies, POB 47, NL-6700 AA Wageningen, Netherlands. markeste@uwm.edu Markesteijn, Lars/S-9744-2018; Sack, Lawren/A-5492-2008 Markesteijn, Lars/0000-0003-3046-3121; Sack, Lawren/0000-0002-7009-7202; Paz, Horacio/0000-0001-5221-0905; Poorter, Lourens/0000-0003-1391-4875 Wageningen graduate school, Production Ecology and Resource Conservation (PERC) We would like to express our gratitude to staff and students of the IBIF for their support. We further thank Jose Iraipi and Estrella Yanguas Fernandez for their assistance in the field and Paul Rozenboom and his staff at INPA Parket Ltda. for allowing us to conduct our field studies in their forest. We thank Daniel Velasquez for his logistical support during field campaigns. Comments by Dr Michele Holbrook and two anonymous referees greatly improved the manuscript, for which we are thankful. This study was supported by fellowships from the Wageningen graduate school, Production Ecology and Resource Conservation (PE&RC) to LM and LP. Alvarez-Clare S, 2007, FUNCT ECOL, V21, P1044, DOI 10.1111/j.1365-2435.2007.01320.x; Bhaskar R, 2007, NEW PHYTOL, V176, P718, DOI 10.1111/j.1469-8137.2007.02208.x; BORCHERT R, 1994, ECOLOGY, V75, P1437, DOI 10.2307/1937467; BOWMAN WD, 1985, PHYSIOL PLANTARUM, V65, P233, DOI 10.1111/j.1399-3054.1985.tb02388.x; Brodribb TJ, 2000, PLANT CELL ENVIRON, V23, P1381, DOI 10.1046/j.1365-3040.2000.00647.x; Brodribb TJ, 2003, PLANT CELL ENVIRON, V26, P443, DOI 10.1046/j.1365-3040.2003.00975.x; Chave J, 2006, ECOL APPL, V16, P2356, DOI 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Chen JW, 2009, ECOL RES, V24, P65, DOI 10.1007/s11284-008-0482-4; CHEUNG YNS, 1975, CAN J BOT, V53, P1342, DOI 10.1139/b75-162; Choat B, 2005, TREES-STRUCT FUNCT, V19, P305, DOI 10.1007/s00468-004-0392-1; Choat B, 2008, NEW PHYTOL, V177, P608, DOI 10.1111/j.1469-8137.2007.02317.x; Choat B, 2007, NEW PHYTOL, V175, P686, DOI 10.1111/j.1469-8137.2007.02137.x; Choat B, 2006, AM J BOT, V93, P993, DOI 10.3732/ajb.93.7.993; Christman MA, 2009, NEW PHYTOL, V182, P664, DOI 10.1111/j.1469-8137.2009.02776.x; COCHRANE TT, 1973, POTENCIAL AGRICOLA U; Cunningham SA, 1999, ECOL MONOGR, V69, P569, DOI 10.1890/0012-9615(1999)069[0569:EDILSA]2.0.CO;2; Eamus D, 1999, TRENDS ECOL EVOL, V14, P11, DOI 10.1016/S0169-5347(98)01532-8; Eamus D, 2001, ADV ECOL RES, V32, P113, DOI 10.1016/S0065-2504(01)32012-3; Engelbrecht BMJ, 2003, OECOLOGIA, V136, P383, DOI 10.1007/s00442-003-1290-8; EWERS FW, 1989, AM J BOT, V76, P645, DOI 10.1002/j.1537-2197.1989.tb11360.x; EWERS FW, 1985, IAWA BULL, V6, P309, DOI 10.1163/22941932-90000959; Fonseca CR, 2000, J ECOL, V88, P964, DOI 10.1046/j.1365-2745.2000.00506.x; Gilbert B, 2006, ECOLOGY, V87, P1281, DOI 10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2; GIVNISH TJ, 1986, EC PLANT FORM FUNCTI; Hacke UG, 2001, PERSPECT PLANT ECOL, V4, P97, DOI 10.1078/1433-8319-00017; Hacke UG, 2006, TREE PHYSIOL, V26, P689, DOI 10.1093/treephys/26.6.689; HARGRAVE KR, 1994, NEW PHYTOL, V126, P695, DOI 10.1111/j.1469-8137.1994.tb02964.x; Ilic J, 2000, WOODY DENSITY PHASE; Ishida A, 2006, TREE PHYSIOL, V26, P643, DOI 10.1093/treephys/26.5.643; Ishida A, 2010, TREE PHYSIOL, V30, P935, DOI 10.1093/treephys/tpq025; Jacobsen AL, 2007, ECOL MONOGR, V77, P99, DOI 10.1890/05-1879; Jansen S, 2009, AM J BOT, V96, P409, DOI 10.3732/ajb.0800248; JARBEAU JA, 1995, PLANT CELL ENVIRON, V18, P189, DOI 10.1111/j.1365-3040.1995.tb00352.x; JONES HG, 1991, PLANT CELL ENVIRON, V14, P607, DOI 10.1111/j.1365-3040.1991.tb01532.x; Justiniano M. J., 2004, GUIA DENDROLOGICA ES, V2; Killeen TJ, 1998, J TROP ECOL, V14, P803, DOI 10.1017/S0266467498000583; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kitajima K, 2010, NEW PHYTOL, V186, P708, DOI 10.1111/j.1469-8137.2010.03212.x; Kursar TA, 2009, FUNCT ECOL, V23, P93, DOI 10.1111/j.1365-2435.2008.01483.x; Maherali H, 2004, ECOLOGY, V85, P2184, DOI 10.1890/02-0538; MARKESTEIJN L, 2010, THESIS WAGENINGEN U; Markesteijn L, 2009, J ECOL, V97, P311, DOI 10.1111/j.1365-2745.2008.01466.x; Markesteijn L, 2010, J TROP ECOL, V26, P497, DOI 10.1017/S0266467410000271; Martinez-Vilalta J, 2002, OECOLOGIA, V133, P19, DOI 10.1007/s00442-002-1009-2; McDonald PG, 2003, FUNCT ECOL, V17, P50, DOI 10.1046/j.1365-2435.2003.00698.x; MONSON RK, 1982, ECOLOGY, V63, P113, DOI 10.2307/1937037; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; MURPHY PG, 1986, ANNU REV ECOL SYST, V17, P67, DOI 10.1146/annurev.es.17.110186.000435; Nardini A, 2000, TREES-STRUCT FUNCT, V15, P14, DOI 10.1007/s004680000071; Navarro G., 2002, GEOGRAFIA ECOLOGICA; Nicotra AB, 2008, OECOLOGIA, V154, P625, DOI 10.1007/s00442-007-0865-1; Pammenter NW, 1998, TREE PHYSIOL, V18, P589; PARKHURST DF, 1972, J ECOL, V60, P505, DOI 10.2307/2258359; Paz H, 2003, BIOTROPICA, V35, P318, DOI 10.1111/j.1744-7429.2003.tb00586.x; Pockman WT, 2000, AM J BOT, V87, P1287, DOI 10.2307/2656722; Poorter H, 2009, NEW PHYTOL, V182, P565, DOI 10.1111/j.1469-8137.2009.02830.x; Poorter L, 2008, ANN BOT-LONDON, V102, P367, DOI 10.1093/aob/mcn103; Poorter L, 2008, BIOTROPICA, V40, P321, DOI 10.1111/j.1744-7429.2007.00380.x; Poorter L, 2007, ECOLOGY, V88, P1000, DOI 10.1890/06-0984; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Roderick ML, 2000, FUNCT ECOL, V14, P244, DOI 10.1046/j.1365-2435.2000.00414.x; Santiago LS, 2004, OECOLOGIA, V140, P543, DOI 10.1007/s00442-004-1624-1; Skarpe C, 1996, J VEG SCI, V7, P397, DOI 10.2307/3236283; Sobrado MA, 1997, ACTA OECOL, V18, P383, DOI 10.1016/S1146-609X(97)80030-6; SOBRADO MA, 1993, OECOLOGIA, V96, P19, DOI 10.1007/BF00318025; SOBRADO MA, 1991, FUNCT ECOL, V5, P608, DOI 10.2307/2389479; Sperry JS, 2008, PLANT CELL ENVIRON, V31, P632, DOI 10.1111/j.1365-3040.2007.01765.x; Sperry JS, 1998, PLANT CELL ENVIRON, V21, P347, DOI 10.1046/j.1365-3040.1998.00287.x; SPERRY JS, 1988, PLANT CELL ENVIRON, V11, P35, DOI 10.1111/j.1365-3040.1988.tb01774.x; Sperry JS, 2005, PLANT CELL ENVIRON, V28, P456, DOI 10.1111/j.1365-3040.2005.01287.x; SPERRY JS, 1988, PLANT PHYSIOL, V88, P581, DOI 10.1104/pp.88.3.581; TYREE MT, 1994, IAWA J, V15, P335, DOI 10.1163/22941932-90001369; TYREE MT, 1989, ANNU REV PLANT PHYS, V40, P19, DOI 10.1146/annurev.pp.40.060189.000315; TYREE MT, 1988, PLANT PHYSIOL, V88, P574, DOI 10.1104/pp.88.3.574; Tyree MT, 1997, J EXP BOT, V48, P1753, DOI 10.1093/jexbot/48.315.1753; Tyree MT, 2003, PLANT PHYSIOL, V132, P1439, DOI 10.1104/pp.102.018937; Tyree MT, 2002, XYLEM STRUCTURE ASCE; van Gelder HA, 2006, NEW PHYTOL, V171, P367, DOI 10.1111/j.1469-8137.2006.01757.x; Villegas Z, 2009, FOREST ECOL MANAG, V258, P971, DOI 10.1016/j.foreco.2008.10.031; Wheeler JK, 2005, PLANT CELL ENVIRON, V28, P800, DOI 10.1111/j.1365-3040.2005.01330.x; Williams LJ, 2008, OECOLOGIA, V155, P571, DOI 10.1007/s00442-007-0938-1; Wright SJ, 2003, ECOLOGY, V84, P3174, DOI 10.1890/02-0038; Yates MJ, 2010, FUNCT ECOL, V24, P485, DOI 10.1111/j.1365-2435.2009.01678.x; Zanne AE, 2006, FUNCT ECOL, V20, P200, DOI 10.1111/j.1365-2435.2006.01101.x; Zhu SD, 2009, PLANT ECOL, V204, P295, DOI 10.1007/s11258-009-9592-5; Zimmermann M., 1983, XYLEM STRUCTURE ASCE; ZIMMERMANN U, 1978, ANNU REV PLANT PHYS, V29, P121, DOI 10.1146/annurev.pp.29.060178.001005 88 140 154 18 135 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0140-7791 PLANT CELL ENVIRON Plant Cell Environ. JAN 2011 34 1 137 148 10.1111/j.1365-3040.2010.02231.x 12 Plant Sciences Plant Sciences 691FL WOS:000285065600011 20946587 Bronze 2019-02-21 J Liu, ZG; Li, K; Cai, YL; Fang, Y Liu, Zhi-guo; Li, Kai; Cai, Yong-li; Fang, Yan CORRELATIONS BETWEEN LEAFING PHENOLOGY AND TRAITS: WOODY SPECIES OF EVERGREEN BROAD-LEAVED FORESTS IN SUBTROPICAL CHINA POLISH JOURNAL OF ECOLOGY English Article leaf area; leaf expansion; leaf emergence; herbivory; evergreen broad-leaved forest TROPICAL TREE; CARBON GAIN; LIFE-SPAN; PLANT; EXPANSION; CONVERGENCE; HERBIVORY; STRATEGIES; DYNAMICS; PATTERNS Leaf phenology has been considered to evolve to maximize plant carbon gains, and it reflects plant life history strategies. To determine the effect of leaf traits on leaf phenology, leaf emergence (such as timing of leaf emergence, leaf expansion rate, durations of leaf expansion), leaf traits (leaf mass per area - LMA and leaf size), and their relationships were investigated for 40 woody species from 13 families in an evergreen broad-leaved forest, southeast China. Compared with understorey shrubs (23 species), trees species (17 species) were significantly later in timing of leaf emergence, greater in leaf area and leaf expansion rate. This is assumed to be a strategy for large-leaved tree species to decrease damage during leaf expansion. In terms of leaf size, the small-leaved species leafed out earlier than the species with large leaves, but the large-leaved species were greater in leaf expansion rate than their counterparts. Leaf expansion rate was positively correlated with leaf area and timing of leaf emergence. Leaf herbivore rate was positively correlated with leaf area and leaf expansion period, but negatively with LMA. These results suggest that large- and small-leaved species possibly employed different strategies to minimize herbivore damage. Small-leaved species avoid defoliator damage by early leafing, while large-leaved species have shorter expansion times and thereby shorten vulnerable time to herbivores. In general, dynamics of emergence and expansion of the woody species in the study forest indicate that the leaf phenology is of significance for species' carbon gain and survival. [Liu, Zhi-guo; Li, Kai; Cai, Yong-li; Fang, Yan] E China Normal Univ, Shanghai Key Lab Ecol Urbanizat Proc & Ecorestora, Shanghai 200062, Peoples R China; [Liu, Zhi-guo; Cai, Yong-li] E China Normal Univ, Sch Resources & Environm Sci, Shanghai 200062, Peoples R China; [Li, Kai; Fang, Yan] E China Normal Univ, Sch Life Sci, Shanghai 200062, Peoples R China Li, K (reprint author), E China Normal Univ, Shanghai Key Lab Ecol Urbanizat Proc & Ecorestora, Shanghai 200062, Peoples R China. fenguel@sina.com China National Science Foundation [30570329]; Shanghai Science and Technology Commission [09DZ120901]; Shanghai Science Foundation [06RTZ1412] We thank Zhang tiansu and Wang bin with the field work. This research was funded by the China National Science Foundation (30570329), Scientific and technological projects of Shanghai Science and Technology Commission (09DZ120901) and Shanghai Science Foundation (06RTZ1412). Ackerly D, 1999, OECOLOGIA, V119, P300, DOI 10.1007/s004420050790; Ackerly DD, 1999, AM J BOT, V86, P1272, DOI 10.2307/2656775; AIDE TM, 1988, NATURE, V336, P574, DOI 10.1038/336574a0; AIDE TM, 1989, OIKOS, V55, P66, DOI 10.2307/3565873; Bertiller MB, 2005, J ARID ENVIRON, V62, P209, DOI 10.1016/j.jaridenv.2004.11.011; Brenes-Arguedas T, 2006, OECOLOGIA, V149, P91, DOI 10.1007/s00442-006-0423-2; Broadhead JS, 2003, FOREST ECOL MANAG, V180, P61, DOI 10.1016/S0378-1127(02)00602-3; CHABOT BF, 1982, ANNU REV ECOL SYST, V13, P229, DOI 10.1146/annurev.es.13.110182.001305; COLEY PD, 1988, OECOLOGIA, V74, P531, DOI 10.1007/BF00380050; Coley PD, 1996, ANNU REV ECOL SYST, V27, P305, DOI 10.1146/annurev.ecolsys.27.1.305; COLEY PD, 1983, ECOL MONOGR, V53, P209, DOI 10.2307/1942495; *ECCAS, 1974, FLOR CHIN; Farnsworth EJ, 1996, AM J BOT, V83, P1131, DOI 10.2307/2446196; Feeny P., 1976, RECENT ADV PHYTOCHEM, V10, P1, DOI DOI 10.1007/978-1-4684-2646-5_1; Gill DS, 1998, TREE PHYSIOL, V18, P281; KIKUZAWA K, 1995, CAN J BOT, V73, P158, DOI 10.1139/b95-019; KIKUZAWA K, 1991, AM NAT, V138, P1250, DOI 10.1086/285281; KIKUZAWA K, 1983, CAN J BOT, V61, P2133, DOI 10.1139/b83-230; Kursar TA, 2003, BIOCHEM SYST ECOL, V31, P929, DOI 10.1016/S0305-1978(03)00087-5; Martins E P, 2004, COMPARE VERSION 4 6B; Moles AT, 2000, OIKOS, V90, P517, DOI 10.1034/j.1600-0706.2000.900310.x; Nitta I, 1997, PLANT ECOL, V130, P71, DOI 10.1023/A:1009735709258; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Reich PB, 1999, ECOLOGY, V80, P1955, DOI 10.2307/176671; Reich PB, 1996, FUNCT ECOL, V10, P768, DOI 10.2307/2390512; REICH PB, 1991, OECOLOGIA, V86, P16, DOI 10.1007/BF00317383; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; RICH PM, 1995, AM J BOT, V82, P328, DOI 10.2307/2445578; Seiwa K, 1999, ANN BOT-LONDON, V83, P355, DOI 10.1006/anbo.1998.0831; Sekhwela MBM, 2007, J ARID ENVIRON, V70, P1, DOI 10.1016/j.jaridenv.2006.12.006; Sun SC, 2006, ACTA OECOL, V30, P212, DOI 10.1016/j.actao.2006.04.001; Van Volkenburgh E, 1999, PLANT CELL ENVIRON, V22, P1463, DOI 10.1046/j.1365-3040.1999.00514.x; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Williams-Linera G, 2000, PLANT ECOL, V149, P233, DOI 10.1023/A:1026508610236; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Yamada T, 1996, J PLANT RES, V109, P211, DOI 10.1007/BF02344547 37 3 4 4 20 POLISH ACAD SCIENCES INST ECOLOGY LOMIANKI DZIEKANOW LESNY NEAR WARSAW, 05-092 LOMIANKI, POLAND 1505-2249 POL J ECOL Pol. J. Ecol. 2011 59 3 463 473 11 Ecology Environmental Sciences & Ecology 821OB WOS:000294983200004 2019-02-21 S Habashi, H; Hosseini, SM; Rahmani, R; Mohammadi, J Gokcekus, H; Turker, U; LaMoreaux, JW Habashi, H.; Hosseini, S. M.; Rahmani, R.; Mohammadi, J. Stand Structure and Spatial Patterns of Trees in Mixed Hyrcanian Beech Forest, Iran SURVIVAL AND SUSTAINABILITY: ENVIRONMENTAL CONCERNS IN THE 21ST CENTURY Environmental Earth Sciences-Series English Proceedings Paper International Conference on Environment: Survival and Sustainability FEB 19-24, 2007 Near E Univ, Nicosia, CYPRUS Near E Univ Near E Univ Stand structure; Spatial distribution pattern; Spatial association; Beech forest; Iran BROAD-LEAVED FOREST; LANDSCAPE ECOLOGY; SOIL PROPERTIES; JACK-PINE; JAPAN; HETEROGENEITY; DYNAMICS; VARIABILITY; VEGETATION; TEMPERATE The mixed beech forests (Fagus orientalis) are the most important industrial forests with the highest degree of naturalness in Hyrcanian forest, Iran. These forests commonly dominate by shade tolerance species with irregular uneven age stand structure. The aim of this study was to analyze the stand structure and spatial pattern in order to identify specific structural patterns. We investigated the stand structure and spatial pattern of trees in mixed Beech forest in the Shastkolate Educational Forest to examine the coexistence strategies of different species. Data was collected from an 16 ha permanent plot on an 400 x 400 m quadrate area that divided to 64 micro-quadrate (50 x 50 m). We mapped all stems >7.5 cm in diameter at breast height (dbh) on permanent plot. The stand contained nine woody plant species and 4,901 living stems with a combined basal area of 32.8 m(2) ha(-1). The density of living trees >7.5 cm dbh averaged 291.7 ha(-1). The six main species were divided into two groups based on density and stand structure. Group A (F. orientalis, Carpinus betulus and Parrotia persica) had higher density than group B, as well as reverse J or L-shaped dbh distribution of live stems. Species in group B (Alnus subcordata, Acer velutinum and Diospurus lotus) had bell-shaped dbh distributions. Species in group A have clump spatial distribution pattern in all layers but clump intensity is more than in under storey layer and size of patch clump is small in this group. This phenomenon for group A may explaining by having numerous coppice, sucker and patch regeneration in the under storey layer. Middle storey and under storey stems of the six major tree species were patchily distributed throughout the plot but for Alder and Maple species common pattern in canopy layer was complete spatial randomness. The distribution of Beech and Hornbeam trees were negatively associated with other species. These results suggest species differences in favorable canopy condition. Differences in life history strategies and site preferences may explain the coexistence of these species. [Habashi, H.; Hosseini, S. M.; Rahmani, R.; Mohammadi, J.] Tarbiat Modares Univ, Nat Resources Fac, POB 46414-356 Noor, Mazandaran, Iran Habashi, H (reprint author), Tarbiat Modares Univ, Nat Resources Fac, POB 46414-356 Noor, Mazandaran, Iran. Habashi@modares.ac.ir Akashi N, 1996, ECOL RES, V11, P311, DOI 10.1007/BF02347788; Allen T. F. H., 1982, HIERARCHY PERSPECTIV; Asadollahi F, 2001, 1 NAT C N FOR MAN SU; BARNES B. V, 1998, FOREST ECOLOGY; BUSING RT, 1993, LANDSCAPE ECOL, V8, P119, DOI 10.1007/BF00141591; BUSING RT, 1991, VEGETATIO, V92, P167; Caldwell MM, 1994, EXPLOITATION ENV HET, P255; CLARK PJ, 1954, ECOLOGY, V35, P445, DOI 10.2307/1931034; COLLINS SL, 1991, OECOLOGIA, V86, P471, DOI 10.1007/BF00318312; DENSLOW JS, 1980, BIOTROPICA, V12, P47, DOI 10.2307/2388156; Ehrenfeld JG, 1997, J ECOL, V85, P785, DOI 10.2307/2960602; FRANKLIN J, 1985, VEGETATIO, V64, P29, DOI 10.1007/BF00033451; GROSS KL, 1995, J ECOL, V83, P357, DOI 10.2307/2261590; Habashi H, 2004, 7 IUFRO INT BEECH S; Habashi H, 2005, 10 EUR EC C TURK; HALVORSON JJ, 1994, GREAT BASIN NAT, V54, P313; Hoshino D, 2001, FOREST ECOL MANAG, V152, P31, DOI 10.1016/S0378-1127(00)00614-9; JACKSON RB, 1993, J ECOL, V81, P683, DOI 10.2307/2261666; Kashian DM, 2003, PLANT ECOL, V166, P75, DOI 10.1023/A:1023265012964; Kenel NC, 1989, CAN J BOT, V67, P2630; KENKEL NC, 1988, ECOLOGY, V69, P1017, DOI 10.2307/1941257; Leibundgut H., 1993, EUROPAISCHE URWALDER; LEVIN SA, 1992, ECOLOGY, V73, P1943, DOI 10.2307/1941447; Maguire D, 1993, P IUFRO S4 11 C STOC, P163; Manabe T, 2000, PLANT ECOL, V151, P181, DOI 10.1023/A:1026512404110; Manabe T, 1997, J VEG SCI, V8, P761, DOI 10.2307/3237020; Marvi Mohadjer MR, 2005, SIVILICULTURE, P387; Miller RE, 1995, J ECOL, V83, P919, DOI 10.2307/2261174; Mitchell A. K., 1995, New Forests, V10, P79; Morisita M, 1959, MEM FS KYUSHU U E, V3, P65; Morisita M, 1959, MEM FAC SCI KYUSHU E, V2, P215; Nakashizuka T, 1999, J VEG SCI, V10, P765; Oheimb GV, 2005, FOREST ECOL MANAG, V212, P253, DOI DOI 10.1016/J.FORECO.2005.03.033; PICKETT STA, 1995, SCIENCE, V269, P331, DOI 10.1126/science.269.5222.331; Rademacher C, 2004, FOREST ECOL MANAG, V194, P349, DOI 10.1016/j.foreco.2004.02.022; ROBERTSON GP, 1993, OECOLOGIA, V96, P451, DOI 10.1007/BF00320501; Robinson D, 1998, INHERENT VARIATION IN PLANT GROWTH, P237; Saniga M., 2001, Journal of Forest Science (Prague), V47, P557; SINCLAIR DF, 1985, ECOLOGY, V66, P1084, DOI 10.2307/1940568; SKARPE C, 1991, J VEG SCI, V2, P565, DOI 10.2307/3236039; SZWAGRZYK J, 1993, J VEG SCI, V4, P469, DOI 10.2307/3236074; TAYLOR AH, 1988, J ECOL, V76, P1204, DOI 10.2307/2260643; TRANGMAR BB, 1987, SOIL SCI SOC AM J, V51, P668, DOI 10.2136/sssaj1987.03615995005100030021x; URBAN DL, 1987, BIOSCIENCE, V37, P119, DOI 10.2307/1310366; WEBSTER R, 1992, J SOIL SCI, V43, P177, DOI 10.1111/j.1365-2389.1992.tb00128.x; WELDEN CW, 1990, GREAT BASIN NAT, V50, P313; WEST PW, 1984, AUST J ECOL, V9, P405, DOI 10.1111/j.1442-9993.1984.tb01377.x 47 0 0 1 1 SPRINGER-VERLAG BERLIN BERLIN HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY 2199-9155 978-3-540-95991-5; 978-3-540-95990-8 ENV EARTH SCI-SER 2011 103 116 10.1007/978-3-540-95991-5_11 14 Environmental Sciences; Environmental Studies Environmental Sciences & Ecology BH0WL WOS:000396778200011 2019-02-21 J Blouin, NA; Brodie, JA; Grossman, AC; Xu, P; Brawley, SH Blouin, Nicolas A.; Brodie, Juliet A.; Grossman, Arthur C.; Xu, Pu; Brawley, Susan H. Porphyra: a marine crop shaped by stress TRENDS IN PLANT SCIENCE English Review GERM-SOMA DIFFERENTIATION; EXPRESSED SEQUENCE TAGS; RED ALGAE RHODOPHYTA; AMINO-ACIDS; HAITANENSIS BANGIALES; YEZOENSIS RHODOPHYTA; INTERTIDAL SEAWEEDS; MOLECULAR PHYLOGENY; CO2 CONCENTRATIONS; PYTHIUM-PORPHYRAE The marine red alga Porphyra is an important marine crop, worth similar to US$1.3 billion per year. Cultivation research now includes farm ecology, breeding, strain conservation and new net-seeding technologies. The success of cultivation is due, in part, to the high stress tolerance of Porphyra. Many species of Porphyra lose 85-95% of their cellular water during the daytime low tide, when they are also exposed to high light and temperature stress. Antioxidant and mycosporine-like amino acid activities have been partially characterized in Porphyra, but, as we discuss here, the Porphyra umbilicalis genome project will further elucidate proteins associated with stress tolerance. Furthermore, phylogenomic and transcriptomic investigations of Porphyra sensu lato could elucidate tradeoffs made during physiological acclimation and factors associated with life-history evolution in this ancient lineage. [Blouin, Nicolas A.; Brawley, Susan H.] Univ Maine, Sch Marine Sci, Orono, ME 04469 USA; [Brodie, Juliet A.] Nat Hist Museum, Dept Bot, London SW7 5BD, England; [Grossman, Arthur C.] Carnegie Inst, Dept Plant Biol, Stanford, CA 94305 USA; [Xu, Pu] Changshu Inst Technol, Dept Biol, Changshu 215500, Peoples R China Brawley, SH (reprint author), Univ Maine, Sch Marine Sci, Orono, ME 04469 USA. brawley@maine.edu NSF (USA) We thank two referees, including Yusho Aruga, for their careful review, to Charles Yarish, Xiugeng Fei, Jiahai Ma and Lien Yang for discussion, and to the NSF (USA) for funding the Porphyra/Algal Genomics' Research Collaboration Network, to which all authors belong. We thank RCN member Kyosuke Niwa for photographs (Figure 2a-c) of Porphyra cultivation in Japan. Abbott IA, 1976, MARINE ALGAE CALIFOR; Abe S, 2001, BOT MAR, V44, P125, DOI 10.1515/BOT.2001.017; Alpert P, 2006, J EXP BIOL, V209, P1575, DOI 10.1242/jeb.02179; Asamizu E, 2003, J PHYCOL, V39, P923, DOI 10.1046/j.1529-8817.2003.03003.x; Blouin N, 2007, AQUACULTURE, V270, P77, DOI 10.1016/j.aquaculture.2007.03.002; BRAWLEY SH, 1987, DEV BIOL, V122, P217, DOI 10.1016/0012-1606(87)90347-2; Brodie J, 2007, EUR J PHYCOL, V42, P3, DOI 10.1080/09670260601043946; Broom JE, 2002, EUR J PHYCOL, V37, P227, DOI 10.1017/S0967026202003566; *BUR FISH STAT DEP, 2001, CHIN FISH YB; Burritt DJ, 2002, PLANTA, V215, P829, DOI 10.1007/s00425-002-0805-6; Butterfield NJ, 2007, PALAEONTOLOGY, V50, P41, DOI 10.1111/j.1475-4983.2006.00613.x; Butterfield NJ, 2009, PRECAMBRIAN RES, V173, P201, DOI 10.1016/j.precamres.2009.01.008; Butterfield NJ, 2000, PALEOBIOLOGY, V26, P386, DOI 10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2; BUTTERFIELD NJ, 1990, SCIENCE, V250, P104, DOI 10.1126/science.11538072; CAMPBELL SE, 1980, PHYCOLOGIA, V19, P25, DOI 10.2216/i0031-8884-19-1-25.1; CHEN G, 1980, J FISHERIES CHINA, V4, P19; COBA F, 2009, J DERMATOL SCI, V55, P161; COCK M, 2010, NATURE, V456, P617; Craigie JS, 1990, BIOL RED ALGAE, P221; Daggett TL, 2005, AQUACULTURE, V244, P263, DOI 10.1016/j.aquaculture.2004.11.030; Davison IR, 1996, J PHYCOL, V32, P197, DOI 10.1111/j.0022-3646.1996.00197.x; Ding HY, 2005, J APPL PHYCOL, V17, P51, DOI 10.1007/s10811-005-5523-6; DREW KM, 1949, NATURE, V164, P748, DOI 10.1038/164748a0; Fan XL, 2007, J PHYCOL, V43, P1287, DOI 10.1111/j.1529-8817.2007.00415.x; Fei Xiu-geng, 1999, Chinese Journal of Oceanology and Limnology, V17, P193; Fritsch F. E., 1945, STRUCTURE REPROD ALG, V2; Fukuda S, 2008, PLANT SCI, V174, P329, DOI 10.1016/j.plantsci.2007.12.006; GANTT E, 2010, RED ALGAE GENOMIC AG, P131; Gao KS, 1999, HYDROBIOLOGIA, V399, P355; He PM, 2008, WATER RES, V42, P1281, DOI 10.1016/j.watres.2007.09.023; He PM, 2006, AQUACULTURE, V257, P373, DOI 10.1016/j.aquaculture.2006.03.017; Hehemann JH, 2010, NATURE, V464, P908, DOI 10.1038/nature08937; HERBERT SK, 1990, PLANT PHYSIOL, V92, P514, DOI 10.1104/pp.92.2.514; Irvine L. A., 2003, SEAWEEDS BRIT ISL 3B, V1; IWASAKI H, 1972, FREE LIVING CONCHOCE; Kawamura Y, 2005, PLANT DIS, V89, P1041, DOI 10.1094/PD-89-1041; Kikuchi N, 2010, PHYCOLOGIA, V49, P345, DOI 10.2216/09-82.1; Kim JK, 2007, J APPL PHYCOL, V19, P431, DOI 10.1007/s10811-006-9150-7; Kim JK, 2009, PHYCOL RES, V57, P152, DOI 10.1111/j.1440-1835.2009.00533.x; KIM NG, 2010, SEAWEED RES, V22, P22; Kirk DL, 2005, BIOESSAYS, V27, P299, DOI 10.1002/bies.20197; Kirk DL, 2001, DEV BIOL, V238, P213, DOI 10.1006/dbio.2001.0402; Kirk MM, 2004, J BIOSCIENCES, V29, P143, DOI 10.1007/BF02703412; Korbee N, 2005, MAR BIOL, V146, P645, DOI 10.1007/s00227-004-1484-6; KORNMANN P, 1994, EUR J PHYCOL, V29, P69, DOI 10.1080/09670269400650511; KUROGI M, 1971, PERFECT SHALLOW SEA, P1; LI SY, 1980, OCEANOL LIMNOL SIN, V4, P370; Li ZR, 2009, ANNU REV PLANT BIOL, V60, P239, DOI 10.1146/annurev.arplant.58.032806.103844; LIPKIN Y, 1993, BOT MAR, V36, P517, DOI 10.1515/botm.1993.36.6.517; Liu DY, 2009, MAR POLLUT BULL, V58, P888, DOI 10.1016/j.marpolbul.2009.01.013; LIU TJ, 1981, MAR FISH RES, V3, P1; MacArtain P, 2007, NUTR REV, V65, P535, DOI 10.1301/nr.2007.dee.535-543; MIGITA S, 1972, B FAC FISH NAGASAKI, V33, P39; Mikami K, 2009, MAR BIOTECHNOL, V11, P563, DOI 10.1007/s10126-008-9172-z; Milstein D, 2005, PHYCOLOGIA, V44, P212, DOI 10.2216/0031-8884(2005)44[212:MPOBRB]2.0.CO;2; MITMAN G, 1994, J PHYCOL, V30, P1; MIURA A, 1984, Journal of the Tokyo University of Fisheries, V71, P1; MIURA A, 1970, MANUAL FLOATING CULT; MIURA A, 1975, ADV PHYCOLOGY JAPAN, P273; MIURA A, 1990, SUISAN IKUSHU, V15, P19; Monotilla WD, 2004, BOT MAR, V47, P323, DOI 10.1515/BOT.2004.038; Neefus CD, 2008, J PHYCOL, V44, P1399, DOI 10.1111/j.1529-8817.2008.00607.x; Nelson WA, 2006, PHYCOLOGIA, V45, P249, DOI 10.2216/05-26.1; Nelson WA, 1999, J APPL PHYCOL, V11, P407, DOI 10.1023/A:1008174307352; Nikaido I, 2000, DNA RES, V7, P223, DOI 10.1093/dnares/7.3.223; Nishikawa T, 2007, HARMFUL ALGAE, V6, P763, DOI 10.1016/j.hal.2007.04.005; Niwa K, 2005, J PHYCOL, V41, P294, DOI 10.1111/j.1529-8817.2005.04039.x; Niwa K, 2010, J PHYCOL, V46, P693, DOI 10.1111/j.1529-8817.2010.00853.x; Niwa K, 2009, J PHYCOL, V45, P493, DOI 10.1111/j.1529-8817.2009.00661.x; NODA H, 1993, J APPL PHYCOL, V5, P255, DOI 10.1007/BF00004027; NOTOYA M, 1997, NAT HIST RES, V3, P47; Oliveira M. C, 1995, PHYCOL RES, V43, P71, DOI 10.1111/j.1440-1835.1995.tb00007.x; Olmedo-Monfil V, 2010, NATURE, V464, P628, DOI 10.1038/nature08828; OQUIST G, 1982, PHYSIOL PLANTARUM, V56, P56, DOI 10.1111/j.1399-3054.1982.tb04899.x; Pang SJ, 2010, MAR ENVIRON RES, V69, P207, DOI 10.1016/j.marenvres.2009.10.007; Park CS, 2006, J APPL PHYCOL, V18, P295, DOI 10.1007/s10811-006-9031-0; Pearson GA, 2010, MAR BIOTECHNOL, V12, P195, DOI 10.1007/s10126-009-9208-z; Pereira R, 2008, EUR J PHYCOL, V43, P107, DOI 10.1080/09670260701763393; *PHYC RES TEAM, 1978, CULT MAN PORPH YEZ; RAGAN MA, 1994, P NATL ACAD SCI USA, V91, P7276, DOI 10.1073/pnas.91.15.7276; Rasmussen B, 2008, NATURE, V455, P1101, DOI 10.1038/nature07381; REED RH, 1980, J EXP BOT, V31, P1539, DOI 10.1093/jxb/31.6.1539; Rhatigan P, 2009, IRISH SEAWEED KITCHE; Sampath-Wiley P, 2008, J EXP MAR BIOL ECOL, V361, P83, DOI 10.1016/j.jembe.2008.05.001; SATOH K, 1983, PLANT PHYSIOL, V73, P643, DOI 10.1104/pp.73.3.643; Schmitt R, 2003, CURR OPIN MICROBIOL, V6, P608, DOI 10.1016/j.mib.2003.10.007; Schwander T, 2010, P ROY SOC B-BIOL SCI, V277, P1435, DOI 10.1098/rspb.2009.2113; Shick JM, 2002, ANNU REV PHYSIOL, V64, P223, DOI 10.1146/annurev.physiol.64.081501.155802; Sinha RP, 2007, J PHOTOCH PHOTOBIO B, V89, P29, DOI 10.1016/j.jphotobiol.2007.07.006; SMITH CM, 1986, PLANT PHYSIOL, V80, P843, DOI 10.1104/pp.80.4.843; SMITH CM, 1986, OECOLOGIA, V70, P6, DOI 10.1007/BF00377105; Smith JL, 2010, NEW ZEAL J CROP HORT, V38, P19, DOI 10.1080/01140671003619290; TAJIRI S, 1984, Japanese Journal of Phycology, V32, P134; Takahashi M., 2010, American Journal of Plant Sciences, V1, P1, DOI 10.4236/ajps.2010.11001; Takahashi M, 2010, ELECTRON J BIOTECHN, V13, DOI 10.2225/vol13-issue2-fulltext-7; TSENG CK, 1985, CULTIVATION SEAWEEDS, P135; Tseng CK, 1981, BIOL SEAWEEDS, P680; UEDA S, 1963, AQUATIC BOT; UEDA S, 1973, TXB CULTIVATION PORP; Uji T, 2010, MAR BIOTECHNOL, V12, P150, DOI 10.1007/s10126-009-9210-5; Uppalapati SR, 2000, J PHYCOL, V36, P359, DOI 10.1046/j.1529-8817.2000.99099.x; Wang JF, 2010, PHYCOLOGIA, V49, P355, DOI 10.2216/09-91.1; Wang JF, 2010, J APPL PHYCOL, V22, P297, DOI 10.1007/s10811-009-9459-0; WANG SJ, 1985, CULTIVATION SEAWEEDS, P135; WIENCKE C, 1980, PLANTA, V150, P303, DOI 10.1007/BF00384660; Xiao SH, 1998, NATURE, V391, P553, DOI 10.1038/35318; XU P, 2008, CULTIVATION FISHERIE, P999; Yoon HS, 2006, J PHYCOL, V42, P482, DOI 10.1111/j.1529-8817.2006.00210.x; Yoshida T, 1997, NAT HIST RES, V3, P1; Zou DH, 2002, EUR J PHYCOL, V37, P587, DOI 10.1017/S0967026202003876 110 137 155 2 106 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 1360-1385 1878-4372 TRENDS PLANT SCI Trends Plant Sci. JAN 2011 16 1 29 37 10.1016/j.tplants.2010.10.004 9 Plant Sciences Plant Sciences 713EQ WOS:000286718200005 21067966 2019-02-21 J Kotze, DJ; Brandmayr, P; Casale, A; Dauffy-Richard, E; Dekoninck, W; Koivula, MJ; Lovei, GL; Mossakowski, D; Noordijk, J; Paarmann, W; Pizzolotto, R; Saska, P; Schwerk, A; Serrano, J; Szyszko, J; Taboada, A; Turin, H; Venn, S; Vermeulen, R; Zetto, T Kotze, D. Johan; Brandmayr, Pietro; Casale, Achille; Dauffy-Richard, Emmanuelle; Dekoninck, Wouter; Koivula, Matti J.; Lovei, Gabor L.; Mossakowski, Dietrich; Noordijk, Jinze; Paarmann, Wilfried; Pizzolotto, Roberto; Saska, Pavel; Schwerk, Axel; Serrano, Jose; Szyszko, Jan; Taboada, Angela; Turin, Hans; Venn, Stephen; Vermeulen, Rikjan; Zetto, Tullia Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation ZOOKEYS English Article Carabidae; ground beetle; systematics; biology; life history; rhythms; seed feeding; ant feeding; ectoparasitism; predation on amphibians; dispersal; pitfall trapping; statistics; population dynamics; long-term research; bioindicators; conservation; habitat management; landscape ecology IN-GROUND BEETLES; COMPLEX COLEOPTERA CARABIDAE; SMALL-SCALE HETEROGENEITY; NORTH-SULAWESI INDONESIA; PINE PLANTATION FORESTS; BROSCUS-LAEVIGATUS DEJ; PTEROSTICHUS-NIGRITA F; URBAN-RURAL GRADIENT; ROAD-SIDE VERGES; AGRICULTURAL LANDSCAPES 'Carabidologists do it all' (Niemela 1996a) is a phrase with which most European carabidologists are familiar. Indeed, during the last half a century, professional and amateur entomologists have contributed enormously to our understanding of the basic biology of carabid beetles. The success of the field is in no small part due to regular European Carabidologists' Meetings, which started in 1969 in Wijster, the Netherlands, with the 14(th) meeting again held in the Netherlands in 2009, celebrating the 40(th) anniversary of the first meeting and 50 years of long-term research in the Dwingelderveld. This paper offers a subjective summary of some of the major developments in carabidology since the 1960s. Taxonomy of the family Carabidae is now reasonably established, and the application of modern taxonomic tools has brought up several surprises like elsewhere in the animal kingdom. Progress has been made on the ultimate and proximate factors of seasonality and timing of reproduction, which only exceptionally show non-seasonality. Triggers can be linked to evolutionary events and plausibly explained by the "taxon cycle" theory. Fairly little is still known about certain feeding preferences, including granivory and ants, as well as unique life history strategies, such as ectoparasitism and predation on higher taxa. The study of carabids has been instrumental in developing metapopulation theory (even if it was termed differently). Dispersal is one of the areas intensively studied, and results show an intricate interaction between walking and flying as the major mechanisms. The ecological study of carabids is still hampered by some unresolved questions about sampling and data evaluation. It is recognised that knowledge is uneven, especially concerning larvae and species in tropical areas. By their abundance and wide distribution, carabid beetles can be useful in population studies, bioindication, conservation biology and landscape ecology. Indeed, 40 years of carabidological research have provided so much data and insights, that among insects - and arguably most other terrestrial organisms - carabid beetles are one of the most worthwhile model groups for biological studies. [Kotze, D. Johan; Venn, Stephen] Univ Helsinki, Dept Environm Sci, FI-00014 Helsinki, Finland; [Brandmayr, Pietro; Pizzolotto, Roberto; Zetto, Tullia] Univ Calabria, Dept Ecol, I-87036 Arcavacata Di Rende, CS, Italy; [Casale, Achille] Univ Sassari, Dipartimento Zool & Genet Evoluzionist, I-07100 Sassari, Italy; [Dauffy-Richard, Emmanuelle] Irstea, UR EFNO, F-45290 Nogent Sur Marne, France; [Dekoninck, Wouter] RBINS, Dept Entomol, B-1000 Brussels, Belgium; [Koivula, Matti J.] Finnish Forest Res Inst, FI-01301 Vantaa, Finland; [Lovei, Gabor L.] Aarhus Univ, Fac Sci & Technol, Flakkebjerg Res Ctr, DK-4200 Slagelse, Denmark; [Noordijk, Jinze] European Invertebrate Survey Nederland, NL-2300 RA Leiden, Netherlands; [Saska, Pavel] Czech Univ Lifi Sci Prague, Dept Ecol, CZ-16521 Prague 6, Suchdol, Czech Republic; [Schwerk, Axel; Szyszko, Jan] Warsaw Univ Life Sci, Lab Evaluat & Assessment Nat Resources, PL-02787 Warsaw, Poland; [Serrano, Jose] Univ Murcia, Fac Vet, E-30071 Murcia, Spain; [Taboada, Angela] Univ Leon, Dept Biodivers & Environm Management, Area Ecol, E-24071 Leon, Spain; [Turin, Hans] Loopkeverstichting SFOC, NL-6871 LK Renkum, Netherlands; [Vermeulen, Rikjan] Stichting WBBS, NL-9409 TV Loon, Netherlands Kotze, DJ (reprint author), Univ Helsinki, Dept Environm Sci, POB 65,Bioctr 3,Viikinkaari 1, FI-00014 Helsinki, Finland. johan.kotze@helsinki.fi Jose, Serrano/A-2854-2009; Saska, Pavel/K-6434-2013; pizzolotto, roberto/M-7403-2015; Brandmayr, Pietro/B-3022-2014; Taboada, Angela/K-1744-2014; Lovei, Gabor/B-7763-2008; Kotze, David/A-2834-2008 Jose, Serrano/0000-0002-1565-5216; Saska, Pavel/0000-0003-1397-2987; pizzolotto, roberto/0000-0002-4587-3476; Taboada, Angela/0000-0002-3494-4806; Lovei, Gabor/0000-0002-6467-9812; Schwerk, Axel/0000-0002-2284-3776; Taboada, Angela/0000-0002-1782-3148; Venn, Stephen/0000-0002-0318-6256; Brandmayr, Pietro/0000-0002-6753-4897 Academy of Finland [126915]; Czech Science Foundation [206/09/1266]; Ministerio de Ciencia e Innovacion; Fundacion Seneca, Murcia US [CGL2006-06706, 08724PI08]; Uyttenboogaart-Eliasen Foundation; Province of Drente; WBBS We thank Thorsten Assmann and Piet den Boer for useful insights, Terry Erwin for information and reviewing this submission, and Ivailo Stoyanov and Lyubomir Penev for support and advice. For some authors, partial support was received from the Academy of Finland (JK, SV, project number 126915), the Czech Science Foundation (PS, grant # 206/09/1266), and the Ministerio de Ciencia e Innovacion and the Fundacion Seneca, Murcia US, respective project numbers: CGL2006-06706 and 08724PI08). The 14th ECM at Westerbork, the Netherlands received financial support from the Uyttenboogaart-Eliasen Foundation and the Province of Drente. The meeting was organised by volunteers of the Foundation Willem Beijerinck Biological Station (WBBS) and the SFOC - Dutch Carabidological Association (Loopkeverstichting). We especially thank Tim Opsteeg (WBBS) for designing and taking care of the website and Willem Jongbloed (WBBS) for taking care of the finances. Adis J., 1990, P269; Adis J., 1986, P413; Alexandrovitch O. R., 1996, CATALOGUE COLEOPTERA; ALTHOFF GH, 1994, SERIES ENTOM, V51, P95; Anderson J., 1990, P21; ANDERSON R, 2000, GROUND BEETLES IRELA; Andorko R, 2006, ENTOMOL FENNICA, V17, P221; Andrewartha H. G., 1954, DISTRIBUTION ABUNDAN; ANDUJAR A, 2001, REVISION FILOGENIA Z; Angus Robert B., 2008, Nouvelle Revue d'Entomologie, V25, P297; ANTOINE M, 1955, MEMOIRES SOC SCI NAT; APFELBECK V, 1904, KAFERFAUNA BALKANHAB, V1; Arndt E, 2002, STUD NEOTROP FAUNA E, V37, P151, DOI 10.1076/snfe.37.2.151.8581; Arndt E, 1996, STUD NEOTROP FAUNA E, V31, P205, DOI 10.1076/snfe.31.3.205.13340; ARNDT E, 2005, EUROPEAN CARABIDOLOG, V114, P17; ARNDT E, GROUNDBEETL IN PRESS; ARNDT E, 1991, LARVEN KAFER MITTELE, V1, P45; Arndt Erik, 1998, P171; AS S, 1984, J BIOGEOGR, V11, P413, DOI 10.2307/2844805; Ashworth AC, 1996, ANN ZOOL FENN, V33, P125; Assmann T., 1990, P319; ASSMANN T, 1994, SERIES ENTOM, V51, P3; ASSMANN T, 2002, ROTE LISTE NIEDERSAC, V1; ASSMANN T, 2009, 14 EUR CAR M WEST NE, P25; Assmann T, 2008, PENSOFT SER FAUNIST, P41; AUKEMA B, 1990, HEREDITAS, V113, P189, DOI 10.1111/j.1601-5223.1990.tb00084.x; AUKEMA B, 1991, OECOLOGIA, V87, P118, DOI 10.1007/BF00323789; AUKEMA B, 1995, THESIS WAGENINGEN U; Aviron S, 2005, AGR ECOSYST ENVIRON, V108, P205, DOI 10.1016/j.agee.2005.02.004; BAARS MA, 1984, J ANIM ECOL, V53, P389, DOI 10.2307/4523; BAARS MA, 1982, THESIS U AMSTERDAM; BAEHR M, 1994, SERIES ENTOM, V51, P11; Baehr Martin, 1998, P359; Ball G.E., 1979, P63; BALL GE, 2001, AM BEETLES, V1, P32; BALL GE, 1985, TAXONOMY PHYLOGENY Z; BALL GE, 1998, PHYLOGENY CLASSIFICA; BANGSHOLT F, 1981, DISTRIBUTION OCCURRE, P271; Barbaro L, 2005, ECOSCIENCE, V12, P110, DOI 10.2980/i1195-6860-12-1-110.1; Barbaro L, 2007, J BIOGEOGR, V34, P652, DOI 10.1111/j.1365-2699.2006.01656.x; Barbaro L, 2009, ECOGRAPHY, V32, P321, DOI 10.1111/j.1600-0587.2008.05546.x; BARBER H. S., 1931, JOUR ELISHA MITCHELL SCI SOC, V46, P259; BARSEVSKIS A, 2003, LATVIJAS SKREJVABOLE; Barton PS, 2009, BIOL CONSERV, V142, P1701, DOI 10.1016/j.biocon.2009.03.005; Bauer T, 2005, ITAL J ZOOL, V72, P33, DOI 10.1080/11250000509356650; BEDEL L, 1899, CATALOGUE RAISONNE C, V1, P1; Bell Ross T., 1998, P261; BERCES S, 2007, BACK ROOTS BACK FUTU, P363; Beutel RG, 1996, ENTOMOL SCAND, V27, P197; Beutel Rolf G., 1998, P81; Blake S, 1996, ANN ZOOL FENN, V33, P139; BODENHEIMER F. S., 1934, BULL SOC ROY ENT EGYPTE, V18, P211; BOEKEN M, 2002, LOOPKEVERS NEDERLAND; Bommarco R, 1998, ECOL APPL, V8, P846, DOI 10.1890/1051-0761(1998)008[0846:RAEROA]2.0.CO;2; Bonavita Paolo, 1997, Quaderni della Stazione di Ecologia del Civico Museo di Storia Naturale di Ferrara, V10, P107; Borcherding Rainer, 2000, Ecotropica (Bonn), V6, P169; Bouget C, 2004, BIOL CONSERV, V118, P281, DOI 10.1016/j.biocon.2003.09.009; BOUGET C, 2005, 114 DIAS, P25; BOUGET C, 2004, THESIS MUSEUM NATL H, DOI DOI 10.1016/J.BIOCON.2003.09.009; Bowie Mike H., 2004, Ecological Management & Restoration, V5, P34, DOI 10.1111/j.1442-8903.2004.00171.x; Brauniger C, 2010, LANDSCAPE URBAN PLAN, V97, P283, DOI 10.1016/j.landurbplan.2010.07.001; BRAKMAN PJ, 1966, MONOGRAFIEEN NEDERLA, V2; BRANDMAYR P, 1974, Redia, V55, P143; Brandmayr P., 1987, Pubblicazioni dell'Istituto di Entomologia dell'Universita di Pavia, V36, P15; BRANDMAYR P, 1994, SERIES ENTOM, V51, P19; Brandmayr P., 1977, Redia, V60, P275; BRANDMAYR P, 2000, P 9 EUR CAR M; BRANDMAYR P, 1983, P 4 EUR CAR M; BRANDMAYR P, 1982, MEMORIE SOC ENTOMOLO, V60, P67; BRANDMAYR P, 1991, ETHOL ECOL EVOL, V1, P139; BRANDMAYR P, 1979, MISCELLANEOUS PAPERS, V18, P35; Braun SD, 2004, ECOL ENTOMOL, V29, P543, DOI 10.1111/j.0307-6946.2004.00643.x; BREUNING S, 1933, MONOGRAPHIE GATTUNG, V1, P106; BREUNING S, 1934, MONOGRAPHIE GATTUNG, V1, P108; BREUNING S, 1937, MONOGRAPHIE GATTUNG, V1, P110; BREUNING S, 1932, MONOGRAPHIE GATTUNG, V1, P104; BREUNING S, 1935, MONOGRAPHIE GATTUNG, V1, P109; Brose U, 2003, J BIOGEOGR, V30, P879, DOI 10.1046/j.1365-2699.2003.00893.x; Brouat C, 2003, MOL ECOL, V12, P1731, DOI 10.1046/j.1365-294X.2003.01861.x; Bruckner M, 2006, ENTOMOL FENNICA, V17, P195; Brunsting A.M.H., 1986, P399; Brust G. E., 1988, American Journal of Alternative Agriculture, V3, P19; BURAKOWSKI B, 1973, KATALOG FAUNY POLSKI, V23, P1; BURAKOWSKI B, 1973, KATALOG FAUNY POLSKI, V23, P1430; Burel F, 1998, ACTA OECOL, V19, P47, DOI 10.1016/S1146-609X(98)80007-6; Burel F, 2004, LANDSCAPE URBAN PLAN, V67, P195, DOI 10.1016/S0169-2046(03)00039-2; Burel F, 1989, LANDSCAPE ECOL, V2, P215, DOI 10.1007/BF00125092; Butterfield J, 1997, ECOGRAPHY, V20, P614, DOI 10.1111/j.1600-0587.1997.tb00430.x; CABIDOCHE M, 1963, CR HEBD ACAD SCI, V256, P4491; CABIDOCHE M, 1966, THESIS U PARIS; CALLOT HJ, 1993, CATALOGUE ATLAS COLE; CASALE A, 1988, REVISIONE SPHODRINA; CASALE A, 2007, MEMORIE MUSEO CIVICO, V17, P159; CASALE A, 2003, GENUS CARABUS SYNTHE, P455; CASALE A, 1982, FAUNA ITALIA CARABID, V1; CASALE A, 2005, COLLEOTTERI CARABIDI, P148; Casale Achille, 1998, P381; Casale Achille, 1998, P429; Casale A, 2008, PENSOFT SER FAUNIST, P353; CAVAZZUTI P, 1989, ASS NATURALISTICA PI, V1; Charrier S, 1997, AGR ECOSYST ENVIRON, V61, P133, DOI 10.1016/S0167-8809(96)01101-2; Cole LJ, 2006, ENTOMOL FENNICA, V17, P229; COULON J, 2000, COLEOPTERES RHONE AL; CRAWLEY MJ, 2003, STAT COMPUTING INTRO; CSIKI E, 1946, NATURWISSENSCHAFTLIC, V4; Cuesta D, 2006, ENTOMOL FENNICA, V17, P241; da Silva PM, 2008, AGR ECOSYST ENVIRON, V124, P270, DOI 10.1016/j.agee.2007.10.007; Dalthorp D, 2004, ENTOMOL EXP APPL, V111, P117, DOI 10.1111/j.0013-8703.2004.00158.x; Darlington P. J., 1943, ECOL MONOGR, V13, P37, DOI 10.2307/1943589; DARLINGTON P. J., 1936, ANN ENT SOC AMER, V29, P136; Darwin C., 1859, ORIGIN SPECIES MEANS; Davies KF, 1998, J ANIM ECOL, V67, P460, DOI 10.1046/j.1365-2656.1998.00210.x; DAVIES L, 1972, Entomologica Scandinavica, V3, P275; de la Pena NM, 2003, AGR ECOSYST ENVIRON, V94, P59, DOI 10.1016/S0167-8809(02)00012-9; de Warnaffe GDB, 2004, BIOL CONSERV, V118, P219, DOI 10.1016/j.biocon.2003.08.015; Den Boer P. J., 1968, Acta Biotheoretica, V18, P165; den Boer P.J., 1986, P81; den Boer P. J., 1970, Oecologia, V4, P1, DOI 10.1007/BF00390612; den Boer P.J., 1990, P247; DENBOER PJ, 1985, Z ZOOL SYST EVOL, V23, P259; DENBOER PJ, 1980, NETH J ZOOL, V30, P278; DENBOER PJ, 1977, MISCELLANEOUS PAPERS, V14, P1; DENBOER PJ, 1986, FEEDING BEHAV ACCESS; DENBOER PJ, 1979, MISCELLANEOUS PAPERS, V18; DENBOER PJ, 1971, MISCELLANEOUS PAPERS, V8; DENBOER PJ, 1986, CARABID BEETLES THEI; DENBOER PJ, 1987, PHYTOPTHOLOGICA ENTO, V22, P1; DENBOER PJ, 1993, DYNAMICS POPULATIONS; DENBOER PJ, 1971, DYNAMICS POPULATIONS, P7; DENBOER PJ, 1996, POPULATION COMMUNITY, V16, P1; DENBOER PJ, 1994, WAGENINGEN AGR U PAP, V94, P1; Dennis R. L. H., 2007, Insect conservation biology, P92, DOI 10.1079/9781845932541.0092; DESENDER K, 1989, BIOL CONSERV, V48, P277, DOI 10.1016/0006-3207(89)90103-1; Desender K, 2005, CONSERV GENET, V6, P51, DOI 10.1007/s10592-004-7748-3; DESENDER K, 1994, SERIES ENTOM, V51, P247; Desender K., 1990, P13; DESENDER K, 1989, OECOLOGIA, V78, P513, DOI 10.1007/BF00378743; DESENDER K, 1995, GEDOCUMENTEERDE RODE; Desender K., 2005, DIAS REP, V114, P49; DESENDER K, 1986, I ROYAL SCI NATURELL, V27, P1; DESENDER K, 1986, I ROYAL SCI NATURELL, V26, P1; DESENDER K, 2008, NIEUWE VERSPREIDINGS; DESENDER K, 1986, I ROYAL SCI NATURELL, V30, P1; DESENDER K, 1994, CARABID BEETLES ECOL; DESENDER K, 1989, DISPERSIEVERMOGEN EC; DESENDER K, 1986, I ROYAL SCI NATURELL, V34, P1; DESENDER K, 2000, ENTOMOLOGIE, V70, P13; Desender K, 2010, BIOL CONSERV, V143, P1549, DOI 10.1016/j.biocon.2010.03.039; Desender Konjev, 2008, Bulletin de l'Institut Royal des Sciences Naturelles de Belgique Entomologie, V78, P113; Desender Konjev R.C., 2000, P35; Desender Konjev R.C., 2000, P25; DEUVE T, 2004, ILLUSTRATED CATALOGU; DEUVE T, 1993, MEMOIRES MUSEUM NATL, V155, P184; deVries HH, 1996, OECOLOGIA, V107, P332, DOI 10.1007/BF00328449; DEVRIES HH, 1994, SERIES ENTOM, V51, P253; Di Giulio A, 2004, INVERTEBR SYST, V18, P101, DOI 10.1071/IS03028; Di Giulio A, 2001, TROP ZOOL, V14, P157, DOI 10.1080/03946975.2001.10531149; DIAZ M, 1994, OECOLOGIA, V99, P1, DOI 10.1007/BF00317076; Dieckmann U, 1999, TRENDS ECOL EVOL, V14, P88, DOI 10.1016/S0169-5347(98)01571-7; Digweed SC, 1995, PEDOBIOLOGIA, V39, P561; Dinter K, 2002, J ARID ENVIRON, V50, P267, DOI 10.1006/jare.2001.0850; DREES C, 2011, OIKOS IN PRESS; Drees Claudia, 2007, Baltic Journal of Coleopterology, V7, P1; DROVENIK B, 1999, SCHWANFELDER COLEOPT, V15, P1; DUCHATENET G, 1986, GUIDE COLEOPTERES EU, P60; Duelli P, 2003, AGR ECOSYST ENVIRON, V98, P87, DOI 10.1016/S0167-8809(03)00072-0; During A, 2006, ENTOMOL FENNICA, V17, P200; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; DURING A, 2000, NATURAL HIST APPL EC, P5; DURING A, 2004, MOLEKULARSYSTEMATISC; DURING A, 2002, PROTECT WHAT WE KNOW, P37; DURING A, 2000, NATURAL HIST APPL EC, P1; DYMITRYSZYN I, 2003, ANN WARSAW AGR U SGG, V24, P149; Eggers B, 2010, CONSERV BIOL, V24, P256, DOI 10.1111/j.1523-1739.2009.01295.x; Elek Z, 2007, ACTA OECOL, V32, P104, DOI 10.1016/j.actao.2007.03.008; Elek Z, 2010, FOREST ECOL MANAG, V260, P1446, DOI 10.1016/j.foreco.2010.07.034; Elron Eldad, 2007, Herpetological Review, V38, P30; EMMERICH H, 1969, NATURWISSENSCHAFTEN, V56, P641, DOI 10.1007/BF01185755; Erbeling L., 1986, P125; Ermakov AI, 2004, RUSS J ECOL+, V35, P403, DOI 10.1023/B:RUSE.0000046977.30889.a1; Erwin T.L., 1979, P539; Erwin T.L., 1979, P479; Erwin T.L., 2008, TREATISE W HEMISPHER, V2; Erwin T. L., 1979, CARABID BEETLES THEI; ERWIN TERRY L., 1967, COLEOPT BULL, V21, P41; Erwin TL, 2008, PENSOFT SER FAUNIST, P77; Erwin TL, 1996, ANN ZOOL FENN, V33, P17; ERWIN TL, 2007, TREATISE W HEMISPHER, V1; EVANS MEG, 1985, J ZOOL, V206, P113, DOI 10.1111/j.1469-7998.1985.tb05640.x; Eversham BC, 1996, ANN ZOOL FENN, V33, P149; Eyre M.D., 1990, P227; Fahrig L, 2003, ANNU REV ECOL EVOL S, V34, P487, DOI 10.1146/annurev.ecolsys.34.011802.132419; Falke Bodo, 2000, P265; Fawki S, 2005, J APPL ENTOMOL, V129, P551, DOI 10.1111/j.1439-0418.2005.00992.x; FEDORENKO D. N., 1996, RECLASSIFICATION WOR; FERENZ HJ, 1975, ENTOMOL EXP APPL, V18, P238, DOI 10.1111/j.1570-7458.1975.tb02375.x; FERENZ HJ, 1977, J INSECT PHYSIOL, V23, P671, DOI 10.1016/0022-1910(77)90082-8; FERENZ HJ, 1975, OECOLOGIA, V19, P49, DOI 10.1007/BF00377589; Ford ED, 2009, ANN ZOOL FENN, V46, P82; FOREL J, 2001, MAGELLANES, V5, P1; FOREL J, 1995, CARABES FRANCE, V1; FOREL J, 2005, MAGELLANES, V12, P1; FOREL J, 1998, MAGELLANES, V2, P1; FOREL J, 2003, MAGELLANES, V7, P1; Fournier E, 2001, LANDSCAPE ECOL, V16, P17, DOI 10.1023/A:1008115516551; Frambs H., 1990, P157; Frank JH, 2009, ZOOKEYS, P1, DOI 10.3897/zookeys.14.188; FREITAG R, 1993, COLEOPTS BULL, V47, P113; Fuellhaas Uwe, 2000, P251; Fuller RJ, 2008, INSECT CONSERV DIVER, V1, P242, DOI 10.1111/j.1752-4598.2008.00032.x; *GAC, 2004, ANGEW CARABIDOLOGI S, V3, P1; *GAC, 1999, ANGEW CARABIDOLOGI S, V1, P1; *GAC, 2001, ANGEW CARABIDOLOGI S, V2, P1; Galian J, 1996, ANN ZOOL FENN, V33, P23; GANGLBAUER L, 1892, KAFER MITTELEUROPA, V1; GARDENFORS U, 2005, RODLISTADE ARTER SVE; Gardiner MM, 2010, BIOL CONTROL, V55, P11, DOI 10.1016/j.biocontrol.2010.06.008; Gaston K. J., 2004, BIODIVERSITY INTRO; Gaublomme E, 2008, BIOL CONSERV, V141, P2585, DOI 10.1016/j.biocon.2008.07.022; GEBERT J, 2006, BEITRAGE INSEKTENF 1, V4; Gilbert O., 1956, Oikos Copenhagen, V7, P22, DOI 10.2307/3564982; Grandchamp AC, 2005, AGR ECOSYST ENVIRON, V110, P307, DOI 10.1016/j.agee.2005.04.018; GREENSLADE PJM, 1964, J ANIM ECOL, V33, P301, DOI 10.2307/2632; Griffiths GJK, 2007, BIOL CONSERV, V135, P145, DOI 10.1016/j.biocon.2006.09.016; GRUTTKE H, 1994, SERIES ENTOMOLOGICA, V51, P229; GUEORGUIEV BV, 2007, ANNOTATED CATALOGUE; GUEORGUIEV VB, 1997, BIOGEOGRAPHY ENDEMIC; GUEORGUIEV VB, 1995, CATALOGUE GROUND BEE; HABERMAN H, 1968, EESTI JOOKSIKLASED; HABU A, 1978, FAUNA JAPONICA CARAB; HABU A, 1973, FAUNA JAPONICA CARAB; Habu A., 1967, FAUNA JAPONICA CARAB; Hammond P.M., 1979, P113; HANCE T, 1987, PEDOBIOLOGIA, V30, P251; HANSEN V, 1968, BILLER 24 SANDSPRING; HASLETT JR, 2007, NATURE ENV, V145; HATTELAND BA, 2005, DIAS REPORT, V114, P125; HEESSEN HJL, 1981, THESIS WAGENINGEN AG; Hemenway R., 1967, Proceedings of the Arkansas Academy of Science, V21, P15; Hendrickx F, 2007, J APPL ECOL, V44, P340, DOI 10.1111/j.1365-2664.2006.01270.x; Hendrickx F, 2009, GLOBAL ECOL BIOGEOGR, V18, P607, DOI 10.1111/j.1466-8238.2009.00473.x; HENGEVELD R, 1987, ANN ZOOL FENN, V24, P195; HENGEVELD R, 1980, NETH J ZOOL, V30, P585; HENGEVELD R, 1980, NETHERLANDS J ZOOLOG, V30, P557; Herrera L., 1990, Entomonograph, V12, P1; HEYDEMANN B, 1962, ABH AKAD WISS LIT MN, V11, P765; HIEKE F, 1988, DEUT ENTOMOL Z, V35, P1, DOI 10.1002/mmnd.19880350102; HOFFMANN HJ, 1970, J INSECT PHYSIOL, V16, P629, DOI 10.1016/0022-1910(70)90096-X; HOLDHAUS KARL, 1939, ANN NATURHIST STAATSMUS WIEN, V50, P123; Holland J., 2002, AGROECOLOGY CARABID; Holldobler B., 1990, ANTS; Hollmen A, 2008, J INSECT CONSERV, V12, P163, DOI 10.1007/s10841-007-9076-7; Honek A, 2006, ENTOMOL EXP APPL, V118, P157, DOI 10.1111/j.1570-7458.2006.00376.x; Honek A, 2005, J ECOL, V93, P345, DOI 10.1111/j.1365-2745.2005.00987.x; Honek A, 2003, EUR J ENTOMOL, V100, P531, DOI 10.14411/eje.2003.081; Honek A, 2007, BASIC APPL ECOL, V8, P343, DOI 10.1016/j.baae.2006.07.002; Honek A, 2011, BASIC APPL ECOL, V12, P89, DOI 10.1016/j.baae.2010.11.003; Hurka K, 2003, EUR J ENTOMOL, V100, P329, DOI 10.14411/eje.2003.052; Hurka Karel, 1996, P1; HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661; HUTCHINSON EG, 1965, ECOLOGIAL THEATRE EV; Huusela-Veistola E, 1996, ANN ZOOL FENN, V33, P197; HYMAN PS, 1992, REV SCARCE THREATE 1, P99; IABLOKOVKHNZORI.SM, 1976, FAUNA ARMENIAN SSR C; Imura Yuki, 2002, Elytra, V30, P1; ISHIKAWA R, 1984, KONTYU TOKIO, V53, P94; Ishitani M, 2003, ECOGRAPHY, V26, P481, DOI 10.1034/j.1600-0587.2003.03436.x; Janssen P, 2009, ECOGRAPHY, V32, P423, DOI 10.1111/j.1600-0587.2008.05671.x; JEANNEL R, 1941, FAUNE FRANCE 1, V39; JEANNEL R, 1926, MONOGRAPHIE TRECHINA, V33, P1; JEANNEL R, 1949, FAUNE FRANCE 1, V51; JEANNEL R, 1926, MONOGRAPHIE TRECHINA, V35, P1; Jeannel R, 1926, ABEILLE, V32, P221; Jonsson BG, 1999, BIODIVERS CONSERV, V8, P1417, DOI 10.1023/A:1008900309571; Jorgensen HB, 1997, PEDOBIOLOGIA, V41, P307; Jorgensen HB, 1997, ECOL ENTOMOL, V22, P7, DOI 10.1046/j.1365-2311.1997.00045.x; JUBERTHIE C, 1969, Annales de Speleologie, V24, P75; JUBERTHIE C, 1979, MISCELL PAPERS LH WA, V18, P83; JULIANO SA, 1985, CAN J ZOOL, V63, P1683, DOI 10.1139/z85-250; KALAs JA, 2006, NORSK RODLISTE 2006; KAMER N, 2002, PROTECT WHAT WE KNOW, P331; Kamer N, 2008, PENSOFT SER FAUNIST, P195; KANE TC, 1975, INT J SPELEOL, V7, P55; Karen M, 2008, FOREST ECOL MANAG, V256, P624, DOI 10.1016/j.foreco.2008.05.005; KAUFMANN T, 1971, Journal of the Kansas Entomological Society, V44, P81; Kavanaugh David H., 1998, P329; Kavanaugh DH, 1996, ANN ZOOL FENN, V33, P31; Keller I, 2004, MOL ECOL, V13, P2983, DOI 10.1111/j.1365-294X.2004.02310.x; Kinnunen H, 1996, ANN ZOOL FENN, V33, P165; Kinnunen H, 2001, ECOGRAPHY, V24, P189, DOI 10.1034/j.1600-0587.2001.240209.x; KIRBY P, 1992, HABITAT MANAGEMENT I; KJELLSSON G, 1985, OECOLOGIA, V67, P424, DOI 10.1007/BF00384950; KLAUSNITZER B, 1983, OECOLOGIA, V59, P79, DOI 10.1007/BF00388077; Klimes P, 2010, J APPL ENTOMOL, V134, P659, DOI 10.1111/j.1439-0418.2009.01463.x; Koch D., 1986, P267; KOCHER L, 1963, TRAVAUX I SCI CHERIF, V27; Koivula M, 2002, BIODIVERS CONSERV, V11, P1269, DOI 10.1023/A:1016018702894; Koivula M, 2002, FOREST ECOL MANAG, V167, P103, DOI 10.1016/S0378-1127(01)00717-4; Koivula M, 2006, FOREST ECOL MANAG, V236, P102, DOI 10.1016/j.foreco.2006.09.004; Koivula MJ, 2011, ZOOKEYS, P287, DOI 10.3897/zookeys.100.1533; Koivula MJ, 2005, COLEOPTS BULL, V59, P465, DOI 10.1649/815.1; Koivula MJ, 2005, ANN ZOOL FENN, V42, P615; Koivula MJ, 2005, LANDSCAPE ECOL, V20, P911, DOI 10.1007/s10980-005-7301-x; KOIVULA MJ, 2005, DIAS REPORT, V114, P151, DOI DOI 10.1649/815.1; Kotze DJ, 2008, J INSECT CONSERV, V12, P265, DOI 10.1007/s10841-008-9147-4; Kotze D. Johan, 2000, P231; Kotze DJ, 2003, OECOLOGIA, V135, P138, DOI 10.1007/s00442-002-1174-3; Kotze DJ, 2002, J BIOGEOGR, V29, P375, DOI 10.1046/j.1365-2699.2002.00681.x; Kotze DJ, 2000, J BIOGEOGR, V27, P807, DOI 10.1046/j.1365-2699.2000.00456.x; KREHAN I, 1970, Oecologia (Berlin), V6, P58, DOI 10.1007/BF00345223; Kromp B, 1999, AGR ECOSYST ENVIRON, V74, P187, DOI 10.1016/S0167-8809(99)00037-7; KRYZHANOVSKII OL, 1983, FAUNA SSSR ZHESTKOKR, V1, P1; KRYZHANOVSKIJ OL, 1995, CHECKLIST GROUNDBEET; KULT K, 1947, KEY BEETLE FAMILY CA; Laara E, 2009, ANN ZOOL FENN, V46, P138; LANDRES PB, 1988, CONSERV BIOL, V2, P316, DOI 10.1111/j.1523-1739.1988.tb00195.x; Lange M, 2011, METHODS ECOL EVOL, V2, P185, DOI 10.1111/j.2041-210X.2010.00062.x; Langor DW, 2006, FOREST CHRON, V82, P344, DOI 10.5558/tfc82344-3; Larochelle A., 1990, Fabreries Supplement, V5, P1; LAROCHELLE A, 2003, NATURAL HIST GROUND; LARSSON SG, 1939, ENTWICLDUNGSTYPEN EN, P1; LARSSON SVEN GISLE, 1959, ZOOL ICELAND, V3, P1; LAWRENCE JF, 1987, ZOOLOGICAL CATALOGUE; Leather SR, 2008, INSECT CONSERV DIVER, V1, P67, DOI 10.1111/j.1752-4598.2007.00005.x; LEDOUX G., 2005, NEBRIA COLEOPTERA NE; Levins R., 1970, LECT NOTES MATH, V2, P75; Lewis O. T., 2007, Insect conservation biology, P431, DOI 10.1079/9781845932541.0431; Liebherr J.K., 1986, P255; Liebherr James K., 1998, P107; Lindenmayer DB, 2000, CONSERV BIOL, V14, P941, DOI 10.1046/j.1523-1739.2000.98533.x; Lindroth C. H., 1956, Transactions of the Royal Entomological Society of London, V108, P485; Lindroth CH, 1931, ZOOL BIDR UPPS, V13, P105; LINDROTH CH, 1961, OPUSCULA ENTOMOLOG S, V20; LINDROTH CH, 1949, FENNOSKANDISCHEN CAR, V1, P1; LINDROTH CH, 1985, FAUNA ENTOMOLOGICA 1, V15; LINDROTH CH, 1988, FENNOSKANDISCHEN CAR, V2, P1; LINDROTH CH, 1945, FENNOSKANDISCHEN CAR, V1, P1; LINDROTH CH, 1985, FAUNA ENTOMOLOGICA 2, V15; LINDROTH CH, 1992, FENNOSKANDISCHEN CAR, V3, P1; LINDROTH CH, 1992, FENNOSKANDISCHEN CAR, V1, P1; LINDROTH CH, 1960, CATALOGUS COLEOPTERO; Lobl I., 2003, CATALOGUE PALAEARCTI, V1; Loreau M., 1990, P31; LORENZ W., 1998, SYSTEMATIC LIST EXTA; LORENZ W., 2005, NOMINA CARABIDARUM D; LOSER S, 1969, VERH DTSCH ZOOL GES, P322; Lovei GL, 2006, ECOL ENTOMOL, V31, P411, DOI 10.1111/j.1365-2311.2006.00794.x; Lovei GL, 1996, ANNU REV ENTOMOL, V41, P231, DOI 10.1146/annurev.en.41.010196.001311; LOVEI GL, 2005, EUROPEAN CARABIDOLOG, V114; Luff ML, 2002, AGROECOLOGY OF CARABID BEETLES, P41; LUFF ML, 1989, J BIOGEOGR, V16, P121, DOI 10.2307/2845086; LUFF ML, 1993, FAUNA ENTOMOLOGICA S, V28, P1; LUFF ML, 1998, PROVISIONAL ATLAS GR; LUFF ML, 2007, RES HDB 2, V4; LUIGIONI P, 1929, COLEOTTERI ITALIA; LUKA H, 2009, FAUNA HELVETICA, V24; LUND RD, 1977, ENVIRON ENTOMOL, V6, P695, DOI 10.1093/ee/6.5.695; Lundgren JG, 2007, ARTHROPOD-PLANT INTE, V1, P93, DOI 10.1007/s11829-007-9008-1; Lundgren JG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010831; MAC ARTHUR ROBERT H., 1967; Machado A., 1992, MONOGRAFIA CARABIDOS; Maddison David R., 1998, P229; Maddison DR, 2009, ZOOL SCR, V38, P43, DOI 10.1111/j.1463-6409.2008.00359.x; MADER HJ, 1984, BIOL CONSERV, V29, P81, DOI 10.1016/0006-3207(84)90015-6; MAELFAIT JP, 1994, SERIES ENTOM, V51, P319; MAGISTRETTI M, 1965, FAUNA ITALIA CICINDE; Magura T, 2006, COMMUNITY ECOL, V7, P1, DOI 10.1556/ComEc.7.2006.1.1; Magura T, 2001, J BIOGEOGR, V28, P129, DOI 10.1046/j.1365-2699.2001.00534.x; Magura T, 2010, GLOBAL ECOL BIOGEOGR, V19, P16, DOI 10.1111/j.1466-8238.2009.00499.x; Mahler V, 1996, HELGOLANDER MEERESUN, V50, P83, DOI 10.1007/BF02366176; Makapob K. B., 2005, Russian Entomological Journal, V14, P263; Mandl K., 1978, Catalogus Faunae Austriae, V15b, P1; Mandl K., 1972, Catalogus Faunae Austriae, V15, P1; MARGGI WA, 1992, CSCF, V1, P1; Martinez-Navarro EM, 2011, J ZOOL SYST EVOL RES, V49, P251, DOI 10.1111/j.1439-0469.2010.00613.x; MARTINEZNAVARRO EM, 2005, EUROPEAN CARABIDOLOG, P219; Maryanski M, 2002, ECOTOXICOLOGY, V11, P127, DOI 10.1023/A:1014425113481; Matalin A. V., 1997, Biology Bulletin of the Russian Academy of Sciences, V24, P371; Matalin AV, 2008, PENSOFT SER FAUNIST, P259; MATALIN AV, 1994, SERIES ENTOM, V51, P183; Matalin AV, 2003, PEDOBIOLOGIA, V47, P311, DOI 10.1078/0031-4056-00195; MATALIN AV, 1997, ENTOMOL REV, V77, P1155; MATALIN AV, 1997, ENTOMOL REV, V77, P1181; MATALIN AV, 1998, NOVA ACTA LEOPOLDINA, V35, P7; Matveinen-Huju K, 2006, FOREST ECOL MANAG, V230, P119, DOI 10.1016/j.foreco.2006.04.025; MCCRACKEN DI, 1994, PEDOBIOLOGIA, V38, P12; MCFERRAN DM, 1994, SERIES ENTOM, V51, P325; Melis C, 2010, J INSECT CONSERV, V14, P159, DOI 10.1007/s10841-009-9240-3; Merivee E, 2005, PHYSIOL ENTOMOL, V30, P122, DOI 10.1111/j.1365-3032.2005.00435.x; Milius M, 2006, J INSECT PHYSIOL, V52, P960, DOI 10.1016/j.jinsphys.2006.06.003; Mlynar Z., 1977, Folia Entomologica Hungarica, V30, P3; Moore B. P., 1971, Ann Natal Mus, V20, P479; MOORE B P, 1974, Journal of the Australian Entomological Society, V13, P179; Moore B.P., 1979, P193; Moore W, 2006, ZOOTAXA, P1; Mossakowski D., 1986, P281; MOSSAKOWSKI D, 1979, MISCELLANEOUS PAPERS, V18, P103; MOSSAKOWSKI D, 2002, PROTECT WHAT WE KNOW, P95; MOSSAKOWSKI D, 1983, 4 M EUR CAR SYNTH FI, P19; MOSSAKOWSKI D, 2005, EUROPEAN CARABIDOLOG, P231; MUILWIJK J, 2010, MONOGRAFIEEN NEDERLA, V11, P40; MULLER HJ, 1970, NOVA ACTA LEOPOLDINA, V35, P7; MULLERMOTZFELD G, 2004, KAFER MITTELEUROPAS, V2; Nabe-Nielsen J, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008932; Nagel P., 1979, MISCELLANEOUS PAPERS LANDBOUWHOGESCHOOL WAGENINGEN, P7; NAGEL P, 1979, MISCELLANEOUS PAPERS, V18, P15; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; NECULISEANU ZZ, 2000, CATALOGUE GROUND BEE; Negro M, 2008, EUR J ENTOMOL, V105, P105, DOI 10.14411/eje.2008.015; NELEMANS MNE, 1987, OECOLOGIA, V72, P502, DOI 10.1007/BF00378974; Nettmann H.-K., 1986, P235; NEUDECKER C, 1974, OECOLOGIA, V17, P141, DOI 10.1007/BF00346277; New T.R., 2010, BEETLES CONSERVATION, DOI [10.1002/9781444318623, DOI 10.1002/9781444318623]; NEW TR, 1995, INTRO INVERTEBRATE C; NICHOLSON AJ, 1958, ANNU REV ENTOMOL, V3, P107, DOI 10.1146/annurev.en.03.010158.000543; Niehues FJ, 1996, ANN ZOOL FENN, V33, P85; Niemela J, 2001, EUR J ENTOMOL, V98, P127, DOI 10.14411/eje.2001.023; Niemela J, 2002, LANDSCAPE ECOL, V17, P387, DOI 10.1023/A:1021270121630; NIEMELA J, 1992, J BIOGEOGR, V19, P173, DOI 10.2307/2845503; Niemela J, 1996, ECOGRAPHY, V19, P352, DOI 10.1111/j.1600-0587.1996.tb01264.x; NIEMELA J, 1991, OIKOS, V62, P351, DOI 10.2307/3545500; Niemela J, 1996, ANN ZOOL FENN, V33, P1; NIEMELA J, 1986, ANN ZOOL FENN, V23, P289; NIEMELA J, 1985, J BIOGEOGR, V12, P109, DOI 10.2307/2844835; NIEMELA J, 1993, OIKOS, V66, P325, DOI 10.2307/3544821; Niemela J, 2007, J INSECT CONSERV, V11, P5, DOI 10.1007/s10841-006-9014-0; Niemela J, 2000, J INSECT CONSERV, V4, P3, DOI 10.1023/A:1009655127440; Niemela J, 2009, LANDSCAPE URBAN PLAN, V92, P65, DOI 10.1016/j.landurbplan.2009.05.016; NOONAN GR, 1992, BIOGEOGRAPHY GROUND; NOONAN GR, 1985, TAXONOMY PHYLOGENY Z, P322; NOORDIJK J, 2009, THESIS U WAGENINGEN; NOORDIJK J, 2009, LOOPKEVERS DRENTHE; Noordijk J, 2006, ENTOMOL FENNICA, V17, P276; NORRIS MAUD J., 1965, J INSECT PHYSIOL, V11, P1105, DOI 10.1016/0022-1910(65)90181-2; NORRIS MAUD J., 1959, ENT EXPTL ET APPL, V2, P154; O'Hara RB, 2010, METHODS ECOL EVOL, V1, P118, DOI 10.1111/j.2041-210X.2010.00021.x; Ober KA, 2008, J INSECT SCI, V8, DOI 10.1673/031.008.6301; OBYDOV D, 2002, REVISION GENRE CALLI; Ortuno V. M., 2005, CARABIDAE PENINSULA, VI; Ouborg NJ, 2007, J ECOL, V95, P8, DOI 10.1111/j.1365-2745.2006.01197.x; Paarman W., 1986, P157; Paarman W., 1986, P79; PAARMANN W, 1974, OECOLOGIA, V15, P87, DOI 10.1007/BF00345230; PAARMANN W, 1970, OECOLOGIA, V5, P325, DOI 10.1007/BF00815498; PAARMANN W, 1987, INSECT SCI APPL, V8, P483, DOI 10.1017/S1742758400022529; PAARMANN W, 1985, J ARID ENVIRON, V9, P210; PAARMANN W, 1973, OECOLOGIA, V13, P81, DOI 10.1007/BF00379621; PAARMANN W, 1976, ENTOMOL EXP APPL, V19, P23, DOI 10.1111/j.1570-7458.1976.tb02578.x; PAARMANN W, 1976, ZOOL ANZ, V196, P150; Paarmann W, 2001, J TROP ECOL, V17, P549, DOI 10.1017/S0266467401001419; Paarmann W., 1976, Zoologische Jb (Syst), V103, P311; PAARMANN W, 1975, Zoologische Jahrbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere, V102, P72; PAARMANN W, 1994, SERIES ENTOM, V51, P201; Paarmann W., 1990, P259; Paarmann W., 1997, P433; PAARMANN W, 1976, THESIS U WURZBURG; PAARMANN W, 2002, PROTECT WHAT WE KNOW, P45; PAARMANN W, 1979, MISCELLANEOUS PAPERS, V18, P119; Paarmann W, 2006, ENTOMOL FENNICA, V17, P334; PALMEN E, 1944, ANN ZOOLOGICI SOC ZO; Panzer R, 1998, CONSERV BIOL, V12, P693, DOI 10.1046/j.1523-1739.1998.97051.x; Parry M. L., 2007, CLIMATE CHANGE 2007; Pawson SM, 2008, BIODIVERS CONSERV, V17, P1127, DOI 10.1007/s10531-008-9363-y; Pearson DL, 2001, TIGER BEETLES EVOLUT; PEDERSEN JC, 2009, DANSKE RODLISTE DANM; PENEV L, 2008, BACK ROOTS BACK FUTU; Perez Zaballos J.M., 1985, Actas do Congresso Iberico de Entomologia, V2, P85; PERSIGEHL M, 2004, 12004 NNA, P161; Petit S, 1998, BIODIVERS CONSERV, V7, P1549, DOI 10.1023/A:1008875403868; Petit S, 1998, AGR ECOSYST ENVIRON, V69, P243, DOI 10.1016/S0167-8809(98)00111-X; PETIT S, 1994, SERIES ENTOM, V51, P337; Pichancourt JB, 2006, ECOL MODEL, V192, P543, DOI 10.1016/j.ecolmodel.2005.07.027; PIZZOLOTTO R, 2009, 14 EUR CAR M WEST NE, P24; Plachter H., 1986, P509; PLAT S, 1995, PROCEEDINGS OF THE SECTION EXPERIMENTAL AND APPLIED ENTOMOLOGY OF THE NETHERLANDS ENTOMOLOGICAL SOCIETY (N.E.V.), VOL 6, 1995, P73; PORTA A, 1923, FAUNA COLEOPTERUM IT, V1, P1; PORTA A, 1934, FAUNA COLEOPTERORU 1, V1, P1; PORTA A, 1949, FAUNA COLEOPTERORU 1, V1, P1; PORTA A, 1959, FAUNA COLEOPTERORU 1, V1, P1; PRINS D, 2007, INVLOED KLIMAATVERAN; PRUSER F, 2000, NATURAL HIST APPL EC, P45; Pruser Frank, 1998, P297; Purtauf T, 2004, LANDSCAPE URBAN PLAN, V67, P185, DOI 10.1016/S0169-2046(03)00038-0; Purtauf T, 2005, OECOLOGIA, V142, P458, DOI 10.1007/s00442-004-1740-y; Putchkov A, 2011, ZOOKEYS, P503, DOI 10.3897/zookeys.100.1545; Rainio J, 2003, BIODIVERS CONSERV, V12, P487, DOI 10.1023/A:1022412617568; RANTA E, 1982, ANN ZOOL FENN, V19, P175; Rasplus Jean-Yves, 2000, P11; Rassi P., 2001, SUOMEN LAJIEN UHANAL; REITTER E, 1908, FAUNA GERMANICA KAFE; Ribera I, 2006, ENTOMOL FENNICA, V17, P207; RICHARD E, 2004, IUFRO RES SER, P179, DOI DOI 10.1079/9780851998022.0179; Riecken U, 1996, ANN ZOOL FENN, V33, P109; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; Roig-Junent Sergio, 1998, P343; Ruiz C, 2006, ENTOMOL FENNICA, V17, P214; RUSHTON SP, 1990, BIOL CONSERV, V51, P97, DOI 10.1016/0006-3207(90)90105-X; Saarikivi J, 2010, EUR J ENTOMOL, V107, P553, DOI 10.14411/eje.2010.064; Sadler JP, 2006, J BIOGEOGR, V33, P1126, DOI 10.1111/j.1365-2699.2006.01476.x; 2006, GROUND BEETLES IRELA; Hoef JMV, 2007, ECOLOGY, V88, P2766, DOI 10.1890/07-0043.1; Saetersdal M, 2005, BIOL CONSERV, V122, P305, DOI 10.1016/j.biocon.2004.07.020; SAHLBERG J, 1868, FLORA FENNICA FORHAN, V9; SALT GEORGE, 1928, PSYCHE, V35, P131, DOI 10.1155/1928/96276; Samways MJ, 2007, ANNU REV ENTOMOL, V52, P465, DOI 10.1146/annurev.ento.52.110405.091317; SAMWAYS MJ, 2005, INSECT DIVERSITY CON, DOI DOI 10.1017/CBO9780511614163; Sander AC, 2006, BASIC APPL ECOL, V7, P555, DOI 10.1016/j.baae.2006.01.001; Sapia M, 2006, ENTOMOL FENNICA, V17, P345; Sasakawa K, 2009, ENTOMOL EXP APPL, V130, P106, DOI 10.1111/j.1570-7458.2008.00799.x; Sasakawa K, 2007, APPL ENTOMOL ZOOL, V42, P669, DOI 10.1303/aez.2007.669; Saska P, 2005, ANN APPL BIOL, V147, P139, DOI 10.1111/j.1744-7348.2005.00016.x; Saska P, 2004, J ZOOL, V262, P29, DOI 10.1017/S0952836903004412; Saska P, 2010, BIOL CONTROL, V52, P91, DOI 10.1016/j.biocontrol.2009.07.016; SASKA P, 2005, DIAS REPORT, V114, P267; Saska P, 2008, PHYSIOL ENTOMOL, V33, P188, DOI 10.1111/j.1365-3032.2008.00618.x; Saska P, 2008, ANN ENTOMOL SOC AM, V101, P533, DOI 10.1603/0013-8746(2008)101[533:SOACPB]2.0.CO;2; Saska P, 2007, AGR ECOSYST ENVIRON, V122, P427, DOI 10.1016/j.agee.2007.02.013; Saska Pavel, 2001, Plant Protection Science, V37, P103; Schjotz-Christensen B., 1966, Natura Jutlandica, V12, P225; SCHJOTZCHRISTEN.B, 1968, NAT JUTL, V14, P127; SCHJOTZCHRISTEN.B, 1965, NAT JUTL, V11, P1; SCHREMMER F, 1960, Z ARBEITSGEMEINSCHAF, V3, P140; SCHULE P, 1998, ROTE LISTE GEFAHRDET; Schweiger O, 2005, J APPL ECOL, V42, P1129, DOI 10.1111/j.1365-2664.2005.01085.x; Schwerk Axel, 2000, P277; Schwerk A, 2008, MODEL OF THE RATE OF SUCCESSION OF EPIGEIC CARABID BEETLES (COLEOPTERA: CARABIDAE) ON DEGRADED AREAS, P5; SCIAKY R, 1987, MEMORIE SOC ENTOMOLO, V65, P29; Serrano J., 1992, P235; SERRANO J, 1994, SERIES ENTOM, V51, P55; Serrano J., 1986, P221; SERRANO J, 2003, MONOGRAFIAS SOC ENTO; SERRANO J, 2006, ENTOMOLOGICA FENNICA, V17; Serrano Jose, 1998, P191; Sharova IK, 1981, LIFE FORMS CARABIDS; SILVESTRI F, 1904, REDIA, V2, P68; Simila M, 2006, ECOL INDIC, V6, P686, DOI 10.1016/j.ecolind.2005.08.028; SKLODOWSKI J, 2010, MONITORING ZOO INDYK, P145; Sklodowski JJW, 2006, ENTOMOL FENNICA, V17, P296; SKOUPY V, 2004, GROUND BEETLES COLEO; Sokal RR, 1995, BIOMETRY; STORK NE, 1992, STUD NEOTROP FAUNA E, V27, P101, DOI 10.1080/01650529209360871; STORK NE, 1990, P 7 EUR CAR M; STRAND A, 1970, Norsk Entomologisk Tidsskrift, V17, P125; SUSTEK Z, 1992, BIOLOGIA, V47, P417; SUSTEK Z, 1987, BIOLOGIA, V42, P145; Sutherland WJ, 1998, CONSERVATION SCI ACT; Szyszko J, 1996, ACT JUTLAND, V71, P25; Szyszko J., 1986, P133; SZYSZKO J, 2002, P 10 EUR CAR M, P1; SZYSZKO J, 1990, PLANNING PROPHYLAXIS; SZYSZKO J, 1998, NATURAL HIST APPL EC, P289; SZYSZKO J, 2004, CULTURAL LANDSCAPES, P95; SZYSZKO J, 1981, ECOLOGY CARABIDS SYN, P183; SZYSZKO J, 2010, PODSTAWY KOMPENSACJI, P126; Szyszko J, 2011, ZOOKEYS, P565, DOI 10.3897/zookeys.100.1547; Taboada A, 2008, BASIC APPL ECOL, V9, P161, DOI 10.1016/j.baae.2007.01.004; Taboada A, 2006, FOREST ECOL MANAG, V237, P436, DOI 10.1016/j.foreco.2006.09.077; Taboada A, 2006, ENTOMOL FENNICA, V17, P284; Tanner RA, 2005, LANDSCAPE URBAN PLAN, V71, P137, DOI 10.1016/j.landurbplan.2004.02.004; Taylor RJ, 2001, J INSECT CONSERV, V5, P221, DOI 10.1023/A:1013397410297; Telfer MG, 1996, ANN ZOOL FENN, V33, P133; Terlutter H., 1990, P359; Thacker JRM, 1996, TRENDS ECOL EVOL, V11, P103, DOI 10.1016/0169-5347(96)81083-4; Thiele H, 1977, CARABID BEETLES THEI; THIELE H-U, 1971, Miscellaneous Papers Landbouwhogeschool Wageningen, V8, P105; Thomas CFG, 2002, AGROECOLOGY OF CARABID BEETLES, P305; Thomas CFG, 1998, OECOLOGIA, V116, P103, DOI 10.1007/s004420050568; Thomas M.B., 1990, P77; Toft S, 2002, AGROECOLOGY OF CARABID BEETLES, P81; Trautner J, 1987, TIGER BEETLES GROUND; TURIN H, 1988, BIOL CONSERV, V44, P179, DOI 10.1016/0006-3207(88)90101-2; TURIN H, 1991, Tijdschrift voor Entomologie, V134, P279; TURIN H, 2003, GENUS CARABUS SYNTHE; TURIN H, 2000, NEDERLANDSE FAUNA, V3; TURIN H, 1981, MONOGRAPH NETHERLAND, V9; Underwood AJ, 2009, ANN ZOOL FENN, V46, P93, DOI 10.5735/086.046.0203; Vanbergen AJ, 2010, ECOL ENTOMOL, V35, P226, DOI 10.1111/j.1365-2311.2010.01175.x; Vanbergen AJ, 2005, ECOGRAPHY, V28, P3, DOI 10.1111/j.0906-7590.2005.03991.x; VANDIJK TS, 1992, OECOLOGIA, V90, P340, DOI 10.1007/BF00317690; VANESSEN SJ, 1991, LOOPKEVERINVENTARISA, P1; VANHUIZEN THP, 1977, OECOLOGIA, V29, P27, DOI 10.1007/BF00345360; VANHUIZEN THP, 1979, MISCELL PAPERS LH WA, V18, P199; Venn SJ, 2003, EUR J ENTOMOL, V100, P73, DOI 10.14411/eje.2003.015; Venn Stephen, 2007, Baltic Journal of Coleopterology, V7, P51; VERMEULEN HJW, 1995, LANDSCAPE URBAN PLAN, V31, P233, DOI 10.1016/0169-2046(94)01050-I; VERMEULEN HJW, 1993, BIODIVERS CONSERV, V2, P331, DOI 10.1007/BF00114038; VERMEULEN HJW, 1994, BIOL CONSERV, V69, P339, DOI 10.1016/0006-3207(94)90433-2; VERMEULEN HJW, 1992, P 4 ECE 13 SIEEC GOD, P592; VERMEULEN HJW, 1986, THESIS BIOL STATION; VERMEULEN HJW, 2002, PROTECT WHAT WE KNOW, P133; VERMEULEN R, 1994, SERIES ENTOM, V51, P393; VERMEULEN R, 2003, EUROPEAN CARABIDOLOG, P379; Vermeulen Rikjan, 2004, Levende Natuur, V105, P67; VERSTEIRT V, 2002, PROTECT WHAT WE KNOW, P143; VIGNA TA, 1993, CHECKLIST SPECIE FAU; VIGNA TA, 2005, COLEOTTERI CARABIDI, P186; VIGNA TA, 1998, PHYLOGENY CLASSIFICA, P273; VINSON SB, 1976, ANNU REV ENTOMOL, V21, P109, DOI 10.1146/annurev.en.21.010176.000545; VLIJM L, 1968, Oecologia (Berlin), V1, P304, DOI 10.1007/BF00386687; Vogler Alfried P., 1998, P251; VOGLER AP, 1994, SERIES ENTOM, V51, P79; VOGT S, 2005, EUROPEAN CARABIDOLOG, P391; WACHMANN E, 1995, LAUFKAFER BEOBACHTUN; WALTER H, 1960, KLIMADIAGRARNM WELTA; Ward R.D., 1979, P181; Weber DC, 2008, ENCY ENTOMOLOGY, P719; Weber DC, 2006, J INSECT SCI, V6, DOI 10.1673/1536-2442(2006)6[1:PPAHSO]2.0.CO;2; White GC, 1996, ECOLOGY, V77, P2549, DOI 10.2307/2265753; White TCR, 1993, INADEQUATE ENV NITRO; WICKHAM HF, 1893, B LAB IOWA, V2, P330; Wizen G, 2011, ZOOKEYS, P181, DOI 10.3897/zookeys.100.1526; Woodcock BA, 2010, AGR ECOSYST ENVIRON, V139, P181, DOI 10.1016/j.agee.2010.07.018; Yamada Y, 2010, J INSECT CONSERV, V14, P151, DOI 10.1007/s10841-009-9236-z; Zaballos J.P., 1994, Monografias S.E.A. (Sociedad Entomologia Aragonesa), V1, P1; Zalewski M, 2004, J BIOGEOGR, V31, P1139, DOI 10.1111/j.1365-2699.2004.01097.x; ZAMOTAJLOV A, 1999, ADV CARABIDOLOGY; ZECHOWSKI W, 1982, MEMORABILIA ZOOLOGIC, V39, P3; ZETTO BT, 1990, ROLE GROUND BEETLES, P307; ZETTO BT, 2000, NATURAL HIST APPL EC, P103; ZETTO BT, 1976, LUTSH REDIA, V59, P197; ZETTO BT, 1998, PHYLOGENY CLASSIFICA, P449; ZETTO BT, 1998, INSECT SOCIAL LIFE, V2, P203; ZETTO BT, 1980, P 12 C NAZ IT ENT RO, P105; ZETTO BT, 2000, INSECT SOCIAL LIFE, V3, P201; ZETTO BT, 1983, ECOLOGY CARABIDS SYN, P93 625 118 146 16 211 PENSOFT PUBL SOFIA 12 PROF GEORGI ZLATARSKI ST, SOFIA, 1700, BULGARIA 1313-2989 1313-2970 ZOOKEYS ZooKeys 2011 100 SI 55 148 10.3897/zookeys.100.1523 94 Zoology Zoology 790WB WOS:000292620300004 21738408 DOAJ Gold, Green Published 2019-02-21